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ARTICLE

A genome-wide association study identifies genetic
loci associated with specific lobar brain volumes
Sven J. van der Lee et al.#

Brain lobar volumes are heritable but genetic studies are limited. We performed genome-

wide association studies of frontal, occipital, parietal and temporal lobe volumes in 16,016

individuals, and replicated our findings in 8,789 individuals. We identified six genetic loci

associated with specific lobar volumes independent of intracranial volume. Two loci, asso-

ciated with occipital (6q22.32) and temporal lobe volume (12q14.3), were previously reported

to associate with intracranial and hippocampal volume, respectively. We identified four loci

previously unknown to affect brain volumes: 3q24 for parietal lobe volume, and 1q22, 4p16.3

and 14q23.1 for occipital lobe volume. The associated variants were located in regions

enriched for histone modifications (DAAM1 and THBS3), or close to genes causing Mendelian

brain-related diseases (ZIC4 and FGFRL1). No genetic overlap between lobar volumes and

neurological or psychiatric diseases was observed. Our findings reveal part of the complex

genetics underlying brain development and suggest a role for regulatory regions in deter-

mining brain volumes.
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Four lobes of the human brain are distinguished and several
diseases can partially be attributed to lobe-specific structural
changes. Functions of the frontal brain lobe include rea-

soning, movement, social behavior, planning, parts of speech, and
problem solving1; functions attributed to the parietal lobe include
recognition and perception of stimuli2; functions attributed to the
temporal lobe include memory and speech3; and lastly, visual
input is mainly processed by the occipital lobe. Brain diseases
with lobe-specific abnormalities include Alzheimer’s disease (in
particular early onset), frontotemporal lobar degeneration4,
temporal lobe epilepsy5, primary progressive aphasia, and cortical
basilar ganglionic degeneration.

Environmental factors, such as smoking and hypertension,
affect lobar brain volumes6, but previous studies have shown that
genetic differences across individuals also contribute to variability
in volumetric brain measures7,8. The estimated heritability of
brain lobar volumes is high, ranging from 26% to 84% for the
frontal lobe, from 32% to 74% for the occipital lobe, from 30% to
86% for the parietal lobe, and from 55% to 88% for the temporal
lobe9–15. In addition, genetic analyses in families suggest that
the lobes are determined by independent genetic factors15.
The observation that brain lobes are highly and differentially
heritable makes them compelling targets to unravel the genetic
architecture of the brain. Recent large genome-wide association
studies (GWAS) have efficiently identified associations between
genetic determinants and volumetric brain measures16,17. How-
ever, to date no genetic variants influencing brain lobar volumes
have been identified. GWAS of the four lobar volumes of the
brain can contribute to our understanding of brain lobe devel-
opment and may provide a biological link between brain lobar
volumes and brain-related traits and diseases.

To identify genetic variants of influence on lobar brain
volumes, we performed GWAS of four brain lobar volumes in
16,016 individuals and replicated our findings in a sample of
8,789 individuals. We identified six loci significantly associated
with specific brain lobar volumes independent of intracranial
volume. With this study, we shed light on common genetic var-
iants determining human brain volume and allow for a deepened
understanding of the genetic architecture of the brain lobes.

Results
In total, 16,016 individuals from 19 population-based or family-
based cohort study and one case–control study were included in
the current study. Additional information regarding the popula-
tion characteristics, genotyping, and imaging methods are pro-
vided in the “Methods” section and in Supplementary Data 1–4.

Heritability of lobar brain volumes. Using a family-based
approach, we found an age- and sex-adjusted heritability (h2) for
occipital lobe of 50% (95% confidence interval (CI) 38–62%), for
frontal lobe of 52% (95% CI 40–64%), for temporal lobe of 59%
(95% CI 49–69%), and for parietal lobe of 59% (95% CI 49–69%)
(all: p ≤ 1.9 × 10−19) (Supplementary Data 5). In comparison, the
age- and sex-adjusted heritability estimate for total brain volume
was 34% (95% CI 22–46%, p= 8.8 × 10−11).

