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ABSTRACT
Equilibrium analysis has been widely studied as an effective tool to model gaming interactions and predict market results. However,
as competition modes are fundamentally changed by the decarbonization and decentralization of power systems, analysis techniques
must evolve. This article comprehensively reviews recent developments in modelling methods, practical settings and solution tech-
niques in equilibrium analysis. Firstly, we review equilibrium in the evolving wholesale power markets which feature new entrants,
novel trading products and multi-stage clearing. Secondly, the competition modes in the emerging distribution market and distributed
resource aggregation are reviewed, and we compare peer-to-peer clearing, cooperative games and Stackelberg games. Further-
more, we summarize the methods to treat various information acquisition degrees, risk preferences and rationalities of market par-
ticipants. To deal with increasingly complex market settings, this review also covers refined analytical techniques and agent-based
models used to compute the equilibrium. Finally, based on this review, this paper summarizes key issues in the gaming and equilibrium
analysis in power markets under decarbonization and decentralization.
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S ince the 1990s, several countries around the world have pro-
moted  deregulation  of  the  electricity  industry[1, 2].  In  these
markets,  participants  make  decisions,  compete  with  each

other  and  game  the  rules  for  their  own  interests.  The  electricity
resources are allocated by the market  mechanism, and the prices
are formulated to encourage competitive behavior.

Unlike  in  a  vertically  integrated  monopoly  mode,  the  market
clearing  results  are  not  controllable  by  a  single  operator  and  are
determined by  competition  instead.  To  this  end,  market  equilib-
rium analysis  emerges as  an effective tool  to study gaming inter-
actions and  predict  potential  market  outcomes.  From  the  per-
spective  of  a  market  monitor,  this  type  of  analysis  helps  detect
potential market malfunctions and evaluate market power[3]. From
the  perspective  of  market  participants,  such  analysis  helps  assess
the market situation and make favorable bidding decisions[4].

Equilibrium analysis finds its origin in Nash equilibrium theory
and depicts  a  stable  market  situation as  such that  no one has  an
inventive  to  deviate  from it[5].  Depending  on  the  bidding  format,
traditional  equilibrium  analysis  models  can  be  categorized  into
Cournot[6] and  supply  function  equilibrium  models[7].  To  better
capture the complicated clearing rule, a bi-level model is proposed,
which models participants as the leaders and the market clearing
as the follower. This bi-level model can be recast as the mathematical
programming with equilibrium constraints (MPECs)[8] or equilib-
rium  programmings  with  equilibrium  constraints  (EPECs)[9] and
solved using optimization techniques.

There have  been  several  articles  reviewing  the  market  equilib-
rium analysis, both on the traditional models[10, 11] or the optimiza-

tion-based  MPEC  and  EPEC  models[12, 13].  These  reviews  mainly
focus on competition in wholesale energy markets dominated by
thermal generators.  However,  due  to  the  trend  towards  decar-
bonization and decentralized  generation  in  power  systems,  com-
petition  in  power  markets  is  also  undergoing  fundamental
changes, which leaves traditional equilibrium analysis insufficient.

On the  one  hand,  wholesale  markets  are  embracing  new  par-
ticipants  and introducing new trading products  to  accommodate
the increasing penetration of renewables. Renewables, storage and
aggregators  gradually  enter  a  market  traditionally  dominated  by
thermal power  plants,  and novel  trading products  are  also  intro-
duced to increase flexibility,  manage,  risks and reward renewable
generation.  These  changing  market  structures  and  mechanisms
alter the gaming behaviors and market equilibrium.

On  the  other  hand,  competition  in  increasingly  decentralized
power systems is gradually extended to emerging markets, such as
distribution  markets  and  the  aggregation  of  distributed  energy
resources  (DERs).  As  shown  in Figure  1,  the  emerging  markets
are usually  organized in the distribution network,  and the aggre-
gators  can  act  as  an  intermediary  between  the  wholesale  market
and  the  DERs.  Distribution  markets  may  be  organized  in  novel
modes such as peer-to-peer (P2P) trading,  where gaming is  con-
ducted in a distributed and repetitive way.  Unlike the non-coop-
erative  Nash  game  in  the  wholesale  auction,  the  aggregation  of
DERs can be modelled as a cooperative or Stackelberg game, and
the analyzing tools are heterogeneous.

This variety of competition modes makes the traditional “perfect
information  and  rationality” assumption impractical.  Heteroge- 
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neous information acquisition degrees, risk preferences and ratio-
nality degrees of market participants must be considered. Thanks
to  the  increasing  availability  of  market  information,  data-driven
methods can be used to reveal these characteristics.

