
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Realistic Adversarial
Attacks for Robustness
Evaluation of Trajectory
Prediction Models
MSc Thesis Cognitive Robotics
Jeroen Hagenus

Realistic Adversarial
Attacks for
Robustness

Evaluation of
Trajectory Prediction

Models
by

Jeroen Hagenus

Student Name Student Number

J. Hagenus 5099528

Primary supervisor: Arkady Zgonnikov
Daily supervisor: Julian Schumann, Frederik Baymler Mathiesen
Insitution: Delft University of Technology
Project Duration: February, 2024 - September, 2024
Faculty: Faculty of Cognitive Robotics, Delft

Cover: Continental’s V2X comms and sensor technology at an intersec-
tion

Realistic Adversarial Attacks for Robustness
Evaluation of Trajectory Prediction Models

Jeroen Hagenus

Abstract—Trajectory prediction is a key element of au-
tonomous vehicle systems, enabling them to anticipate and react
to the movements of other road users. Robustness testing through
adversarial methods is essential for evaluating the reliability
of these prediction models. However, current approaches tend
to focus solely on manipulating model inputs, which can gen-
erate unrealistic scenarios and overlook critical vulnerabilities.
This limitation may result in incomplete assessments of model
performance in real-world conditions. The specific effects of
more comprehensive adversarial attacks on trajectory prediction
models have not been thoroughly investigated. In this work,
we demonstrate that by perturbing both model inputs and
anticipated future states, we can uncover previously undetected
weaknesses and provide a more realistic evaluation of model
robustness. Our novel approach incorporates dynamical con-
straints and preserves tactical behaviors, enabling more effective
and realistic adversarial attacks. We introduce new performance
measures to assess the realism and impact of these adversarial
trajectories. Testing our method on a state-of-the-art prediction
model reveals significant increases in prediction errors and
collision rates under adversarial conditions. Qualitative analysis
further shows that our attacks can expose critical weaknesses,
such as the model’s inability to detect potential collisions in what
appear to be safe predictions. These results underscore the need
for more comprehensive adversarial testing to better evaluate
and improve the reliability of trajectory prediction models for
autonomous vehicles. To support further research in this area,
we provide an open-source framework for studying adversarial
robustness in trajectory prediction. This work advances adver-
sarial testing techniques, contributing to the safety and reliability
of autonomous driving systems.

Index Terms—Trajectory prediction, adversarial attack, ro-
bustness

I. INTRODUCTION

Trajectory prediction—the task of forecasting the future
positions of traffic participants over time—is a critical com-
ponent of autonomous vehicle (AV) systems, allowing them
to adapt to the actions of nearby road users (Figure 1A).
As AVs become more prevalent, ensuring their robustness
and reliability is essential for public safety [1]. Adversarial
testing has emerged as an essential tool for evaluating the
robustness of trajectory prediction models, helping to uncover
vulnerabilities that could lead to dangerous situations on the
road [2]–[7]. The ability of a model to withstand such attacks
is known as adversarial robustness [8].

Recent advances in adversarial attack generation have
shown promise in exposing system vulnerabilities [2], [5],
[7], [9]. Traditional methods focus on perturbing the observed
states of target vehicles, creating scenarios that lead to predic-
tion errors or simulated collisions. These approaches demon-
strate two key capabilities: first, they generate dynamically

feasible trajectories, allowing the attacks to transfer to real-
world scenarios [5]; second, they adhere to realistic driving
behaviors [2], [5]. This adherence is crucial, as significant
modifications to trajectories make it difficult to determine
whether prediction errors arise from model vulnerabilities or
from fundamental changes in the underlying driving behavior
[2]. Tactical behavior, which refers to an agent’s decision-
making processes like lane changes or speed adjustments, must
be preserved to ensure the realism of the adversarial attack.

A key limitation of existing methods is their exclusive focus
on perturbing observed states, neglecting the impact on future
states. This oversight can result in unrealistic scenarios where
the adversarial trajectory deviates significantly from intended
behavior after the observation period (Figure 1B). For instance,
an attack might cause a vehicle to swerve unnaturally or take
an impossible path through an intersection. These unrealistic
outcomes limit the effectiveness of adversarial testing, as they
may not represent the real-world challenges AVs could en-
counter. The challenge lies in generating attacks that maintain
tactical consistency throughout the entire trajectory, including
both observed and future states.

In this paper, we present a novel method for generating
adversarial attacks that accounts for both observed and future
states. Our approach enhances existing techniques by intro-
ducing constraints on future states, ensuring that the entire
adversarial trajectory maintains realistic driving behavior (Fig-
ure 1C). This allows us to create more subtle and potentially
dangerous attack scenarios, such as slight modifications to
a vehicle’s path that lead to unexpected collisions while
appearing safe to the prediction model (Figure 1D). By con-
sidering future states during attack generation, we ensure that
adversarial trajectories remain plausible and reflective of real-
world driving scenarios, leading to a more comprehensive and
realistic evaluation of trajectory prediction model robustness.

The contributions of this paper can be summarized as
follows:

• Advanced adversarial attacks for trajectory predic-
tion models: We introduce a method that enhances the
generation of dynamically feasible and tactically relevant
adversarial attacks. This incorporates an attack generation
strategy with improved dynamical constraints, building
upon Cao et al. [2], but deriving dynamics solely from
stored positions and facilitates both forward and back-
ward agent movement. We refine tactical behavior preser-
vation by implementing constraints that penalize devia-
tions from the original trajectory and restrict the search
space for adversarial examples. Additionally, we extend

Fig. 1. Adversarial attacks on trajectory prediction: A) The ego agent (AV) correctly predicts the target agent’s driving behavior as it makes a left turn at
an intersection. The ground truth trajectories are split into two sections: observed states and future states, each containing the agent’s positions at different
time points. The prediction model’s task is to accurately forecast the future states of road users based on the observed states. B) Current approaches focus
on perturbing only the observed states, constraining them within dynamically feasible and tactical behavior regions. However, this method does not guarantee
that future states will maintain the same tactical behavior as the ground truth. C) Our approach extends perturbations to both observed and future states. This
ensures that the entire trajectory, including future states, remains within dynamically feasible regions and preserves tactical behavior. D) This approach creates
scenarios where the model predicts a safe trajectory, but the perturbed future states actually lead to a collision.
Figure information: The overlapping area of the yellow/green and blue/green regions constitutes the feasible set for observed states CX and future states CY
of the adversarial trajectory.

adversarial attack objectives beyond existing ADE/FDE
and collision attack objectives, including an enhanced
collision attack concept integrated with the targeted attack
method proposed by Tan et al. [7].

• Comprehensive evaluation methodology for adver-
sarial attacks: We develop an approach to assess the
effectiveness and realism of adversarial attacks on trajec-
tory prediction models. This includes four novel perfor-
mance measures: two quantifying maximum and average
deviations from the ground truth, and two evaluating
realism through required control actions (acceleration and

curvature). We also establish a framework1 for generating
adversarial attacks using Projected Gradient Descent,
facilitating the evaluation of diverse attack objectives and
perturbation constraints.

1https://github.com/DAI-Lab-HERALD/General-Framework/tree/main/
Framework/Perturbation methods/Adversarial classes

https://github.com/DAI-Lab-HERALD/General-Framework/tree/main/Framework/Perturbation_methods/Adversarial_classes
https://github.com/DAI-Lab-HERALD/General-Framework/tree/main/Framework/Perturbation_methods/Adversarial_classes

II. RELATED WORK

A. Adversarial Attack Generation for Vehicles with Dynamical
Constraints

Adversarial attack generation for trajectory prediction mod-
els falls into two categories: using generative models to sample
adversarial scenarios [10] and generating adversarial scenarios
by perturbing real traffic scenarios [2], [5], [7], [9], [11]. The
latter attack generation method can be divided into black-box
attacks, which only use the model’s output and do not rely
on gradient information, and white-box attacks, which use the
model’s gradients to find perturbations.

Black-box attacks, like Particle Swarm Optimization (PSO)
[5], can be slow and unreliable [2]. In contrast, white-box
attacks, like Projected Gradient Descent (PGD) [2], [5], [7],
[9], are generally effective but struggle with trajectory pre-
diction models containing non-differentiable layers, as these
layers prevent the calculation of the gradients necessary for
the attack [5], [12]. This limitation is becoming less relevant
as state-of-the-art models adopt differentiable architectures
[13], [14]. In cases where access to gradients is restricted, for
example due to intellectual property concerns, this challenge
can be addressed by using surrogate models and generating
transferable attacks [15]. Our work focuses on utilizing a
white-box approach, which can be implemented by perturb-
ing either spatial positions [5] or control actions [2]. Both
approaches utilize different methods to limit the perturbation
using dynamical constraints.

• Dynamical Constraints Based on Spatial Positions.
Zhang et al. [5] perturb traffic scenarios by adjusting spa-
tial positions while ensuring dynamic feasibility through
data statistics, a method referred to as a ”Search attack”.
Their method guarantees that perturbed trajectories stay
within µ ± 3σ of the mean (µ) and standard deviation
(σ) of velocity, longitudinal/lateral acceleration, and their
derivatives. By first obtaining adversarial perturbations
to trajectory prediction model inputs, then scaling these
perturbations to satisfy the data statistics conditions. Yin
et al. [9] enhanced this approach by substituting the
data statistics method with a continuous curvature model
called an ”SA-attack”. Instead of using data statistics and
scaling the perturbation accordingly, they employ a con-
tinuous curvature model based on a pure pursuit method.
The pure pursuit method is a path-tracking algorithm
that generates a trajectory by continuously pursuing a
point on the path at a fixed lookahead distance from the
current position [16]. Similar to the ’SA-attack’ strategy,
this approach first obtains adversarial perturbations and
then fits the dynamical model between these perturbations
to generate trajectories that ensure dynamic feasibility
at specific speeds. The ’SA-attack’ offers more realistic
dynamical constraints for the generated trajectories com-
pared to the data statistics method.

• Dynamical Constraints Based on Control Actions. Cao
et al. [2] propose generating adversarial trajectories by
perturbing control actions derived from the agent’s spatial

position, heading angle, and velocity using a kinematic
bicycle model. Perturbing control actions, specifically
acceleration and curvature, offer greater control in gen-
erating adversarial trajectories due to two key benefits.
First, it ensures that the trajectories adhere to the physical
constraints associated with a specific vehicle. Second, it
ensures that the perturbed control actions remain consis-
tent with those of the original trajectory by limiting the
perturbation relative to the original control actions. These
advantages together help create more realistic trajectories.
The adversarial trajectories are then recovered using a
similar kinematic bicycle model.

B. Constraint Adversarial Perturbations to Maintain Tactical
Behaviour

Generating adversarial attacks that avoid detection as
anomalies requires that they are dynamically feasible and do
not deviate excessively from their ground truth, ensuring that
they stay close to the intended trajectory. To address this latter
aspect, two key strategies are currently used: fixed bound and
constraint-encoding.

