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Abstract

Wind turbines play an increasingly imporant role in the energy production of our time.
In order to optimize the performance of wind turbine blades, this thesis work aims at as-
sessing the possibility of using panel methods for gradient based optimization of the aero-
dynamics of wind turbine blades. Specifically, the method employed has used Dirichlet
boundary condition, a fixed wake for optimization and a free wake model for validation.
The panel method developed has been validated against the MIRAS software and CFD re-
sults. The results of the optimization are compared against the Glauert optimum blade.
The blade is parameterized using NACA profiles and the twist and chord are used as de-
sign variables. Two optimizations have been performed: an unconstrained optimization,
which has shown to take advantage of limitations of the panel method model; a second
optimization is performed applying a thrust constraint and with tighter bounds on the de-
signs variables, which is capable of achieving realistic results. The main conclusion is that
realistic blade designs can be achieved using a fixed wake panel method for aerodynamic
optimization, although ultimately the performance of these designs should be assessed us-
ing higher fidelity models.
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1
Introduction

It is undeniable that wind turbines play a major role in the energy production of our time;
in 2019 the electricity produced by wind turbines alone represented 15% of the total energy
consumed in the European Union [Wind Europe, 2020] and it is foreseen that the share of
wind in the energy market will continue to increase [IEA, 2020, GWEC, 2020]. There is much
focus in the optimization of wind turbines to make them more efficient and be able to drive
the cost of energy down in order to make this form of energy more competitive in the mar-
ket. Specifically, blades represent a very important share of the cost of manufacturing a
wind turbine, and the energy production itself highly depends on them. Multidisciplinary
Design Optimization (MDO) is a growing approach because it is necessary to achieve trade-
offs between the aerodynamics and structure of the blade to achieve an optimum design.
Considering only aerodynamic motivations, the airfoils would be chosen to be thin to be
able to maximize power extraction. However, this is not possible because the structure re-
quires thicker airfoils, specially close to the root, to be able to fulfill the requirements of tip
displacement and bending moments, among others [Bottasso et al., 2016]. In this sense, it
is important to perform mulditidciplinary optimization of wind turbine blades, as opposed
to sequential monodisciplinary optimizations, in order to improve the design of wind tur-
bine blades.

The aerodynamic design variables in MDO can range from chord and twist distribution
of the profiles [Bottasso et al., 2016] to full shape optimization of a WT blade, including the
shape of the airfoils in the design, as in Kenway et al. [2010], Bottasso et al. [2014], Mad-
sen et al. [2019]. For the structural part, one choice is to use the size and position of some
pre-assumed elements such as spars, cap spars, trailing edge reinforcement, etc. and opti-
mize those. One example, out of many in the literature, is Sessarego and Shen [2018] which
preassumes a box-spar shape of the inner structure. The problem of this approach is that it
makes use of the structural elements that are already known and being used at the moment,
thus limiting considerably the design space. An attempt for a more general approach in the
structural design was made by Wang et al. [2020]: the blade was discretized by a 1D beam
in the longitudinal direction while at different spanwise sections of the blade 2D topology
optimization was performed. In the aerospace field, James et al. [2014] goes further and
performs topology optimization on a full wing using 3D brick elements. However, both ap-
proaches face the same obstacle: the meshes employed to discretize the structure of the
blade and wing, respectively, do not have enough resolution to see any actual substruc-
tures like spars or ribs arise. The 2D topology approach from Wang et al. [2020] has the

1



2 1. Introduction

further drawback that neighbouring sections are connected only through a beam model,
thus making the appearance of 3D substructures difficult.

After reviewing the work done by other authors in the past in the literature, to the knowl-
edge of the author, multidisciplinary optimization has not been performed on wind turbine
blades using a gradient based approach. The aim of this thesis work is to start to cover
this gap. Specifically, this project will build on the previous work carried in DTU by Cian
Conlan-Smith as part of his doctoral thesis. In the article Conlan-Smith et al. [2020] the
aerodynamic shape of an aircraft wing was optimized using a panel method as aerody-
namic model. On later work [Conlan-Smith and Schousboe Andreasen, 2020] MDO op-
timization of an aircraft wing performing simultaneous aerodynamic and structural opti-
mization adding a Timoshenko beam model to the panel method to calculate the structural
displacements and loads.

The objective of this thesis work is to optimize the aerodynamic shape of a wind turbine
blade using a panel method and a gradient based search algorithm, and test whether panel
methods are an appropriate tool to be used for MDO in wind turbine blade design.

The report is structured as follows: chapter 2 makes a review of the existing literature
on multidisciplinary optimization and specifically on aerodynamic modelling of wind tur-
bines; chapter 3 presents the aerodynamic model employed and a validation of it; chapter
4 presents Glauert’s optimal rotor, which will be used later on as benchmark of comparison
for the optimization results; chapter 5 presents the results of the aerodynamic optimiza-
tion and compares them against the Glauert rotor presented previously; finally, chapter 6
concludes the thesis project and gives advice on how to proceed with the established work.



2
Literature Study

In the introduction chapter the most relevant work similar to this project was described
briefly. An important part of the challenge of WT optimization lays in making an appro-
priate choice of methods for the optimization. In the following sections the most common
choices in the literature are outlined, which will later help motivate the choice of methods
for this thesis project. Specifically, the topics touched upon are: the choice of an appro-
priate objective function for optimization, the search strategy of the design space and the
aerodynamic model used to compute aerodynamic loads.

2.1. Choice of objective
When performing simultaneous aerodynamic and structural optimization one has to make
a choice of objectives for the optimization. One option is to perform multi-objective op-
timization, improving at the same time aerodynamic and structural variables. This is the
approach chosen in Fischer et al. [2014], where Thrust, Mass and Annual Energy Produc-
tion (AEP) are optimized simultaneously. A different direction is to try to convert the several
competing objectives into a single one, for example using a weighted sum of the objectives
as the problem objective. Wang et al. [2020] applies this approach using different weights
for the power coefficient Cp and the structural compliance. A popular approach, essen-
tially equivalent to the weighted sum, is to use the Cost of Energy (COE) as figure of merit,
employed for example in Bottasso et al. [2016] and Ashuri et al. [2014]. This approach tries
to take into account in one single function the combination of the cost of manufacturing,
transport, maintenance, etc. of the wind turbine and the expected energy output. The Cost
of Energy is the real driving factor in industry when designing a wind turbine. However,
determining the cost function of a wind turbine can be tricky when performed in an auto-
matic optimization approach since some of the costs are difficult to obtain [Bottasso et al.,
2016].

2.2. Exploration of the design space

There are several strategies in which the design space can be explored. A popular option
is to use gradient-free approaches such as Evolutionary Algorithms [Fischer et al., 2014,
Vianna Neto et al., 2018]. Evolutionary Algorithms are very good at exploiting non-smooth

3



4 2. Literature Study

design spaces, are in general easy to implement and are very well suited for multi-objective
optimization. However, they tend to be slow and show poor convergence. Gradient-based
approaches [Bottasso et al., 2016, Wang et al., 2020] are comparatively more complex to
implement and explore a narrower region of the design space, but are computationally
much more efficient and need fewer iterations to converge, which is why they are deemed
more appropriate for high-fidelity implementations. On the other side, gradient-based ap-
proaches have a tendency to get stuck around local optima and are sensitive to the initial
conditions. Still another approach is surrogate modelling, as used by Sessarego and Shen
[2018]. By feeding several blade designs to the algorithm, for which each of them the mass
is optimized in an inner loop, a simplified explicit function of the Cost of Energy on the de-
sign variables is found. In this case the design variables being the chord, twist and relative
thickness of the blade. The maximum of the COE simplified function is then found by a
grid search approach, which ensures that the global optimum will be found.

2.3. Aerodynamic models
The objective of this subsection is to give an overview of the aerodynamic models that are
employed for load calculation on wind turbine blades. In the future this information will
help motivate the choice of an aerodynamic method for the aerostructural optimization of
a wind turbine blade.

The aerodynamic models that are more used for load calculation on wind turbines are
listed below:

• Blade Element Momentum (BEM)

• Vortex Methods

• Euler

• Reynolds Averaged Navier-Stokes (RANS)

• Large Eddy Simulation (LES)

• Direct Numerical Simulation (DNS)

The methods are organized from lower fidelity to higher fidelity, and from low to high
computational cost, starting from BEM up until DNS. A brief overview of these methods,
including its main strengths and weaknesses, will be presented in the following alineas.
The reader is referred to Hansen et al. [2006] for a more thorough overview on the topic.

The momentum theory was first developed by Rankine and Froude, and extended by
Glauert to account for 2D effects. The rotor is modelled by an actuator disc, divided into
concentric annular streamtubes. The streamtubes are assumed to be independent from
each other and the number of blades is assumed to be infinite. The theory makes use of the
fundamental principles of mass conservation, axial and angular momentum balances and
energy conservation to every control volume (streamtube); added to the blade element the-
ory, the local flow conditions can be calculated assuming that the 2D profiles of the blade
act independently of surrounding elements. The combined approach, which we call BEM
theory, allows the calculation of the aerodynamic forces and the induced velocities at the
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rotor. The BEM theory is limited to axial induction factors of 0.5; however, this can be ex-
tended for a higher range of induction factors with the introduction of empirical formulas
[Wang, 2012]. Similarly, several corrections have been introduced over the years to account
for effects of stall delay, dynamic stall, stall misalignment, etc. [Thé and Yu, 2017].

