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Summary

Landslides are a major geohazard in hilly and mountainous environments. We
focus on slow-moving, deep-seated landslides that are characterized by gradual, non-
catastrophic deformations of millimeters to decimeters per year and cause extensive
economic damage. To assess their potential impact and for the design of mitigation
solutions, a detailed understanding of the slope processes is desired. Moreover,
where landslide hazard mitigation is impossible, early warning systems are a valuable
alternative to reduce landslide risk.

Recent studies have demonstrated the effective application of machine learning for
deformation forecasting to specific cases of slow-moving, non-catastrophic, deep-
seated landslides. Machine learning, combined with satellite remote sensing prod-
ucts offers new opportunities for both local and regional monitoring of areas with
unstable slopes and associated processes without costly and logistically challenging
inspection of the landslide. To test to what extent data-driven machine learning
techniques and remote sensing observations can be used for landslide deformation
forecasting, we developed a machine learning based nowcasting model on the multi-
sensor monitored, deep-seated Vogelsberg landslide, near Innsbruck, Tyrol, Austria.
Our goal was to link the landslide deformation pattern to the conditions on the
slope, and to produce a four-day, short-term forecast, a nowcast, of deformation
accelerations.

Changes in hillslope hydrology shift the balance between the shear strength of the
soil and the shear (sliding) force applied by the gravitational forces acting on the
landmass. Therefore, precipitation, snowmelt, soil moisture, evaporation, and air
temperature were identified as hydro-meteorological variables with high potential
for forecasting deformation dynamics. Time series of those variables were obtained
from remote sensing sources where possible, and otherwise from reanalysis sources as
surrogate for data that is likely to be available in the near future. Deformation, the
result of slope instability, was monitored daily by a local, automated total station.

Interferometric Synthetic Aperture Radar (InSAR) has shown to be a valuable re-
source of deformation information from space. However, due to the complex interac-

An abbreviated version of this summary has previously been published as: van Natijne, A.,
Lindenbergh, R., and Bogaard, T. (2023). Challenges for satellite-based deep-seated landslide
nowcasting. EGU General Assembly 2023, Vienna, 23-28 Apr 2023, EGU23-14398.
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X SUMMARY

tion with topography in mountainous environments, its potential is often questioned.
We showed that 91% of the world’s slopes are observable by Sentinel-1 and that given
the presence of a coherent scatterer, i.e. a natural or man-made object that exhibits
consistent radar reflection over time, they could be monitored by InSAR. A global
map is provided to indicate the sensitivity of InSAR to assess downslope deforma-
tion on any particular slope. To quickly assess the presence of coherent scatterers,
before further investigation, we developed an application in Google Earth Engine
to estimate the presence and location of coherent scatterers on a slope. However,
the current accuracy and temporal resolution of Sentinel-1 SAR acquisitions proved
insufficient to identify the acceleration phases at Vogelsberg.

The five years of daily deformation and hydro-meteorological observations at the
Vogelsberg landslide is quite limited for a machine learning model. Therefore, a
nowcasting model of low complexity was required. To limit the number of param-
eters to be optimized, the model was designed to mimic a bucket model, a simple
hydrological model. A shallow neural network based on long short-term memory,
was implemented in TensorFlow, as custom sequence of existing building blocks.
Furthermore, a traditional neural network and recurrent neural network were tested
for comparison. Thanks to the limited complexity of the model, the major contrib-
utors could be determined by trial-and-error of nearly 150 000 model variations.

Models including soil moisture information are more likely to generate high quality
nowcasts, followed by models based solely on precipitation or snowmelt. Although
none of the shallow neural network configurations produced a convincing nowcast
deformation, they provide important context for future attempts. The machine
learning model was poorly constrained as only five years of observations were avail-
able in combination with the four acceleration events that occurred in these five
years. Furthermore, standard error metrics, like mean squared error, are unsuitable
for model optimization for landslide nowcasting.

We showed that landslide deformation nowcasting is not a straightforward applica-
tion of machine learning. The complexity of the machine learning model formulation
at the Vogelsberg illustrates the necessity of expert judgement in the design and
evaluation of a data-driven nowcast of slowly deforming slopes. Furthermore, to
prepare for unexpected modelling developments, a high level of project level data
organisation is recommended. There is a long road ahead for the large scale imple-
mentation of machine learning in landslide nowcasting and Early Warning Systems.
However, a future, successful nowcasting system will require a simple, robust model
and frequent, high quality and event-rich data to train upon.



Samenvatting

Aardverschuivingen vormen een niet te verwaarlozen gevaar in heuvel- en bergachtig
gebied. Dit proefschrift richt zich op langzame, diepe aardverschuivingen die worden
gekenmerkt door continue, niet catastrofale deformatie van de helling met snelheden
van millimeters tot decimeters per jaar. Dit type aardverschuiving is wereldwijd
verantwoordelijk voor grote economische schade. Risico-inschatting en mitigatie-
maatregelen vereisen gedegen kennis van de processen die aan de hellinginstabiliteit
ten grondslag liggen. Voor hellingen waar mitigatiemaatregelen onmogelijk zijn, is
een waarschuwingssysteem op basis van voorspelling van het deformatiegedrag een
alternatief.

Recent lieten verschillende studies casestudy’s de toepassing zien van zelflerende
algoritmen voor deformatievoorspellingen op langzame, reactiverende aardverschui-
vingen. Een combinatie van satelliet-aardobservaties en zelflerende algoritmen zou
het mogelijk maken om grootschalig, zonder tijdrovend en kostbaar veldwerk, defor-
matievoorspellingen voor reactiverende aardverschuivingen te doen. Om de moge-
lijkheden voor een dergelijk systeem te onderzoeken ontwikkelden wij een zelflerend
computermodel voor de Vogelsberg aardverschuiving nabij Innsbruck, Oostenrijk.
Het doel van deze studie was deformatie voor de volgende vier dagen te voorspellen.

Veranderingen in de waterbalans van een helling beinvloeden de balans tussen de
schuifsterkte en de zwaartekracht. De aan de waterbalans gerelateerde variabelen
neerslag, smeltwater, bodemvocht en verdamping zijn belangrijke indicatoren zijn
voor veranderingen in de deformatiesnelheid van een aardverschuiving. Voor dit
onderzoek gebruikten wij waar mogelijk tijdreeksen van de omstandigheden op de
helling, verkregen met satellietaardobservatie. Zover geen satellietobservaties be-
schikbaar waren, is gebruikgemaakt van andere bronnen om zulke observaties te
simuleren. Een tachymeter aan de overzijde van de vallei mat dagelijks de deforma-
tie van Vogelsberg, het resultaat van hellinginstabiliteit.

Satelliet-radar-interferometrie (InSAR) is een beproefde bron van satelliet deforma-
tiemetingen. Vanwege de complexe interactie met de topografie in bergachtig terrein
is het succes van een InSAR deformatieanalyse vooraf moeilijk in te schatten. Voor

Een verkorte versie van deze samenvatting is eerder gepubliceerd als: van Natijne, A., Linden-
bergh, R., and Bogaard, T. (2023). Challenges for satellite-based deep-seated landslide nowcasting.
EGU General Assembly 2023, Vienna, 23-28 Apr 2023, EGU23-14398.
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elke helling op aarde berekenden wij de sensitiviteit van de InSAR techniek voor
aardverschuivingsdeformatie. Hiermee toonden wij aan dat op 91% van de hellingen
wereldwijd topografie niet de belemmerende factor zal zijn voor InSAR deformatie-
metingen. Voor succesvolle toepassing van InSAR zijn natuurlijke of kunstmatige
objecten nodig met een duurzame, coherente radar reflectie. Een op Google Earth
Engine gebaseerde applicatie helpt gebruikers zulke objecten vooraf te identificeren.
De nauwkeurigheid en opnamefrequentie van de Sentinel-1 radar satellieten bleken
onvoldoende om de bewegingen van Vogelsberg te analyseren.

Van Vogelsberg is een vijf jarige tijdreeks van deformatiemetingen en omgevings-
condities beschikbaar. Voor zelflerende modellen is dit een korte referentietijdreeks.
Daarom is een eenvoudig model met een beperkt aantal parameters nodig. Wij
kozen voor een model dat sterke gelijkenissen vertoont met een eenvoudige water-
balans. Het ondiepe neurale netwerk model van long short-term memory neuronen
functioneert als een empirische waterbalans en is opgebouwd uit standaardelementen
van de TensorFlow programmabibliotheek. Ter vergelijking zijn ook een traditioneel
neuraal netwerk en een recurrent neuraal netwerk getest. 150 000 model variaties
leidden proefondervindelijk tot de belangrijkste modelparameters.

Modellen die gebruikmaakten van bodemvocht voorspelden de deformatiesnelheid
het best, gevolgd door modellen uitsluitend gebaseerd op neerslag of smeltwater.
Hoewel geen van de modellen een overtuigende voorspelling van de deformatiesnel-
heid produceerde, vormen zij toch een belangrijke basis voor toekomstige studies
naar voorspelling van het gedrag van aardverschuivingen op basis van zelflerende al-
goritmen. De beschikbaarheid van een tijdreeks van slechts vijf jaar aan observaties
waarin de aardverschuiving vier maal versnelde, blijkt onvoldoende voor een zelfle-
rend model. Daarnaast is de veelgebruikte kwadratische gemiddelde fout (mean
squared error) van het modelresultaat ongeschikt voor het beoordelen van voorspel-
lingen van deformatiesnelheid.

Deze studie toont aan dat het voorspellen van de deformatiesnelheid van aardver-
schuivingen met zelflerende algoritmen niet eenvoudig is. Hydrologische expertise
bleek onmisbaar bij het opstellen van het model voor Vogelsberg en bij de beoor-
deling van de kwaliteit van het model. Daarnaast verdient het de aanbeveling te
investeren in opslag en toegankelijkheid van de voor een dergelijk model vereiste ge-
gevens. Er is nog een weg te gaan voor zelflerende modellen van aardverschuivingen
een bijdrage zullen kunnen leveren aan de ontwikkeling van deformatiewaarschu-
wingssystemen. Een succesvol systeem bestaat uit een robuust, eenvoudig model en
is gebaseerd op uitgebreide, rijke, en accurate tijdreeksen van historisch deformatie-
gedrag en omstandigheden van de betreffende aardverschuiving.



Chapter 1

Introduction

Landslides are a major geohazard in hilly and mountainous environments. To the
broader public, landslides are best known for their videos of large, catastrophic
collapsing slopes, that make it into news broadcasts multiple times per year. Not as
well known as their collapsing counterparts, are slow-moving, deep-seated landslides,
which are expected to make up for 50% of all landslides globally (Herrera et al.,
2018; Novellino et al., 2021), and are abundant in the European Alps (Crosta et al.,
2013). Deep-seated landslides are typically not deadly, but their continuous, slow
deformation causes extensive, costly damage to settlements and infrastructure on
the slope (Mansour et al., 2011).

A slope may be susceptible to instability, due to pre-disposing factors such as un-
favourable lithology. Landslide hazard is triggered by non-standard conditions that
cause instability, such as prolonged or extreme precipitation. The people or assets
vulnerable to the hazard, are at risk. Interference with either the hazard or vul-
nerability, will mitigate the landslide risk. Hazard mitigation is accomplished by
various structures, intended to reduce susceptibility, divert the triggering factors, or
protection of the elements at risk due to the landslide process. Traditionally these
structures were built using local materials, over time many of these structures have
been replaced by ‘gray’, concrete solutions.

1.1 OPERANDUM project

Recently, renewed attention has been given to so-called Nature-Based Solutions
(NBS): working with nature, instead of against, to mitigate natural hazards (Nesshéver
et al., 2017). The OPERANDUM project, that this work was part of, aims to provide

a “solid basis for the formulation, implementation and monitoring of NBS related
EU policies” regarding various hydro-meteorological hazards, including landslides
(OPERANDUM, 2017).
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Figure 1.1: Overview of the Vogelsberg landslide from the automated total station
(Figure 1.2), located in Wattenberg, opposite to Vogelsberg. (October 2018)

The OPERANDUM project covers aspects of NBS across the relevant disciplines nec-
essary for successful deployment of NBS, from socio-economic impact to engineering
(Anderson et al., 2022). To implement any solution, gray or green, a thorough un-
derstanding of the hazard is necessary for an effective application. To assess the
effectiveness of the solution, monitoring is required before and after implementa-
tion. Furthermore, to simplify future applications, it is required to advance our
understanding of the system and to design efficient monitoring solutions.

Within the OPERANDUM project there are ten Open Air Laboratories (OALS) cov-
ering different hydro-meteorological hazards. There are two OALs concerning land-
slides: Catterline Bay, near Aberdeen, United Kingdom and the Vogelsberg land-
slide, near Innsbruck, Austria. These sites had already been closely monitored
before the start of the project in 2018. During the project an NBS was designed
and implemented at each of the OALs.

This thesis notably focuses on the Vogelsberg deep-seated landslide (Figure 1.1),
located in the Wattens basin, near Innsbruck, Austria. Parallel to our work, the
Austrian Academy of Sciences (OAW) analysed the hydrology and deformation be-
haviour of the Vogelsberg landslide in the field. They planned and implemented
an NBS experiment, and provided us with local knowledge of Vogelsberg and its
surroundings.

The active part of the landslide is only about 0.2km? and is covered by pasture
fields, sparse forests and few houses and farm buildings. In 2016 an Automated
Total Station (ATS) for slope displacement monitoring was installed in Wattenberg,
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Figure 1.2: Left: the automated total station for geodetic monitoring and its protec-
tive housing in Wattenberg, opposite to Végelsberg (see Figure 1.1), with the author
for scale. Right: campaign based laser scanning of the deformation at the Vogels-
berg landslide. A technique also applied elsewhere by the Austrian team (Pfeiffer
et al., 2018, 2019). Not shown are the unmanned aerial laser scanning campaigns
(Zieher et al., 2019). (Images courtesy of Roderik Lindenbergh, October 2018.)
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Figure 1.3: Landslide deformation rate at one of the benchmarks, as observed by
the automated total station.
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Figure 1.4: Damage to a house (left) and infrastructure (right) in Vogelsberg due
to slope movement. (left: image courtesy of Thomas Zieher, right: image by the
author, October 2018)
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opposite to Vogelsberg (Figure 1.2), that surveyed a total of fifty-three benchmarks
in and around Vogelsberg every hour. The total station measured displacement
rates up to 10 ecm/year during periods of accelerated deformation, with continuous,
gradual deformation, of around 3 cm/year the rest of the time (Figure 1.3). The
deformation causes extensive damage to the houses and infrastructure on the slope,
as shown in Figure 1.4.

Studies on the hydrology and geomechanical processes were conducted by Pfeiffer et
al. (2021, 2022). The deformation of the Vogelsberg landslide is a complex response
to the hydro-meteorological conditions in the catchment, in particular precipitation
and (delayed) infiltration from snowmelt. A nearby weather station reports an
average yearly precipitation of 896 mm, of which 13% is in the form of snow. The
shear zone, i.e. the transition between stable and deforming soil, was identified via
inclinometer measurements to be at 43-51 m below the surface, although strongly
disintegrated soil up to 52-70m deep indicates a long history of activity (Pfeiffer
et al., 2021). A delay of 20-60 days between rainfall and landslide acceleration and
a 0-8 day time lag between snowmelt and acceleration was found by Pfeiffer et al.
(2021).

1.2 Landslide early warning systems

Using susceptibility analysis, experts have successfully identified areas prone to land-
slide hazard (Chacén et al., 2006; Reichenbach et al., 2018). However, most work is
dedicated to catastrophic, shallow landslides triggered by excessive rainfall or seis-
mic activity. Furthermore, to assess the hazard and potential of mitigation solutions,
details on the type and frequency of the trigger should be included. Monitoring is
the key to such understanding and enables us to assess the interaction between the
landslide and its surroundings.

Where landslide hazard mitigation is impossible, monitoring and early warning sys-
tems are a valuable alternative to reduce landslide risk. An early warning system
leaves the underlying hazard unchanged (OPERANDUM, 2017), but reduces the land-
slide risk by increased awareness. Regional landslide early warning systems are
commonly based on binary precipitation thresholds, and are mainly applicable to
shallow landslides. In contrast, local early warning systems, are typically based
on extrapolation of ongoing deformation measured by in-situ sensors to trigger a
warning for a single slope (Intrieri et al., 2019). Current regional and local early
warning systems do not provide the information required for the planning of miti-
gation measures.

The effective application of an early warning system, however, carries implicit un-
derstanding of the factors of influence to slope instability. Therefore, the imple-
mentation of an early warning system is a first step towards mitigation measures.
Planning of mitigation solutions requires a detailed model, that links the conditions
on the slope to the deformation pattern. Such systems are often difficult to imple-
ment at regional scale or in remote areas due to dependency on fieldwork as well as
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local sensors.

Traditional, physics based landslide models require laborious fieldwork, local mon-
itoring and case study specific modelling work. These manual methods are case
study specific, and are limited by availability of experts. Recent advances in data
integration (i.e., machine-learning), have shown success in predicting a variety of
processes from underlying conditions. Furthermore, satellite remote sensing may
provide information on the conditions at the slope, without local presence.

Various, recent, studies have demonstrated the effective application of machine
learning for deformation forecasting of slow-moving, non-catastrophic, deep-seated
landslides. Early warning systems based on short-term forecasting, also known as
nowcasting, estimate the deformation pattern from the conditions on the slope.
Therefore, we believe a combination of these techniques may be used to link con-
ditions on the slope to the deformation of a deep-seated landslide, as illustrated in
Figure 1.5.

Our goal is to demonstrate this link between conditions on the slope and the defor-
mation pattern, by short-term forecasting the deformation multiple days ahead of
time. The continuous deformation of a deep-seated landslide may be used in a cycle
of prediction, monitoring and optimisation of a machine learning based model. The
well monitored Vogelsberg landslide enables us to test various model configurations
based on combinations of local, remote sensing and modelled data sources. The
landslide specific knowledge present within the project enables us to explore a range
of models from completely ‘naive’ to ‘physics inspired’.

1.3 Research objective

Recent developments, both in satellite remote sensing and machine learning, have
opened up possibilities for detailed landslide nowcasting: linking the conditions on
the slope to landslide deformation. Therefore, the objective of this project is:

To create a system for nowcasting of
landslide deformation at Vogelsberg
based on readily available remote sensing data
using machine learning techniques.

The nowcasting system will continuously estimate the current state of the sys-
tem and associated deformation rate in the near future. The system is based on
machine learning with none or limited physical modelling of the landslide pro-
cess. The dynamics of the system are inferred from the deformation observations
and the system is trained and validated on the progressive, gradual deformation of
the landslide. Readily available data from satellite remote sensing sources will
be used. The Vogelsberg landslide will be the primary testing location for the
implementation of the nowcasting technique.
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Precipitation ~ ~ t Snow height ~t Run-off r g

Storage

Validation and
incremental learning
from monitoring
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Figure 1.5: Sketch of the modelling concept. From top to bottom: the hydro-meteorological conditions on the slope; the
pre-disposing factors and model; and the deformation predictions and observations. The hydro-meteorological conditions,
shown on the top, as point observations and gridded data products, may be combined into a storage model or directly fed to
the machine learning model. A magicians hat (center), the machine learning algorithm, integrates the various data sources to
a deformation nowcast. The nowcast is validated against the measured deformation.
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1.4 Research questions

The goal forms both an engineering and scientific challenge. Data integration of long,
high-resolution time series is a ‘big-data’ engineering-challenge, while the scientific
challenge is in the nowcasting algorithm design. This leads to the main research
question:

To what extent can
data-driven machine learning techniques
be used for landslide deformation nowcasting
at deep-seated landslides?

Guiding in the process will be the following sub-questions:

. What are the requirements for a deep-seated landslide deformation now-
casting system?

Deep-seated landslides, unlike shallow landslides, typically exhibit continuous de-
formation, with intermittent accelerations that rarely lead to collapse. Therefore,
their monitoring requirements are different from those for shallow landslides. Fur-
thermore, accelerated deformation is expected to be a delayed rather than immediate
response to hydro-meteorological conditions.

Landslide deformation nowcasting carries the potential for the integration into a
landslide early warning system. Depending on the intended use and target audience,
different requirements may apply to the deformation nowcasting system. What are
the necessities for an operational system, of which the design could extend to an
early warning system?

. What data and model(s) may drive such a nowcasting system?

Monitoring systems, based on the interpretation of current and recent deformation
(e.g. Carla et al., 2017), may only be used to detect already ongoing acceleration. To
predict acceleration in advance, acceleration should be predicted from the conditions
of the slope. However, the deformation behaviour of slow, deep-seated landslides is
considered extremely difficult to model (Van Asch et al., 2007).

Machine learning techniques are known be able to unravel the complexities of natural
processes. Neural networks, for example, are universal approximators (Hornik et al.,
1989), i.e. they may be used to approximate any signal from another, related signal.
This broad category of models offers many model variations to link conditions on
the slope to deformation.

A major challenge is to map the high frequency changes in the hydro-meteorological
conditions to the slow acceleration/stabilisation due to the inertia of the slope. To
minimize the model’s complexity, we explore methods with some resemblance to the
hydrological processes within the landslide.

e What conditions influence the landslide deformation, and are they observable
from the surface?



8 CHAPTER 1. INTRODUCTION

e What are the properties of the models used in the state-of-the-art?
3. What satellite based landslide deformation observations are available?

Deformation is the primary indicator of mass movement, and the quantity to be
predicted. Therefore, deformation measurements are necessary for the training and
validation of the model. Local, in-situ monitoring systems have proven to be effective
to model a variety of (local) deformation patterns. However, such measurements
are sparse, costly and can only be acquired after installation of the measurement
device. Satellite deformation measurements could provide an alternative to in-situ
observations with their regional coverage.

4. What remote sensing data sources are available?

Satellite observations provide global, repeat observations of the conditions and trig-
gers of accelerated deformation. What data is available or anticipated, and with
what quality and frequency? In the last decades satellite observations have in-
creased in quantity, shortening the time between subsequent acquisitions, as well as
increasing the number of variables observed (Belward and Skgien, 2015). Therefore,
satellite observations carry the potential to power universal landslide deformation
nowcasting systems.

5. How to implement a machine learning based deep-seated landslide model?

The final model should be computationally efficient enough to allow for many model
configurations to be tested. This is an implicit limit on the complexity of the model,
although many performance optimizations are provided by popular machine learning
software toolboxes. To verify the effectiveness of the nowcast, the performance of
the resulting nowcast should be quantified, and a performance metric has to be
chosen. This metric may also be used to quantify the performance of the model in
the absence or presence of specific observations.

e How to quantify the quality of the nowcasting solution?

e How to quantify the relative importance of the data sources to the result of
the nowcasting system?

What are the major contributing variables to a landslide deformation nowcast?

e How many observations/events are necessary to develop the nowcasting sys-
tem?

6. What do the insights obtained at the Vogelsberg tell us on the general
applicability of machine learning based landslide deformation nowcasting
models?

Although well monitored, the Vigelsberg landslide is a complex system, and there-
fore not a straightforward test case. What is the ideal slope to further develop
a machine learning based nowcasting method, working from the challenges faced
during application at Vogelsberg? Deformation nowcasting will be a necessity for
regional or even continental landslide monitoring and early warning systems. What
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are the necessities for scaling the methodology to a regional solution? Finally, what
new possibilities will the continued development of the (satellite) data products
offer?

1.5 Scope and limitations

Our algorithm design and experiments are focused on deformation nowcasting at
the Vogelsberg landslide. The work by Pfeiffer et al. (2021, 2022) provided guid-
ance in particularities of this specific landslide. However, where possible, we have
attempted to extend our conclusions and recommendations to deep-seated landslide
nowcasting of other slopes. No physics based modelling is applied, although the
machine learning algorithms show resemblance to well-known modelling methods.

The triggering factors considered in this research are limited to hydro-meteoro-
logical conditions and will be broader applicable. Where possible remote sensing
data sources were used, next to existing monitoring infrastructure in the field (i.e.
an automated total station) and re-analysis data sets. The remote sensing data
acquisition is out of scope, and available data products are treated ‘as-is’ with little
modification. Their acquisition, processing and data dissemination strategy are not
part of this research.

For research purposes an operational setting is simulated, and re-live data integra-
tion is considered to be equal to nowcasting. This retrospective approach enabled
us to assess the system performance in the absence of operational remote sensing
products.

Seismic activity, that may trigger instability, is not considered.

1.6 Outline

This introduction briefly described the motivation, background and objective of
this research. The questions outlined in §1.4 find their answers in Chapters 2, and 3
and iterate towards a machine learning based nowcasting system for deep-seated
landslides for the Vogelsberg deep-seated landslide, as covered in Chapter 4.

Chapter 2 elaborates on the basic system design shown in Figure 1.5. It provides
a literature review on the state-of-the-art, and promising machine learning
techniques for landslide deformation nowcasting. Furthermore, it provides a
comprehensive overview of available remote sensing sources.

Chapter 3 focuses on Interferometric Synthetic Aperture Radar (InSAR), that
has the potential to provide frequent, (near) global deformation estimates.
However, mountainous topography is known to complicate acquisition and
extraction of deformation time series. The method developed and presented in
Chapter 3 provides a worldwide a-priori estimate on the sensitivity of InSAR
deformation estimates to downslope deformation. Furthermore, we explore
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the possibility to a-priori estimate the availability of InSAR, deformation time
series.

Chapter 4 describes the landslide deformation nowcasting models developed for
the Vogelsberg landslide. The selected machine learning models are tested
for their performance as deformation nowcasting system, and the best model
settings are identified by extensive testing. Moreover, this chapter contains
recommendations for the future implementation of similar models.

Chapter 5 combines the lessons learned and road ahead for data-driven modelling
of landslides and slope processes as a whole. Special attention is paid to the
challenges regarding data ingestion and processing, challenges that are shared
by many projects around remote sensing data.

Chapter 6 provides concluding remarks and recommendations for future studies
into landslide deformation nowcasting systems.

An integrated bibliography of all chapters is provided at the end of this thesis.



Chapter 2

Machine learning: new
potential for deep-seated
landslide nowcasting

Published previously as: van Natijne, A. L., Lindenbergh, R. C., Bogaard, T. A.,
2020. Machine Learning: new potential for local and regional deep-seated landslide
nowcasting. Sensors, 20(5), 1425. https://doi.org/10.3390/520051425.

Abstract

Nowecasting and early warning systems for landslide hazards have been implemented
mostly at the slope or catchment scale. These systems are often difficult to imple-
ment at regional scale or in remote areas. Machine Learning and satellite remote
sensing products offer new opportunities for both local and regional monitoring
of deep-seated landslide deformation and associated processes. Here, we list the
key variables of the landslide process and the associated satellite remote sensing
products, as well as the available machine learning algorithms and their current
use in the field. Furthermore, we discuss both the challenges for the integration in
an early warning system, and the risks and opportunities arising from the limited
physical constraints in machine learning. This review shows that data products and
algorithms are available, and that the technology is ready to be tested for regional
applications.

