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Abstract

The controller placement problem concerns the placement of controllers on Software-Defined
Networks such that a pre-defined objective is optimized. In this thesis, we conduct research
on the controller placement problem with network availability as the performance metric. Un-
like other approximate evaluations, we compute the exact value with the path decomposition
algorithm, which allows us to accurately measure the quality of different placements. After
that, we investigate on the graph metrics’ effect on network availability and develop a place-
ment strategy based on degree and distance. Greedy algorithm and genetic algorithm are also
introduced to address the controller placement problem. We analyze the optimal placement
of OS3E network and other 100 real-world networks. We find that different placements af-
fect availability a lot, which indicates that it is necessary to find a strategy to place controller
such that a near-optimal placement is achieved. Finally, four placement strategies are tested
on Erdős–Rényi random graphs, Barabási–Albert random graphs, and 155 real-world graphs
from the Topology Zoo. Results show that the performance of these four strategies is almost
same for most networks. However, the complexity of these four methods is very different,
which suggests that the controller placement strategy based on graph metrics is efficient.
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1
Introduction

In contrast to traditional networks, Software-Defined Networks (SDN) achieve a logically cen-
tralized control architecture by decoupling the network control plane and the data plane [35].
SDN networks are structured into three distinct planes: the data plane, the control plane, and
the management plane. The data plane comprises the networking devices responsible for the
efficient forwarding of data packets. The control plane governs the decision-making process
for network traffic handling. Themanagement plane remotelymonitors and configures the con-
trol functionality. This division of planes in SDN provides a flexible and scalable architecture,
enhancing network programmability and control [17].

The SDN controllers, as the principal elements within the control plane, play an important
role in acquiring comprehensive network-wide information and serving as the central decision-
maker. The controllers are required for communication between network devices and applica-
tions, highlighting their critical function in SDN architectures. Recognizing its significance,
the Controller Placement Problem (CPP) in SDN was first introduced by Heller et al. [10].
This problem aims to address two fundamental questions:

• How many controllers are needed?
• Where in the topology should they be placed?

In [10], Heller et al. propose a solution for placing a single controller to manage an entire
network. However, multiple controllers are often required for wide-area SDN deployments.
Multiple controllers can back up each other, thereby mitigating the issue of single-point-of-
failures. By adopting a multi-controller design, the performance of networks can be signif-
icantly enhanced [11]. However, it is crucial to carefully consider the placement of these
controllers as it has a substantial impact on overall network performance. Consequently, the
development of effective multi-controllers placement strategies becomes increasingly imper-
ative. This thesis focuses on optimizing availability through the placement of multiple con-
trollers. Additionally, we propose a novel termed “controller reachability” that serves as an
indicator of availability.

1



2 Chapter 1. Introduction

1.1. Objectives
The objectives of this thesis are:

1. Try to answer two questions proposed byHeller et al.: Howmany controllers are needed?
Where in the topology should they be placed?

2. Define controller reachability as a measurement of the availability and propose a method
to accurately calculate it when multiple controllers are placed.

3. Find the controller placement strategies such that the availability is optimized.

1.2. Contributions
The main contributions of this thesis are:

1. Propose a novel metric “controller reachability” that serves as an indicator of availability.
2. Apply the path decomposition algorithm to the controller reachability calculation.
3. Find the optimal placement of more than 40,000 graphs and conclude graph metrics’

effect on controller reachability.
4. Develop 4 controller placement strategies. One of them is based on the graph metrics,

and the other three are heuristic methods.
5. Analyze the optimal placement of 101 real-world networks to conclude the effect of

different placements and the number of needed controllers.
6. Compare different placement strategies on synthetic networks and 155 real-world net-

works. Find the best placement strategy.

1.3. Thesis outline
The structure of this thesis is as follows:

1. Chapter 2 introduces the controller placement problem and the related work. Graph
metrics and graph models related to this thesis are introduced. The dataset used in this
thesis and the problem that we focus on are introduced.

2. Chapter 3 briefly introduces the principle of enumeration method andMonte Carlo simu-
lation. Then the path decomposition algorithm is introduced, which is an algorithm that
can compute the exact all-terminal reliability of a network with restricted pathwidth. At
the same time, we describe how to transform the problem of controller reachability into
the problem of all-terminal reliability.

3. Chapter 4 introduces the findings we obtain from the optimal placement analysis of nu-
merous graphs. Firstly, we identify two influential metrics, namely degree and distance,
that significantly impact controller reachability. Subsequently, some graphs with inter-
secting controller reachability are presented. The reason behind this is discussed.
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4. Chapter 5 introduces the placement strategies based on graph metrics, the greedy algo-
rithm, and the genetic algorithm (classic GA and heuristic GA).

5. Chapter 6 presents the optimal placement of 101 real-world networks. We try to answer
the questions “how does the placement affect controller reachability?” and “how many
controllers are needed?”. Subsequently, we apply different placement strategies on syn-
thetic networks and 155 real-world networks. The performances of different strategies
are compared.

6. Chapter 7 presents the conclusion and future work.





2
Background

In this chapter, some background knowledge is introduced. Section 2.1 introduces some com-
monly used performancemetrics in controller placement problems. Section 2.2 reviews related
work. Section 2.3 introduces graph metrics and graph models used in this thesis. Section 2.4
introduces the real-world network dataset. Section 2.5 introduces the graph representation of
SDN network and defines the controller reachability.

2.1. Performance metrics
The performance of a network can be measured using many criteria. Some commonly used
metrics in controller placement problems are introduced as follows.

Latency

Due to the frequent message exchanges between controllers and switches, the latency between
controllers and switches is particularly important. The overall latency consists of packet trans-
mission latency, propagation latency, switch queuing latency, and controller processing latency
[32]. The controller placement problem for latency aims to find the placement such that the
latency is minimized.

Availability

The availability of a system refers to its ability to continue operating even in the presence
of failures. In the study by Kumari et al. [18], two frequently employed metrics, fault tol-
erance and reliability, are presented as indicators of availability. Fault tolerance measures
the resilience of a network in recovering from different failure scenarios. The computation
of this metric involves tallying the count of controller-less nodes, which are nodes that cannot
establish connections with any controller, across different scenarios. Reliability is another met-
ric that considers the probability of component failures. It measures the percentage of failed

5



6 Chapter 2. Background

control paths for each failure scenario and combines the percentages with the corresponding
probabilities. The controller placement problem for availability aims to find the placement
such that the availability is maximized.

In this thesis, we present a novel measure of availability called “controller reachability”,
whichwill be explained in 2.5. By employing controller reachability as the performancemetric,
we explore the impact of different placements on network performance.

Deployment cost

Deployment cost is usually considered with other metrics to form a multiple objectives prob-
lem. It can be minimized by reducing the number of controllers, which will influence the
performance of the network. Therefore, the cost metric can be optimized under the constraints
of other performance metrics like capacity, latency and availability. The controller placement
problem for deployment cost aims to determine the SDN planning, including optimal con-
troller number, location, type of controller as well as the interconnection between controllers
and controllers/switches such that the deployment cost is minimized with different constraints
[25].

2.2. Related work
In [10], Heller et al. propose the controller placement problem and try to find the optimal place-
ment in wide-area networks such that the placement minimizes propagation delays. Average
latency (k-median) and worst-case latency (k-center) are considered as performance metrics
of propagation delays to minimize and the brute force algorithm is used. They find that the
random placements are far from optimal in almost all topologies and the placements affect the
network performance a lot. In most topologies, average latency and worst latency cannot be
both optimized. For small networks, one controller can meet the latency requirement.

In [12], Hu et al. formulate the reliability-aware control placement (RCP) problem. A
metric is proposed to reflect the reliability of networks, called expected percentage of control
path loss. In the RCP problem, they look for the number of controllers and the placement in a
network with given failure probability of each component such that the reliability is optimized.
They also point out that reliability and latency cannot be optimized at the same time for most
networks, however, the placement with optimal reliability brings a quite sufficient average
latency.

In [23], Ros et al. introduce the fault tolerant controller problem and develop a heuristic
algorithm to determine the placement. The lower bound reliability is considered as a perfor-
mance metric. In this algorithm, they assume that the node with higher connectivity ranks
better than others and try to find the minimum number of controllers to reach five nines relia-
bility (99.999%).

In [37], Zhong et al. define a metric that reflects the reliability of the control network as the
average number of disconnected switches when a single edge fails. To minimize the number of
controllers and maximize reliability, a min-cover based method is employed. In this method,
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the cover denotes a set of nodes whose neighborhood encompasses all switches within the
network. After identifying a cover with the minimum size, the controllers are placed.

For the controller placement problem, there is a lot of work using reliability as the perfor-
mance metric. However, most of them use approximation values. In this thesis, an algorithm
that gives exact values is used to calculate the controller reachability, which allows us to accu-
rately measure the quality of different placements.

2.3. Graph Theory Basis
A graph is a mathematical representation of a network and it describes the relationship between
nodes and links. The set of nodes is denoted as V , with the number of nodes represented as N.
The set of links is denoted as E, with the number of links represented as L. A graph is denoted
by G(N,L), representing a network with N nodes and L links. In this section, graph metrics
and graph models related to this thesis are introduced.

2.3.1. Graph metrics

Degree

Degree d j of a node j in a graph G(N,L) is defined as the number of its neighboring nodes
[30]. Degree is an essential metric for studying theoretical and real networks. It is the simplest
measurement of centrality, where higher values mean that the node is more central (important)
[9]. In a regular graph, every node has the same degree.

The minimum node degree of a graph is defined as,

dmin = min
j∈G

d j (2.1)

The average degree of a graph is defined as,

E[D] =
1
N

N

∑
j=1

d j =
2L
N

(2.2)

The average degree can be used to present whether a graph is dense or sparse.

Connectivity

A graph is connected if there is a path between each pair of nodes. Connectivity is defined
as the minimum number of elements that need to be removed to separate the remaining nodes
into two or more isolated subgraphs. The edge-connectivity λ (G) is the minimum number of
edges to remove to disconnect graph G. The node-connectivity κ(G) is the minimum number
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of nodes to remove to disconnect graph G. The node-connectivity is less or equal to edge-
connectivity and both of them are less or equal to the minimum degree of the graph.

κ(G)≤ λ (G)≤ dmin(G) (2.3)

Shortest path

Given an undirected network G, a nonnegative weight wl associated with each edge l ∈ E, an
origin node s ∈V , and a destination node t ∈V , the shortest path is the path such that the total
weight from s to t is minimal [34]. In unweighted graphs, the shortest path is the path between
s and t with the minimum number of edges.

2.3.2. Graph models

A random graph is a graph whose topology is determined in a random way. It models the irreg-
ular behaviour of real-world networks by making connections through a random process [29].
Different random graph models produce graphs with different properties based on different
stochastic ways. Two random graph models are used in this thesis.

Erdős–Rényi model

The Erdős–Rényi (ER) random graph is a well-known random graph model [7], which can be
generated by letting every possible edge between any two nodes independently exists with an
edge probability p. The model can be represented as G(n, p) where n is the number of nodes,
and p is the edge probability.

Since each edge is present independently with probability p, the degree distribution is
binomial as follows,

P(D = k) =
(

n−1
k

)
pk (1− p)n−1−k (2.4)

The average degree of Erdős–Rényi random graph is

E[D] = (n−1)p (2.5)

The expected link number is

L =
n(n−1)p

2
(2.6)

The threshold for the connectedness ofG(n, p) is expressed as pth = ln(n)/n. If p is smaller
than pth, the generated graph is almost certainly disconnected. If p is larger than pth, the
generated graph is almost certainly connected.
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Barabási–Albert model

A power-law degree distribution was first observed in real-world networks by Barabási and
Albert. They argued that the scale-free nature of real-world networks is based on two generic
mechanisms: (1) networks expand continuously by the addition of new vertices; (2) new ver-
tices attach preferentially to sites that are already well connected [2].

The Barabási–Albert (BA) model can be represented asG(n,m)where n is the total number
of nodes in the graph, m is the number of new links established whenever a new node is added.

In this thesis, the process of generating a BA graph starts with a star network ofm+1 nodes.
At each time, one new node is added into the network by being connected with m nodes that
already exist. The connection probability is proportional to the degree of the existing nodes,
therefore, the new node prefers to attach to a high-degree node. If an existing node i has degree
di, the probability that the new node chooses node i to connect is

pi =
di

∑ j∈G d j
. (2.7)

2.4. Topology Zoo
The Internet Topology Zoo is a dataset of 232 network data created from the information that
network operators make public [14]. Much research related to controller placement problem is
studied based on the networks from the Topology Zoo. In this thesis, the analysis of real-world
networks is also based on networks from the Topology Zoo.

From the Topology Zoo we choose 150 small size (11 ≤ n ≤ 50) connected graphs and 5
middle/large size (50 < n) connected graphs. The average node degree and network sizes are
shown in Fig. 2.1. The networks used for analysis are all sparse networks where the average
node degree varies from 1.875 to 4.48. In this dataset, Abilene is the smallest network with 11
nodes and 14 edges, Cogentco is the largest network with 197 nodes and 243 edges.

2.5. Problem
The SDN network is represented as an undirected graph G(N,L), where N represents the num-
ber of nodes, L represents the number of links. With the assumption that connections between
controllers and nodes are always operational, we can present that controllers are co-located
with nodes in the data plane. A graph representation of a SDN network is shown in Fig. 2.2,
where each node is a switch and the red node indicates that a controller is co-located with a
switch.

We consider that the switches/controllers (nodes) are always operational, and the physical
links between switches are operational with probability p. In this thesis, the availability is
quantified through the concept of controller reachability, which is defined as the probability
that each switch in the network is connected to at least one controller.
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Figure 2.1: Average node degree vs. network size of networks from the Topology Zoo we analyse.

What is the reason behind the performance difference when applying different placements?
Does there exist an optimal placement? If K controllers will be deployed in a network, where
should they go such that the controller reachability is optimized? Can we conclude the mini-
mum number of controllers to meet a certain requirement? Those are the questions to answer
in this thesis.

Figure 2.2: Graph representation of SDN network with switches and controllers.



3
Controller reachability evaluation

In this chapter, controller reachability evaluation methods are introduced. Section 3.1 intro-
duces how to calculate controller reachability using enumeration. Section 3.2 introduces how
to estimate controller reachability using Monte Carlo simulation. Section 3.3 introduces a
method to transform controller reachability into all-terminal reliability. Meanwhile, we in-
troduce the path decomposition algorithm, which is an algorithm that can compute the exact
all-terminal reliability of a network. Section 3.4 proves that controller reachability is not a
submodular function.

3.1. Enumeration

Figure 3.1: An example network. Each node is a switch and the red node means a controller is co-located with
a switch.