BEM is the most used design tool seen in the literature for optimization purposes [Mad-
sen et al., 2019]. It combines mass and momentum balance equations on the rotor with 2D
airfoil data at specific spanwise positions of the blade to obtain loads in every spanwise
position. The reason why it is so popular is because of its easy implementation and low
computational cost. However, it also has many deficiencies. The flow is assumed to stay
within so called stream tubes, so it can’t model 3D rotational effects. Other phenomena
like yaw misalignment, dynamic stall, etc. are only accounted for using semiempirical cor-
rections. Additionally, it must be noted that due to some of its assumptions the effects of
non-planar blade geometries (e.g. blade pre-bend or tip winglets) cannot be accounted
for [Lawton and Crawford, 2014]. For more information on the BEM theory the reader can
refer to Hansen [2015].

Vortex methods model the aerodynamics of a blade (or wing) based on vortices. The
influence of these vortices is calculated using the Biot-savart law. Vortex methods can in
general refer to several models: Lifting Line, Vortex Lattice Method (VLM) , and Panel Meth-
ods, which can be used to model the lifting surfaces of a blade and the wake, or only the
wake. The wake can be modelled in three different ways: Rigid (or fixed) wake, prescribed
wake and free wake models. A rigid wake doesn’t take into account the expansion of the
wake, a prescribed wake makes use of numerical and experimental analysis to decide on a
wake position and free wake models locate the wake based on the effects of all aerodynamic
components involved in the model, but doing so results in an increased computational cost
[Wang, 2012].

Of the vortex methods mentioned, the focus of this thesis will be put on Panel Methods
[Hess, 1973] because of its ability to model 3D surfaces accurately, which is an indispens-
able requisite of the research formulation in order to be able to optimize the external shape
of a wind turbine. The other two methods are limited to small angles of attack and thin
airfoils [Peerlings, 2018]. The method is simple to implement and doesn’t require a mesh.
It gives better insight into the dynamics of the flow than the BEM method, since every el-
ement of the blade considered affects every other point of the domain. It is for example
possible to calculate cases of yaw misalignment and dynamic inflow [Blondel et al., 2016].
Since vortex methods assume inviscid flow, viscosity and stall are not included in the model
and the only source of drag is induced drag. For the same reason rotational augmentation
cannot be accounted for, as they arise mainly from perturbations on the viscous boundary
layer along the spanwise and chordwise direction due to centrifugal and coriolis forces, re-
spectively. Rotational effects increase the lift coefficient at high angles of attack and cause
stall delay, so it is beneficial for the perfomance of the blade [Wang, 2012]. Two aerostruc-
tural analyses that have made use in the past of panel methods are Conlan-Smith and Sc-
housboe Andreasen [2020] and James et al. [2014] applied to the optimization of aircraft
wings, and Sessarego et al. [2016] for the optimization of wind turbine blades.

RANS is the highest fidelity Computational Fluid Dynamics (CFD) method that still can
be used with relative frequency in the wind turbine industry for optimization purposes
[Madsen et al., 2019]. As RANS works with time-integrated quantities, it cannot cover all
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time-dependent phenomena, such as unsteady flow separation and vortex shedding [Thé
and Yu, 2017]. Still, it is able to account for viscosity, 3D effects, rotational augmentation
and turbulence with an appropriate choice of a turbulence model. However, it is compu-
tationally more expensive than BEM and vortex methods, and requires meshing of the 3D
domain.

Higher fidelity models are LES, which calculates the effect of large eddies and models
the sub gridscale eddies, and DNS, which resolves directly all scales of turbulence. How-
ever, they are considered computationally too expensive to be applied to a wind turbine
flow field [Wang, 2012], hence they won’t be considered further in this review.



3
Aerodynamic modelling

This chapter of the thesis describes the aerodynamic model later employed to carry out
the blade optimization. The model is based on the previous work by Cian Conlan-Smith;
see references Conlan-Smith et al. [2020], and Conlan-Smith and Schousboe Andreasen
[2020], in which aerodynamic and aero-structural optimization of wings was carried out
using a panel method code. This thesis aims to build on that work to add capabilities for
the load calculation and optimization of rotating blades. Appendix C explains specifically
the structure of the software and the additions made in this project.

Section 3.1 explains the basics of potential flow theory and the most important deriva-
tions regarding panel methods. Section 3.2 explains the wake model that was implemented
for the rotating blade, which is the major change made with respect to the static wing case.
Lastly, section 3.3 discusses and compares the results against other aerodynamic models to
validate the results of the present code.

3.1. Potential flow theory
This section presents the fundamentals of potential flow theory. Only a brief summary of
the theoretical derivations is presented here, in order to put the work of this thesis in con-
text. The derivations are based on the book by Katz and Plotkin [2004]; for further details
on the topic the reader is referred to this book.

To characterize the velocity field and loads around a body we will require two sets of
equations. The first one is the continuity equation for an incompressible fluid:

∇·q = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (3.1)

The second set of equations are the Navier-Stokes equations, which characterize the
motion of a newtonian fluid. They represent the momentum balance on the fluid, thus
relating the acceleration with the stresses on the fluid; on the most general form they can
be written:

ρ

(
∂qi

∂t
+q ·∇qi

)
= ρ fi − ∂

∂xi

(
p + 2

3
µ∇·q

)
+ ∂

∂x j
µ

(
∂qi

∂x j
+ ∂q j

∂xi

)
(i = 1,2,3) (3.2)

Where ρ is the fluid density, is the dynamic viscosity coefficient, p is the pressure. q is
the velocity vector, f is a body force.

7
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However, the Navier-Stokes in its general form do not have an explicit solution; an ex-
plicit solution can only be found for very few simplified cases. If we assume inviscid flow
we obtain the so-called Euler equation:

∂q

∂t
+q ·∇q = f− ∇p

ρ
(3.3)

It can be demonstrated via dimensional analysis (see Katz and Plotkin [2004]) that the
outer flow around a body can be assumed inviscid for high values of the Reynolds number.
The Reynolds number is presented in eq. 3.4, where u here is a reference windspeed and c a
reference length, which could be the chord of a blade for the case being. In a high Reynolds
flow the inertial forces are in magnitude more relevant than the viscous forces, hence the
viscosity can be neglected in the outer region of the flow. However, close to the surface of
the blade the shear stresses gain importance and the viscosity can no longer be neglected
without affecting the accuracy of the solution.

Re = ρuc

µ
(3.4)

A further premise that will be necessary in order to obtain the potential flow equation
is the assumption that the flow is irrotational. The definition of rotational flow is tied to the
concept of vorticity. For a highly viscous flow, the shear forces are relevant and will cause
flow particles to rotate; oppositely, if the shear forces are irrelevant the flow particles will
not rotate and the flow can be regarded as irrotational. It can be demonstrated, again, that
for high reynolds numbers the generation of vorticity outside of the boundary layer can be
neglected, thus it is possible to make the assumption of irrotational flow.

With the condition that the flow is irrotational, the velocity can be written as the dif-
ferential of a scalar function of the position. This function be called the potential Φ of the
velocity:

q =∇Φ (3.5)

Then, from eq. (3.1) and (3.5), the Laplace equation is obtained:

∇·q =∇·∇Φ=∇2Φ= 0 (3.6)

Solving the Laplace equation gives information about the velocity field around a body.
However, in order to calculate the aerodynamic forces around an airfoil, it is necessary to
connect the velocity field with the pressure field. For this, the Euler equation (3.3) needs
to be used. For an irrotational, incompressible flow, taking gravity as the only conservative
force acting on the fluid and in static conditions, the Euler equation can be reduced to the
Bernoulli equation:

g z + p

ρ
+ q2

2
+ ∂Φ

∂t
= const . (3.7)

The equation tells us that at any given point in space, the left hand side is equal to a
constant. Therefore, the left hand side will be equal for a pair of points in space at any
chosen moment in time. This will allow later to compute the pressure distribution around
a body once the flow around it is resolved.
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Figure 3.1: Domain and boundaries of interest for the potential flow formulation

Consider the general domain depicted in figure 3.1. Without entering in the theoret-
ical details, the potential at any point of the domain can be written as the integral of the
contribution of sources and doublets distributed in the boundaries:

Φ(P ) =− 1

4π

∫
SB

[
σ

(
1

r

)
−µn ·∇

(
1

r

)]
dS + 1

4π

∫
SW

[
µn ·∇

(
1

r

)]
dS +Φ∞(P ) (3.8)

In turn, doublets (µ) and sources (σ) are defined as:

−µ=Φ−Φi (3.9)

−σ= ∂Φ

∂n
− ∂Φi

∂n
(3.10)

Note that the variable µ, which has been used previously in the flow equations, is now
used to designate the doublet strength. From now on µ will only be used for this purpose.

Figure 3.2: Streamlines of a point source. Figure 3.3: Streamlines of a doublet pointing in the x
direction.
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Doublets and sources are elementary solutions that satisfy the Laplace equation. The
velocity field generated by point sources and doublets has been depicted in figures 3.2 and
3.3. It is important to note that the solution to the Laplace equation can be obtained by
placing doublets and sources on the boundaries of the problem. In general, though, there
is not unique distribution of solutions that will satisfy the Laplace equation, hence a choice
based on physical considerations needs to be made.