2.1 Introduction

Landslides are a major hazard to human life and society, killing over 55,000 people
over the period of 2004-2016 (Froude and Petley, 2018), and causing an estimated
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average economic loss of € 4.7 billion per year in Europe alone (Haque et al., 2016).
To protect the public, landslides have been a major research topic for the last
few decades, strengthened by recent commitments such as the Sendai agreement
for disaster risk reduction and the ‘Kyoto 2020 commitment’ to reduce landslide
disaster risk (International Consortium on Landslides, 2019; Sassa, 2019).

New data and data integration methods offer new possibilities for landslide forecast-
ing, especially for slow-moving, deep-seated landslides. Here, we provide a perspec-
tive on the possibilities, applications, and challenges of both local and regional defor-
mation nowcasting and its inclusion in early warning systems. A nowcast describes
the current, estimated system state, and provides an outlook on the coming days.

We focus on slow moving, deep-seated landslides on natural slopes, for which de-
formation is controlled by hydro-meteorological conditions. These landslides are
characterized by gradual, non-catastrophic deformations of millimeters to decime-
ters per year and can be monitored and modeled over at least multiple years. They
are considered to be in a state of so-called limit-equilibrium undergoing continuous
deformation, but may accelerate or stabilize when conditions change (Intrieri et al.,
2018).

Landslide geologists have compiled local, spatial landslide susceptibility maps since
the 1970s (Brabb et al., 1972; Dobrovolny, 1971; Radbruch and Crowther, 1970).
Such maps delineate landslide-prone areas based on historic landslides and expert
analysis of landscape properties. However, susceptibility maps only indicate where
a landslide may occur without a specific time frame (Fell et al., 2008). Advances
in geospatial data acquisition and processing in the last 50 years have greatly influ-
enced the field. Current, quantitative, regional (Wilde et al., 2018; Giinther et al.,
2014) and global (Stanley and Kirschbaum, 2017; Nadim et al., 2006) susceptibility
maps are based on statistics rather than expert judgement alone and use historical
landslide events for calibration/training.

Extensive reviews have been written on the state-of-the-art in susceptibility map-
ping, either summarising the methods available or making quantitative analyses of
the classification process (Intrieri et al., 2019; Reichenbach et al., 2018; Chae et al.,
2017; Budimir et al., 2015; Kanungo et al., 2009; Delacourt et al., 2007; Chacén et
al., 2006; Brenning, 2005; Huabin et al., 2005). However, whereas static suscepti-
bility maps have proven their value for spatial planning, when monitoring landslide
stability, both for single landslides as well as on a regional scale, time dependency
cannot be neglected (van Westen et al., 2008).

In practice, most shallow landslides are triggered by extreme precipitation events
(Kirschbaum et al., 2015), or by a combination of hydro-meteorological events. How-
ever, failure modes for fast-moving landslides are not applicable to deep-seated land-
slides and statistical relationships —for example, the intensity-duration thresholds
for precipitation do not offer sufficient predictive power (Bogaard and Greco, 2018).
Although seismic events can not be neglected as a trigger, earthquakes are a different
triggering mechanism that is explicitly not considered here. Moreover, earthquakes
with a magnitude lower than 4.0-5.5 are less likely to trigger a landslide (Rodriguez
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et al., 1999; Keefer, 1984).

Sliding behaviour is governed by the balance of forces within the landslide, that is,
the relation of the shear strength of the soil to the shear (sliding) force applied by
the gravitational forces acting on the landmass. Changes in hydrology change the
balance between these forces (Bogaard and Greco, 2015). Therefore, infiltration of
rain, or delayed infiltration from snow melt, and the subsequent rise of the pore
water pressure shift the balance of forces as the increased pore pressure weakens
the soil.

As a major result of the landslide process, displacement is a key parameter to cap-
ture the interaction between landslide deformation and hydro-meteorological con-
ditions—the relation between soil moisture and increased deformation has been
observed in the field (Benoit et al., 2015; Tofani et al., 2013a). Studies focused on
the progressive deformation of individual landslides have appeared in recent years,
connecting deformation to the conditions on the slope (e.g., Du et al., 2013, Ta-
ble 4). These studies claim good results in predicting landslide deformation based
on hydro-meteorological conditions using machine learning algorithms and limited
geomechanical modelling.

Machine learning offers new possibilities to bypass the microscale physics of the
landslide, estimating the behaviour based on large data sets of previous responses
to hydro-meteorological conditions as an intermediate step between passive moni-
toring and extensive (numerical) modelling of the landslide. This is done either by
incorporating physics, such as the groundwater level, in the statistical model (Wei et
al., 2019; Krkac et al., 2017) or by estimating the deformation rate of the landslide
directly based on the hydro-meteorological time series. Although there is no strict
link between data availability and predictive capacity (Corominas et al., 2013), such
an approach has been proven to work at the landslide scale, such as by the examples
discussed in Section 2.3.

At the advent of both local and regional landslide nowcasting, data availability is
more important than ever, especially data that can be used for training of new
machine learning algorithms. Their spatial properties and significance in the land-
slide process, as well as their temporal availability and suitability for automated
data integration should be taken into account.

In this paper, we highlight the opportunities of machine learning using static and
dynamic remotely sensed data sources for monitoring and nowcasting of deep-seated
landslides. The overarching aim is to arrive at a near real-time, machine learning-
based, local and regional early warning system for precipitation-initiated accelera-
tion of slowly deforming slopes. Hereto, we will discuss conditional data sources,
and dynamic causal and triggering factors. Then, we will discuss various machine
learning algorithms from landslide literature. The paper finally discusses the current
limitations and challenges, as well as the potential of combining local near real-time
ground sensed data with the remotely sensed data.
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Table 2.1: Key variables in the landslide process that can be acquired from satel-
lite observations.

Variable Role

Slope Pre-disposing  Static
Geology Pre-disposing ~ Static
Soil moisture  Causal Dynamic
Precipitation = Trigger Dynamic
Snow (melt)  Trigger Dynamic
Land use Causal Dynamic
Deformation  Result Dynamic

2.2 Monitoring opportunities for slow-moving deep-
seated landslides

Landslides are “the movement of a mass of rock, debris, or earth (soil) down a slope”
(Cruden, 1991; Fell et al., 2008). Pre-disposing factors are essential for a landslide
to form and have been integrated in susceptibility maps in the past. However,
the landscape is stable most of the time. Leading up to a landslide are causal and
triggering factors—these first allow the landslide to happen, making it sensitive to
triggering factors that initiate the movement.

The deformation of the landslide is an indicator of stress at the sliding plane, which
is often impossible to measure directly. For landslides in limit-equilibrium, the bal-
ance of forces can be approximated by the Mohr—Coulomb failure criterion (Terza-
ghi, 1943) under the assumption of a single sliding plane. Moreover, past landslide
events are indicative of future behaviour, and similar landslides will exert similar
behaviour in similar situations (Fell et al., 2008; Guzzetti et al., 1999). Further-
more, the behaviour of continuous, slow-moving, non-catastrophic landslides can be
followed over longer periods of time (Intrieri et al., 2019).

Working from the various reviews of susceptibility maps (Reichenbach et al., 2018;
Budimir et al., 2015), a list of key variables that can be acquired from satellite
observations is shown in Table 2.1. Slope, and related properties of aspect and
curvature, are typically identified as primary conditioning factors for landslides: no
slope, no landslide. In most susceptibility analyses, dynamic triggering factors like
precipitation or snow melt are not included, but should be included in a landslide
nowcasting solution. Toe erosion—either gradual by water or sudden by building
activity—is often captured in land use. However, local situations may require extra
variables to be added, such as reservoir water level (Li et al., 2018), or ground
temperature for freeze—thaw effects.

The systematic, often global, availability of satellite remote sensing data sources is
a valuable addition to local (field) surveys and monitoring, where data availability
is dependent on commissioning by local authorities. Furthermore, it allows for
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measurements in harsh environments that are not easily accessible. Here, we list
potential information sources for each variable identified in Table 2.1.

2.2.1 Regional topography

As gravity is the driving force behind any landslide, a slope is a requirement for
landslide deformation. Local slope, aspect, and curvature are derived from glob-
ally available satellite digital elevation models, such as SRTM (Farr et al., 2007);
ALOS (Japan Aerospace Exploration Agency, Earth Observation Research Center,
2019; Tadono et al., 2014); TanDEM-X DEM (Rizzoli et al., 2017) or ASTER-
GDEM (Tachikawa et al., 2011). Typically, the resolution of such products is 30-90
meters. Regional products, mostly acquired from airborne platforms, often have
a resolution of 0.5-10 meters. A coarse resolution may hide small terrain features
and will typically attenuate slope estimates (Grohmann, 2015; Erskine et al., 2007;
Zhou and Liu, 2004), where on the contrary, a coarse elevation discretization may
introduce false, sharp gradients (Thompson et al., 2001).

The best elevation model for landslide characterisation is not necessarily the most
accurate in the traditional sense. Errors in referenced specification documents are
often listed as absolute errors, while the local error, relative to the direct vicinity,
is much more relevant for the calculation of derivatives, such as slope. The quality
of elevation models is debated in literature, often by intercomparison of different
products (Grohmann, 2018; Nascetti et al., 2017; Frey and Paul, 2012; Hirt et al.,
2010; Hayakawa et al., 2008; Bolch et al., 2005) or comparison to a different mea-
surement, such as GPS (Suwandana et al., 2012) or levelling (Hirt et al., 2010).
Slopes, which are dominant in mountainous terrains, particularly have an effect
on the accuracy of the elevation model (Szabé et al., 2015). Although acquisition
dates vary, if topography is assumed to be stable, different sources can be combined.
For example, MERIT (Yamazaki et al., 2017), NASADEM (Crippen et al., 2016),
EarthEnv-DEM90 (Robinson et al., 2014), and VFP (de Ferranti, 2014) elevation
models are fusion products, combining data from multiple elevation data products.

2.2.2 Regional geology and lithology

In the context of deep-seated landslide nowcasting, the geology can be considered
static. However, not all lithologic types are equally susceptible to landslides. The
OneGeology project serves as an integrator between various local maps and pro-
vides interfaces for public use to access these maps at a global scale. Global maps,
such as the FAO-UNESCO “Digital Soil Map of the World” (Sanchez et al., 2009)
or “ISLSCP II Global Gridded Soil Characteristics” (Scholes et al., 2011), or dedi-
cated maps, such as the lithological layer of the “International Hydrogeological Map
of Europe” (IHME) (Duscher et al., 2015), provide information on the uppermost
water-bearing layer and matches the hydrological focus of landslide research. Reso-
lutions are up to 100 m, which therefore covers mainly large-scale geologic features.
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2.2.3 Hydro-meteorology

Complete reviews of satellite precipitation data sets were given by Satgé et al. (2020)
and Beck et al. (2017, 2019), each reviewing over 20 precipitation data sets of which
half publish data within days. Both reviews conclude the best-performing data
product is MSWEP, followed by IMERG. In the context of landslide nowcasting,
only products with short availability are interesting: the product has to be available
hours, or at maximum, a few days after the measurement, and should be open for
integration. Products reported to have these properties are listed in Table 2.2. The
average spatial resolution is approximately 12 km.

Antecedent water content, soil saturation, and pore pressure play key roles in land-
slide instability (Bogaard and Greco, 2018, 2015; van Asch et al., 1999), and local
soil moisture content can be a precursor of landslide instability (Thomas et al.,
2019; Mirus et al., 2018). Even though soil moisture measurements from space are
still limited in resolution and depth, satellite soil moisture information may help
constrain the nowcast (Marino et al., 2020).

A bucket or tank model can be used to estimate the ground water level from indirect
measurements, such as precipitation, transpiration estimates, and run-off measure-
ments (Nie et al., 2017; Ponziani et al., 2012; Godt et al., 2006; Glade, 2000).
Run-off of small streams cannot be measured by satellites, and requires in situ or
close-range measurements, while the other parameters can be estimated (Novék,
2012). This approximation is never perfect, but allows for an indirect estimate of
groundwater from surface processes. The groundwater level is then used to estimate
the pore pressure, which is related to the stability of the landslide (Nie et al., 2017;
Malet et al., 2005). Furthermore, it filters the high-frequency precipitation signal
to low-frequency changes in groundwater.

2.2.4 Land use

Land use has an influence on the infiltration of precipitation and the evapotranspi-
ration loss of water, and therefore, is of influence to the hydrological cycle. Further-
more, artificial slopes are an alteration of the natural balance and are more suscep-
tible to landslides (Le and Kawagoe, 2018). Therefore, a combination of vegetation
and topographic maps is required to assess the influence on the hydrological cycle.

OpenStreetMap provides a global coverage of the human presence in a unified way
in large parts of the world on the scale of individual roads (Barrington-Leigh and
Millard-Ball, 2017). The large-scale CORINE Land Cover (CLC) map provides in-
formation on both anthropogenic settlements as well as crude vegetation information
at 100m resolution (Bossard et al., 2000). The JAXA ALOS forest map (Shimada
et al., 2014), as well as the ‘Global Forest Change’ product by Hansen et al. (2013)
focuses on forest cover only. Even larger-scale information on unmapped human
settlements can be obtained from satellite observations of night light (Elvidge et al.,
1999, 1997).

Unfortunately, land use information extracted from maps is limited by the update
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frequency. CORINE;, for example, is updated every six years. Information extracted
directly from satellite imagery is less prone to such delay, and enables the detection
of land use changes and associated changes in the water balance. Satellite imagery
can be used directly to monitor for extreme changes, such as forest fires or building
activity, on a more frequent basis.

2.2.5 Displacement

Sources of deformation measurements are numerous, but often local. Inclinometers,
total station measurements, and GNSS surveys provide on-site information on the
progressive deformation of the landslide. The aforementioned solutions require ac-
cess to the landslide to mount the sensors or benchmarks. Alternative solutions
include ground-based InSAR (GB-InSAR) (Zhou et al., 2019; Corsini et al., 2006;
Leva et al., 2003) and LiDAR surveys (Prokop and Panholzer, 2009; Huang et al.,
2019; Zieher et al., 2019, reviewed by Jaboyedoff et al. (2012)), that require no ac-
cess to the landslide itself, but can be operated from anywhere with direct visibility
on the landslide. Therefore, the system can be used as emergency intervention too
(Antonello et al., 2004). However, especially continuous surveys require installation
on-site. Measurements can only begin after installation, after sliding behaviour has
been detected. Campaign-based measurements provide a limited temporal resolu-
tion, but may be operated without a fixed set-up on site (Zieher et al., 2019).

Satellites are the ideal means for regional repeat surveys without access to the land-
slide or its vicinity. The importance of satellite-based Interferometric Synthetic
Aperature Radar (InSAR) for both local and regional landslide deformation as-
sessments is widely recognized (Colesanti and Wasowski, 2006; Hilley et al., 2004),
and Intrieri et al. (2018) claim: “if InSAR monitoring had been active over this
region, an early warning of imminent failure could have been given”. Especially for
slow-moving landslides, the accurate tracking of ‘persistent scatterers’ (PS-InSAR),
and often buildings or rock faces, provides opportunities for long-term deformation
monitoring. Furthermore, the power of retrospective studies on previously acquired
data is a big advantage over local monitoring solutions. However, constant features,
such as clear rock faces or buildings should be present on the landslide. Moreover,
the direction of sliding should not be parallel to the direction of flight of the satellite,
typically north—south. Deformation in this direction will not be visible in the line
of sight of the radar sensor, perpendicular to the direction of flight. Nevertheless,
even with limited presence of such features, a combination with campaign-based
surveys will still densify the deformation time-series (Carla et al., 2019b; Schlogel
et al., 2017; Ciampalini et al., 2016).

2.3 Machine learning and data assimilation
The integration methods discussed here combine different quantities from differ-

ent measurements into a single, different quantity: the deformation rate. A clear
distinction can be made between either physical or statistical algorithms and qual-
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Table 2.3: The methods of landslide susceptibility or hazard assessment discussed,
and their properties in time and type of analysis. (Map icon derived from Wilde et
al. (2018).)

Method Time Dependency Outcome

Susceptibilit i None, stati litati P O
usceptibility mapping one, static Qualitative N’K‘ \g

Hazard nowcasting Dynamic Qualitative m

Deformation nowcasting Dynamic Quantitative A

itative or quantitative assessments. Physical modelling relies on expert knowledge
of the processes in the landslide and is built on the evaluation of predefined sets of
rules (Kanungo et al., 2009). Statistical methods are based on the assumption that
landslides are more likely to occur in circumstances that led to landslides earlier
(Guzzetti et al., 1999).

The assessment is either qualitative—such as low, moderate, or high hazard—or a
quantitative output, such as deformation rate. The different assessment methods
have been highlighted and illustrated in Table 2.3. The desired output for our ap-
proach is a deformation rate nowcast, estimated based on conditioning and triggering
factors, as mentioned in Table 2.1. However, the existing, successful implementation
of qualitative hazard nowcasting is a starting point for quantitative analysis. From
there, we explore the possibilities of various quantitative algorithms with increasing
computational complexity.

2.3.1 Hazard nowcasting

Kirschbaum and Stanley (2018) set an example for large-scale hazard nowcasting,
and showed that simple rules can provide a qualitative landslide hazard nowcast.
Their nowcast has global coverage and is updated every 30 minutes at a kilome-
ter resolution based on satellite data. Their approach is to estimate susceptibility
first, signaling a landslide hazard when thresholds on antecedent precipitation are
exceeded in areas of high susceptibility. A similar method is used by Posner and
Georgakakos (2016), based on soil moisture instead of precipitation. These systems
do not estimate the system state, and there is no nowcasting of deformation, as they
are a nowcast of susceptibility instead.

Landslide hazard nowcasting and early warning systems are typically trained and
tested on inventories of the time and place of historic, catastrophic landslides. These
landslide inventories are often event inventories, listing collapse events rather than
landslides experiencing continuous and slow deformation. Examples of inventories
are the ‘Global Landslide Catalog’ (Kirschbaum et al., 2010), ‘ELS-DAT’ (Haque
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et al., 2016), and the ‘Global Fatal Landslide Database’ (Froude and Petley, 2018;
Petley et al., 2005). A system focused on continuous deformation patterns cannot
be trained on the events in such inventories. Although shallow landslides are the
primary focus of most large-scale inventories, some local inventories of deep-seated
landslides exist (Riedmann et al., 2014; Damen et al., 2014), or can be deduced
from deformation patterns (Rosi et al., 2018; Cascini et al., 2013; Righini et al.,
2012). Local inventories are still valuable to selectively activate nowcasting systems
in areas with active landslides. While historic information could provide insight in
the conditions leading up to the event, a catastrophic event will change the dynamics
of the slope and previous dynamics may no longer be valid (Guzzetti et al., 1999).

2.3.2 Deformation nowcasting

A more complex approach is to estimate the system state, including the deformation
rate, either by geomechanical modelling or based on statistics of historical deforma-
tion. This last approach of estimating the system state will be the focus of the
methods mentioned here. Typically, solutions strive for the simplest model with the
smallest possible error in the prediction of cumulative deformation or deformation
rate. While more complex models are more likely to fit the data, they introduce the
risk of overfitting the model to the data, thereby reducing the predictive power.

After model selection, as discussed in the following subsections, the process is typi-
cally subdivided into three steps: data preprocessing; training or optimisation, and
application. During preprocessing, all variables are brought to the same reference
frame. Furthermore, preprocessing of the input variables can be used to enhance
the information content of the input, such as by dissecting the signal into various
sub-signals first (Lian et al., 2013). The training or optimisation phase is a com-
putationally intensive phase, where the model parameters are optimised such that
the model approaches the deformation process best. Many combinations of model
and preprocessing and training methods are possible, and final selection may re-
quire multiple models to be tested (Miao et al., 2018). Finally, during application,
the tuned model is run over incoming data to predict the deformation of the land-
slide.

Intrieri et al. (2019) reviewed a large number of data integration methods, and
concluded that no ‘best’ model could be identified due to the lack of comparable case
studies between models. The Baishuihe landslide, at the shores of the Three Georges
Reservoir, China, offers some possibilities for comparison, as multiple methods have
been tested on this landslide by various authors (see Table 2.4). However, the
influence of the reservoir water level on the landslide stability, not commonly present
elsewhere, cannot be neglected and conclusions are therefore not easily transferable
to other landslides.

Direct relation precipitation—deformation

Traditional models, summarised by Bernardie et al. (2015), rely on a direct rela-
tion between precipitation and deformation. Various models exist for this relation,
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where the parameters such as time lag are determined by optimisation on histori-
cal records. However, separate modelling of the hydro-meteorological conditions is
required, as only effective precipitation can be used in the model. Support Vec-
tor Regression (SVR) is a data-driven equivalent of a direct relation, while Bossi
and Marcato (2019) found a direct relation with river discharge. However, a model
with a direct relation between precipitation and displacement does not account for
changing soil conditions and associated infiltration dynamics.

Division of the variable space

Models such as Support Vector Machines (SVM), either with linear or non-linear
models, subdivide the variable space in different combinations of conditioning fac-
tors. To find the optimal parameters for the model, an optimisation method is
applied, such as Particle Swarm Optimization (PSO), Grid Search (GS) or Genetic
Algorithm (GA), all applied by Miao et al. (2018). All optimisation parameters
strive to use the change in output of each consecutive model state to further reduce
the errors in the least possible iterations. Decision trees and Random Forest (RF)
classifiers provide a similar (non-linear) subdivision of the input variables. All these
models are insensitive to time series, although additional copies of input variables
with a time lag may be added.

With slow-moving landslides, the deformation signal is small. Therefore, the abso-
lute error of any deformation rate nowcast is likely to be small as well, and conse-
quently difficult to compare to deformation rates modelled using physically-based
models. Furthermore, when training (optimising) such models on a regional scale,
there is a risk of introducing a bias towards the abundant stable, non-landslide cases.
Thus, one has to provide both a balanced training sample, as well as an error metric
(loss function) suitable for such small differences.

Artificial neural networks

Powerful alternatives are Neural Networks and related technologies, which are not
applied to classify the deformation behaviour, but to transform the input variables
to a deformation estimate using a non-linear transformation. Such systems can be
made aware of time and the spatial relationship between neighbouring areas and
are capable of detecting relations unnoticed by experts. In addition, such systems
may estimate other variables in the process, such as a groundwater change (Krkac
et al., 2017).

As the optimisation is based on statistics only, most machine learning algorithms are
‘unaware’ of the relations between system variables in space and time and are there-
fore unable to accurately asses the prediction error (Jia et al., 2018). Additional
rules may be implemented in the training processes, to validate the solution against
physics or other rules. An example is the solution proposed by Karpatne et al.
(2017), the Physics Guided Neural Network (PGNN) that includes a physics-based
model, integrating it into the error function. With the help of this model, state esti-
mates with larger deviations from a realistic scenario are marked as less favourable.
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A time-aware class of the Neural Networks are Recurrent Neural Networks (RNN),
which operate on time series of variables and have some memory of previous states.
Thanks to the ‘memory’ of those systems, previous conditions can be weighted, and
when applicable, incorporated into the current state. An advanced implementation
of this is Long Short-Term Memory (LSTM), a network capable of deciding whether
a previous event is still applicable to the current state, retaining the memory — and
if otherwise, clearing it (Hochreiter and Schmidhuber, 1997).

2.4 Discussion

The limited roots in physics of many machine learning algorithms provide new
potential for the nowcasting of deep-seated landslides. With its origin in computer
sciences, an understanding of real-world physics is not the primary focus of most
machine learning algorithms and methods. This poses a challenge for the integration
in early warning systems, that are traditionally an extension of expert judgement
rather than an ‘expert’ in itself. Furthermore, future experts will combine the roles
of landslide geologist and data scientist, combining information sources and bridging
gaps in data availability.

2.4.1 Data unification

Most machine learning techniques require all data to be in a consistent, monoton-
ically increasing, spatio-temporal reference frame. Therefore, the resolution selec-
tion of the reference frame chosen has an influence on the outcome. Arnone et al.
(2016) concluded a 20 m spatial resolution was optimal, while Shirzadi et al. (2019)
concluded that a 10 m resolution was optimal. Both cases were higher than the res-
olution of the aforementioned satellite data products. Furthermore, re-projection
between coordinate systems, as well as temporal interpolation, may introduce scal-
ing of the original variable and a false perception of increased resolution.

Unified sampling is often required, with missing measurements blocking the process.
Variables may need interpolation for features with lower spatial or temporal reso-
lution, respecting the properties of the process underlying the variable, although
higher resolutions in space and time may hide large-scale effects if analysis methods
are not scaled appropriately with the increase in resolution. Moreover, in landslide
nowcasting, the algorithm has to cope with missing data and the addition/update
of historical data at a later stage.

Data cubes provide such unification of variables. The desired variables are prepro-
cessed and spatiotemporally aggregated to a unified reference frame in space and
time to facilitate data processing (Giuliani et al., 2019b; Sudmanns et al., 2019).
For such cubes, a multidimensional array of variable, time, z and y can be sliced
in any direction (variable, time, or location) to disclose relations in time, space,
or between variables. The cube can be generated on a project basis, with only
the necessary variables (Giuliani et al., 2020; Lewis et al., 2016), or be provided as
‘analysis-ready data’ by others (Brockmann Consult, 2018; Killough, 2018). How-
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ever, for a time-critical application as nowcasting, these will have to be operational,
‘live’ data cubes.

2.4.2 Addition of local sensors

Local sensors may aid the interpretation of satellite products, and are a source
of both calibration and validation for the satellite data products. For example,
they can compensate for underestimated peak precipitation by satellite precipita-
tion products due to spatial averaging (Brunetti et al., 2018) or validation of InSAR
deformation analysis by GNSS sensors on the landslide (e.g., Dong et al., 2018).
Local sensor data can be integrated in the process as well, especially when con-
verted to the same reference frame as the satellite data products. Integration can
be achieved either by mixing with the existing variables to increase local spatial
or temporal resolution, or by rasterisation, creating a new variable from spatially
interpolated sensor data. Furthermore, local observations allow for monitoring in
geometries that are difficult to describe or observe from air or space, such as vertical
walls (Castagnetti et al., 2014; Corsini et al., 2013).

Regional application of local sensors is not only feasible in the case of mass deploy-
ment of low-cost and low-maintenance sensors. Thomas et al. (2019) showed that
even a single soil moisture sensor may be representative of a larger region and better
represent the soil moisture conditions than a satellite soil moisture product.

2.4.3 Addition of physics

Physical constraints can be added at multiple stages of the process and bring the
solution closer to the physical process. Simple physics, such as the tank model (Nie
et al., 2017), may be used during variable pre-processing to amplify the information
content of the variables. This integrates expert knowledge into the empirical system,
unintentionally constraining the system to an assumed correlation. Including the
same variable twice, once in a compound variable as well as independently, may
over-represent the variable in the process.