The emergence of novel competition modes has also promoted
the  development  of  equilibrium  solution  algorithms.  In  previous
research  where  the  settings  are  relatively  simple,  the  equilibrium
model can be solved by diagonalization or Karush–Kuhn–Tucker
(KKT)  methods.  With  the  growingly  complex  market  settings,
such models  may  be  intractable,  and  customized  analytical  tech-
niques are needed to recast them. Due to its compatibility with the
complex market setting and participants’ preferences, agent-based
models are further explored to enhance learning and convergence
performance.

To  sum  up,  the  changing  electricity  market  competition  and
equilibrium have aroused the attention of  many researchers,  and
there  is  an  urgent  need  to  summarize  these  works.  This  article
reviews recent studies on equilibrium analysis, summarizes devel-
oping trends and outlines future challenges.

The rest of the paper is organized as follows. Sections 1, 2 and 3
review the gaming analysis in the changing wholesale market, the
emerging distribution market  and DER aggregation,  respectively.
Research on information, risk attitude and rationality settings are
reviewed in  Section  4.  Section  5  reviews  the  new analytical  tech-
niques and agent-based models to compute the equilibrium. Section
6 points out the possible challenges in equilibrium analysis. Section
7 concludes the paper.

1    Gaming in wholesale markets  with increasing
renewables
Hosting  a  considerable  share  of  trading  volumes,  the  wholesale
market is nonnegligible in the gaming analysis. Guided by the car-
bon neutrality target, the traditional thermal-dominated electricity
market is embracing decarbonization. On the one hand, new enti-
ties  such  as  renewables,  storage  and  aggregators  are  taking
increasingly important positions. On the other hand, novel trading
categories have been introduced in several markets to help partic-
ipants  hedge  risks,  recover  investment  costs,  trade  flexibility,  or
reward  green  energy.  The  changes  in  participant  structure  and
mechanism  design  will  synergistically  change  the  competition
mode and market equilibrium.

It is notable that some literature assumes a single participant as
strategic and other as non-strategic. In this case, the EPEC which
characterizes  a  multi-leader-one-follower  game  can  be  simplified
to  the  MPEC  which  characterizes  a  single-leader-one-follower
game. The single strategic participants try to maximize their profit
while the market operator tries to maximize social welfare, and the
Stackelberg  equilibrium  can  be  derived.  Although  simplifications
are made, these researches also take an important position in the
market  competition  and  equilibrium  analysis.  On  the  one  hand,
the  participants  with  large  market  share  and  strategic  behaviors
are  limited,  and  most  small  participants  act  as  price-takers  and
behave honestly. On the other hand, the MPEC is the theoretical
foundation  of  EPEC.  After  properly  characterizing  one  strategic
participant by MPEC, the EPEC can be obtained by jointly estab-
lishing several MPECs.

1.1    Entry of new gaming participants
Under  the  decarbonization  target,  renewables  are  becoming
increasingly  important  participants  in  the  market.  Meanwhile,  to
tackle  the  uncertainty  of  renewables,  several  flexibility  providers,
such  as  demand  responses  and  storage,  have  emerged  alongside
renewables.  The  DERs  can  also  take  part  in  the  markets  after
aggregation  in  the  format  of  aggregators,  virtual  power  plants
(VPPs) or  retail  companies.  These  market  participants  have  dif-
ferent  physical  constraints  and  operation  feasible  regions,  and  in
consequence, the modelling of their decision problem differs.

For  renewable  participation,  bidding  behaviors  are  closely
related to stochasticity. Tsimopoulos and Georgiadis use the EPEC
model  to  study  the  stochastic  equilibria  in  markets  with  high
renewable penetration[14]. To reduce imbalance costs, He et al. pro-
pose cooperative participation of wind producers and energy stor-
age and derive the bidding behaviors of the coalition in the energy
and regulation market[15]. The strategic behaviors of wind producers
who can withhold capacities on the excuse of prediction uncertainty
have been studied[16, 17].

Accompanying renewables,  many  participants  providing  flexi-
bility  and  reliability  are  entering  the  market.  When  deriving  the
bidding  behaviors  of  cascaded  hydropower  stations,  the  coupled
constraint  between  upstream  generation  and  downstream  flow
input  is  considered[18].  Pan  et  al.  study  the  bidding  strategies  of
power to hydrogen and methane (P2HM) plants on electricity, gas
and hydrogen markets.  Specifically,  the energy transfer equations
are  considered[19].  The  profit  that  storage  can  earn  by  providing
reserves and balancing services is measured[20].