The problem described above is solved by defining boundary conditions at the surfaces.
There are two ways to do this: by enforcing so-called Neumann or Dirichlet boundary con-
ditions. A Neumann boundary condition specifies the value of the derivative of the poten-
tial at the surface. This has a directly relatable physical meaning, and it is equivalent to
specifying that the velocity normal to the surfaces needs to be zero. Dirichlet boundary
conditions, instead, define the value of the potential itself at the boundary. This results in a
lower computational cost for the type of problem this thesis works on Conlan-Smith et al.
[2020], hence the focus will be put on this second type of boundary conditions.

It can be demonstrated that the inner potential of a closed surface follows the expres-
sion:

Φ∗
i (x, y, z) = 1

4π

∫
SB+SW

µ
∂

∂n

(
1

r

)
dS − 1

4π

∫
SB

σ

(
1

r

)
dS +Φ∞ = const. (3.11)

Now, the inner potential can be chosen conveniently (Φ∗
i = Φ∞) so that equation (3.11)

reduces to:
1

4π

∫
SB+SW

µ
∂

∂n

(
1

r

)
dS − 1

4π

∫
SB

σ

(
1

r

)
dS = 0 (3.12)

Equation (3.12) will be used to reduce the problem to a linear system of equations that
can be solved easily by means of well established linear algebra tools, as will be explained
next.

3.1.1. Source and doublet strength
Now that the theoretical bases for potential flow have been set, it is necessary to know
the numerical procedure to find a solution for a discretized aerodynamic body. For the
panel method we are dealing with this means determining the strength of the sources and
doublets along the surface.

From the condition that the velocity normal to the surface must be zero (the so-called
Neumann condition), and the definition of a source (3.10), follows that the strength of a
source panel needs to be:

σ= n ·vref (3.13)

vref = [v∞−Ω× r] (3.14)

Where n is normal to the body surface, pointing inside, v∞ is the inflow velocity at the
rotor, Ω is the angular speed of the wind turbine rotor and r is the position of a point in
body coordinates. vref is the flow velocity seen by the body, which is different for every
section of the blade.

At this point the strength of the doublets is not uniquely defined. This arises from the
fact that infinite values of circulation, or equivalently lift, are possible for a given source
distribution. To determine the strength of the doublets at each panel, it is necessary to
enforce some physical consideration so that the amount of circulation, and hence the lift,
is the correct one.
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The condition that we are going to use is called the Kutta condition; it is based on em-
pirical observation, and it essentially states that the flow on an airfoil will leave the trailing
edge smoothly. Therefore, as the flow approaches the trailing edge, the velocity at the up-
per and lower surfaces will need to be equal. Specifically, it is required that the trailing edge
is a stagnation point (of zero velocity) when the trailing edge has a finite angle, but a finite
velocity can exist for cusped trailing edges. Mathematically, for the case of a panel method
using a doublet distribution to generate lift, the Kutta condition can be written as:

µU −µL −µW = 0 (3.15)

Where the subindices refer to the upper and lower surface of the airfoil and the wake,
respectively. Expression 3.15 tells us that there is a jump in circulation at the trailing edge of
the airfoil, which is equal to the wake circulation. For further insight on the mathematical
development of this expression, the reader is referred to Katz and Plotkin [2004]. Anderson
[2017] also covers comprehensively the Kutta condition and its physical explanation. The
concept of circulation, which has been mentioned here, can also be consulted in these
sources.

Additionally to eq. 3.15, the doublets are required to have constant strength along the
wake, and the wake shape should be parallel to local streamlines. As will be explained later,
when talking about the wake model in section 3.2, it is not immediate how to satisfy this
second condition. If the geometry of the wake is prescribed in advance, this condition will
be, at best, an approximation. Other methods, which don’t require a predetermined wake
shape, involve solving the geometry of the wake iteratively until a converged shape that
fulfills the physical requirements is achieved.

3.1.2. System of linear equations
Now assume that the body is discretized into N panels, and the wake is discretized into NW

panels. It will also be assumed from now on that the strength of the doublet and the sources
in the panels are constant. We can now rewrite equation 3.12 for a discrete body as:

N∑
k=1

Ckµk +
NW∑
`=1

C`µ`+
N∑

k=1
Bkσk = 0 (3.16)

Equation 3.16 must be true for every panel’s collocation point. The collocation point
is where the boundary condition is enforced; it is located at the center of the panel and
slightly inside the body, since the Dirichlet boundary condition (eq. 3.12) needs to be en-
forced at an inner point of the body. Equation 3.16 expresses that for every collocation
point, the sum of the contributions of potential of all the other panels needs to be zero.
The contribution of every influencing panel is its Influence Coefficient (Ck ,Cl ,Bk ), which
depends on its relative position to the collocation point, times the strength of the influenc-
ing panel. The influence coefficients are calculated as:

Ck = 1

4π

∫
S

∂

∂n

(
1

r

)
dS

∣∣∣∣
k

(3.17)

Bk = −1

4π

∫
S

(
1

r

)
dS

∣∣∣∣
k

(3.18)
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The exact evaluation of these integrals depends on the choice of panel of the model. For
constant strength quadrilateral panels, as used in this work, the expressions are derived in
Katz and Plotkin [2004], section 10.4.

As seen previously in equation 3.13, the source strengths (σ) can be determined be-
forehand. The wake doublet strengths can be put as a function of the surface strengths
(eq. 3.15). Therefore, the problem of solving eq. 3.12 ultimately corresponds to solving the
following system of linear equations:

N∑
k=1

Akµk =−
N∑

k=1
Bkσk (3.19)

Where the matrix A is the matrix C with the contributions from the wake panels.

3.1.3. Load calculation
The total velocity vtot at a certain point of the body will be the inflow (or reference) velocity
(eq. 3.14) plus the perturbation caused by the panels of the body and the wake (vp):

vtot = vref +vp (3.20)

Now, neglecting the height term and considering that the problem at hand is steady-
state (hence ∂Φ

∂t = 0) eq. 3.7 can be used to compute the coefficient of pressure at every
panel of the body:

CP = p −pr e f

1/2ρv2
r e f

= 1− v2
tot

v2
r e f

(3.21)

Note that the reference velocity here used accounts for the rotational speed of the blade
and therefore will have a different value for every spanwise location, each section seeing an
increasingly high velocity moving towards the tip. Finally, the contribution of a panel to the
aerodynamic forces on the body will be:

∆F =−CP

(
1

2
ρv2

ref

)
∆Sn (3.22)

Which if integrated over specific spanwise position will give the normal and tangential
forces in that section.

3.1.4. 2D example
Now let’s look at the results from a 2D panel method code to better understand what these
kinds of methods are capable of and also their limitations. Figure 3.4 shows the CP distri-
bution over the chord of a NACA 4412 profile for a Reynolds number of 3 ·106. The panel
method shows that the CP distribution follows a similar shape than the experimental data,
but it clearly overestimates the suction at the upper side of the airfoil. The main reason
behind these differences is the inviscid assumption of the panel method. Since viscosity
has been neglected for the theoretical model, the figure shows (as expected) that the lift
loads will be overestimated. For higher accuracy, the panels have been placed in a cosine
distribution along the chord, so that the mesh is more dense towards the leading edge and
the trailing edge. This increases the acccuracy of the solution for a given number of panels,
since these are the regions where the CP suffers more drastic changes.
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Figure 3.4: Pressure coefficient of a NACA 4412 at an angle of 4 degrees. Results of the 2D implementation of
a panel method compared against experimental data. Experimental data extracted from M. Pinkerton [1937]

3.1.5. Modelling of symmetry
The blades of a wind turbine are identical and equally spaced at regular angles. Assuming
that the pitch of the blades is also the same, the rotor has rotational symmetry, which can
be used to reduce the model that will be employed for the analysis. Only one blade needs
to be meshed instead of discretizing the whole rotor. Since the strengths of the singularities
will be the same for every blade, the system of equations can also be reduced and has the
size of one blade mesh.

The way symmetry is exploited is during the calculation of the influence coefficients.
Specifically, blade 1 (schematically represented in figure 3.5) is modelled and solved. For
every collocation point of the blade, the influence of the other panels of blade 1 are com-
puted. Then a simple transformation is applied to that panel (eq. 3.23) to find the co-
ordinates of the corresponding panels of blades 2 and 3. While the influence coefficients
are still computed for all the panels in the three blades (or any corresponding number of
blades), this procedure allows to solve a system of equations of size equal to the panels in
one blade. Since solving the system of equations is a very costly part of the program, this
allows for a huge decrease in computational cost. x

y
z


k=2,3

=
 1 0 0

0 cosΨk −sinΨk

0 sinΨk cosΨk

 x
y
z


1

(3.23)

3.2. Wake modelling
Three different ways to model the wake of a wind turbine will be distinguished, from lower
to higher complexity: fixed wake, prescribed wake and free-wake models. The geometry of
a fixed (or rigid) wake is determined as an input and doesn’t change during the analysis. It
is the simpler model still able to capture the physics of a wind turbine, even though it needs
appropriate user input to provide reliable results. A prescribed wake is a simplified model
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Figure 3.5: Representation of a the wind turbine blade model. Blade number 1 is meshed, while blades 2 and
3 are accounted for via symmetry. The x axis points towards the document, following the right hand rule.

that gives a wake geometry as a function of some simplified parameters. For example, Ro-
bison et al. [1995] proposes a model to calculate the wake geometry as a function of the
induction at the blades. This allows the implementation of an iterative scheme where the
blade induction is updated until convergence. This type of methods are tested and tuned
for existing wind turbine data, but it might not be the best approach to testing novel WT ge-
ometries [Vermeer et al., 2003]. The third method is the free-wake approach. In this model
the interaction between wake filaments/panels is accounted for. The wake shape is com-
puted iteratively until the conditions of equation 3.24 are met. Here below the fixed and
free wake methods that have been implemented will be commented on; however, there are
several other free wake methods that can be consulted for example in Leishman [2006] and
Katz and Plotkin [2004].