• Fixed Bound. This strategy restricts deviations from the
ground truth positions to within a specified threshold
by scaling the perturbation until this condition is met,
thereby creating a fixed bound around the ground truth
positions for each timestep in the trajectory [5]. While
maintaining hard guarantees on constraint satisfaction,
this approach transforms the problem into an uncon-
strained optimization task.

• Constraint-encoding. Cao et al. [2] introduced
constraint-encoding based on a soft clipping function.
Their method employs a non-linear penalty for perturbed
input values. It measures the distance between the
adversarial and ground truth trajectories and then applies
a penalty term that becomes more severe as the changes
in distances grow larger. Minimizing this distance during
adversarial attack generation encourages the method
to generate samples that more closely resemble the
intended trajectory. However, while this approach offers
improved control over perturbations, it does not impose
an absolute limit on how far the perturbed trajectories
can deviate from the ground truth, potentially allowing
for significant deviations in some cases.

C. Attack types

Creating adversarial attacks involves specifying the attack
objective for robustness evaluation. Current literature explores
attacks along various measures, primarily focusing on six key
aspects: Average Displacement Error (ADE)/Final Displace-
ment Error (FDE) attack, lateral/longitudinal attack, targeted
attack, and collision attack.

• ADE/FDE Attack. The ADE attack aims to identify
perturbations causing the prediction model to produce
the worst possible predictions, those deviating furthest
from the ground truth [2], [5], [6], [17]. This is achieved
by maximizing the difference between all predicted and

ground truth trajectory states. The FDE attack has a
similar goal but focuses solely on the final state of the
predicted and ground truth trajectories [5].

• Lateral/Longitudinal Attack. While the ADE/FDE at-
tack does not specify a direction, deviations should
be directed to the left/right for lateral attacks or for-
ward/backward for longitudinal attacks to measure be-
haviors like spoofed lane changes or fake accelerations
[5], [6], [17].

• Targeted Attack. This method forces the trajectory pre-
diction model to make predictions as close as possible
to user-specified desired trajectories, such as predictions
pointing to the left or right side of the lane [7]. Unlike
ADE/FDE and lateral/longitudinal attacks, this approach
typically imposes stricter constraints on the perturbations,
as the intended direction of the predicted trajectory is
predetermined. While this method still allows for ma-
nipulation of the model’s output, the range of possible
outcomes is often more constrained compared to other
attack methods.

• Collision Attack. Unlike the targeted attack, which ma-
nipulates the prediction model to output specific trajec-
tories chosen by the attacker, the collision attack focuses
on creating collisions using existing trajectories of other
agents. It achieves this by minimizing the distance be-
tween the predicted trajectory of the adversarial agent
and the ground truth trajectories of surrounding agents
[3], [11].

III. PROBLEM DEFINITION

A. Trajectory Prediction

The goal of trajectory prediction is to forecast the future
movements of road users, known as agents, by analyzing their
observed trajectory. Each agent i has a state sti at time t, which
is the spatial positions p = (x, y). The states of all agents at
time t are defined as St = (st1, . . . , s

t
N). This task involves

capturing a series of states for each agent at fixed time intervals
∆t and predicting multiple possible future trajectories.

The formal description of the trajectory prediction prob-
lem can be summarized as follows [2], [4]: Define Xt =
(xt

1, . . . , x
t
N) as the joint state of all agents at time t ≤ 0,

where N is the total number of agents. Let H be the length
of the observation window, with X = (X−H+1, . . . , X0) rep-
resenting the observed trajectory. Future states are represented
by Y t = (yt1, . . . , y

t
N), where yti denotes the state of agent i

at time t > 0. These future states are what the model aims to
predict. The future trajectories span a finite horizon T , denoted
as Y = (Y 1, . . . , Y T).

Using a probabilistic model Pθ(Y |X) parameterized by θ,
the model generates K potential trajectories from the same ini-
tial state X . Each predicted trajectory is denoted as Ŷk where
k ∈ {1, . . . ,K}. The goal is to estimate the future trajectories
as accurately as possible, where each Ŷk ≈ Y = (Y 1, . . . , Y T)
(Figure 1A). The set of all predicted trajectories is represented
as Ŷ = {Ŷ1, Ŷ2, . . . , ŶK}.

B. Adversarial Attack on Trajectory Prediction Models

This work focuses on creating adversarial scenarios for an
autonomous vehicle (AV). In these scenarios, an adversarial
agent, originally the target agent, attempts to deceive the
prediction model employed by the ego agent (AV) into making
incorrect predictions (Figure 1B). We chose this approach of
defining ego and target vehicles because it closely mirrors real-
world autonomous driving scenarios, where an AV (ego agent)
must predict and respond to the behavior of other vehicles
(target agents) in its environment. Their trajectories are defined
as X = {Xtar, Xego} for the collection of observed states
and Y = {Ytar, Yego} for the collection of future states. The
attack on the prediction model is executed by modifying the
observed states of the target agent, Xtar, using perturbations δX.
In our work, we generate such perturbations δ using Projected
Gradient Descent (PGD) to create adversarial observed states
X̃tar. The probabilistic model, originally trained on authentic
samples, is then employed as Pθ(·|X̃tar), resulting in pre-
dictions on the adversarial trajectories denoted as ˆ̃Ytar. This
allows us to evaluate the performance of the model against the
adversarial trajectories X̃tar. Additionally, this paper introduces
perturbed future states for the target agent, defined as Ỹtar,
which are created using perturbation δY. These perturbed
future states will be utilized to create more realistic attacks.

C. Projected Gradient Descent

To generate adversarial attacks using a white-box attack
strategy, we calculate perturbations δ using Projected Gradient
Descent (PGD). PGD is an extension of traditional gradi-
ent descent methods for constrained optimization problems.
While standard gradient descent methods minimize a function
without constraints, PGD minimizes a function subject to
specific constraints, making it particularly suitable for gen-
erating adversarial examples within defined limits. The PGD
algorithm iteratively refines the perturbations using alternating
gradient and projection steps [18]. The process begins with an
initialized perturbation tensor δ0 set to zeros. For each iteration
m, where m ∈ {1, 2, ...,Mmax} and Mmax denotes the
maximum number of iterations, two key steps are performed.
First, a gradient step utilizes a step size α to update the
perturbation δm−1, producing an intermediate perturbation
δ̂m−1 (Equation 1). Second, a projection step finds an updated
perturbation δm by projecting δ̂m−1 on to the feasible set C
(Equation 2).

δ̂m−1 := δm−1 − α∇δL(θ,X, Y, δm−1) (1)

δm := argmin
v∈C

∥∥∥v − δ̂m−1
∥∥∥ (2)

The gradient used to update the perturbations δ is computed
with respect to a loss function L. This loss function incorpo-
rates several key elements: the model parameters θ, the spatial
positions of the observed trajectory X , the future trajectory Y ,
and the perturbations δm−1.

D. Attack Function in PGD

This paper focuses on the ADE/FDE, and collision attack
objectives, with loss functions determined according to the
PGD format.

• ADE/FDE Attack. These attacks mislead the trajectory
prediction model Pθ by finding perturbations δX that
result in the worst predictions ˆ̃Ytar possible. This is
achieved by increasing the mean Euclidean distance (l2-
squared) between all predicted future positions ˆ̃Ytar and
the ground truth future positions Ytar, for the ADE attack
(Equation 3), or only the final position for the FDE attack
(Equation 4).

lADE(Ytar,
ˆ̃Ytar) = − 1

T

T∑
t=1

∥∥∥ ˆ̃Y t
tar − Y t

tar

∥∥∥
2

(3)

lFDE(Ytar,
ˆ̃Ytar) = −

∥∥∥ ˆ̃Y T
tar − Y T

tar

∥∥∥
2

(4)

• Collision Attack. This attack aims to find perturbations
δX that mislead the trajectory prediction model Pθ into
believing a potential collision will occur. This objective is
achieved by minimizing the smallest Euclidean distance
(l2-squared) between the predicted future positions of the
target agent ˆ̃Ytar and the ground truth future positions of
the ego agent Yego (Equation 5).

lCol(Yego,
ˆ̃Ytar) = min

t∈{1,...,T}

∥∥∥ ˆ̃Y t
tar − Y t

ego

∥∥∥
2

(5)

E. Feasible Set for Perturbations

In the context of adversarial attacks on trajectory prediction
models, we define additional constraints on the perturbations
δX applied on the adversarial observed states X̃tar. These
constraints ensure that the adversarial observed states X̃tar
remain dynamically feasible and within a realistic range rela-
tive to the ground truth trajectory Xtar. Formally, we define a
constraint set C such that X̃tar = Xtar + δX, X̃tar ∈ CX,
where CX represents the feasible region of the adversarial
observed trajectory X̃tar. This set is designed to constrain the
perturbations, ensuring that the perturbed trajectory remains
close to the intended trajectory and, crucially, that the resulting
perturbed states are dynamically feasible. Dynamic feasibility
in this context refers to trajectories that adhere to the physical
limitations of the agent, such as maximum acceleration and
turning radius constraints. However, focusing solely on a
feasible region CX for observed states does not guarantee
that a feasible region CY exists for future states (Figure 1B).
This limitation results in a loss of similarity between the
predicted tactical behavior and the tactical behavior observed
in the ground truth future states Ytar. To address this issue, we
propose a novel approach that extends the concept of feasible
regions CY to future states Ytar (Figure 1C), as discussed in
detail in Section IV.

IV. GENERATING CONSTRAINED ADVERSARIAL
TRAJECTORIES

A. Constraining Perturbations using Dynamical Constraints

The foundation for constraining the adversarial trajectory of
the target agent using dynamic constraints in this paper is built
upon the back-and-forth interplay between spatial positions
and control actions. Perturbing control actions ensures the gen-
eration of dynamically feasible trajectories. Control actions,
defined by acceleration a and curvature κ, are provided by user
inputs through the gas/brake pedals and the steering wheel.
Acceleration influences changes in the longitudinal direction
of the trajectory, while curvature introduces variations in the
lateral direction. Curvature is preferred over steering wheel
angle because it is independent of the vehicle’s internal
dynamics (e.g., different wheelbases), making it easier to
implement across a broader range of vehicles. At any given
time t, the control action state for an agent i is represented
as ut

i = (ati, κ
t
i). Collectively, for all agents at time t, this

is denoted as U t = (ut
1, . . . , u

t
N). For observed states, the

control sequence is UX = (U−H+1, . . . , U−1), and for future
states, it extends to UY = (U0, . . . , UT−1).