A working state s can be represented as a set of binary numbers consisting of 0s and 1s,
where each element Ii j indicates whether the link between node i and j is working or not. Based
on the assessment of the state elements, we can know whether the state meets the requirement
that each node is connected to at least one controller, which can be represented as a binary
number Is. For instance, the state of the example network is (I12, I23, I14, I25, I45). Consider a
state (1, 1, 1, 0, 0), which indicates that there are link failures between nodes 2 and 5, as well
as between nodes 4 and 5. In this case, the node 5 cannot reach any controller. Therefore, this
state has Is = 0.

Exact computation of controller reachability can be done by complete enumeration of all

11



12 Chapter 3. Controller reachability evaluation

states. The controller reachability can be expressed as

Pcr = ∑
s∈A

IsPs, (3.1)

whereA is the complete set of states, Is is a binary number which indicates whether state smeets
the requirement that each node is connected to at least one controller, Ps is the probability of
state s.

The controller reachability of the example network in Fig. 3.1 is computed by enumerating
25 states. The result is 4p3 −4p4 + p5.

However, the running time grows exponentially with the number of links. For a graph
with L edges, the size of the complete states set is 2L. Therefore, we can only use brute force
enumeration for small networks.

3.2. Standard Monte Carlo simulation
Monte Carlo Simulation is a sampling technique, which has been one of the most widely used
methodologies for reliability estimation [8]. When sampling, each link fails with probability
1− p. If each node in the result network can reach at least one controller, It = 1. Otherwise,
It = 0. The estimated controller reachability can be expressed as

P̂cr ≈ PcrMCS =
1
t

t

∑
1

It (3.2)

where t is the sampling times, It is a binary number which indicates whether this sample meets
the requirement that each node is connected to at least one controller.

However, Monte Carlo Simulation is not computationally efficient in estimating rare event
probability [3]. This method requires many samples to get a good approximation, which can
result in a long total runtime if each sample takes a long time to process.

Monte Carlo simulation of the example network in Fig. 3.1 is shown in Fig. 3.2.

3.3. Path decomposition
Enumeration offers accurate results but is burdened with high computational complexity. On
the other hand, Monte Carlo simulation provides an approximation, but requires a significant
amount of computation time to achieve higher levels of accuracy. Due to constraints imposed
by network size and computation time, both enumeration and Monte Carlo simulation ap-
proaches have limitations. In this thesis, the path decomposition algorithm is employed as
an alternative solution. This algorithm enables the computation of the all-terminal reliability
polynomial for graphs with restricted pathwidth [22]. The application of this algorithm to
evaluate controller reachability will be explained first, followed by a detailed exposition of its
functioning principles.
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Figure 3.2: A Monte Carlo simulation is conducted on the example network with 500 samples. In this figure,
the x-axis denotes the link operational probability p, the y-axis denotes the controller reachability. The blue

curve corresponds to the Monte Carlo simulation’s approximate value, whereas the red curve is the exact value
obtained through enumeration.

3.3.1. Controller reachability vs. All-terminal reliability

As mentioned in Chapter 2, the controller reachability is defined as the probability that each
node is connected to at least one controller. Therefore, the network after links failure can be a
disconnected network, but each component must have at least one controller.

The example network in Fig. 3.1 is represented as a graph, wherein solid lines denote work-
ing edges and dashed lines indicate failed edges. Three distinct cases are presented in Fig. 3.3.
In the first case, the network remains connected. It is evident that each node establishes a con-
nection with at least one controller. In the second case, the network undergoes disconnection,
resulting in its division into two components (145 and 23) due to the failure of two specific
edges. Nevertheless, each component is equipped with a controller, thereby ensuring that ev-
ery node remains connected to at least one controller. In the third case, the network undergoes
disconnection, leading to its division into two components (1245 and 3) as a consequence of
the failed edges. Node 3 fails to establish connectivity with any controller within this case.

Figure 3.3: Three cases of network partitions after edges failure. The solid lines indicate working edges and the
dashed lines indicate failed edges.

There is a way to relate the controller reachability with the network all-terminal reliability,
which is defined as the probability that each node can communicate with every other node in a
network [8]. The main idea of this approach is to reestablish connectivity among the network
components. This can be achieved by introducing additional always operational links between
controllers or by merging all controllers into a single node. In this thesis, the second method
is used.
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(a) Introduce additional always operational links between controllers.

(b)Merge all controllers into a single node.

Figure 3.4: Two ways to reestablish connectivity among the network components.

After merging all nodes with the controller into a single node, the result network may have
duplicate links. The topology is further simplified by removing these duplicate links and ad-
justing the corresponding link probabilities. Subsequently, a graph with a single controller is
obtained, and its all-terminal reliability is equivalent to the controller reachability of the orig-
inal graph. The process of controllers merging serves multiple purposes. It not only reduces
the number of controllers to one but also reduces the overall number of nodes and edges in
the network. This reduction has the benefit of simplifying the subsequent path decomposition
process, resulting in decreased complexity. From the rightmost figure in Fig. 3.4b, we can
immediately determine the controller reachability because the graph is connected if and only
if all links are operational. Hence, we get (1− (1− p)2)2 p which can be simplified to the
expression 4p3 −4p4 + p5 we already obtained in Section 3.1.

Now the computation of controller reachability is transformed into the computation of all-
terminal reliability, which is anNP-hard problem [33]. There aremany techniques that evaluate
the all-terminal reliability [8]. In this thesis, the decomposition method is used [4].

3.3.2. Graph reductions

Before the decomposition of a graph, graph reductions can be used to further simplify the
graph. Consider a connected graph G = (N,L) whose nodes are always operational and edges
are operational with link probability. Reliability-preserving reductions are used to simplify the
graph topology and adjust link probability [26]. It reduces the complexity of calculating R(G).
After reductions, R(G) = ΩR(G′), where Ω is a multiplicative factor (initially, Ω is 1 ).

In this thesis, three simple reductions are used.

• Parallel reduction: Suppose ei = (u,v) and e j = (u,v) are two parallel edges with link
probability pi, p j. Parallel reduction replaces ei and e j with a single edge enew = (u,v),
which has link probability pnew = 1− (1− pi)(1− p j). Ω is unchanged.

• Degree-1 reduction: Suppose v is a node whose degree is 1. It is connected to the rest
network through a single edge ei with link probability pi. Degree-1 reduction removes
this edge and multiplies Ω with pi.
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• Degree-2 reduction: Suppose v is a node whose degree is 2. It is connected to the
rest network through two edges ei = (u,v) and e j = (v,w) with link probability pi,
p j. Degree-2 reduction replaces ei and e j with a single edge enew = (u,w), which has
link probability pnew = pi p j/(1− (1− pi)(1− p j)). After reduction, multiply Ω with
(1− (1− pi)(1− p j)).

(a) Parallel reduction

(b) Degree-1 reduction

(c) Degree-2 reduction

Figure 3.5: Examples of Reliability-preserving reductions.

Graph reductions reduce the number of nodes and the number of edges, simplifying the
calculation. An example is shown in the Fig. 3.6. This is the DFN network from the Topology
Zoo with 58 nodes and 87 edges. We consider nodes are always operational and edges are
independently operational with link operational probability p. After reductions, the network
has 14 nodes and 27 edges, where each edge has a different link operational probability and
the minimum node degree is 3.

(a) Original DFN network (b) DFN network after reductions

Figure 3.6: Graph reduction of DFN network.
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3.3.3. Decomposition method

The decomposition method for evaluating the reliability of a network whose elements fail
independently with known probabilities was first introduced by A.Rosenthal [24]. A.Pönitz
and P.Tittmann [22] presented the path decomposition algorithm which can compute the all-
terminal reliability polynomial of a graph with restricted pathwidth in polynomial time by node
and edge operation. The method used in this thesis is based on this algorithm. I will start with
some basic concepts and then introduce the algorithm.

• Decomposition principle: A connected graph can be represented as G(V,E), where V is
the set of nodes, E is the set of edges. The decomposition considers a subgraphH(V ′,E ′)
and its complement HC(V ′′,E ′′) such that H and HC are separated by the boundary set
F =V ′∩V ′′ [4]. In the beginning, H is a null graph and HC is graph G. After the entire
graph is processed, H is graph G and HC is a null graph. During processing, the states
of the boundary set store all information needed to calculate the all-terminal reliability
of subgraph H.

Figure 3.7: An example of the boundary set. In the subgraph H, the set of nodes V ′ = {1,2,4,5} . In the
complement graph HC, the set of nodes V ′′ = {2,3,5} . The boundary set F =V ′∩V ′′ = {2,5}.

• The partition: Since each edge of H fails independently, there will be several events
associated with different probabilities. If each connected component C1, C2,..., Cr of H
has at least one node from the boundary set F , this is a working event. Otherwise, it is a
failure event that will lead to the disconnection of graph G. For each working event, we
can get the partition π with r block: B1 =C1 ∩F , B2 =C2 ∩F ,..., Br =Cr ∩F . Events
with the same partition are equivalent. The set can have many partitions and two of them
are extreme cases. The first extreme case is that the partition has one block that contains
all nodes in the set. The second extreme case is that the partition has |F | blocks such
that each block contains one node from the set.

One example of different partitions is shown in Fig. 3.8. In this graph, the red part is the
subgraph H that has been processed, the blue part is the complement HC of the subgraph.
They share the boundary set F = {2,4}. Three events are shown. For the first event,
there is one connected component C in subgraph H. The partition π of the boundary
set has one block B = C∩F , π = [24]. For the second event, there are two connected
componentsC1,C2 in subgraphH. The partition has two blocksB1 =C1∩F,B2 =C2∩F ,
π = [2][4]. For the third event, there are three components. However, the component
with node 1 is disconnected with the boundary set. Therefore, it is a failure event.
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Figure 3.8: Different partitions of three events.

• Path decomposition: A path decomposition of G is represented by a sequence of active
nodes set (sometimes more than boundary set). For graph G with n nodes, the path
decomposition is a sequence of active nodes set (X1,X2, ...,X2n+1) where the first and
the last set is /0 . The inclusion of node v into the active node set is called the activation
of node v, while the removal of node v from the active node set is called the deactivation
of node v.

• The states: A state is a pair (π,Pπ)where π is one partition of X and Pπ is the probability
of the presence of partition π . The states of active nodes set X is a set of pairs that
includes all possible partitions of X . In the path decomposition sequence, the states of
each step can be calculated from the previous states by node and edge operations.

Node and edge operation

Node and edge operations are the basis of the decomposition method, which facilitate the
transformation of states with different active nodes set Xi → Xi+1 . For a graph with N nodes
and L edges, we can get a 2N +L steps series where N steps are activations of node, N steps
are deactivations of node, L steps are edge processing. The node and edge operations involve
the transformation of states as follows,

• Activation of node v: The activation of node v extends all partitions by a singleton with-
out changing the probability.

{(π,Pπ)}→ {(π | v,Pπ)} (3.3)

• The deactivation of node v: If v is the last node in the boundary set, the corresponding
probability is the final all-terminal reliability, that is (v,Pv)→ ( /0,Pv). If v is not the last
node, for each state, the node v is removed from partition π . And there are two cases.
If v is a singleton in π , the corresponding state is removed from the state set, that is
(π,Pπ)→ /0. Otherwise, the states with the same partition after removal will be merged
into one state, and their probability will be added up together.

∪
π∈M(σ ,v)

{(π,Pπ)}→

{(
σ , ∑

π∈M(σ ,v)
Pπ

)}
(3.4)

where σ is the partition after removal, M(σ ,v) is the set of all partitions that can be
obtained from the partition σ by inserting node v into one block.



18 Chapter 3. Controller reachability evaluation

• Processing edge e = {u,v}: The processing of edge ewith link probability pe brings two
states, corresponding to either the failing or the working of e.

{(π,Pπ)}→ {(π,(1− pe)Pπ) ,(π ∨ e, pePπ +Pπ∨e)} (3.5)

where π ∨ e is the partition after u and v are connected by edge e.

How to determine Path Decomposition

Given that the transformation of states is required for each node operation and edge operation,
the computational complexity of the algorithm primarily relies on the number of possible parti-
tions within the boundary set. Consequently, the algorithm exhibits an exponential complexity
with respect to the maximum size of the boundary set. Therefore, it is important to find a nice
decomposition such that the maximum boundary set is small.

The width of a path decomposition is defined as max |Xi|−1. The pathwidth of a graph is
defined as the minimum width among all possible path decompositions. However, finding the
pathwidth of a graph is NP-hard [21].

A heuristic algorithm is used in [22] to obtain an upper bound pathwidth. This algorithm
defines the neighborhood N(X) of a node set X as the set of neighboring nodes of X (excluding
the nodes already in X). During each step, the algorithm selects a node from the neighborhood
of the active set, aiming tominimize the width at the current stage. By considering each node as
an initial node, the algorithm identifies a path decomposition with the smallest possible width,
which is also the upper bound pathwidth we find. Furthermore, to enhance the algorithm’s
efficiency, an additional improvement can be made by minimizing the size of each active node
set in the path decomposition sequence (X1,X2, ...,X2n+1). The improved algorithm operates
as follows:

• Start with a node v
• Choose the next node from neighborhood N(X). The prior choice is the node that can
cause node deactivation of other nodes in set X . If there is no such node, choose the
node that has more neighbors in set X .

• Continue this process until every node is included.
• Record the maximum width max |Xi|−1 of each set in (X1,X2, ...,X2n+1).
• Record the sum of width of each set in (X1,X2, ...,X2n+1)

• The width of this path decomposition is max |Xi|−1.
• Repeat this process with each node as the start node.
• The solution with the minimal found width as well as the minimal sum of width is the
final solution.

Decomposition algorithm

After determining the path decomposition (X1,X2, ...,X2n+1), we can convert it into a series
which represents the node and edge operations. The length of the series is 2N+L, with N steps
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node activation, N steps node deactivation, and L steps edge processing. The decomposition
algorithm is shown in Algorithm 1.

Algorithm 1 Decomposition algorithm
Input: network, link probability, series
Output: all-terminal reliability
1: for step in series do
2: if step is activation of node v then
3: use Eq.(3.3) to update the state
4: else if step is deactivation of node v then
5: if v is the last node then
6: return all-terminal reliability
7: else
8: use Eq.(3.4) to update the state
9: merge the states with the same partitions
10: end if
11: else if step is processing edge e = (u,v) then
12: use Eq.(3.5) to update the state
13: merge the states with the same partitions
14: end if
15: end for

Figure 3.9: An example graph. This graph is the controllers-merged graph of the example graph used in
previous sections.

