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Abstract. A parsimonious semi-distributed rainfall–runoff
model has been developed for flow prediction. In distribu-
tion, attention is paid to both the timing of the runoff and
the heterogeneity of moisture storage capacities within sub-
catchments. This model is based on the lumped FLEXL
model structure, which has proven its value in a wide range
of catchments. To test the value of distribution, the gauged
upper Ping catchment in Thailand has been divided into
32 sub-catchments, which can be grouped into five gauged
sub-catchments at which internal performance is evaluated.
To test the effect of timing, first the excess rainfall was cal-
culated for each sub-catchment, using the model structure of
FLEXL. The excess rainfall was then routed to its outlet us-
ing the lag time from the storm to peak flow (TlagF) and
the lag time of recharge from the root zone to the groundwa-
ter (TlagS), as a function of catchment size. Subsequently,
the Muskingum equation was used to route sub-catchment
runoff to the downstream sub-catchment, with the delay
time parameter of the Muskingum equation being a func-
tion of channel length. Other model parameters of this semi-
distributed FLEX-SD model were kept the same as in the cal-
ibrated FLEXL model of the entire upper Ping River basin
(UPRB), controlled by station P.1 located at the centre of
Chiang Mai province. The outcome of FLEX-SD was com-
pared to the (1) observations at the internal stations, (2) cal-
ibrated FLEXL model, and (3) the semi-distributed URBS

model – another established semi-distributed rainfall–runoff
model. FLEX-SD showed better or similar performance dur-
ing calibration and especially in validation. Subsequently, we
tried to distribute the moisture storage capacity by constrain-
ing FLEX-SD on patterns of the NDII (normalised differ-
ence infrared index). The readily available NDII appears to
be a good proxy for moisture stress in the root zone dur-
ing dry periods. The maximum moisture-holding capacity
in the root zone is assumed to be a function of the max-
imum seasonal range of NDII values and the annual aver-
age NDII values to construct two alternative models, namely
FLEX-SD-NDIIMaxMin and FLEX-SD-NDIIAvg. The addi-
tional constraint on the moisture-holding capacity (Sumax)
by NDII, particularly in FLEX-SD-NDIIAvg, improved both
the model performance and the realism of its distribution
across the UPRB, which corresponds linearly to the percent-
age of evergreen forests (R2

= 0.69). To check how well the
models represents simulated root zone soil moisture (Sui),
the performance of the FLEX-SD-NDII models was com-
pared to the time series of the soil water index (SWI). The
correlation between the Sui and the daily SWI appeared to
be very good and was even better than the correlation with
the NDII, which does not provide good estimates during wet
periods. The SWI, which is model-based, was not used for
calibration but appeared to be an appropriate index for vali-
dation.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Runoff is one of the most important components of the hy-
drological cycle and can be monitored by the installation
of a gauging station. Unfortunately, only a limited num-
ber of high-quality gauging stations are available due to
topographic, financial, and human resources limitations. A
wide variety of rainfall–runoff models has been developed
in gauged and ungauged catchments in different parts of
the globe. Most rainfall–runoff models are categorised as
lumped models, which provide runoff estimates only at the
site of calibration. These models include FLEXL, FLEX-
Topo (Euser et al., 2015; Gao et al., 2014), NAM (Bao et al.,
2011; Tingsanchali and Gautam, 2000; Vaitiekuniene, 2005;
Yew Gan et al., 1997), SCS (Hawkins, 1993; Lewis et al.,
2000; Mishra et al., 2005; Suresh Babu and Mishra, 2011;
Yahya et al., 2010), and others. Among the wide range of ex-
isting lumped rainfall–runoff models, FLEXL has proven to
be an adequate model for runoff estimation in a wide range
of catchments (Fenicia et al., 2008, 2011; Gao et al., 2014;
Kavetski and Fenicia, 2011; Tekleab et al., 2015). This model
was further developed by Gharari et al. (2011) and Gao et
al. (2016) to account for the spatial variability in landscape
characteristics (FLEX-TOPO), which is useful for prediction
in ungauged basins (Savenije, 2010).

However, the generation of runoff exhibits the spatial
and temporal variability in nature, which is not effectively
accounted for by the conceptualisation of lumped models.
Hence, the distribution of key routing and storage parame-
ters is implemented in semi-distributed frameworks to bet-
ter understand their effects on the partitioning of moisture
and water balance. The URBS model accounts for the spa-
tiotemporal variability in rainfall by separating the catchment
of interest into a series of sub-catchments (Mapiam and Sri-
wongsitanon, 2009). This framework allows runoff to be esti-
mated at any required upstream location (Carroll, 2004; Mal-
one, 1999), thus providing useful application for real-time
flood forecasting in a variety of catchments in Australia and
globally (Malone, 2006; Malone et al., 2003; Mapiam and
Sriwongsitanon, 2009; Mapiam et al., 2014; Rodriguez et al.,
2005; Sriwongsitanon, 2010). But accounting for distributed
routing and storage parameters alone does not address the
variability in moisture storage capacities across heteroge-
neous sub-catchments, which is a key parameter for runoff
generation. For this reason, room for improvement with re-
spect to the realism of conceptual hydrological models lies
within their effectiveness at better capturing the variability in
moisture stresses.

The fact that remote sensing (RS) proxies for mois-
ture storage are available in ungauged basins makes RS an
essential additional data source for distributed modelling,
even though such proxies themselves have intrinsic model-
based uncertainties. Remote sensing observation techniques
have been demonstrated in several studies to account for
the spatial patterns of different vegetation types and mois-

ture states, such that they could be valuable in constraining
semi-distributed hydrological models (e.g. Savenije and Hra-
chowitz, 2017).

The normalised difference infrared index (NDII) is an in-
dex that detects canopy water content (Hardisky et al., 1983),
which has recently been investigated for monitoring drought
conditions (Moricz et al., 2018; Xulu et al., 2018). The in-
dex is indicative of differences in moisture capacities and
has been shown to correspond with root zone soil mois-
ture (RZSM) dynamics. Sriwongsitanon et al. (2016) used
NDII as a proxy for RZSM and showed its effectiveness
in eight sub-catchments of the upper Ping River basin in
Thailand. This agrees with the study carried out by Castelli
et al. (2019), who found reasonable correlations between
Landsat 7 NDII values and the measured RZSM contents
of rainfed olive trees growing in the arid regions of south-
eastern Tunisia. Mao and Liu (2019) found RZSM signa-
tures to be well-correlated to NDII in most regions, except
in river basins with high forest coverage, in addition to those
with low moisture stress or those with trees intercepting deep
groundwater (e.g. Eucalyptus). As such, the above studies re-
veal the worthwhileness of incorporating NDII to constrain
semi-distributed models to enhance model realism, as indi-
cated by the achieved accuracy improvements to runoff es-
timation. This study utilises the fundamental model struc-
ture of FLEXL, which includes the same distributed time
lags and channel routing as used in URBS and includes dis-
tributed root zone soil moisture capacity per sub-catchment
to create a new parsimonious semi-distributed FLEX model
for flood and flow monitoring within the (ungauged) sub-
catchments of the gauged upper Ping River basin. (1) To in-
troduce the effect of runoff timing in a catchment with mul-
tiple sub-catchments, travel times to the outfall of each in-
dividual sub-catchment are computed on the basis of topo-
graphical indicators, and the routing of the discharge from
the sub-catchment outfall to stations further downstream is
computed using the Muskingum method. These time lags
are then applied in the FLEX-SD model system and in the
well-established URBS model for the purpose of compar-
ison. These two semi-distributed models only account for
timing but not for the distribution of the moisture storage
capacity, which is a crucial parameter in runoff generation.
The distribution of time lags is expected to properly simu-
late the hydrograph shape, particularly the timing and shape
of the peaks of all sub-catchments within calibrated gauging
station, but it does not affect the partitioning of the hydro-
logical fluxes or the water balance and the accuracy of runoff
estimates. (2) Subsequently, the effect of the distribution of
the root zone moisture storage is studied in the FLEX-SD
model, making use of the spatial distribution pattern of the
maximum and minimum range of NDII values and the an-
nual average NDII values to construct two alternative mod-
els, namely FLEX-SD-NDIIMaxMin and FLEX-SD-NDIIAvg.
(3) As a validation of the realism of the hydrological models
tested, as indicated by their ability to capture the variability
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in internal moisture states across sub-catchments, the derived
simulated root zone moisture storages are compared to the
independent time series of the model-based soil water index
(SWI) and the RS-based NDII.