The  aggregation  of  DERs  can  participate  by  agents.  A
Nash–Cournot  equilibrium  model  is  proposed  to  analyze  the
impacts  of  VPPs  on  market  operation[21]. Considering  uncertain-
ties,  including  electric  vehicle  (EV)  fleet  flows  and  hourly  load
profiles, a stochastic equilibrium involving EV aggregators is ana-
lyzed[22].  Liu  et  al.  analyze  the  impact  of  wind aggregator  bidding
on the joint equilibrium of energy and ancillary services markets[23].
Carrion et al. use the MPEC model to study the strategic behaviors
of retail companies and consider their pricing package designation
to consumers when making bids[24].

By  modelling  the  decision  problems  of  new  market  entrants,
their optimal bidding strategies can be derived, and several kinds
of novel gaming behaviors can be detected. By calculating the for-
mulated equilibrium, these studies help us to evaluate the market
impacts of the entry of new participants.

1.2    Emergence of the multi-stage and multi-product market
With the improvement of market mechanisms and the introduction
of  new  trading  categories,  the  competition  in  the  single  energy
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Fig. 1    The various competition modes in the market.
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market  is  gradually  evolving  into  a  complicated  multi-market
competition. The equilibrium analysis of multiple markets can be
quite  challenging.  Various  markets  have  different  trading  rules
and  market  structures.  In  the  absence  of  generalized  modelling
methods, they must be modelled on a case-by-case basis. Further-
more,  the  feasible  regions  for  bidding  in  different  markets  are
mutually  constrained  and  earned  revenues  constitute  a  trade-off,
so the multi-market competition is a complex joint gaming prob-
lem.

1.2.1    Multi-stage market competition

The  introduction  of  the  variable  renewables  pushes  up  price
volatility,  prompting  participants  to  use  more  risk  hedging  tools
and  participate  in  multi-stage  markets.  Kardakos  et  al.  study  the
day-ahead  and  real-time  two-stage  market  equilibrium  with  a
strategic  virtual  power  plant  that  tries  to  minimize  its  imbalance
costs[25].  Fang  et  al.  study  how  deviation  penalties  can  regulate
wind  generators’ behaviors  by  analyzing  the  equilibrium[26].  The
joint equilibrium model of spot markets and long-term markets is
established,  and  the  impact  of  long-term contracts  on  mitigating
market power is analyzed[27]. The cross-market arbitrage of thermals
by  using  long-term contracts  is  analyzed,  and  the  corresponding
impact on spot market equilibrium prices is evaluated[28].

Apart  from  the  competition  in  daily  market  operation,  the
competition has been extended to capacity remuneration mecha-
nisms due to the lowered energy prices. The two-stage equilibria,
including investment and bidding, is analyzed where the strategic
behaviors of wind producers are considered[29]. Grimm et al. analyze
the  joint  investment  equilibria  of  transmission  and  generation,
and  the  impact  of  pricing  zone  design  and  renewable  policy  is
considered[30].  Chen et  al.  analyze  the  investment  decision of  gas-
fired units. By modelling the operation of gas and electricity mar-
kets,  the  expected  revenue  can  be  back  fed  to  the  investment
stage[31].

1.2.2    Multi-product market competition

To ensure the reliable and flexible operation of the system, several
new products, such as flexibility and ramping products, have been

introduced in  recent  years.  Meanwhile,  products  such as  reserve,
regulation and capacity are becoming increasingly important rev-
enue  sources  for  market  participants.  There  have  been  many
studies  analyzing  the  equilibrium  of  markets  with  new  trading
products.  The  EPEC  model  is  used  to  study  the  clearing  of  the
energy  and  reserve  markets[32].  The  joint  clearing  mode  and
sequential clearing mode are examined and their formed equilibria
are  compared.  Zou  et  al.  use  the  Cournot  model  to  analyze  the
joint gaming behaviors in energy and ancillary markets, and they
find  that  energy  prices  decrease  while  ancillary  services  prices
increase with higher renewable penetration[33]. The flexible ramping
product is introduced in California independent system operators
(CAISO) to  purchase  ramping  capabilities,  and  its  market  equi-
librium is examined by a multi-period Nash–Cournot equilibrium
model[34].