In order to show the decomposition process intuitively, the graph in Fig 3.9 is used as
example to compute controller reachability. Each step of the decomposition is shown below,

• Apply the algorithm to determine the path decomposition: ( /0, {1}, {1,2}, {2}, {2,5},
{2}, {2,3}, {3}, /0)

• Convert the path decomposition into a series: (1, 2, {1,2}, -1, 5, {2,5}, -5, 3, {2,3}, -2,
-3)

• Activation of node 1: {(1,1)}
• Activation of node 2: {(1/2,1)}
• Process edge (1, 2):

{
(1/2,1−2p+ p2),(12,2p− p2)

}
• Deactivation of node 1:

{
(2,2p− p2)

}
• Activation of node 5:

{
(2/5,2p− p2)

}
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• Process edge (2, 5):
{
(2/5,2p−5p2 +4p3 − p4),(25,4p2 −4p3 + p4)

}
• Deactivation of node 5:

{
(2,4p2 −4p3 + p4)

}
• Activation of node 3:

{
(2/3,4p2 −4p3 + p4)

}
• Process edge (2, 3):

{
(2/3,4p2 −8p3 +6p4 − p5),(23,4p3 −4p4 + p5)

}
• Deactivation of node 2:

{
(3,4p3 −4p4 + p5)

}
• Deactivation of node 3:

{
( /0,4p3 −4p4 + p5)

}
• The all-terminal reliability polynomial of the graph is 4p3 −4p4 + p5

The result is the same as the polynomial we obtained by enumeration in section 3.1.

Examples

(a) DFN network (b) Crown graph with 50 nodes

Figure 3.10: Two medium-size networks. The first network is the DFN network from the Topology Zoo with
58 nodes and 87 edges. The second network is the crown graph with 48 nodes above and 2 nodes below as well

as 97 edges. The nodes below are connected to all the nodes above as well as to each other.

We conduct verification tests on two medium-size networks as shown in Fig. 3.10. In each
network, a single controller is placed, resulting in two sets of controller reachability polyno-
mials. By comparing the obtained crown graph polynomial with the explicitly determined
all-terminal reliability polynomial in [38], we have successfully validated the correctness of
this algorithm.

The controller reachability polynomial coefficients of the DFN network are presented as
an array [a0,a1, · · · ,aL], with the first term representing the coefficient of p0 and the last term
representing the coefficient of p87.
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,2060018066147024,-48922083832382748,563773811808216652,-4197967847144067808,2269
0952719633304819,-94825753065586701500,318636033303977154569,-883991742306099561069,
2063187833079466097099,-4107128216259914397525,7045296855043259221780,-1049441917014
9777036700,13651868541903364365850,-15573399654668691827604,15621777150479073230122,
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-13801112082816659860448,10743248504236451859172,-7364249710987649202572,44375815664
32477389260,-2343826185117056970440,1080479398811705865712,-432191752508296735444,14
8833803011229545224,-43668800963080150664,10765772602951229416,-2188273057961438688,
357092254403354256,-44975523105486720,4104282291518016,-241516521469440,688121879040
0]

The controller reachability polynomial coefficients of the crown graph are presented as an
array [a0,a1, · · · ,aL], with the first term representing the coefficient of p0 and the last term
representing the coefficient of p97.
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7036874
417766400,-251638629179326464,4577346071268687872,-56214704605024485376,521678544223
623708672,-3882123602388527874048,24016952839219036815360,-126524141017734108413952,
577355852607375838019584,-2311313508637496198561792,8197925891160955303231488,-25965
145028967635739475968,73907794630095462786400256,-190057374465755313346707456,44347
7150533016808069267456,-942399216324538102745923584,1829372869132327263852822528,-32
52226789269948355470950400,5306271371021675492062265344,-79594118588063781581802700
80,10991571966291958839388405760,-13989275385599502060391235584,1642219396263788941
4639910912,-17790710710498060337525293056,17790710991831066823882702848,-16422194886
542141485221937152,13989277176623500618838835200,-10991574943709823426308866048,795
9416345204870410892476416,-5306277565587851929744048128,325223463759133825075196723
2,-1829381983810286694853312512,942408900791055691459067904,-44348654155768807666837
0944,190065660669386853678710784,-73914423593979707309408256,2596993261415496570925
8752,-8201031351846325679431680,2313111406932045349543936,-578277851733129405693440,
126939040624357259950080,-24178864880830964046336,3936094282926043949568,-5367401294
89919442624,59637792165546812288,-5185894970917121632,331014572611731360,-1379227385
8822143,281474976710656]

3.4. Is controller reachability a submodular function?
A submodular function is a set function that exhibits a diminishing returns property. For a sub-
modular function, greedy algorithms can achieve a near-optimal solution with a performance
within 1− 1/e of the optimal solution [27]. It has been found that submodular functions are
useful in real-world problems such as in social network [20] and sensor placement [16]. In
[28], a submodularity-based method is applied in a controller placement problem, whose goal
is to find a set of controllers such that this set can maximize a predefined submodular function.
The maximum covered submodular problem, maximization control submodular problem, and
maximization network quality factor submodular problem of controller placement problem
are discussed in their work. Hence, the question arises: does controller reachability exhibit the
submodularity as well?

Submodularity is a property of a set function, i.e., functions f : 2V → R that assign each
subset S ⊆V a value of f (S) [15].

Definition 1 (Submodularity) A function f : 2V → R is submodular if for every A ⊆ B ⊆ V
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and e ∈V \B it holds that
∆(e | A)≥ ∆(e | B) (3.6)

where ∆ f (e | S) = f (S∪{e})− f (S) is the discrete derivative of f at S with respect to e.

An equivalent definition is, a function f : 2V → R is submodular if for every A,B ⊆V ,

f (A∩B)+ f (A∪B)≤ f (A)+ f (B) (3.7)

Unlike the submodularity exhibited by the cover-based function in controller placement
problems, we prove that controller reachability is not submodular. This assertion is supported
by various counterexamples. We will illustrate the non-submodularity using a path graph con-
taining n nodes, as depicted in Fig. 3.11. In our example, V refers to the nodes of the network,
S refers to the place where controllers are located, f (S) is the corresponding controller reach-
ability, f ( /0) = 0.

Figure 3.11: Path graph with n nodes.

Let A = {1}, B = {n}. Therefore,

• f (A∩B) = f ( /0) = 0
• f (A∪B) = f ({1,n}) = pn−1 +(n−1)(1− p) pn−2

• f (A) = f ({1}) = pn−1

• f (B) = f ({n}) = pn−1

According to Eq.(3.7), for submodularity we need

pn−1 +(n−1)(1− p) pn−2 ≤ 2pn−1

n−1
n

≤ p
(3.8)

which obviously does not hold for p sufficiently small, i.e. 0 < p < n−1
n



4
Findings from optimal controller

placement

In this chapter, several findings regarding the optimal placement of controllers are presented.
Section 4.1 introduces the relationship between degree and controller reachability. Section 4.2
introduces the relationship between distance and controller reachability. Section 4.3 use some
graph examples to show that a network might have a different optimal placement with different
link operational probability p.

4.1. Degree vs. Controller reachability
Degree is an important metric in graph theory. Edge connectivity λ (G), the minimum number
of links whose removal disconnects G, is inherently bounded by the minimum node degree.
Consider two graphs with the same parameters N, L, and connectivity. The graph that has
more nodes/edges responsible for the low connectivity is less reliable than the other one [30].
All of these show that the degree has a great impact on the reliability of the network. This
prompts the question: does controller reachability relate to node degree?

In the case study conducted on a specific graph from the Topology Zoo (Fig. 4.1), several
interesting observations were made regarding the optimal placement of controllers and its rela-
tionship with node degree. When considering different numbers of controllers (K = 2,3,4,5)
and a high link operational probability (p = 0.99), it is surprising to find that the optimal con-
troller reachability occurred when the controllers were placed on nodes with a degree of 1.
This outcome is counterintuitive, as the optimal placement concentrates controllers on a spe-
cific side of the network. This finding suggests that nodes with a degree of 1 have a significant
influence on controller reachability.

23
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Figure 4.1: Optimal placement of Aconet when K = 5, p = 0.99.

In order to verify whether this is a coincidence, more graphs are tested. For small graphs, all
non-isomorphic connected graphs with the same number of nodes and links can be generated
with tools in Nauty and Traces [19]. The class of graphs is defined as Ω(N,L), where N is the
number of nodes, L is the number of edges. Three graph classes with different average degree
are chosen, the number of graphs in each class is shown in the Table 4.1.

Average degree Number of graphs
Ω(7,10) 2.86 132

Ω(10,12) 2.4 8548
Ω(9,18) 4 33366

Table 4.1: The average degree and the number of graphs in three graph classes.

In order to investigate the optimal controller placement in these three graph classes, the
enumeration approach is employed. For each graph within the selected classes, all possible
placements are examined to identify the optimal placement when considering 2, 3, 4, and 5
controllers. To assess the controller reachability of each placement, the path decomposition
algorithm presented in Chapter 3 is utilized to compute the controller reachability polynomial.
Additionally, the exact controller reachability is determined by calculating the probabilities
over a range of link probabilities, from 0.1 to 0.99. Throughout this process, the degree of the
optimal controller placement is recorded. The gathered data yield statistical results, which are
presented in Fig. 4.2.

Fig. 4.2 provides valuable insights into the relationship between node degree and the opti-
mal placement of controllers. The blue bars represent the number of graphs containing nodes
with a specific degree, while the remaining bars indicate the number of graphs where the op-
timal placement of K controllers includes at least one node with that degree. For comparative
analysis, two different link probabilities, p = 0.1 and p = 0.99, are chosen to assess their influ-
ence on the placement. Among the 132 graphs examined, it is observed that 69 of them have



4.1. Degree vs. Controller reachability 25

nodes with a degree of 1. Remarkably, the optimal placement for each of these graphs, regard-
less of the number of controllers (K = 2,3,4,5), consistently included a node with degree 1.
The analysis of the data reveals a significant trend suggesting a preference for nodes with lower
degrees in the optimal placement of controllers. This trend remains consistent across all three
graph classes for both high link operational probability and low link operational probability.
Notably, the trend is particularly prominent within the graph class Ω(10,12), which exhibits a
lower average degree when compared to the other two classes.

(a) p = 0.1 (b) p = 0.99

Figure 4.2: Statistics on optimal placement of graph class Ω(7,10). The blue bars represent the number of
graphs containing nodes with a specific degree, while the remaining bars indicate the number of graphs where

the optimal placement of K controllers includes at least one node with that degree.

(a) p = 0.1 (b) p = 0.99

Figure 4.3: Statistics on optimal placement of graph class Ω(10,12). The blue bars represent the number of
graphs containing nodes with a specific degree, while the remaining bars indicate the number of graphs where

the optimal placement of K controllers includes at least one node with that degree.
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(a) p = 0.1 (b) p = 0.99

Figure 4.4: Statistics on optimal placement of graph class Ω(9,18). The blue bars represent the number of
graphs containing nodes with a specific degree, while the remaining bars indicate the number of graphs where

the optimal placement of K controllers includes at least one node with that degree.

Additionally, a degree-based random placement strategy is employed to assess the varying
contributions of nodes with different degrees. The network under consideration is GtsCe net-
work from the Topology Zoo, comprising 149 nodes. Specifically, this network consists of 12
nodes with a degree of 1, 80 nodes with a degree of 2, 35 nodes with a degree of 3, 10 nodes
with a degree of 4, 8 nodes with a degree of 5, and 4 nodes with a degree higher than 5.

During the sampling process, a subset of 5 nodes is randomly selected from the node set,
where each node has the same degree. The chosen nodes are then utilized to construct different
placements based on the number of controllers K. For instance, the first node in the subset
represents the placement when K = 1, the first two nodes in the subset represent the placement
when K = 2, and so on. In this way, we simulate the sequential process of randomly placing 5
controllers on the nodes with a specific degree. The controller reachability of each placement
is subsequently computed with the link operational probability of p = 0.99. To ensure reliable
outcomes, the sampling procedure is repeated 100 times for each degree, and the resulting
values are averaged to provide a representative assessment. The results are depicted in Fig.
4.5.

It is evident that placing controllers on nodes with a degree of 1 significantly enhances
controller reachability. Conversely, placing controllers on nodes with a degree of 2 yields only
marginal improvement in reachability. Placing controllers on nodes with higher degrees offers
negligible improvement in controller reachability.

When placing controllers with optimized controller reachability, the nodes with a higher
likelihood of being disconnected have a more pronounced impact on controller reachability
compared to the nodes with a lower likelihood of disconnection. When edge failures happen,
the probability of a node becoming disconnected exhibits an inverse relationship with its de-
gree. Therefore, placing controllers at the nodes with low degrees can effectively improve the



4.2. Distance vs. Controller reachability 27

Figure 4.5: The average controller reachability when sequentially placing 5 controllers on nodes with a specific
degree. The link operational probability p = 0.99. The x-axis denotes the number of controllers, the y-axis

denotes the average controller reachability. Different curves represent different specific degrees.

controller reachability.

Based on the above findings, it can be concluded that the degree of nodes is a significant
graph metric that strongly influences controller reachability. The networks with a lot of degree
1 nodes exhibit a lower controller reachability. The nodes with degree of 1 aremore responsible
for the low controller reachability since they are likely to be disconnected. Therefore, the
optimal placement tends to occur at low degree nodes.

4.2. Distance vs. Controller reachability

(a) Ring graph with N = 10 (b) Controller reachability of different placements (K = 2)

Figure 4.6: The placement of 2 controllers on a 10 nodes ring graph. Placing 2 controllers at the maximum
distance, such as at (1,6), is the optimal placement.

The distance between two nodes is defined as the length of the shortest path between two nodes.
In a study conducted byM.Chujyo and Y.Hayashi [5], it was discovered that adding links based
on distance can enhance the robustness of a network. Additionally, our intuition suggests that
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the placement of controllers should be distributed throughout the network to prevent concen-
tration in any specific region. This prompts the question: does controller reachability relate to
distance?

To exclude the influence of degree, a ring graph is used to discover the relationship between
distance and controller reachability. If we set N = 10, there are 5 different placements due to
symmetry. The controller reachability with different placements is shown in Fig. 4.6. If two
controllers are placed in this 10 nodes ring graph, the optimal placement is to place nodes such
that the ring is evenly divided. Furthermore, we enumerate all possible placements of a random
regular graph (N=20, every node has a degree of 3). The controller reachability with different
placements is shown in Fig. 4.7. In this graph, the node pairs (2,19) and (6,19) both have the
maximum distance with a shortest path length of 6. From the controller reachability curves for
all placements, it is observed that these two placements are the optimal placements.

(a) Random regular graph with N = 20 and the
node degree of 3 (b) Controller reachability of different placements (K = 2)

Figure 4.7: The placement of 2 controllers on a 20 nodes random regular graph. Placing 2 controllers at the
maximum distance, such as at (2,19) or (6,19), is the optimal placement. The red curve represents the controller

reachability of the optimal placement.

More graphs are tested to discover the relationship between distance and controller reach-
ability.