2 Study area and datasets

2.1 Study area

The upper Ping River basin (UPRB) is situated between
17◦14′30′′ to 19◦47′52′′ N and 98◦4′30′′ to 99◦22′30′′ E in
the provinces of Chiang Mai and Lamphun. The catchment
area of the basin is approximately 25 370 km2. The basin
is dominated by well-forested, steep mountains, generally
in a north–south alignment (Sriwongsitanon and Taesombat,
2011). The areal average annual rainfall and runoff of the
basin from 2001–2016 is 1224 and 235 mm yr−1, respec-
tively. The land use for the UPRB in 2013 can be classi-
fied into six main classes comprising forest, irrigated agri-
culture, rainfed agriculture, bare land, waterbody, and oth-
ers, which cover approximately 77.40 %, 3.11 %, 12.54 %,
1.99 %, 1.23 %, and 3.73 % of the catchment area, respec-
tively (Land Development Department, LDD). The landform
of the UPRB varies from an undulating to a rolling ter-
rain, with steep hills at elevations of 1500–2000 m, and val-
leys of 330–500 m (Mapiam and Sriwongsitanon, 2009; Sri-
wongsitanon, 2010). The Chiang Dao district, north of Chi-
ang Mai, is the origin of the Ping River, which flows down-
stream to the south to become the inflow of the Bhumibol
Dam – a large dam with an active storage capacity of about
9.7 × 109 m3 (Sriwongsitanon, 2010). The climate of the
basin is dominated by tropical monsoons. The southwestern
monsoon causes a rainy season between May and October,
and the northeastern monsoon brings dry weather and low
temperatures between November and April. Only 6142 km2

of the total area controlled by the runoff station P.1 (situ-
ated at the centre of Chiang Mai) is selected for this study
(Fig. 1). The catchment area of the station P.1 is divided
into 32 sub-catchments (Fig. 1), which is where the semi-
distributed rainfall–runoff models are tested.

2.2 Rainfall data

Daily rainfall data from 48 non-automatic rain gauge sta-
tions located within the UPRB and its surroundings from
2001–2016 were used in this study. These data are owned
and operated by the Thai Meteorological Department and
the Royal Irrigation Department. These data have been val-
idated for their accuracy on a monthly basis using double
mass curve, and some inaccurate data were removed from
the time series before spatially averaging using an inverse
distance square (IDS) to be applied as the forcing data of
URBS, FLEXL, and FLEX-SD. Mean areal rainfall depth for
each of 32 sub-catchments varies between 1100 (S17) and

1402 mm yr−1 (S11), as shown in Fig. 1b, while the average
rainfall depth of P.1 is approximately 1224 mm yr−1.

2.3 Runoff data

The Royal Irrigation Department (RID) operated seven daily
runoff stations in the study area between 2001 and 2016,
as shown in Fig. 1. Catchment P.56A was rejected from
the study because it is located upstream of the Mae Ngat
reservoir. Outflow data from the reservoir were used as in-
put data in model calibration. Runoff data at the remain-
ing six stations were used for the study, since they are not
affected by large reservoirs. The data have been checked
for their accuracy by comparing them with average rain-
fall data covering their catchment areas at the same peri-
ods. Table 1 presents the catchment characteristics and hy-
drological data for these six gauging stations in the UPRB.
In this study, the catchments of these six stations were di-
vided into 32 sub-catchments (see Fig. 1), with areas rang-
ing from 57 to 230 km2. High variation in catchment size is
due to the proximity between the locations of these runoff
stations and the outlets of the tributaries. Runoff data have
been checked for their accuracy by comparing the annual
runoff coefficient between all stations. The comparison re-
vealed that the runoff coefficients at P.20 in 2006 and 2011
are overestimated, while the runoff coefficient at P.21 in 2004
is underestimated, and in 2007 and 2009, the runoff coef-
ficients are overestimated due to the incorrect rating curves
(see Fig. 2). These inaccurate data would affect the results of
the model calibration.

2.4 NDII data

The normalised difference infrared index (NDII) is a ratio
of the near-infrared (NIR) and shortwave infrared (SWIR)
bands, centred at 859 and 1640 nm, respectively, as shown
in Eq. (1). In this study, the NDII was calculated using the
MODIS level 3 surface reflectance product (MOD09A1),
which is available at 500 m resolution in an 8 d composite of
the gridded level 2 surface reflectance products. Atmospheric
correction has been carried out to improve the accuracy
and can be downloaded from ftp://e4ftl01.cr.usgs.gov/MOLT
(last access: 14 November 2020; Vermote et al., 2011). The
8 d NDII values between 2002–2016 were averaged over
each of 31 sub-catchments of the UPRB to be used for es-
timating the model parameter within sub-catchment and for
it to be compared to the 8 d average Su (root zone storage)
values extracted from the model results at each station.

NDII=
(NIR−SWIR)
(NIR+SWIR)

(1)

2.5 SWI data

The near-real-time SWI is derived from the reprocessed sur-
face soil moisture (SSM) data derived from the Advanced
SCATterometer (ASCAT) sensor (Brocca et al., 2011; Paulik

https://doi.org/10.5194/hess-27-2149-2023 Hydrol. Earth Syst. Sci., 27, 2149–2171, 2023
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Figure 1. Topography and mean annual rainfall depth for each sub-catchment of the UPRB.

Figure 2. Runoff coefficient of each station.
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Table 1. Catchment characteristics and hydrological data for six gauging stations in the study area.