1) Dynamical Model: The process of using control actions,
used in the paper by Cao et al. [2], involves converting states
st (including spatial postions p), heading angle θt, velocity
vt and control actions ut to subsequent states st+1, heading
angle θt+1 and velocity vt+1 through a dynamical model Φ
(Equation 6).

st+1, θt+1, vt+1 = Φ(st, ut, θt, vt) (6)

To derive the control actions for a given trajectory, an
inverse dynamical model Φ−1 is utilized, which converts states
st, st+1 and st+2 to control actions ut (Equation 7).

ut = Φ−1(st+2, st+1, st) (7)

This bi-directional conversion is crucial for creating adver-
sarial attacks against the trajectory prediction model, where
the control actions UX and UY are perturbed using perturba-
tions δUX and δUY , resulting in the perturbed control actions
ŨX and ŨY. Using the dynamical model Φ, these perturbed
control actions are converted into adversarial trajectories X̃
and Ỹ , with the important constraint that X̃−H+1 = X−H+1,
meaning the initial position remains unchanged. . Here, the
positional changes compared to the Ground truth trajectory X
and Y , are defined by the perturbations in spatial direction δX
and δY .

a) Model modifications: Our approach modifies the
model proposed by Cao et al. [2] to use only spatial positions
p, without assuming access to heading angle θ and velocity v
information in the initial state. This modification necessitates
changes to both the inverse dynamical model Φ−1 and the
dynamical model Φ. The modified inverse dynamical model
f−1 derives control actions u using states st+1, st, and
st−1 different compared to inverse dynamical model Φ−1

and allows for both forward and backward movement of the
adversarial agent (Equation 8).

ut = f−1(st+1, st, st−1)(
at

κt

)
=

(
vt+1−vt

∆t
θt+1−θt

vt·∆t

)
Where :

θt = atan2
(
ct · (pty − pt−1

y), ct · (ptx − pt−1
x)

)
vt = ct ·

∥∥pt − pt−1
∥∥
2

∆t
Direction :

θ̂t = atan2
(
pty − pt−1

y , ptx − pt−1
x

)
dt =

+1 if t ≤ −H + 2

+1 if |θ̂t − θ̂t−1| ≤ π
2

−1 if |θ̂t − θ̂t−1| > π
2

Sign :

ct =

t∏
i=−H+1

di

(8)

To calculate the control action ut, heading angle θt, and
velocity vt at time t, we require the previous state st−1.
This presents a challenge at the beginning of our trajectory,
specifically at t = −H+1. At this point, we lack information
about the state at t = −H , which is needed to compute the
initial values. To address this data gap issue, we implement
a solution that begins the control actions calculations at
t = −H + 2 instead of t = −H + 1. For the initial state,
we use the same heading angle θ and velocity v from time
t = −H + 2 to derive the control actions u−H+1 (Equation
9). (

θ−H+2

v−H+2

)
=

(
θ−H+1

v−H+1

)
(9)

For the forward pass, we employ a modified dynamical model
f that generates the next state st+1 given the current state st,
control actions ut, heading angle θt, and velocity vt, similar
to the dynamical model Φ (Equation 10). A key distinction
between our model f and Cao et al.’s model Φ lies in the
indexing of the heading angle and velocity. We utilize θt+1

and vt+1 to calculate st+1, whereas their model use θt and vt.
For the initial state at t = −H+1, we require a heading angle
θ and velocity v. As these values are not directly available
from our dataset, we initialize θ−H+1 and v−H+1 using the
same values employed for the inverse dynamical model f−1

(Equation 9).

st+1, θt+1, vt+1 = f(st, ut, θt, vt)(
pt+1
x

pt+1
y

)
=

(
vt+1 · cos(θt+1) ·∆t+ ptx
vt+1 · sin(θt+1) ·∆t+ pty

)
Where :

θt+1 = vt · κt ·∆t+ θt

vt+1 = at ·∆t+ vt

(10)

2) Adversarial Trajectory Generation: Utilizing both the
dynamical model f and the inverse dynamical model f−1,
trajectories and control actions are interchangeable, denoted by
(X,Y) ⇔ (UX, UY). Using this dynamical model, adversarial
trajectories can be generated through a process involving
five steps, divided into three phases: initialization, PGD, and
finalization (Figure 2).

• Initialize (1). The first step in creating adversarial attacks
using this framework is to use the ground truth spatial
positions for the target agent, Xtar and Ytar, to initialize
the first state s−H+1

tar = (θ−H+1
tar , v−H+1

tar , p−H+1
tar). Then,

using the inverse dynamical model f−1 (Equation 8),
determine the control actions for all states, U0

X and U0
Y.

The next crucial step is to initialize the zero perturbation
tensor δ0U , as this enables the gradient computations
needed for the subsequent steps.

• PGD (2, 3, 4). As described, we will use white-box
attacks employing PGD to update the perturbations δm−1

U .
In the second step of the perturbation framework, the
perturbation tensor δm−1

U is split into two components:
δm−1
UX

for observed states Xm−1
tar and δm−1

UY
for future

states Ytar. These components are then used to update
the control actions (Equations 11 and 12). Given the
updated control actions, the updated trajectory can be
recovered using the dynamical model f (Equation 10).
The updated observed states for iteration m are denoted
as Xm

UX
and Y m

UY
, respectively. Since the perturbations are

initially set to zero, this trajectory replicates the ground
truth trajectory in the first iteration.

Um
X := U0

X + δm−1
UX

(11)

Um
Y := U0

Y + δm−1
UY

(12)

In the third step, the updated observed states Xm
UX

are
utilized as input for the prediction model to generate
predictions on these updated states, denoted as Ŷ m

UX
.

Given the prediction, the loss can be calculated based
on the objective of the adversarial attack. Using the cal-
culated loss, the gradients for the initialized perturbation
tensor δ0U can be computed. Given the gradients and the
predefined step size α, the perturbations δm−1

U can be
updated (Equations 1 and 2).
As the car has physical limits on deceleration/acceleration
and turning, the updated control actions Um are limited
to the absolute physical limits U abs

min and U abs
max (Equation

13). Additionally, the control actions perturbations δmU
are also limited relative δU

rel
min and δU

rel
max, helping to

maintain the adversarial trajectory consistent with the
expected behavior of the vehicle (Equation 14). The
absolute physical limits for acceleration a are determined
using the limits within the dataset, while the other limits
are specified by the constraints provided by Wang et al.
[11] (Table I). Note that the limits for both acceleration
a and curvature κ differ in magnitude, which affects the
convergence speed for generating adversarial attacks for
both control actions. To compensate for this difference,

Calculate the control inputs
for the given trajectory

Generate the updated trajectory using the
control inputs and perturbations2

Fo
rw

ar
d

pa
ss

 +
C

al
cu

la
te

 G
ra

di
en

t

Initialize PGD

Finalize
False

True

1

3

5

4Iteration Max iteration
Generate the adversarial trajectory using the

control inputs and finalized perturbations

Fig. 2. Generating adversarial trajectories using control actions involves three phases: initialization (yellow), Projected Gradient Descent (green), and finalization
(red). Step 1 initializes the first state s−H+1

tar using ground truth positions and determines initial control actions (U0
X , U0

Y). Steps 2-4 involve PGD, iteratively
refining the trajectory by updating control actions Um

X and Um
Y with perturbations δm−1

UX
and δm−1

UY
, subject to physical constraints (absolute limits: purple

dotted line, relative limits: blue dashed line). A prediction model generates Ŷ m
UX

from updated states Xm
UX

, guiding further perturbation changes by retrieving
the gradients. Steps 4-5 finalize the process, converting adversarial control actions (ŨX , ŨY) to adversarial trajectories (X̃tar, Ỹtar).

TABLE I
PHYSICAL CONSTRAINTS

Relative Absolute

Control action Min Max Min Max

Acceleration (m/s2) -2 2 Data Data
Curvature (m−1) -0.05 0.05 -0.2 0.2

the step size α for acceleration a will be scaled according
to the same ratio as the scaling difference of the relative
limits (Table I). In the fourth step, it is checked if the
maximum number of iterations is reached; if not, steps
2, 3, and 4 are repeated.

U abs
min < U0 + δmU < U abs

max (13)

δU
rel
min < δmU < δU

rel
max (14)

• Finalize (4, 5). Once the desired iteration number Mmax

is reached in the fourth step, the adversarial control
actions ŨX and ŨY are determined. The final step finishes
the perturbation process by using the dynamical model f
(Equation 10), to convert these adversarial control actions
back into adversarial trajectories, defined as X̃tar and Ỹtar.

B. Constraining Perturbations to Preserve Tactical Behavior

In the context of constraining deviations from the ground
truth trajectories, we identified three conceptual approaches
for applying constraints and developed four implementation
strategies for generating attacks. These methods aim to balance
the effectiveness and realism of the adversarial trajectories.

1) Conceptual Approaches to Constraining Adversarial
Perturbations: Constraining perturbations in adversarial tra-

jectories is essential for developing effective adversarial at-
tacks. This technique minimizes the size of the perturbation
δX and δY , making the attack less detectable by ensuring
that adversarial trajectories remain close to the ground truth
trajectory, which represents human driving behavior. By pre-
serving this proximity, constraint-encoding ensures that ad-
versarial trajectories maintain the tactical characteristics of the
original trajectory. Beyond enhancing concealment, constraint-
encoding plays a critical role in identifying potential hazards in
future states Ytar that may be missed by the prediction model.
This aspect is particularly significant because relying solely
on ground truth future states Ytar to assess model performance
can be insufficient. A prediction model may fail to predict
dynamically feasible trajectories that could lead to dangerous
situations, such as collisions with the AV.

• Perturbed Observed States. To minimize significant
deviations from the ground truth observed states, con-
straints can be encoded into the perturbations δX (Figure
1B). This function ensures that adversarial attacks remain
subtle and are not flagged as anomalies by the AV
systems. The perturbed inputs X̃tar must maintain realistic
behavior. Suppose the perturbed inputs X̃tar cause the
vehicle to exhibit erratic behaviors, such as crossing road
lines or swerving off the road. In that case, it undermines
the quality and credibility of the adversarial attacks.
These deviations could easily be detected and dismissed
as unrealistic, defeating the purpose of the attack.

• Perturbed Future States. To ensure that the ground
truth future states Ytar are reachable from the perturbed
observed states X̃tar, we use perturbed future states Ỹtar.
Using the perturbed future states Ỹtar, we can create new

Fig. 3. Constraint to intended trajectory: A) Maintain the adversarial trajectory within an Dmax distance (L2 norm) from the intended trajectory at each time
step. B) Maintain the entire adversarial trajectory within an Dmax distance (L2 norm) from the intended trajectory. C) Maintain the adversarial trajectory
within an Dmax distance (L2 norm) from the intended trajectory, with a specific L2 norm distance applied at a critical time step tcrit.
Figure information: The black line represents the ground truth trajectory. Each color corresponds to a different timestep or a combination of multiple timesteps,
with the colored line indicating the distance threshold and the colored arrows showing the direction in which the penalties are applied.

trajectories that maintain the same tactical behavior as
the ground truth trajectory. This approach allows for per-
turbations δX in observed states that mislead the model
into making incorrect predictions, while still ensuring that
maneuvers such as a left turn remain possible (Figure
1C). Unlike the method proposed by Yin et al. [9], which
attempts to connect the perturbed observed states X̃tar
directly to the ground truth future states Ytar, our approach
allows the model to search for adversarial trajectories
within a predefined area around the ground truth future
states Ytar (green area in Figure 1C). These perturbed
future states Ỹtar are initialized using the ground truth
future states Ytar and are enforced to stay close to them
during the perturbation process. This flexibility avoids
strictly adhering to the exact positions of the ground truth
future states Ytar and ensures that adversarial trajectories
replicate realistic tactical human behavior, thereby avoid-
ing the creation of unrealistic scenarios.