Fig. 4.8 shows all possible distances between two controllers for 100 real-world graphs.
Each column represents the data of a graph. Each data point represents a possible distance
between two controllers. The red points represent the distance between two controllers when
the optimal placements are employed. The position of the red data points within their respective
columns allows us to assess the relationship between the optimal placement of controllers and
the distance. If a red point is on the top of its column, it indicates that the optimal placement
of this graph is the node pair with the maximum distance.

When the link operational probability p = 0.1, the optimal placements of 84 graphs are
observed to be the node pairs with the maximum distance, while the optimal placements of
13 graphs correspond to the node pairs with the second maximum distance. When the link
operational probability p = 0.99, the optimal placements of 67 graphs are observed to be the
node pairs with the maximum distance, while the optimal placements of 14 graphs correspond
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(a) p = 0.1

(b) p = 0.99

Figure 4.8: Statistics on optimal placement of 100 real-world graphs (K = 2). The x-axis denotes the index of
graphs, the y-axis denotes the distance between two controllers. In this figure, each point represents a possible
distance between two controllers. The red points represent the distance between two controllers when the

optimal placements are employed.
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(a) Aarnet (b) Intersection of controller reachability

Figure 4.9: Intersection of controller reachability due to different optimal placement.

to the node pairs with the second maximum distance. The optimal placement never will consist
of two neighboring nodes, i.e. with a distance of 1.

Based on the above findings, it can be concluded that the distance between nodes is a sig-
nificant graph metric that influences the controller reachability. When placing two controllers,
the optimal placement tends to occur at the node pair with maximum distance. This preference
for maximizing distance helps ensure that no nodes within the network are too far away from
both controllers. If we add more controllers based on this idea, the controllers can be placed
at the nodes which are far away from existing controllers. The nodes that are far away from
the controllers are likely to be disconnected due to link failures, which means they are more
responsible for the low controller reachability than other nodes that are not likely to be discon-
nected. Therefore, placing controllers at the nodes far away from the existing controllers can
efficiently improve the controller reachability.

4.3. Different optimal placement with different p

4.3.1. Optimal placement changes

Why the optimal placement changes?

In the case of network Aarnet with two controllers, it is observed that the optimal placement
of controllers varies as the link operational probability p increases. To investigate this phe-
nomenon, we enumerate all possible placements of two controllers and compare their controller
reachability across a range of p values from 0 to 1. Remarkably, we find that the optimal place-
ment changes at a specific threshold value of p = 0.7331, which is shown in Fig. 4.9. Below
this threshold, the optimal placement is identified as (5, 11), while above this threshold, the
optimal placement shifts to (5, 8). The underlying reasons for this change in the optimal place-
ment will be further investigated and analysed.

Based on the topology of Aarnet, an interesting observation can be made regarding the
choices of (5,8) and (5,11), which correspond to the metrics discussed in Section 4.1 and Sec-
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(a) (b)

Figure 4.10: The approximate 2-terminal reliability between node 5 and other node. The x-axis denotes the link
operational probability p, the y-axis denotes the approximate 2-terminal reliability. The red curve is the

approximate 2-terminal reliability between node 5 and node 8. The blue curve is the approximate 2-terminal
reliability between node 5 and node 11.

tion 4.2 respectively. It appears that the selection of the nodes for controller placement is
influenced by the value of the link operational probability p. When p is relatively low, we
select a pair of nodes with maximum distance between them. Conversely, when p is high, we
select the nodes with a degree of one. It is worth noting that the controller located at node 5
remains fixed in both scenarios.

With 10000 runs of Monte Carlo simulations, Fig. 4.10 is obtained, which is the approxi-
mate 2-terminal reliability between node 5 and other nodes. We can see that node 11 and node
8 are the two nodes that have the lowest probability of being connected with node 5. Besides,
the 2-terminal reliability curves of these two nodes also have an intersection at 0.72, which is
very close to the intersection point of controller reachability in Fig. 4.9.

Based on the above findings, we can conclude that, as p changes, the most likely discon-
nected nodes changes due to the network topology. Therefore the optimal placement changes.

Does the change of optimal placement have a lot of impact?

The change of optimal placement brings a new problem. Can the optimal placement we obtain
at p1 also perform well at p2?

Fig. 4.11 shows the controller reachability of all possible placements of Aarnet, where the
red curve is the optimal placement at high p, and the blue curve is the optimal placement at
low p. It is obvious that these two curves are either optimal or close-to-optimal in the range
from 0 to 1. Especially, the red curve almost overlaps with the blue curve at the low p region,
while there is a small gap between the two curves at the high p region.

Out of the 100 real-world networks sourced from the Topology Zoo, a total of 22 networks
exhibit variations in their optimal placement as the value of p increases. Our research fo-
cuses specifically on these 22 networks, which aims to evaluate the performance of the optimal
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Figure 4.11: The controller reachability of all possible placements of Aarnet (K=2). The x-axis denotes the link
operational probability p, the y-axis denotes the controller reachability. The red curve is the controller

reachability when controllers are at nodes (5,8). The blue curve is the controller reachability when controllers
are at nodes (5,11).

placement obtained at p = 0.99 when confronted with a different link operational probability,
specifically p = 0.1. The results are shown in Fig. 4.12. After applying the max-min scal-
ing (x′ = x−min(x)

max(x)−min(x) ), the optimal placements obtained at p = 0.1 have a scaled controller
reachability of 1, and the worst placements obtained at p = 0.1 have a scaled controller reacha-
bility of 0. The orange squares represent the average performance of all possible placements at
p = 0.1, while the blue points represent the performance if we place controllers on the optimal
placement obtained at p = 0.99 but calculate the controller reachability with p = 0.1. The
position of the blue points within their respective columns allows us to assess the impact of
the change in the optimal placement. If blue points are close to 1, the optimal placements we
obtain at p = 0.99 also perform well at p = 0.1. The result shows that the optimal placements
of 16 graphs obtained at p = 0.99 can achieve 80% performance of the optimal placement
obtained at p = 0.1 when confronted with the link probability p = 0.1. When we employ the
optimal placement obtained at a high link probability p, it is possible to serve as a close-to-
optimal solution at a low link probability p. The change of optimal placement does not have
a lot of impact on most networks. Besides, the optimal placement we acquire when the oper-
ational probability p is high is more valuable, as real-world networks in general exhibit high
link operational probabilities.

4.3.2. More networks with changing optimal placement

Although it is also possible to observe a change in the optimal placement when K is larger
than 2, here we only consider the simplest case where K = 2. From the graph class Ω(7,10),
5 graphs with such properties are found. All of them have one intersection of controller reach-
ability. The yellow node is the node that is always selected when placing two controllers, the
red node is the other selected node when p is high, and the green node is the other selected
node when p is low. The values of the intersection points are shown in Table 4.2.
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Figure 4.12: The assessment of the performance of the optimal placement obtained at p = 0.99 when
confronted with a different link operational probability p = 0.1. In this figure, the x-axis denotes the index of
the graph, and the y-axis denotes the controller reachability at p = 0.1 after max-min scaling. The orange
squares represent the average scaled controller reachability of all possible placements, and the blue points
represent the scaled controller reachability if we employ the optimal placement obtained at p = 0.99.

Graph a p=0.38609673
Graph b p=0.26215674
Graph c p=0.26215674
Graph d p=0.56222482
Graph e p=0.29289322

Table 4.2: Intersection point of controller reachability.

From these 5 graphs, we can observe that the network topology determines whether there
is an intersection. For the graph a, b, and d, if the link operational probability p is high, the
second controller is at the node which is closer to the first controller but has a lower degree,
if link operational probability p is low, the second controller is at the node which is far away
from the first controller but has a higher degree. For the graph c, the distance between the two
controllers is the same as the placement changes, but the distance between node 5/7 and the
controllers varies. For the graph e, the distance between node 4/5/7 and the controllers varies
as the placement changes. Additionally, this is the only graph whose node degree of different
optimal placements remains unchanged.
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-

(a) (b) (c)

(d) (e)

Figure 4.13: 5 graphs with different optimal placements with two controllers at different p. The yellow node is
the node that is always selected when placing two controllers, the red node is the other selected node when the
link operational probability p is high, and the green node is the other selected node when the link operational

probability p is low.
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Controller placement strategies

In this chapter, strategies to place K controllers in a graph are introduced. The first strategy is
based on two graph metrics, distance and degree, which we have found to have a great impact
on the controller reachability in Chapter 4. The second strategy is the greedy algorithm. The
third kind of strategies are about genetic algorithms, which are classical GA and heuristic GA.

5.1. Controller placement strategy based on degree and
distance

Degree and distance are found to have a great impact on the controller reachability when plac-
ing multiple controllers in Chapter 4. We propose an effective way to place K controllers
based on degree and distance. The main idea of this strategy is to group the nodes in differ-
ent sets based on degree. Nodes with lower degrees will be selected with higher priority to
place controllers. If choosing among nodes with the same degree, the algorithm will attempt
to maximize the distance between the controllers (minimize the distance between controllers
and nodes).

In the graph G, we denote the lowest degree as d1, the second lowest degree as d2, the
i-th lowest degree as di, and the highest degree as dM (d1 = dmin < d2 · · · < dM = dmax). n1
nodes with degree d1 are considered as set S(d1), n2 nodes with degree d2 are considered as
set S(d2), ni nodes with degree di are considered as set S(di). Besides, we use d0 = 0, n0 = 0,
and S(d0) = /0 to indicate that no node in the graph has a degree of 0. Consequently, we obtain
M non-empty sets of nodes that do not overlap and collectively cover every node in graph G.
We aim to find the node set S(dk) such that ∑k−1

i=0 ni < K ≤ ∑k
i=0 ni. The node sets with degree

lower than dk is defined as the initial existing controllers set SC =
∪k−1

i=0 S(di), the controllers are
placed on every node in this set due to their low degree. The number of remaining controllers
is defined as K′ = K −∑k−1

i=0 ni. The nodes in S(dk) are considered as potential locations for
placing K′ controllers according to the distance.

If K ≤ n1, SC = /0, the nodes in S(d1) are considered as potential locations to place K′ = K

35
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controllers. For each node in set S(d1), we compute the sum of its distances to other nodes in
G. The node with the highest sum of distances is selected as the location for the first controller.
From the placement of the second controller onwards, we select the node that has the longest
distance to the existing controllers as the location for the next controller.

If K > n1, the node set that we are going to place K′ controllers is determined as follows:
If n1 < K ≤ n1 + n2, SC = S(d1), the nodes in S(d2) are considered as potential locations for
placingK′ =K−n1 controllers. If n1+n2 <K ≤ n1+n2+n3, SC = S(d1)∪S(d2) , the nodes in
S(d3) are considered as potential locations for placing K′ = K−n1−n2 controllers, etc. Using
this method, we can identify the locations of K−K′ controllers based on the node degree, and
then place the remaining K′ controllers based on the distance within a smaller set of nodes.
Within this set, the distances between each node and the existing controllers are found. The
node with the longest distance to the existing controllers is selected as the location for the next
controller. This process is repeated until K nodes are identified.

Algorithm 2 Algorithm based on degree and distance
Input: network G, controllers’ number K
Output: Set SC
1: Define set SC as the set of nodes with controllers
2: Define di as the i-th lowest degree
3: Define ni as the number of nodes with degree di
4: Define S(di) as the set of nodes with degree di
5: Define n0 = 0, S(d0) = /0
6: Define distance(u,v) as the shortest path length between u and v
7: Find the set S(dk) such that ∑k−1

i=0 ni < K ≤ ∑k
i=0 ni

8: SC =
∪k−1

i=0 S(di)

9: K′ = K −∑k−1
i=0 ni

10: if K < n1 then
11: for v ∈ S(d1) do
12: SumDistance(v) = ∑u∈G,u̸=v(distance(u,v))
13: end for
14: Add the node v with the highest SumDistance(v) into SC
15: K′ = K′−1
16: end if
17: while K′ > 0 do
18: for v ∈ S(dk) do
19: D(v) = min(distance(u,v)) where u ∈ SC
20: end for
21: Add the node v with the highest D(v) into SC
22: K′ = K′−1
23: end while
24: return Set SC
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5.2. Greedy algorithm
The greedy algorithm is an algorithm that always takes the best local solution while finding an
answer. The main idea of this approach is to make a decision based on the current information
and do not take the future into consideration. The greedy algorithm is known for its ability to
find near-optimal solutions for certain optimization problems [31].

For the controller placement problem, the greedy algorithm will place controllers one by
one. When placing a single controller on the network, the controller reachability remains the
same regardless of its location. However, the initial placement has a significant impact on
determining the subsequent placement of the second controller. Hence, it becomes necessary
to investigate how to select the location for the first controller. In this study, we consider four
different approaches in our attempt to determine a nice starting point.

• Randomly choose a node
• Randomly choose a node with the lowest degree
• Use algorithm 2 to determine the first node
• Enumerate all possible K = 2 placements, and choose the optimal solution as the first
and second controllers

Not surprisingly, randomly choosing a node performs not well when placing the first few con-
trollers, but it gradually approaches the performance of other methods. Enumeration over 2
placements performs the best, but it is so time consuming. Method 2 and 3 will both choose a
node with the lowest degree, but method 3 also takes distance into consideration. So we finally
decide to use algorithm 2 to determine the first node. This process only takes a second, which
is almost negligible compared with the calculation time of the whole greedy algorithm.

Starting from the second controller, the greedy algorithm will go through every possible
node (the nodes without placed controllers) and choose the node that brings the highest con-
troller reachability improvement. This process is repeated until K controllers are placed.

5.3. Genetic algorithm
In order to address the controller placement problem, classic GA and heuristic GA [1] are
implemented. In the first part, the introduction to the genetic algorithm is presented to help
understanding the role of different operators. Two GA models are explained afterwards.

5.3.1. Introduction to genetic algorithm

The genetic algorithm is a well-known meta-heuristic algorithm inspired by the biological
evolution process. At each generation, it selects individuals from the current population to be
parents and uses them to produce children and a new population. The best individual in the
population is gradually moving towards the optimal solution. The chromosome representation,
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Algorithm 3 Greedy algorithm
Input: network G, controllers’ number K
Output: Set SC
1: Define set SC as the set of nodes with controllers
2: The first controller is chosen based on Algorithm 2 and added into set SC
3: K = K −1
4: while K > 0 do
5: for node v /∈ SC do
6: Compute the controller reachability Pcr(v) if controllers are placed at node v and

nodes in SC
7: end for
8: Add node v with the highest Pcr(v) into set SC
9: K = K −1
10: end while
11: return Set SC

selection, crossover, mutation, and fitness function computation are the key elements of the
genetic algorithm [13]. Selection, mutation, and crossover are also called biological-inspired
operators.

• Selection: At each iteration, some individuals of the old population are selected to re-
produce a new population. The fitness function measures the quality of the individuals
and gives fitness value. The selection operator selects individuals on the basis of their
fitness value. Usually, the individuals with higher fitness values are likely to be selected,
and the individuals with lower fitness values are unlikely to be selected. Roulette wheel,
rank, tournament, Boltzmann, and stochastic universal sampling are common selection
methods.