Novel genetic associations with brain lobar volumes. Our
multi-ethnic meta-analysis (n= 16,016 individuals of which
15,269 were of European ancestry) identified significant associa-
tions between genotypes and brain lobar volumes in five inde-
pendent loci, even though we adjusted for intracranial volume
(Figs. 1 and 2, Table 1). The quantile–quantile plots did not show
high genomic inflation (λGC ≤ 1.05) (Supplementary Fig. 1). Of
these five loci, variants in one locus associated with temporal lobe
volume, in one with parietal lobe volume, and in three with

occipital lobe volume. The variant rs146354218 (12q14.3,
pmulti-ethnic= 6.4 × 10−10) associated with temporal lobe volume
and rs2279829 (3q24, pmulti-ethnic= 4.4 × 10−10) associated with
parietal lobe volume. Three loci associated with occipital
lobe volume: index variants rs147148763 (small indel
GTTGT→G, 14q23.1, pmulti-ethnic= 2.9 × 10−9), rs74921869
(4p16.3, pmulti-ethnic= 6.2 × 10−9), and rs1337736 (6q22.32, pmulti-

ethnic= 4.0 × 10−8). In the European ancestry-only meta-analysis,
we found a significant association with occipital lobe volume in
one additional independent locus (1q22, rs12411216, pEuropean
ancestry-only= 3.9 × 10−8). In the multi-ethnic meta-analysis, this
association was below the genome-wide significance threshold
(pmulti-ethnic= 1.3 × 10−7). There was no significant heterogeneity
observed for any of the six significant loci (Supplementary
Figs. 2–7). The sensitivity meta-analysis including only the stu-
dies using the k-Nearest-Neighbor (kNN) algorithm for mea-
suring lobar volumes showed similar results compared to the
studies using other methods (Supplementary Figs. 2–7). The
index variants of these total six loci were common (minor allele
frequency ranging from 0.13 to 0.46) and associations with
volume variations were between 0.48 and 0.95 cm3 per copy of
the variant allele, explaining up to 0.27% of lobar volume variance
per allele (Table 1). No variants were significantly associated with
frontal lobe volume. All variants showing significant associations
with brain lobar volumes are shown in Supplementary Data 6.
Study-specific effects of all six significant loci are shown in
Supplementary Figs. 2–7.

Notably, two genome-wide significant variants identified here,
rs146354218 and rs2279827, were exclusively associated with the
temporal lobe and parietal lobe, respectively (Supplementary
Data 7). In contrast, rs147148763 and rs12411216 were not only
significantly associated with occipital lobe volume but also
appeared to be associated to some extent with parietal lobe
volume (p= 2.5 × 10−6; variance explained= 0.15% and p=
2.4 × 10−5; variance explained= 0.11%, respectively). The other
two variants also showed nominally significant associations with
other lobar volumes.

Replication. Five out of the six index variants were available in
the imputation reference panel of our replication sample (n=
8,789). Unfortunately, the haplotype reference consortium (HRC)
reference panel does not contain insertions and deletions.
Therefore, for replication we selected rs76341705, a variant that
showed a comparable signal in the meta-analysis (prs147148763=
2.9 × 10−9, vs. prs76341705= 4.8 × 10−9), and in high linkage dis-
equilibrium (LD) with the index variant (R2= 0.99). We were
able to replicate all these six variants at a nominal significance
level (p values ranging from 3.0 × 10−2 to 8.0 × 10−7) with the
same direction of effect as the discovery sample (Table 1, Sup-
plementary Fig. 8).

Variance explained in lobar volumes by common variants.
Based on the LD score regression single-nucleotide polymorph-
ism (SNP)-based heritability analyses, common variants across
the whole genome explained as much as 20.3% (95% CI
13.2–27.4%) of the variance in occipital lobe volume, 19.6% (95%
CI 12.3–26.9%) of frontal lobe volume, 17.5% (95% CI
10.7–24.3%) of temporal lobe volume, and 17.9% (95% CI
11.7–24.1%) of parietal lobe volume (Supplementary Data 8).
Common genetic variants account for 30–41% of the total her-
itability of brain lobar volumes (Supplementary Data 8).