Runoff station P.20 P.75 P.4A P.67 P.21 P.1

Area (km2) 1309 3029 1954 5333 516 6142
Altitude range (m) 993 1035 686 1058 581 1067
Length main channel (km) 89 126 143 155 52 185
Average channel slope 0.006 0.005 0.004 0.004 0.01 0.004
Average rainfall (mm yr−1) 1227 1250 1176 1221 1220 1224
Rainfall range (mm yr−1) 926–1640 900–1643 829–1449 866–1570 728–1606 847–1565
Average runoff (mm yr−1) 324.8 233.6 186.6 229.2 261.8 235.2
Runoff range (mm yr−1) 94.2–672.4 67.0–480.1 37.3–455.2 34.0–495.5 80.2–522.4 54.2–494.1
Irrigated area (%) 15.7 18.1 9.4 15.1 17.4 15
Evergreen forest (%) 10.2 9.6 39.7 20.0 22.1 19.8
Forest area (%) 76.0 74.0 82.1 76.1 67.8 73.9
Percent runoff average 25.9 18.2 15.1 18 20.7 18.5
Percent runoff average 10.2–51.7 7.4–34.2 4.5–31.4 3.9–34.6 11.0–32.5 6.4–33.9

et al., 2014), which is a C-band scatterometer measuring at a
frequency of 5.255 GHz in vertical transmit and receive po-
larisation (VV) (Paulik et al., 2014). The product makes use
of a two-layer water balance model to describe the time series
relationship between surface and profile soil moisture. This
dataset of moisture conditions is available on a daily basis for
eight characteristic time windows (1, 5, 10, 15, 20, 40, 60,
and 100 d). The global-scale SWI dataset is available at 0.1◦,
which is about 10 km resolution, within 3 d after observation
and can be downloaded from the Copernicus Global Land
Service website. The dataset is available from January 2007
onwards. Since the SWI dataset is not complete in 2007,
only the data between 2008 and 2016 have been used in this
study. The characteristic time length is the only parameter in
the SWI procedure. Bouaziz et al. (2020) specified the opti-
mal T values (Topt) by matching the modelled time series of
RZSM from a calibrated FLEXL model to several SWI prod-
ucts in 16 contrasting catchments in the Meuse river basin.
They concluded that the characteristic time lengths are differ-
entiated amongst land cover (percent agriculture), soil prop-
erties (percent silt), and runoff signatures (flashiness index).
In Sect. 5.4.2, the appropriate timescale for the Ping basin
will be determined in 40 d.

3 Theoretical background

3.1 FLEXL model

FLEXL is a lumped hydrological model comprising five
reservoirs, namely a snow reservoir (Sw), an interception
reservoir (Si), an unsaturated soil reservoir (Su), a fast-
response reservoir (Sf), and a slow-response reservoir (Ss;
Gao et al., 2014). Excess rainfall from a snow reservoir, an
interception reservoir, and an unsaturated soil reservoir is di-
vided and routed into a fast-response reservoir and a slow-
response reservoir using two lag functions. It includes the

lag time from storm to peak flow (TlagF) and the lag time of
recharge from the root zone to the groundwater (TlagS). Each
reservoir has process equations that connect the fluxes enter-
ing or leaving the storage compartment to the storage in the
reservoirs (so-called constitutive functions; Sriwongsitanon
et al., 2016). The water balance equations and constitutive
equations for each conceptual reservoir are summarised in
Fig. 3 and Table 2. The total number of model parameters
is 11. Forcing data include the daily average rainfall and po-
tential evaporation derived by the Penman–Monteith equa-
tion.

3.1.1 Snow reservoir

The snow routine, which is not very relevant in Thailand,
can play an important role in areas with snow. When there
is snow cover and the temperature (Ti) is above Tt, then
the effective precipitation is equal to the sum of the rainfall
(Pi) and snowmelt (Mi). The snowmelt (Mi) is calculated by
the melted water per day per degree Celsius above Tt (FDD;
Eq. 2). The snow reservoir uses the water balance equation,
Eq. (3), where Swi (mm) is the storage of the snow reservoir.

3.1.2 Interception reservoir

Interception is more important in summer and autumn. The
interception evaporation (Eii) was calculated by the potential
evaporation (Epi) and the storage in the interception reser-
voir (Sii), with a daily maximum storage capacity (Imax;
Eqs. 4 and 5). The interception reservoir uses the water bal-
ance equation, Eq. (6), as presented in Table 2.

3.1.3 Root zone reservoir

The root zone routine, which is the core of the hydrologi-
cal models, determines the amount of runoff generation. In
this study, we applied the widely used beta function of the
Xinanjiang model (Ren-Jun, 1992) to compute the runoff co-

https://doi.org/10.5194/hess-27-2149-2023 Hydrol. Earth Syst. Sci., 27, 2149–2171, 2023
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Figure 3. Model structure of FLEXL model.

Table 2. Constitutive and water balance equations used in FLEXL.

No. Reservoir Constitutive equations Equation Water balance Equation
equations

1 Snow Mi =

{
FDD (Ti −Tt) ; Ti > Tt
0; Ti ≤ Tt

(2) dSw
dt = Psi −Mi (3)

2 Interception
Eii =

{
Epi; Sii > 0
0; Sii = 0

(4) dSi
dt = Pri −Eii −Ptfi (6)

Ptfi =
{

0; Sii < Imax
Pri; Sii ≥ Imax

(5)

3 Unsaturated soil
Cri = 1−

(
1− Sui−1

Sumax

)β
(7)

dSu
dt = Pei(1−Cri)−Eai (10)Rui = PeiCri (8)

Eai = (Epi −Eii)min
(

Sui
Sumax·Ce ,1

)
(9)

4 Fast response

Rfi = RuiD (11)

dSf
dt = Rfli −Qffi −Qfi (16)

clagF(j)=
j

TlagF∑
u=1

u

(12)

Rfli =
TlagF∑
j=1

clagF(j) ·Rfi−j−1 (13)

Qffi =
max(0,Sfi−Sfmax)

Kff (14)
Qfi =

Sfi
Kf (15)

5 Slow response

Rsi = Rui(1−D) (17)
dSs
dt = Rsi −Qsi (21)clagS(j)=

j
TlagS∑
u=1

u

(18)

Rsli =
TlagS∑
j=1

clagS(j) ·Rsi−j−1 (19)

Qsi =
Ssi
Ks (20)

Hydrol. Earth Syst. Sci., 27, 2149–2171, 2023 https://doi.org/10.5194/hess-27-2149-2023
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efficient for each time step as a function of the relative soil
moisture. In Eq. (7), Cri indicates the runoff coefficient, Sui
is the storage in the root zone reservoir, Sumax is the maxi-
mum moisture-holding capacity in the root zone, and β is the
parameter describing the spatial process heterogeneity of the
runoff threshold in the catchment. In Eq. (8), Pei indicates
the effective rainfall and snowmelt into the root zone routine,
and Rui represents the generated flow during rainfall events.
In Eq. (9), Sui , Sumax, and potential evaporation (Epi) were
used to determine the actual evaporation from the root zone
Eai ; Ce indicates the fraction of Sumax above which the ac-
tual evaporation is equal to potential evaporation, which is
set here to 0.5, as previously suggested by Savenije (1997).
Otherwise, Eai is constrained by the water available in Sui .
The unsaturated soil reservoir uses the water balance equa-
tion, Eq. (10), as presented in Table 2.

3.1.4 Fast-response reservoir

In Eq. (11), Rfi indicates the flow into the fast-response rou-
tine, and D is a splitter to separate the recharge from prefer-
ential flow. Equations (12) and (13) were used to describe the
lag time between storm and peak flow. Rft−i+1 is the gener-
ated fast runoff in the unsaturated zone at time t−i+1, TlagF
is a parameter which represents the time lag between storm
and fast-runoff generation, clagF(i) is the weight of the flow
in i− 1 days before, and Rfli is the discharge into the fast-
response reservoir after convolution.