• Crossover: The crossover operator is used to generate new solutions from two par-
ents. The most simple crossover technique is single point crossover, which selects a
random crossover point and swaps the information of two parents behind that crossover
point. Methods derived from this are two-point and k-point crossover. Other common
crossover techniques are uniform, order, and partially matched crossover.

• Mutation: The mutation operator is used to maintain the genetic diversity of the popula-
tion. It can avoid the algorithm converging to a locally optimal solution. Inversion, bit
string mutation, and displacement are common mutation methods.

5.3.2. Encoding and initializing in controller placement problem

Encoding

The individual is represented as a sequence of K genes where each gene corresponds to the
node that we choose to place a controller.
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Initializing the population

The initial population is generated with the method used in [1], which ensures that each gene
has a similar frequency of occurrence in the population. Specifically, the occurrence frequency
f is determined by the following equation,

f = max
{

2,
⌈

N
100

· ln(s)
d

⌉}
(5.1)

where N is the number of nodes, K is the number of controllers, s =
(N

K

)
is the number of

possible solutions, d = ⌈N/K⌉ is the rounded-up density of the problem. This equation makes
sure that each gene will be present at least twice. The initial population size is f ·d, which can
be considered as f sets of solutions with each set comprising d solutions.

After determining the frequency and the population size, nodes are assigned to each solu-
tion. For the first set of d solutions, nodes 1,2, · · ·K are assigned to the first solution, nodes
K+1,K+2, · · ·2K are assigned to the second solution. Repeat this process until all nodes are
assigned to solutions and d solutions are obtained. If N/K is not an integer, random non-repeat
genes are selected to fill the last solution. For the second set of d solutions, nodes 1,3, · · ·2K−1
are assigned to the first solution, nodes 2K + 1,2K + 3, · · ·4K − 1 are assigned to the second
solution, etc. This process is repeated until f sets of solutions are obtained. By adjusting the
increment of nodes when generating different sets of solutions, we ensure that there are no
repeated solutions in the initial population.

The fitness value for this problem is the controller reachability with respect toK controllers.

5.3.3. Classic GA

Selection operator

Tournament selection is used in classic GA. Compared with the roulette wheel selection, tour-
nament selection converges faster and is easier to implement [36]. Tournament selection ran-
domly chooses a few individuals from the population and runs tournaments. Only the fittest
individual will be chosen and continue with the crossover. If the tournament size is larger,
weak individuals have a smaller chance of getting selected since it has to compete with more
individuals. In this thesis, a binary tournament is used to ensure the diversity of the population.
An example of binary tournament selection is shown in Fig. 5.1.

Crossover operator

Partial mapped crossover (PMX) is the most commonly used crossover operator for permu-
tation of encoded chromosomes. It can generate two offspring without duplicate genes and
performs better than most of the other crossover operators [13]. The crossover rate is pc = 0.8.
The steps of partial mapped crossover [6] are as follows,

• Cut two substrings of the same size on each parent at the same position
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Figure 5.1: Example of binary tournament selection. In this example, two individuals are randomly chosen
from the population to run the tournament. Comparing their fitness values, the individual with highest fitness

value is selected.

• Exchange two substrings
• Determine the mapping relationship based on selected substrings
• Use the mapping relationship to replace the duplicate genes

An example of PMX is shown in Fig. 5.2.

Figure 5.2: Example of partial mapped crossover. Two parents exchange the substrings with the same size and
two draft offsprings with duplicate genes are obtained. The mapping relationship between gene 3 and gene 6, as
well as between gene 4 and gene 8 are observed. The duplicate genes are replaced according to the mapping

relationship to obtain two children.

Mutation operator

The mutation in this algorithm is very simple. This operator will randomly choose a gene
and replace it with a gene that is not present in this individual to ensure the offspring has no
duplicate genes. The mutation rate is pm = 0.1.

5.3.4. Heuristic GA

This method is based on the genetic algorithm proposed by O.Alp [1] to solve the facility
location problem, which selects the location of K facilities to serve N demand points with
minimal total travel time. Different from traditional crossover which uses two individuals and
exchanges genes to reproduce two offsprings, the heuristic GA firstly takes a union of genes
of two parents to obtain a draft solution. Then greedy deletion heuristic is used to decrease
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Algorithm 4 Classic genetic algorithm
Input: network G, controllers’ number K, max number of iteration MAX
Output: Set SC
1: Define set SC as the set of nodes with controllers
2: Determine the population size P
3: Initialize the population
4: Compute the fitness value of each individual
5: Set iteration counter t = 0
6: while t < MAX do
7: Select P individuals from the population using tournament selection.
8: Apply crossover on P/2 pairs of individuals with crossover probability.
9: Apply mutation on the offspring with mutation probability.
10: New population with size P is generated
11: t = t +1
12: end while
13: Add nodes in the best solution at the last iteration to set SC
14: return Set SC

the number of genes until the solution has K genes. Also, this algorithm does not produce a
new population at each iteration, but continues to update the initial population. The heuristic
genetic algorithm shows good performance in many optimization problems. It is applied to
the controller placement problem to compare with the performance of classic GA.

Crossover operator

Two individuals are randomly selected as parents. A temporary offspring can be generated
by combining genes of two parents. This offspring can not be passed to the next step since it
contains 2K genes. The redundant genes need to be removed to generate an offspring with K
genes. The removal follows two rules:

• The gene that is present twice is kept.
• The gene that contributes the least to the improvement of controller reachability is re-
moved.

One example is shown in Fig. 5.3.

This kind of crossover increases the time demands, but also improves the quality of the
offspring.

Update population

Every time a new individual is generated by crossover, it is compared with other members in
the populations. If the generated individual is not identical to the existing members and its
fitness value is better than the worst fitness value in the population, then the newly generated
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Figure 5.3: Example of greedy heuristic crossover. Two parents (1 3 9) and (2 3 5) are selected to generate a
new solution. By simply combining them, a temporary offspring (1 3 9 2 3 5) is obtained. Firstly, the duplicate
gene is removed, and node 3 is marked as kept gene according to rule 1 when removing genes. Then, the fitness
value of (1 3 9 2), (1 3 9 5), (1 3 2 5), and (3 9 2 5) is computed. Among these 4 solutions, (1 3 2 5) has the
highest fitness value, which means that the removal of node 9 influences the least on overall performance.

Therefore, node 9 is removed at this step. Similarly, by comparing the fitness value of (1 3 2), (1 3 5), and (3 2
5), the node 1 is removed. Finally, a new offspring with length K is generated.

individual will replace the worst one. With this kind of replacement, the average quality of the
entire population is improved at each iteration. Also, the population always has good diversity
due to the non-duplicate individuals.

The best fitness value of each iteration is recorded to determine the termination. GA will
terminate if the best fitness value in N successive iterations is unchanged.

Algorithm 5 Heuristic genetic algorithm
Input: network G, controllers’ number K
Output: Set SC
1: Define set SC as the set of nodes with controllers
2: Determine the population size P
3: Initialize the population
4: Compute the fitness value of each individual and store the best/worst value
5: Set iteration counter t = 0
6: while t < n do
7: Select two individuals from population randomly
8: Apply crossover and generate one offspring
9: if offspring not in population then
10: compute the fitness value of offspring
11: if fitness value > worst value then
12: Update population
13: else
14: t=t+1
15: end if
16: else
17: t=t+1
18: end if
19: end while
20: Add nodes in the best solution to set SC
21: return Set SC
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Result and analysis

In this chapter, the quality of different placements is analysed based on real-world graphs from
the Topology Zoo. Section 6.1 presents the analysis of Internet2 OS3E. Section 6.2 presents the
analysis of more real-world graphs. In section 6.3, different controller placement strategies are
compared for the Erdős–Rényi model, the Barabási–Albert model, and the real-world graphs.

6.1. Analysis of Internet2 OS3E
Internet2 OS3E is a topology that was used inmany controller placement problems since Heller
et al. first used it for analysis [10]. Therefore, OS3E network is chosen as an example in this
section. In Section 6.1.1, the optimal placements of OS3E whenK = 2,3,4,5 are presented. In
Section 6.1.2, a comparison is conducted to assess the improvement of controller reachability
achieved by adding a controller under various link operational probabilities p.

6.1.1. How does placement affect controller reachability

OS3E is a network with 34 nodes and 42 links. There are
(34

2

)
ways to place 2 controllers in

this network. The controller reachability polynomial of each placement is computed by the
path decomposition algorithm. The optimal placement is (9,19) and the worst placement is
(1,29) as shown in Fig. 6.1a. If we focus on link operational probability p that ranges from
0.99 to 1, the controller reachability of different placements is shown in Fig. 6.1b and error
bars are shown in Fig. 6.1c.

Not surprisingly, the controller reachability of different placements varies widely. For
instance, when p = 0.99, the optimal controller reachability is 0.99686, the worst network
controller reachability is 0.97691, the average controller reachability is 0.97843. The opti-
mal value is far away from the average value for every link operational probability p, which
indicates that the network performance can be effectively improved if we can find a close-to-
optimal placement. Similar results are obtained when placing 3, 4, and 5 controllers (Fig. 6.2,
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Fig. 6.3, Fig. 6.4).

The optimal placements and the worst placements of OS3E for different K at p = 0.99 are
shown in Table 6.1

K Optimal placement Worst placement
2 9 19 1 29
3 9 19 28 1 15 29
4 9 19 12 28 4 6 20 25
5 9 8 19 28 34 4 5 6 20 25

Table 6.1: The optimal placement and the worst placement of OS3E for K = 2,3,4,5 at p = 0.99.

Besides, we can observe that the controller reachability curves for all possible K place-
ments can be separated into three groups, where the highest performance group contains all
placements that have both node 9 and 19, the middle performance group contains all place-
ments that have either node 9 or node 19, the lowest performance group contains all place-
ments that do not have node 9 or node 19. Node 9 and node 19 are the only two nodes that
have degree 1 in OS3E, which reflects the relationship between node degree and controller
reachability discussed Chapter 4.

(a) The optimal (red) and the worst
(yellow) placements at p = 0.99 (b) Controller reachability curves (c) Error bars of controller reachability

Figure 6.1: Controller reachability of OS3E (K=2). (a) shows the optimal and the worst placements when
placing 2 controllers. (b) shows the controller reachability curves for all possible placements, where each curve
represents a kind of placement. (c) shows the max-min error bars of controller reachability with all possible

placements when placing 2 controllers.

6.1.2. How many controllers are needed

Another important question is how many controllers are needed. We want to know how much
improvement can be obtained by adding a controller. To do this, optimal K placement is em-
ployed. Since it is a problem that also depends on link probability, p = 0.9,0.99,0.999 are
chosen to show the differences. In Fig. 6.5, the controller reachability with K = 1,2,3,4,5 is
shown.
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(a) The optimal (red) and the worst
(yellow) placements at p = 0.99 (b) Controller reachability curves (c) Error bars of controller reachability

Figure 6.2: Controller reachability of OS3E (K=3). (a) shows the optimal and the worst placements when
placing 3 controllers. (b) shows the controller reachability curves for all possible placements, where each curve
represents a kind of placement. (c) shows the max-min error bars of controller reachability with all possible

placements when placing 3 controllers.

(a) The optimal (red) and the worst
(yellow) placements at p = 0.99 (b) Controller reachability curves (c) Error bars of controller reachability

Figure 6.3: Controller reachability of OS3E (K=4). (a) shows the optimal and the worst placements when
placing 4 controllers. (b) shows the controller reachability curves for all possible placements, where each curve
represents a kind of placement. (c) shows the max-min error bars of controller reachability with all possible

placements when placing 4 controllers.

(a) The optimal (red) and the worst
(yellow) placements at p = 0.99 (b) Controller reachability curves (c) Error bars of controller reachability

Figure 6.4: Controller reachability of OS3E (K=5). (a) shows the optimal and the worst placements when
placing 5 controllers. (b) shows the controller reachability curves for all possible placements, where each curve
represents a kind of placement. (c) shows the max-min error bars of controller reachability with all possible

placements when placing 5 controllers.
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When p = 0.9, even if we add controllers until K = 5, the improvement at each step is
still large. When p = 0.99, two controllers ensure the controller reachability larger than 0.995
and we can observe slight improvement if K keeps increasing. When p = 0.999, the controller
reachability with a single controller is already larger than 0.995. We can barely observe im-
provement if continuing adding the controllers after K = 2.

If we want to place controllers in OS3E such that the controller reachability is larger than
0.995, 5 controllers are still not enough when p= 0.9, 2 controllers meet the requirement when
p = 0.99, a single controller is needed when p = 0.999. It is consistent with the intuition that
if p is higher, less controllers are needed to meet a certain controller reachability.

For specific networks, the number of needed controllers should be considered according
to the actual situation.

(a) p = 0.9 (b) p = 0.99 (c) p = 0.999

Figure 6.5: The controller reachability of OS3E with K = 1,2,3,4,5 at p = 0.9,0.99,0.999. The x-axis denotes
the number of controllers, the y-axis denotes the controller reachability.

6.2. Analysis of more topologies
In this section, the analysis is based on the optimal placements (K = 2,3,4,5, p = 0.99) of 100
small size graphs (11 ≤ n ≤ 30) from the Topology Zoo.

6.2.1. How does placement affect controller reachability

The controller reachability of all possibleK controller placements is computed. The maximum,
minimum, and average values are plotted in the form of error bars in Fig. 6.6. From this
figure, we can see that only a few networks can achieve close-to-optimal controller reachability
when placing controllers randomly. For most networks, the average values are far away from
optimal.

Min-max scaling is applied to overall data to quantify the performance of random place-
ment. Min-max scaling is a normalization technique that scales the data values to a range
between 0 and 1, using the minimum and maximum values of the original data. This process
can be expressed as x′ = x−min(x)

max(x)−min(x) . The range (0, 1) is partitioned into four subintervals:
(0, 0.25), (0.25, 0.5), (0.5, 0.75), and (0.75, 1). Table 6.2 presents the number of networks cat-
egorized based on their scaled average controller reachability within each respective interval.
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K (0, 0.25) (0.25, 0.5) (0.5, 0.75) (0.75, 1)
2 31 52 11 6
3 25 48 21 6
4 17 50 27 6
5 8 54 31 7

Table 6.2: The number of networks in each interval.

We can see that more networks are in the intervals (0.5, 0.75) and (0.75,1) as the number of
controllers K is larger. However, for most networks, the controller reachability of the random
placement is still far away from the controller reachability of the optimal placement. Therefore,
for most networks, it is necessary to use some strategies to place controllers such that close-to-
optimal placement is achieved.