Additionally,  to  incentivize  the  development  of  green  energy,
several  green  financial  products  are  launched  to  reward  their
environmental  friendliness.  Helgesen  and  Tomasgard  study  the
green license and analyze its impact on the operation of the elec-
tricity market by calculating the joint equilibrium[35]. The impact of
carbon  policy  on  market  equilibrium  is  studied,  and  the  carbon
tax  is  found  to  be  the  most  cost-efficient  tool  to  reduce
emissions[36].  Based  on  California  data,  Hu  et  al.  use  the  EPEC
model to quantify the impact of carbon prices on electricity market
equilibrium and compare  the  competitiveness  of  generators  with
different fuel types[37].

In  summary,  more  refined  equilibrium  models  have  been
established to analyze the multi-stage and multi-product wholesale
market.  The  references  are  compared  in Table  1.  Cross-market
arbitrage, risk management and investment behaviors can be ana-
lyzed and predicted. The impact of new trading products on market
prices, clearing quantities and social welfare can be determined.

2    Gaming in the emerging distribution markets
Decentralization is an important trend of the future market. Local
power  balance  may be  realized  at  the  distribution grid  level,  and
entities  form a  local  market  to  trade  energy  and  flexibility.  With
the  penetration  of  DERs  and  the  implementation  of  vehicle-to-

 

Table 1    Comparison of reviewed literature on the wholesale market

Reviewed literature Participant Trading stage Trading product

[14, 17, 26] Renewables Day-ahead, balancing Energy, deviation penalty

[15] Wind and storage Real-time Energy, regulation

[16, 29] Wind Investment, day-ahead, balancing Capacity investment, energy

[18] Hydropower stations Day-ahead, real-time Energy

[19] P2HM plant Day-ahead Electricity, gas, hydrogen

[20] Storage Day-ahead, real-time Reserve, balancing services

[21–23] VPP or aggregators Day-ahead Energy, reserve, regulation

[24] Retail companies Day-ahead Energy (wholesale), customized price design

[25] VPP Day-ahead, real-time Energy, deviation penalty

[27, 28] Thermals Long-term, spot market Energy

[30] Investor Investment, spot market Transmission and generation investment, energy

[31] Gas units Investment, spot market Capacity investment, energy, gas

[32] Wind Investment, day-ahead Capacity investment, energy, reserve, subsidy

[33] All kinds Day-ahead Energy, reserve, regulation

[34] All kinds Day-ahead Energy, flexible ramping

[35–37] All kinds Day-ahead Energy, green products (certificates, carbon tax, carbon prices)
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grid (V2G)  technology,  novel  market  participants  named  pro-
sumers  that  can  both  consume  and  produce  electricity  have
emerged[38].  The  distribution  market  bears  fundamental  changes
compared with the traditional wholesale market. Firstly, the trading
mode will change due to the different operating nature of the dis-
tribution grid. Secondly, novel trading products need to be intro-
duced to tackle the operating challenges in the near-island small-
scale grid with high renewable penetration. The new trading mode
and trading products  will,  consequently,  change the landscape of
gaming behaviors in the distribution market.

2.1    The new trading modes
The possible trading modes of distribution markets under heated
discussion include distributional locational marginal price (DLMP)
and P2P energy trading. There have been several studies elaborating
on gaming behavior analysis in the corresponding market.

2.1.1    Competition under the DLMP mechanism

DLMP resembles the concept of the pool-based wholesale market,
and  it  can  also  be  derived  as  a  byproduct  of  the  clearing[39].  The
distribution market clearing is based on alternative-current optimal
power  flow  (ACOPF),  which  considers  voltage  constraints  and
power  losses.  Participants  can  game on the  new constraints,  and
how  the  demand  side  can  profit  by  providing  reactive  power,
voltage  support  and  congestion  mitigation  in  the  distribution
market has been explored[40, 41].  The strategic behaviors of multiple
participants are considered by EPEC, and the formulated equilib-
rium is calculated[42].

The  participants  in  the  DLMP  mechanism  can  be  diversified.
The aggregators can act as a proxy for distributed prosumers and
respond to the DLMP released by the distribution system operator
(DSO)[43]. The EV aggregator[44], energy storage[45] and microgrids[46]

can  also  be  the  participants  in  the  distribution  market,  and  the
corresponding equilibria are analyzed.