• Predicted Future States. One can also leverage targeted
attacks introduced by Tan et al. [7], in combination with
perturbed future states Ỹtar. This method unfolds in sev-
eral steps. The process begins with the prediction model
generating an initial prediction Ŷtar based on the ground
truth observed states Xtar. This initial prediction Ŷtar
then serves as a user-specified trajectory Yref, acting as a
reference point for the subsequent step. Next, the model
predicts ˆ̃Ytar on adversarial states X̃tar. These predictions
are constraint to remain in proximity to the reference
trajectory Yref (Equation 15). Simultaneously, the future
perturbed states Ỹtar are manipulated adversarially (Figure
1D). The goal of this manipulation is to induce collisions
between the adversarial future states Ỹtar and the ego
agent’s ground truth future states Yego (Equation 16).

Yref = Ŷtar,
ˆ̃Ytar ≈ Yref (15)

lCol(Yego, Ỹtar) = min
t∈{1,...,T}

∥∥∥Ỹ t
tar − Y t

ego

∥∥∥
2

(16)

While prediction models inherently exhibit errors even
under normal conditions, constraining must account for
these inaccuracies (Figure 6). To address this issue,

instead of using the ground truth future states Ytar, pre-
dictions based on observed states in a nominal setting
Ŷtar are used as the reference trajectory (Equation 15).
This ensures that the adversarial strategy does not need
to overcompensate for the model’s prediction errors.

2) Implementation Approaches for Constraining Adversar-
ial Perturbations: Penalizing perturbations for both observed
δX and future states δY is realized using four strategies in
this paper: time-specific, trajectory-specific, time-trajectory-
specific, and a ADE-specific approach. These strategies are
designed to ensure that adversarial perturbations are controlled
and that the resulting behaviors remain realistic and safe. The
functions are determined according to the PGD format.

• Time-specific. To penalize perturbations δX and δY ,
a logarithmic function is employed as a constraint-
encoding, inspired by interior point methods [19] (Equa-
tion 17). This term penalizes deviations from the ground
truth non-linearly and limits perturbations, δX and δY , to
a predefined threshold, Dmax (Figure 3A). The perturba-
tion region is circular and time-dependent, starting at time
step t0 and ending at t1. This constraint term calculates
the mean Euclidean distance (l2-squared) between the
perturbed states S̃tar, and the ground truth states Star,
where larger deviations are penalized more heavily due
to the logarithmic nature of the equation.

lTime(Star, S̃tar, t0, t1) = − 1

t1 − t0 + 1

t1∑
t=t0

ln(
Dmax −

∥∥∥S̃t
tar − St

tar

∥∥∥
2

) (17)

• Trajectory-specific. A limitation of the time-specific
approach is its potential to excessively penalize devia-
tions in the longitudinal direction. This occurs because
the approach penalizes deviations δX and δY , in both
lateral and longitudinal directions. Penalization in the
lateral direction is essential to stay close to maintain
tactical behavior, such as making a left turn (Figure
1A). However, penalization in the longitudinal direction
is less critical because these deviations are primarily
influenced by speed and acceleration and can naturally

vary without significantly impacting the overall trajectory.
Over-penalizing in this direction can restrict the model’s
flexibility, preventing it from exploring a broader range
of realistic adversarial scenarios.
To address this issue, the ”trajectory-specific” approach
defines a feasible region around the entire trajectory (Fig-
ure 3B). This method computes a distance d(z, t) for each
perturbed state S̃t

tar relative to the ground truth trajectory
Star, where z represents a line segment between two
consecutive trajectory points. The distance is calculated
by evaluating two measures: the perpendicular Euclidean
distance d⊥ from the perturbed state S̃t

tar to the line
segment formed by the consecutive ground truth states
Zz

tar and Zz+1
tar , and the minimum Euclidean distance

between the perturbed state S̃t
tar and the individual ground

truth states Sz
tar and Sz+1

tar . The choice between these
distances is determined by the relative position of the
perturbed state along the line segment, as indicated by
r(z, t) (Figure 4). The minimum distance across all
segments of the trajectory is then incorporated into a
logarithmic barrier function (Equation 18). Similar to
the previous approach, the logarithmic function imposes
greater penalties on states that deviate further from the
original trajectory.

lTraj(Star, S̃tar, t0, t1) = − 1

t1 − t0 + 1

t1∑
t=t0

ln(
DMax − min

z∈{−H+1,...,T−1}
d(z, t)

) (18)

d(z, t) =

d⊥(S̃

t
tar, Z

z
tar, Z

z+1
tar) if 0 < r(z, t) < 1,

min(∥S̃t
tar − Zz

tar∥2,
∥S̃t

tar − Zz+1
tar ∥2) otherwise.

d⊥(S̃
t
tar, Z

z
tar, Z

z+1
tar) = |

D1
xD

2
y −D1

yD
2
x

∥D1∥2
|

r(z, t) =
D1

xD
2
x +D1

yD
2
y

∥D1∥22

with D1 = Zz+1
tar − Zz

tar,

D2 = S̃t
tar − Zz

tar.

• Time-trajectory-specific. The trajectory-specific ap-
proach allows for more flexibility in longitudinal devia-
tions, thereby enabling the exploration of a broader range
of realistic adversarial scenarios. While this flexibility
can be advantageous, it also poses a risk: perturbations
may lead to substantial deviations from the ground truth
states at critical moments. This can result in unrealistic or
unsafe behaviors that do not align with the natural flow
of the trajectory. For example, when making a left turn
(Figure 1A), it is crucial that, at prediction time t = 0, the
target agent can still feasibly complete the turn without
risking a collision with the ego agent.

Fig. 4. The visualization of the algorithm for constraining adversarial
perturbations using the trajectory-specific approach (Equation 18).

To address this challenge, we combined the time-specific
with the trajectory-specific constraint approach (Equation
19). By integrating trajectory-specific constraints with
time-specific constraints at critical moments tcrit, we
maintain the coherence of the trajectory while allowing
for the exploration of diverse adversarial scenarios (Fig-
ure 3C).

lTime-traj(Star, S̃tar, t0, t1, tcrit) =

lTime(Star, S̃tar, tcrit, tcrit) + lTraj(Star, S̃tar, t0, t1)
(19)

• ADE-specific. Since the predicted future trajectory Ŷtar
from the prediction model is probabilistic, it becomes
more challenging to use a predefined search area for
constraining the predicted future states ˆ̃Ytar. Without con-
trol over the directions of the predictions, the adversarial
model can become unstable if the predictions fall outside
this predefined area.
To address this, instead of using a logarithmic function
with a fixed bound for predictions, the ADE measure
will be used to constrain the perturbations δX and δY
(Equation 20). This approach minimizes the distance
between the predicted future states in the nominal setting,
Ŷtar, and the predictions in the adversarial setting, ˆ̃Ytar.
One disadvantage of this approach is that there is no hard
bound to constrain the predictions ˆ̃Ytar, which might lead
to larger deviations than desired.

lADEtac(Ŷtar,
ˆ̃Ytar) =

1

T

T∑
t=1

∥∥∥ ˆ̃Y t
tar − Ŷ t

tar

∥∥∥
2

(20)

C. Adversarial attack objectives

As we focused on the ADE/FDE and collision attack we
will use the PGD formatted objective functions as baseline
(Equations 3, 4 and 5). Building on these functions, along with
the dynamical constraints ldyn and tactical behavior constraints
ltac (Section IV), we formulate both traditional and newly
designed attack functions, including feasible ADE/FDE attacks
and false positive/negative collision attacks.

Fig. 5. Visual comparison between the traditional adversarial attacks and our adversarial attacks.

1) ADE/FDE: The foundation for ADE/FDE attacks is their
respective loss functions (Equations 3 and 4). Using these, both
traditional and newly designed feasible ADE/FDE attacks are
developed.

• Traditional ADE/FDE. The tradictional approach com-
bines ADE/FDE loss functions with dynamical and tacti-
cal behavior constraints applied to the perturbed observed
states X̃tar (Equations 21 and 22). This method seeks to
find perturbations δX that cause the ego agent (AV) to
predict a future trajectory ˆ̃Ytar for the adversarial agent
that deviates as far as possible from the intended trajec-
tory Ytar (Figure 5A). These perturbations are constrained
within the feasible set CX for the observed states X̃tar
(Figure 1B).

LADE = lADE(Ytar,
ˆ̃Ytar) + ldyn(X̃tar) + ltac(X̃tar) (21)

LFDE = lFDE(Ytar,
ˆ̃Ytar) + ldyn(X̃tar) + ltac(X̃tar) (22)

• Feasible ADE/FDE. Unlike the traditional approach, the
”feasible ADE/FDE” attack objective imposes dynamical
and tactical behavior constraints on both the perturbed
observed states X̃tar and future states Ỹtar of the trajec-
tory (Equations 23 and 24). This approach aims to find
perturbations δX and δY that cause the ego agent (AV)
to predict a future trajectory ˆ̃Ytar for the adversarial agent

that deviates significantly from the intended trajectory
Ytar, while perturbed future states Ỹtar remain close to
the ground truth future states Ytar (Figure 5C). The
perturbations must satisfy the constraints defined by the
feasible sets CX for both observed states X̃tar and CY for
future states Ỹtar (Figure 1C).

LF-ADE = lADE(Ytar,
ˆ̃Ytar) + ldyn(X̃tar, Ỹtar) + ltac(X̃tar, Ỹtar)

(23)

LF-FDE = lFDE(Ytar,
ˆ̃Ytar) + ldyn(X̃tar, Ỹtar) + ltac(X̃tar, Ỹtar)

(24)

2) Collision: The collision attack objective is based on two
attack functions (Equations 5 and 16). Both aim to induce
collisions between the ego agent’s future states Yego and the
target agent’s states: the first function targets predicted future
states ˆ̃Ytar, while the second targets perturbed future states Ỹtar.

• Tradictional Collision. The traditional approach uses the
first function and constrains the perturbed observed states
X̃tar with dynamical and tactical behavior constraints. It
seeks perturbations δX that cause the ego agent (AV) to
predict a trajectory ˆ̃Ytar resulting in a collision with itself
(Figure 5B). While ensuring that the perturbed observed
states X̃tar remain within the feasible set CX (Figure 1B).

Lcol = lCol(Yego,
ˆ̃Ytar) + ldyn(X̃tar) + ltac(X̃tar) (25)

• False Positive Collision. The ”False Positive Collision”
attack, similar to the Feasible ADE/FDE objective, adds
dynamical and tactical behavior constraints to the per-
turbed future states Ỹtar. It aims to deceive the ego agent
by finding perturbations δX that make the ego agent (AV)
predict a collision course with itself. However, the per-
turbations δY keep the perturbed future states Ỹtar close
to the ground truth Ytar, preventing the actual collision
from occurring (Figure 5D). This approach adheres to
the constraints defined by two feasible sets: CX for the
perturbed observed states X̃tar, and CY for the future
states Ỹtar (Figure 1C).