6.2.2. How many controllers are needed

Figure 6.7: The optimal controller reachability of 100 small real-world graphs. In this figure, the x-axis denotes
the number of controllers, the y-axis denotes the controller reachability. Each curve represents the optimal

controller reachability of a graph with K = 1,2,3,4,5 at p = 0.99.

If K controllers are always placed at its optimal placement, we can find out the minimum
number of needed controllers. Fig. 6.7 plots the optimal controller reachability of 100 small
real-world graphs with K = 1,2,3,4,5 at p = 0.99. Although the networks’ sizes are very
close, the controller reachability of different graphs with a single controller varies in a large
range from 0.75 to 0.9995.

If we continue to use 0.995 as the controller reachability requirement, 6 networks meet
the requirement with a single controller, 26 networks meet the requirement with 2 placed con-
trollers, 10 networks meet the requirement with 3 placed controllers, 1 network meets the re-
quirement with 4 placed controllers, 4 networks meet the requirement with 5 placed controllers,
and 53 networks cannot meet the 0.995 requirement, even with 5 placed controllers.

Upon examining the network topologies exhibiting high and low controller reachability, a
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Figure 6.6: Controller reachability error bars of 100 small real-world graphs. In these figures, the x-axis
denotes the index of graph, the y-axis denotes the controller reachability. Each error bar represents the
maximim, minimum, and average controller reachability of all possible placements of K controllers.
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Figure 6.8: Two example graphs. The first one exhibits the highest controller reachability among 100 small
real-world graphs. The second one exhibits the lowest controller reachability among 100 small real-world

graphs. The controller reachability is computed when K = 1 and p = 0.99.

notable relationship emerges between controller reachability and the network topology. Specif-
ically, networks lacking degree 1 nodes demonstrate remarkably high controller reachability,
whereas networks characterized by star and tree topologies featuring a substantial number of
degree 1 nodes exhibit notably low controller reachability. This observation underscores the
significant influence of network topology on controller reachability.

The topology exhibiting the highest controller reachability and the topology exhibiting the
lowest controller reachability among 100 small real-world graphs are shown in Fig. 6.8.

The number of needed controllers should be determined according to the targeted controller
reachability, the link probability p as well as the network topology. We cannot conclude a
number that applies to all networks. However, we can observe that the deployment of multi-
controllers obviously improves the controller reachability for most networks. Especially when
K = 2, all the curves have obvious inflection points, which indicates that the deployment of
two controllers already improves controller reachability a lot.

6.3. Comparison of different placement strategies
In this section, we evaluate the performance of the four controller placement strategies intro-
duced in Chapter 5 across three network categories: ER random graphs, BA random graphs,
and 155 real-world networks. Our objective is to identify the most effective strategy, which
can find the placement with high controller reachability.

6.3.1. ER random graph

In order to assess the performance of the four controller placement strategies, we conducted
experiments on two sets of ER random graphs. The first set consists of 50 ER random graphs
with 25 nodes, while the second set comprises 20 ER random graphs with 50 nodes. For all the
graphs in both sets, the link probability p is set to 0.99. The average of controller reachability
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(a) ER(25,0.1)

(b) ER(50,0.05)

Figure 6.9: Comparison of placement strategies on Erdős–Rényi model. 4 strategies are applied to place up to
10 controllers with p = 0.99. The x-axis denotes the number of controllers, the y-axis denotes the controller
reachability. The blue curve represents the average controller reachability of the placements found by graph
metric based strategy (degree and distance). The orange curve represents the average controller reachability of

the placements found by the greedy algorithm. The green and red curves represent the average controller
reachability of the placements found by classic GA and heuristic GA, respectively.
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obtained from different placement strategies are presented in Fig. 6.9.

In the case of the ER random graphs with 25 nodes, the performance of the four placement
strategies shows overlap. By placing 5 controllers, the controller reachability can achieve a
high value of 0.995. However, further improvements in controller reachability are marginal
when adding controllers beyond K = 6.

On the other hand, for the ER random graphs with 50 nodes, the performance of the place-
ment strategy based on graph metrics initially lags behind the other strategies. However, as the
number of controllers increases, the performance of the graph metric based strategy gradually
converges towards the othermethods. Notably, this method proves to be themost time-efficient
among the strategies. Examining the plotted curve, it is obvious that placing 10 controllers has
not yet reached a saturation point, which suggests that further improvements are possible by
adding more controllers.

6.3.2. BA random graph

The evaluation of the four placement strategies was conducted on three sets of BA random
graphs: 50 graphs with parameters n = 25 and m = 1, 20 graphs with parameters n = 25 and
m = 2, and 50 graphs with parameters n = 50 and m = 1. The link probability p is set to 0.99,
and the average results are presented in Fig 6.10.

Across all BA graph sets, the curves representing the four placement strategies exhibit sig-
nificant overlap. This observation indicates that the placement strategy based on graph metrics
performs the best, primarily due to its lower time consumption. Notably, the differences in con-
troller reachability between BA graphs with m = 1 and BA graphs with m = 2 are substantial,
supporting the notion that nodes with degree 1 significantly contribute to the lower controller
reachability values.

6.3.3. Real-world graph

In order to evaluate the effectiveness of various controller placement strategies, we selected
a dataset comprising of 150 connected graphs with small size (11 ≤ n ≤ 50) and 5 connected
graphs with middle/large size (50 ≤ n). The networks chosen for analysis are characterized
as sparse networks, exhibiting average node degrees ranging from 1.875 to 4.48. Among the
selected networks, the smallest network consists of 11 nodes and 14 edges, the largest network
consists of 197 nodes and 243 edges.

Small sized network

The four placement strategies are evaluated on 150 small sized real-world networks sourced
from the Topology Zoo. The link probability p is set to 0.99, and the average results are
depicted in Fig. 6.11.

Across all the real-world graphs, the curves representing the four placement strategies ex-
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(a) BA(25,1)

(b) BA(25,2)

(c) BA(50,1)

Figure 6.10: Comparison of placement strategies on Barabási–Albert model. 4 strategies are applied to place
up to 10 controllers with p = 0.99. The x-axis denotes the number of controllers, the y-axis denotes the

controller reachability. The blue curve represents the average controller reachability of the placements found by
graph metric based strategy (degree and distance). The orange curve represents the average controller

reachability of the placements found by the greedy algorithm. The green and red curves represent the average
controller reachability of the placements found by classic GA and heuristic GA, respectively.
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hibit significant overlap. The attained controller reachability by employing different placement
strategies displays a close proximity, indicating that the quality of the placements obtained
through these four strategies is similar. This observation again suggests that the placement
strategy based on graph metrics outperforms the others due to its lower time consumption.

Figure 6.11: Comparison of placement strategies on 150 graphs from the Topology Zoo. 4 strategies are applied
to place up to 10 controllers with p = 0.99. The x-axis denotes the number of controllers, the y-axis denotes the
controller reachability. The blue curve represents the average controller reachability of the placements found by

graph metric based strategy (degree and distance). The orange curve represents the average controller
reachability of the placements found by the greedy algorithm. The green and red curves represent the average

controller reachability of the placements found by classic GA and heuristic GA, respectively.

Middle and large sized networks

Table 6.3 presents the characteristics of the 5 selected networks, including the number of nodes,
the number of edges, the average degree, and the number of nodes with a degree lower than
the average degree. Given the large number of nodes in each graph and the observation from
Section 4.1 that the optimal placement tends to involve low degree nodes, we consider the
nodes with degrees lower than the average degree as a potential set of nodes for the controller
placement.

N L E[D] d = 1 d = 2
HinerniaGlobal 55 81 2.945 1 20

Syringa 74 74 2 23 34
Interoute 110 146 2.655 8 53
Cogentco 197 243 2.467 22 95
GtsCe 149 193 2.591 12 80

Table 6.3: Properties of 5 middle/large sized real-world networks from the Topology Zoo.

In addition to the four placement strategies mentioned earlier, we also incorporated a ran-
dom placement approach, which involved 10,000 times simulation. For the HinerniaGlobal
network and the Syringa network, we also obtained the optimal placements for different val-
ues of K within the potential nodes set, comprising nodes with degrees equal to 1 and 2. The
outcomes of these 5 networks are illustrated in Fig 6.13. It is observed that all four placement
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strategies performed well on HinerniaGlobal, Interoute, and GtsCe. However, the graph met-
ric based strategy exhibited relatively poorer performance compared to the other methods on
Syringa and Cogentco. This discrepancy can be attributed to the influence of network topol-
ogy.

Taking Syringa as an example, the placement of 10 controllers using both the greedy algo-
rithm and the graph metric based strategy is depicted in Fig 6.12. Both the greedy algorithm
and graph metric-based strategy select node 5 as the initial controller. However, as K = 2, the
subsequent controller selections differ between the two strategies. The greedy algorithm se-
lects node 18 as the location for the second controller, whereas the graph metric-based method
selects node 21. Upon examining the network topology, it becomes apparent that the greedy
algorithm makes a better choice. Although node 21 exhibits the greatest distance from node
5 with a distance of 31, node 18 is more susceptible to disconnection due to it connects to
the “ring” portion with a path whose length is 3, which is higher than the path length between
node 21 and the “ring” portion. In Syringa network, this “ring” portion can be considered as
a portion which is relatively more reliable. Compared with node 21, node 18 is farther from
that reliable “ring”. In scenarios where similar situations arise, graph metric based strategy
perform cannot achieve a near-optimal solution. This example highlights the limitations of the
graph metric based strategy in certain topologies.

Based on the above comparison, it can be concluded that the strategy based on graph met-
rics, specifically degree and distance, effectively places controllers in terms of controller reach-
ability. This method proves to be the less time-consuming approach and yields placements
comparable to other heuristic methods that are generally more time-consuming for most net-
works. While it exhibits limitations in certain topologies, overall it demonstrates satisfactory
performance. The greedy algorithm performs well across all tested sets of networks, consis-
tently identifying placements with a high controller reachability. Although it is slightly more
time-consuming, it consistently delivers favorable results. The performance of the classic GA
heavily depends on factors such as population size and iteration times. It exhibits less stability
compared to the heuristic GA, and often requires longer execution times. Both classic GA and
heuristic GA are the most time-consuming strategies, yet they do not outperform the greedy
algorithm.
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(a) Graph metric based (b) Greedy

Figure 6.12: Syringa: Placement for 10 controllers found by graph metric based and greedy strategy.

Figure 6.13: Comparison of placement strategies on 5 middle/large sized real-world networks. 4 strategies are
applied to place up to 10 controllers with p = 0.99. The x-axis denotes the number of controllers, the y-axis
denotes the controller reachability. The blue curve represents the average controller reachability of the
placements found by graph metric based strategy (degree and distance). The orange curve represents the
average controller reachability of the placements found by the greedy algorithm. The green and red curves
represent the average controller reachability of the placements found by classic GA and heuristic GA,

respectively. The purple curve represents the average value of random placement. For HinerniaGlobal and
Syringa, the optimal placements are represented as brown curves.





7
Conclusion

In this thesis, our research focuses on the controller placement problem, with controller reach-
ability as the primary performance metric. We begin by employing the path decomposition
algorithm to evaluate the controller reachability. Through a comprehensive analysis of over
40,000 graphs from three distinct graph classes and 100 real-world networks, we identify two
influential graph metrics: degree and distance. These metrics exhibit a significant impact on
controller reachability. Subsequently, we propose a controller placement strategy based on
graph metrics. Additionally, we introduce three widely used heuristic algorithms for determin-
ing controller placement. To explore the impact of controller placement on controller reacha-
bility and determine the required number of controllers, we analyze and identify the optimal
placement for 100 real-world graphs considering different number of controllers K ranging
from 2 to 5. We conduct comprehensive evaluations by testing different placement strategies
on Erdős–Rényi random graphs, Barabási–Albert random graphs, and a set of 155 real-world
graphs obtained from the Topology Zoo dataset. This extensive experimentation enables us to
assess the performance and effectiveness of the placement strategies across a wide range of
network topologies, including both randomly generated graphs and real-world networks.

In chapter 3, the path decomposition algorithm is employed to evaluate the controller reach-
ability. Through our research, we establish a correlation between the controller reachability
and the all-terminal reliability by consolidating nodes where controllers are co-located. Fur-
thermore, we introduce the principle of path decomposition and propose an improved approach
for determining path decomposition. We also prove that controller reachability is not a sub-
modular function.

In chapter 4, we identify two influential graph metrics: degree and distance. We conduct
an exhaustive enumeration of optimal placements for all connected non-isomorphic graphs
belonging to classes Ω(7,9), Ω(10,12), and Ω(9,18) as well as 100 small size networks from
the Topology Zoo, considering different link probabilities p. Our analysis reveals a consistent
tendency in the optimal placement selection, which considers nodes that are most susceptible to
disconnection as the preferred locations for the controllers. This preference is evident through
the evaluation of two significant graph metrics, namely node degree and distance between

57
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the selected node and the controller. Furthermore, we discover that certain graphs exhibit
changes in their optimal placement as the link probability p varies, resulting in an intersection
of controller reachability. To explore this phenomenon, we investigate the Aarnet network and
analyze an additional set of five graphs from Ω(7,9). Our findings indicate that the shifting
optimal placement is influenced by the network topology. We observe that these intersections
do not significantly impact overall performance, as the optimal placements obtained at higher
link probabilities remain close to optimal at lower link probabilities.

In chapter 5, four controller placement strategies are introduced. We propose a novel con-
troller placement strategy based on the graph metrics of degree and distance. Our approach
prioritizes nodes with the lowest degree for controller placement while simultaneously maxi-
mizing the distance between each controller. Additionally, we introduce the greedy algorithm
and the genetic algorithm, which are commonly employed in optimization problems, to address
the controller placement problem.

In chapter 6, we focus on investigating the impact of placements on controller reachability
and determining the number of controllers required in a network. We examine the impact of
different placements on controller reachability by analyzing the OS3E network and 100 addi-
tional networks. The result shows that random placement is far from optimal, which indicates
that it is necessary to find a strategy to place controller such that a close-to-optimal placement
is achieved. The number of needed controllers is depends on the network topology, link oper-
ational probability p, and the controller reachability requirement. Different networks perform
differently and we cannot conclude a number that applies to all networks. Furthermore, 4 place-
ment strategies (graph metric based, greedy, classic GA, heuristic GA) are applied to place up
to 10 controllers on Erdős–Rényi random graphs, Barabási–Albert random graphs, and 155
real-world graphs from the Topology Zoo. The result shows that, for most networks, the per-
formance of these 4 methods is almost the same. The strategy based on graph metrics proves
to be the less time-consuming approach and yields placements comparable to other heuristic
methods. Despite some limitations in certain topologies, its overall performance is satisfactory.
The greedy algorithm performs well across all tested sets of networks, consistently identifying
placements with a high controller reachability. The classic GA exhibits less stability compared
to the heuristic GA. Both classic GA and heuristic GA are the most time-consuming strategies,
yet they do not outperform the greedy algorithm. Therefore, considering the performance and
algorithm complexity, the strategy based on graph metrics and the greedy algorithm are the
most suitable methods to address the controller placement problem.