A linear-response reservoir, representing a linear relation-
ship between storage and release, was applied to conceptu-
alise the discharge from the surface runoff reservoir, fast-
response reservoirs and slow-response reservoirs. In Eq. (14),
Qffi is the surface runoff, with timescale Kff, which is active
when the storage of the fast-response reservoir exceeds the
threshold Sfmax. In Eq. (15), Qfi represents the fast runoff,
Sfi represents the storage state of the fast-response reser-
voirs, and Kf is the timescales of the fast runoff. The fast-
response reservoir uses the water balance equation, Eq. (16),
as presented in Table 2.

3.1.5 Slow-response reservoir

In Eq. (17), Rsi indicates the recharge of the groundwater
reservoir. Equations (18) and (19) were used to describe the
lag time of recharge from the root zone to the groundwater.
Rst−i+1 is the generated slow runoff in the groundwater zone
at time t − i+ 1, TlagS is a parameter which represents the
lag time of recharge from the root zone to the groundwater,
clagS(i) is the weight of the flow in i−1 days before, and Rsli
is the discharge into the slow-response reservoir after convo-
lution. In Eq. (20), Qsi represents the slow runoff, Ssi repre-
sents the storage state of the groundwater reservoir, and Ks
is the timescale of the slow runoff. The slow-response reser-
voir uses the water balance equation, Eq. (21), as presented
in Table 2.

3.2 URBS model

URBS was developed by the Queensland Department of Nat-
ural Resources and Mines in 1990, based on the structures of
RORB (Laurenson and Mein, 1990) and WBNM (Boyd et al.,
1987). URBS is a semi-distributed rainfall–runoff model that
can provide runoff estimates not only at the calibrated station
but also at the outlet of every sub-catchment at any required
location upstream. The calibrated catchment area needs to be
divided into sub-catchments to obtain different areal rainfall
and different catchment and channel travelling time.

Table 3 presents five main processes used in URBS, com-
prising the calculation of the initial loss, proportional loss,
excess rainfall, catchment routing, and channel routing. Ex-
cess rainfall is calculated separately between the pervious
and impervious areas. For the pervious area, URBS assumes
that there is a maximum initial loss rate (ILmax) to be reached
before any rainfall can become the effective rainfall (Reff

i ).
The initial loss (ILi) can be recovered when the rainfall rate
(Ri) is less than the recovering loss rate (rlr) per time interval
(δt ; see Eq. 22).

Excess rainfall for each time step is calculated using
Eq. (23), by weighting the excess rainfall between pervious
and impervious area using a ratio of the cumulative infiltra-
tion (Fi) and the maximum infiltration capacity (Fmax). The
recovering rate is included by simply reducing the amount
infiltrated after every time step, using the reduction coef-
ficient (kδt ), as shown in Eq. (24), and the pervious ex-
cess rainfall (Rper

i ) is calculated using the Eq. (25), where
pr is the proportional runoff coefficient. The remaining wa-
ter (1− pr)Reff

i will infiltrate to the root zone storage (dFi ;
see Eq. 26). Excess rainfall is then routed to the centroid of
any sub-catchment using a nonlinear reservoir relationship
(Si =KQm

i ). The parameterm is the catchment nonlinearity,
and K is the catchment travel time, which can be calculated
for different sub-catchment using the multiplication between
the catchment lag time coefficient (β) and square root of each
sub-catchment area (A; see Eq. 27).

Thereafter, the outflow at the centroid of each sub-
catchment is routed along a reach downstream of each sub-
catchment, using the Muskingum equation (Sch

i =Kch(XIi+

(1−X)Qi)). The parameterX is the Muskingum coefficient,
and Kch is the channel travel time, which can be calculated
for different sub-catchment using the multiplication between
the channel lag coefficient (α) and the reach length (L) be-
tween the closest location in the channel to the centroid and
the outlet of each sub-catchment (see Eq. 28).

4 Methodology

4.1 Development of the semi-distributed FLEX models

The first step in distribution is to account for the timing of
floods and the rooting of flood waves as a function of topo-
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Table 3. Constitutive equations used in URBS.

Processes Constitutive equations Equation

Initial loss ILi =


ILi−1; Ri−1 > rlr · δt
ILi−1+ rlr · δt −Ri−1; Ri−1 ≤ rlr · δt
ILmax; ILi−1 > ILmax

(22)

RE
i
=

Fi
Fmax

CimpRi +
(

1− Fi
Fmax

)
R

per
i

(23)
Proportional loss and Fi = kδtFi−1+ dFi (24)

excess rainfall R
per
i
= pr

(
Reff
i

)
(25)

dFi = (1−pr)Reff
i

(26)

Catchment routing Si = β
√
AQm

i
(27)

Channel routing Sch
i
= αL(XIi + (1−X)Qi) (28)

graphical factors. The resulting semi-distributed FLEX-SD
model is therefore expected to better represent the shape of
hydrographs, although it would not affect the partitioning of
fluxes or the water balance. The root zone storage capacity is
a strong control on partitioning, affecting both runoff gener-
ation and evaporation. Therefore, the distribution of this pa-
rameter would potentially affect overall model performance
more strongly than merely affecting the timing of the peaks.
Therefore, in a second step, the NDII, as a proxy for moisture
storage, is used to assess the distribution of moisture storage
among sub-catchments.

4.1.1 Accounting for distributed timing and
channel-routing

FLEX-SD is set up by applying lumped models for each sub-
catchment, which adds up to a semi-distributed model for a
downstream calibration site. Therefore, the catchment area of
any gauging station needs to be divided into sub-catchments.
Runoff estimates at each sub-catchment can be simulated us-
ing the structure of the original FLEXL, by calculating differ-
ent excess rainfall for each sub-catchment. The excess rain-
fall of each sub-catchment is routed to its outlet using the lag
time from rainfall to surface runoff (TlagF) and the lag time
of recharge from the root zone to the groundwater (TlagS).
In this study, TlagF and TlagS are calculated in hours instead
of days to increase the model performance. The lag time is
distributed among sub-catchments using the following equa-
tions.

TlagFsub = TlagF
√
Asub/A (29)

TlagSsub = TlagS
√
Asub/A, (30)

where TlagF and TlagS are lag time parameters for the entire
catchment of a calibrated gauging station. The lag time of
each sub-catchment (TlagSsub) is scaled by the square root
of each sub-catchment area divided by the overall catchment
area (A).

Runoff estimates from an upstream sub-catchment are
later routed from their outlet to the outlet of a downstream
sub-catchment using the Muskingum method (Eq. 31) be-
fore adding to the runoff estimates of the downstream sub-
catchment.

Schnl-sub =Ksub
(
XQup+ (1−X)Qdown

)
(31)

Ksub = αLsub, (32)

where α and X are the delay time parameter and the chan-
nel routing parameter for the entire catchment, respectively.
The delay time parameter of each sub-catchment (Ksub) can
be calculated by the multiplication between α and the main
channel length of each sub-catchment, as shown in Eq. (32).