Lcol = lCol(Yego,
ˆ̃Ytar) + ldyn(X̃tar, Ỹtar) + ltac(X̃tar, Ỹtar)

(26)
• False Negative Collision. The ”False Negative colli-

sion” attack differs from both the traditional and false
positive collision approaches. It dynamically constrains
the perturbed observed X̃tar and future states Ỹtar, while
uniquely constraining the predicted future states ˆ̃Ytar for
tactical behavior. This attack aims to deceive the ego
agent (AV) by finding perturbations δX that cause the
ego agent to predict ˆ̃Ytar the correct trajectory Yref, while
simultaneously causing an actual collision with the ego
agent in the perturbed future states Ỹtar (Figure 5E). This
approach adheres to the feasible set CX for perturbed
observed states X̃tar while ensuring a collision occurs
within the dynamically feasible set CY for the perturbed
future states Ỹtar, with the predicted future states ˆ̃Ytar
remaining close to reference trajectory Yref (Figure 1D).

Lcol = lCol(Yego, Ỹtar) + ldyn(X̃tar, Ỹtar) + ltac(X̃tar,
ˆ̃Ytar)

(27)

V. EXPERIMENTAL SETTING

A. Dataset

The data for evaluation was sourced from the L-GAP dataset
[20] (Figure 1A), collected from participants who manually
controlled a target agent (yellow) to stop in front of the
stop board and then execute left turns at an intersection. The
autonomous vehicle, referred to as the ego agent (blue), main-
tains a constant velocity. In these specific left-turn scenarios,
variables such as the distance of the ego agent from the
intersection (90, 120, or 150 meters) and the time-to-arrival
intervals (4, 5, or 6 seconds) were randomly assigned [20].
The target agent (yellow) was specifically selected to generate
adversarial attacks. This choice is strategic because the ego
agent (blue) follows a predetermined, computer-generated path
at a fixed velocity and lacks a ”true” ground truth. This
characteristic makes the blue car an ineffective target for
perturbation. Targeting the human-driven vehicle is logical for
testing the trajectory prediction model, as the autonomous
vehicle (blue) must accurately anticipate human actions in
traffic scenarios.

The L-GAP dataset introduces a significant bias because the
target agent either makes a left turn or waits at the crossing. To

address this issue, the prediction model was trained using the
L-GAP and NuScenes dataset, which offers a greater variety of
scenarios [21]. For this training, the duration of the observation
period was set to H = 12, and the prediction horizon to
T = 12, with a time interval of ∆t = 0.1s. These parameters
were constrained by the sampling length of the dataset. To
evaluate the L-GAP dataset, originally captured within the
Carla simulation environment, modifications were made to
improve data quality. Specifically, a Savitzky-Golay filter was
employed to smooth the trajectories and mitigate inherent
noise in tracking the Cartesian coordinates inside the simulator.
Lastly, since this dataset captures the specific behavior of
gap acceptance, we utilize this information to select samples
with a higher likelihood of potential vehicle interactions. Our
method for determining prediction times tcrit allows us to
focus on moments when vehicles are more likely to be in
critical decision-making situations regarding gap acceptance.

B. Prediction Model Settings

For training, generating attacks, and evaluation in both
nominal and adversarial settings, we will utilize the state-of-
the-art trajectory prediction model, Trajectron++ [13]. During
training, this model generates K = 100 predictions based on
the observed states Xtar and optional map information. For
the generation of attacks, the model similarly uses K = 100
predictions. To determine the loss regarding the attacks, we
average the K predicted trajectories, resulting in the predicted
future trajectory ˆ̃Ytar given the adversarial observed states X̃tar.

C. Adversarial Attack Settings

For this research, we will compare three different dynamical
models. The first is the position-based method, which uses
no dynamics and perturbs the spatial positions directly. The
second is the data statistics approach from Zhang et al. [5],
which also perturbs spatial positions but limits the perturba-
tion using data statistics. The third is the dynamical model
proposed in this paper, inspired by Cao et al. [2], which
uses control actions to perturb the spatial positions. Each type
of dynamical model in our study requires the adjustment of
multiple hyperparameters to fine-tune the attack strategy. To
ensure a fair and consistent comparison across different attack
methodologies, we first establish a fixed distance threshold
for maintaining tactical behavior. We set this threshold, DMax,
to 0.9 meter for both adversarial observed states X̃tar and
future states Ỹtar. This distance threshold is selected because
the lane width in the L-GAP dataset is 3.5 meters, and the
width of a standard car is 1.7 meters. Therefore, a car can
deviate a maximum of 0.9 meters from the center to the left
or right without driving in the opposite direction or going
off-road. Given that our critical time step tcrit for prediction
is at t = 0, we apply time-specific and time-and-trajectory-
specific constraints to the perturbed observed states X̃tar. To
constrain the tactical behavior of perturbed future states Ỹtar,
we employ trajectory-specific and ADEtac-specific constraints.
We use trajectory-specific constraint because future positions
lack a critical time step tcrit. The ADEtac-specific constraint

is chosen due to the prediction model’s probabilistic nature.
Other crucial hyperparameters, such as the step size α are set
to 0.01, and the exponential decay γ is set to 0.99. To ensure
that the adversarial trajectories remain within the feasible
region CX and CY, we implement an adaptive step size α
mechanism. If the updated observed and future states fall
outside the tactical behavior constraint region (Figure 1), we
repeatedly scale the step size α by 0.5 until the condition is
met. The maximum number of iterations Mmax for generating
adversarial attacks is set to 100.

D. Measures

For a comprehensive evaluation, we employ seven perfor-
mance measures: three widely used in trajectory prediction
literature and four novel measures we introduce to assess the
characteristics of adversarial trajectories. The three established
measures are Average Displacement Error (ADE) [22], Final
Displacement Error (FDE) [23], and Collision Rate [3]. Our
four new measures specifically evaluate the adversarial ob-
served trajectories X̃tar: peak deviation Dpeak, mean deviation
Dmean, acceleration α, and curvature κ. Dpeak and Dmean
quantify the extent of perturbations from the original trajectory
Xtar, while acceleration and curvature provide insights into
the physical feasibility of the adversarial trajectories. All
measures are computed across N samples, with each sample
n representing a unique scenario in our dataset.

• ADE: Measures the average Euclidean distance between
predicted and ground truth trajectories across all time
steps, predictions, and samples:

ADE =
1

N

N∑
n=1

1

K

K∑
k=1

1

T

T∑
t=1

∥ ˆ̃Y t
tar,n,k − Y t

tar,n∥2 (28)

• FDE: Calculates the average Euclidean distance between
predicted and ground truth trajectories at the final predic-
tion time step across all predictions and samples:

FDE =
1

N

N∑
n=1

1

K

K∑
k=1

∥ ˆ̃Y T
tar,n,k − Y T

tar,n∥2 (29)

• Collision Rate: Assesses the frequency of collisions in
two scenarios: a) For predicted trajectories, across all
samples and predictions:

CRpred =
1

N

N∑
n=1

1

K

K∑
k=1

1{BB(ˆ̃Ytar,n,k)∩BB(Yego,n) ̸= ∅}

(30)
b) For the ”False Negative Collision” attack, across all
samples, and perturbed future states:

CRFNC =
1

N

N∑
n=1

1{BB(Ỹtar,n) ∩ BB(Yego,n) ̸= ∅} (31)

where BB(·) represents the bounding box of a vehicle,
and 1{·} is the indicator function that equals 1 if a
collision occurs and 0 otherwise.

• Peak deviation: Identifies the largest deviation of the
adversarial observed states from the ground truth:

Dpeak =
1

N

N∑
n=1

max
{t∈−H+1,...,0}

∥X̃t
tar,n −Xt

tar,n∥2 (32)

• Mean deviation: Calculates the average deviation of the
adversarial observed states from the ground truth:

Dmean =
1

N

N∑
n=1

1

H

0∑
t=−H+1

∥X̃t
tar,n −Xt

tar,n∥2 (33)

• Acceleration: Quantifies the acceleration input required
to achieve the adversarial observed states:

α =
1

N

N∑
n=1

1

H − 1

−1∑
t=−H+1

|atn| (34)

where atn is the acceleration derived from the inverse
dynamical model f−1 for sample n at time step t.

• Curvature: Determines the curvature input needed to
achieve the adversarial observed states:

κ =
1

N

N∑
n=1

1

H − 1

−1∑
t=−H+1

|κt
n| (35)

where κt
n is the curvature derived from the inverse

dynamical model f−1 for sample n at time step t.

E. Framework

To create the adversarial attacks, we have developed an
open-sourced framework, accessible at our GitHub repository2.
This framework is designed to facilitate the validation of
adversarial attack objectives and enables the exploration of
various combinations of dynamical and tactical behavior con-
straints. The framework is also available for future research, al-
lowing new attack objectives, tactical behavior and dynamical
constraints to be added. Additionally, we have integrated this
framework into an existing trajectory prediction framework,
which supports multiple trajectory prediction models, splitting
methods, datasets, and evaluation metrics, enabling versatile
evaluation of trajectory prediction tasks.

VI. RESULTS

To measure the performance of the attacks, we evaluated
the three traditional attack strategies and the four new attack
strategies (Section IV-C). For the evaluation, we used both
quantitative and qualitative results.

A. Quantitative Results

To comprehensively evaluate these results, we applied the
attacks across the entire dataset. Our analysis compared dif-
ferent dynamical and tactical behavior constraints, as well as
their performance against the nominal (unperturbed) prediction
scenario. Our analysis revealed several key findings (Table II).
To highlight specific comparisons, we have used color coding

2https://github.com/DAI-Lab-HERALD/General-Framework/tree/main/
Framework/Perturbation methods/Adversarial classes

https://github.com/DAI-Lab-HERALD/General-Framework/tree/main/Framework/Perturbation_methods/Adversarial_classes
https://github.com/DAI-Lab-HERALD/General-Framework/tree/main/Framework/Perturbation_methods/Adversarial_classes

TABLE II
ATTACK PERFORMANCE

Dynamical constraint Tactical behavior constraint Measure

Attack Observed Future Observed Future ADE FDE CRpred CRFNC Dpeak Dmean α κ

Unperturbed ✗ ✗ ✗ ✗ 0.115 0.283 0.015 - - - 0.510 0.006

Traditional Positions ✗ Time ✗ 4.045 3.447 0.007 - 0.770 0.195 53.407 20.860
ADE Positions ✗ Time-traj ✗ 3.447 6.203 0.011 - 0.681 0.168 47.066 25.222

Search ✗ Time ✗ 3.073 5.521 0.007 - 0.714 0.177 49.392 20.100
Search ✗ Time-traj ✗ 2.028 3.668 0.010 - 0.539 0.131 38.738 27.571

Control actions ✗ Time ✗ 1.030 1.604 0.014 - 0.841 0.525 1.658 0.006
Control actions ✗ Time-traj ✗ 0.738 1.201 0.017 - 0.525 0.153 1.402 0.005

Traditional Positions ✗ Time ✗ 3.983 7.158 0.008 - 0.766 0.186 51.868 23.368
FDE Positions ✗ Time-traj ✗ 4.035 7.262 0.008 - 0.846 0.197 56.280 22.338