2.1.2    Competition under P2P distributed trading

In  the  distribution  market,  the  boundaries  between  buyers  and
sellers  are  blurred  due  to  the  emergence  of  prosumers.  The
exchange  could  be  bidirectional,  unlike  the  unidirectional
exchange  in  the  wholesale  market.  With  the  help  of  distributed
optimization techniques (e.g., ADMM), many studies have turned

to  distributed  trading  from  the  original  pool-based  market.  In
comparison with the DLMP mechanism, P2P distributed trading
has three major advantages: (1) privacy reserving; (2) user-centric,
i.e., trading pairs are formed during market clearing in accordance
with  user  preferences[47];  (3)  more  flexible  structures,  i.e.,  massive
participants  could  asynchronously  trade  together[48].  Since  most
distributed  optimization  techniques  rely  on  iterations  between
market participants, the clearing procedure of P2P trading is more
complex  than  the  DLMP  mechanism,  especially  in  hierarchical
markets.

Since the distributed market mechanism is still a research frontier
and  there  is  no  industrial-level  standard  for  P2P  distributed
energy trading,  game theory and equilibrium analysis  are  mainly
used for mechanism design. Paudel et al. use an M-leader and N-
follower Stackelberg game to model the interaction between sellers
and  buyers  in  a  prosumer-based  community[49].  The  buyers  are
assumed to play an evolutionary game once the sellers announce
the price vector after a noncooperative game. Le Cadre et al. propose
an  optimization  model  for  prosumers  to  determine  their  trades,
demand, and flexibility activation and characterize the solution of
P2P trading as a variational equilibrium[50]. The distributed energy
trading and benefit  allocation problem is formulated as a general
Nash bargaining problem, and ADMM is used to solve the problem
[51].  Motivational  psychology  models  are  used  to  design  a  game-
theoretic P2P trading scheme[52]. However, the physical constraints
of the distribution grid are not considered in the scheme.

In  summary,  gaming  and  equilibrium  in  distribution  markets
take  new  formats.  The  DLMP  mechanism  has  fewer  differences
since it inherits the competition mode of the pool-based market as
a  first-price  sealed-bid  auction.  It  is  notable  that  the  gaming and
competition  circumventing  reactive  power  and  voltage  support
becomes more predominant. In contrast, P2P trading changes the
competition mode to iterative gaming. The exchange can be con-
ducted  asynchronously  between any  pair,  and  the  market  results
converge to equilibrium after multi-round information exchange.
The  comparisons  of  DLMP  and  P2P  mechanisms  are  shown  in
Figure 2.

2.2    Novel trading products
To ensure flexible, reliable and low-carbon operation of the distri-
bution grid, several studies have proposed that the market should
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Fig. 2    Comparison between the DLMP and P2P mechanisms (Note: The communication flow of P2P would be similar to that of DLMP in those cases when a
DSO is required to coordinate the distributed clearing process).
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introduce  novel  trading  products,  including  flexibility,  reserves
and  carbon  products.  Unlike  the  wholesale  markets,  the  new
products  in  the  distribution  grid  are  traded  under  the  P2P  or
DLMP framework.

Under the DLMP framework, several studies embed new prod-
ucts in the ACOPF clearing model, and the gaming behaviors are
analyzed. The values  of  voltage  support  and congestion manage-
ment  are  reflected  in  different  components  of  the  DLMP[53].  A
chance-constrained ACOPF model can formulate the uncertainty
price, and its impact on incentivizing imbalance mitigation is pre-
sented[54].  Similar  work  is  conducted  by  a  robust  optimization
method[55].  Lu  et  al.  analyze  the  impact  of  incorporating  capacity
tariffs  in  DLMPs  on  participants’ behaviors[56] .  A  carbon-aware
DLMP that incorporates emission costs is proposed to enable joint
trading of energy and carbon[57].

Under the P2P trading framework, Zhang et al. propose a joint
trading  mechanism  involving  energy  and  flexibility  and  analyze
the  market  equilibrium[58].  Similar  work  is  conducted,  with  the
reserve  requirement  determined  by  chance  constraints[59].  The
energy storage usage right is treated as a new product and traded
in P2P ways[60].  Hierarchical demand response is proposed, which
can  effectively  exploit  flexibility  from  the  consumer  side[61].  To
reflect  the  intertemporal  differences  in  energy  value,  Fan  et  al.
decomposed  the  power  curve  into  two  products  named  energy
level and energy shift[62]. The analysis of the equilibrium shows that
the energy shift can incentivize peak shaving.