3.2.1. General considerations
he governing equations and the resulting system of linear equations used to solve the dou-
blet strength for each panel have been discussed previously in section 3.1. It has also been
shown how to compute the wake strength as a function of the trailing edge doublets using
the Kutta condition. The effect of the wake has been mentioned there. However, until now
the computation of the wake geometry is a topic that has not been touched upon. This
subsection will briefly discuss general principles that determine the wake shape.

A doublet panel of the wake should respect the condition that it should not generate
lift, because it is not a solid surface (see Katz and Plotkin [2004]), this can be expressed as:

q×∇µW = 0 (3.24)

Hence, the boundaries of the wake panels should be parallel to the local velocity. Since
the wake geometry is obviously not known beforehand, this will require iterative methods
to find a converged solution. The family of methods that attempts to find a wake that fol-
lows equation 3.24 are called free wake methods.
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Figure 3.6: Representation of a conical fixed wake model.

3.2.2. Fixed wake
A fixed wake is a model that represents the vorticity shed by the blades independently from
the parameters of the model. The geometry is chosen beforehand and is not updated dur-
ing the design. Therefore, a degree of experience and previous knowledge on wake geome-
tries is required to achieve acceptable results using a fixed wake model.

The implementation of the fixed wake model allows for an improvement of the com-
prehension on how the wake geometry will affect the loads on the wind turbine. Figure
3.6 shows a representation of the fixed wake employed in the model. The two parameters
that can be changed are a cone angle and a length factor, which determines the velocity at
which the wake is propagating. Note that it is assumed that the wake panels shed at the
same instant will remain in-line —there is no shear parallel to the x direction—.

The parameter s f , which stands for shortening factor, is defined below with regards to
the fixed wake model, as it will be useful later on.

s f = ūw ake

u∞
(3.25)

s f measures the ratio of the speed of the wake and the undisturbed speed. To exemplify
this, for s f = 1 the wind turbine would not be slowing the wind down at all, while for s f =
0.5 the wind turbine is slowing the wind to half the inflow speed.

3.2.3. Free wake
The free-wake model implemented is similar to the method proposed in Katz and Plotkin
[2004], referred to as time-stepping model for a steady state case. The equation that rules
the motion of the panels of the wake is the following one:

dr

dt
= vref(r)+vp(r) (3.26)

where the term vref refers to the velocity due to the change in the reference system, and
vp(r) is the induced (or perturbed) velocity.

Different numerical schemes are possible to solve equation 3.26, namely explicit, hy-
brid and implicit. Explicit methods are simple conceptually; however, they are prone to
numerical issues related with round-off errors (see Leishman [2006], p.618).

Two different methods have been implemented in the present code, both described in
Leishman [2006]. The first one is an time-stepping Euler explicit approach. The second one
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is an approach close to the predictor-corrector scheme described in the former reference,
which is a two-step explicit approach.

Let’s start by describing the Euler explicit approach. The first iteration is conducted
using the fixed wake geometry described in sec. 3.2.2. The velocities are calculated at every
point and then every point is propagated using the velocity information:

rn+1 = rn +∆t ·vp(rn)+∆rr e f (3.27)

Where the term ∆rref(rn) accounts for the fact that the body frame of reference is rotat-
ing. The superindices n and n+1, respectively, refer to the current and future time steps. In
this method the points are trailed based on the velocity calculated at the current position,
hence no information of the future step is required and there is no need to solve a system
of equations.

Leishman [2006], p.618 suggests that Euler explicit methods do not present consistent
convergence, but rather can start oscillating after some iterations. This will be discussed for
the present case further down this section. For this reason, a predictor-corrector scheme
was implemented for the wake.

The predictor-corrector scheme consists of two explicit stages. In the first stage an ap-
proximation of the wake geometry r̃n+1 is made using eq. 3.28. The geometry at time-step
n+1 is then used to approximate the perturbation velocity (vp(r̃n+1)). This first stage allows
to know the velocity at the future time-step without actually solving a system of equations,
as would be the case for an implicit method. The second stage of the predictor-corrector
scheme follows eq. 3.29:

r̃n+1 = rn +∆t ·vp(rn)+∆rr e f (3.28)

rn+1 = rn +∆t · ((1− f ) ·vp(rn)+ f ·vp(r̃n+1)
)+∆rr e f (rn) (3.29)

The parameter f is used to control how much information is used from this time-step and
from the estimate of the next time-step. Notice that for f = 0 this method would be iden-
tical to the forward Euler approach, as described by eq. 3.27; f = 1 would correspond to
an Euler backwards approach, while f = 0.5 is the closest to what is described in Leishman
[2006] as the predictor-corrector approach. From now on, when mentioning the predictor-
corrector approach it will refer to eq. 3.29 with f = 0.5 specifically.

A convergence study has been conducted on the wake method developed here, which
can be seen in figure 3.7. The residual has been chosen to be:

R = ||µnew −µold||
||µold||

(3.30)

The convergence criteria has been selected as the doublet strength since this is what is
ultimately relevant for the resulting loads. In this run the convergence criteria was set to
the residual being below 10−4. Figure 3.7 effectively shows that the forward Euler method
presents some oscillating behaviour near the end. The backward Euler doesn’t converge at
all for the 100 iterations allowed. The predictor-corrector scheme is the one that presents a
more consistent convergence. However, note that the predictor-corrector scheme and the
backward Euler require to calculate the nodal velocities twice, for rn and for rn+1, while the
forward Euler only requires the velocities at r n . The computation of the induced velocities
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Figure 3.7: Convergence study on the wake model using an Euler forward model f = 0, an Euler backward
( f = 1) and a predictor-corrector scheme ( f = 0.5).

is a costly computation, which means that doubling this computation represents a con-
siderable increase in the overall running wall-clock time. The Predictor-corrector scheme
takes on average ≈ 65% more time per iteration of the wake than the explicit Euler. For most
runs, it is considered that a residual of 10−3 is enough to consider the code converged. In
that range of accuracy, the Euler forward method seems to be the best trade-off between ac-
curacy and computational cost and as such will be the primary choice for the optimization
runs.

3.3. Validation of the aerodynamic model
In this section the developed panel code will be compared against the results from the MI-
RAS software. MIRAS is also a panel method code and has been validated extensively be-
fore, which makes it convenient to compare the results of this thesis work against it.

This section will first explain the case that is being used to validate the code, that is the
NREL 5MW geometry (see NREL 5MW report by Jonkman et al. [2009]). The next subsec-
tion is a comparison of the normal and tangential forces along the blade span, followed by
a study on the pressure distribution on some sample sections along the blade. The last sub-
section is a discussion of the results obtained, which includes a discussion on them with an
expert on panel methods, the researcher Néstor Ramos-García, who is the main developer
of the MIRAS code.

3.3.1. Validation case study
The results of the simulations of this thesis are compared, specifically, against the article by
Ramos-García et al. [2014].

While essentially the presently developed panel code and the MIRAS model are both
panel codes, there are some differences in the implementation that must be noted to the
reader, which are mentioned hereunder. MIRAS is a computational panel code that uses
the Neumann no-penetration condition to enforce the boundary conditions. The present
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code, on the contrary, uses a Dirichlet BC. The code can be run with and without account-
ing for viscosity, which is taken into account by coupling the panel code to a viscous bound-
ary layer solver, Q3UIC. The wake is modelled using a free-wake model that employs trailing
filaments to account for the influence of the wake on the flow field. Oppositely, the present
code uses quadrilateral panels to model the wake.

In the mentioned article, MIRAS is run on several wind turbine rotors. For the present
comparison, we will take the results from the analyses on the NREL 5MW rotor. The NREL-
5MW is a fictitious wind turbine to be used by researchers, aimed at testing new models and
methods of analysis, as well as new technologies, to be able to compare easily the results
of those studies on a common-ground wind turbine. The reference turbine is an upwind,
variable-speed, pitch controlled machine. The aerodynamic, structural and control param-
eters necessary for an analysis are provided in the NREL report. The aerodynamic sections
are provided at different stages of the blade, along with their corresponding polars (Cl −α
and Cd −α plots). Together with the chord and twist values at each section, this is enough
to conduct an analysis with a BEM code. However, for CFD or a panel code the exact geom-
etry is needed, which is not provided in the original NREL 5MW report. This is why several
researchers who have used this baseline turbine need to take some freedom into deciding
how to model the geometry.

For several sections along the blade, the parameters given in the NREL report are radius,
chord, twist and the specific airfoil used in the section. A further assumption needed is
regarding the center of the blade axis. It is assumed that the blade axis is straight and that it
is located at 25% of the chord for every airfoil section. The twist is therefore applied at each
blade center.