Genetic overlap with other brain volumes and related diseases.
Although no top variant was significantly associated with the
volume of multiple lobes, nominally significant correlation (rg)
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Fig. 2 Regional view of the genome-wide significant loci. For each panel, zoomed in Manhattan plots (±kb from top single-nucleotide polymorphism (SNP))
are shown with gene models below (GENCODE version 19). Plots are zoomed in to highlight the genomic region that contains the index SNP and SNPs in
linkage disequilibrium with the index SNP (R2 > 0.8). Each plot was made using the LocusTrack software (http://gump.qimr.edu.au/general/gabrieC/
LocusTrack/)
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was observed between genetic components of the parietal and
temporal lobe (rg= 0.35, p= 1.5 × 10−3), although this did not
withstand correction for multiple testing (Fig. 3, Supplementary
Data 9). Some suggestive correlation was observed between
temporal and frontal lobe volume with genetic determinants of
subcortical volumes; however, none survived multiple testing
adjustments. When studying brain diseases, only occipital lobe
volume showed a suggestive genetic correlation with Parkinson’s
disease (rg= 0.18, p= 0.03). No significant genetic correlation
was observed with any of the other tested neurological or psy-
chiatric traits.

Discussion
In our genome-wide association study of in up to 16,016 indi-
viduals, we identified 6 independent loci where variants had
significant associations with brain lobar volumes, independent of
intracranial volume. We were able to replicate these findings in a
sample of 8,789 individuals. Four out of the six identified loci
have not been linked to brain volume measures before; the other
two loci are located in regions previously associated with brain
volume measures (12q14.3 with hippocampal volume and
6q22.32 with intracranial volume). These new loci provide
intriguing new insights into the genetics underlying brain lobar
volumes.

We estimated that, after adjusting for intracranial volume,
17.5–20.3% of the variance in lobar volumes could be explained
by common genetic variation. This forms 30–40% of the total
heritability we estimated, suggesting a major contribution of
common genetic variation in brain development. More genetic
variants associated with brain volume may be discovered by
increasing the sample sizes of genetic studies. An interesting
observation is that we were able to replicate our findings using
only gray matter volumes of each lobe, while the discovery stu-
died the sum of gray and white matter. This difference might
explain that not all loci replicated as strong as others and that
differential effects might exist on gray and white matter volume
effects of the genetic variants. Future studies will have to elucidate
the biological mechanisms of the discovered associations.

Interestingly, the majority of the identified loci contained
variants associated with occipital lobe volume, whereas the other
brain lobes have more often been linked to disease outcomes. Yet,
the heritability estimates for the occipital lobe do not exceed the
heritability estimates of the other brain lobes. One possible
explanation for this finding is the smaller volume of the occipital
lobe compared to the other lobes, making it a more specific region
—also in terms of the genetic architecture. It may also be
explained by a less polygenic nature of the occipital lobe com-
pared to the other lobes, allowing one to identify stronger asso-
ciations for a single genetic variant.