During training of the algorithm, physics may be used to constrain the solutions to
what is physically possible (e.g., landslides moving up-slope). This is implemented
by the PGNN by penalizing solutions that are in conflict with such predefined rules
(Karpatne et al., 2017). A major drawback is that both solutions cannot compensate
for errors in either the composite variables or constraints. Wrong assumptions will
lead to sub-optimal training and predictive power.

2.4.4 Early warning systems

The slow deformation behaviour of deep-seated landslides will not often prompt sit-
uations of immediate collapse or those that are life-threatening. However, warnings
for strong acceleration, and associated risk for building and infrastructure damage,
could be raised from a monitoring system. Early warning systems, solely based on
(local) deformation measurements, have to detect precursory acceleration before a
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warning can be raised. Meanwhile, infrastructure and buildings on the slope are
already undergoing increased stresses.

With satellite deformation tracking only, multiple acquisitions are necessary to trig-
ger an alarm (Raspini et al., 2018; Intrieri et al., 2018). Current algorithms require
at least 4-5 radar observations indicating acceleration to come to an early warning
with a reasonably low false alarm rate (Intrieri et al., 2018). For example, given the
6-day revisiting time of the ESA Sentinel 1 satellite mission, this is a lead time of 24
days. Therefore, integration with other, more frequent measurements is necessary
to come to an early warning and accelerate the detection of deformation anomalies.
Moreover, a nowcasting system, including both driving and resulting factors, is less
sensitive to the timeliness of the inputs and more suited for incorporation in an
early warning system. However, special attention should be given to verify the per-
formance for early warning of catastrophic accelerations of deep-seated landslides
due to the rarity of such events.

Integration of the different data sources is an ongoing challenge faced by many
remote sensing projects. The methods can be subdivided into traditional, statistical,
or signal processing methods and artificial intelligence. The traditional methods
have a mathematically defined behaviour, where the latter have proven to be very
effective in recent applications, but are considered blackbozes.

The nowcasting system has to value known, historical information with respect to
the current state. Traditional methods have limited flexibility in this respect. Possi-
ble pitfalls of the flexibility of machine learning methods are overfitting on previous
deformation and unrealistic predictions due to the lack of physical constraints.

Unfortunately, it is practically impossible to guarantee that the more complex ma-
chine learning algorithms will always yield the desired warning, as it is impossible
to simulate all time series and the non-linear behaviour does not allow for interpo-
lation of the results. Such behaviour is undesirable in early warning systems, where
there is a delicate balance in the perception of false alarms and missed detections
(Intrieri et al., 2013). Furthermore, it poses the question of how to present the new,
uncertain results to the public—an early warning system is only complete with a
communication framework to distribute the warnings raised (Open-ended intergov-
ernmental expert working group on indicators and terminology relating to disaster
risk reduction, 2016).

By integrating the nowcast in the early warning system, alarms are now based on
the interplay of variables, contrary to established single-variable intensity-duration
thresholds. Furthermore, ensemble predictions, showing agreement or disagreement
between ensemble members, can be used to warn against uncertain predictions. To
increase predictive power, weather forecasts can be used to detect such problems
beforehand (Alfieri et al., 2012). Together, these provide opportunities for the im-
plementation of an unconventional but trustworthy warning system.

The application of continuous learning—the continuous optimization of the model
to the newly recorded data—allows for the adaption to changing conditions, inte-
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grating new situations not encountered in the initial training phase and learning
from previously missed stabilization or acceleration. However, continuous learning
may mask slow changes, falsely updating the ground state.

2.4.5 Risk assessment and reduction

The quantitative hazard estimate from the nowcasting system can be projected onto
objects of socio-economic importance, such as infrastructure and housing. The ini-
tial hazard estimate is hereby upgraded to a risk estimate—listing the potential
damage incurred by the nowcasted, accelerated deformation. Moreover, the pro-
cessing priority can be guided by the objects at risk, processing areas of high im-
portance first or more frequently, thus maintaining regional coverage at the reduced
computational cost. Furthermore, the empirical relations derived from the train-
ing of the machine learning algorithm are a valuable resource for the planning of
mitigation measures.

2.5 Conclusions

Instead of describing the exact dynamics of each landslide, machine learning may
serve a similar purpose in local and regional nowcasting and early warning sys-
tems. The continuous, wide-area time series from satellite remote sensing offer a
unique opportunity to monitor deformation and hydro-meteorological conditions of
landslides on a local and regional scale. In this paper, we showed that there are
satellite remote sensing products available that capture the major contributors to
the landslide process as well as the continuous, slow deformation of deep-seated
landslides themselves.

The limited frequency of deformation updates necessitates the integration of data
from other, more frequent, sources to continuously estimating the current system
state. Simple physics and proxy indicators may compensate for variables that cannot
be observed directly from space. The different machine learning algorithms we listed
have been demonstrated to be capable of processing the large data streams available
to a nowcast of deformation on a local scale.

A satellite remote sensing landslide nowcasting system can be applied on demand,
and has the potential to be applied globally, independent of terrain accessibility or
local budget, and provides additional protection to those affected. However, integra-
tion in early warning systems on both a local and regional scale will require further
refinement of the algorithms and a new approach to ‘live’, unified data integration.
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Abstract

Landslides are a major geohazard in hilly and mountainous environments. In-situ
inspection of downslope motion is costly, sometimes dangerous and, requires prior
knowledge of the existence of a landslide. Remote sensing from space is a way
to detect and characterize landslides systematically at large scale. Interferometric
Synthetic Aperture Radar (InSAR) has shown to be a valuable resource of deforma-
tion information, but it requires expert knowledge and considerable computational
efforts. Moreover, the successful application of InSAR for landslides requires a fa-
vorable acquisition geometry relative to the landslide deformation pattern. Conse-
quently, there is a need for a widely applicable tool to assess the potential of InNSAR
at a particular location a priori. Here we present a novel, generic approach to assess
the potential of InSAR-based deformation tracking, providing a standardised and
automated method applicable on any slope. We define the detection potential as the
sensitivity of InSAR to detect downslope displacement combined with the presence
of coherently scattering surfaces. We show that deformation can be detected on at
least 91% of the global landslide-prone slopes, and provide an open source Google
Earth Engine tool for the quick assessment of the availability of potential coherent
scatterers. This tool enables any person interested in applying InSAR to routinely
assess the potential for monitoring landslide deformation in their region of interest.
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3.1 Introduction

With an estimated average economic loss of € 4.7 billion per year in Europe alone,
landslides are a major hazard (Haque et al., 2016). Knowledge of the landslide
deformation behaviour provides insight in its characteristics and potential societal
impact (Intrieri et al., 2019; van Natijne et al., 2020). Recent case studies show
that satellite measurements of landslide deformation allow for the early detection of
accelerated deformation preceding a catastrophic event (Intrieri et al., 2018; Carla
et al., 2019a).

Several methods are available to obtain deformation measurements, each with dif-
ferent characteristics, temporal sampling, and spatial coverage. Local techniques
include crackmeters, extensometers and inclinometers, that quantify in-situ defor-
mation at the specific location at the landslide or building they are applied to
(Logar et al., 2017; Segalini et al., 2019). Slope scale techniques, used to quantify
differential deformation within a landslide, include total station measurements, and
Global Navigation Satellite System (GNSS) measurement campaigns (Benoit et al.,
2015). However, those techniques require access to the landslide for installation,
maintenance and/or operation of sensors, reflectors or benchmarks.

Terrestrial laser scanning, photogrammetry and ground based radar are slope scale
alternatives that can be deployed elsewhere, without access to the landslide, given
free visibility of the landslide features (Jaboyedoff et al., 2012; Dewitte et al., 2008;
Antonello et al., 2004). Aerial laser scanning and photogrammetric campaigns pro-
vide regional coverage, where especially laser scanning is able to penetrate vegetation
on slopes. Deformation measurements can be based on feature tracking, as well as
on a volumetric comparison of surface models (Zieher et al., 2019; Corsini et al.,
2013). However, unless automated, all these measurements provide sparse, infre-
quent deformation measurements, that mask short-term variations in a long-term
trend (Mansour et al., 2011).

Satellites provide an ideal platform for systematically repeating surveys over larger
areas. Archives of wide scale acquisitions make it possible to detect previously un-
known landslides and analyze historic landslide behaviour. Image-based correlation
techniques are used for deformation tracking in both optical and radar amplitude
imagery, tracking features in an image sequence over time (Mondini et al., 2019;
Singleton et al., 2014; Lacroix et al., 2018; Stumpf et al., 2017). However, their effi-
cacy is limited to fast-moving landslides (Bickel et al., 2018). Furthermore, optical
imagery is ineffective in case of cloud coverage.

These limitations are not applicable to deformation measurements obtained by
satellite-borne Synthetic Aperture Radar Interferometry, InSAR (Hanssen, 2001).
In less than two decades, InSAR has become an important information source for
landslide deformation studies (Colesanti et al., 2003; Berardino et al., 2003; Hilley
et al., 2004; Colesanti and Wasowski, 2006; Tofani et al., 2013b), especially for slow
to very slow landslides (0 — 1.6 m/year) (Hungr et al., 2014). These landslides
can be tracked with coherent scatterers, natural or man-made reflectors that show



3.1. INTRODUCTION 29

phase-consistent scattering behaviour over time (Ferretti et al., 2001; Hanssen, 2001;
Berardino et al., 2003; Komac et al., 2015).

InSAR studies consider a large variation in landslide types, processing techniques
and objectives. Different deformation types include large scale block deformation
(Czikhardt et al., 2017), rock slides (Lauknes et al., 2010; Delgado et al., 2011) and
mud slides (Sun et al., 2015). Often, studies are local, and some studies validated
InSAR results using field GPS measurements (Peyret et al., 2008; Yin et al., 2010;
Komac et al., 2015). Regional studies, such as Aslan et al. (2020), are still rare,
although continental scale InNSAR products are under development (Crosetto et al.,
2020). Others estimate landslide parameters based on InSAR time series in in-depth
case studies (Intrieri et al., 2020; Schlogel et al., 2015).

Due to the numerous potential error sources, expert knowledge is required for the
successful application of InSAR (van Leijen, 2014). In mountainous environments
there is an additional effect on InSAR, processing of the complex interaction with
topography and the atmosphere (Hanssen, 2001). Furthermore, due to the data
heavy character of time series analysis, significant computational efforts are required.
Therefore, it would be beneficial to be able to assess the applicability of InSAR
before engaging in an in-depth study.

For this purpose, Cascini et al. (2009, 2010) introduced the concept of an InSAR
‘visibility map’ for landslides. However, it did not account for geometric distortion
due to the effect of topography on the radar signal. An alternative ‘feasibility
index’ was proposed by Notti et al. (2010). They proposed a surface geometry
based method to estimate the likelihood of extracting deformation time series using
InSAR, where feasibility was defined as the chance of the availability of a persistent
scatterer in a series of SAR images. Their concept is implemented and extended in a
range of later studies by Notti et al. (2011, 2014); Plank et al. (2010, 2012); Herrera
et al. (2013); Cigna et al. (2013); Bianchini et al. (2013); Ciampalini et al. (2015);
Novellino et al. (2017); Boni et al. (2020) and Del Soldato et al. (2021). However,
the landslide deformation pattern was not incorporated.

Here we present a novel, comprehensive method to a priori assess the applicability
of InSAR in landslide deformation detection at global scale. To be able to quan-
tify the minimal detectable deformation (Teunissen, 2006; Baarda, 1968), we have
adapted the sensitivity index (Chang et al., 2018) to the landslide process. The
sensitivity index is available without prior knowledge of the deformation pattern
or radar imagery, and is aimed at desk studies of the applicability of later InSAR
landslide deformation analysis. Thanks to the sensitivity index, we could, for the
first time, globally quantify the possibilities for InNSAR slope monitoring.

Furthermore, we qualify the ability to extract deformation time series from the In-
SAR signal in a detection potential indicator. Finally, we provide a public detection
potential tool in Google Earth Engine, that allows for an in-depth analysis of in-
dividual slopes. Together, these tools provide landslide experts, before engaging in
an in-depth study, with a semi-automated assessment of the potential of landslide
deformation tracking with InSAR.
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In Section 3.2, we outline the principles of our method, followed by a detailed de-
scription of the calculation of the sensitivity index and detection potential indicator
in Section 3.3. The tools accompanying this manuscript are demonstrated on a real
world example in Section 3.4. Section 3.5 includes statistics on the global sensitivity
index. Finally, we discuss the underlying assumptions in Section 3.6.

3.2 Defining InSAR measurement geometry

Surface geometry Landslides are gravity induced and move downwards along
the slope direction (Singleton et al., 2014). At a given time, the displacement of
the landslide in the along-slope direction can be described by the instantaneous
downslope or true velocity. The slope, 3, is defined as the steepest downward
direction, described by the aspect, a, in clockwise degrees from north (0°- 360°).
The slope steepness, 3, is defined as the vertical angle from the horizontal.

A digital elevation model can be used to estimate the surface topography parameters,
slope and aspect. Here we used the Copernicus DEM (Fahrland, 2020). The 30 m
resolution at the equator is one of the highest for elevation models with (near)
global coverage. The resolution impacts the representation accuracy of steep slopes,
while the estimation of the aspect is less affected (Grohmann, 2015). For calculation
convenience, flat slopes, i.e. § < 5°, are ignored in this study as the presence of a
landslide system is expected to be extremely unlikely.

Radar geometry The geometry of the INSAR acquisitions for a particular loca-
tion is defined by the orientation of the line-of-sight (LOS) unit vector towards the
satellite at the moment of imaging (Hanssen, 2001). Projected onto the horizontal
plane, its angle from the north is referred to as the azimuth look direction (ALD),
which is typically east-southeast for the descending (southbound) satellite orbit,
and west-southwest for the ascending (northbound) orbit. The angle between the
LOS unit vector and the zenith direction is referred to as the incidence angle, 6, see
Fig. 3.1, which is typically a value between 0pnin = 29°and 0.« = 46°for Sentinel-1.
Exact calculations are discussed in Section 3.3.1.

Measurement geometry Key concept is the interaction between the radar ge-
ometry, surface geometry and landslide deformation. Two geometries inhibit proper
interpretation of the radar signal: shadow and layover. In the case of shadow, the
radar signal is blocked by topography. With layover, scatterers can no longer be
unambiguously attributed to a single point on the Earth surface, as the radar signal
scattered on multiple locations, at the same distance to the satellite, simultaneously
and the signals are superimposed on each other. Fig. 3.1 illustrates how these effects
affect the radar acquisition in mountainous terrain.

To detect these effects in a 3D world, the apparent slope is a helpful variable. The
apparent slope ', is the slope as seen in the line-of-sight of the Sentinel-1 satellite:
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Figure 3.1: Effects of surface topography on the radar image, shown in both the
radar line-of-sight as the horizontal plane. The mapping from topography to line-
of-sight is illustrated by the dashed lines, where the radar signal is simplified to
a parallel wave front with incidence angle . Under (a), the effects of surface to-
pography on the radar image are shown mapped onto a DEM. Except for the area
indicated by the asterisk, standard shadow algorithms in GIS are capable of mod-
elling the destructive effects of topography on the radar signal. In comparison, (b)
shows the effects that are locally detectable, without considering the surrounding
surface topography, see Fig. 3.4. Image inspired by Pinel et al. (2014).

0° 45° 90° 45° 0°
Slope (B)

Figure 3.2: Profile of a synthetic, radially symmetric mountain. The arrows indicate
the expected sliding direction of a landslide.
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Figure 3.3: Analysis of the apparent slope of an artificial, radially symmetric moun-
tain, as illustrated in Fig. 3.2, at latitude ¢ ~ £46°. Fig. 3.4 shows a 2D schemati-
zation of the potential effects of surface geometry on the radar signal.

g = Bsin(y' — ), (3.1)

with the terrain slope, 3, aspect, «, and satellite heading, +', corrected for meridian
convergence. Fig. 3.3 illustrates the apparent slope in both ascending and descending
orbits, for an artificial, radially symmetric mountain (Fig. 3.2).

Given the incidence angle, 8, the geometric effects are found by simple relations:
shadow occurs if 8/ < —6, layover occurs when 3 > 90° — . These effects are
illustrated in Fig. 3.4, for both the minimum and maximum incidence angle of Sen-
tinel-1. However, on slope scale, as shown in Fig. 3.1, the effect of shadow and
layover by neighbouring topography requires further modelling of the line-of-sight
for an accurate representation.

3.3 Sensitivity index and detection potential

The application of InSAR deformation measurements is feasible when the following
conditions are met: (i) the presence of coherent scatterers; and (ii) the availability
of sufficient radar acquisitions with (iii) a geometry sensitive to deformation. Our
work consists of two methods to assess these requirements (see Fig. 3.5). First we
derive the sensitivity index, a static analysis of the lower bound of the sensitivity
of Sentinel-1 to downslope deformation of the landslide. Second we define the de-
tection potential indicator, which is a Google Earth Engine based tool to analyze
the availability of imagery and scatterers from the Sentinel-1 time series contained
in the Google Earth Engine archives.
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Figure 3.4: 2D schematization of the effects of the surface geometry on the radar
geometry. Illustrated are the minimum and maximum incidence angles 6 of Senti-
nel-1 for a variable, apparent slope 5’ [—90°, 90°]. Only the local effects, induced by
the DEM-pixel itself, are described by these relations. Shadow or layover, induced
by nearby topography, cf. Fig. 3.1 (b), cannot be captured this way.
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Figure 3.5: An overview of the workflow and variables. Geometric analysis of the
landslide and radar geometries (§ 3.2) leads to the sensitivity index for landslide
deformation detection (§ 3.3.1). The detection potential (§ 3.3.2) is estimated by
exploratory data analysis of archived radar imagery using Google Earth Engine.
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Definition of the sensitivity index Radar observations are only sensitive to
deformation components in the propagation direction of the radar signal, the line-of-
sight. Given the direction of downslope deformation, the sensitivity index, s € [0, 1],
is calculated by the orthogonal projection of the downslope unit vector onto the line-
of-sight of the radar satellite (Chang et al., 2018). The most conservative incidence
angle is used for the radar parameters, i.e. the incidence angle that yields the lowest
sensitivity.

The sensitivity index is based on radar and surface geometry only, and the lower-
bound is known without knowledge of the radar acquisitions. As such, the sensitivity
index is a geometric property, that can be computed without the computational
burden of downloading and processing large quantities of radar data. This index
can be implemented in most Geographic Information Systems and is provided by
us as a Google Earth Engine tool, and is a valuable assessment tool in the early
planning phase.

Definition of the detection potential The detection potential is quantified
here by the estimated availability of presumedly coherent scatterers via the so-
called method of normalized amplitude dispersion (Ferretti et al., 2001). Hereby,
the amount of variability of the amplitude per radar-pixel in time is used as a
proxy for the level of phase stability. Normalized amplitude dispersion is used
by various InSAR packages as a convenient a priori selection technique for the
selection of potential coherent scatterers (van Leijen, 2014). Although this method
was originally aimed at coherent point scatterers, our application on multilooked and
calibrated amplitude (GRD) instead of complex (SLC) data yields a proxy indication
of coherent distributed scatterers as well. Only when a radar-pixel shows coherent
scattering during a significant part of the full temporal extent, a displacement time
series can be estimated. When the scatterer is disturbed or temporally obstructed,
for example by snow, the scatterer (temporarily) loses coherence.

3.3.1 Sensitivity index algorithm

Starting point is the digital elevation model, from which the surface geometry is
derived using standard functions available in most GIS packages (see Fig. 3.6). The
surface geometry is derived from the DEM and combined with the radar geometry.
On potential landslide slopes, the destructive geometric effects, shadow and layover,
on the radar signal are estimated.

The system is operated on a tile basis, following the original 1°by 1°(~ 100 x 100
km) tiling of the Copernicus DEM data. The tiles can be merged into a regional or
world map upon completion, as desired. Here we provide a detailed, step-by-step
overview of the processing steps. Finally, we provide an analysis of the computa-
tional efficiency of the algorithm.

Local Cartesian reference frame To ease calculations, a local Cartesian co-
ordinate system is constructed for each DEM-pixel. Locally, the Earth is assumed
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Figure 3.6: Workflow for the calculation of the sensitivity index. The process is
repeated for the two orbital directions, ascending and descending, and the extremes
of the incidence angle (Omin, Omax). Result is a single value, the sensitivity index,
the lower bound of the detectability of displacement in the radar signal. No radar
imagery is required, only a digital elevation model and four orbit parameters.

to be spherical, with an apparent radius, p(¢), dependent on latitude ¢, estimated
from the WGS84 ellipsoid underlying the Copernicus DEM. At pixel level, the Earth
is assumed to be flat, and the curvature of the Earth with respect to its neighbours
ignored. The apparent radius at latitude ¢ [—90°, 90°] is given by (Husér et al.,
2017):

p(¢) = (3.2)

with equatorial radius @ = 6378137 meters and polar radius b = 6356752 meters.
The resolution in x and y, in meters, at latitude ¢ is then estimated as:

ro(0) ~ 30( ) -7 - cos(@), (3.3)

with 74 and 7 the latitudinal and longitudinal resolution in radians.

Surface geometry The estimation of slope and aspect are based on the gradient
calculation methods described by Horn (1981). These methods are the de-facto
standard for fast slope and aspect calculations in GIS (GDAL, 2020). The method
is based on a weighted average of nearby pixels.

The neighbouring pixels in a 3 x 3 neighbourhood of elevations around zp are
referenced to as follows:
Z-1,—-1 | #=1,0 | #-1,1
20,—1 20,0 20,1 - (34)
21,—-1 21,0 21,1

The indices on the y-axis are inverted to match the convention on image coordinates,
where the y-axis points down.
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The weighted gradients in a-direction (p) and y-direction (¢) are estimated as

_ (2—11+2200+211)—(2-1,-1+220,—1+21,-1)
p= 87..(9) )

_ (-1 +22—1,0+271,711)—(21,1 +22z1,0+21,-1) (35)
4= 8ry (¢) :

The gradients p and q yield a tangent, downslope vector, t,

-1 b
t= q . (3.6)
VO + )PP+ ) \p2 4 2

If slope and aspect are already available, as in Google Earth Engine, the downslope
vector may be constructed from them. With aspect a and slope 3, the downslope
vector is calculated as,
sin a cos 3
t = |cosacosf| . (3.7)
—sin 8

Radar geometry First, the effective heading of the satellite is estimated. The
heading of the ascending orbit is approximated for latitude ¢ by Capderou (2005)
as

2
cosi — Cos" @
K

T
v/cos? ¢ — cos? i

with 7 the satellite inclination and s the mean motion, the number of revolutions
per day. The effect of meridian convergence within the radar image is neglected.
The heading of the descending orbit is 180° — /().

7' (¢) ~ arctan (3.8)

Similar to the downslope vector t, the vector for the satellite line-of-sight is con-
structed. The vector, r, points upward, from the Earth surface to the satellite. With
satellite heading 7/, positive clockwise from the north, and 6, the incidence angle
from the vertical,
—cosvy/(¢)sinf
r= | siny/'(¢)sind |. (3.9)
cosf

Shadow and layover The shadow and layover as derived from the apparent slope,
shown in Figs. 3.4 and 3.3, represent only local effects, generated by the slope itself.
However, as shown in Fig. 3.1, steep mountain slopes may affect larger regions on
and at the foot of the slope. Following Cigna et al. (2013); Plank et al. (2012) and
Cigna et al. (2012), we used a GIS-based shadow algorithm.

For the shadow estimation, the sun parameters are replaced with the satellite view-
ing geometry, 4’ + 90° from north and the maximum incidence angle (6n,ax). For
the layover estimate, the satellite is placed in opposite direction of v — 90°, at the
minimum incidence angle (fyi,) from the horizontal. However, layover does not
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only affect the layover-inducing slope, but also areas above and below the slope, as
shown in Fig. 3.1. This requires an extension to the shadow algorithm, where both
the layover-inducing DEM-pixel as well as the DEM-pixel affected by the layover
are marked.

For each DEM-pixel the line-of-sight to the radar is probed, until either obstructing
topography is encountered, or the maximum elevation in the tile is exceeded. If
no obstructing topography is found, there is an unobstructed line-of-sight to the
satellite.

Sensitivity index The sensitivity index is, by definition, the projection of down-
slope deformation direction on the line-of-sight of the radar system (Chang et al.,
2018):

s=lt-r|, (3.10)

with downslope unit vector (t) from Eq. (3.6) or (3.7), and the line-of-sight unit
vector (r) from Eq. (3.9). Where shadow or layover prevent radar measurements,
the sensitivity index is set to zero.

Algebraic expressions exist for the two descriptions of the surface geometry. For the
gradient method by Horn (1981), the sensitivity index is a combination of Egs. (3.6),

(3.9), and (3.10),

(p* + ¢?) cos (6)+

peos (7()+)
( gsin ww») sin (6)

VPR AV @R+

with satellite effective heading +/(6) and incidence angle . Likewise, if the slope
(B) and aspect («) are known instead of the gradients, a combination of Eqs. (3.7),
(3.9) and (3.10) leads to:

s, 8,0, ¢) = |sin (B) cos (6) + sin (0) sin (a — 7/ (¢)) cos (B)]. (3.12)

The results are shown in Fig. 3.7 (a, b, d, e).

s(p,q,0,9) = (3.11)

Orbit aggregation The sensitivity index requires the exact incidence angle, see
Eq. (3.9), that follows from actual InSAR data processing which is not available
in the planning phase. Therefore, to include the unknown incidence angle in the
planning, we conservatively use the minimum sensitivity from the two extremes of
the incidence angle (Omin, Omax). The lowest sensitivity index found is a lower bound
of the index for that slope, and can be quantified without knowledge of the exact
orbits. This procedure is shown in Fig. 3.7 (a, f, g), and the final result is illustrated
in 3D in Fig. 3.8.
For both the ascending and descending orbit, the minimum sensitivity index is taken,
ie.,

Sasc = Min(Sg,,, s S0, )- (3.13)
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Figure 3.7: The line-of-sight range sensitivity is expressed as a function of satellite and terrain parameters for latitude
¢ =~ £46°. The sensitivity is taken as the minimum sensitivity for the minimum and maximum incidence angle in order to
provide conservative estimates. The effects of shadow and layover, as shown in Fig. 3.4| are resolved at DEM-pixel scale,
therefore only the effects listed under (b) of Fig. wp_mwm resolved. Note that graph is based on an artificial, radial slope, as
illustrated in Figs. w.w_mEQ w.m_ and does not represent a natural slope distribution. In practice, very steep slopes (> 45°) are
rare, and comprise less than 1% of the slopes > 5° in the Copernicus DEM.
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Combined sensitivity (s) of ascending and descending orbits

Sensitivity (s)

Figure 3.8: A 3D interpretation of the results from Fig. 3.7. This image shows more
clearly how shadow and layover affect only very steep slopes. Displacements along
these slopes, as well as south facing, low relief slopes are less likely to be detectable.
The ascending and descending orbit directions are shown in black at the bottom.