The second additional modification has to do with the airfoil shape. The original airfoils
(see figure 3.8) which can be found in the original NREL report have blunt trailing edges,
which is a problem when running panel method simulations. In these cases, enforcing
the Kutta condition is problematic. The kutta condition helps determine the amount of
circulation around an airfoil, given that the flow leaves the trailing edge smoothly. This
requires the trailing edge to be sharp and no separation to occur. For the case of a blunt
trailing edge, it is not obvious where to place the Kutta condition, or if it can be used at all
for the aforementioned reasons. Secondly, these flatback profiles have an abrupt change in
the geometry near the trailing edge, which can cause numerical issues when computing the
CP of the sections. For these reasons it becomes necessary to modify the aifoils to sharpen
the trailing edges. The geometries used for the analysis are shown in figure 3.9, which are
the same ones as used for input for the MIRAS runs.

3.3.2. Spanwise loads on the rotor
Now a comparison of the spanwise loads will be presented for three different models: the
MIRAS inviscid, the currently developed panel code, and a CFD simulation. The CFD sim-
ulation, unlike the panel codes, takes into account viscosity and flow separation. Figure
3.10 shows the load distribution on the NREL 5MW rotor. The normal force, perpendicular
to the rotor disc, is related to the total thrust on the wind turbine. The tangential force is
perpendicular to the blade axis and in-plane with the rotor disc, hence it is related with the
torque and the power produced by the blades.

The results for the normal force are very close for the three models, this is because the
normal contribution is mostly dependent on the lift generated by each section, which is
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(a) (b)

Figure 3.8: a) NREL 5MW airfoils and b) Zoom on the TE

(a) (b)

Figure 3.9: a) Modified NREL 5MW airfoils and b) Zoom on the TE

accurately represented in a panel code.
The results for the tangential force are, however, rather different for the CFD and the

two panel codes. Only near the tip, where the tip effects play a major role, do the codes
start to have a similar behaviour. The tangential component of the force is more affected
by the drag of each section. Since the panel code developed is inviscid, the viscous drag is
not accounted for and the tangential force is overpredicted in most of the span. Close to
the root an additional effect adds up to the difference between CFD and the panel codes.
For similar reasons as mentioned previously for the blunt trailing edge profiles, the Kutta
condition is not applicable to cylindrical sections. This causes the cylindrical sections to
effectively generate lift, which is nothing but a discretization-driven phenomennon, with
no physics behind. This will be commented on further in the next subsection.

Regarding the behaviour of the two panel codes, they are both similar, which gives con-
fidence that there are no major issues in the currently developed code. The only appre-
ciable differences are in the middle sections, where the current code predicts loads slightly
under MIRAS, and near the root where it seems to behave a bit more abruptly than the
MIRAS code.
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(a) (b)

Figure 3.10: Comparison of normal a) and tangential b) forces on the NREL 5MW rotor blades using CFD ,
MIRAS and the currently developed code. Extracted from Ramos-García et al. [2014]. The first point from
assto has been excluded for visualization purposes.

All in all, what is important to discuss here is whether the panel code will be useful
for design purposes. While the power production will be definitely overestimated for the
above-mentioned reasons, there is basis to think that it will allow for a sensible design of
a wind turbine. For most of the span, the tangential loads are overpredicted but follow a
similar trend than that of the CFD results. The exception is close to the root, where the
panel code is not able to capture the flow separation that occurs there. The present results
point in the direction that this panel code will be able to provide reasonable designs in the
middle and tip regions of the blade, which are the most important parts with regards to
power production.

3.3.3. Pressure distribution along the span
Figures 3.11-3.16 show the pressure distribution along representative sections of the wind
turbine. This allows for further insights into the load distribution that has been commented
upon previously. The first thing to notice is that the sections immediately at the root and
at the tip present some numerical issues. While this does not cause a big overall change in
the WT performance, it is something to be aware of for the further stages of the design. The
middle sections of the blade, as well as all other sections not immediately close to the tip or
root, on the other hand, present the expected behaviour and show no problems apart from
small issues close to the trailing edge.

3.3.4. Discussion on the validation
Additional to the previously made comments, the results of the currently developed code
have been discussed with an expert on the field of panel code modelling [Néstor Ramos-
García, personal communication, 7th April, 2021]. The following points are a reproduction
of what was talked upon in the meeting. Néstor is also the main developer of the MIRAS
code, hence some further insights are provided on the differences between the two panel
codes.

MIRAS uses a similar method to compute forces, namely CP integration, and the free
wake models employed are not identical but follow very similar principles.
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Figure 3.11: Normal force to the rotor along the span
Figure 3.12: Tangential force to the rotor along the
span

Figure 3.13: Normal force to the rotor along the span
Figure 3.14: Tangential force to the rotor along the
span

Figure 3.15: Normal force to the rotor along the span Figure 3.16: Pressure distribution at the tip
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The topic on the differences between codes was addressed, namely where do the dif-
ferences come from for two codes that have very similar implementation. The three major
possibilities are small changes of the geometry, changes in the free wake model or changes
in the boundary conditions. The wake model differs in how the first row of panels is de-
fined. Furthermore, the wake consists of quadrilateral panels for the current code, while it
is modelled by vortex filaments in MIRAS. The boundary condition employed is Dirichlet
for the current code, but Neumann for MIRAS. It is also acknowledged that changes in the
discretization of the geometry can have significant effect on the results.

The previously mentioned differences in loads at the root (circular and close to circular
sections) and in the middle sections can be likely attributed to the mentioned differences.

It remains to be determined the cause of the numerical issues near the root and the
tip. Néstor made a suggestion with regards to the topics that have been mentioned so far:
Regarding the issues at the cylindrical sections, panel codes seem not to be ready to deal
with this issue for the moment. A model that accurately represents the detaching flow for
panel methods is yet to be developed. Hence, it is considered normal that the issues are
experienced close to the root section. For the purpose of this work, these root sections
should better be excluded from the design optimization to avoid undesired numerical is-
sues to appear. A second suggestion from Néstor pointed in the direction of implementing
the Neumann boundary condition to the code. This would help rule out the possibility that
there are errors in the code, since the choice of boundary conditions is one of the major
implementation differences.



4
Glauert’s optimum rotor

In this section a well known optimal rotor design is presented making use of Glauert’s mo-
mentum theory. The resulting design will be used as a baseline for future chapters and
to increase the understanding of the optimization using panel methods. Additionally, the
assumptions of such theory are highlighted to understand which differences might be en-
countered between the two models.

4.1. Glauert’s Optimal rotor
In the following section the theory behind the optimum rotor, as defined by Glauert [1935],
will be described with the purpose to compare the results of the optimization against it.
Let’s start by introducing some basic concepts. At every spanwise station of the blade, the
contributions of all incoming speeds can be represented as in figure 4.1, where a and a’
represent the induction factors in the axial and the tangential directions, respectively. The
induction factors are the non-dimensional axial and tangential velocities induced at the
rotor mainly by the lift force, and defined as:

a = 1− va

v∞
(4.1)

a′ = vt

ωr
−1 (4.2)

The power at a given spanwise location, for a stream tube of width dr , is given by the
following expression:

dP = 4πρω2U∞a′(1−a)r 3dr (4.3)

From equation 4.3 it can inferred that at a given spanwise station, and for fixed rota-
tional and inflow speeds, the power is maximized when the expression f = a′(1−a) is max-

imum. Requiring that d f
da = 0 yields the following equation:

da′

da
= a′

1−a
(4.4)

Since the lift force is perpendicular to the relative inflow speed, and the induced speeds
need to be parallel to the lift force (see figure 4.1), the following relation can be found:

x2a′(1+a′) = a(1−a) (4.5)

23
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Figure 4.1: Decomposition of velocities at a spanwise section of the wing. [To be substituted by own figure,
extracted from Hansen [2015]]

Where x is the equivalent of a local tip-speed ratio, defined as x = ωr
u∞ . The objective is

to find the optimum value of a and a′ for different spanwise positions of the blade. For this,
equation 4.5 is differentiated with respect to a, yielding:

x2(1+2a′)
da′

da
= 1−2a (4.6)

Now, equations 4.3, 4.5 and 4.6 can be combined to find the optimal values of induction
for every value of x — therefore for every spanwise location. For an inflow of u∞ = 10m/s,
TSR = 6 and a maximum span of 1m, as will be used later in the optimization sections, the
induction factors can be seen in figure 4.3

Knowing the ideal induction factors allows immediately to calculate what will be the
ideal twist. Looking back at figure 4.1 the inflow angle can be computed as:

φ= arctan

(
1−a

(1+a′)x

)
(4.7)

Which are values now known. Then, the twist (in degrees) is computed as in equation 4.8.
The relation between angles is as defined in figure 4.2.

θ =φ−αopt (4.8)

Note that in (simple) BEM theory the airfoil sections are considered to retain their 2D lift
and drag coefficients. Therefore, the optimal angle of attack αopt will be the value that has
a higher lift to drag ratio of the chosen 2D airfoil. This is an assumption not necessarily true
in general; the three-dimensional effects will cause that the same airfoil presents different
lift and drag coefficients along the span.