4.1.2 Accounting for distributed root zone storage at
sub-catchment scale using the maximum and
minimum values of NDII (FLEX-SD-NDIIMaxMin
model)

The normalised difference infrared index (NDII) was used
to estimate the root zone storage capacity for each sub-
catchment. The NDII values, which are available at 8 d in-
tervals, were found to correlate well with the 8 d average
root zone moisture content (Su) simulated by FLEXL dur-
ing the dry period in eight sub-catchments in the UPRB (Sri-
wongsitanon et al., 2016). The relation between NDII and
Su can be described by an exponential function of the type
aeb(NDII)

+c, with c being close to zero. The maximum value
that Su can achieve is Sumax, which is the storage capacity
of the root zone. The hypothesis is that the ecosystem creates
sufficient storage to overcome a critical period of drought
(Gao et al., 2014; Savenije and Hrachowitz, 2017). Every
year has a maximum range of storage variation. If a suffi-
ciently long NDII record is available, then the maximum of
the annual ranges of the NDII should provide an estimate
of the root zone storage capacity Sumax. By calibrating the
hydrological FLEX model to discharge observations at the
gauging stations, a Sumax value can be calibrated for each
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gauged catchment. This is a representative Sumax value for
a particular gauging station, consisting of n sub-areas, as in-
dicated by Sumaxn.

Sumaxn =

n∑
i=1
(AiSumaxi)

n∑
i=1
Ai

(33)

By using the NDII as proxy for root zone storage, we have
developed the following equation for the proxy root zone
storage capacity Sumax′i for a sub-area within a river basin
consisting of 31 sub-catchments:

Sumax′i =

[
eb×NDIIi,max − eb×NDIIi,min

]
max[

eb×NDIIn,max − eb×NDIIn,min
]

max

, (34)

where Sumax′i is a scaled proxy for the root zone storage ca-
pacity of each sub-catchment, and b is the remaining calibra-
tion parameter because the constant c and the factor a of the
exponential function drop out. NDIIi,max and NDIIi,min rep-
resent the maximum and minimum values of NDII for each
year of each sub-catchment, while NDIIn,max and NDIIn,min
indicate the maximum and minimum values of NDII for each
year in the reference basin, which, in this case, is the entire
upper Ping basin controlled by station P.1. The unscaled root
zone storage capacity per sub-catchment then becomes the
following:

Sumaxi = Sumaxn
Sumax′i
Sumax′n

, (35)

where Sumaxn is the calibrated value of the root zone storage
capacity of the gauged catchment, and Sumax′nis the area-
weighted proxy for the root zone storage capacity.

Sumax′n =

n∑
i=1

(
AiSumax′i

)
n∑
i=1
Ai

(36)

4.1.3 Accounting for distributed root zone storage at
sub-catchment scale using average value of NDII
(FLEX-SD-NDIIAvg)

Instead of applying the maximum and minimum of the an-
nual ranges of the NDII to distribute root zone storage at
a sub-catchment scale, we tested the annual average NDII
value of each sub-area to calculate Sumax′i as presented in
the following equation.

Sumax′i =
(

0.5−
R

2

)
+R

( (
eb×NDIIi

)
−
(
eb×NDIIi→n

)
min(

eb×NDIIi→n
)

max−
(
eb×NDIIi→n

)
min

)
, (37)

where NDIIi represents the annual average NDII value
of each sub-catchment, while (eb×NDIIi→n)max and
(eb×NDIIi→n)min indicate the maximum and minimum
values of exponential function produced by the annual
average NDII value within 32 sub-catchments. The pa-
rameters b and R can be determined by model calibration.
The parameter R is suggested to vary between 0.2 and 0.8
to force a scaled factor (Sumax′i) to be more than 0 and
less than 1. The average NDII value is supposed to reflect
the maximum moisture storage capacity as well, since a
high maximum value also leads to a higher average but is
much easier to calculate. However, this method requires the
introduction of the additional calibration parameter R.

4.2 Model applications

First, FLEXL and the four semi-distributed models, URBS,
FLEX-SD, FLEX-SD-NDIIMaxMin, and FLEX-SD-NDIIAvg
were individually calibrated (2001–2011) and validated
(2012–2016) at the stations P.4A, P.20, P.21, P.75, P.67, and
P.1 to provide baselines for comparison of model perfor-
mances. Furthermore, additional runoff estimates at the out-
let of 31 sub-catchments, inclusive of the internal gauging
stations upstream of P.1, were extracted from the four semi-
distributed models. The runoff estimates at the above stations
were compared to the observed data and also for their compa-
rability to the performance of FLEXL at individual stations.

The model parameters of the calibrated models were de-
termined using the MOSCEM-UA (Multi-Objective Shuffled
Complex Evolution Metropolis–University of Arizona) algo-
rithm (Vrugt et al., 2003), by finding the Pareto-optimal solu-
tions defined by three objective functions of the Kling–Gupta
efficiencies for high flows, low flows, and the flow duration
(KGEE, KGEL and KGEF), respectively. KGEE is analysed
using the following equations, where X̄ is the average ob-
served discharge, Y is the average simulated discharge, SX
is the standard deviation of observed discharge, SY is the
standard deviation of simulated discharge, and r is the linear
correlation between observations and simulations. KGEL can
be calculated using the logarithm of flows to emphasise low
flows. The Nash–Sutcliffe efficiency (NSE) is an indepen-
dent statistical indicator, which is not utilised in the objective
function but merely used to summarise model performance.
The model calculates at daily time steps, but this is disaggre-
gated to hourly to take the time lags into account. The output
is again aggregated to daily time steps.

KGE= 1−ED (38)

ED=
√
(r − 1t)2+ (α− 1)2+ (β − 1)2 (39)

α = SY /SX (40)

β = Y/X (41)

The results of this section are presented in Sect. 5.1 and 5.2.
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Additionally, to test the efficacy of the distribution of
moisture capacities by NDII, we investigated the relation-
ship between the proportion of evergreen forests and the
Sumax values produced by FLEX-SD-NDIIAvg and FLEX-
SD-NDIIMaxMin in each sub-catchment. The results are pre-
sented in Sect. 5.3.

4.3 Estimation of uncertainty in FLEX-SD-based
models

In hydrological models, inherent uncertainties caused by
imperfect model structures and model parameters are un-
avoidable (Solomatine and Shrestha, 2009). To identify
uncertainty in developed models, FLEX-SD, FLEX-SD-
NDIIMaxMin, and FLEX-SD-NDIIAvg were calibrated (2001–
2011) and validated (2012–2016) at P.1 station using
50 000 random parameter sets. The 5 % best-performing pa-
rameter sets were identified as feasible (Hulsman et al.,
2020) and utilised to evaluate the uncertainties. The results
of KGEE, KGEL, and KGEF at the calibrated station (P.1)
and at five upstream stations (P.20, P.4A, P.21, P.75, and P.67)
were assessed.

4.4 Relationship between the average root zone soil
moisture storage (Sui) and the average NDII
and SWI

Sriwongsitanon et al. (2016) suggested that NDII can be used
as a proxy for soil moisture storage in hydrology. Here, 8 d
average NDII values were compared to 8 d average root zone
moisture storage (Sui) derived at the six gauging stations,
as calculated by FLEXL, FLEX-SD, FLEX-SD-NDIIMaxMin,
and FLEX-SD-NDIIAvg. The Su estimates were compared to
the SWI product at the daily timescale. The Su–SWI rela-
tionship was examined for all characteristic time lengths to
deduce the optimal time length which best represents RZSM
dynamics in the UPRB. The results of Su–NDII and Su–SWI
were aggregated to present these relationships at the seasonal
basis. The coefficient of determination (R2) and NSE were
used as objective functions. Subsequently, for the FLEX-SD-
based models, their Su time series were extracted at the out-
lets of 31 sub-catchments to be compared to time series of
NDII and the optimal time length of SWI. These derived re-
lationships serve as an indicator of the realism for the FLEX-
SD-based hydrological models examined.