Likewise, spgc is calculated. The highest sensitivity index (s) of either ascending or
descending orbit is the principal reporting parameter in the planning stage, when
data from both ascending and descending orbit is expected to be available:

s > max(Sasc, Spsc)- (3.14)

Landslide velocity The sensitivity index is defined as the projection of the down-
slope displacement unit vector onto the line-of-sight, and is a scale factor for the
downslope displacement to the change in the line-of-sight range as observed by In-
SAR. For example, under the assumption of only downslope deformation, the down-
slope average velocity, Vdownslope, iS the line-of-sight average velocity, v,0g, scaled
by the sensitivity index, s,

ULOS’

. (3.15)

Vdownslope = ‘
Likewise, via standard error propagation, the upper bound of the standard deviation
may be found. In the case of a linear, average line-of-sight velocity:

o _ Owros
Vdownslope

mm/yr, (3.16)

with s and the expected standard deviation of the linear line-of-sight velocity o, -
When the lower bound of the sensitivity index, as follows from Eq. (3.13), is used,
Egs. (3.15) and (3.16) provide estimates for their maximum values.

Computational efficiency Computation of the sensitivity index for all 26 223
Copernicus DEM tiles required 13 hours on an Intel Xeon W-2123 (4 cores, 8 threads,
3.6 GHz) with 32 GB RAM and network storage. The sensitivity index was pro-
cessed in Python (van Rossum et al., 2008) using Rasterio (Gillies et al., 2013),
GeoPandas (Jordahl et al., 2020), GDAL (GDAL/OGR contributors, 2020), NumPy
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Figure 3.9: InSAR detection potential is defined as the product of the sensitivity
index, shadow and layover, as well as scattering characteristics estimated from im-
agery. The application of InSAR is only feasible in the presence of unobstructed
scattering surfaces on slopes with a sufficient sensitivity index for the expected land-
slide velocity.

(Harris et al., 2020), and accelerated by Numba (Lam et al., 2015). Figures were
generated using Matplotlib (Hunter, 2007). Thanks to the algebraic expressions,
Egs. (3.11) and (3.12), calculation of the sensitivity index for four cases (ascend-
ing/descending, min/Omax) is a trivial operation. However, the estimation of shadow
and layover effects is more involved.

Our simple, iterative algorithm to compute the sensitivity index does not require
cluster computing and is suitable for desktop computers due to its low memory
footprint, that allows for parallel processing of multiple tiles. Moreover, the the-
oretical efficiency of @(n) is not indicative of the actual performance per tile. As
flat areas are ignored, tiles over river deltas require very little computations. Tiles
with large height differences are the most computationally intensive, as they require
most iterations to resolve shadow and layover.

3.3.2 Detection potential algorithm

The estimation of the detection potential is an extension to the sensitivity index
estimation, but now including a preliminary analysis of the available radar imagery.
Moreover, the procedure, illustrated in Fig. 3.9, is implemented differently from the
sensitivity index to match the structure of Google Earth Engine. In this structure,
the algorithm is stored and evaluated in Google’s data centers, where a ‘multi-
petabyte data catalog’ and ‘high-performance computing’ facilities are co-located
(Gorelick et al., 2017). Only once a portion of the map is requested, will the al-
gorithm be evaluated for the region shown. The technology has proven to enable
global analysis of decadal time series (Donchyts et al., 2016; Hansen and Loveland,
2012).

Google Earth Engine has an archive of Sentinel-1 GRD amplitude imagery available
for processing. The availability of Sentinel-1 acquisitions enables us to use the actual
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incidence angle () to estimate the sensitivity index, rather than estimate the lower
bound based on the theoretical range of the incidence angle. Unfortunately, the
satellite heading (') is not provided in or with the radar imagery, and is estimated
by Eq. (3.8).

The Copernicus DEM was not available in Google Earth Engine at the time of
writing. Instead, SRTM (Farr et al., 2007) is available, and is supplemented with
ALOS DEM (JAXA, 2019; Tadono et al., 2014) for higher latitudes. Predefined
methods are available for the estimation of the surface geometry parameters, slope
(8) and aspect (a) (Google, 2021a). Due to computational limitations, a global
analysis, such as with the global sensitivity index, is impossible.

Shadow and layover are approximated with a shadow model that takes single val-
ues for heading and incidence angle. This shadow model cannot be adapted to the
incidence angle at DEM-pixel level, and a conservative value is taken instead. Fur-
thermore, the shadow model is unable to detect layover in the region indicated by
the asterisk in Fig. 3.1. On steep Alpine slopes, 6% of the pixels affected by layover
stays undetected. However, this is just 0.02% of the total area of Alpine SRTM tile
N47EO011, that was tested as a sample.

Normalized amplitude dispersion The normalized amplitude dispersion is de-
fined as the ratio between the standard deviation of the amplitude, o4, and the
mean amplitude, g4, of a stack of radar images (Ferretti et al., 2001), applied on
linear amplitude values:

OA
pa
The normalized amplitude dispersion is a popular method for the initial selection
of potentially coherent scatterers, as a low normalized amplitude dispersion is an
indicator of high phase coherence (Ferretti et al., 2001). Thresholds for D4 vary,
depending on the application, between 0.25 and 0.6 (van Leijen, 2014; Hooper, 2008).

Dy = (3.17)

In Google Earth Engine only Ground Range Detected (GRD) imagery is available,
that is a multi-looked (spatially averaged) amplitude derivative of the complex radar
imagery (Google, 2021b). The use of the normalized amplitude dispersion on this
type of imagery is unconventional, but is possible due to the radiometric consistency
between the two products (Schubert and Small, 2016). However, as the multi-
looking has a dampening effect on the amplitude dispersion, an area specific user
interpretation of the normalized amplitude dispersion is recommended.

Polarity Given the radar geometry for a specific orbit provided by Google Earth
Engine, the effect of downslope displacement on the line-of-sight range may be esti-
mated. The polarity (sgn(t-r) € {—1,0,+1}) indicates if downslope displacement
is expected to shorten or lengthen the line-of-sight range. Together with the sensi-
tivity index, the polarity enables preliminary estimates of the InSAR signal to be
expected, based on prior knowledge of the specific slope. Moreover, spatial variabil-
ity in the line-of-sight deformation direction could be misinterpreted for noise, but
are not unlikely in mountainous topography.
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User interface In the Google Earth Engine tool, the detection potential is pre-
sented to the user as a filtered sensitivity index: the sensitivity index is shown
whenever the normalized amplitude dispersion is below a threshold of 0.4. The ap-
plication leaves three variables for the user to decide: i) the orbit to analyze; ii) the
time span to analyze and iii) the region of interest. First two parameters are offered
to the user as selection boxes. The third is provided implicitly by moving around
the map. Section 3.4.2 includes a demonstration of the application and associated
user interface.

3.4 Global sensitivity index statistics and detec-
tion potential application

This study is accompanied by two tools: i) the first global sensitivity index for
landslide deformation detection by InSAR, and ii) a Google Earth Engine tool for
local analysis of the sensitivity index and detection potential. Both results are freely
available to future users, either as data product, or as application and algorithm.

3.4.1 Global sensitivity index

The global sensitivity index, illustrated in Fig. 3.10, is available for download. Po-
tential applications include combinations with regional landslide inventories or sus-
ceptibility maps, for example for monitoring planning. Tiling is equal to the tiling
of the Copernicus DEM, and consists of 26 223 tiles of 1° x 1°. Each tile consists of
three layers: s,sc; Spsc and s. The data is distributed as GeoTIFF, and is compatible
with most common GIS software packages.

Sensitivity index values are stored as 16 bit floats, with a variable longitude res-
olution, matching the variation of the Copernicus DEM. Flat regions, including
water, as well as gaps in the data are marked as no data. The global tile set is only
330 GiB in size, with individual tiles ranging between 50 kiB and 90 MiB. Moreover,
the associated algorithm is available.

The global sensitivity index and Python code are available for download via:
doi:10.4121/14095777" (van Natijne et al., 2022b).

3.4.2 Sensitivity index and detection potential in
Google Earth Engine

The Google Earth Engine tool allows the user for a more detailed study of in the
sensitivity index and detection potential in their area of interest. At a regional
level, the sensitivity index is shown (Fig. 3.11). Locally, the application will search
the Google Earth Engine archives for available Sentinel-1 imagery in the desired
time frame and offer the user a sensitivity index tailored to an orbit of choice.

Ihttps://doi.org/10.4121/14095777


https://doi.org/10.4121/14095777
https://doi.org/10.4121/14095777

43

3.4. GLOBAL STATISTICS AND EARTH ENGINE APPLICATION

(seurpyse0d deN19911g
-uad( pue W snoruradoy) :punoIdydeq) TWONNIOSAI W ()¢ PUnoIe je ‘A[[eqors J[qe[TeA® SI XopUI aY ], 'S}I(I0 SUIPULISEp pue
Surpuasse o1} I0J XOPUT AJTATISTIS ) JO SOIRUITSO ‘PUNOJ-IOMO] ‘OATIRAIISTIOD T} WIOIJ AJTATYISUSS JSOTSIY ) ‘XOPUI AJTATIISUIS
PoUIqUIOD 9} ST UMOYS "BLIJSNY ‘ONIQSUU] punore ‘Aofrea uuy oy} 10A0 3dI00X0 Ue PUR XPUI AJIATIISULS [RCO[Y) :0T°C 0IMSI]

Aunnisuas
90 t0




CHAPTER 3. INSAR SENSITIVITY INDEX

44

Figure 3.11: Example of the sensitivity index, as generated in Google Earth Engine, for part of the Inn valley, around Innsbruck
and Wattens, Tirol, Austria. The valley is flat, at a slope of less than 5°, and reveals the underlying map. Small patches
in the north-west, marked ‘S’ in the image, are shown as dark blue, indicating no sensitivity to deformation due to either
shadow, layover or a combination of both. The south-east facing slopes on the northern side of the Inn valley, ‘A’, suffer from
poor sensitivity. Therefore, only strong displacement signals will be detectable here, if at all. Side valleys in the south-east,
of the image, at ‘B’, show more gradual topography and typically high sensitivity. As the highest sensitivity index value of
either the ascending or descending orbit is reported, both east and west facing slopes are marked visible in this image. Note
that the sensitivity index is higher on slopes facing north than on south-facing slopes. (Map: Google Earth Engine)
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Figure 3.13: Three maps over the Inn valley, as generated by our Google Earth
Engine tool. Coverage for the top two images is identical to Fig. 3.11: the Inn
valley around Innsbruck and Wattens, Tirol, Austria. Top: the sensitivity index,
with the radar geometry specific for ascending orbit 117 of Sentinel-1. Very few areas
are invisible to the radar (dark blue). Flat areas, such as the Inn valley, where the
slope is less than 5°, are transparent and show the underlying map. Center: The
sensitivity index, masked by the detection potential, shows the sensitivity where
the normalized amplitude dispersion is not greater than 0.4. Except for the high
mountain ridges, the lower part of the slopes show patches of potential coherent
scatterers, and are more likely to have a successful application of InSAR. Bottom:
An excerpt of the previous map, marked by the red rectangle. This map shows the
sensitivity index, again masked by the detection potential: a normalized amplitude
dispersion not greater than 0.4. The map shows a high likelihood of finding coherent
scatterers on/around the houses, while for fields an actual InSAR data processing
procedure would be required to assess the actual coherence level. Forest pixels are
unlikely candidates, but have a sufficiently low normalized amplitude dispersion due
to their consistent, low amplitude. (Map: Google Earth Engine)
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Furthermore, at slope level, the detection potential indicator can be used to highlight
the sensitivity index for potential coherent scatterers.

The Vogelsberg slope, near Innsbruck, Austria, is affected by a deep-seated landslide
(Zieher et al., 2019; Pfeiffer et al., 2021). The steep valley shape as well as the various
orientations of the surrounding slopes make it a complex setting for the application
of InSAR analysis. Fig. 3.12, for example, shows the spatial variability in the effect
of downslope displacement on the line-of-sight range. Fig. 3.13 shows the sensitivity
index, and detection potential indicator for the region around the slope, as well as
the detection potential indicator on the slope scale. Contrary to Fig. 3.11, that
showed the lower bound of the sensitivity index, the sensitivity index in Fig. 3.13 is
calculated based on the specific orbit parameters.

Using the Google Earth Engine tool, the user may explore the properties of the
different orbits available. On the Vogelsberg landslide, where ground truth velocity
estimates are available, not only the sign, but also the approximate magnitude of the
average line-of-sight velocity is available via the sensitivity index (Eq. 3.15). The
various layers show not only the sensitivity index, but also the number of images
available in each time frame and orbit. Especially with some prior knowledge of
the landslide deformation pattern, the orbit with suitable coverage of the expected
displacement can be found.

The Google Earth Engine tool is available on:
https://avannatijne.users.earthengine.app/view/landslide-insar?

3.5 Results of the global sensitivity index

A statistical analysis of the global sensitivity index is shown in Fig. 3.14. These
numbers are aggregated statistics of all slopes in the Copernicus DEM, corrected
for the reduced DEM-pixel size towards the poles. Notti et al. (2014) suggested that,
as rule of thumb, landslides with a sensitivity index greater than 0.2 allow for defor-
mation monitoring by InSAR. Based on this threshold, the global sensitivity index
shows that displacement of at least 91% of the world’s slopes would be observable
by InSAR. If only a single orbit is available at a given location, either ascending or
descending, 64% of the slopes is within this criterion. Our results for the individual
orbit directions are in line with Novellino et al. (2017), who concluded that 67.2%
of Great-Britain could be observed in an ascending orbit and 67.5% in a descending
orbit.

3.6 Discussion
Various assumptions underpin our proposed methodology, allowing us to evaluate

the sensitivity index globally and integrate the detection potential in Google Earth
Engine as products that do not require expert knowledge and experience to operate.

?https://avannatijne.users.earthengine.app/view/landslide-insar
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Figure 3.14: Histograms of computed global sensitivity index values, for both as-
cending and descending orbits, as well as the highest sensitivity index from either
orbit. Included are all slopes mapped by the Copernicus DEM, steeper than 5°. Ar-
eas invisible due to layover or shadow are marked as 0 sensitivity. The cumulative
distribution function of the absolute value of the lower bound of sensitivity, is given
in black.

Landslide behaviour In the absence of information on the landslide type, in this
study, a principal assumption is that landslides undergo downslope displacement
only (Bianchini et al., 2013; Singleton et al., 2014). Although most landslide types
undergo at least some form of downslope deformation, different parts of the landslide
may move in different directions, such as uplift at the toe of a rotational landslide,
or thinning at the scar of translational slides (Frattini et al., 2018). Schlogel et al.
(2015) even suggest that vertical deformation signals, due to subsidence at the scarp
and accumulation at the toe, are stronger than downslope deformation. Further-
more, basal sliding will follow the slope of the slip surface rather than the surface
topography (Massey et al., 2013). If the landslide type is known, and a specific
deformation pattern is expected, the sensitivity index can be adapted to include
deformation in any direction (e.g. in case of subsidence: r = [00 —1]").

Radar geometry Thanks to the Copernicus program, there is and will be an
abundant availability of Sentinel-1 imagery. Therefore, the focus of this paper is on
Sentinel-1 data. However, there is no full coverage of the Earth with both ascending
and descending orbits (Copernicus, 2019). As a consequence, the global sensitivity
index may overestimate the sensitivity index in areas covered by only a single orbital
direction.

The methodology could just as well be applied to any other satellite or satellite
constellation. This method is already effective with knowledge of only three to four
acquisition parameters: extremes of the incidence angle: Onin, Omax; satellite orbit
parameters: inclination ¢ and mean motion & in revolutions per day. For TerraSAR-
X, for example: Onin = 20°, Onax = 45°, i = 97.44° and k = 15.1914 (Airbus,
2015).
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Time series All images are assumed to be usable for time series analysis. In
practice, images might be missing or unusable due to anomalies (e.g. long baselines)
or seasonal effects (e.g. snow cover). Long periods without observation may trigger
unwrapping errors as well as increase the minimum significant detectable landslide
velocity. Furthermore, significant changes in scattering characteristics will spoil
the coherence of the scatterers fundamental to InSAR. Snow and flooding alter
scattering characteristics temporarily and potentially permanently, leading to the
loss of the time series.

The maximum landslide deformation resolvable from interferometric phase differ-
ences is limited by the wavelength as well as the gradient between neighbouring
observations in space and time. Under ideal circumstances, without noise, this so-
called unwrapping limit for independent observations is a quarter of the wavelength
A of the radar system: :i:%. However, this assumption is too rigorous. First, es-
pecially on slopes with a low sensitivity s, the effective limit on deformation will
be much larger: i4—)‘s. Second, neighbouring observations on the landslide, that un-
derwent less deformation since the last acquisition, may provide a spatial gradient
of resolvable differences. Finally, under the assumption of downslope deformation
only, the unwrapping limit may be expanded to half the wavelength: 2—)‘3

3.7 Conclusions

Analysis of our global sensitivity index indicated that at least 91% of the global
slopes are likely to allow for InNSAR deformation monitoring with Sentinel-1. The
Google Earth Engine tool provides an initial, local analysis of the available radar
imagery, and highlights areas with potentially favourable scattering characteristics.
Together, the sensitivity index and detection potential indicator provide an a priori
indicator of the likelihood of success of InSAR campaigns. Therefore, they are
valuable tools in the planning phase of an InNSAR campaign, where the Google Earth
Engine tool accelerates the initial site survey and orbit selection process, while the
global sensitivity index extends landslide inventories, hazard or susceptibility maps
with an indication of the InSAR monitoring potential. The methodology presented
is easily extended to other satellite constellations and/or deformation patterns.

The global sensitivity index is available for download via doi:10.4121/ 140957773
(van Natijne et al., 2022b), the Google Earth Engine tool is available on https://
avannatijne.users.earthengine.app/vi ew/landslide—insari. Underlying code
is available with their products.

3https://doi.org/10.4121/14095777
4https://avannatijne.users.earthengine.app/view/landslide-insar
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Chapter 4

Nowcasting of the Vogelsberg
deep-seated landslide

Submitted to Natural Hazards and Earth System Sciences (European Geosciences
Union/Copernicus Publishers) as: van Natijne, A. L., Bogaard, T. A., Zieher, T.,
Pfeiffer, J., Lindenbergh, R. C., 2022c. Machine learning nowcasting of the Vogels-
berg deep-seated landslide: why predicting slow deformation is not so easy. https:
//egusphere.copernicus.org/preprints/2022/egusphere-2022-950/, accessed
on 2022-10-04.

Abstract

Landslides are one of the major weather related geohazards. To assess their poten-
tial impact and design mitigation solutions, a detailed understanding of the slope
processes is required. Landslide modelling is typically based on data-rich geome-
chanical models. Recently, machine learning has shown promising results in mod-
elling a variety of processes. Furthermore, slope conditions are now also monitored
from space, in wide-area repeat surveys from satellites. In the present study we
tested if use of machine learning, combined with readily-available remote sensing
data, allows us to build a deformation nowcasting model. A successful landslide
deformation nowcast, based on remote sensing data and machine learning, would
demonstrate effective understanding of the slope processes, even in the absence of
physical modelling. We tested our methodology on the Vogelsberg, a deep-seated
landslide near Innsbruck, Austria. Our results show that the formulation of such a
machine learning system is not as straightforward as often hoped for. The primary
issue is the freedom of the model compared to the number of acceleration events in
the time series available for training, as well as inherent limitations of the standard
quality metrics such as the mean squared error. Satellite remote sensing has the
potential to provide longer time series, over wide areas. However, although longer
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time series of deformation and slope conditions are clearly beneficial for machine
learning based analyses, the present study shows the importance of the training
data quality but also that this technique is mostly applicable to the well-monitored,
more dynamic deforming landslides.

4.1 Introduction

Landslides make up for 6% of the weather related disasters globally (WMO, 2019).
To protect the public, landslides have been a major research topic for the last
decades. For local landslide mitigation by geotechnical intervention an up-to-date
understanding of these hydro-meteorological phenomena, their feedbacks and impact
is desired. This understanding may then be leveraged for the design of landslide
hazard mitigation measures.

Where the installation of effective remediation concepts is not possible, early warn-
ing systems may help to reduce the landslide risk. Such systems should quickly
adapt to changing conditions, both on the slope and global (e.g. climate change).
Moreover, such a system should be fast to adapt and implement to assess as many
slopes as possible.

Existing local systems typically provide early warning based on in-situ slope moni-
toring (Guzzetti et al., 2020). An example of a satellite based, global early warning
system is the LHASA model (Kirschbaum and Stanley, 2018; Hartke et al., 2020;
Stanley et al., 2021) that provides a global nowcast of acute landslide susceptibil-
ity. However, these systems typically focus on sudden, fast, and shallow landslides.
Such catastrophic events change the landscape, and as a consequence the situation
before and after the collapse are no longer comparable. Therefore, the landslide
process preceding the collapse can only be studied if data from before the landslide
is available.

We focus on slow moving, reactivating, deep-seated landslides on natural slopes, for
which the deformation pattern is controlled by hydro-meteorological forcing. These
deep-seated landslides are estimated to comprise 50% of the landslides globally
(Herrera et al., 2018; Novellino et al., 2021). The deep-seated landslides we focus
on rarely evolve into catastrophic collapse and often entail a complex response to
hydro-meteorological conditions controlling the landslide’s pore pressure (Bogaard
and Greco, 2015). They are characterised by gradual, non-catastrophic deformations
that can be responsible for extensive infrastructure damage (Mansour et al., 2011).
Deformation rates typically vary from millimeters to decimeters per year, whereas
phases of acceleration or deceleration often correlate with time-delayed hydrological
conditions (Intrieri et al., 2018).

Monitoring systems only supported by the detection of currently emerging acceler-
ation events (e.g. Carla et al., 2017), can only be used to detect already ongoing
acceleration. As a consequence, adequate early warning is only possible if the defor-
mation can accurately be predicted beforehand. Therefore, the deformation should
be predicted from the predisposing conditions on the slope, combined with dynamic
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factors such as infiltrating precipitation and snowmelt that lead to higher pore pres-
sures, instability and subsequent deformation. However, the deformation behaviour
of such slow, deep-seated landslides is ‘extremely difficult’ to model (Van Asch et
al., 2007).

Past landslide deformation events are indicative of the future behaviour, as land-
slides are likely to display similar behaviour in similar situations (Fell et al., 2008;
Guzzetti et al., 1999). Unlike catastrophic landslides, where the landslide dynamics
change permanently, slow moving landslides are not single, catastrophic incidents.
Therefore, analysis of the monitoring data of deep-seated landslides is expected to
reveal causal factors in landslide deformation, which allow for a continuous cycle of
forecast and validation of the relationship between deformation and the conditions
on the slope.

Deformation nowcasting could be considered an intermediate option between moni-
toring and modelling, integrating sensor data to estimate the current situation (the
system state) and extrapolate on a short timescale. New data and data integration
methods, ‘machine learning’, offer new possibilities for such data-driven landslide
forecasting (van Natijne et al., 2020). Furthermore, these techniques offer new ca-
pabilities to continuously track the system state without extensive, in-situ sensor
networks and physics-based modeling. Such data-driven models could be used to
‘learn’ the landslide dynamics and the interplay of hydro-meteorological factors from
the deformation signal of the landslide.

In the last decades satellite observations have increased in quantity, shortening the
time between subsequent acquisitions, as well as increasing the variables observed
(Belward and Skgien, 2015). These acquisitions provide us with a global overview
of the status of the earth at local scale, often with weekly to daily updates. More
recently there is the tendency to make the data freely available, a development
that lowered the barrier for innovations (Zhu et al., 2019), and especially benefits
experiments that require long time series, like this study. Even though their coverage
is often limited to the surface, the repeated monitoring of the slope conditions may
reveal the slope processes responsible for accelerated deformation (van Natijne et
al., 2020).

Here we present a data-driven nowcasting model with a four day lead time of the
deformation of the Vogelsberg landslide, near Innsbruck, Austria. We use readily
available, remotely sensed data and products, and test various similar remote sensing
products to assess their relative performance in the nowcasting model. We discuss
the complications encountered during modelling: over-parametrization, the impact
of optimization metrics, and the challenges due to the deep-seated landslide inertia
compared to the highly dynamic forcing of the slope.

First, we introduce the modelling options, and study area. Second, we present the
resources available to us, and our modelling approach, followed by the results and
an extensive discussion on the insights gained during the modelling exercise. Last,
we provide recommendations for future data-driven landslide nowcasting exercises.
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4.2 Data-driven modelling approaches

In the present study we interpret data-driven modeling as a form of naive modelling.
That is, the model is unaware of the physics behind the landslide process. For data-
driven models, the deformation of the slope is merely a signal to be reproduced
from a collection of observations by empirical relations, in contrast to traditional,
landslide geomechanical modelling, that is rooted in physics. Table 4.3 features a
selection of studies into data-driven deep-seated landslide nowcasting, demonstrat-
ing the recent interest in this topic. Various examples come from landslides around
the Three Gorges Dam that are strongly controlled by the reservoir water level.
However, this is not the most common type of deep-seated landslide. Deep-seated
landslide deformation is typically driven by the water storage in the deeper subsur-
face, that is controlled by a long-term water balance of precipitation and snowmelt
input, evaporation losses, and regional groundwater input and drainage (Bogaard
and Greco, 2015).

The indirect transfer from precipitation and snowmelt to storage may be captured
by, for example, including recent observations in a bucket model (Nie et al., 2017). A
bucket model represents the subsoil as a storage that is replenished by precipitation
and emptied by drainage and evaporation. Furthermore, changes to the storage
may involve a time delay, depending on complex infiltration processes. This process
may be dependent on the precipitation type, duration and intensity. Moreover,
deformation may not be governed by a short and single precipitation event. For
example, a short, extreme precipitation event or three days of consecutive drizzle
may introduce similar amounts of water to the system, but will be represented
differently in storage changes due to different infiltration abilities of the soil. All
in all, modelling of deep-seated landslides will likely require some form of storage
modelling, where these dynamics are either resolved by the model or in advance by
an expert.

Two distinct modelling approaches can be distinguished. Modelling is either based
on classification of the environmental conditions and associated deformation re-
sponse, or calculates the expected deformation response from the conditions on the
slope. In either case the model parameters are tuned on historic observations such
that they best reproduce the deformation signal from the conditions observed pre-
viously at the slope. Our model of the Vigelsberg landslide is a continuous model.
For completeness classification models will be introduced briefly.