3    Gaming  between  aggregators  and  distributed
resources
The  variability  and  intermittency  of  variable  renewables  exert
greater challenges on the wholesale market operation. The whole-
sale market needs to fully exploit the flexibility from the increasing
DER,  including  prosumers,  renewables  and  EVs.  Aggregators,
therefore,  emerge  as  an  important  intermediary  between  the
wholesale  market  and  distributed  resources,  and  their  gaming
with the distributed resources has aroused great attention. Gener-
ally,  there  are  two  interaction  modes  between  aggregators  and
DER: a cooperative game and a Stackelberg game. Recently, there

has been literature that incorporates aggregators and DERs in the
P2P  trading  framework,  where  the  aggregators  can  trade  with
DERs  bilaterally  and  interact  with  the  main  grid[63, 64].  These
researches  provide  meaningful  explorations,  and  P2P  might  be
another aggregation mode in the future.

3.1    Analysis of cooperative games
In cooperative games, an aggregator can be regarded as a coalition
formed by DERs. For the sake of narration, we do not distinguish
the  concepts  of  VPP  and  aggregator.  Based  on  the  aggregated
operating characteristics of the DERs, the aggregator gains profits
by bidding in the electricity market and then allocates the profits
to  the  DERs  according  to  their  contributions.  Strictly  speaking,
there is  no conception of equilibrium in cooperative games since
the  participants  do  not  make  independent  bidding  decisions.
What they need to decide is whether to form or leave the coalition,
and the profit allocation and core stability concept in the cooper-
ative game theory resembles the equilibrium in the non-cooperative
game.

3.1.1    Why form coalitions

In  current  electricity  markets,  energy  deviations  are  penalized  or
traded  in  the  balance  (real-time)  market.  Therefore,  due  to  the
uncertainty of generation, the profits of DERs are usually reduced.
As a result of the noncorrelation of DER generation fluctuations[65]

and  further,  the  integration  of  flexible  resources  such  as  energy
storage units[66], the generation uncertainty of the aggregated DERs
decreases,  and the aggregator  gains  more total  profits  than when
the  DERs  operate  individually[65–67].  The  increased  profit,  or  so-
called surplus profit, is why coalitions of DERs can exist.

3.1.2    Profit allocation method and core stability

In the literature using coalitional  game theory to study the inter-
action between DERs and aggregators, most researchers focus on
profit allocation (Table 2). Specifically, the goal is to design profit
allocating  methods  with  the  desired  properties  of  stability  and
fairness  according  to  the  specific  market  environment  and  the
characteristics  of  the  DERs.  The  proper  allocation  of  profit  and
costs determines the coalition stability.

 

Table 2    Comparison of the reviewed literature on cooperative games
Reviewed
literature DER type Market environment Allocation method

[65] Wind power Two-settlement power market Minimum worst-case dissatisfaction

[66] Non-dispatchable producer, energy storage, non-
dispatchable load Two-settlement power market Nucleolus and the Shapley value methods

[67] Non-dispatchable producer, energy storage, non-
dispatchable load

Two-settlement power market,
reserve market The virtual internal transactions

[68] Non-dispatchable producer, non-dispatchable
load, reducible load Two-settlement power market The bi-objective optimization framework

[69] Wind power Two-settlement power market Core selection with arbitrary criteria

[70] Renewables Day ahead market with penalty
prices The cost causation based framework

[71] EV, wind power, non-dispatchable load, shiftable
load Day-ahead market, reserve market The Aumann–Shapley method

[72] Renewables Only generation considered Nucleolus, the Shapley value, and minimum cost-
remaining savings

[73] Renewables, non-dispatchable load, interruptible
load

Time of use price and government
subsidy The Shapley value method

[74] EV Day-ahead market, regulation
market Trading between the aggregator and EV

[75] Renewables Two-settlement power market The stabilizing contract

[76] Renewables Payment from the grid based on
the accuracy Production and prediction-based scoring rule

[77] Renewables Two-settlement power market A specially formulated market
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The  early  work  of  Baeyen  et  al.  examines  the  aggregation  of
wind power plants  to maximize the expected profit  in a  two-set-
tlement energy market, where the realized profits are allocated to
the  plants  minimizing  the  worst-case  dissatisfaction  to  make  the
allocation stable[65]. Dabbagh et al. consider an aggregator consisting
of  photovoltaic  power  plants,  wind  power  plants,  energy  storage
systems  and  loads,  which  bids  in  a  dual  pricing  market  by  risk-
averse two-stage stochastic programming, and the surplus profit is
allocated by nucleolus and Shapley value methods[66].