5 Results

5.1 Model performances

The assessment of model performances during the calibra-
tion and validation periods are presented in two sub-sections.
Section 5.1.1 presents the results at internal gauging stations
through the calibration/validation at all stations and from all
models. Section 5.1.2 shows the results at internal gauging

stations from the semi-distributed models through calibra-
tion/validation at P.1, which were compared to the corre-
sponding performance of FLEXL through calibration/valida-
tion at all stations. A discussion of the model parameters is
provided in Sect. 5.1.3. Figures A1–A3 provide a compari-
son between performances undertaken at all stations and at
P.1 only, in terms of accumulated flows, hydrographs, and
duration curves, respectively. In the following sections, the
term “average” refers to the average across all gauging sta-
tions (P.4A, P.20, P.67, P.75, P.21, and P.1).

5.1.1 Performance of all models by
calibration/validation at all stations

For the calibration period (Fig. 4a), similar overall accu-
racy was produced by all models, with URBS and FLEXL
showing NSE of 0.69 and 0.73, respectively, and the three
FLEX-SD-based models (FLEX-SD-NDIIAvg, FLEX-SD,
and FLEX-SD-NDIIMaxMin) yielding NSE of 0.76. However,
FLEXL provided a slightly lower average KGEL at some sta-
tions. For the validation period (Fig. 4b), a lower overall ac-
curacy was achieved by FLEXL (NSE= 0.53) and URBS
(NSE= 0.59) and with notably lower KGEL at some sta-
tions. Meanwhile, the FLEX-SD-based models showed NSE
of 0.65–0.66. All models provided similar KGEE and KGEF
during both periods.

In conclusion, all developed FLEX-SD-based models can
simulate runoff with similar accuracy or perform even better
than the lumped model, FLEXL, and the established semi-
distributed model, URBS.

5.1.2 Performance of semi-distributed models by
calibration/validation at P.1

As previously mentioned, the performance of FLEXL at each
gauging station provides a baseline comparison for the re-
sults of the semi-distributed models in the predictive mode.
Over the calibration period (Fig. 5a), the FLEX-SD-based
models produced similar accuracies (average NSE= 0.72–
0.75), while URBS performed slightly worse (NSE= 0.68).
This is comparable to, if not slightly better than, FLEXL
(NSE= 0.73). However, in terms of the KGEE indica-
tor, FLEXL (KGEE = 0.86) performs notably better than
the semi-distributed models (KGEE = 0.78–0.82). For the
validation period (Fig. 5b), the FLEX-SD-based models
(NSE= 0.67–0.70) and URBS (NSE= 0.65) performed no-
tably better than FLEXL (NSE= 0.53).

As shown in Fig. A1, the semi-distributed models are not
capable of closing the water balance in four stations, except
at the most downstream stations (P.67 and P.1). Additionally,
the calibration/validation performed at all stations also closes
the water balance better than achieved in predictive mode, al-
though this may be due to over-fitting. Nonetheless, the fact
that the validation mode of all semi-distributed models ob-
tains more accurate results than the lumped and calibrated
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Figure 4. Comparison of the statistical indicators by (a) calibration and (b) validation at each station, using FLEXL and four semi-distributed
models.

FLEXL model indicates a higher predictive capacity of the
semi-distributed models.

Needless to say, issues such as flow regulation and water
withdrawal pose challenges to these semi-distributed mod-
els. This is apparent at P.75, where outflows from Mae

Ngat reservoir were potentially abstracted for agricultural
demands but were unaccounted for, thereby causing no-
table overestimations of observed flows. This is reinforced in
Fig. A3, which shows the lowest observed flows to be mostly
below the modelled flows. P.4A also revealed overestimated
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Figure 5. Comparison between the statistical indicators by calibration (a) and validation (b) at each station using FLEXL and by calibration
and validation at P.1 using four semi-distributed models.

flows, which drain a mountainous catchment with evergreen
forest. In contrast, flow underestimations were seen in P.21
and P.20, which are intensively used catchments with rating
problems (see Fig. 2). The lumped models are apparently not
yet able to distinguish well between different landscapes. A

landscape-based model, as suggested by Gharari et al. (2011)
and Savenije (2010), could be the next step for improvement.
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5.1.3 Discussion of model parameters

The model parameters used in FLEXL, FLEX-SD, and
FLEX-SD-NDIIMaxMin and FLEX-SD-NDIIAvg are sum-
marised in Table A1. The FLEX-SD-based models provide
different values for TlagF (the time lag between storm and
fast-runoff generation) and TlagS (the lag time of recharge
from the root zone to the groundwater); the other parame-
ters are kept the same as the calibrated values for P.1. Since
TlagF and TlagS were designed to be related to the catchment
area, the parameter values for each station are more reason-
able compared to the values given by FLEXL. It can be noted
that the values of TlagF obtained by FLEX-SD-NDIIAvg are
much closer to the ones presented by FLEX-SD compared to
the values obtained by FLEX-SD-NDIIMaxMin.

In general, FLEX-SD provides lower Sumax estimates
than the other models, constraining evaporation in the dry
season but compensating for this reduction with a smaller β
value so as to limit excessive flood generation. Since these
parameters jointly control Eq. (7), they can compensate for
each other, leading to equifinality. If one of the parameters
is constrained by additional information, as is the case here
using the NDII, then this is no longer possible. The perfor-
mance with respect to best-fit parameters may reduce in the
process, but the model has gained realism and hence predic-
tive power.

We see that the FLEXL-SD-NDII models show the high-
est realism (illustrated in Fig. A2) but not a very good per-
formance in the sub-catchment P.20, although they are still
better than the other semi-distributed models. P.20 remains a
difficult sub-catchment to predict, due to its flow regulation
and water consumption. Also, we see that adding constraints
to model calibration does not always improve best-fit perfor-
mance, as compared to free calibration, but that realism can
be improved.

5.2 Relationship between Sumax and percentage of
evergreen forests at the sub-catchment scale

The relationship between modelled Sumax values and the
proportion of evergreen forests in each sub-catchment has
been presented in Fig. 6. R2 of 0.69 and 0.01 were yielded
by FLEX-SD-NDIIAvg and FLEX-SD-NDIIMaxMin, respec-
tively, indicating that Sumax values from the former model
increase with greater vegetation coverage. With this unfore-
seen distinguishing power between sub-catchments of vary-
ing land use compositions, it is worth investigating the merit
of implementing FLEX-SD-NDIIAvg in the ungauged basins.
To further test the realism of the models, the outputs of
the models were compared to observations of NDII and the
global-scale SWI dataset for verification, as described in
Sect. 5.3.

5.3 Uncertainty in runoff estimation using FLEX-SD,
FLEX-SD-NDIIMaxMin, and FLEX-SD-NDIIAvg

Figure 7 displays the 2500 parameter sets selected to demon-
strate the uncertainty (KGEE, KGEF, and KGEL) at the six
gauging stations. The results of all indicators are similar at
P.67 and P.1. At Station P.75, KGEL values are similar, while
KGEE and KGEF provided by FLEX-SD-NDIIMaxMin are
slightly higher than the others. At P.21, FLEX-SD performed
marginally better than the others for all indicators. The most
notable observations are at P.4A and P.20, where FLEX-SD-
NDIIAvg is shown to outperform the others in terms of KGEE
and KGEF. This is reinforced by the observed and calculated
hydrographs in Fig. A4, where this model shows the narrow-
est uncertainty band at these stations. Moreover, the uncer-
tainty bands in the flow duration curves of Fig. A5 show that
FLEX-SD-NDIIAvg produced the narrowest bands at P.4A
and P.21, but FLEX-SD showed the best performance at P.20
and P.67. In summary, all models show similar uncertainties;
however, FLEX-SD-NDIIAvg reveals significantly better per-
formance for upstream sub-catchments and not much differ-
ence for other areas compared to the other two models.