By equating the thrust (axial force) for momentum and blade element expressions the
expression 4.9 can be obtained for the chord as a function of known values. The exact
development requires the explanation of blade element theory and will not be presented
here but can be consulted for example in Hansen [2015].

c = 8πR ·F ·a · x · si n2(φ)

(1−a)B ·TSR ·Cn
(4.9)
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Figure 4.2: Relation between angle of attack, inflow angle and twist.

Figure 4.3: Optimal axial and tangential inductions as calculated with Glauert’s theory.

In expression 4.9 B is the number of blades, in the example case 3. Cn is the normal coeffi-
cient of force obtained using the projections of Clopt and Cdopt . F is Prandtl’s tip-loss factor.
It accounts for the fact that the induction won’t be homogeneous in the rotor, as would in
a rotor with infinite blades, which has been considered until now. Prandtl’s correction is,
however, an approximation and it will be shown later on that the losses don’t correspond
exactly with what is predicted using panel methods (see section 4.2).

Figures 4.5 and 4.4 show the optimal chord and twist distributions. Prandtl’s loss factor
has been applied also at the root, as explained in Burton et al. [2011] to account for root
losses as well as tip losses.

4.2. Analysis of Glauert’s rotor using Panel Methods
In this subsection the Glauert rotor is analyzed using panel methods. The free wake and
fixed wake models are compared against each other and against the BEM prediction. First,
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Figure 4.4: Ideal chord as calculated using Glauert’s
theory, with and without root and tip corrections ap-
plied.

Figure 4.5: Ideal twist distribution as calculated us-
ing Glauert’s theory.

look at figure 4.6: the prediction using BEM theory does not have the same magnitude
as the prediction using the free wake model. The most noticeable differences are at the
root, where the shape of the induction curve is significantly different for the analytical and
computed results. This is due to the loss model of the BEM method: to correct for the
assumption that the rotor has an infinite number of blades the Prandtl tipp loss correction
factor has been applied; however, this model is not accurate enough (especially towards
the root) to account for the losses originated because of the finite number of blades.

In the BEM model, as has been seen previously (see equation 4.3), the power is directly
related to the induction. However, not necessarily so in for the panel method model, since
the assumptions of the models are not the same. Remarkably, remember that BEM assumes
that individual sections of the blade are independent from each other, which is not true in
the panel method case and in general. This way, even though the induction is not the same
for the two models, they present a remarkable similarity for the spanwise moments around
the x axis, and therefore the power output (see figure 4.7). The tendency in this case is very
similar for BEM and the free wake; however, close to the root and the tip the two models
present some differences.

Lastly, it should be remarked that the fixed wake model is able to achieve similar results
to the free wake model, provided that an appropriate value for s f is chosen. The difficulty
resides in choosing the correct value for s f , which is not known in advance and can only
be found by comparing the loads of a specific s f to the free wake loads.
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Figure 4.6: Axial induction in the glauert blade as
computed with panel methods and BEM theory.

Figure 4.7: Moment around the x axis for the glauert
blade as computed with panel methods and BEM
theory.





5
Aerodynamic Optimization

In this chapter the aerodynamic optimization of a wind turbine blade is carried out using
the modelling tools from chapter 3. The search strategy, regularization and parameteriza-
tion are explained.Three optimization problems, with different constraints, are described.
The optimizations are carried out using a fixed wake and the resulting geometries are ana-
lyzed using the free wake model.

5.1. Setup of the Optimization
5.1.1. Operating conditions
For the simulations that will be presented here below, the operating conditions of the wind
turbine are set to be the same to facilitate comparison among them. These can be con-
sulted in table 5.1

Table 5.1: Operating conditions of the wind turbines set for the optimization problems.

Air density 1.225kg/m3

Inflow speed 10m/s
Yaw misalignment 0 deg
Tip Speed Ratio 6

Apart from the aforementioned conditions, the inflow is considered to be uniform and
perpendicular to the rotor disc.

5.1.2. Discretization of the blade
The discretization of the blade is also kept constant for the different optimization runs to
be able to compare among them. Prior to conducting the optimization of the blades, a con-
vergence study was conducted on the spanwise loads to determine the mesh size required
for the runs. This small study is presented in appendix A. The mesh parameters used in this
optimization chapter are presented in table 5.2.

5.2. Parameterization
The blade is parameterized using NACA profiles. As such, it is possible to use as variables
the maximum camber, position of maximum camber, thickness, twist and chord of the air-

29



30 5. Aerodynamic Optimization

Table 5.2: Mesh discretization parameters employed for optimization.

chord panels 80
span panels 20
wake revolutions 6
panels per revolution 18

foil. The variables are represented respectively as [m, p, t , c] in figure 5.1, while the twist
was defined previously in figure 4.2. The three first variables define the shape of the air-
foil and have been predefined for the analysis. The chosen airfoil is the NACA 4412, which
corresponds to a 4% maximum camber, located at 40% of the chord, and 12% of maximum
thickness (percentages defined with respect to the chord). In order to keep the design com-
prehensible and easy to interpret, the choice of active variables has been restricted to the
chord and the twist. The simulations done in this work will have as a purpose understand
the role of these two variables in the design of a wind turbine blade. The other variables
could be included at a later stage of the research, but it is first important to comprehend
how the model behaves and if the optimizer takes advantage of any features of the model.

Figure 5.1: Representation of the parameterization of an airfoil using the NACA 4 digit series.

5.3. Filtering
The variables used in this work, as defined in the previous section 5.2, are independent
from each other in each section. To prevent the appearance of non-physical solutions,
or drastic changes in the design variables from one spanwise section to another, it is im-
portant to regularize the variables. Different kinds of filtering techniques exist for gradient
based optimization. Sigmund [2007] presents several of those techniques for topology opti-
mization, including the density filter used in this work, which was previously implemented
in the work by Conlan-Smith et al. [2020] and is reproduced below for clarity:

In the density filter, the filtered design variables (ρ̃) are given by :

ρ̃ =W ρ (5.1)

Where W is the density filter and can be computed as follows:

Wi j = 1∑Ns
k=1 wi k

wi j where wi j = max
[
0,R −di j

]
(5.2)

The density filter is defined by a characteristic distance R. The value of a variable will
be influenced by its neighbours proportionally as long as they are within that distance R.
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The filtered vector of variables ρ̃ becomes an averaged version of the vector ρ. The effect of
applying a filter is that there are no drastic changes in the design variables in the spanwise
direction.

5.4. Search strategy and sensitivities
In the literature study of chapter 2 different search strategies have been described. Among
those, in this work a gradient based search is used, specifically the algorithm used in this
work is the Method of Moving Asymptotes (MMA) developed by Svanberg [1987]. MMA
uses the variable values of the last two iterations as well as gradient information at the cur-
rent step to update the variables. This section describes how these gradients are obtained
to be able to feed them to MMA. It is necessary to compute the total derivative of the ob-
jective function f described in section 5.6:

d f

dx
= ∂ f

∂x
+ ∂ f

∂µ

dµ

dx
(5.3)

Where µ here is a state variable (the doublet strength) and x to the design variables.
The partial derivatives can be computed analytically with relative ease; however, not so the
total derivatives. Enforcing that the residuals of the state equations must be equal to zero

will allow to write dµ
dx only as a function of the partial derivatives of the resiual:

dR

dx
= ∂R

∂x
+ ∂R

∂µ

dµ

dx
= 0 (5.4)

dµ

dx
=−

[
∂R

∂µ

]−1 ∂R

∂x
(5.5)

Hence, the derivative of the objective function can be computed also using only partial
derivatives.

d f

dx
= ∂ f

∂x
− ∂ f

∂µ

[
∂R

∂µ

]−1 ∂R

∂x
(5.6)

Note that the inverse of the matrix term
[
∂R
∂µ

]
is not actually computed. Instead, the

following system of linear equations is solved for λ:[
∂R

∂µ

]T

λ=
[
∂R

∂x

]T

(5.7)

And then the vector λ is substituted into equation 5.6, which can be rewritten:

d f

dx
= ∂ f

∂x
−λT∂R

∂x
(5.8)

Now that d f
dx is known, the derivative of the objective function with respect to the design

variables ρ can be computed using the chain rule:

d f

dρ
= d f

dx

dx

d ρ̃

d ρ̃

dρ
= d f

d x

dx

dρ̃
W (5.9)

Where ρ is the vector of design variables, ρ̃ are the filtered variables.
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5.5. Validation of the Optimization
When using the fixed wake model to optimize the blade shape, the main assumption made
is that the wake shape does not change between iterations. In this subsection an effort is
made to proof or disproof this assumption by comparing the analytical fixed wake sensitiv-
ities to finite difference sensitivities from the free wake model.

Figure 5.2: Sensitivities of Mx with respect to the
chord for different fixed wake models and the free
wake model computed for the Glauert optimal blade.

Figure 5.3: Sensitivities of Mx with respect to the
twist for different fixed wake models and the free
wake model computed for the Glauert optimal blade.

Figures 5.2 and 5.3 show the sensitivities of Mx (the objective function) with respect
to the design variables, the chord and twist respectively. The sensitivities of the free wake
model computed with the Finite Difference (FD) method are known to be correct and will
be used as a reference, so they can be used for comparison and validation of the other
sensitivities. For the FD approach the variables (normalized from 0 to 1) have been varied
with a step of 1 · 10−5, in the range for which the FD method typically presents less error
(see the book by [Martins and Ning, 2021] for insight on the typical error related to FD
approaches).