However,  the  nucleolus  and  Shapley  value  methods  can  only
ensure  the  stability  and  fairness  of  allocation,  respectively,  rather
than achieve the two goals at the same time, and the computational
complexity  of  the  methods  is  very  high.  Building  on  previous
works,  a  virtual  transaction  mechanism  within  the  aggregator  is
designed  to  decompose  the  contribution  of  DERs  and  allocate
profits accordingly[67], which is more comprehensible and compu-
tationally efficient. Aiming at an efficient tradeoff between stability
and fairness, a bi-objective optimization-based method is proposed
to  allocate  the  cost  of  an  aggregator[68].  Nguyen  et  al.  propose  a
method to quickly solve the core selection problem in a coalition
of wind power plants through a constraint generation algorithm[69].
For  computational  tractability,  cost  causation-based[70],
Aumann–Shapley  value[71],  and  minimum  cost-remaining
savings[72] methods  for  profit  (cost)  allocation  within  aggregators
have  been  used  to  replace  the  Shapley  value  method  in  specific
scenarios. In addition to the abovementioned DER types, there are
also  recent  studies  on  DER  coalitions  containing  interruptible
loads[73] and EVs[74].

3.1.3    Coupled aggregator bidding and profit allocation
In the above studies, the bidding of an aggregator and the coalition
game within  it  are  decoupled,  meaning  that  the  optimal  bidding
strategies  of  aggregators  can be  used directly.  However,  although
the expected profits of aggregated DERs are in many cases super-
additive[65–67],  the realized profits  are  not  necessarily  superadditive,
which  may  affect  the  stability  of  the  alliance[75].  Meanwhile,  it  is
possible that  the  DERs  strategically  submit  false  generation  fore-
casts, so the allocation method should ensure that the best strategy
for  the  DERs  is  to  provide  forecasts  that  are  as  accurate  as
possible[76, 77].  In  other  words,  without  loss  of  generality,  incentive
compatibility  for  DERs  needs  to  be  ensured  when  aggregators
design allocation methods, but this is rarely considered in existing
studies.

3.2    Analysis of Stackelberg games
Another  gaming  mode  between  aggregators  and  DERs  is  the
Stackelberg  game,  where  the  aggregators  act  as  leaders  and  set
incentives  to  the  DERs  who  act  as  followers.  Different  from  the
cooperative mode,  in this  mode,  the DERs selfishly act  on behalf
of their own interests, and the aggregators should carefully design
the incentives based on the estimation of followers’ responses. The
interaction can be modelled as a Stackelberg game, and the Stack-
elberg equilibrium can be solved after deriving the optimality con-
ditions of the follower decision problem and recasting the model
to a single-level problem. The incentive design and varied scenario
analysis have to be based on the Stackelberg equilibrium analysis.

3.2.1    Varied incentives design

The  incentives  may  vary,  including  flat-rate  tariffs,  time  of  use
(TOU),  real-time  pricing  (RTP),  critical  peak  pricing  (CPP)  and
one-time rewards. Several studies use bi-level models and compare
the derived Stackelberg equilibrium. Grimm et al. find that RTP is
more  favorable  for  retailers  in  terms  of  expected  profit  and  risk
management[78]. Ansarin et al. find that TOU and RTP prevail over

other methods with respect to efficiency and fairness[79].  Zhang et
al. design CPP parameters to guide DER performance to minimize
the  total  operational  cost,  including  energy  purchasing  cost  and
imbalance  penalties[80].  It  is  found  that  the  coordination  of  fixed
and real-time dynamic tariffs can better incentivize peak shaving[81].
Althaher  et  al.  establish  an  online  algorithm  and  design  a  price
threshold  in  the  RTP  to  prevent  homogeneous  adjustment  and
the incurred new peak hours[82].

3.2.2    Consideration of practical economic and physical factors

Specifically,  several  practical  factors  need  to  be  considered  when
designing pricing strategies.

Typical  characteristics  of  DERs include response uncertainties,
consumer  psychology  and  dispatch  merit  order.  In  the  work  of
Mocanu et al., the users in the smart building are guided by one-
time  incentives,  and  a  deep  reinforcement  learning  algorithm  is
used  to  properly  deal  with  the  uncertain  responses[83].  Consumer
psychology  is  considered  to  better  capture  consumers’ behavior
patterns  during  contract  signing[84].  When  providing  balancing
services, the dispatch merit order is formulated based on the bid-
dings of DERs[85].

Technical  aggregators such as  microgrids and DSOs also need
to consider physical constraints. The voltage constraint is consid-
ered  when determining  pricing  strategies[86]. The  three-phase  bal-
ance constraint in the distribution grid is considered in the aggre-
gation for the DSO[87]. Zheng et al. consider the diversified operation
characteristics and responses from multi-energy carriers[88].