4.2.1 Classification models

Based on the assumption that similar conditions trigger a comparable deformation
response (Fell et al., 2008; Guzzetti et al., 1999), conditions and responses may
be categorized. The current slope conditions are then matched against historic
conditions, and the deformation response is assumed to be the same. Extrapolation
of the response to previously unencountered conditions is typically impossible with
these models. However, the system will therefore also not yield unrealistic results,
and could be considered bound to the previously encountered deformation signal.
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4.2.2 Continuous models

The simplest, linear, model is the weighted sum of the quantified conditions at the
slope. However, the slope response may not be linear and is typically not immediate.
Neural networks make may be used to estimate any signal by the formation of a
network of interlinked nodes that ingest and combine the conditions on the slope
in subsequent layers of nodes (Hornik et al., 1989; Hill et al., 1994). A time series
passed to a single input neuron is equal to a weighted sum of the time series, plus
a bias.

As more hidden layers of neurons are introduced to the system, the direct link to the
(time series) input is lost, as combinations are made. Furthermore, an activation
function may be applied to scale the output of each node, especially to normalize the
response and filter outliers, at the cost of introducing non-linearity to the system.
The number of parameters, degrees of freedom of the model, are associated with the
number of input variables. When historic observations are supplied as additional
observations, they will each require their own model parameters, and increase the
degrees of freedom in the model.

State aware models, such as Recurrent Neural Networks (Connor et al., 1994), main-
tain a track record of the state of the landslide instead, and iterate over the input
time series in successive model runs. Individual observations are fed into the system,
with the system maintaining track of their contribution to the current state of the
landslide. These models resemble a bucket model, a simplified representation of the
water storage in the subsoil. However, unlike in a traditional (soil moisture/ground
water) bucket model, all variables are taken into account, even if they do not di-
rectly represent water. Furthermore, unlike regular neural networks, the number of
trainable parameters is not dependent on the length of the history supplied to the
model, but on the number of memory cells and time series.

Models based on Recurrent Neural Networks suffer from computational difficulties
during optimisation, where gradients may vanish (Bengio et al., 1994; Hochreiter
and Schmidhuber, 1997; Hochreiter, 1998). Therefore, they are typically replaced by
models based on Long Short-Term Memory (LSTM) nodes (Hochreiter and Schmid-
huber, 1997), that do not suffer from this due to built-in normalisation. Each LSTM
‘bucket’ is capable of weighting, retaining and clearing a memory of previous inputs,
and as such tracks the system state.

The challenge specific to forecasting and nowcasting is the absence of information
on the future slope conditions. The latest information available to the system are
the current conditions and the last estimation of the system state. Auto-regressive
models predict these conditions as well, so that subsequent forecasts may use these
environmental conditions in their models. However, especially precipitation is gov-
erned by external influences and may not be predictable from the other forcing
parameters in the system. As an alternative, forecasts may be included into the
model. However, this would require forecasts for all input variables. Therefore,
such system was deemed not suitable for this application.
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Special attention should be paid to the robustness of the model. Even ten years of
daily observations will result a time series of less than 4 000 reference observations,
much less than desirable for use in more complex machine learning models such as
neural networks (Cerqueira et al., 2019). If too few training data are provided, the
abundance of input data creates unique combinations of conditions and outputs.
This will lead to excellent performance during training, but reduced performance
during testing and application, and is known as over-fitting.

There are infinite data-driven modelling possibilities and the generic character of
many data-driven models suits the diversity in available remote sensing variables.
However, due to the limited length of the time series, in comparison to typical
machine learning studies, one should stay close to the physics and processes, to limit
the freedom of the model towards a solution. Therefore, one has to ensure a balance
between the number of parameters to be estimated and the training/validation data
available.

4.3 Case study: the Vogelsberg landslide

The Vogelsberg is a deep-seated landslide, located in the Wattens basin, near
Innsbruck, Austria (Figure 4.1). Its north-east facing slope covers approximately
4.6km?, and ranges between 750 m and 2200 m above sea level. A nearby weather
station reports an average yearly precipitation of 896 mm, of which 13% is in the
form of snow. The lower, active part of the landslide is only about 0.2km? and is
covered by pasture fields, sparse forests and few houses and farm buildings. The
shearzone was identified via inclinometer measurements to be at 43-51 m below the
surface, although strongly disintegrated soil up to 52-70 m indicates a long history
of activity (Pfeiffer et al., 2021).

In 2016 a Leica TC1800 Automated Total Station (ATS) was installed in Wat-
tenberg, opposite to Vogelsberg, by the Division of Geoinformation of the Federal
State of Tyrol. The system surveyed each of the fifty-three benchmarks every hour.
Extensive corrections to the measurements were necessary, primarily due to the in-
stability of the monument the total station is located on. In this study a series of
pre-processed range measurements was used, fixed to stable benchmarks around the
active area that showed no signs of landslide deformation damage. The accuracy
of this time series was estimated to be in the order of +0.54 cm/a (Pfeiffer et al.,
2021). The time series of the displacement rate at the two benchmarks used in this
study are shown in Figure 4.2, their locations are indicated in Figure 4.1. Time
series of the other benchmarks are shown in Pfeiffer et al. (2021, Figure 3).

The deformation of the Vigelsberg landslide is a complex response to the hydro-me-
teorological conditions in the catchment, in particular precipitation and (delayed)
infiltration from snowmelt. A binary prediction of stability/instability or accelera-
tion/deceleration is insufficient for the Vogelsberg landslide, as the slope is undergo-
ing continuous deformation. Pfeiffer et al. (2021) conducted a full assessment of the
hydro-meteorological drivers and found a 20-60 day time lag between rainfall and
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Figure 4.1: a) Location of Vogelsberg in Europe. b) Overview of the landslide
catchment (white) and active region of the Vdgelsberg landslide (red). Dashed
contour lines are shown every 100 meters of elevation change. The coverage of
sub-figure c is indicated in gray. c¢) Detail of the active region of the Vogelsberg
landslide. The northern subsection of the slope (red) and southern (yellow) section
and overlapping area are marked. Out of a total 53 retroreflecting prisms, the 29
benchmarks with the longest time series (2016-2020) are shown. Benchmarks on
the landslide are shown in red, stable, reference benchmarks in green. The time
series of benchmarks ‘D_-WS_1" and ‘D5_1" are shown in Figure 4.2. The location
of the total station in Wattenberg is marked by a yellow triangle. (Backgrounds:
Eurostat /EuroGeoGraphics; Federal State of Tyrol, Austria)
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Figure 4.2: Daily deformation rate of the Vogelsberg landslide at benchmarks
‘D5_1" and ‘D_-WS_1" (Figure 4.1), as measured by the automated total station and
smoothed by a moving average filter over the last 32-days.

acceleration and a 0-8 day time lag between snowmelt and acceleration. Notewor-
thy is the difference in behaviour between the northern and southern sections of the
slope, represented by benchmarks ‘D_-WS_1’ and ‘D5_1" respectively (Figure 4.2).
The northern section of the slope (‘D-WS_1’) shows a higher variability in the de-
formation signal, with stronger accelerations than the southern, inhabited section of
the slope (‘D5-1"). We focus on these two benchmarks, as a balanced representation
of the two landslide sub-systems.

The deformation rate, derived from the total station range measurements, was
smoothed by a moving average filter until few, noise induced, negative (up-slope)
deformations remained, while maintaining the highest possible temporal resolution
(Figure 4.14). Only historic observations may be used in an operational early warn-
ing system, and a moving average of the most recent 32 days was necessary to
remove most of the noise. As a consequence, the onset of acceleration will be only
1/32 of the signal and thus severely dampened, stressing the need for an accelera-
tion prediction rather than extrapolation of deformation measurements as warning
signal. Moreover, signals shorter than the filter length will be reduced in amplitude.

4.4 Methodology

Our model’s aim is to predict the landslide deformation based solely on the cur-
rent conditions at the slope. No recent deformation observations or prior defined
geomechanical model will be available to our model during prediction. The main
model constraints are that we have a relatively limited amount of data points (1482
samples) and will work with readily available remote sensing data and products.
Furthermore, we set the objective to model with daily time steps and a forecast
lead time of four days. A successful prediction of the deformation rate four days
ahead will demonstrate the model’s ability to predict a tipping point based on the
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environmental conditions (acceleration, peak, deceleration). Moreover, a four day
prediction would give sufficient time for further investigation as part of an early
warning system.

With these constraints in mind, a system was designed based on a parsimonious
recurrent neural network. First, we will introduce the data available. Second, an
overview is provided of the pre-processing applied to the input variables. Third,
we provide the specifications of our model. Last, the training and validation of the
model are discussed.

4.4.1 Model variables

The model variable selection is based on the analysis of factors of influence (Pfeiffer
et al., 2021), and are mainly of data-driven nature. Pre-disposing or causal factors,
such as topography, that are necessary for a landslide to form, are considered static in
this study. Therefore, the focus is on the dynamic conditions leading up to landslide
instability and deformation, and triggering factors. The selection of variables is
listed in Table 4.1.

Our method is designed with the intent to be generally applicable. Therefore, where
possible, remote sensing products were used, as they are likely to be available else-
where as well. Where available, redundant products, that represent the same or sim-
ilar quantities, were included to assess their relative performance in the nowcasting
model. The correlation between the products is limited (|, = 0.16, max|p| = 0.7,
Figure 4.13), indicating differences between the products of the same quantity. Ef-
fects that may not be observed directly, such as soil moisture under snow, require
some form of modelling or re-analysis. These quantities, not directly available from
remote sensing, are taken from re-analysis models ‘ECMWEF Re-Analysis, version 5’
(ERA5) and the ‘Global Land Evaporation Amsterdam Model’ (GLEAM).

The desired output of our model is a daily, four days ahead prediction of the land-
slide deformation rate at benchmarks ‘D_WS_1’ and ‘D5_1’. Reference, training
and validation samples are provided by the automated total station located on the
Wattenberg, opposite to Vogelsberg (Figure 4.1). Deformation measurements were
performed hourly from 2016-05-04 to 2020-06-28, and aggregated to 1482 daily av-
erages to reduce noise. The noise in the signal was further reduced by a 32-day
moving average filter, of which the results are shown in Figure 4.2. The time series
at the 51 other benchmarks (Figure 4.1) were not used in the modelling.

Daily precipitation information is provided by the Integrated Multi-satellitE Re-
trievals for GPM (IMERG) algorithm of the Global Precipitation Measurement
mission (GPM) (NASA, 2018). ‘Early’ results are provided with sub-day delay, and
are therefore especially suitable for an operational nowcasting model. For compar-
ison daily precipitation from the ECMWEF ERA5 Land re-analysis is included as
well (ERA5, 2019). Snow properties are covered by two products of the ERA5 Land
re-analysis: snow water equivalent, and snowmelt.

Soil moisture, especially at depth, cannot be observed directly from space at a
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Table 4.1: Selection of time series considered for integration into the model. Deformation variables are marked ‘D’; while slope
conditions, input variables to the model, are marked ‘V’. Observations are marked ‘S’ for directly observed variables processed
and available within the time frame of a nowcasting system; ‘R’ for re-analysis variables, and ‘M’ for variables modelled within
this study (see §4.4.2). References to the various sources are provided in the main text. The internal identification is derived
from the variable as referenced by the source, and is used throughout the figures to refer to the various time series. From
rasterized products, only the time series closest to Vogelsberg was used.

Variable Source Type Spatial res. Temp. res. Int. identification
D1 Deformation ‘D_-WS_1’ ATS (local) S point daily ATS/D_WS_1
D2  Deformation ‘D5_1’ ATS (local) S point daily ATS/D5_1
V1 Precipitation ERA5 R 0.1° (~ 10 km) hourly ERA5/tp
V2  Precipitation GPM S 0.1° (~ 10 km) 30 min. GPM/precipitationCal
V3 Snow water equivalent ERA5 R 0.1° (~ 10 km) hourly ERA5/swe
V4  Snowmelt ERA5 R 0.1° (~ 10 km) hourly ERA5/smlt
V5  Soil moisture, full profile =~ SMAP R 0.1° (~ 10 km) 3 hrs. SMAP/sm_profile
V6  Soil moisture, root zone GLEAM R 0.25°(~ 25 km) daily GLEAM/SMroot
V7 Soil moisture, 100-289 cm  ERAS R 0.1° (~ 10 km) hourly ERA5/swv14
V8 Evaporation GLEAM R 0.25°(~ 25 km) daily GLEAM/E
V9  Air temperature ERA5 R 0.1° (~ 10 km) hourly ERA5/t2m
V10 API M point daily API/API
V11 Sesonal noise M point daily fake/fake
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high enough resolution for this application. The low latency, operational products
from the Copernicus Land Service, Soil Water Index and Surface Soil Moisture, are
frequently unavailable either due to unfavourable slope topography or due to snow
cover. Alternatives are provided by SMAP L4 (Entekhabi et al., 2010; Reichle et
al., 2022); ‘Global Land Evaporation Amsterdam Model’ (GLEAM) (Martens et al.,
2017; Miralles et al., 2011); and ERA5 Land (ERA5, 2019). Evaporation estimates
are taken from GLEAM as well. Air temperature, a proxy indicator of evaporation
and snowmelt, is included from ERA5 Land (ERA5, 2019).

4.4.2 Variable preparation

The model is fed with the eleven variables defined in §4.4.1 (Table 4.1). Except
for the deformation time series, all sources consist of gridded products, with wide
area coverage. In this study only the data point closest to the active part of the
Vogelsberg landslide was used. To match the time resolution of the deformation
measurements the model is run at daily intervals. Observations available at shorter
intervals are aggregated to daily means first. Where data is missing, for example due
to sensor failure, the values are filled with the data from the previous day (forward
filling), as would be possible in an operational scenario. Furthermore, two modelled
time series were added to the system: an antecedent precipitation index (API) as
basic hydrological model and a random, seasonal noise signal.

The Antecedent Precipitation Index (API, API/API, V10) was designed to estimate
the water present in the watershed (Kohler and Linsley, 1951; Heggen, 2001). The
API is included to determine if such variable could support the deformation now-
casting model. Precipitation less than 0.1 mm was ignored, in addition a 10% direct
evaporation loss, and a 4% daily storage loss is assumed. These parameters were
chosen based on an expert’s estimate of the hydrological setting. The API at time
step t is calculated as

APT; = max(0,p —0.1) - 0.9+ 0.96 - API,_4, (4.1)

with p the daily precipitation sum. The API, calculated from the operational GPM
precipitation data (GPM/precipitationCal), is shown in Figure 4.3.

A random variable with seasonal characteristics is added to the variable selection
to analyze the effect of spurious correlation on the model. The random variable,
fake/fake (V11), based on Brownian motion, is tuned to match a typical seasonal
characteristic in the 32-day history relevant to the model. The auto-correlation
behaviour is illustrated in Figure 4.4, and resembles the dynamics of both the surface
temperature as provided by ERA5 and the soil moisture from SMAP for the first
2-3 months. Longer correlation periods are not relevant for our model.

All variables are offset to become zero-mean and scaled by the standard deviation.
Therefore, all input variables are on approximately equal scale and represented
as deviations from their average condition. The normalization parameters, mean
and standard deviation, should be kept fixed while new data is added, to remain
consistent with the scaling of the time series used during training. The data set is



62 CHAPTER 4. VOGELSBERG NOWCAST

GLEAM/E

ERA5/swvl4

GLEAM/SMroot W

]

SMAP/sm_profile 0 Iig
120

ERA5/smlt e

©

>

ERA5/swe §

S

£

S

P

GPM/precipitationCal

ERA5/tp

API/API

fake/fake e 1"'\ : . I " Wﬂ\.ﬁp\wpﬂt‘!mﬂw. MMM

S
£
%
s
i
4

;

ATS ~

2016-07 2017-01 2017-07 2018-01 2018-07 2019-01 2019-07 2020-01

Figure 4.3: Overview of the variable space (Table 4.1). The values are offset to a
zero mean and scaled by their standard deviation. A single iteration of the seasonal
noise (fake/fake) is shown as an example.
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Figure 4.4: Autocorrelation of one of the generated signals compared to the autocor-
relation of the temperature as taken from ERA5 (ERA5/t2m) and the soil moisture
estimate from SMAP (SMAP/sm_profile). The length of the history as used by the
model, 32 days, is indicated by the dashed line.
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fed to the model as a time stamped collection of daily observations, illustrated in
Figure 4.3.

4.4.3 Model configuration

Our model is a shallow neural network with only a single hidden layer (Jain et al.,
1996). This hidden layer consists of a single Long Short-Term Memory (LSTM)
node (Hochreiter and Schmidhuber, 1997), that resembles a bucket model for the
water storage in the subsoil. The model is supplied with a thirty-two day history
of observations, equal to the length of the moving average filter, longer than the
lag time for snow (0-8 days) and sufficient to cover most of the 20-60 day lag
time for rainfall at the Vogelsberg landslide found by Pfeiffer et al. (2021). From a
pre-defined, optimized initialisation, the model is cycled for each day of preceding
observations, feeding the observations into memory, before a prediction is made
based on the final bucket values (m). The model is illustrated in Figure 4.5, as
function of environmental conditions (x, Table 4.1), at each of the n = 32 days
preceding the nowcast, the LSTM node and four neurons of a single benchmark, one
for each prediction day. This last, output, layer is repeated for both benchmarks
(‘D-WS_1" and ‘D5.1") to be predicted, while the LSTM memory (m) is shared
between the benchmarks to reduce the number of parameters.

In total, for a network configuration with a single memory cell (m), 68 parameters
have to be estimated. The LSTM node, with one hidden state, requires 52 param-
eters to be estimated for the eleven variables (Table 4.1). Sixteen parameters are
required for the output, eight for each of the deformation time series: one bias and
one scaling parameter per day for the final state of the LSTM node. The number
of parameters to be estimated is independent of the history length.

Four parameters are added per extra prediction day (two benchmarks, one bias and
weight each). An extra memory cell requires 8h + 4 + 1 extra parameters, with
h the current number of hidden nodes and x the number of input variables. While
only four parameters are added for each additional input variable. Hence, extra
memory always requires more parameters than extra input variables. Therefore, to
limit the number of parameters in the model and minimize the risk of over-fitting,
the addition of a variable to the model should be preferred over the addition of a
memory cell.

An interpretation of the network is that the development of the slope state in the
last 32-days is described by the LSTM node. The state is scaled, and otherwise
matched to the individual benchmarks, by the output neurons. The four days are
an extrapolation of the current state of the system, no prediction of the conditions
on the slope is made.

The ‘mean squared error’ was chosen as the loss function. This function, that
quantifies the difference between the predicted and observed deformation, is to be
minimized during training. The quality of the prediction is measured on the period
not used for training. This function assures the cumulative deformation over time
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Conditions LSTM layer Output layer  Observations

Figure 4.5: Simplified schematic of the model. From left to right: the hydro-me-
teorological conditions (x:) on the slope at the current (¢) and n preceding time
steps; the LSTM layer, including its internal feedback and memory cells (m;_g);
the output layer ¢;, which combines the k£ memory-cells m of the LSTM node to
four predictions; the observations y;, as available for comparison during training
and validation. During initialisation, the conditions on the slope are fed to the
system on a day-by-day basis, starting at the oldest observations. The output layer
is only invoked at the last iteration, with the final values of the LSTM memory.
The parameters of the LSTM layer are optimized on both deformation time series
in parallel, the output nodes are tuned individually for each benchmark.

is realistic, as errors are balanced between over- and underestimation. Therefore,
the predictions will not show a bias towards acceleration or deceleration.

The TensorFlow machine learning framework was chosen to implement the model
(Google, 2022). The LSTM model is implemented in a stateless fashion: the warm-
up phase is repeated for every nowcast. The model was run on a workstation based
on an Intel Xeon W-2123 (4 cores, 8 threads, 3.6 GHz) with 32 GB RAM, while
model variations were tested on the high performance computing cluster of the Delft
University of Technology. Given the limited size of the region of interest, as well as
the limited number of parameters, the full model fits into 1 GB of memory.

4.4.4 Model training & validation

During training the model parameters are tuned such that the final model state
best describes the deformation prediction. The model is optimized with the Adam
optimizer (Kingma and Ba, 2017). The model is trained on the loss, after 50 training
passes that do not lower the mean squared error over the training period, the model’s
parameters are fixed. If this steady state is not achieved after 25000 passes, the
training is stopped anyway and the model parameters used as-is.

Due to temporal correlation training and validation cannot be divided over random
chunks or batches, according to the ‘traditional’ 30%-70% chunks (Gholamy et al.,
2018). Therefore, the training data is split into equal years instead, as shown in
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Figure 4.6: Training periods as supplied to the model. The data outside the training
period is used for validation. Note that with the longest training period (4), there
is very limited validation data left. The deformation pattern (Figure 4.2) is shown
in the background for reference. As there is no clear seasonality in the deformation
signal, the data set was split in approximate years from the start of the measure-
ments.

Figure 4.6. Data outside the training period is used for validation. This includes
the period before the training period, when available.

The robustness of the model to the selection of the training data is assessed from
the stability of the results when training over the subsequent periods (Figure 4.6), a
variation on cross-validation (Krka¢ et al., 2020). Each model iteration starts with
the same (random) initial weights, but is trained independently from the start. The
quality of fit is assessed by evaluation of the loss function, the mean squared error,
on the periods not used for training. Finally, the model performance is compared
between the training periods. Large deviations of the model quality suggest there
are dynamics the system is not capable of describing.

To assess the impact of irrelevant data on the system, as well as the effect of over-
fitting, the additional, correlated random variable (fake/fake) is used. Over-fitting
will make the model prone to spurious correlation with this variable, that results
in poor performance in the validation stage. Furthermore, to ensure there is no
accidental correlation between the seasonal noise and the deformation signal during
training and/or validation, the signal was re-rendered for every model run.

All possible combinations of the eleven input variables were tested on the model.
With eleven variables this results in 2! —1 = 2047 combinations, as each of the time
series may be used or not (2 options), expect for the case where no input is used.
Furthermore, the model was trained and validated on each of the ten combinations
of training and validation year(s). Each sequence of model training and validation
was repeated at least three times, to account for the ‘luck’ introduced by the random
initialization of each model. In total 147 984 model runs were performed.
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4.5 Results

The best solution out of all model runs, judged on the minimal mean squared error
on validation, is based on a single LSTM-node and only four of the eleven input
variables available: precipitation from GPM (V2); soil moisture from SMAP (V5)
and ERA5 (V7); and evaporation from GLEAM (V8), where the numbers refer
to Table 4.1. The minimal mean squared error on validation was achieved when
the model was trained over period 3 (Figure 4.6, 2016-05-04-2019-05-04), the mean

squared error of this model run was 1.03 ear27 below the average of 3.15

~ cm?
(U~13 ed27

ear2

from 1718 samples) for this model configuration.

The full nowcast is shown in Figure 4.7, including the training period shaded in gray.
Although, based on visual inspection, reasonable results are achieved in summer and
autumn, the nowcasting model is unable to predict the deformation rate in winter
and spring in the training period. Especially surprising is the jump in the winter
of 2018/2019, where a strong acceleration is predicted which does not occur until
early summer. The validation period, from 2019-05 onwards, shows little variation.
The deceleration in the summer and autumn of 2019 is overestimated and shifted,
likewise the acceleration in the December 2019 is predicted correctly, but too early.
Overall the predictions show long-term stability (Figure 4.8) as enforced by the
choice of the mean squared error as loss function.

The modelling results are overall unsatisfactory: the acceleration and deceleration
are typically not predicted timely, or not at all. This is surprising in the light of the
success reported by others (Table 4.3). Although we designed our model to match
our understanding of the interplay of hydro-meteorological conditions and deforma-
tion, the physics behind slope processes at the Vogelsberg landslide, the model was
unable to capture this relation. The deformation at Vogelsberg is driven by a com-
plex interplay of hydro-meteorological conditions, unlike most of the examples in
Table 4.3, that often includes a strong, stable driver, such as a reservoir. This lack
of such a single, strong, driver complicates the working of our data-driven model.

4.5.1 Contribution of individual variables

Due to the complexity of the operations applied to the input signal in the LSTM
layer, it is not straightforward to analyze the contribution of the individual com-
ponents to the final model outcome. As all model variations were tested (§4.4.4),
it is possible to analyze the influence of the presence of a variable by comparing
the quality of the model variations. For this analysis only model iterations with a
training period (Figure 4.6) that left at least one year left for validation were used.
Furthermore, all model variations were run multiple times to assess the robustness
of the outcome to the random initialisation.

Figure 4.9 shows the results of this analysis, and illustrates the mean squared error
over the validation period for all models including each variable. For each variable
the minimum and average mean squared error for the validation period are shown,
while the maximum mean squared error is often out of range. The thickness of the
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Figure 4.7: Result of the deformation nowcast, run of the full time frame of the
available deformation time series. The shaded time span was used for training.
Shown as thin lines are the subsequent, daily, nowcasts for benchmarks ‘D5_1" and
‘D_-WS_1". Per day four deformation nowcasts are shown, with the start of each
line being the day after the day the nowcast was issued. Note the warm-up time at
the start, shown hatched and without predictions, that is required to initialize the
moving average filter on the deformation data and fill the memory of the LSTM-
node. The final nowcast ends four days after the end of the reference measurements.
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Figure 4.8: The cumulative deformation, as predicted by the consecutive, individual
model runs closely matches the observed deformation over the full four years of
deformation measurements. The difference is calculated as ‘modelled - observed’
(y — y) cumulative deformation. The training period of the model is marked in
gray, hatched are the warm-up periods of the moving average filter and memory of
the model.

line indicates the density of results for that mean squared error, where thicker lines
at lower mean squared error indicate a concentration of models with high quality of
fit.

Models based only on SMAP/sm_profile (V5) score the poorest (highest mean
squared error) on average, but with the widest distribution, including many solutions
with a low mean squared error. The difference in performance between the variables
vanishes as more variables are introduced into the model, however, the models in-
cluding the SMAP soil moisture (V5) time series show a consistently larger range in
performance, including models with a low mean squared error. Remarkable is the
approximately equal performance between API/API (V10) and fake/fake (V11),
where the latter contains no information on the hydro-meteorological processes and
is only marginally outperformed by the Antecedent Precipitation Index (API, V10).
For models with more than four variables, there is no significant difference in model
quality for any of the variables.

4.6 Discussion

We believe the unsatisfactory performance of the model has three root causes: i)
the inability of the model to capture the complex dynamics of the system; ii) the
limited quantity of training data available to this type of problem; and iii) the
limited, noisy representation of the slope dynamics in the available remote sensing
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Figure 4.9: Violin plots of the mean squared error for model variations with one to
four variables, including the variable listed. For more than four variables the relative
importance of the individual variables to the model quality becomes insignificant.
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data. Most natural deep-seated landslides are characterized by a complex interplay
of causal (antecedent) and triggering conditions: this is also true for the Vigelsberg
landslide. However, we believe that it is exactly these challenges that we should aim
to tackle with a machine learning model approach.