5.4 Relationship between the average root zone soil
moisture storage (Sui) and the average NDII
and SWI

5.4.1 Su–NDII relationships

Figure 8 shows the R2 and NSE during the wet and dry sea-
sons for all six stations generated by three FLEX-SD models.
Figure 8a shows that the time series of NDII correlates well
with Su values during the dry season by giving an average
R2 value of 0.75–0.79. The average NSE values given by
these models are 0.50-0.58, respectively. During the wet sea-
son, these correlations are lower (average R2

= 0.41–0.46;
NSE= 0.44–0.49).

The same procedure was also carried out for all 31 sub-
catchments and the results shown in Fig. 8b. During the dry
season, the average R2

= 0.71–0.74, but FLEX-SD-NDIIAvg
provided notably higher NSE (0.52) than FLEX-SD (0.41)
and FLEX-SD-NDIIMaxMin (0.45). The relationships are sig-
nificantly lower in the wet season (average R2

= 0.36–0.41;
average NSE= 0.36–0.40). All in all, FLEX-SD-NDIIAvg
provided higher R2 and NSE than FLEX-SD-NDIIMaxMin in
both seasons.

It is worth noting that FLEX-SD-NDIIAvg was able to dif-
ferentiate the signatures in catchments of various soil mois-
ture capacities. For a number of sub-catchments, particu-
larly those with more evergreen forest (e.g. S14= 72.2 %,
S23= 58.8 %, and S29= 44.7 %), the estimates of Su from
FLEX-SD-NDIIAvg provide notably higher NSE than others.
Figure 9 presents the time series of simulated root zone mois-
ture storage (Su), NDII, and SWI (discussed in following sec-
tion) for a selection of contrasting sub-catchments. NDII sig-
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Figure 6. Relationships between the percentage of evergreen forest and modelled Sumax in 31 sub-catchments, as calibrated and validated
by FLEX-SD-NDIIAvg and FLEX-SD-NDIIMaxMin. The topography of UPRB is presented alongside.

Figure 7. Comparison of box plots of the KGEE, KGEL, and KGEF at six gauging stations provided by three FLEX-SD models using 5 %
best-performing parameter sets. Full boxes indicate calibration and transparent boxes validation. Blue, red, and green indicate FLEX-SD,
FLEX-SD-NDIIMaxMin, and FLEX-SD-NDIIAvg, respectively.
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Figure 8. R2 and NSE values from the exponential relationships between NDII values and simulated root zone moisture storage (Su) during
the wet and dry seasons for six subbasins (a) and 31 sub-catchments (b) generated by three FLEX-SD models.

natures are well correlated with Su in sub-catchments with
low percentages of evergreen forest (S4, S6, S9, S15, and
S32). Low correlations were found in evergreen-forest-rich
sub-catchments (S14, S23, and S29). The evergreen forest
probably experiences less moisture stress compared to other
land use land cover (LULC), so the situation NDII does not
relate as well to simulated root zone soil moisture.

5.4.2 Su–SWI40 relationships

Through testing all available characteristic time lengths
(TLs) of SWI, the TL of 40 d produced the optimal Su–SWI
relationship across the six gauging stations. This was thereby
used for subsequent investigation and referred to as SWI40.
Figure 10 shows the R2 and NSE at all six stations simu-
lated by the FLEX-SD-based models. Figure 10a shows that
SWI40 correlates well with Su values during the dry season
(R2
= 0.86–0.89 and NSE= 0.76–0.81). During the wet sea-

son, these correlations are of the same order of magnitude
as in the dry season (R2

= 0.87–0.89 and NSE= 0.80–0.84).
The results for all 31 sub-catchments are shown in Fig. 10b,
which show average R2 values of 0.86–0.87 and NSE of

0.78–0.79 during the dry season. During the wet season, R2

values of 0.87 and NSE of 0.79–0.81 were yielded.
Despite the overall consistency in the average performance

amongst these models and limited seasonality, it is evident
that FLEX-SD-NDIIAvg shows the most variability across the
31 sub-catchments. In addition to the sensitivity of NDII to
the proportion of evergreen forests, Fig. 9 also reveals the
sensitivity of SWI40 to it. This is reflected in the notable time
lag of the Su time series from SWI40 in the productive sub-
catchments (e.g. S14, S23, and S29). This observation was
not apparent with Su derived from FLEX-SD or FLEX-SD-
NDIIMaxMin.

6 Discussion

Inspired by the significance of Sumax in governing the hy-
drological cycle, we investigated the utilisation of NDII to
constrain our formulated FLEX-SD model with the objective
of distributing the parameter of interest across the UPRB’s
31 sub-catchments. The distribution of Sumax, particularly
as achieved by FLEX-SD-NDIIAvg, helped produce better-
informed runoff estimates for the gauged (especially for

https://doi.org/10.5194/hess-27-2149-2023 Hydrol. Earth Syst. Sci., 27, 2149–2171, 2023



2164 N. Sriwongsitanon et al.: Using NDII patterns to constrain semi-distributed rainfall–runoff models

Figure 9. Comparison between simulated root zone moisture storage (Su; in black), NDII (in green), and SWI (in red) for eight sample
sub-catchments with different percentages of evergreen forest.

stations P.4A and P.20, which are densely forested areas)
and ungauged sub-catchments than FLEX-SD, FLEX-SD-
NDIIMaxMin, and URBS. The analysis of model uncertainties
reinforces the improvements to flow estimation in ungauged
sub-catchments. As explained below, this study has raised a
few points worthy of discussion.

1. With the better representation of Su, the Su–NDII re-
lationship yielded has become more informative about
the underlying degree of aridity; that is, arid and produc-
tive sub-catchments exhibit greater differences than pre-
sented by FLEX-SD and FLEX-SD-NDIIMaxMin. The
increased variation challenges the preconception from
the study by Sriwongsitanon et al. (2016) that NDII is
a suitable proxy for RZSM dynamics in the dry season,
as it was hereby shown to barely correspond with Sui in
evergreen forests under any circumstances.

2. Upon testing the accuracy of derived Sui against SWI,
we realise the potential of implementing SWI to indi-
cate moisture states of river basins. However, we should
be reminded of its simplicity, such as using a single pa-
rameter, T , to emulate RZSM signatures. Furthermore,
the model lacks the ability to account for the effects of
local characteristics (e.g. LULC), which likely explains
the variable Su–SWI correlation across the 31 sub-
catchments. Nonetheless, in future work, we are con-
vinced that appropriately manipulating the T parame-
ter to specific catchments, instead of using a T value of
40 d to represent the RZSM characteristics of the entire
catchment as done in this study, could widen the poten-
tial of implementing SWI to indicate moisture states in
river basins of contrasting characteristics.