For future work, we would like to address the following aspects: 1) Consider the controller
placement problem where nodes also fail. The path decomposition algorithm we used can
also extend to a new algorithm which can compute the controller reachability when nodes
and edges are both operational with a probability. 2) Consider other performance metrics like
node-controller reachability which assesses the probability of a specific node being able to
establish communication with at least one controller. The worst or the average node-controller
reachability can be used as a performancemetric. 3) Consider the controller placement problem
where the controllers are not co-located with switches. A controller is not placed at a node,
but connects to a node, which means the connections between controllers and switches might
also fail. 2) Improve the strategy based on graph metrics by considering additional topology
properties, such as the existence of multiple paths between nodes and controllers.
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A
Path decomposition algorithm

This appendix presents the code of the path decomposition algorithm.
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import random
4 import networkx as nx
5 from decimal import *
6 print(getcontext())
7 Context(prec=28, rounding=ROUND_HALF_EVEN , Emin=-999999, Emax=999999,

capitals=1, clamp=0, flags=[], traps=[InvalidOperation , DivisionByZero ,
Overflow])

8 getcontext().prec = 50
9

10 def FindPath2(network,n):
11 nodes=np.array(range(n))
12 minAN=n
13 minANtotal=n*n
14 minPathDecomposition=0
15 for node in nodes:
16 maxAN=0
17 ANtotal=0
18 pathDecomposition=[]
19 pathDecomposition.append(node) # node is the first node to

activate
20 remainNodes=nodes[nodes!=node]
21

22 while len(remainNodes)!=0:
23 a=np.nonzero(network[:,pathDecomposition])
24 Neighborhood=list(set(a[0]).intersection(set(remainNodes)))
25 random.shuffle(Neighborhood)
26 tempAN=n
27

28 for neighbor in Neighborhood:
29 tempPD=pathDecomposition.copy()
30 tempPD.append(neighbor)
31 tempRN=remainNodes[remainNodes!=neighbor]
32 ActivateNode=len(tempPD)
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33 for i in tempPD:
34 if network[i,tempRN].any()==0:
35 ActivateNode=ActivateNode -1
36

37 if ActivateNode < tempAN:
38 tempAN=ActivateNode
39 chosen=neighbor
40

41 if tempAN==len(tempPD):
42 connection=0
43 for neighbor in Neighborhood:
44 tempConnection=sum(network[pathDecomposition ,neighbor

])
45 if tempConnection >connection:
46 connection=tempConnection
47 chosen=neighbor
48 pathDecomposition.append(chosen)
49 remainNodes=remainNodes[remainNodes!=chosen]
50 ANtotal=ANtotal+tempAN
51

52 if tempAN > maxAN:
53 maxAN=tempAN
54

55 if maxAN <= minAN and ANtotal <=minANtotal:
56 minAN=maxAN
57 minANtotal=ANtotal
58 minPathDecomposition=pathDecomposition
59

60 return minAN,minPathDecomposition
61

62 def FindPath(network,n): # This the method used in "Computing network
reliability in graphs of restricted pathwidth" to find upper bound
pathwidth

63 nodes=np.array(range(n))
64 minPathwidth=n
65 minPathDecomposition=0
66 for node in nodes:
67 maxVertexSep=0
68 pathDecomposition=[]
69 pathDecomposition.append(node)
70 remainNodes=nodes[nodes!=node]
71

72 while len(remainNodes)!=0:
73 a=np.nonzero(network[:,pathDecomposition])
74 Neighborhood=list(set(a[0]).intersection(set(remainNodes)))
75 random.shuffle(Neighborhood)
76 tempVertexSep=n
77

78 for neighbor in Neighborhood:
79 tempPD=pathDecomposition.copy()
80 tempPD.append(neighbor)
81 tempRN=remainNodes[remainNodes!=neighbor]
82 VertexSep=np.count_nonzero(sum(network[tempPD][:,tempRN]))
83

84 if VertexSep < tempVertexSep:
85 tempVertexSep=VertexSep



65

86 chosen=neighbor
87

88 pathDecomposition.append(chosen)
89 remainNodes=remainNodes[remainNodes!=chosen]
90

91 if tempVertexSep > maxVertexSep:
92 maxVertexSep=tempVertexSep
93

94 if maxVertexSep < minPathwidth:
95 minPathwidth=maxVertexSep
96 minPathDecomposition=pathDecomposition
97

98 return minPathwidth ,minPathDecomposition
99 # find the decomposition series (activate node/deactivate node/activate

link)
100 def FindSeries(network,Path):
101 path=np.add(Path,1) # with node numbering start from 1
102 for i in path:
103 int(i)
104 series=[]
105 DelNodes=[]
106 i=0
107 for node in path:
108 i=i+1
109 # activate node
110 series.append(node)
111 # activate egde
112 a=np.nonzero(network[:,node -1])
113 Neighbors=np.add(a[0],1) # all neighbors of node
114 for Neighbor in Neighbors:
115 if Neighbor in path[0:i]:
116 series.append([Neighbor ,node])
117

118 # deactivate node
119 NeighborColumn=network[:,Neighbor -1]
120 NeighborColumn=NeighborColumn[path[i:]-1] # if neighbor

is connected to the remain part
121 neighborSepSet=sum(NeighborColumn)
122 if neighborSepSet==0 and (Neighbor not in DelNodes):
123 series.append(-Neighbor)
124 DelNodes.append(Neighbor)
125

126 # deactivate node
127 nodeColumn=network[:,node-1]
128 nodeColumn=nodeColumn[path[i:]-1]
129 nodeSepSet=sum(nodeColumn)
130 if nodeSepSet==0 and (node not in DelNodes):
131 series.append(-node)
132 DelNodes.append(node)
133

134 # print('The decomposition series is',series) # with node numbering
start from 1

135 return series
136 def add_poly(L1,L2):
137 R=[]
138 if len(L1)>len(L2):
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139 L1,L2=L2,L1
140 i=0
141 while i<len(L1):
142 R.append(L1[i]+L2[i])
143 i+=1
144 R=R+L2[len(L1):len(L2)]
145 return R
146

147 def multiply_poly(L1,L2):
148 if len(L1)>len(L2):
149 L1,L2=L2,L1
150 zero=[];R=[]
151 for i in L1:
152 T=zero[:]
153 for j in L2:
154 T.append(i*j)
155 R=add_poly(R,T)
156 zero=zero+[0]
157 return R
158 def Decomposition(network,n,series,Link_to_add):
159 # Reliability from decomposition method
160 # Polynomial is stored as [a_0,a_1,...a_n]
161 # classes are stored as following example:
162 # node class1 class2
163 # 1 0 0
164 # 2 0 0
165 # 3 1 1
166 # 4 2 1
167 # 5 0 0
168 # 6 0 0
169 # Meaning: 3 and 4 are activated node, two ways to group them (3/4)

or (34)
170

171 R=[]
172 R.append([1,0]) # initial reliability (cannot use [1] at here)
173 X=np.zeros((n,2))
174 X[:,0]=range(1,n+1) # Create classes storage array
175 X[series[0]-1,1]=1 # First step and activate first node
176

177 for s in range(1,len(series)): # Start from second step in series
178 step=series[s]
179 if isinstance(step, (int, np.integer)): # If it is int number,

thus is node process
180 if s==len(series)-1:
181 # print(R)
182 z=1
183 else:
184 if step > 0:
185 # activation of node
186 # print('This step is activation of node',step)
187 for Class in range(1,X.shape[1]):
188 New_class=len(set(X[:,Class]))
189 X[step-1,Class]=New_class
190 # print(X,R)
191 else:
192 # deactivation of node
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193 # print('This step is deactivation of node',step)
194 ColumnDel=[] # record which class make node

disconnected
195 for Class in range(1,X.shape[1]):
196 ClassNum_del=X[abs(step)-1,Class]
197 X[abs(step)-1,Class]=0 # deactivate node
198 if ClassNum_del not in X[:,Class]:
199 # this deactivated node is disconnected
200 ColumnDel.append(Class)
201 else:
202 # renumbering
203 ClassNum=len(set(X[:,Class]))
204 b=range(1,ClassNum)
205 X[:,Class]
206 j=0
207 for i in range(len(X[:,Class])):
208 if X[i,Class]>0:
209 X[:,Class][X[:,Class]==X[i,Class]]=-b[

j]
210 j=j+1
211 X[:,Class]=abs(X[:,Class])
212

213 X = np.delete(X, ColumnDel , axis=1)
214 RowDel=[i-1 for i in ColumnDel]
215 RowDel.sort(reverse=True)
216 for i in RowDel:
217 del R[i]
218

219

220 # Merge the class with same partition
221 for Class in range(1,X.shape[1]):
222 ColumnMerge=[]
223 ColumnMerge.append(Class)
224 for remainClass in range(Class+1,X.shape[1]):
225 if (X[:,Class]==X[:,remainClass]).all():
226 ColumnMerge.append(remainClass)
227 if len(ColumnMerge)>=2:
228 X = np.delete(X, ColumnMerge[1:], axis=1)
229 RowMerge=[i-1 for i in ColumnMerge]
230 R_merge=[]
231 for i in RowMerge:
232 R_merge.append(R[i])
233 R_new=R_merge[0].copy()
234 for i in range(1,len(R_merge)):
235 R_new=add_poly(R_new,R_merge[i])
236 a=RowMerge[1:]
237 a.sort(reverse=True)
238 for i in a:
239 del R[i]
240 R[RowMerge[0]]=R_new
241 # print(X,R)
242 else:
243 # activation of edge
244 # print('This step is activation of edge',step)
245 node1,node2=step # neighbor , node
246 ClassNum_old=X.shape[1]



68 Appendix A. Path decomposition algorithm

247 SpecialLink=0
248 for i in range(len(Link_to_add)):
249 if set((node1,node2))==set(Link_to_add[i]):
250 SpecialLink=1
251 if SpecialLink==1:
252 for Class in range(1,ClassNum_old):
253 Class_change=X[:,Class].copy()
254

255 a=Class_change[node1 -1]
256 b=Class_change[node2 -1]
257 if a<b:
258 Class_change[Class_change==b]=Class_change[node1

-1]
259 else:
260 Class_change[Class_change==a]=Class_change[node2

-1]
261 a=Class_change.copy()
262 a=np.insert(a, 0, values=0, axis=0)
263 ClassNum=len(set(a))
264

265 for number in range(1,ClassNum+1):
266 if number not in set(a):
267 for j in range(n):
268 if Class_change[j]>number:
269 Class_change[j]=Class_change[j]-1
270

271 X[:,Class]=Class_change
272 else:
273 R_new=[]
274 for Class in range(1,ClassNum_old):
275 # Get new X (insert new class in case edge is

connected)
276 Class_add=X[:,Class*2-1].copy()
277 a=Class_add[node1 -1]
278 b=Class_add[node2 -1]
279 if a<b:
280 Class_add[Class_add==b]=Class_add[node1 -1]
281 else:
282 Class_add[Class_add==a]=Class_add[node2 -1]
283

284 # Make group nummbering continuous here, ex: change
0,1,3,1,0,0 to 0,1,2,1,0,0

285 a=Class_add.copy()
286 a=np.insert(a, 0, values=0, axis=0)
287 ClassNum=len(set(a))
288

289 for number in range(1,ClassNum+1):
290 if number not in set(a):
291 for j in range(n):
292 if Class_add[j]>number:
293 Class_add[j]=Class_add[j]-1
294 X=np.insert(X, Class*2, values=Class_add , axis=1)
295

296 # Get new R
297 R_new.append(multiply_poly(R[Class -1],[1,-1])) #

mutiply to 1-p
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298 R_new.append(multiply_poly(R[Class -1],[0,1])) #
mutiply to p

299 R=R_new
300

301

302 # Merge the class with same partition
303 for Class in range(1,X.shape[1]):
304 ColumnMerge=[]
305 ColumnMerge.append(Class)
306 for remainClass in range(Class+1,X.shape[1]):
307 if (X[:,Class]==X[:,remainClass]).all():
308 ColumnMerge.append(remainClass)
309 if len(ColumnMerge)>=2:
310 X = np.delete(X, ColumnMerge[1:], axis=1)
311 RowMerge=[i-1 for i in ColumnMerge]
312 R_merge=[]
313 for i in RowMerge:
314 R_merge.append(R[i])
315 R_new=R_merge[0].copy()
316 for i in range(1,len(R_merge)):
317 R_new=add_poly(R_new,R_merge[i])
318 a=RowMerge[1:]
319 a.sort(reverse=True)
320 for i in a:
321 del R[i]
322 R[RowMerge[0]]=R_new
323 # print(X,R)
324 return R
325 def Link_between_sensor(Sensors,G):
326 NumSensor=len(Sensors)
327 Link_to_add=[]
328

329 check_G=G.subgraph(Sensors)
330 listCC = [len(c) for c in sorted(nx.connected_components(check_G), key

=len, reverse=True)]
331 List=sorted(nx.connected_components(check_G)) # components with node
332 minD_node=np.zeros(len(listCC))
333 for i in range(len(listCC)):
334 component=G.subgraph(List[i])
335 degree=np.array(G.degree(List[i]))
336 degree=degree[np.lexsort(degree.T)]
337 minD_node[i]=degree[0,0]
338 if len(component.edges()) !=0:
339 for i in component.edges():
340 Link_to_add.append(i)
341 for i in range(len(minD_node)-1):
342 Link_to_add.append((minD_node[i],minD_node[i+1]))
343

344 Link_to_add=np.array(Link_to_add)
345 return Link_to_add
346

347 def R_poly(G,Sensors):
348 g=G.copy()
349 n=G.number_of_nodes()
350 Link_to_add=Link_between_sensor(Sensors,G)
351 for j in Link_to_add:
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352 g.add_edge(j[0],j[1])
353

354 Adj=nx.adjacency_matrix(g)
355 A=Adj.todense()
356 network=A.copy()
357 PathWidth ,Path=FindPath2(network,n)
358 series=FindSeries(network,Path)
359 R=Decomposition(network,n,series,Link_to_add)
360 R=R[0] # The all - terminal reliability when placed two sensor
361 return R
362

363 def main():
364 # import network at here
365 s='Real1.txt'
366 lines=[]
367 # with open('/home/ranxu/TopologyZooNetworks/'+s, 'r') as f:
368 with open('D:/TUD/Code/python/Thesis/TopologyZooNetworks/'+s, 'r') as

f:
369 for line in f.readlines():
370 line = line.replace('\n','').replace('\t',' ')
371 lines.append(line)
372