4.6.1 Model configuration

The possibilities for data-driven modelling are infinite: our model is only a single
realisation of the possible combinations of variables and operations. This raises
three questions regarding the model selection: i) how to match model and process;
ii) how to validate and quantify the quality the nowcast; and iii) how to tune the
model implementation.

The major challenge for the model of a deep-seated landslide is the discrepancy be-
tween the sub-daily variations of the input (especially precipitation and snowmelt),
and a delayed, daily output (accelerated deformation). Therefore, non time-aware
models show erratic behaviour, as the consequence of sudden changes to conditions
such as snow cover and as well as (extreme) precipitation, that, in reality, do not
translate into immediate acceleration. Traditionally, the addition of groundwater
physics, smoothing the hydro-meteorological signal, circumvents these peaks. How-
ever, the addition of groundwater physics requires knowledge of the geohydrology
of the specific slope.

An LSTM-node resembles a bucket model, and was chosen such to capture the delay
between precipitation and deformation, by modelling the build-up of water in the
model. Our results showed that our model was unable to fully capture these hydro-
meteorological dynamics. For reference five alternative models were implemented
(Table 4.2), that were designed to better address the diversity of the slope, and/or
lower the number of parameters required by the model to prevent over-fitting.

The 1stm3-32 model contains two additional memory cells (buckets) in the LSTM-
node, compared to the 1stm1-32 model previously used. The concept is that the
memory cells may represent different systems or layers in the subsurface, potentially
interacting with each other. For each subsequent time step, all states are included
in the calculation of the new states, and could therefore also model interactions
between layers in hydrology, such as the transfer of between layers. The rnn1-32
and rnn3-32 models based on a traditional Recurrent Neural Network are similar to
their LSTM counterparts, with one and three memory cells respectively. However,
unlike an LSTM-node, they are unable to ‘forget’ their state on command, and are
more susceptible to unstable behaviour. The rnn11in-32 did not incorporate an
activation function and is comparable to a moving average filter with interaction
between the variables. For all three models the number of parameters is less than
for the equivalent LSTM based models.

The da-32 model resembles a linear least squares model. Variables are first sum-
marised as their average over their 32-day history, and included in eight nodes
without bias in the hidden layer of the network. The final predictions are a lin-
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Figure 4.10: Relationship between the number of model parameters and the quality
(mean squared error) of training and validation as extracted from the 147 984 model
runs. The number of parameters is related to the number of input variables. For
LSTM based networks, for example, there are four parameters per input variable
per LSTM memory cell required. Note the logarithmic scale on the x-axis. On the
left, the mean squared error is shown would the mean deformation rate be used as
a nowcast, based on all nine training periods (Figure 4.6).

ear combination of the node values. In a ‘traditional’ linear least squares solution,
a direct combination of all input variables, the number of parameters will often
outnumber the number of observations available, and was therefore not tested.

The performance of each model is shown for comparison in Figure 4.10, as function
of the parameters required. Model performance is typically optimal for models with
only a single parameter, and is comparable between the models. Like the original
model (1stm1-32), each model was re-run multiple times with a random initialisa-
tion of the seasonal noise (V11) and model parameters, to verify the consistency of
the output. Most alternative models do not outperform the average deformation
rate as predictor for the future deformation rate, as shown in Figure 4.10.

Performance metric

For early warning systems, prediction of the onset of acceleration (Figure 4.11) is
more important than the deformation quantity. However, false alarms, triggered by
insignificant accelerations, may undermine confidence in the early warning system.
At this stage of development, we would rely on professional interpretation by an
expert to limit the number of false alarms. However, the system should warn the
expert for potentially bad predictions, for example due to previously not encountered
conditions. The timing of the nowcast should allow for further analysis of the
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prediction without jeopardising precautionary measures for accelerated deformation.

This leads to five desired properties for the nowcasting system: the system should
i) predict onset of acceleration; as well as ii) the maximum deformation velocity; iii)
four or more days ahead that deformation will begin; iv) predict when the slope is
‘stable’ again; and v) quantify the certainty in the prediction. Unlike most estima-
tion problems, the timing and not only the quantity of the predicted deformation
is important to the user. An acceleration phase predicted too early or slightly late
may still trigger the desired alertness, and still serve a purpose, even though the
predicted amplitude on that day is wrong.

A ‘standard’ error metric, e.g. the mean squared error, is sensitive to the mean
as local optimum, but is unbiased and therefore stable in the long term. As an
alternative such error metric could be evaluated at ‘peaks & valleys’, the peaks of
the deformation rate, only, emphasizing extremes and disregarding their onset. With
this method there are less samples, only the extremes, but they are less correlated
and include the amplitude of the event. Although this captures the timeliness of the
extremes, it disregards timing of the onset and pattern of the acceleration phase.
Moreover, this approach requires information on the peaks and valleys, and that
those are correctly identified beforehand.

Due to the lack of information on the extremes of the deformation, we chose to use
the mean squared error as error metric. This metric ensured a long term stability,
and connected stability of the deformation nowcast, as demonstrated by the cumu-
lative deformation (Figure 4.8). As a consequence, the system preferred ‘average’
solutions, overestimating the deformation rate in stable periods and underestimating
the deformation rate in periods of accelerated deformation. For reference, the mean
deformation rate was determined over each of the nine training periods (Figure 4.6)
and used as ‘predictor’ for the remainder of the time series. This constant deforma-
tion rate ‘model’ outperforms many of the more parameter heavy models over the
validation period and its mean squared error is shown on the left of Figure 4.10.

Accelerations of the Vogelsberg landslide are known to be triggered by precipitation
in summer/autumn and by snowmelt in winter/spring (Pfeiffer et al., 2021). Sim-
ple models, based on a limited number of variables and/or with limited modelling
freedom, may not be able to cope with both driving forces. As a consequence, their
overall performance will be poor. The overall performance, however, does not reflect
the performance per season or acceleration trigger. Therefore, to make such model
behavior explicitly visible, seasonal differences in performance could be included in
the evaluation of the model’s performance for example by evaluating a model’s per-
formance metric per season as well. Training the model per season, however, will
require sufficient, dynamic training data to be available over each season, severely
reducing the length of time series available.

Derived variables

Additional variables may be derived from the direct observations. In our model, the
Antecedent Precipitation Index (API) is such derived observation, and was chosen
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to enhance the information content of the hydro-meteorological observations to the
model (i.e. provide higher predictive power to the model). This ‘feature generation’
is an important component of more traditional machine learning techniques, where
the system is not expected to derive those relations autonomously. Derived, addi-
tional features were extensively used by Krkac et al. (2020, 2017), for example, who
created additional features to capture the conditions on the landslide, or Miao et
al. (2022) who derived ten features from only two sources (rainfall, reservoir level).
Drawback of the addition of large quantities of such derived variables to the sys-
tem is that each additional time series requires additional model parameters to be
optimized.

Handling unencountered conditions

Given the limited availability of deformation measurements, most of the data is
required to train the model. Moreover, the variation in conditions is limited to the
variation in those five years. It is therefore likely that the model will encounter
conditions in operation that it had not encountered before. The continuous nature
of the model proposed, and the alternatives discussed in §4.6.1, the output for such
conditions is not bound to the previously encountered conditions.

For simple combinations of variables, i.e. of a single or a few variables, the response
may be tested empirically. Note that the full 32-day history has to be included in this
simulation. However, the response may not be so straightforward: a warm summer
day combined with hail from a thunderstorm may trigger an unrealistic ‘path’ in
the model. Therefore, for more variables, the number of potential combinations
increases drastically and may no longer be feasible to simulate.

Predictions of extraordinary responses are not necessarily undesirable, an unbound
acceleration, i.e. landslide collapse, prediction should be possible. However, the
model would preferably warn for a potential unstable state of the nowcasting system.
This could be achieved by an ensemble of models, either based on the same model,
or model variations. Especially models with different time series lengths may be
able to help pinpoint the source of the discrepancy.

Spatial distribution

Our model of Vogelsberg is based on two benchmarks, that are on two distinct
sections of the slope (Figure 4.1) that have shown to exhibit different deformation
behaviour. The southern, inhabited part of the slope exhibits constant deformation,
with limited acceleration in wet periods. In contrast, the benchmark on the northern
part of the slope shows strong accelerations and deceleration as a delayed response
to strong precipitation (Pfeiffer et al., 2021). Although our models are unaware of
this spatial relationship, it is found empirically during training as the shared LSTM-
node, representing the slope processes, is weighed differently for each benchmark.

As an alternative, a location index could be specified, for example as binary indicator
of the landslide section, or as continuous signals such as a distance to the centre.
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Figure 4.11: Three acceleration events (#1, #2 & #3) at the Vogelsberg landslide,
as identified by Pfeiffer et al. (2021). The fourth acceleration period (#4) was
identified in the data acquired after Pfeiffer et al. (2021).

Instead of two or more predefined outputs from the same model, a single model may
handle different benchmarks differentiated by additional input variables encoding
their position within the system. However, given the shallow model design, care
should be taken to design the model such that this index works as a scaled multiplier
of the hydro-meteorological conditions.

4.6.2 Limited number of distinct events

Over the full time span of the measurements, four distinct acceleration periods can
be identified (Figure 4.11). Especially these acceleration periods are of interest to
an early warning system, as they mark the start of a period of accelerated defor-
mation and associated hazard. Although the periods of accelerated deformation are
comparable in length to the periods of continued, but reduced, deformation, the
acceleration events are much shorter (Figure 4.11). Therefore, these periods are
underrepresented in error metric during training and validation. However, training
on these four periods alone leave insufficient variability to describe the system and
reliably fit the required model parameters. Furthermore, the episodic deformation
behaviour poses a challenge to the prediction system since the forcing variables on
the slope do not reflect such sudden changes observed in the deformation behaviour,
as shown in Figure 4.3.

Length of training

Given there is more than a single degree of freedom in the model, without prior
knowledge of the process, there is no predictive power in a single acceleration event.
Hence, multiple events are required to properly train complex models, in the absence
of constraints on the process/model. As a consequence, due to the limited variety
of events in the training data, the predictive power of the nowcasting system may
be reduced, due to over-fitting on the characteristics of these events only.
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Figure 4.12: Length of the training region, aggregated to (approximate) years, com-
pared to the quality of fit of the model, measured as the mean squared error. An
increase in model fit is visible with the increase in training length, however, most
models are outperformed by the mean deformation rate as a predictor.

To test the effect of the training length on the models, the models were trained
on nine of the ten training periods identified in Figure 4.6 that had a least a year
left for validation. The mean squared error, measured on the training as well as
validation period, is shown in Figure 4.12. The results are consistent between the
models: all models show that as the training period increases, the quality over the
training period decreases (dashed line, increasing mean squared error) due to the
increased variability of the events therein. Likewise, the quality over the validation
period increases (solid line, decreasing mean squared error), as the model generalizes
better. This is also reflected in the lower standard deviation for validation over
longer training periods. Hence, a longer training period makes the system more
robust against the variations encountered by the system.

To train and validate the nowcasting system, the time series was subdivided in cal-
endar years measured from the start of the measurements. An alternative, common
subdivision would be in hydrological years or water years, that are typically defined
to be from October 1 to September 30 and divided by the precipitation minimum
(Lins, 2012). This subdivision is typically applied to cut the data in a hydro-me-
teorologically quiet period of the year. However, the strong deformation events in
period 1 and 2 overlap with this subdivision. Furthermore, with this subdivision,
only three periods would be available, instead of four. Moreover, Parajka et al.
(2009) show that the period of minimum precipitation cannot be pinpointed to a
single winter month. Therefore, the decision was made to align the training years
with the measurements instead.
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Noise reduction of the deformation signal

Essential to the success of the nowcast are the properties of the signal to be pre-
dicted. The effect of noise in the deformation signal on the modelling is twofold:
first, random perturbation complicates the training by masking the best solution,
and, second, leads to an underestimation of the final quality of the model during
validation. Hence, the noise in the deformation signal defines the upper limit for
the quality of the deformation estimate. Up-slope deformation, present in the raw
deformation time series, was considered to be unrealistic and therefore noise by defi-
nition. Under the assumption that the noise is unbiased, the noise will be reduced in
averaged samples. Therefore, a moving average filter was applied to the deformation
time series with increasing length until no negative deformation remained.

The model was developed with the requirements for an operational system in mind,
restricting the system to only use historic observations at any point in the process.
Inclusion of future samples would require the system to react to future conditions
that have not (yet) been observed on the slope: any filtering, such as smoothing,
should not drag future observations back in time. Therefore, the moving average
filter cannot be centered, and averaging is applied to the preceding 31-days, rather
than +15 days around the current time step as would be possible in re-analysis.

The variation in the deformation signal at Vogelsberg is relatively small, in deviation
from a long term trend. Due to the milimeter-scale measurement uncertainty in the
deformation measurements, the deformation signal is dominated by noise on the
short time scale of days to weeks, the relevance of a deformation prediction on a
daily basis is doubtful. Furthermore, due to the inertia of the landslide body, as
well as smoothing of the deformation measurements, accelerations and decelerations
are spread over adjacent days (Figure 4.6) and the amplitude of the acceleration is
lost. For a successful, daily application, a clear separation between events and noise
is required (higher signal to noise ratio), either due to a faster process, or due to
reduced noise in the deformation observations.

4.6.3 Input variables

The variable selection in Table 4.1 was compiled based on our knowledge of the
physics behind the landslide process, as well as the availability and continuity of the
data. With the ambition for a future, regional implementation in mind, the variables
preferably come from satellite remote sensing observations rather than local, field
sensors. However, we did not succeed in a fully remote sensing driven operation,
due to the limited availability of such operational products. Especially deformation
observations from space (‘InSAR’) were found to be promising but we were unable
to replace our local deformation time series with the noisier satellite deformation
data.
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Availability of variables

The model was designed under the assumption that data from all sources is contin-
uous and readily available to the system. Traditionally, local weather and ground-
water monitoring stations provide timely, local, high quality observations. However,
such monitoring stations are not available everywhere. Out of the variable selec-
tion (Table 4.1) only GPM (V2) and SMAP (V5) satisfy this condition and provide
operational data products, that could be integrated in a nowcasting solution.

For a successful integration of satellites observations in an operational nowcasting
system, a high, sub-weekly, update frequency is required. However, most remote
sensing products were available at a delay of days to weeks, still too late for integra-
tion in a nowcasting system. As a consequence, the variable selection in Table 4.1
contains variables that are only available in yearly iterations (e.g. GLEAM).

Satellite radar interferometry (InSAR) is a proven method for landslide deformation
monitoring (Colesanti and Wasowski, 2006; Hilley et al., 2004). However, especially
mountainous environments create a complex interplay of local atmospheric effects
and topography (Hanssen, 2001). A feasibility study showed that the slope orien-
tation and topography would allow for the application of Sentinel-1 satellite radar
deformation measurements at Vogelsberg (van Natijne et al., 2022a). Further pro-
cessing of Sentinel-1 data demonstrated the presence of persistent scatterers on and
around the houses at the slope, the objects of primary interest. However, the use of
satellite based InSAR as source of the deformation measurements was not feasible,
due to the low temporal resolution, as well as the noise in the deformation signal
(Zieher et al., 2021).

Data continuity

Temporal continuity of input data is required to provide the model with consistent
samples of the slope conditions. Short periods of missing data, e.g. days, may be
forward filled, but will reduce the data quality for the full integration length (i.e.
32 days). Observations received late may still be updated in later iterations, to
mitigate this effect. However, what to do with missing data: a single day or a whole
season, or the termination of a data source, for example due to satellite failure? As
a fallback one could model and train systems with different variable combinations in
advance, and nowcast based on the best model available for the variable combination
available in the 32 days prior.

The LSTM-nodes may be implemented in a stateful fashion, where the state of the
hidden nodes is retained after each prediction. Such implementation is more com-
putationally efficient, as each subsequent nowcast will require only a single pass over
the most recent data. In such implementation, however, discontinuous or erroneous
variables may have a lasting effect on the model memory. Therefore, the system
was based on continuous re-initialisation with a 32-day observation history instead.
The computational drawback is limited, given the small scale of the model, and is
acceptable in the light of the greater operational flexibility.
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Variables not related to the hydro-meteorological cycle

Indirect observations of the hydro-meteorological cycle may still prove valuable to
the nowcasting system. The temperature, for example, may serve as a proxy indi-
cator for evaporation. Temperature is related to the seasons in most climates, and
therefore there will be a correlation with the season (day-of-year) as well. However,
extra care should been taken including variables that describe the typical/average
condition, such as the season. Such variables do not capture the current dynamics
of the system and may only describe average conditions, and constrain the system
in extraordinary circumstances. The Vogelsberg landslide is known to be sensitive
due to changes in the ground water level, irrespective of the season.

Input variable selection

The success of a data-driven model lies in the (expert) selection of the input data.
Unrelated variables make the system prone to spurious correlations, especially with
limited training data compared to the degrees of freedom in the model or if the
method is unable to discard or otherwise ignore sources with low information con-
tent. Furthermore, unrelated input variables, or even just noise, should not yield
sensible results: “garbage in, garbage out”.

The effect of noise in the conditions was tested by the inclusion of a Brownian
motion signal (see §4.4.4), that does not have a relation to the system, except for
basic properties (i.e. mean, standard deviation, autocorrelation period) similar to
the input variables. Any model run including this signal should not outperform an
otherwise comparable model without this variable. However, many of the models
did, especially when many (> 5) variables were included, where it helped to create
unique variable combinations and allowed the model to over-fit.

Parameters on geology and topography were left out of the selection, and assumed
static. However, neither were land cover changes included. In the case of Vogels-
berg, it was known that little changes were to be expected over the time frame of
the measurements available. An alternative to the inclusion of such variables is to
frequently re-train the model on a recent section of the time series only to adapt
to changes. However, although the system will adapt to changing dynamics, re-
learning will mask the drivers behind long term effects, and/or adapt too swiftly,
for example to seasonal differences, reducing the overall model quality. Land cover
changes will not be uniform across slopes, as well as act on different time scales
(e.g. neglected pasture fields versus forest fires), and may not be trivial to capture
by remote sensing. Moreover, especially in regional studies, the land cover and land
cover change may not be comparable between slopes.

To limit the number of variables, only the observation or modelling result closest to
the Vogelsberg landslide was used from regional products. However, as Pfeiffer et
al. (2021) found, precipitation and snow-melt higher up in the catchment is relevant
for the system (Figure 4.1). Based on the typically low (~ 10 km) spatial resolution

of the variables (Table 4.1) it is justified to consider a single observation only. When
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higher resolution observations are added, this should be reconsidered, and additional
points may be added as extra variables.

4.6.4 Outlook

Our results show that deformation nowcasting is an open challenge. Although
well monitored, the Vogelsberg landslide is a complex system, and therefore not
a straightforward test case. Our results are inconclusive whether our method could
work on other deep-seated landslides. More direct dynamics, and/or stronger and
more frequent acceleration periods would help constrain the system. The inclusion
of field data, such as groundwater level (Krkac et al., 2020), might be another ap-
proach to bypass modelling of the most volatile hydrological processes. The ideal
slope to further develop a machine learning based nowcasting method has the fol-
lowing characteristics: i) a dynamic deformation behaviour; ii) is controlled by
hydro-meteorological conditions, with limited delay; and iii) has field monitoring
data for reference and training.

For short time series machine learning methods are known to be outperformed by
basic statistical methods (Makridakis et al., 2018). Therefore, our current challenge
to nowcast deformation time series may be partially solved in the near future by
the natural extension of time series. Furthermore, continued development of the
(satellite) data products by their providers may enable new possibilities. Desir-
able improvements include timeliness of delivery of data products, as well as their
precision and spatio-temporal resolution.

Notable is the recent publication of the first version of the European Ground Mo-
tion Service data set (Crosetto et al., 2020), a pan-European InSAR product. This
data set will allow for experimental, regional, weekly nowcasting systems based on
a replay of historic observations. Regional applications will enhance training pos-
sibilities and may help overcome the hurdle of limited deformation time series, as
multiple slopes are monitored simultaneously. However, to ‘learn’ from the dif-
ferences between slopes, and enlarge variation in training data, events have to be
largely uncorrelated.

4.7 Conclusions

Although Végelsberg is a well monitored landslide, the number of recorded acceler-
ation events, within the available four years of daily deformation measurements, is
limited compared to other machine learning problems. A simple, time series capable
model with limited parameters was required, therefore, we designed an LSTM-based
machine learning algorithm to nowcast the deformation of the Vogelsberg deep-
seated landslide from the conditions on the slope. The algorithm was trained on
maximum three years of deformation observations and satellite observations of rel-
evant hydro-meteorological conditions at the slope. The best model configuration
and variable combination was determined by cross-validation with 147984 model
variations.
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Although rooted in the landslide dynamics, even our best model was incapable of
capturing the versatility of responses of the Vogelsberg landslide, and convincingly
predict the deformation rate at Vogelsberg four days ahead. Especially the four
acceleration events were not predicted timely, although the mean squared error
successfully constrained the average deformation rate of the prediction to that of the
training time series. The Vogelsberg landslide showed versatile dynamics, where the
full range of slope dynamics and responses to the hydro-meteorological conditions
were not present in the available data. Therefore, the slope processes were too
complex to model the landslide deformation from satellite surface observations, given
the limited observations of acceleration events. Hence, the machine learning model
was incapable of ‘understanding’ the relation between conditions and deformation.

Deformation nowcasting will be a necessity for regional or even continental landslide
monitoring and early warning systems. Satellite remote sensing has the potential
to provide longer time series, over wide areas. This leads us to the general rec-
ommendation for the application of machine learning to reactivating, deep-seated,
landslides: improve data quality, and lengthen the deformation time series. The
ideal landslide for further development of deformation nowcasting: is highly dy-
namic (many events to train on), has a limited delay between forcing conditions
and deformation, is well monitored, and does not undergo catastrophic failure.
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4.8 Appendix

4.8.1 Data
See Figure 4.13.
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Figure 4.13: Correlation between variables.

4.8.2 Total Station
See Figure 4.14.

4.8.3 Models
State-of-the-art
See Table 4.3.
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Deformation signal after moving average filter at benchmarks D5_1 and D_WS_1
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Figure 4.14: Smoothed deformation signal, shown for an increasing length (in days)
of the moving average filter. The filter only includes historic observations, and is
not ’centred’, to match the properties of an operational system. The increasing time
lag is visible for the subsequent filter lengths by the right shifting of the velocity
peaks. For initial observations, a filter length of half the final length of the filter
was accepted.
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Table 4.3: Examples of different integration methods, linking hydro-meteorological conditions to deformation time series,
and associated case studies. Most studies are at deep-seated landslides that did not undergo catastrophic collapse. Where

applicable the reference methods used in the paper are listed in brackets.

Updated after van Natijne et al.|(2020).

Case study Obs. driving forces Deform. meas. Notes
Miao et al.|(2022) Baishuihe, China  Rainfall, reservoir level GNSS
Zhang et al.|(2021) Fengning, China  Rainfall, toe excavation (incl. Total station, inclinome-

Deng et al.|(2021)
Li et al.|(2021)
Liu et al.|(2020)
Krka¢ et al.|(2020)
Bossi and Marcato|(2019)
Li et al.|(2019)
Liu et al.|(2021)¢|
Wang et al.|(2019)
Xie et al.|(2019)
Yang et al.|(2019)
Zhang et al.|(2019)
Li et al.|(2018)
Miao et al.|(2018)
Huang et al.|(2017)
Krkac et al.|(2017)
Logar et al.|[(2017)
Ma et al.|(2017)
Wen et al.|(2017)
Zhu et al.|(2017)
Cai et al.|(2016)
Cao et al.|(2016)

Zhou et al.|(2016)
Jiang and Chen|(2016)
Lian et al.|(2015)

Ren et al.|(2015)

Liu et al. (2014)

Chen and Zeng|(2013)

Du et al.|(2013)

Lian et al.|(2013)
Corominas et al.|(2005)
Neaupane and Achet|(2004)

Hollin Hill, United Kingdom
Baishuihe & Bazimen, China
Baishuihe, Bazimen, Baijibao,China

Kostanjek, Croatia
Passo della Morte, Italy
Baishuihe, China
Longnan, China
Tanjiahe, China
Laowuji, China
Baishuihe & Bazimen, China
Majiagou, China
Baishuihe, China
Baishuihe, China
Baishuihe & Bazimen, China
Kostanjek, Croatia
Ventor, United Kingdom
Zhujiadan, China
Shuping, China
Kualiangzi, China
Xiluodo, China
Baijiabao, China
Bazimen, China
Baishuihe & Liangshuijing, China
Baishuihe & Bazimen, China
Shuping, China
Baishuihe, China
Super-Sauze, France
Baishuihe, China
Baishuihe & Bazimen, China
Buishuihe, China
Vallcebre, Spain
Okharpauwa, Nepal

blasting)

Rainfall, acoustic
Rainfall, reservoir level
Rainfall, reservoir level
Rainfall, groundwater
Rainfall, groundwater
Rainfall, reservoir level
Rainfall

Rainfall, reservoir level
Rainfall, toe excavation
Rainfall, reservoir level

Rainfall, reservoir level
Rainfall, reservoir level
Deformation
Groundwater (change), season
Rainfall

Rainfall, reservoir level
Rainfall, reservoir level
Rainfall

Rainfall

Rainfall, groundwater, reser-
voir level

Rainfall, reservoir level
Rainfall, reservoir level
Rainfall, reservoir level
Rainfall, reservoir level
Deformation
Deformation
Deformation

Rainfall, reservoir level
Undisclosed?
Groundwater

Rainfall, groundwater

ter, fissure meter
Inclinometer
GNSS

GNSS

GNSS
Inclinometer
GNSS

InSAR

GNSS

Total station
GNSS
Inclinometer
GNSS

GNSS, inclinometer
GNSS

GNSS
Crackmeter
GNSS

GNSS

GNSS
Extensometers
GNSS

GNSS

GNSS

GNSS

GNSS

GNSS
Extensometer
GNSS

GNSS, inclinometer

Extensometers
Autoextensometer

Physics based

%Analysis, allows for prediction.



Chapter 5

Synthesis

In this project we set ourselves the goal “to create a system for nowcasting of
landslide deformation at Vogelsberg based on readily available remote sensing data
using machine learning techniques”. At the start of the project, we found ourselves
strengthened by the confidence of Logar et al. (2017): “for such landslides [with
displacement monitoring systems, red.] it shouldn’t be too difficult [sic] to study
the evolution of its displacements vs. time taking into account relevant influencing
parameters with the aim to make the accurate short term prediction of their further
movements.” The complex slope dynamics at the Vogelsberg, however, proved to
be a challenge.

Landslides are just one of the many processes that may be monitored from space, and
the Vogelsberg was only one of the Open Air Laboratories (OALSs) in the OPERAN-
DUM project (Figure 5.1). Although the natural hazards in OPERANDUM are very
diverse, their common denominator is the relevance of hydro-meteorological forc-
ing. Furthermore, they share the necessity for monitoring. Although the specific
requirements for monitoring may be different at each OAL, a standardised practice
in the collection and ingestion of data is desired.