Search ✗ Time ✗ 2.283 4.124 0.007 - 0.594 0.148 43.665 23.848
Search ✗ Time-traj ✗ 2.306 4.165 0.007 - 0.623 0.152 45.145 23.805

Control actions ✗ Time ✗ 1.059 1.651 0.015 - 0.856 0.267 1.792 0.007
Control actions ✗ Time-traj ✗ 0.841 1.360 0.017 - 0.598 0.161 1.644 0.006

Traditional Positions ✗ Time ✗ 1.371 2.495 0.020 - 0.467 0.119 36.695 27.427
Collision Positions ✗ Time-traj ✗ 1.389 2.530 0.020 - 0.495 0.125 39.004 29.138

Search ✗ Time ✗ 1.792 3.241 0.014 - 0.514 0.123 36.494 27.938
Search ✗ Time-traj ✗ 1.819 3.290 0.015 - 0.548 0.130 38.991 25.836

Control actions ✗ Time ✗ 0.446 0.715 0.021 - 0.360 0.127 1.065 0.006
Control actions ✗ Time-traj ✗ 0.332 0.570 0.021 - 0.217 0.067 1.005 0.005

Feasible Positions ✓ Time Trajectory 4.074 7.313 0.009 - 0.770 0.198 54.229 21.966
ADE Positions ✓ Time-traj Trajectory 5.138 9.282 0.009 - 1.195 0.232 66.763 21.088

Search ✓ Time Trajectory 2.861 5.147 0.008 - 0.683 0.170 47.764 20.173
Search ✓ Time-traj Trajectory 2.866 5.154 0.009 - 0.722 0.179 51.107 17.658

Control actions ✓ Time Trajectory 0.250 0.470 0.021 - 0.150 0.054 0.901 0.005
Control actions ✓ Time-traj Trajectory 0.222 0.435 0.021 - 0.113 0.038 0.878 0.005

Feasible Positions ✓ Time Trajectory 3.949 7.091 0.007 - 0.761 0.194 53.394 20.200
FDE Positions ✓ Time-traj Trajectory 5.185 9.363 0.007 - 1.205 0.237 67.594 20.478

Search ✓ Time Trajectory 3.090 5.559 0.009 - 0.708 0.179 49.681 20.771
Search ✓ Time-traj Trajectory 3.152 5.673 0.008 - 0.758 0.190 53.582 19.544

Control actions ✓ Time Trajectory 0.581 0.943 0.021 - 0.459 0.159 1.112 0.006
Control actions ✓ Time-traj Trajectory 0.503 0.845 0.021 - 0.349 0.108 1.113 0.005

False Positive Positions ✓ Time Trajectory 1.470 2.661 0.020 - 0.524 0.141 41.768 21.354
Collision Positions ✓ Time-traj Trajectory 1.508 2.740 0.021 - 0.562 0.147 44.317 20.614

Search ✓ Time Trajectory 2.564 4.603 0.013 - 0.652 0.160 43.792 22.793
Search ✓ Time-traj Trajectory 2.604 4.678 0.012 - 0.692 0.171 47.615 21.905

Control actions ✓ Time Trajectory 0.295 0.504 0.020 - 0.214 0.077 0.915 0.006
Control actions ✓ Time-traj Trajectory 0.255 0.459 0.020 - 0.152 0.049 0.905 0.006

False Negative Positions ✓ Time ADEtac 0.562 1.020 0.019 0.736 0.423 0.116 36.427 25.177
Collision Positions ✓ Time-traj ADEtac 0.598 1.085 0.020 0.741 0.467 0.126 40.322 25.739

Search ✓ Time ADEtac 0.878 1.586 0.020 0.709 0.452 0.122 38.110 24.988
Search ✓ Time-traj ADEtac 0.933 1.685 0.019 0.709 0.481 0.130 40.906 24.469

Control actions ✓ Time ADEtac 0.123 0.222 0.018 0.723 0.074 0.028 0.845 0.006
Control actions ✓ Time-traj ADEtac 0.105 0.198 0.018 0.723 0.052 0.021 0.855 0.006

in the table. If two colors are separated by a slash (/), it indi-
cates an overlapping cell box of a specific measure and attack
type. If they are separated by the word ’and’, it represents a
comparison between measures. In the following section, we
first focus on each pair of related attacks: Traditional ADE
and Feasible ADE (pink), Traditional FDE and Feasible FDE
(white), and Traditional Collision and False Positive Collision
(lightblue).

1) Dynamical Constraints: When comparing the perfor-
mance under adversarial attacks using control actions as
dynamical constraints, we observed a significant drop in
prediction performance. This is evident from notable decreases
in accuracy and substantial increases in both ADE, FDE,

and collision measures (lightgrey and yellow). Comparing
traditional attack strategies with those using dynamical and
tactical behavior constraints in future states Ỹtar, we noted
that these additional constraints led to a significant drop in
ADE and FDE attack performance (yellow/pink, yellow/white,
yellow/lightblue). The impact of these extra restrictions is also
reflected in the newly introduced measures. Both Dpeak and
Dmean, which measure deviation from the ground truth, are
significantly lower for the newly created attacks compared to
the traditional methods (blue/pink, blue/white, blue/lightblue).
A similar pattern emerges for the control action measures
(brown/pink, brown/white, brown/lightblue). Interestingly, the
attack model focuses more on perturbations in the longitudinal

direction, as evidenced by a significant change in acceleration
α with only slight modifications to curvature κ (darkgrey and
brown).

When evaluating performance under adversarial attacks
using a position-based perturbation strategy without dynam-
ical constraints, we observed a significant increase in attack
performance for ADE and FDE measures (lightgrey and vio-
let). Unlike the control action dynamical constraint approach,
restricting future states in this method led to even better
attack performance (violet/pink, violet/white, violet/lightblue).
However, the control action measures for this approach showed
unrealistically high values for both acceleration α and curva-
ture κ, indicating that this method is unsuitable for creating
realistic attacks (darkgray and cyan).

Comparing performance under adversarial attacks using
dynamical constraints according to the ”Search” attack, we
again observed a significant improvement in ADE and FDE
measures over the control action dynamical constraints (light-
grey and olive). However, this performance increase is gen-
erally worse compared to the position-based approach, as
expected, since this method applies dynamical constraints to
the position-based approach (olive and violet). Similar to the
position-based method, when evaluating the control actions
performance measure, these values are unrealistically high
(darkgray and magenta), indicating that both methods are un-
able to generate dynamically feasible adversarial trajectories.

2) Tactical Behavior Constraints: When comparing the
two different tactical behavior constraints for adversarial ob-
served states X̃tar - time-specific and time-trajectory-specific
constraints - we observe several key differences. Generally,
the time-specific approach shows better performance than
its counterpart. However, there are exceptions, particularly
for position-based perturbation strategies, though the advan-
tage in these cases is marginal (beige/pink, beige/white,
beige/lightblue, orange/pink, orange/white, orange/lightblue).
For control action-based dynamical constraints, we observe
that values for Dpeak and Dmean are generally closer to each
other compared to position (blue and beige) and ”Search”-
based (blue and orange) dynamical constraints. This suggests
that changes are more evenly distributed over the whole trajec-
tory when using control action-based constraints, indicating a
prioritization of consistent modifications throughout the path
rather than localized, extreme deviations. An interesting ob-
servation emerges for the position-based strategy under time-
trajectory-specific constraints. In this scenario, we noted that
the D[peak] deviations exceed the threshold D[max] of 0.9 meters
(beige/pink, beige/white). This suggests that this particular
attack strategy exploits the greater allowance for change in
the longitudinal direction, effectively utilizing the full range
of permitted deviations.

3) False Negative Collision: One of the novel attacks
designed in this paper, which has no direct counterpart, is
the false negative collision attack. For this attack, we adopt a
different evaluation approach. Instead, we compare the ADE
and FDE with the prediction in the nominal setting Ŷtar,
taking into account the inherent prediction errors present in the

nominal setting. For the control action dynamical constraints,
we observe that predictions on adversarial states ˆ̃Ytar closely
align with the predictions in the nominal setting Ŷtar (yel-
low/lightorange). This alignment is not observed in the other
two approaches (violet/lightorange, olive/lightorange). This
difference is also reflected in the Dpeak and Dmean measures,
where the control action approach shows minimal deviation
from the ground truth (blue/lightorange), in stark contrast to
the other approaches (beige/lightorange, orange/lightorange).
A significant finding across all three attacks is their ability
to create perturbations in the perturbed future states Ỹtar that
result in collisions. In approximately 70% of the samples, a
collision occurs, regardless of the constraint combination used
(red/lightorange).

B. Qualitative Results

To provide a more comprehensive understanding of the at-
tack objectives performance, we conducted a detailed analysis
of a specific left-turning sample from the L-GAP dataset.
The actual prediction performance for all attack objectives
using different dynamical and tactical behavior constraints are
visualized in the appendix (Figures 6-26). For consistency, we
applied the same settings used in the quantitative analysis,
as noted in the figure captions. We selected time-specific
constraints for the tactical behavior in the observed states, as
these generally performed the best (Table II). This in-depth
examination revealed several significant insights.

1) Nominal Setting: In the nominal setting, we observed
that the model struggles with accurate predictions, failing to
correctly estimate the curvature and acceleration of future
states, which highlights inherent limitations in the prediction
model even without adversarial interference.

2) Attack Performance: When analyzing the attacks and
their behavior in relation to the loss function, we observe
that the attacks generally behave as expected for all attack
objectives, with the exception of the false negative collision
attack (Figure 24 and 25). This attack exhibits some unique
characteristics. For the position-based perturbation strategy
without dynamical constraints, we observe that it forces one
of the points in the future states to converge to the ego
agent’s future states Yego. This behavior is logical given that
the objective is to minimize the distance at a specific time step,
and subsequent states are not constrained relative to each other.
This results in an unrealistic trajectory where only one point
aligns with the collision scenario. In contrast, the Search attack
shows no modification at all in future states for this particular
objective. This suggests that the position and ”Search” based
method may not be effective for the false negative collision
attack scenario, this observation aligns with the quantitative
results (Table II). For the control action strategy, we see the
generation of an actual trajectory causing a collision. This
behavior is more realistic and aligned with the attack objective,
as subsequent states are constrained relative to each other due
to the inherent properties of the control action approach.

3) Observed States: Examining the observed states reveals
a significant finding that verifies our quantitative results. We

previously noted that Dpeak and Dmean are generally closer to
each other for the control action-based dynamical constraints
compared to position and ”Search” based dynamical con-
straints. The position and ”Search” based approaches primarily
focus on perturbing the final points of the observed state Xtar.
In contrast, the control action-based approach shows a more
gradual increase in deviation from the ground truth Xtar. This
gradual deviation explains why the values of both measures
are closer to each other and results in the creation of more real-
istic trajectories. Specifically, the control action-based method
produces a smoother transition from the initial to the final
state, with perturbations distributed more evenly across the
trajectory. This is in stark contrast to the abrupt, localized
changes seen in the position and ”Search” based methods,
which tend to concentrate their modifications towards the end
of the trajectory.