First of all, notice that the sensitivities computed using the analytical adjoint method
(denoted as ’adj’ in the figures) are very different from the FD values for the free wake
model. The adjoint sensitivities of the free wake model are computed disregarding the
change in wake shape between iterations completely; judging from the results in the fig-
ures this approach is not recommended since the differences are notable, especially to-
wards the tip of the blade. It is concluded here that in order to use the free wake model to
optimize wind turbine blades the changes of shape of the wake must be accounted for in
the sensitivity calculation.

Regarding the fixed wake method, similarly to what was seen in section 4.2, how similar
the fixed wake sensitivities are to the reference ones will depend on the value of s f . Also in
section 4.2 it was shown that specifically for the Glauert blade s f = 0.75 yielded loads very
similar to the free wake ones. Similarly here, different values of s f will give sensitivities that
are in magnitude more or less close to the reference ones; nonetheless, none of them will
mimic precisely the shape of the reference sensitivity curves. This indicates that the results
of an optimization run obtained using a fixed wake will be different than those obtained
using a free wake model.

Note that the sensitivities have been computed for a specific blade shape, namely the
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Glauert blade. This exemplifies that choosing the appropriate value of s f allows to have
sensitivities that are similar in magnitude to those of the free wake model. However, this
approach cannot be used as a general proof that the fixed wake sensitivities are equiva-
lent to the free wake ones, and also it has been seen in this example that the shape of the
spanwise sensitivities is different for the fixed wake than it is for the free wake.

5.6. Definition and results of the optimization problems
The optimization is performed for a specific inflow speed and TSR. This means that the
rotational speed is fixed and hence, using the moment around the axis of rotation (Mx) as
an objective function is equivalent to using the power produced (eq. 5.10). Similarly, a CoP
optimization would be also equivalent since the rotor area is also kept constant.

CoP = P
1
2ρu3∞Sr ot

= MxΩ
1
2ρu3∞Sr ot

(5.10)

Next two optimization problems are presented with different constraints and active
variables:

Problem 1:
max
c ,θ

Mx (c ,θ)

s.t. cmi n ≤ c ≤ cmax ,

θmi n ≤ θ ≤ θmax

(5.11)

This problem is unconstrained to mimic how the Glauert optimal rotor is obtained in
the first place, without contstraints of any kind. Wide limits are allowed on the design vari-
ables. This will allow to notice what are the weaknesses of the model and which constraints
need to be introduced to be able to obtain a geometry that is realistic.

As will be seen later in the results, there is an inherent problem with allowing the chord
or twist to vary unconstrained. Since stall is not modelled in a panel method model, the
performance at high angles of attack is overpredicted. Similarly, if no constraints are im-
posed, the chord values tend to become very big. Therefore, a strategy needs to be imple-
mented in order to keep a realistic design, in form of bounds on the variables or constraints.
Problem 2 will intend to tackle these issues later on.

Figures 5.4 and 5.5 show the resulting geometry of the optimization problem 1 per-
formed with a fixed wake model for different values of s f . Recall that s f defines the length
of the wake. As was exemplified in section 4.2, with a fixed wake an equivalent loading of
the blade can be obtained to that of a free wake model, but only if an appropriate s f is
chosen. Here s f is chosen beforehand, so there is no guarantee that the value chosen will
correspond to the obtained design at the end of the optimization. To solve this problem,
the optimization should be run for a range of s f values, and the performance of the blade
(in terms of spanwise loads) should be assessed only with a free wake model.

In this case the chord was allowed to vary between cmi n = 0.05 and cmax = 0.5. Note that
the chord reaches the maximum allowed value near the root of the blade for all values of s f
(see figure 5.4). The twist is allowed to vary between θmi n = 0deg and θmax = 60deg , and it
is observed that the optimizer tends to reach the minimum twist possible (see figure 5.5),
which maximizes the local angle of attack of each section.
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Figure 5.4: Problem 1: Spanwise chord distribution
for different s f values.

Figure 5.5: Problem 1: Spanwise twist distribution
for different s f values.

It is apparent that the optimizer reaches unrealistic geometries when unconstrained
and when the variables have wide bounds. One assumption made inherently here is that
the change in shape of the blade will not affect the shape of the wake. This is erroneous,
and it is difficult to determine how much this affects the outputs of the simulations. An
attempt to assess this effect was done in section 5.5. An small value of s f is related to a
wake which is closer to the blade and is also associated with higher axial induction values.
Higher chord values are less desired in this case than it would be for a higher value of s f .
Both the results from section 5.5 and from figure 5.4 agree on this.

Figure 5.6: Problem 1: Spanwise moment distribu-
tion on the optimized blades. Loads computed using
a free wake model.

Figure 5.7: Problem 2: Spanwise axial induction on
the optimized blades. Velocities computed using a
free wake model.

The Betz limit states that the power of a wind turbine cannot go over CoP = 16/27 ≈
0.59. The performance of the three designed blades, when run on the free wake method,
have performances that exceed this limit (see table 5.3). This can also be seen when com-
paring the spanwise moment generated by these blades as compared to the moment gen-
erated by the glauert blade (figure 5.6). Similarly, the axial induction (figure 5.7) of the
designs is higher than the ideal induction calculated using momentum theory. All these
results indicate that the panel method model is producing unrealistic results.
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Table 5.3: Problem 1: performance of the three optimized blades in terms of power and coefficient of power.

Design Power CoP
sf = 0.5 1355.7 0.705
sf = 0.75 1392.5 0.724
sf = 1.0 1216.9 0.632

Problem 2:
max
c ,θ

Mx (c ,θ)

s.t. T ≤ Tmax ,

cmi n ≤ c ≤ cmax ,

θmi n ≤ c ≤ θmax

(5.12)

In this second problem the twist and chord are allowed to vary as well. However, to
improve on the results from problem 1, the chord bounds have been limited to a smaller
range (cmi n = 0.05; cmax = 0.15). The thrust is now used as a constraint. This is appropriate
because on one side, it is related to structural constraints on the tower —it is desirable to
limit the thrust to have a reduced bending moment at the base of the tower, which in turn
helps limit material usage on the tower—. On the other side, constraining the thrust will
allow realistic twist curves to appear on the final designs.

Figure 5.8: Problem 2: spanwise chord distribution
for different thrust constraints; s f = 0.5.

Figure 5.9: Problem 2: spanwise twist distribution for
different thrust constraints; s f = 0.5.

Figures 5.8 to 5.13 show the geometries obtained for different s f values and thrust con-
straints for problem 2. The most important thing to note is that the thrust constraint is able
to limit the twist values and produce realistic results in most cases. The spanwise chord
distribution now resembles more that of a typical wind turbine blade as well.

In the theoretical case obtained using momentum theory the chord at the tip and the
root of the blade tends to 0; however, the designs from panel method optimization consis-
tently show chords of finite length towards the extremes of the blade.

The performance of the optimized designs is shown in table 5.4. The loads on the blades
have been analyzed with a free wake model to compare their performance in terms of Co-
efficient of Power. The highest performing blade, according to the results, is the one pro-
duced using s f = 0.5 and T<42. Even though its power output seems realistic, this blade
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Figure 5.10: Problem 2: spanwise chord distribution
for different thrust constraints; s f = 0.75.

Figure 5.11: Problem 2: spanwise twist distribution
for different thrust constraints; s f = 0.75.

Figure 5.12: Problem 2: spanwise chord distribution
for different thrust constraints; s f = 1.0.

Figure 5.13: Problem 2: spanwise twist distribution
for different thrust constraints; s f = 1.0.

performs better than the rest because the twist has become very low with the combina-
tion of parameters and constraints imposed. This means that the local angle of attack of
the blade will very high towards the root of the blade, which as discussed previously is not
punished in a panel method model. The local angle of attack of this particular blade is de-
picted in figure 5.14 to exemplify this effect. For angles of attack ≈ 15deg a 2D NACA 4412
airfoil would begin to stall. For similar reasons, it is difficult to assess whether the designs
represent an improvement in performance to, for example, the Glauert blade. A higher or-
der model that would take into account all physical phenomena, for example a CFD model,
should ultimately be used to assess the performance of the obtained designs.
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Figure 5.14: Problem 2: Local angle of attack of the blade obtained with T<42 and s f = 0.5.

Table 5.4: Problem 2: performance of the optimized blades in terms of power and coefficient of power.

Design Constraint Power CoP

sf = 0.5
T<28 754.3 0.392
T<42 945.8 0.492

sf = 0.75
T<28 702.8 0.365
T<42 934.8 0.486

sf = 1.0
T<28 673 0.35
T<42 899.2 0.467
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Figure 5.15: Problem 2: spanwise axial induction dis-
tribution for different thrust constraints; s f = 0.5.

Figure 5.16: Problem 2: spanwise Mx distribution for
different thrust constraints; s f = 0.5.

Figure 5.17: Problem 2: spanwise axial inductiond
distribution for different thrust constraints; s f =
0.75.

Figure 5.18: Problem 2: spanwise Mx distribution for
different thrust constraints; s f = 0.75.

Figure 5.19: Problem 2: spanwise axial induction dis-
tribution for different thrust constraints; s f = 1.0.