The implementation of Nature Based Solutions (NBSs), as envisioned in the OPERAN-
DUM project could be simplified to a five-step procedure that can be applied to nat-
ural hazards at any scale: detect, track, identify, mitigate, and verify. Specific to
deep-seated landslides this procedure would be as follows: detect landslide systems
by their (ongoing) deformation or by landscape patterns as a result of deformation;
track the slope for reactivation by monitoring deformation; identify the underlying
processes, by linking the conditions on the slope to landslide deformation; mitigate
the hazard by the implementation of (nature-based solutions) targeting the trigger-
ing factors previously identified; and verify the working of the mitigation solution
by continued monitoring.

It is, however, impossible to design, implement and monitor an experiment within
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Figure 5.1: Open-Air Laboratories (OALs) within the OPERANDUM project. (Map
taken from OPERANDUM deliverable 1.2.)
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the four year time-span of the OPERANDUM project. Furthermore, the small scale of
the experimental intervention at the Vogelsberg, made it largely impossible to draw
conclusions at slope scale. Nevertheless, the effectiveness could be estimated from
the local effects, via surveys around the intervention. However, due to the scale of
this analysis, there was little role for satellite monitoring.

This lack of success in the implementation of remote sensing for landslide nowcast-
ing, however, should not overshadow the possibilities of remote sensing. After all,
remote sensing does provide all ingredients for a nowcasting procedure and has a
positive track record from continental scale vegetation monitoring (Biittner, 2014) to
the small scale analysis of individual industrial facilities (Villamil Lopez and Stilla,
2021). Domain expertise, on the specifics of the natural hazard and its surround-
ings, may help pinpoint variables of extra interest. Furthermore, the conclusion of
Chapter 4, that machine learning requires an extensive, diverse and high quality
training data set, provides a reference frame for future attempts.

This synthesis chapter covers two elements from this thesis, that deformation now-
casting experiment at the Vogelsberg has revealed. First, Vogelsberg specific con-
siderations that do not necessarily transfer to other slopes will be reviewed. Second,
challenges regarding the data processing chain, that are more generally applicable
to modeling problems, will be discussed. We made it work, however, there are
improvements possible to accelerate geo-information workflow.

5.1 Modelling choices at the Vogelsberg

Three design decisions, embedded early-on in this study, are reflected upon in order
to ease and improve future machine learning modelling research. The considerations
are: 1) the applicability of the long short-term memory model to reactivating, slow-
moving landslides; ii) the domain of validity of our models; and iii) the choice not
to include historic deformation data as input to the model.

5.1.1 Applicability of long short-term memory model

Although various other models were tested (§4.6.1), a Long Short-Term Memory
(LSTM) based model proved to provide the best results with minimal variables
(84.5). LSTM (Hochreiter and Schmidhuber, 1997) was designed to cope with train-
ing problems encountered in long time series. Although more stable, and easier to
train, the output of the LSTM nodes is less intuitive, and yields a complex response
to the input variable time series. Therefore, two topics require a review: i) interac-
tion of the model with the input variables; and ii) the performance of the models
compared to trivial models.

Input variable selection and preparation was a manual, expert driven, exercise. Due
to the limited surface displacement training data, automated extraction of relevant
input variables, i.e., end-to-end deep-learning, has not been scratched upon. The
effectiveness of our selection of input variables has been reviewed in §4.5.1, indicating
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soil moisture as the most promising variable. In the absence of sufficient, redundant
surface displacement training data, expert feature creation is required. Moreover,
expert selection helps to understand the model and helps prevent the creation of
a model based on spurious correlation (Kirchner, 2006). Meyer et al. (2019), for
example, demonstrate the consequences of model over-fitting due the inclusion of
geospatial variables not representative to the process.

In an attempt to create an enriched input variable with improved predictive power,
the Antecedent Precipitation Index (API) was calculated and added as a separate
variable (§4.4.2). As the process it describes is known to be related to the landslide
process, such information rich variables were expected to help the model training.
However, the addition of the API to the input variables did not have the desired
effect, and did not lead to an improvement of the quality of the prediction (Fig-
ure 4.9). In hindsight, the addition of the API, that acts as a bucket model, may
counteract a similar, desired bucket-like effect of the LSTM nodes.

The LSTM nodes activate their memory cells based on a trigger in the variables. In
another application of LSTM nodes, namely natural languages, the nodes are used
to model the probability of word sequences (Sundermeyer et al., 2012). Contrary
to this application, in our setup there is a filling of the bucket, but not a single
signal that indicates a critical stage that might initiate acceleration. Therefore,
there is limited added value in the ‘gates’ of the LSTM node for our application,
also indicated by the similar performance of the traditional recurrent neural network
(rnn1-32, Figure 4.10) that does not have them.

Chatfield (1993) hinted on the importance of the comparison between predictions
based neural networks and those based on traditional methods. As example, Chat-
field provided a financial model, that, although ‘optimal’ had curious coefficients
upon further inspection. Our models were compared against the mean deformation
(Figure 4.10), and were shown to be outperformed by mean deformation as predic-
tor based on the mean squared error. However, we would like to add the need for
a ‘soft’ verdict by a domain expert. The mean deformation does not convey the
variability in the deformation, nor the timing of such changes, and is therefore not
a helpful insight in landslide deformation hazard management (Kirchner, 2006).

Unresolved in this thesis is the link to true deterministic modelling and training
such model on this data. Crosta et al. (2014), for example, calibrated a physics
based model based on the deformation data with partial success.

5.1.2 Model domain

During operation, nowcasting systems may encounter previously unseen conditions.
Extreme precipitation, for example, that had no comparable counterpart in the
training phase, should still result in a sensible prediction and/or warning of a po-
tentially unstable prediction. Therefore, knowledge on the limits of the validity of
the model is required. Furthermore, the model could be purposely operated on sim-
ulated conditions such as provided by climate models. Moreover, the current model
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was based on two point measurements only, and it could be beneficial to extend the
knowledge gained from the deformation time series to a spatially continuous model
of the slope. Each of these use-cases requires an estimate on the validity of the
prediction.

The model validation performed in this thesis, is a variation of cross-validation
with both Leave-Time-Out and Leave-Variable-Out strategies (Meyer et al., 2018).
In a Leave-Time-Out strategy a subset of the time series was used for training
(Figure 4.6), while the rest was used for validation. The Leave-Variable-Out strategy
was evaluated in §4.5.1 by the evaluation of all model combinations. However, in
this context the short surface displacement time series used for training did not
contain a redundant series of events. Therefore, every Leave-Time-Out run had to
predict one or more previously unseen acceleration phases but could also not be
validated on successful recall of comparable situations.

The lack of recurring events within the training data could be circumvented by
training on simulated slopes responses. A deterministic, physics based model, could
be run on a large number of combinations of conditions, after which the simulated
slope response is used to train the model. This technique was applied for the fore-
casting of the stability of dikes by Jamalinia et al. (2021), and to landslide slopes by
Biniyaz et al. (2022). As there was no physical model available of the Végelsberg,
we were unable to test the stability of the nowcasting system based on synthetic
data. Question is, however, if such model could be formulated given the complex
interactions at Vogelsberg as identified by Pfeiffer et al. (2021, 2022).

The sparse surface displacement time series do not convey the spatial variability
in the slope (Figure 4.1). A simulation based training technique could provide
spatially continuous model training data at the cost of prior knowledge of the spatial
discontinuity. However, due to the required prior knowledge of the variability, such
modelling is mostly useful as proof of concept. Including spatial variation, however,
requires some form of spatial encoding of the desired slope position. Either the
spatial encoding, in the form of an extra variable, or the model should account for
the spatial differences on the slope, such as geological variation.

Inspiration may be drawn from land cover classification systems that have shown
to be capable of describing both sharp and gradual transitions between different
land cover types. Kathmann et al. (2022), for example, showed that training on
two distinct vegetation covers may still lead to smooth classification, including clas-
sification of intermediate vegetation types. However, this conclusion could only be
drawn after expert consultation, and may not generalize to spatial variability in the
landslide process. In a study designed for continental and hence spatially diverse
models, Meyer and Pebesma (2021) defined a model’s ‘area of applicability’. Their
accuracy estimate, delineating the region of applicability, was based on an a dissimi-
larity index of the variables encountered during training and the current input to the
model. This estimate, however, was solely based on the input variables, and unless
the input includes information on the slope, does not cover its spatial variation.
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5.1.3 Exclusion of the deformation signal

Failure predictions based on satellite radar deformation time series only were not
possible due to the too low repeat frequency of acquisitions (e.g., 6-12 days for
Sentinel-1). Increase in deformation data availability possible by additional satel-
lites and different acquisition strategies may change this in the future. For the
10" ESA Earth Explorer mission opportunity a geostationary radar satellite mis-
sion, HydroTerra, was proposed. The geostationary orbit would enable it to provide
sub-daily observations (Calvet et al., 2019). Such observations would benefit both
shallow and deep-seated landslide monitoring, due to the very high repeat frequency
of observations. However, even if it would have been selected as candidate mission,
we are at least a decade away from operational systems, notwithstanding the com-
plex interaction of the observation scenario with the mountainous topography.

Our model was developed with this lack of adequate deformation time series in mind,
and with the strict design decision not to include the current deformation rate. At
the Vogelsberg, however, daily deformation updates are available. Knowledge of a
recent, known status is likely beneficial to the prediction of subsequent deformation.
Models including recent deformation resemble a Kalman filter setup, where a model
run is an update to a known, recent state (Kalman, 1960). However, due to the small
day-by-day changes, such configuration comes with increased risk of inadequate error
metrics. Furthermore, there is a limited number of tipping points in the data, only
three for every acceleration event, to train and validate the system on.

However, the inclusion of previous deformation could be useful to restrict the possi-
bilities of the system and force the model to chose the relevant path. Such steering is
possible in neural networks, where in deeper networks there may be multiple routes
through the network. As an alternative, the system could be designed to predict
change (of deformation behaviour), rather than exact deformation rate, and hence
be independent of the current deformation rate.

To assess the model’s performance, it should be verified by a comparison to a trivial
model (Chatfield, 1993; Makridakis et al., 2018). Chapter 4 demonstrated that
average deformation rate has comparable or better predictive power than most of
the machine learning models. This demonstrated the ineffectiveness of our models
in the prediction of Vogelsberg landslide deformation. The comparison is fair, as
both the machine learning model and the average deformation are unaware of the
current deformation characteristics.

The 1stm1-32 model (§4.6.1) was re-run on model configurations including a historic
deformation rate time series. Including the deformation history as model input did
severely reduce the mean squared error. For comparison, the mean squared error
was calculated for the trivial prediction of constant deformation, i.e., tomorrow
will be equal to today. The mean squared error under the assumption of constant
deformation was calculated as:

n 2
MSE — 2= (1= 1) ~ 0.006 cm?2/year?, (5.1)
n
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Figure 5.2:  Violin plots of the mean squared error for model variations of the
1stm1-32 model (§4.6.1) with one to four variables, based on the variables listed in
Table 4.1 complemented with the deformation time series ATS/D5_1 and ATS/D_WS_1.
Models based solely on or including the deformation history as forcing parameters to
the model, outperform all other model combinations (compare Figure 4.9). Statistics
for models with multiple variables are biased, as the number of experiments is
unequal. An equal number of experiments, however, would only strengthen this
conclusion.
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with deformation rate r at time step t for n total time steps. This near-zero error
is much smaller than the approximately 4 ¢cm?/year? obtained by the best model
(§4.5), the mean deformation (1-7 cm?/year®, Figure 4.10), and even below the
average of models including recent deformation observations (Figure 5.2). Similar
values were obtained for a forecast 2-4 days ahead.

5.2 Data availability

The various satellite constellations orbiting our earth acquire terabytes of data ev-
ery hour (Copernicus, 2018). After sensing and initial processing, this data is made
available to potential users for further integration. However, large scale, free avail-
ability of imagery is a relatively new occurrence, that has benefited time series
analysis (Zhu et al., 2019). For example, publication of the forty year long archive
of Landsat data only started in 2008 (Wulder et al., 2016).

To be ‘available’, data has to be: findable, accessible, interoperable and re-usable.
These requirements form the FAIR data principles for sharing research data and
findings (Wilkinson et al., 2016). We consider data to be ‘readily available’ if this
process may be completed without special permission, and proprietary or otherwise
restrictive licenses.

In practice, the data distribution process is different for each satellite mission. This
form of data handling is outdated to cope with the continuous data stream involved
with contemporary satellite remote sensing. Furthermore, the adaptation of new
sources is limited by the necessary change of working routines. The growing num-
ber of satellite missions (Belward and Skgien, 2015) introduces ever more different
routines.

The heterogeneous data landscape complicates automated processing, and is a bur-
den in the initial stages of research. As a consequence, many users will not get
beyond the point of manual file selection and processing, and are unable to fully
exploit the potential of repeat acquisitions by satellite remote sensing. Therefore,
processing of large regions, or consistent processing of many small regions, is only
within reach for a limited group of users and businesses. Meanwhile, vendors have
demonstrated their ability to reduce the distribution time of Sentinel-1 satellite
radar imagery from hours to within two minutes of sensing (Punsvik, 2022). Such
developments highlight the requirement for a streamlined data distribution process.

The success of tools like Google Earth Engine (Gorelick et al., 2017) demonstrates
the power of readily available data. Unlike the ‘traditional’ route of manual scene
selection, downloading and pre-processing, such services have all data directly avail-
able to the user to work with. In addition, the data archive and computational
facilities are conveniently co-located and taken care of. Revolutionary was this
combination of: i) direct access to global, full time series of satellite remote sensing
data; ii) co-location of data and computational resources; and, iii), fast large scale
analysis, via an image pyramid.
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However, the use of external tools is not always favourable. There could be legal
constraints on the data or algorithms used and external tools may not support
non-standard variables, such as complex radar imagery, local coordinate systems,
or regional analysis at full resolution. These situations require a more traditional
route of data processing. Recent developments, however, make the traditional route
more convenient and level out many of those differences.

Here we will discuss this three stage process associated to data availability of open,
freely available, satellite data products: how to find, access and interpret data in
earth observation. Note that streamlining data availability is a rapidly developing
field. Consequently, this discussion focuses on major trends and does not claim to
be exhaustive.

5.2.1 Find data

A search for data will typically start from prior knowledge of the topic of interest,
and relevant variables. Careful, expert selection of variables relevant to the process,
and understanding of their limitations, has proven to be important (Meyer et al.,
2018, 2019). The variable selection is then combined with expert knowledge of the
operational satellite missions, their sensors, and available products.

Individual data providers must then be consulted on the products available for the
period and region of interest. Data providers provide web interfaces, portals, that
may be queried to find data products relevant to the region of interest. Often,
products may be filtered based on other requirements as well, such as a maximum
cloud coverage or temporal limitations. The specific portals encountered will vary
by niche in the field.

Well known portals for raw satellite observations are USGS EarthExploreri (USGS,
2022a), the Copernicus Open Access Hubi (Copernicus, 2022¢), also known as Sci-
Hub, and NASA Earth Data® (NASA, 2022b) as integration of NASA’s various
Distributed Active Archive Centers* (NASA, 2021), (Sudmanns et al., 2019). Their
images often require further processing to provide the quantities desired for physical
modelling.

Various preprocessed interpretations of those images are available as ready made
products. Furthermore, there might be multiple providers of the same quantity
(e.g. precipitation, see Table 2.2). A variety of portals for processed products exist,
such as the topic specific Copernicus Land®, MarineS, Atmosphere’, and Climate®
data services (Copernicus, 2022¢,d,a,b). Portals may also be product specific, such

Thttps://earthexplorer.usgs.gov/
?https://scihub.copernicus.eu/
Shttps://search.earthdata.nasa.gov/
4https://www.earthdata.nasa.gov/eosdis/daacs
Shttps://land.copernicus.eu/
6https://data.marine.copernicus.eu/
"https://atmosphere.copernicus.eu
8https://climate.copernicus.eu/


https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
https://search.earthdata.nasa.gov/
https://www.earthdata.nasa.gov/eosdis/daacs
https://land.copernicus.eu/
https://data.marine.copernicus.eu/
https://atmosphere.copernicus.eu
https://climate.copernicus.eu/
https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
https://search.earthdata.nasa.gov/
https://www.earthdata.nasa.gov/eosdis/daacs
https://land.copernicus.eu/
https://data.marine.copernicus.eu/
https://atmosphere.copernicus.eu
https://climate.copernicus.eu/

94 CHAPTER 5. SYNTHESIS

as for NASA’s Global Precipitation Measurement® (GPM) (Hou et al., 2014; NASA,
2022a).

The portals typically have an Application Programming Interface (API), that en-
ables automated queries to the system. Experienced users may develop tools to
automate this process of data discovery, although this will be specific to each por-
tal. These interfaces are typically based on XML or JSON responses to queries
transmitted over HTTP, although object storage and FTP based archives, indexed
as directories, are around as well. Note that where multiple portals provide the same
or similar data, their index and access methods to the same data may be different.

Recent developments aim to unify this interface between data providers. While the
Open Data PI"OtOCOlE, OData (2022), employed by Copernicus is a standardised
protocol, it is not tailored to geospatial use. A dedicated geospatial standard, Spa-
tioTemporal Asset Catalogs'', STAC (2022), first launched at the end of 2022, is
currently in use by NASA and Microsoft Planetary Computer. The STAC stan-
dard is less flexible than its predecessors, but more straightforward to query. It
aims to align with upcoming standardisation by the Open Geospatial Consortium'?

(OGC, 2022), and provide an intuitive data index, that is both human readable and
machine interpretable.

Although there is a trend to simplify and standardise data discovery, the process
is driven by the operator’s knowledge of the products available. Therefore, it will
not replace the expert selection variables that are likely relevant to the process of
interest. However, standardised data discovery will make it easier to automate the
data discovery process and will therefore contribute to a more streamlined data
availability.

5.2.2 Access data

Once the desired data products are identified, their contents have to be retrieved
for further processing. All previously mentioned data portals offer their data for
download as well. However, due to the limited bandwidth between data distributor
and user, downloads may span multiple days to weeks, especially if large collections
are fetched at the beginning of the project. Furthermore, offline data storage at
the portals, in the form of tape, is still common for older, less frequently requested
data. These products stored on tape are provided on request, and are not instantly
available for download, although they will typically be available for download within
the hour.

Third parties may also provide data archives, such as the twenty national mirrors'?

of the Copernicus program (Grazia Castriotta, 2022; ESA, 2022a). In a develop-
ment accelerated by the Copernicus Data and Information Access Services (DIAS)

9https://gpm.nasa.gov/data/directory
10https://www.odata.org/
Hhttps://stacspec.org/en
2https://www.ogc.org/docs/is
13https://sentinel.esa.int/web/sentinel/missions/collaborative/existing-planned
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(Copernicus, 2018), multiple cloud providers collected similar archives of satellite
data that are collocated with the computing services they offer. Although these
services do not always offer the full archive, the collocation of the data and process-
ing power accelerates the retrieval process due to the very high, local bandwidth
between storage and computing facilities. Other examples, not bound to the DIAS
development are the data archives in Google Earth Engine, on Amazon Web Ser-
vicesf (AWS, 2022), and on Microsoft Planetary Computer'® (Gomes et al., 2020;
Microsoft, 2022).

Regional to global analysis is possible thanks to the fast access to the archives
provided by these services. A prime example of the capabilities when data and
computational facilities are aligned is the global, Sentinel-1 radar coherence estimate
by Kellndorfer et al. (2022). Use of these services, however, implies an implicit
vendor lock-in, that might limit adoption, as not to make success dependent on the
longevity of a specific cloud provider. Furthermore, due to the typically high cost
of data transfer away from these vendors, these services are especially useful in data
reduction operations where the output is limited in size.

As a consequence of this distributed data dissemination reality, data is replicated be-
tween multiple different service providers. To ensure reproducible research, original
imagery is often kept by researchers as well, leading to further duplication. Espe-
cially in studies with aggregated results, this may lead to disproportional require-
ments on data storage. In practice, most users keep the full sequence of products,
as the long-term availability of imagery is not guaranteed.

To reduce the storage requirements and to limit the download volume data providers
may offer custom downloads of subsets of their data set. This is a trade-off between
computing power at data distributor and the load on users, at the cost of introducing
additional complexity for specific requests. In a recent trend, these systems are
replaced by file formats that natively allow for partial downloads. One of such
formats is the Cloud Optimized GeoTIFFf, COG (2022), format for rasterized data
(images), that is quickly gaining popularity due to its compatibility with existing
tools.

The COG is an extension to the popular GeoTIFF format for rasterized data storage
(Devys et al., 2019). Like traditional GeoTIFFs, the files are georeferenced, may
contain multiple bands and various spatial resolutions. New is that any combination
of spatial resolution and subset may be reconstructed ad-hoc from parts of the
full file, without intervention from the data distributor. The effectiveness of this
COG file format is demonstrated by the ability of standard web browsers (e.g.,
via, GeoTIFF.jsz (Schindler and Meifll, 2021)), even on mobile phones, to display
complex geospatial data.

The USGS has committed itself to release Landsat data as COG (Bouchard, 2021)

Mhttps://registry.opendata.aws/tag/earth-observation/
I5https://planetarycomputer.microsoft.com/
16https://www.cogeo.org/
"https://geotiffjs.github.io/
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and to provide a STAC index'® of the collection (USGS, 2022b). The archive for
automated access is hosted on Amazon Web Services, where the user is required to
pay for data transfer. Free, manual downloads are still possible via USGS Earth-
Explorerﬁ, although at much slower speeds (USGS, 2022a). For some users, like
academia, it will be cumbersome to pay these small fees, as the administrative load
of payment will be much higher than the cost of the data itself.

There are many promising developments to simplify data retrieval for users. The
quick adaptation of the Cloud Optimized GeoTIFF format will benefit many users.
The open license of the data promotes competition between data distributors, shown
by the different offerings available. However, the shift towards paid, high bandwidth
data distribution is one to monitor.

5.2.3 Interpret data

Once the user has found and retrieved the data of interest, it is ready for use. There
are various standardisation efforts by distributors to simplify interoperability be-
tween systems. Standardised naming of variables, such as proposed by Eaton et al.
(2017), or other forms of descriptive metadata, may help this process. Other stan-
dards are governed by legal context, such as the European directive on Infrastructure
for Spatial Information in the European Community: INSPIREE (EU, 2007), or are
initiated bottom-up, by stakeholders such as EuroGeographicsi (EuroGeographics,
2022). However, as no satellite sensor is the same, some interpretation is expected.

For optical satellite imagery, atmospheric corrections may be necessary, for example.
Data providers may provide a software package to simplify the process such as
sen2c0r£ (Main-Knorn et al., 2017; ESA, 2022b) provided by ESA for atmospheric
corrections on Sentinel-2 optical data, or by third parties such as FORCEE (Frantz,
2019; Frantz et al., 2022). Furthermore, the data might have to be aligned with other
resources. This has led to a variety of workflows to Extract, Transform, and Load
(ETL) data from their standardised formats into project requirements.

To limit the user interaction required, the concept of Analysis Ready Data (ARD)
was launched. Analysis Ready Data ensures geometric and radiometric standardised
reporting of the data, without artefacts and contains a proper error description
(Dwyer et al., 2018). Remote sensing is the art of comparison, and ARD is meant
to be comparable in space and time without further processing. As a consequence,
users have to accept certain assumptions on usage imposed by the data provider.
Therefore, the users should understand the limitations of the techniques silently
applied for them.

Analysis ready data may come as a new data distribution, such as with the Landsat

8https://www.usgs.gov/landsat-missions/landsat-commercial-cloud-data-access
Yhttps://earthexplorer.usgs.gov/
20http://data.europa.eu/eli/dir/2007/2/2019-06-26
2Ihttps://eurogeographics.org/
22https://step.esa.int/main/snap-supported-plugins/sen2cor/
23https://github.com/davidfrantz/force
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(Dwyer et al., 2018) and Sentinel-2 (Louis et al., 2019) archives. An ARD prod-
uct for Sentinel-1 is expected to be launched in 2023-2024** (ESA, 2022c). The
predicate ‘analysis ready’ might be used for complex operations, such as the virtual
constellation of Landsat and Sentinel-2 by Claverie et al. (2018), where the harmo-
nized Landsat Sentinel-2 surface reflectance product® is intended to simulate an
increased temporal resolution. Another example is the Copernicus Ground Motion
Servicef (Crosetto et al., 2020; Copernicus, 2022f), providing analysis ready InSAR
time series.

Readily available data, that may be used as-is, carries the implicit risk that inexpe-
rienced users, unknowing of their limitations, will draw erroneous conclusions. The
super-resolution algorithm available in the FORCE toolbox (Frantz, 2019), for ex-
ample, is based on assumptions of spectral homogeneity between acquisitions. Is the
user aware of the limitations of this method, and the consequences of this assump-
tion? This is, however, applicable to any data interpretation, and a responsibility
of the user. Furthermore, conclusions based upon the data are those of the user and
not those of the data provider.

The benefits of readily available data and analysis ready data greatly outweigh
these risks. The analysis of a deep-seated landslide by Kalia (2022) was made
possible by the availability of analysis ready data, and so are the Landslide Hazard
Assessment for Situational Awareness landslide hazard nowcast and forecast (Khan
et al., 2022; Stanley et al., 2021; Kirschbaum and Stanley, 2018). Raw satellite data
should remain available to expert users, in addition to analysis ready data that will
accelerate the development of new applications.

5.3 Data agility

Satellite remote sensing is a dynamic field. Although the development of new satel-
lite missions is a time consuming process, new missions and sensors are launched
at an unprecedented rate (Belward and Skgien, 2015). At the same time, satellites
come with an expiry date, and an uncertain future, demonstrated by the recent fail-
ure of the Sentinel-1B satellite (Potin et al., 2022). Users of satellite data have to
adapt their processes to such changes, and should, in parallel, prepare for upcoming
opportunities such as new sensors. This requires agility, the capability to quickly
adapt models and methods to unexpected developments. This section focuses on
the benefits of data agility, and provides suggestions on how a data agile design may
improve data availability at project level.

Especially in time critical forecasting and nowcasting systems, continuous, timely
data availability is a necessity. It is therefore recommended to design such time
critical systems with a fallback in mind. This is stressed by recent threats on

24https ://sentinels.copernicus.eu/web/sentinel/sentinel-1-ard-normalised-radar-
backscatter-nrb-product

“°https://hls.gsfc.nasa.gov/

26https://land. copernicus.eu/pan-european/european-ground-motion-service
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satellite infrastructure (Roulette, 2022), and concerns on the vulnerability of the
sub-sea infrastructure of satellite ground stations (Kirchner, 2020). Therefore, the
data and modelling structures should be flexible, allow for temporary changes, and
allow for rapid fine-tuning to changing conditions.