4) Future States: Analyzing the future states reveals dis-
tinct patterns across different approaches. For the control
action-based approach, we observe that the trajectory smoothly
transitions from the adversarial observed states X̃tar to the
perturbed future states Ỹtar. This transition occurs within the
bounded area defined by the tactical behavior constraints
(Figure 1C), successfully creating trajectories where both
observed and future states comply with the tactical behavior of
the intended trajectory. In contrast, the position and ”Search”
based attacks exhibit a markedly different behavior. For these
approaches, we observe that the perturbed future states remain
unmodified. Instead, the final states of the adversarial observed
states X̃tar, which already exhibit unrealistic behavior, are
directly connected to the ground truth future states Ytar. This
creates a discontinuity in the trajectory, where the adversarial
modifications abruptly end at the transition point between
observed X̃tar and future states Ỹtar. This difference highlights
a key advantage of the control action-based approach, its
ability to maintain consistency and realism across the entire
trajectory, from adversarial observed X̃tar to perturbed future
states Ỹtar.

VII. DISCUSSION

Our comprehensive analysis of various adversarial attack
strategies on the state-of-the-art trajectory prediction model
revealed several key findings. Control action-based dynami-
cal constraints, while resulting in more realistic trajectories,
showed lower attack performance compared to position-based
and ”Search” methods. However, these latter methods often
produced unrealistic trajectories with implausibly high ac-
celeration and curvature values. Time-specific tactical behav-
ior constraints generally outperformed time-trajectory-specific
constraints, with some exceptions in position-based strategies.
The false negative collision attack demonstrated the ability to
create perturbations leading to collisions in about 70% of sam-
ples, regardless of constraint combinations. Qualitative anal-
ysis further supported these findings, highlighting the control
action-based approach’s superiority in maintaining trajectory
consistency and realism. While these findings provide valuable
insights into the performance and characteristics of different

adversarial attack strategies, they also highlight areas where
our current approach could be improved. Through careful
examination of both our quantitative and qualitative results,
we have identified several limitations in our methodology and
found areas for future research.

A. Limitation Dataset

For this project, we utilize the L-GAP dataset [20]. This
dataset originally includes an equal distribution of samples:
half involving left-turning vehicles and half with vehicles
standing still in front of the intersection. The ego agent is
initialized at varying distances from the intersection, while
the target agent crosses the intersection with different time
and distance margins between the two vehicles. These varying
margins pose a challenge for the traditional collision, false
positive collision, and false negative collision attacks, as they
rely on the distance margins to create crashes in target agent
predictions. The wide range of margins (from 5 meters to
80 meters) results in highly variable loss values, potentially
leading to the problem of exploding gradients during attack
generation. To address this issue, we utilized the gap ac-
ceptance behaviour information of the dataset by sampling
instances with a high likelihood of critical decision-making
situations. This selects samples where the ego agent’s future
states are near the intersection, and the target agent is still
approaching the intersection. While this approach successfully
mitigated the exploding gradients problem, it significantly im-
pacted the dataset balance. Upon analyzing the refined dataset,
we observed a substantial imbalance: only 53 samples involve
making a left turn, while 973 samples represent instances
where the subjects are standing still. This imbalance is crucial
to note because the samples of stationary subjects are also af-
fected by adversarial attacks, which can significantly influence
the quantitative results. The disproportionate representation of
stationary samples makes it challenging to accurately assess
the performance of the attack objectives across the entire
dataset.

Another significant concern related to the dataset is its in-
herent bias, which results in the vehicle either standing still or
making a left turn. To address this limitation, we utilized both
the L-GAP and NuScenes datasets during training. However,
balancing the training data between L-GAP and the more
dominant NuScenes introduced a new issue: compromised
prediction performance in nominal settings, as evident in both
quantitative results (Table II) and qualitative results (Figures
6-26).

This issue is further complicated by the fact that the L-GAP
dataset lacks training images, whereas the NuScenes dataset
provides figures for training. In an attempt to address this
dataset imbalance and the standing still bias, we created a
map for the L-GAP dataset similar to those used for training
with NuScenes to improve prediction performance (Figure
27). Unfortunately, using this figure resulted in even poorer
predictions (Figure 28).

Further limitation of the dataset is the inclusion of crash
scenarios involving both the target and ego agent. These crash

scenarios pose a particular challenge for the data statistics
dynamical approach ”Search” proposed by Zhang et al. [5].
Crash events typically involve extreme vehicle dynamics,
characterized by high accelerations and curvatures that fall
outside normal driving patterns. The approach by Zhang et al.
uses the entire dataset, including these crash data, to establish
the bounds of normal vehicle behavior. As a result, their
method struggles to differentiate between realistic adversarial
trajectories and physically implausible ones, leading to the
generation of dynamically infeasible adversarial trajectories.

B. Future Works

Following an in-depth analysis of our findings, we identified
seven research opportunities that could be addressed using our
perturbation framework:

• This paper primarily focuses on the utilization of
ADE, FDE, and collision attacks. Future research could
investigate the performance and implications of lat-
eral/longitudinal attacks using perturbed future states.

• While the study effectively utilizes the L-GAP dataset,
evaluating the generalizability of the attacks would be
greatly enhanced by applying them to more widely rec-
ognized autonomous vehicle datasets, such as NuScenes
[21]. NuScenes includes a broad range of real-world driv-
ing scenarios, making it a better benchmark for testing
the attacks’ performance in diverse conditions.

• The idea presented in this paper is to perturb both
observed and future states of the vehicle’s trajectory. This
approach improves the realism of adversarial examples by
maintaining consistent tactical behavior and enables the
creation of new datasets. These datasets, which reflect
adversarial conditions, can be used to fine-tune prediction
models. Training on these datasets may help models
better anticipate and mitigate adversarial attacks, thereby
improving their overall robustness.

• Two approaches are utilized to generate attacks that align
with the expected tactical behavior. First, we limited the
control action relative to their original control actions.
Second, we applied tactical behavior constraints that
penalize trajectories deviating from their ground truth.
Future research could investigate how these approaches
influence each other and their impact on the effectiveness
of the attack.

• In our analysis of various combinations of dynamical con-
straints and tactical behavior constraints, we maintained
a consistent step size α and decay rate γ for the step
size across all attacks. However, to further optimize the
performance of these attacks, future research should focus
on hyperparameter tuning.

• For the dataset settings, we utilized a step size ∆t of
0.1 seconds, resulting in small positional changes. Future
research could experiment with the impact of increasing
the step size ∆t, extending the observation period H , or
expanding the prediction horizon T .

• In this research, we set the distance threshold Dmax to 0.9
meters. Future studies could investigate how changes in

this attack budget would impact the performance of the
adversarial attacks.

VIII. CONCLUSION

This paper introduces novel strategies for generating adver-
sarial attacks on trajectory prediction models, balancing the
goal of misleading the prediction model while creating realistic
driving scenarios. Our approach, incorporating new dynamical
and tactical behavior constraints, demonstrates effectiveness in
impacting prediction performance while maintaining plausible
vehicle behavior. Experiments reveal significant increases in
ADE, FDE, and collision measures under adversarial con-
ditions and expose model vulnerabilities. Additionally, we
develop four new performance measures for evaluating the
realism and impact of adversarial trajectories. However, limi-
tations in dataset balance highlight areas for future research.
This work contributes to improving the robustness of trajectory
prediction models in autonomous driving systems, providing
a framework for future research in AV safety and reliability.

ACRONYMS

ADE Average Displacement Error. 3–5, 8, 9, 12–14, 16
AV Autonomous vehicle. 1, 4, 7, 10, 11, 16
FDE Final Displacement Error. 3–5, 9, 12–14, 16
PGD Projected Gradient Descent. 3–6, 8, 9
PSO Particle Swarm Optimization. 3

REFERENCES

[1] J. Hagenus, F. B. Mathiesen, J. F. Schumann, and A. Zgonnikov, “A
survey on robustness in trajectory prediction for autonomous vehicles,”
2024. arXiv:2402.01397.

[2] Y. Cao, C. Xiao, A. Anandkumar, D. Xu, and M. Pavone, “AdvDO:
Realistic adversarial attacks for trajectory prediction,” in Eur. Conf.
on Comput. Vis., 2022.

[3] S. Saadatnejad, M. Bahari, P. Khorsandi, M. Saneian, S.-M. Moosavi-
Dezfooli, and A. Alahi, “Are socially-aware trajectory prediction models
really socially-aware?,” in Transp. Research Part C: Emerg. Technol.,
2022.

[4] Y. Cao, D. Xu, X. Weng, Z. Mao, A. Anandkumar, C. Xiao, and
M. Pavone, “Robust trajectory prediction against adversarial attacks,”
in PMLR The 6th Conf. on Robot Learn., 2023.

[5] Q. Zhang, S. Hu, J. Sun, Q. A. Chen, and Z. M. Mao, “On adversarial
robustness of trajectory prediction for autonomous vehicles,” 2022.
arXiv:2201.05057.

[6] R. Jiao, X. Liu, T. Sato, Q. A. Chen, and Q. Zhu, “Semi-supervised
Semantics-guided Adversarial Training for Robust Trajectory Predic-
tion,” in IEEE/CVF Int. Conf. on Comput. Vis., Oct. 2023.

[7] K. Tan, J. Wang, and Y. Kantaros, “Targeted adversarial attacks against
neural network trajectory predictors,” 2022. arXiv:2212.04138.

[8] A. Tocchetti, L. Corti, A. Balayn, M. Yurrita, P. Lippmann, M. Bram-
billa, and J. Yang, “A.i. robustness: a human-centered perspective on
technological challenges and opportunities,” 2022. arXiv:2210.08906.

[9] H. Yin, J. Li, P. Zhen, and J. Yan, “Sa-attack: Speed-adaptive stealthy
adversarial attack on trajectory prediction,” 2024. arXiv:2404.12612.

[10] D. Rempe, J. Philion, L. J. Guibas, S. Fidler, and O. Litany, “Generating
useful accident-prone driving scenarios via a learned traffic prior,” 2022.
arXiv:2112.05077.

[11] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren,
and R. Urtasun, “AdvSim: Generating safety-critical scenarios for self-
driving vehicles,” in IEEE/CVF Conf. on Comput. Vis. Pattern
Recognit., IEEE, 2021.

[12] Z. Zheng, X. Ying, Z. Yao, and M. C. Chuah, “Robustness of trajectory
prediction models under map-based attacks,” in Proc. IEEE/CVF
Winter Conf. on Appl. Comput. Vis., 2023.

[13] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data,” in
Eur. Conf. on Comput. Vis., 2020.

[14] Y. Yuan, X. Weng, Y. Ou, and K. Kitani, “AgentFormer: Agent-aware
transformers for socio-temporal multi-agent forecasting,” in IEEE/CVF
Int. Conf. on Comput. Vis., 2021.

[15] Y. Qin, Y. Xiong, J. Yi, and C.-J. Hsieh, “Training meta-surrogate model
for transferable adversarial attack,” in Proc. AAAI Conf. on Artif.
Intell., 2023.