373 edges=[]
374 for i in range(len(lines)):
375 a=list(map(int,lines[i].split()))
376 edges.append(a)
377 edges=np.array(edges)
378 G=nx.Graph()
379 for edge in edges:
380 G.add_edge(edge[0], edge[1])
381 G=nx.convert_node_labels_to_integers(G,first_label=1) # Cannot delete

this line !!!
382 nx.draw(G, pos=nx.kamada_kawai_layout(G),node_size=300,with_labels =

True)
383 plt.show()
384

385 Controllers=[1,2]
386 reliability=R_poly(G,Controllers)
387 print(reliability)
388

389 if __name__ == "__main__":
390 main()
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Graph metric-based strategy

This appendix presents the code of graph metric-based strategy. Only the functions responsible
for placement are shown. See GitHub for complete code.
https://github.com/Amyxuran/Controller-placement.git

1 def MaxDistance_placement(G,K):
2 # find two node far away from othernode
3 paths=list(nx.shortest_path_length(G))
4 D=dict(nx.shortest_path_length(G))
5

6 n=G.number_of_nodes()
7 L=G.number_of_edges()
8 AvgD=np.floor(2*L/n)
9 degree=np.array(list(G.degree()))
10 NodeSet=list(G.degree())
11 numMin=0
12 S=sorted(set(degree[:,1]))
13 for i in degree:
14 if i[1]==S[0]:
15 numMin=numMin+1
16 PlaceKSensor=[]
17 sortedNodeSet=np.array(sorted(NodeSet,key=lambda x:x[1]))
18 if K<=numMin:
19 SumDistance=[]
20 NewNodeSet=sortedNodeSet[:numMin ,0].copy()
21 NewNodeSet_len=len(NewNodeSet)
22 for i in range(NewNodeSet_len):
23 SumDistance.append(sum(dict.values(paths[NewNodeSet[i]-1][1]))

)
24 PlaceKSensor.append(NewNodeSet[np.argmax(SumDistance)])
25 for i in range(K-1):
26 Slength=np.zeros((NewNodeSet_len ,2))
27 for j in range(NewNodeSet_len):
28 Slength[j,1]=max(SumDistance)
29 Slength[j,0]=j
30 for sensor in PlaceKSensor:
31 for j in range(NewNodeSet_len):
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32 Slength[j,1]=min(Slength[j,1],D[sensor][NewNodeSet[j
]])

33 sortedSlength=sorted(Slength,key=lambda x:x[1],reverse=True)
34 for node in range(NewNodeSet_len):
35 NewNode=NewNodeSet[int(sortedSlength[node][0])]
36 if NewNode not in PlaceKSensor:
37 PlaceKSensor.append(NewNode)
38 break
39 else:
40 include_num=numMin
41 for s in S[1:]:
42 count=0
43 for i in sortedNodeSet[include_num:]:
44 if i[1]==s:
45 count=count+1
46 if include_num+count>=K:
47 K=K-include_num
48 part1=sortedNodeSet[:include_num ,0]
49 part2=sortedNodeSet[include_num:(include_num+count),0]
50 NewNodeSet=part2.copy()
51 NewNodeSet_len=len(NewNodeSet)
52 PlaceKSensor=list(part1.copy())
53 for i in range(K):
54 Slength=np.zeros((NewNodeSet_len ,2))
55 for j in range(NewNodeSet_len):
56 Slength[j,1]=999
57 Slength[j,0]=j
58 for sensor in PlaceKSensor:
59 for j in range(NewNodeSet_len):
60 Slength[j,1]=min(Slength[j,1],D[sensor][

NewNodeSet[j]])
61 sortedSlength=sorted(Slength,key=lambda x:x[1],reverse

=True)
62 for node in range(NewNodeSet_len):
63 NewNode=NewNodeSet[int(sortedSlength[node][0])]
64 if NewNode not in PlaceKSensor:
65 PlaceKSensor.append(NewNode)
66 break
67 # print('PlaceKSensor: 111 ',PlaceKSensor)
68 return PlaceKSensor
69 else:
70 include_num=include_num+count
71 # print('PlaceKSensor: ',PlaceKSensor)
72 return PlaceKSensor
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Greedy algorithm

This appendix presents the code of greedy algorithm. Only the functions responsible for place-
ment are shown. See GitHub for complete code.
https://github.com/Amyxuran/Controller-placement.git

1 def greedy(G,PlacedSensor ,K,p,R_record ,NodeSet):
2 PlaceKSensor=[]
3 for i in NodeSet:
4 if i not in PlacedSensor:
5 a=PlacedSensor.copy()
6 a.append(i)
7 PlaceKSensor.append(a)
8 R_all=[]
9 for i in range(len(PlaceKSensor)):
10 R_all.append(R(G,PlaceKSensor[i],p))
11

12 R_all=np.array(R_all)
13 a=np.argsort(R_all)[-1]
14 print(PlaceKSensor[a],'probability at p=',p,'is',R_all[a])
15

16 R_record=np.append(R_record ,R_all[a])
17 sensor_record=PlaceKSensor[a]
18 K-=1
19 if K>1:
20 R_record ,sensor_record=greedy(G,PlaceKSensor[a],K,p,R_record,

NodeSet)
21 return R_record,sensor_record
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Classic genetic algorithm

This appendix presents the code of classic genetic algorithm. Only the functions responsible
for initializing, selection, crossover and mutation are shown. See GitHub for complete code.
https://github.com/Amyxuran/Controller-placement.git

1 def initial_population(G,K,p,NodeSet):
2 NodeSet=list(NodeSet)
3 n=len(NodeSet)
4 d=int(np.ceil(n/K))
5 S=factorial(n)/(factorial(K)*factorial(n-K))
6 group_num=max((2,int(np.ceil(n/100*np.log(S)/d))))
7 population_size=group_num*d
8 population_index=[]
9 for i in range(1,group_num+1):
10 sequence=[]
11 for j in range(i):
12 sequence=sequence+list(range(j+1,n+1,i))
13 empty_slots_num=int(d*K-n)
14 sequence=sequence+random.sample(list(set(range(1,n+1)).difference(

set(sequence[-(K-empty_slots_num):]))),empty_slots_num)
15 for j in range(d):
16 population_index.append(sequence[j*K:(j*K+K)])
17 population=[]
18 for individual_index in population_index:
19 individual=[]
20 for index in individual_index:
21 individual.append(NodeSet[index -1])
22 population.append(individual)
23 dic1={}
24 dic2={}
25 for k in range(len(population)):
26 dic1[k]=sorted(population[k])
27 dic2[k]=R(G,population[k],p)
28

29 best_R=max(dic2.items(),key=lambda x:x[1])[1]
30 worst_R=min(dic2.items(),key=lambda x:x[1])[1]
31 return best_R,worst_R,dic1,dic2
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32

33 def select_cross_mutate(G,p,K,best_R,worst_R,dic1,dic2,NodeSet,
crossover_rate ,mutation_rate ,elitism_num):

34 NodeSet=list(NodeSet)
35 population_size=len(dic1)-elitism_num
36 remain_placement=[]
37 remain_R=[]
38 a=sorted(dic2.items(),key=lambda x:x[1],reverse=True)
39 for i in range(elitism_num):
40 remain_placement.append(dic1[a[i][0]])
41 remain_R.append(a[i][1])
42

43 # select: tournament selection
44 pop1={}
45 pop2={}
46 for i in range(population_size):
47 a,b=np.random.choice(range(population_size),2,False)
48 choice1,choice2=dic1[a],dic1[b]
49 choice1_R ,choice2_R=dic2[a],dic2[b]
50 if choice1_R >=choice2_R:
51 pop1[i]=choice1
52 pop2[i]=choice1_R
53 else:
54 pop1[i]=choice2
55 pop2[i]=choice2_R
56

57 # cross: single point crossover
58 new_pop1={}
59 new_pop2={}
60 cross_pairs_num=round(population_size*crossover_rate/2)*2
61 k=0
62 for i in range(0,population_size ,2):
63 if i <=cross_pairs_num:
64 parent1=pop1[i]
65 parent2=pop1[i+1]
66 cross_point=np.random.randint(1,K)
67 child1_temp=parent1.copy()
68 child2_temp=parent2.copy()
69 child1_temp[cross_point:]=parent2[cross_point:].copy()
70 child2_temp[cross_point:]=parent1[cross_point:].copy()
71 ## repeat detect
72 a=child1_temp[:cross_point]
73 b=child1_temp[cross_point:]
74 child1=b.copy()
75 c=child2_temp[:cross_point]
76 d=child2_temp[cross_point:]
77 child2=d.copy()
78 for i in a:
79 while i in b:
80 i = d[b.index(i)]
81 child1.append(i)
82 for i in c:
83 while i in d:
84 i = b[d.index(i)]
85 child2.append(i)
86 else:
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87 child1=pop1[i]
88 child2=pop1[i+1]
89 if np.random.rand()< mutation_rate:
90 while True:
91 a=np.random.randint(0,K)
92 b=np.random.randint(0,len(NodeSet))
93 if NodeSet[b] not in child1:
94 child1[a]=NodeSet[b]
95 break
96 if np.random.rand()< mutation_rate:
97 while True:
98 a=np.random.randint(0,K)
99 b=np.random.randint(0,len(NodeSet))
100 if NodeSet[b] not in child2:
101 child2[a]=NodeSet[b]
102 break
103

104 new_pop1[k]=child1
105 new_pop1[k+1]=child2
106 new_pop2[k]=R(G,child1,p)
107 new_pop2[k+1]=R(G,child2,p)
108 k=k+2
109 for i in range(elitism_num):
110 new_pop1[k]=remain_placement[i]
111 new_pop2[k]=remain_R[i]
112 k=k+1
113

114 best_R=max(new_pop2.items(),key=lambda x:x[1])[1]
115 worst_R=min(new_pop2.items(),key=lambda x:x[1])[1]
116 return best_R,worst_R,new_pop1 ,new_pop2
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Heuristic genetic algorithm

This appendix presents the code of heuristic genetic algorithm. Only the functions responsible
for initializing and crossover are shown. See GitHub for complete code.
https://github.com/Amyxuran/Controller-placement.git

1 def initial_population(G,K,p,NodeSet):
2 n=len(NodeSet)
3 d=int(np.ceil(n/K))
4 S=factorial(n)/(factorial(K)*factorial(n-K))
5 group_num=max((2,int(np.ceil(n/100*np.log(S)/d))))
6 population_size=group_num*d
7 population_index=[]
8 for i in range(1,group_num+1):
9 sequence=[]
10 for j in range(i):
11 sequence=sequence+list(range(j+1,n+1,i))
12 empty_slots_num=int(d*K-n)
13 sequence=sequence+random.sample(list(set(range(1,n+1)).difference(

set(sequence[-(K-empty_slots_num):]))),empty_slots_num)
14 for j in range(d):
15 population_index.append(sequence[j*K:(j*K+K)])
16 population=[]
17 for individual_index in population_index:
18 individual=[]
19 for index in individual_index:
20 individual.append(NodeSet[index -1])
21 population.append(individual)
22

23 dic1={}
24 dic2={}
25 for k in range(len(population)):
26 dic1[k]=sorted(population[k])
27 dic2[k]=R(G,population[k],p)
28

29 best_R=max(dic2.items(),key=lambda x:x[1])[1]
30 worst_R=min(dic2.items(),key=lambda x:x[1])[1]
31
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32 return best_R,worst_R,dic1,dic2
33

34 def selection(K,best_R,worst_R,dic1,dic2):
35

36 population=list(dic1.values())
37 population_size=len(population)
38

39 # random select
40 a,b=random.sample(range(population_size),2)
41

42 #####
43 parent1,parent2=population[a],population[b]
44 fix_gene=list(set(parent1).intersection((set(parent2))))
45 free_gene=list(set(parent1).difference(set(parent2)))+list(set(parent2

).difference(set(parent1)))
46 child_draft=list(set(parent1+parent2))
47 num_drop=len(child_draft)-K
48 return sorted(child_draft),sorted(fix_gene),sorted(free_gene),num_drop
49

50 def GreedyDeletion(G,p,child_draft ,fix_gene,free_gene ,num_drop):
51 if num_drop==0:
52 return sorted(child_draft)
53 compare_sensor=[]
54 for gene in free_gene:
55 sensor=child_draft.copy()
56 sensor.remove(gene)
57 compare_sensor.append(sensor)
58

59 R_value=[]
60 for i in compare_sensor:
61 R_value.append(R(G,i,p))
62 ind=np.argmax(np.array(R_value))
63 child_draft=compare_sensor[ind]
64 new_free_gene=list(set(compare_sensor[ind]).difference(set(fix_gene)))
65 num_drop -=1
66 if num_drop==0:
67 return sorted(child_draft)
68 else:
69 return GreedyDeletion(G,p,child_draft ,fix_gene,new_free_gene ,

num_drop)
70

71 def OneGeneration(G,p,K,best_R,worst_R,dic1,dic2):
72 child_draft ,fix_gene ,free_gene ,num_drop=selection(K,best_R,worst_R,

dic1,dic2)
73 new_population=GreedyDeletion(G,p,child_draft ,fix_gene,free_gene ,

num_drop)
74 if new_population in list(dic1.values()):
75 return best_R,worst_R,dic1,dic2
76 new_R=R(G,new_population ,p)
77 if new_R>worst_R:
78 for key,value in dic2.items():
79 if value==worst_R:
80 dic2[key]=new_R
81 dic1[key]=new_population
82 break
83



81

84 best_R=max(dic2.items(),key=lambda x:x[1])[1]
85 worst_R=min(dic2.items(),key=lambda x:x[1])[1]
86 return best_R,worst_R,dic1,dic2


	Preface
	Abstract
	Introduction
	Objectives
	Contributions
	Thesis outline

	Background
	Performance metrics
	Related work
	Graph Theory Basis
	Graph metrics
	Graph models

	Topology Zoo
	Problem

	Controller reachability evaluation
	Enumeration
	Standard Monte Carlo simulation
	Path decomposition
	Controller reachability vs. All-terminal reliability
	Graph reductions
	Decomposition method

	Is controller reachability a submodular function?

	Findings from optimal controller placement
	Degree vs. Controller reachability
	Distance vs. Controller reachability
	Different optimal placement with different p
	Optimal placement changes
	More networks with changing optimal placement


	Controller placement strategies
	Controller placement strategy based on degree and distance
	Greedy algorithm
	Genetic algorithm
	Introduction to genetic algorithm
	Encoding and initializing in controller placement problem
	Classic GA
	Heuristic GA


	Result and analysis
	Analysis of Internet2 OS3E
	How does placement affect controller reachability
	How many controllers are needed

	Analysis of more topologies
	How does placement affect controller reachability
	How many controllers are needed

	Comparison of different placement strategies
	ER random graph
	BA random graph
	Real-world graph


	Conclusion
	References
	Path decomposition algorithm
	Graph metric-based strategy
	Greedy algorithm
	Classic genetic algorithm
	Heuristic genetic algorithm