Rapid changes in data availability, including Analysis Ready Data (§5.2.3), and data
processing strategies require data agility as well. Data science has become a field of
its own, and remote sensing expertise may not be present with all users. Therefore,
data consistency simplifies collaboration and accelerates algorithm development.

Machine learning has added flexibility, but also many new, ‘black box’, approaches
to remote sensing data analysis. The desire to test multiple models for a single
problem, stresses the need for a streamlined, computer centered, data organisation.
The first step is the streamlined availability of the data (8§5.2). Second ingredient is
accessible data storage at project level.

In the desire for data-driven systems the power of local, in-situ, data should not be
forgotten. Only local field measurements can be tailored to the variables of interest
and other project requirements. With an experienced team, local, low-cost sensors
may be designed, deployed, retrieved, and the data analysed in the time-span of a
PhD project (e.g. den Ouden et al., 2021; den Ouden, 2022). However, new sensors
are unlikely to produce enough information for a naive modelling approach in the
time frame of a single project. Their role is in the synergy with satellite sensors and
the data organisation should therefore be capable of handling both.

Here we reflect on the data organisation within projects, and how this could support
data agility. One of our attempts at consistent data organisation, on national scale,
is included for reference.

5.3.1 Project level data storage®”

Data organisation is a hot topic in Remote Sensing. However, sessions on data
organisation at scientific conferences are dominated by data distributors and com-
mercial services that aim to facilitate and accelerate data retrieval. Fast and simple
data access is desirable at project level as well, and could be achieved even by small
groups to simplify their work. However, no generic data storage solution exists, and
solutions will therefore always be sub-optimal to other users.

The setup of a unified data storage requires input from project members, and their
expectations on the data usage patterns as well as the desired scale of the anal-
ysis. When focus is on performance, the bottleneck will be alternating between
timely data availability and computing power: the balance between processing power
(CPU/GPU), storage, and bandwidth. Storage optimizations may include projec-
tion of all data into a common reference frame, downsampling in space and/or time,

27Text adapted and extended from the author’s contribution to Tuomenvirta, H., Makels, A.,
Spyrou, C., Apostolidou, E., Panga, D., Gonzalez-Ollauri, A., Corvaglia, P., 2019. Data require-
ments to assess and monitor OAL performance. Technical Report OPERANDUM D4.1, Finnish
Meteorological Institute.
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and other data curation tasks that would otherwise be repeated by different project
members. Usage patterns, such as parallel processing, are application and plat-
form specific, and no universal definition exists. However, if one is aware of the
limitations of their platform, a trade-off can be made between development time,
maintainability and performance.

Typically a distinction is made between vector and raster data. Vector data can be
points, polylines or polygons in 2D or 3D of infinite location precision. Generally
one or more data attributes are attached to those features. This data is assumed
to be valid for the whole region described by the feature and may consist of single
or multiple attributes, or even a complete time series, such as a population count,
crop type, or deformation time series. Examples of such vector features are country
borders (polygons), center lines of rivers and streams (lines, with a single river name)
or measurements from weather stations (points, with time series attached).

Raster data are regular grids of data, typically in 2D, which carry one or more fea-
tures in a regular pattern. Rasters are commonly used to store spatially continuous
data, and could be output of earlier computational steps, such as orthorectification.
There are no requirement on their contents, but decimal (floating point), complex
and binary values are most common. While vectors are more suitable for visualiza-
tion of data with high location accuracy requirements, rasters are often preferred
for computational reasons.

The conversion from vector to raster is typically not possible without accuracy loss.
Furthermore, rasterization should take into account the different binning characteris-
tics required for the different data sources. Sightings of animals (points, observations
in time) can be rasterized both on time and space as density (sightings/hour/km?)
or as cumulative count (sightings/km?, sightings/hour), for example. And how
should such data be spread over the bins or pixels, is interpolation desired and/or
is extrapolation to neighbouring pixels justified?

Algorithms require data to be in an systematic, organized format that can be ac-
cessed at high speed. Furthermore, linking different variables together is only pos-
sible if the variables can be accessed simultaneously. Therefore, the data has to be
stored in a common reference frame of space and time, that allows synchronized
access between variables. The creation of such reference frame requires agreement
on the rasterizing and resampling of the data, and choices on the interpolation/
extrapolation/transformation of data from its original form to the new unified ref-
erence frame.

Technical challenges lie in the storage of large, high resolution, data sets (Goodchild,
2001). Large, spatially sparse data sets, may pose a problem as well, as many empty
values will have to be stored to satisfy the uniform storage format. Compression
and on-the-fly generation may limit the adverse effects of data duplication and large
empty regions, but come at the cost of increased computational load.

Once operational, such unified reference frame will accelerate subsequent analyses,
as after the initial set-up no time is necessary to match the individual parameters
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of different sensors, quantities and studies. Furthermore, the unified data structure
will allow for easier browsing, and simplifies the creation of a ‘data dashboard’ for
exploratory data analysis. Moreover, structured data storage could facilitate fast
inter-organizational exchange when desired. An example of inter-organizational data
distribution is the “COMET-LiCS Sentinel-1 InSAR portal”?®, that provides near-
realtime processing of Sentinel-1 interferograms related to tectonic activity (Lazecky
et al., 2020; COMET, 2021).

When usage patterns are varied and limited common ground can be found, the
project level requirements on data distribution may resemble those of the initial
distributors. However, as project resources are available, those may be allocated
to offload part of the data preparation from individual users to an internal service.
Such services, typically compliant to the OGC Web Coverage Serviceﬁ standard
for raster data (OGC, 2018) and the OGC Web Feature Service®* standard for
vector data (OGC, 2014), prepare the data on-the-fly based on the specific user
requirements. Although not yet widely implemented, the OGC Web Processing
Service®! standard aims to offer computing services (comparable to Google Earth

Engine) on demand (OGC, 2015).

Data cubes meet aforementioned requirements on data consistency and provide users
with standardised access to vast amounts of data. Furthermore, they are well suited
for the spatial-temporal properties of satellite remote sensing data and offer seamless
access to the data in space and time (Giuliani et al., 2019a). Especially time series
analysis is simplified, as the temporal dimension is typically divided over different
data products at traditional data portals. However, pre-processing is required to
generate a data cube from the individual products downloaded from a space agency,
like ESA.

The ESA Earth System Data Lab (Brockmann Consult, 2018), now continued as the
Deep Earth System Data Lab®? (DeepESDL) (Brockmann Consult, 2022) as part
of the Deep Cubeﬁ project (DeepCube, 2021), is an example of elaborate data pre-
processing and reference frame unification. Their Earth System Data Cube (ESDC)
contains 79 different variables with global coverage, all resampled to the same grid
in both space and time (8 days, 0.25°). The cube can be sliced in any direction
(location, time, variable). The cube adheres to the CF-1.7 naming convention for
interoperability (Eaton et al., 2017) and is stored as a regular grid of Zarrﬁ files
(Alted et al., 2018).

Creation of a data cube has become a standard practice of some research group, such
as the cubes of the echubef project at the University of Wiirzburg (Thiel et al.,

28https://comet.nerc.ac.uk/comet-lics-portal/
2%https://www.ogc.org/standards/wcs
30https://www.ogc.org/standards/wfs
3Thttps://www.ogc.org/standards/wps
32https://www.earthsystemdatalab.net/
33https://deepcube-h2020.eu/
34https://zarr.readthedocs.io/
35https://datacube.remote-sensing.org
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2022). Elsewhere data cubes have replaced data on demand services offered based
the OPeNDAP protocol (Cornillon et al., 2003), that offers a generic interface to
remote matrix-like storage, as method of data publication: NASA’s AppEEARS3¢
system provides a data cube on demand of selected sources (NASA, 2015), as an
alternative to USGS’s deprecated OPeNDAP service®” (USGS, 2015). A freely avail-
able example with a wide variety of variables is the GeoCubes Finland*® data cube
by Lehto et al. (2019); Geoportti (2022). More subject focused is AgroDataCubeﬁ,
that is specialised on the Dutch agro-food chain, and offers limited free access on the
basis of fair-use (Janssen et al., 2018). For commercial services EuroDataCubeﬂ
acts as a market place (EOX, 2022), while the global Sentinel-1 radar backscatter
data cube by Wagner et al. (2021) is offered as a commercial service by EODC*!
(EODC, 2022).

There are various services available to cater an on-demand processing strategy. Ras-
damamf7 for example, offers server software for internal data distribution (Baumann
et al., 1998; Rasdaman, 2022). The DIAS services (§5.2.2), Google Earth Engine
and Ellipsis Drive®? offer on-demand data distribution strategies as commercial ser-
vices (Ellipsis, 2022). OpenEOﬁ strives for a unified interface between geoinfor-
mation services (Pebesma et al., 2016; openEO, 2022), like the C-SCALE project
that enables federated data access between data providers (Backeberg et al., 2022).
Moreover, EarthServer?® provides a federation standard for interoperability between

data cubes (Jacobs University and Rasdaman, 2020).

5.3.2 A Dutch data cube

We developed a simple, yet effective, data cube generation script for Sentinel-2
imagery, based on Python and the Zarr storage format. Generation of the data cube
is a three step process. First, Sentinel-2 imagery over the Netherlands is downloaded
in bulk. Second, atmospheric corrections are applied via ‘sen2cor’ (Main-Knorn et
al., 2017). Third, the imagery is reprojected to the desired, national, coordinate
reference system (Rijksdriehoekscodrdinaten, Lesparre et al., 2019) and the cube is
filled or updated.

Our data cube covers 300x340 km in up to 400 time steps per orbit at the time of
writing, with new acquisitions added regularly. All bands are at full (10m) resolu-
tion and occupy around 4 TB of storage per orbit for the acquisitions 2015-2022.
Furthermore, the cube contains a series of additional variables that may support

36https://appeears.earthdatacloud.nasa.gov
3Thttps://1lpdaac.usgs.gov/resources/e-learning/lp-daac-data-access-through-
opendap-and-web-services/
S%https://vm0160.kaj.pouta.csc.fi/geocubes/
3%ttps://agrodatacube.wur.nl/
40https://eurodatacube . com/
4lhttps://eodc.eu/
42http://www.rasdaman.org/
43https://ellipsis-drive.com/
44https://openeo.org/
45https://www.earthserver.eu/
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Figure 5.3: Visualisation of the Dutch Sentinel-2 data cube, two slices in time are
shown at the top and bottom, while the data is sliced in space along the national
border.

analysis and/or allow for quick prototyping of new ideas. The additional resources
include: the municipal, provincial and national borders; the land—useﬁ (2008, 10,
’12, °15, and ’17) (CBS, 2022); the farmers’ crops per field*” (2009-2021) (RVO and
PDOK, 2022). Thanks to the standardised structure of the data cube, these may

be queried in the same fashion as the spectral Sentinel-2 data.

Combinations of these variables with the Sentinel-2 data allows for aggregate statis-
tics, as well as training of various sorts of algorithms. The use in bachelors level
education demonstrated the easy of use of such solution. Based on a series of iPython
Notebooksﬁ in Google Colabﬁ students explored the spectral properties of an area
of their liking (van Natijne, 2019). A simple script enabled the exportation of man-
ageable sections of the cube to custom GeoTIFF files for further analysis in the
graphical environment of QGIS.

Thanks to support of the Netherlands Center for Geodesy and Geo-Informatics,
the data cube is publicly available on GeoTiles.nlﬂ (van Natijne, 2020). Due to
the versatility of the Zarr format, the data cube may also be used offline as it fits
on any larger external hard drive. We focused on usability under standard office
conditions in educational or development settings, rather than on factors relevant
to production systems such as efficient storage or bandwidth cost. These data cubes
should fit into storage structures typically found in office environments, and should

46https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische-data/natuur-en-
milieu/bestand-bodemgebruik

*'https://www.pdok.nl/introductie/-/article/basisregistratie-gewaspercelen-brp-

48https://weblog. furite.org/datacube/

4%https://colab.research.google.com/

50https://geotiles.nl
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not require complex (cloud) computing infrastructure, but may still be published
on any simple web server.

5.4 Conclusion

The complexity of the model formulation at the Vogelsberg illustrates the necessity
of expert judgement in the design and evaluation of a study. Therefore, both natural
hazard and remote sensing experts are required in these phases of the study, in
conjunction with data scientists. Furthermore, a successful cooperation will reveal
the magic of the ‘black box’ for all parties involved.

There are plenty, positive developments in the improvement of data availability,
that open up earth observation resources to a broader audience. Analysis Ready
Data (ARD), in combination with Cloud Optimized GeoTIFFs (COG) and Spa-
tioTemporal Asset Catalogs (STAC) are developments that will likely shape the
data landscape for the coming years. Their ease of interpretation and convenience
may make data cubes as separate concept superfluous.

The performance of a new model should be compared to traditional, simple sta-
tistical methods (e.g., the mean) to verify their effectiveness. This should not be
forgotten as data availability is streamlined and simplified, enabling more complex
models.






Chapter 6

Conclusions and
recommendations

Slow moving, deep-seated landslides cause extensive economic loss, and thorough
understanding of their processes is required for the implementation of effective miti-
gation measures. In the light of the recent advances in machine learning and satellite
remote sensing, short-term forecasting (nowcasting) of landslide deformation was
deemed possible. Unlike fieldwork, computer algorithms and satellite observations
are not tied to a specific slope, and are easier to scale to regional applications. To
nowcast deformation, the conditions on the slope that could initiate or accelerate
deformation have to be translated into a landslide deformation prediction by the
empirical machine learning algorithm (Figure 1.5).

We set ourselves the goal “to create a system for nowcasting of landslide deformation
at Vogelsberg based on readily available remote sensing data using machine learning
techniques” (§1.3). A review of the state-of-the-art showed promising opportunities
for such systems, with similar systems already implemented elsewhere (Tables 2.4
and 4.3). In this study, the Végelsberg deep-seated landslide served as an example
of how machine learning has the potential to accelerate landslide analyses compared
to traditional, involved fieldwork based methods. The methodology developed for
the Vogelsberg was expected to be more generally applicable, or at least provide a
starting point for regional analysis of similar landslide phenomena.

Research by Pfeiffer et al. (2021, 2022) showed that the Vogelsberg landslide is
characterised by complex deformation patterns. However, the availability of a high
resolution deformation time series from the local automated total station provided
an exceptional reference for the development of a machine learning model.

Here we present our major conclusions, as well as the detailed answers to the re-
search questions governing the deformation behaviour. Furthermore, we summarize
recommendations for future endeavours, including practical issues from the devel-
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opment phase of the model.

6.1 Conclusions

This thesis aimed to answer the question:

To what extent can
data-driven machine learning techniques
be used for landslide deformation nowcasting
at deep-seated landslides?

To test the capability of a data-driven machine learning algorithm to predict de-
formation of the Vogelsberg deep-seated landslide, multiple models were developed
and evaluated. The models developed showed limited success in the prediction of
the deformation of the Vogelsberg landslide, and rarely outperformed the mean de-
formation rate as a predictor. Although rooted in the landslide dynamics, even our
best model was incapable of capturing the versatility of responses on the Vogelsberg,
and did not convincingly predict the landslide deformation rate at the Vogelsberg
four days ahead.

This research showed that an ideal landslide for deformation nowcasting is highly
dynamic, with many displacement acceleration and deceleration events to train the
system on. Moreover, such landslide has limited delay between forcing conditions
(e.g. precipitation) and its deformation response, is well monitored and is not ca-
tastrophic.

Guiding in this research were the following sub-questions:

. What are the requirements for a deep-seated landslide deformation now-
casting system?

Deep-seated landslides undergo continuous deformation, and possibly accelerate due
to changes in the hydro-meteorological conditions. The system should be able to
separate periods of relative stability, with minor deformation, from accelerated de-
formation phases. To assess potential damage to infrastructure such nowcasting
system should predict the onset of acceleration, as well as the maximum deforma-
tion rate in this acceleration phase. Therefore, a binary predictor of accelerated
deformation is insufficient, and the deformation nowcasting system should produce
a dynamic (time dependant) quantitative (deformation rate) prediction.

On a day-to-day basis the deformation signal is of millimeter scale, and below the
approximately 1 centimeter accuracy of the deformation measurements. As a con-
sequence, it is challenging to detect the onset of acceleration in its early stages.
Furthermore, the system should be robust against noisy deformation signals around
or below instrument accuracy during the training and validation of the data-driven
model.

The specifics of the processes at the Vogelsberg landslide were discussed in detail
by Pfeiffer et al. (2021, 2022). The deformation of the Vogelsberg landslide is
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a complex response to the hydro-meteorological conditions in the catchment, in
particular precipitation and (delayed) infiltration from snowmelt. Besides a constant
deformation rate of 1.5 cm/year, accelerated deformation of up to 10 cm/year was
triggered by snowmelt and/or rainfall. Acceleration and deceleration phases at the
Vogelsberg span multiple days, and are delayed with respect to the hydro-meteoro-
logical triggers by up to sixty days. A deformation nowcasting system should take
into account such a long lag time to unravel the current state of the slope.

. What data and model(s) may drive such a nowcasting system?

A deformation time series, as source of both the training and validation of the model,
is the primary requirement. All explanatory data should be relevant to the forcing
of the landslide dynamics. Careful selection of the model, as well as the variables,
was expected to lead to a stable, robust, model with minimal parameters.

The model should be capable to ingest time series of conditions, account for their
delayed effects on the slope, and output a deformation forecast for the coming
days. To limit the number of model parameters, the choice for the specific machine
learning model should be inspired by landslide physics. We focused on Long Short-
Term Memory (LSTM) based models, especially for its capability of retaining and
integrating historic observations. Overall, the models (Figure 4.5) show resemblance
to elementary water balances.

e What conditions influence the landslide deformation, and are they observable
from the surface?

Reactivating, deep-seated, landslides are in a state of limit-equilibrium, and
accelerate or decelerate when conditions change. The sliding behaviour is gov-
erned by the balance of forces within the landslide. Changes in hillslope hy-
drology shift the balance between the shear strength of the soil and the shear
(sliding) force applied by the gravitational forces acting on the landmass. As
the landslide is known to be there, the pre-disposing factors (e.g. slope) are
assumed to be present. Therefore, infiltration of rain, or delayed infiltration
due to snow melt, and the subsequent rise of the pore water pressure, are the
primary conditions to monitor.

A series of key variables, that facilitate or trigger acceleration at the Vogels-
berg, were identified (Table 2.1). Especially precipitation (rainfall, snowfall)
and soil moisture measurements were deemed relevant to the Vogelsberg land-
slide system. These processes and conditions visible on, or close to, the surface
may be observed from space. The Wattenbach stream at the bottom of the
Vogelsberg is narrow, as well as surrounded by steep slopes, and cannot be
observed from space. However, even in the absence of information on the
drainage, it is possible to formulate an elementary water balance.

e What are the properties of the models used in the state-of-the-art?

There is a great variety in models and optimization methods used in the state-
of-the-art (Tables 2.4 and 4.3). However, many studies focus on GNSS defor-
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mation time series of a limited number of slopes around the Three Gorges Dam,
China. Moreover, the case studies in literature typically rely on a single, dom-
inant driver, such as reservoir level, and/or high quality measurements closely
related to the process, such as the ground water level. Models based on Long
Short-Term Memory (LSTM) and Support Vector Machine (SVM) are most
popular. The model configurations are typically complex, and the number of
parameters in the model is rarely reported.

3. What satellite based landslide deformation observations are available?

Deformation observations are typically obtained from satellites by either image
tracking or radar interferometry (e.g. InNSAR). Image tracking techniques, unlike
InSAR, are most suited for high deformation rates not commonly observed in deep-
seated landslides. Due to the complexity of InSAR processing, it is beneficial to
a-priori assess the potential of such exercise. InSAR deformation time series could
be available from Sentinel-1 on 91% of the global slopes steeper than 5°, given the
presence of a coherent scatterer (§3.5). A world map, based on the Copernicus
DEM, was developed to indicate the sensitivity of Sentinel-1 radar acquisitions to
downslope deformation (§3.4.1). Furthermore, a Google Earth Engine tool was de-
veloped for a fast, preliminary analysis of the availability of such coherent scatterers

(§3.4.2).

4. What remote sensing data sources are available?

Various remote sensing products are available related to the causal and triggering
conditions of accelerated slope deformation. For the Vogelsberg nowcasting sys-
tem a selection of ten variables and associated data products was made (Table 4.1).
These variables covered precipitation, snow, soil moisture, evaporation, and air tem-
perature, from both remote sensing and modelled sources.

There are multiple sources on precipitation (Table 2.2) and sources of soil mois-
ture estimates available, often with limited delay from sensing. Snow cover, as
observed from space, is often a binary observation, with very limited information
on the properties of the snow pack. More advanced sources on snow coverage suffer
from complications of the mountainous acquisition geometry. As an alternative to
currently not timely available remote sensing sources, re-analysis models, partially
based on satellite data, were used.

Rudimental modelling, in the form of expert driven combinations of variables, was
expected to help replace variables that can not be observed from space. Simple
physics and proxy indicators, such as the antecedent precipitation index (API,
§4.4.2) were used to increase the information content in those variables. The API
maps the high-frequency precipitation signal to the delayed effect on the slope hy-
drology.

5. How to implement a machine learning based deep-seated landslide model?

Various, well documented, machine learning software packages exist. Our model is
implemented in TensorFlow, as custom sequence of existing building blocks. The
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combination of various sources into a single, unified time series, was a more involved
process. The machine learning framework, combined with the unified time series,
allowed for quick prototyping of various model variations (Figure 4.10).

Deformation observations, taken by an automated total station, had to be smoothed
by a 32-day moving average filter to reduce the noise in the deformation rate. Our
experiments with existing satellite deformation observations (InSAR) at the Vogels-
berg showed insufficient temporal resolution in relation to the accuracy to capture
the slope dynamics (Zieher et al., 2021). The frequency of the nowcast should match
that of the deformation measurements as well as the observations of the conditions
of the slope. Given the delayed response of deep-seated landslides, this nowcasting
frequency is typically daily or less.

e How to quantify the quality of the nowcasting solution?

To assess the quality of the deformation nowcast both the deformation rate
and the timing of the prediction are important to the user. However, in the
absence of clear information on the true timing of the deformation events due to
noise, the training and validation could not be focused on acceleration events.
Smoothing of the deformation signal with a 32-day moving average filter further
reduced the possibilities to quantify the timing of the acceleration nowcast.
Therefore, the timing was ignored and the model was trained on the difference
between measured and predicted deformation rate on a day-by-day basis only.

The mean squared error was chosen to quantify the quality of the nowcast, and
is defined as the average of the squared difference between the predicted and
observed deformation. This error metric is sensitive to timing errors, and early
as well as late predicted accelerations are quantified solely by their difference to
the observed deformation rate. Long-term stability of the deformation estimate
was ensured by the mean squared error, at the risk of settling with the average
deformation rate as best predictor.

To assess the effect of over-fitting on the system, an additional, ‘fake’; time
series of ‘seasonal noise’ was introduced during model training. This randomly
generated signal, based on Brownian motion with similar correlation proper-
ties to the temperature time series, should not contain any predictive power.
Therefore, addition of this signal to the nowcast should not increase perfor-
mance, as it was not related to the landslide deformation process. If, however,
a performance increase is observed after addition of the random signal, this
indicates that the model is insufficiently constrained by the training and/or
validation time series of deformation data. Some of our best scoring models
were achieved based solely on this fake signal (Figure 4.9), a strong indication
of the lack of robustness of the final model.

e How to quantify the relative importance of the data sources to the result of
the nowcasting system?

The importance of the available time series and combinations thereof to the
deformation nowcast was be determined by cross-validation between the models
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with different variable combinations. There are 2047 possible combinations of
the variable selection (Table 4.1), including the seasonal noise. All model
combinations were tested by trial-and-error, where variable combinations that
drive the models with the lowest mean squared error were considered best.

e What are the major contributing variables to a landslide deformation nowcast?

Thanks to the limited complexity of the model, and short time series of max-
imum eleven variables, the system only required minimal computer memory
(<1 GB). This enabled us to determine the major contributors by trial-and-
error by comparison of model variations. In total 147 984 model variations were
trained and evaluated (§4.4.4).

The quality of the resulting nowcasting systems was compared, to assess which
variables are more likely to produce a high quality nowcast (Figure 4.9). Models
including soil moisture information from SMAP are more likely to generate
high quality nowcasts. Soil moisture might function as a proxy indicator for
groundwater, and associated pore pressure on the slope. Models based on
precipitation or snow melt scored slightly better as well, although this effect
vanishes if more variables were included. The API, however, that was expected
to serve as a proxy indicator of pore pressure, did not improve the performance
of the model. Providing more than three to four variables, however, led to an
insignificant improvement to the mean squared error of the nowcast.

e How many observations/events are necessary to develop the nowcasting sys-
tem?

The limited length of the Vigelsberg time series (1482 daily time steps) did not
allow for the empirical assessment of the number of observations needed. Given
the model was complete, and capable of describing the slope dynamics, a single
observation of each underlying process should theoretically have been sufficient.
However, the noise in both the input variables and deformation time series
masked such relationship, and a variety of events and triggering conditions was
required to overcome this fuzzy relationship with deformation. Furthermore,
training data should be balanced between accelerated and relatively stable
periods, as not to bias the system towards either. Therefore, no fixed, universal
minimum number of observations could be determined.

6. What do the insights obtained at the Vogelsberg tell us on the general
applicability of machine learning based landslide deformation nowcasting
models?

Compared to typical machine learning applications, the application to landslide de-
formation nowcasting was data poor. Machine learning based landslide deformation
nowcasting models could work for more dynamic landslides, that have a limited
delay between forcing conditions (e.g. precipitation) and its deformation response.
Dynamic slopes will exhibit their full palette of interaction between triggering fac-
tors and changes in the deformation rate over a relatively short monitoring period.
Regional application will only add information to the system if the slopes either ex-
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perience different conditions (e.g. differences in precipitation). For dynamic slopes,
or collections of comparable slopes different circumstances, deformation nowcasting
might work.

6.2 Recommendations

These initial results at Vogelsberg provide a starting point for experiments else-
where, and a basis for the reconsideration of design decisions, including the exclu-
sion of deformation data from the input of the model. Slopes with more direct
feedback between precipitation and deformation, are the most likely candidates for
successful application of machine learning based nowcasting systems. Alternatively,
the system could be tested on a regional (InSAR derived) deformation data set, to
assess the possibilities of harnessing the dissimilarities between slopes on a regional
scale.

This project benefited from a local, high quality deformation time series. Future
projects should invest in their data organisation, to take advantage from the local
and remote variables available. Furthermore, simplified data access will enable fast
prototyping of future models. Ideally such data system is capable of ingesting new
observations as they become available, to simulate the challenges of an operational
nowcasting solution.
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