[16] R. C. Coulter, “Implementation of the pure pursuit path tracking al-
gorithm,” Tech. Rep. CMU-RI-TR-92-01, Carnegie-Mellon University
Pittsburgh PA Robotics Institute, 1992.

[17] A. Duan, R. Wang, Y. Cui, P. He, and L. Chen, “Causal Robust Trajec-
tory Prediction Against Adversarial Attacks for Autonomous Vehicles,”
IEEE Internet Things J., 2023.

[18] M. Schmidt, “Projected newton first-order optimization algorithms
for machine learning projected-gradient methods.” https://www.cs.ubc.
ca/∼schmidtm/Courses/5XX-S20/S5.pdf, 2020. University of British
Columbia, Summer 2020.

[19] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[20] A. Zgonnikov, D. Abbink, and G. Markkula, “Should i stay or should i
go? cognitive modeling of left-turn gap acceptance decisions in human
drivers,” in Hum. Factors: The J. Hum. Factors Ergon. Soc.,
2024.

[21] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A multimodal
dataset for autonomous driving,” in IEEE/CVF Conf. on Comput.
Vis. Pattern Recognit., 2020.

[22] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never walk
alone: Modeling social behavior for multi-target tracking,” in IEEE
12th Int. Conf. on Comput. Vis., 2009.

[23] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in IEEE Conf. on Comput. Vis. Pattern Recognit., 2016.

APPENDIX

https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S5.pdf
https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S5.pdf

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 6. Traditional ADE attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Position - ltac(X̃tar):
Time-specific - Extra: Train and prediction without map. Summary: Traditional ADE attack without dynamical constraints creates an unrealistic trajectory,
with large deviations in the final states of the observed states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 7. Traditional ADE attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Search - ltac(X̃tar): Time-
specific - Extra: Train and prediction without map. Summary: Traditional ADE attack using ”Search” dynamical constraints creates an unrealistic trajectory,
with large deviations in the final states of the observed states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 8. Traditional ADE attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Control action - ltac(X̃tar):
Time-specific - Extra: Train and prediction without map. Summary: Traditional ADE attack with control action dynamical constraints creates a realistic
trajectory, with a gradual increase in deviation from the ground truth.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 9. Traditional FDE attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Position - ltac(X̃tar):
Time-specific - Extra: Train and prediction without map. Summary: Traditional FDE attack without dynamical constraints creates an unrealistic trajectory,
with large deviations in the final states of the observed states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 10. Traditional FDE attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Search - ltac(X̃tar): Time-
specific - Extra: Train and prediction without map. Summary: Traditional FDE attack with ”Search” dynamical constraints creates an unrealistic trajectory,
with large deviations in the final states of the observed states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 11. Traditional FDE attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Control action - ltac(X̃tar):
Time-specific - Extra: Train and prediction without map. Summary: Traditional FDE attack with control action dynamical constraints creates a realistic
trajectory, with a gradual increase in deviation from the ground truth.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 12. Traditional collision attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Position - ltac(X̃tar):
Time-specific - Extra: Train and prediction without map. Summary: Traditional collision attack without dynamical constraints creates a realistic trajectory,
with a small deviation in the final state of the observed states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 13. Traditional collision attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Search - ltac(X̃tar):
Time-specific - Extra: Train and prediction without map. Summary: Traditional collision attack with ”Search” dynamical constraints creates a realistic trajectory,
with a small deviation in the final state of the observed states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 14. Traditional collision attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Control action -
ltac(X̃tar): Time-specific - Extra: Train and prediction without map. Summary: Traditional collision attack with control action dynamical constraints creates a
realistic trajectory, with a gradual increase in deviation from the ground truth.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Adversarial target agent (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 15. Feasible ADE attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Position - ldyn(Ỹtar): Position
- ltac(X̃tar): Time-specific - ltac(Ỹtar): Trajectory-specific - Extra: Train and prediction without map. Summary: Feasible ADE attack without dynamical
constraints creates an unrealistic trajectory, with large deviations in the final states of the observed sequence. The final observed state is directly connected to
the first state of the ground truth future states without modifications to those future states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Adversarial target agent (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 16. Feasible ADE attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Search - ldyn(Ỹtar): Search
- ltac(X̃tar): Time-specific - ltac(Ỹtar): Trajectory-specific - Extra: Train and prediction without map. Summary: Feasible ADE attack with ”Search” dynamical
constraints creates an unrealistic trajectory, with large deviations in the final states of the observed sequence. The final adversarial observed state is directly
connected to the first state of the ground truth future states without modifications to those future states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Adversarial target agent (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 17. Feasible ADE attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Control action - ldyn(Ỹtar):
Control action - ltac(X̃tar): Time-specific - ltac(Ỹtar): Trajectory-specific - Extra: Train and prediction without map. Summary: Feasible ADE attack with
control action dynamical constraints creates a realistic trajectory, with a gradual increase in deviation from the ground truth. The adversarial observed states
smoothly transition to the adversarial future states that closely resemble the future ground truth states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Adversarial target agent (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 18. Feasible FDE attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Position - ldyn(Ỹtar): Position
- ltac(X̃tar): Time-specific - ltac(Ỹtar): Trajectory-specific - Extra: Train and prediction without map. Summary: Feasible FDE attack without dynamical
constraints creates an unrealistic trajectory, with large deviations in the final states of the observed sequence. The final adversarial observed state is directly
connected to the first state of the ground truth future states without modifications to those future states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Adversarial target agent (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 19. Feasible FDE attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Search - ldyn(Ỹtar): Search
- ltac(X̃tar): Time-specific - ltac(Ỹtar): Trajectory-specific - Extra: Train and prediction without map. Summary: Feasible FDE attack with ”Search” dynamical
constraints creates an unrealistic trajectory, with large deviations in the final states of the observed sequence. The final adversarial observed state is directly
connected to the first state of the ground truth future states without modifications to those future states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Adversarial target agent (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 20. Feasible FDE attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Control action - ldyn(Ỹtar):
Control action - ltac(X̃tar): Time-specific - ltac(Ỹtar): Trajectory-specific - Extra: Train and prediction without map. Summary: Feasible FDE attack with control
action dynamical constraints creates a realistic trajectory, with a gradual increase in deviation from the ground truth. The adversarial observed states smoothly
transition to the adversarial future states that closely resemble the future ground truth states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Adversarial target agent (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 21. False positive collision attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Position - ldyn(Ỹtar):
Position - ltac(X̃tar): Time-specific - ltac(Ỹtar): Trajectory-specific - Extra: Train and prediction without map. Summary: False positive collision attack without
dynamical constraints creates a realistic trajectory, with a small deviation in the final state of the observed states. The final adversarial observed state is directly
connected to the first state of the ground truth future states without modifications to those future states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Adversarial target agent (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 22. False positive collision attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Search - ldyn(Ỹtar):
Search - ltac(X̃tar): Time-specific - ltac(Ỹtar): Trajectory-specific - Extra: Train and prediction without map. Summary: False positive collision with ”Search”
dynamical constraints creates a realistic trajectory, with a small deviation in the final state of the observed states. The final adversarial observed state is directly
connected to the first state of the ground truth future states without modifications to those future states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Adversarial target agent (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 23. False positive collision attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Control action -
ldyn(Ỹtar): Control action - ltac(X̃tar): Time-specific - ltac(Ỹtar): Trajectory-specific - Extra: Train and prediction without map. Summary: False positive collision
attack with control action dynamical constraints creates a realistic trajectory, with a gradual increase in deviation from the ground truth. The adversarial observed
states smoothly transition to the adversarial future states that closely resemble the future ground truth states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Adversarial target agent (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 24. False negative collision attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Position - ldyn(Ỹtar):
Position - ltac(X̃tar): Time-specific - ltac(Ỹtar): Trajectory-specific - Extra: Train and prediction without map. Summary: The prediction on the adversarial
observed states is directed toward the nominal setting prediction. The perturbed future states align with the ground truth, except for one specific timestep that
converges to the future states of the ego agent to cause a collision. However, the trajectory does not look realistic for observed and future states.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Adversarial target agent (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 25. False negative collision attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Search - ldyn(Ỹtar):
Search - ltac(X̃tar): Time-specific - ltac(Ỹtar): Trajectory-specific - Extra: Train and prediction without map. Summary: The prediction on the adversarial
observed states is directed toward the nominal setting prediction. The perturbed future states are not moving in the correct direction to cause a collision.

120 100 80 60 40 20 0 20
30

20

10

0

10

20
Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Adversarial target agent (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

4 2 0 2 4 6 8 10
6

4

2

0

2

4 2 0 2 4 6 8 10
6

4

2

0

2

Static scene

Fig. 26. False negative collision attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Control action
- ldyn(Ỹtar): Control action - ltac(X̃tar): Time-specific - ltac(Ỹtar): Trajectory-specific - Extra: Train and prediction without map. Summary: The prediction
on the adversarial observed states is directed toward the nominal setting prediction. The perturbed future states are directed toward the ego agent, causing a
collision.

Fig. 27. L-GAP dataset map used during training

70 60 50 40 30 20 10 0 10

20

15

10

5

0

5

10

Example 2 of batch - Adversarial data plot

Observed target agent (Xtar)
Future target agent (Ytar)
Prediction target agent (Ytar)
Adversarial target agent (Xtar)

Adversarial prediction (Ytar)
Observed ego agent (Xego)
Future ego agent (Yego)

Static scene

Fig. 28. ADE attack (Train: NuScene + L-GAP, Evaluate: L-GAP) - Max iteration: 100 - α: 0.01 - γ: 0.99 - ldyn(X̃tar): Control action - ltac(X̃tar): Time-
specific - Extra: Train and prediction with map. Summary: A prediction model is tested using map information to improve prediction accuracy (Figure 27).
However, it did not perform as expected and is therefore not utilized.

	Introduction
	Related work
	Adversarial Attack Generation for Vehicles with Dynamical Constraints
	Constraint Adversarial Perturbations to Maintain Tactical Behaviour
	Attack types

	Problem Definition
	Trajectory Prediction
	Adversarial Attack on Trajectory Prediction Models
	Projected Gradient Descent
	Attack Function in PGD
	Feasible Set for Perturbations

	Generating Constrained Adversarial Trajectories
	Constraining Perturbations using Dynamical Constraints
	Dynamical Model
	Adversarial Trajectory Generation

	Constraining Perturbations to Preserve Tactical Behavior
	Conceptual Approaches to Constraining Adversarial Perturbations
	Implementation Approaches for Constraining Adversarial Perturbations

	Adversarial attack objectives
	ADE/FDE
	Collision

	Experimental Setting
	Dataset
	Prediction Model Settings
	Adversarial Attack Settings
	Measures
	Framework

	Results
	Quantitative Results
	Dynamical Constraints
	Tactical Behavior Constraints
	False Negative Collision

	Qualitative Results
	Nominal Setting
	Attack Performance
	Observed States
	Future States

	Discussion
	Limitation Dataset
	Future Works

	Conclusion
	References
	Appendix