Regarding the identified genome-wide significant loci, two
identified loci have been previously associated with brain volume
measurements. The locus 12q14.3 associated with temporal lobe
volume in our study and was previously associated with hippo-
campal volume17. Our index variant rs146354218 (p= 6.4 × 10−10)
is an intronic variant in the MSRB3 gene and lies 39 kilobases
(kb) from the previously published rs61921502 variant associated
with hippocampal volume18; however, the LD (R2= 0.1, D’= 1,
p < 0.0001)19 is low. This previously published variant also
showed some evidence of association with total temporal lobe
volume (effect= 0.57 cm3, p= 6.5 × 10−4). Thus the 12q14.3
locus not only influences hippocampal volume but also seems to
have a more generalized effect on the temporal lobe volume as
would be expected by the genetic correlation between temporal
lobe volume and hippocampal volume. The signal (rs1337736,
p= 4.0 × 10−8) at 6q22.32 near to the gene CENPW (CentromereT
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Protein W) is associated with occipital volume. This signal
overlapped previously associated signals with intracranial
volume16,17 and is further implicated in bone mineral density20,
height21, waist-hip ratio22, and infant length23. The index variant
associated with intracranial volume (rs11759026) and our top
variant are in linkage equilibrium (R2= 0.07, D’= 1, p=
0.0002)19. We also found suggestive associations between
rs11759026 and both frontal (−1.0 cm3, p= 6.3 × 10−5) and
occipital lobar volume (−0.31 cm3, p= 6.6 × 10−3). Each locus
was located in regions that are under epigenetic regulation in
brain tissue (Supplementary Data 6) or close to genes or genomic
loci associated with Mendelian brain-related diseases. The variant
rs2279829 (3q24) is located in the 3’-untranslated region (UTR)
of the Zic Family Member 4 (ZIC4) gene and close to the related
ZIC1 gene. This variant localizes within enhancer sites in pre-
dominantly neurological cell types, among which the brain
germinal matrix (Supplementary Data 6) and both ZIC4 and
ZIC1 are expressed throughout the brain (Supplementary Fig. 9).
Heterozygous deletions of ZIC1 and ZIC4 cause Dandy–Walker
malformation24. Children with this malformation have no vermis,
the part connecting the two cerebellar hemispheres24. Gain-of-
function mutations in ZIC1 lead to coronal craniosynostosis and
learning disability25. Variant rs147148763 was located 24 kb from
the disheveled-associated activator of morphogenesis 1
(DAAM1). There is evidence for the most significant variants to
localize within enhancer sites, as well as DNA-hypersensitivity
sites in brain tissues. Also, genome-wide significant SNPs in the
locus are expression quantitative trait loci (eQTLs) of DAAM1 in
blood (Supplementary Data 6). Daam1 is a formin protein that
has been linked to actin dynamics26, is regulated by RhoA27, and
is expressed in the shafts of dendrites28. Expression patterns in
brain development of animals further suggest a role in neuronal
cell differentiation and movement29. Variant rs4647940 is located
in the 3’-UTR of fibroblast growth factor receptor (FGFRL1) and
is in LD with a missense variant in Alpha-L-iduronidase (IDUA)
(rs3755955, R2= 0.87) that was previously associated with bone
mineral density (p= 5.0 × 10−15). Deletion of the 4p16.3 locus
causes Wolf–Hirschhorn syndrome, a neurodevelopmental dis-
order characterized by mental retardation, craniofacial mal-
formation, and defects in skeletal and heart development. Variant
rs12411216 is located in an intron ofMIR92B and THBS3, but the
signal peak in this locus covers >20 genes. Promotor histone
marks overlap the variant and it is an eQTL for multiple genes,
both in a multitude of different tissues among which brain tissues
(Supplementary Data 6). In summary, these findings link genes
that cause Mendelian syndromes affecting cranial skeletal

malformations, brain malformations, and intelligence with brain
lobe volume in healthy individuals. One other interesting variant
in tight LD with our index variant (rs4072037, R2= 0.94) is a
missense SNP in the MUC1 gene that decreased levels of blood
magnesium concentrations30. It is not clear how decreased
magnesium levels are involved in decreased occipital brain
volume, but it is an interesting avenue to explore as magnesium is
known to be important for neural transmissions31 and magne-
sium infusions have anti-convulsive effects and is still used to
prevent convulsions in pre-eclampsia32.

Using genetic correlation analysis, we did not find a strong
significant genetic correlation between most of the brain lobes,
which suggests that the genetic basis of the brain lobes is largely
independent15. We also did not find significant genetic overlap
between lobar brain volumes and neurological and psychiatric
disease outcomes. The most significant genetic correlation with
brain lobar volume and diseases we observed was between occi-
pital lobe volume and Parkinson’s disease (rg= 0.18, p= 0.03).
However, this finding was not significant after multiple testing
correction, leading us to report this finding with caution. The
absence of significant genetic correlations between other brain
lobes and clinical diseases could be due to true absence of a
genetic overlap. However, other explanations can be put forward.
First, it could also mean that our lobar volume GWAS and those
for other diseases were still too underpowered to show significant
genetic correlations. Second, the anatomical boundaries for the
different lobes can be quite arbitrary and do not necessarily have
to coincide with underlying gene function or biological processes
leading to neurological or psychiatric disorders.