Figure 5.20: Problem 2: spanwise Mx distribution for
different thrust constraints; s f = 1.0.



6
Conclusions and recommendations

This chapter reviews the most relevant results found throughout this thesis work and makes
recommendations on improvements of the model and the analysis for future work to be
done in the topic.

6.1. Conclusions
The aim of this thesis has been to assess the viability of panel methods to be used for gra-
dient based optimization of wind turbine blades.

A panel method has been developed to calculate the spanwise loads —and therefore
power— of horizontal axis wind turbines using a Dirichlet boundary condition. Both a
fixed wake and free wake models have been developed for the wake and their validity has
been assessed. The free wake model presents good agreement with previous panel method
models, while the fixed wake only does so when the parameters of the model are chosen
appropriately. However, the tangential loading is substantially different when compared
to CFD computations; therefore, all designs should ultimately be assessed using a higher
order model that accounts for viscosity and stall phenomena.

The optimum blade obtained using the Glauert model was chosen as a baseline and an-
alyzed to be compared with the blades resulting from the optimization runs. This provided
insights into the differences between momentum theory and panel methods; namely, the
Prandtl tip loss correction, which is widely used in the literature, shows some differences
compared to the losses computed with the panel model.

For the optimization, a simple model was chosen to evaluate the viability of the op-
timization using panel methods. Optimization runs for the fixed model were performed,
using only the chord and twist as optimization variables to keep the model understand-
able. Unconstrained optimization shows to take advantage of the flaws of panel methods,
namely the lack of stall modelling means that the model overpredicts the perfomance of
high angles of attack and tends towards them. Applying appropriate bounds on the chord
and twist variables, more realistic designs can be obtained, where the chord and twist lie
within realistic bounds. However, a difficulty to assess the performance of the designs has
been found. Because the performance is been assessed with a panel method itself any flaws
in a panel method, therefore, are obviated when evaluating the performance, for example
high angles of attack are viewed as very good.
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To conclude, the obtained results show that viable designs are possible using panel
methods for gradient based optimization, but only if appropriate bounds and constraints
are applied to keep the model within the range of its applicability. Ultimately, the perfor-
mance of the obtained designs should be assessed using higher order aerodynamic models.

6.2. Recommendations for future work
The optimization runs have been performed using the fixed wake model, which does not
take into account the changes of shape in the wake when the geometry changes. To im-
prove the optimization, the sensitivities of the wake geometry with respect to the changes
in the design and state variables should be computed. While this would eliminate the vari-
able of the wake shape, which has been present in this work, it still is not enough to deal
with the limitations of panel methods. As has been mentioned throughout the work, panel
methods are incapable of assessing properly the loads for high angles of attack. The solu-
tion applied in this work was a thrust constraint; however, it would be an improvement to
apply a constraint on the local angle of attack of every section. Since the axial induction
and the undisturbed inflow are known, it is possible to evaluate the angle of attack at every
iteration and calculate the sensitivities.

Related to the applicability panel methods, it should be mentioned that the perfor-
mance of the designs obtained has been assessed using a panel method again. Therefore,
any flaws of the model exploited during the design will also be present during the poste-
rior analysis. To properly assess how good the performance of these designs is, it should be
done using a higher order model, e.g. CFD.

It is well known that CP integration is not accurate enough for drag calculations [Katz
and Plotkin, 2004], which might be critical when computing the tangential loads at the ro-
tor — and therefore the power. While it is not completely clear exactly what effect this might
have on the designed geometries, it is clear that the results will be affected if errors in the
drag computation are present in the current designs. Using Trefftz Plane (TP) integration
to compute the loads showed to yield better results for wing optimization in previous work
Conlan-Smith et al. [2020] and seems to be the way to go for optimization of wings. How-
ever, to the knowledge of the author Trefftz plane (also called Far-field) integration has not
been used plenty for wind turbines in panel methods. Unlike its use for wings, where the
expressions to calculate lift and induced drag are well known [Drela, 2014], using Trefftz
plane integration in this case would therefore require to develop the analytical expressions
for force integration, followed by a validation analysis, prior to implementing TP integra-
tion for optimization purposes. This analysis had to be excluded of this thesis work for time
reasons only, but it is strongly encouraged for future investigations to inquire further into
far-field integration. Something to note with regards to TP integration is that it employs the
velocity field on the wake of a wind turbine. This calculations have shown to be imprecise
for the explicit free wake model, which might be an issue for this kind of implementation.

The choice of objectives in this work has been based on simplicity. For an early stage
of development of a model it is better to chose simple models that can be understood, and
hence the choice of Mx as an objective function made sense this way. However, this does
not reflect completely on what makes a turbine optimal when it comes to a real life business
case. For that purpose, it would be more appropriate to use Cost of Energy as an objective
function [Bottasso et al., 2016]. Deep knowledge of the cost of materials, manufacturing,
transporting, maintenance costs, etc. is required to calculate COE as a function of the de-
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sign variables, and so this task also came to be out of the scope of this work. Similarly, for
the choice of constraints it would be better to use Design load cases as required when a real
wind turbine is designed.

The studies conducted here have used only the twist and chord as variables to optimize.
The reason is that it becomes easier to interpret the results obtained this way, but it would
be possible to use the other NACA parameters as variables with no further implementations
with the current code. This would allow the optimizer to effectively be able to choose freely
between different NACA profiles at every section.

Finally, with the developed aerodynamic model and following the steps of the work by
Conlan-Smith [2020], it would be possible to couple the aerodynamic optimizer to a struc-
tural model to perform aerostructural optimization.





A
Effect of Discretization on the loads

This section presents a simple study of the effect of the discretization on the spanwise loads
of a wind turbine. Figures A.1 to A.8 present the tangential and normal forces on a sample
wind turbine rotor employing a fixed wake for the discretization, using the parameters of
table as a baseline A.1 and changing the relevant parameter for every plot. From the figures
it is apparent that the discretization does not have a great effect on the tangential forces
for the tested meshes. Furthermore, it is considered that the normal spanwise loadings
converge at the following discretization: 80 chordwise panels, 20 spanwise panels, 10 wake
revolutions and 36 wake panels per revolution (10 deg. of spacing between wake panels).

Table A.1: Baseline discretization used for comparison with other coarser and finer meshes.

chord panels 80
span panels 20
wake revolutions 10
panels per revolution 18

Figure A.1: Normal force to the rotor along the span
for different chord discretizations.

Figure A.2: Tangential force to the rotor along the
span for different chord discretizations.
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Figure A.3: Normal force to the rotor along the span
for different spanwise discretizations.

Figure A.4: Tangential force to the rotor along the
span for different spanwise discretizations.

Figure A.5: Normal force to the rotor along the span
for different number of wake revolutions.

Figure A.6: Tangential force to the rotor along the
span for different number of wake revolutions.

Figure A.7: Normal force to the rotor along the span
for different number of wake panels per revolution.

Figure A.8: Normal force to the rotor along the span
for different number of wake panels per revolution.



B
Finite Difference checks

A finite difference check has been done to ensure that the analytical sensitivities are prop-
erly calculated. The way this check works is the following: the value of the objectives and
constraints is calculated using the developed aerodynamic model (which has been previ-
ously validated) for a specific blade geometry; then the variables are perturbed by a given
increment ∆ρ such that the derivative of the objective can be approximated using expres-
sion B.1 — similarly for the constraint function and its derivatives.

d f

dρ
≈ ∆ f

∆ρ
(B.1)

A finite difference scheme to calculate sensitivities is accurate for a specific step size,
but becomes inaccurate when the step is too low (due to machine accuracy) and when the
step is too high (because the approximation of equation B.1 does not hold). The error of a fi-
nite difference scheme plotted against the∆ρ perturbation then follows a characteristic ’V’
shape. More insights into finite difference calculation can be seeked in Martins and Ning
[2021]. Then, assuming that the sensitivities calculated using the analytic adjoint method
are correct, the difference between the adjoint sensitivities and the finite difference com-
putations should resemble this ’V’ shape as well. This is what can be seen in figures B.1
and B.2 for the objective and constraint sensitivities, respectively, of the fixed wake model.
Every line corresponds to the mentioned relative error for a specific variable of the blade.
In this case both the twist and the chord variables are shown for every section of the blade.
The finite difference check ensures that the aerodynamic model and its derivatives coin-
cide, but it is still necessary to ensure that the model itself is correct to be able to claim that
the sensitivities point in the right direction.
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Figure B.1: Relative error between the finite differ-
ence sensitivities and the adjoint sensitivities for the
objective function.

Figure B.2: Relative error between the finite differ-
ence sensitivities and the adjoint sensitivities for the
constraint functions.



C
Code structure and contribution

This thesis departs from previous work done in the ambit of optimization of aircraft wings
(see Conlan-Smith [2020]). Therefore, at the start of this thesis work a software already
existed that could analyze the loads on a wing and perform aerodynamic and aerostructural
optimization. The additions that have been made to the software during this work can be
summarized in the next points:

1. Geometry input

2. Rotational symmetry

• Influence coefficients and their derivatives

• Computation of the velocity field at the wake

3. Velocity field

• Source terms and their derivatives

• Load calculations and their derivatives

4. Wake modeling

• New wake geometry

• New scheme implemented with the Free-wake model

5. New objectives and constraints
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Figure C.1: Flowchart of the code.
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