3. It is worth noting the increased variability in Su–SWI
across the 31 sub-catchments (as seen in Fig. 10), in
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Figure 10. R2 and NSE values from the exponential relationships between SWI40 and simulated root zone moisture storage (Su) during the
wet and dry seasons for six subbasins (a) and 31 sub-catchments (b), as generated by three FLEX-SD models.

spite of the systematic increase in Su–NDII, which,
counterintuitively, could be attributed to the improved
realism of the FLEX-SD-NDIIAvg. That is, by us-
ing NDII to distribute Sumax, and thereby improv-
ing accuracy of estimated runoff, this accounts for the
greater variability in Su signatures across the 31 sub-
catchments than was produced by FLEX-SD.

7 Conclusion

Most lumped rainfall–runoff models are controlled by a
gauging station at the outfall on which it is calibrated. Runoff
estimation at any location upstream requires indirect ap-
proaches, such as model parameter transfer from gauged sta-
tions to ungauged locations, or applying relationships be-
tween model parameters and catchment characteristics to the
ungauged locations. By using any of these approaches, the
uncertainty in runoff estimation for ungauged catchments is
unavoidable. A semi-distributed hydrological model could
offer a better alternative. Besides considering lag times and
flood routing (as in FLEX-SD), it has been shown that it is
required to account for the spatial variation in the moisture-

holding capacity of the root zone. Therefore, the model
was constrained by using NDII patterns (particularly average
NDII, so as to produce the FLEX-SD-NDIIAvg) as a proxy
for the spatial variation in root zone moisture leading to dis-
tributed Sumax values among sub-catchments. The model
parameters provided by the semi-distributed FLEX models
are more realistic compared to the original FLEXL, since
they are distributed according to catchment characteristics
comprising catchment area, reach length, and the NDII.

With the inclusion of NDII, the estimated catchment-
scale root zone soil moisture (Sui) has been shown to be
increasingly sensitive to the underlying degree of aridity,
which is arguably more representative of the hydrological re-
sponses across heterogeneous sub-catchments. Such knowl-
edge should be used in further studies to explore the opportu-
nities of implementing the model-based SWI to estimate soil
moisture in different land use land cover.
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Appendix A

Table A1. Model parameters of FLEXL (calibrated at all stations) and FLEX-SD and FLEX-SD-NDII (calibrated only at P.1).

Station Model – case Imax Sumax Ce β D Kf Ks TlagF TlagS Sfmax Kff α X b R

(mm) (mm) (h) (h) (mm)

P.1

(1) FLEXL 1.59 475.80 0.93 0.22 0.69 37.87 111.42 3.33 20.07 3.22 6.85
(2) FLEX-SD 3.51 435.48 0.69 0.48 0.82 8.12 36.68 5.03 56.42 8.63 3.47 0.30 0.19
(3) FLEX-SD-NDIIMaxMin 2.22 476.49 0.96 0.26 0.72 13.27 16.58 3.58 79.46 7.46 4.30 0.22 0.10 12.76
(4) FLEX-SD-NDIIAvg 3.18 464.87 0.95 0.31 0.62 4.53 19.90 5.35 22.53 2.81 3.50 0.38 0.14 15.50 0.49

P.20

(1) FLEXL 2.85 411.45 0.89 0.68 0.72 6.37 41.52 2.64 73.69 14.12 3.09
(2) FLEX-SD ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3.71 41.62 ∗ ∗ ∗ ∗

(3) FLEX-SD-NDIIMaxMin
∗ 599.76 ∗ ∗ ∗ ∗ ∗ 2.64 58.61 ∗ ∗ ∗ ∗ ∗

(4) FLEX-SD-NDIIAvg
∗ 380.45 ∗ ∗ ∗ ∗ ∗ 3.94 16.62 ∗ ∗ ∗ ∗ ∗ ∗

P.75

(1) FLEXL 1.98 514.21 0.86 0.30 0.55 11.08 165.45 4.09 15.35 1.11 8.00
(2) FLEX-SD ∗ ∗ ∗ ∗ ∗ ∗ ∗ 6.44 72.19 ∗ ∗ ∗ ∗

(3) FLEX-SD-NDIIMaxMin
∗ 462.51 ∗ ∗ ∗ ∗ ∗ 4.58 101.66 ∗ ∗ ∗ ∗ ∗

(4) FLEX-SD-NDIIAvg
∗ 409.31 ∗ ∗ ∗ ∗ ∗ 6.84 28.82 ∗ ∗ ∗ ∗ ∗ ∗

P.4A

(1) FLEXL 4.19 429.49 0.86 0.38 0.91 13.34 43.48 4.29 30.12 8.13 7.27
(2) FLEX-SD ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3.71 41.56 ∗ ∗ ∗ ∗

(3) FLEX-SD-NDIIMaxMin
∗ 483.50 ∗ ∗ ∗ ∗ ∗ 2.64 58.53 ∗ ∗ ∗ ∗ ∗

(4) FLEX-SD-NDIIAvg
∗ 563.47 ∗ ∗ ∗ ∗ ∗ 3.94 16.60 ∗ ∗ ∗ ∗ ∗ ∗

P.67

(1) FLEXL 3.53 358.74 0.75 0.41 0.76 16.30 175.56 3.03 51.90 8.52 7.38
(2) FLEX-SD ∗ ∗ ∗ ∗ ∗ ∗ ∗ 5.26 59.03 ∗ ∗ ∗ ∗

(3) FLEX-SD-NDIIMaxMin
∗ 469.08 ∗ ∗ ∗ ∗ ∗ 3.75 83.13 ∗ ∗ ∗ ∗ ∗

(4) FLEX-SD-NDIIAvg
∗ 460.79 ∗ ∗ ∗ ∗ ∗ 5.59 23.57 ∗ ∗ ∗ ∗ ∗ ∗

P.21

(1) FLEXL 4.88 759.96 0.88 1.14 0.70 11.71 42.09 2.48 23.98 9.40 4.77
(2) FLEX-SD ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3.79 42.50 ∗ ∗ ∗ ∗

(3) FLEX-SD-NDIIMaxMin
∗ 547.29 ∗ ∗ ∗ ∗ ∗ 2.70 59.85 ∗ ∗ ∗ ∗ ∗

(4) FLEX-SD-NDIIAvg
∗ 543.68 ∗ ∗ ∗ ∗ ∗ 4.03 16.97 ∗ ∗ ∗ ∗ ∗ ∗

Note that the asterisk∗ indicates the same parameter values as P.1 for FLEX-SD and FLEX-SD-NDII.

Figure A1. Accumulated simulated and observed runoff (units in MCM) of all models produced by calibration and validation at (1) each
station (At Station) and (2) at P.1. Note that FLEXL is the only lumped model and was thereby only calibrated at each station.
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Figure A2. Hydrographs of simulated and observed runoff (units in cubic metres per second) of all models at all stations produced by
calibration and validation at (1) each station (At Station) and (2) at P.1. Note that FLEXL is the only lumped model and was thereby only
calibrated at each station.

Figure A3. Flow duration curves of simulated and observed runoff of all models at all stations produced by calibration and validation at
(1) each station (At Station) and (2) at P.1. Note that FLEXL is the only lumped model and was thereby only calibrated at each station.
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Figure A4. Comparison of the observed and calculated hydrographs at six stations acquired from the 5 % best-performing parameter combi-
nations generated by three FLEX-SD models.
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Figure A5. Comparison of the observed and calculated flow duration curves at six stations acquired from the 5 % best-performing parameter
combinations generated by three FLEX-SD models.
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