There are several limitations to our study. First, we have
accepted differences in analytical methods of the magnetic reso-
nance imaging (MRI) scans to allow for the largest sample size to
be studied. This might have resulted in different effects over the
studies. However, we did not observe significant heterogeneity
after correcting for multiple testing for the six loci. In addition, a
sensitivity analysis showed similar effects of the genome-wide
significant variants for the studies using the kNN algorithm in
comparison to the other studies. False negative findings due to
differences in analytical methods of the MRI scans cannot be
excluded. Second, a limitation of our study is that a different
reference panel for imputation was used for the discovery and
replication sample. This is due to the historic limited availability
of the HRC reference panel at the initiation of this study. As the
variants were well imputed (R2 > 0.5) in all studies, this is not
expected to have influenced the results, although it is possible that
additional variants may be discovered if the larger HRC reference
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panel would be used in future studies. Last, for the UK Biobank
only gray matter parcellations were available to us. Despite this
limitation, we were able to replicate our findings. This suggests
that the identified variants have an effect on gray as well as white
matter volumes.

In summary, brain lobar volumes are differentially heritable
traits, which can in large part be explained by common genetic
variation. We identified six loci where genotypes are associated
with specific brain lobes, four of which have not been implicated
in brain morphology before. These loci are compelling targets for
functional research to identify the biology behind their genetic
signals.

Methods
Study population. The study sample consisted of dementia- and stroke-free
individuals with quantitative brain MRI and genome-wide genotypes from 19
population- and family-based cohort studies participating in the Cohorts of Heart
and Aging Research in Genomic Epidemiology consortium and the case–control
Alzheimer’s Disease Neuroimaging Initiative study. In total, 16,016 participants
were included, 15,269 participants of European ancestry, 405 African Americans,
211 Chinese, and 131 Malay. We attempted to replicate our findings in 8,789
European ancestry individuals from the UK Biobank, an ongoing prospective
population-based cohort study located in the United Kingdom. Descriptive sta-
tistics of all populations are provided in Supplementary Data 1. DNA from whole
blood was extracted and genome-wide genotyping was performed using a range of
commercially available genotyping arrays. Genotype imputations were performed
in each discovery cohort using 1000 Genomes version 133 as reference and using
the Haplotype Reference Consortium (HRC) version 1.1 in the replication cohort
(Supplementary Data 2).

MRI methods. Three-dimensional T1-weighted brain MRI data were acquired by
each cohort (Supplementary Data 1). Cohorts in the discovery sample segmented
the T1-weighted images into supra-tentorial gray matter, white matter, and cere-
brospinal fluid. The methods of image segmentation varied across study cohorts
(Supplementary Methods). However, the majority used a previously described kNN
algorithm, which was trained on six manually labeled atlases34, or in-house image-
processing pipelines. In each study, MRI scans were performed and processed with
automated protocols, without reference to clinical or genetic information. We
studied the total volume (sum of white and gray matter and the left and right
hemisphere) of the frontal, parietal, temporal, and occipital brain lobes, adjusted
for intracranial volume. Descriptive information of the lobar volumes across the
different studies is provided in Supplementary Data 3. Differences in average brain
lobar volumes were accepted as differences in MRI acquisition, processing, seg-
mentation, and demographics, which exist over cohorts. As a replication, we used
the released volume measurements of 8,789 UK Biobank participants, extracted
using the FreeSurfer software version 6.0, which obtains lobar volumes by adding
up regions of interest volumes35,36. As only FreeSurfer gray matter volumes were
available for this study sample, the replication sample volumes were smaller than
the volumes in the discovery sample (Supplementary Data 3).

Estimation of heritability. The heritability of lobar brain volumes was estimated
using family structure in the Framingham Heart Study (n= 2080), which con-
stitutes a community-based cohort of non-demented individuals without evidence
of significant brain injury (e.g., stroke or multiple sclerosis). In total, 619 extended
families with a family size of 3.6 ± 6.6 individuals were included in the analyses.
These families consisted of the following pairs of relatives: 316 parent–offspring,
1135 sibling, 340 avuncular, 1772 first cousin, and 826 second cousin pairs. We
calculated additive genetic heritability without shared environmental effects (C)
using a variance-components analysis under an AE model in SOLAR37, adjusted
for age, age2, and sex.

GWAS of lobar volumes. Associations of imputed genotype dosages with lobar
volumes were examined using linear regression analyses under an additive model.
Associations were adjusted for age, age2, sex, the first four principal components to
account for possible confounding due to population stratification, and study-
specific covariates. Linear mixed models with estimated kinships were used for
association analyses in cohorts with related samples. Details on the analysis
methods used in each cohort are provided in Supplementary Data 1 and 2. Post-
GWAS quality control (QC) was conducted using EasyQC38 and filtering. Genetic
variants with a low imputation quality (R2 < 0.5), a minor allele count <10, and
allelic or locational mismatching of SNPs with the reference panel were removed
prior to the meta-analyses. The number of variants after filtering and the genomic
inflation per study are provided in Supplementary Data 4. After QC, summary
statistics were adjusted by the genomic control method in each of the participating
cohorts39. We then performed two inverse-variance weighted fixed-effect meta-
analyses in METAL39. First, we meta-analyzed all participants of European

ancestry, then performed a multi-ethnic meta-analysis including African Amer-
icans (n= 405), Chinese (n= 211), and Malay (n= 131). After meta-analyses,
genetic variants with a total sample size of <5000 were excluded. We performed
conditional analysis on the index variants to determine whether there were mul-
tiple independent genome-wide significant variants in a locus using the Genome-
Wide Complex Trait Analysis (GCTA) software (--cojo, --p-cojo)40,41. Genotypes
in the Rotterdam-study (all 6291 individuals of the baseline cohort who were
genotyped) were used as reference for this analysis. For loci with a genome-wide
significant association (p < 5 × 10−8), we tested for heterogeneity using the I2 sta-
tistic39. In a sensitivity meta-analysis, we tested whether the studies using the kNN
algorithm had similar effects of the genome-wide significant variants for the studies
using the kNN-algorithm in comparison to the other studies. We also searched for
candidate genes in the loci using publically available databases for differential
expression of the SNPs (eQTL database in GTEx)42 and HaploReg, an online tool
that summarizes the ENCODE database for epigenetic markings and proteins
binding to DNA43.

Variance explained by common variants and genetic correlations. The variance
explained by all SNPs, or SNP-based heritability, was calculated from summary
statistics using LD score regression44. The percentage of variance explained by all
SNPs was determined based on meta-analysis results using the LD Hub45. We used
the same LD score regression44 to quantify the amount of genetic correlation
between the four brain lobes and other brain-related traits and diseases, using
summary statistics for meta-analyses of genetic studies of subcortical structures16,
intracranial volume17, white matter hyperintensities46, general cognitive ability47,
neuroticism48, schizophrenia49, attention-deficit/hyperactivity disorder50, autism51,
major depressive disorder52, bipolar disorder¸49 Parkinson’s disease53, and Alz-
heimer’s disease54.

Ethical compliance. All participants, or their parents or guardians in the case of
minors, provided written informed consent for study participation, the use of brain
MRI data, and the use of their DNA for genetic research. Approval for the indi-
vidual studies was obtained by the relevant local ethical committees and institu-
tional review boards.

Statistics and reproducibility. Software used for the data analysis of this study:
EasyQC (www.genepi-regensburg.de/easyqc), FreeSurfer (https://surfer.nmr.mgh.
harvard.edu/), GCTA (http://cnsgenomics.com/software/gcta/), GenABEL (http://
www.genabel.org), GTeX (https://gtexportal.org/home/), HaploReg (https://www.
encodeproject.org/software/haploreg/), HASE (https://github.com/roshchupkin/
hase), LD-hub (http://ldsc.broadinstitute.org/ldhub/), LD score regression (https://
github.com/bulik/ldsc), mach2qtl (https://www.nitrc.org/projects/mach2qtl/),
METAL (http://csg.sph.umich.edu/abecasis/metal/), Perl (https://www.perl.org/),
PLINK (https://www.cog-genomics.org/plink2), R (https://www.r-project.org/),
SNPTEST (https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html),
and SOLAR (http://www.sfbr.org).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The genome-wide summary statistics that support the findings of this study will be made
available via the NHGRI-EBI GWAS Catalog website (https://www.ebi.ac.uk/gwas/
downloads/summarystatistics) upon publication. Quantitative brain MRI and genotype
data are available from the corresponding authors H.H.H.A. and C.D.C. upon reasonable
request.

Code availability
No previously unreported custom computer code or mathematical algorithm was used to
generate results central to the conclusions. The code is available upon request from the
corresponding authors H.H.H.A. and C.D.C.
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