3.2.3    Simultaneous  gaming  for  aggregators  in  the  wholesale  and
aggregation market
As  the  intermediary  agent,  the  aggregators  simultaneously  game
with  other  wholesale  market  participants  and  the  DER,  and  the
joint optimal strategies in retail pricing and wholesale participation
are  worth  noting.  The  strategic  behaviors  of  the  DSOs  in  the
wholesale  market  that  aggregate  DERs  are  studied  by  an  MPEC
model[42]. The robust model, conditional value-at-risk method and
fuzzy optimization can be used to help retailers manage imbalance
costs arising from consumer response[89–91].  Sarker et al.  propose a
more refined two-stage pricing framework for the retailer to better
manage imbalance risks, which includes a day-ahead prescheduling
stage and a real-time rescheduling stage[92].

3.3    Equilibrium comparison between the two modes
As  the  two  most  common  gaming  modes  between  aggregators
and DERs,  the  cooperative  game and the  Stackelberg  game have
strengths and weaknesses in terms of incentives and efficiency.

3.3.1    Incentives

The profit or cost allocation is performed ex-post in the cooperative
game, and guaranteeing core stability and fairness remains a chal-
lenge.  Improper allocation might undermine DERs’ incentives to
participate in the coalition.

The  Stackelberg  game  leaves  room  for  DER  to  freely  decide
their best responses based on the released incentives. They will be
incentivized  to  remain  in  the  game  and  make  commitments
under advantageous incentives.

3.3.2    Efficiency

The cooperative game can more effectively utilize all the resources
since  the  control  right  is  ultimately  relegated  to  the  aggregator.
The  full  potential  of  profit  can  be  realized  for  the  coalition,  and
from the system perspective, distributed flexibility can be effectively
utilized.
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In  the  Stackelberg  mode,  the  effective  design  of  retail  pricing
highly  depends  on  the  accurate  estimation  of  DER  preferences
and satisfaction. The ideally optimal result may not be realized in
practical conditions due to information asymmetry.

4    Individual bidding characteristics in competi-
tion modelling
According  to  the  assumptions  of  traditional  studies  on  market
competition and equilibrium, the modelled participants can usually
be seen as “perfect-rational-man”, with features such as complete-
information or perfect-rationality. However, the researchers grad-
ually  find  that  these  assumptions  are  too  strong,  distorting  the
individual  bidding characteristics of  the participants in the actual
market operation, which leads to inaccurate participant modelling
and biased market competition simulation. Thus, it is necessary to
consider  individual  bidding  characteristics  during  participant
modelling and market competition analysis. In recent years, studies
on  the  individual  bidding  characteristics  of  participants  during
their decision-making process have attracted increasing attention.

At present, the modelled individual bidding characteristics can
be  roughly  divided  into  two  categories.  The  first  category  is  the
information  characteristic,  representing  the  various  information
acquisition degrees of different participants, which determines the
external boundary of the individual decision-making. The second
category is the decision characteristic, which represents the various
inner features  that  appear  during the individual  decision-making
process  and  influence  the  final  bidding  outcomes,  such  as  risk-
preference and rationality degree.

4.1    Settings of information characteristics
The  information  characteristics  are  mainly  reflected  in  different
information  acquisition  degrees,  which  are  divided  into  three
types:  limited market  environmental  information,  limited market
boundary information and limited rival strategy information.

In the first type, the limited information characteristics of par-
ticipants in market environments, such as power system topologies
and transmission congestion lines,  have  been fully  used in  many
studies to simplify power system operation models[15, 93, 94].

In  the  second  type,  the  limited  information  characteristics  of
participants on market boundaries,  such as renewable generation
and system loads,  have been fully studied.  With increasing pene-
trations of variable renewable energy in power systems, the uncer-
tainty  in  power  system  operation  significantly  increases,  which
makes this characteristic more important in participant modelling.
For example, the high uncertainty of wind generation is formulated
and integrated into a Cournot game to analyze its influences on an
energy-only  power  market[95].  A  stochastic  agent-based  model  is
developed  to  analyze  the  bidding  behaviors  of  renewables  with
uncertain power outputs[96].

In the third type, the limited information characteristics of par-
ticipants on rival strategies, such as individual bidding strategies or
market  competition  situations,  have  been  formulated  in  many
studies. Since it is impossible to directly know how the rivals will
bid  for  the  DA  market,  many  studies  use  scenario-based[97] or
response-function-based[46] methods  to  model  the  rival  bidding
uncertainty.

4.2    Settings of decision characteristics
Apart  from  the  information  characteristics,  the  various  decision
characteristics also have a huge influence on the simulative strategic
bidding behaviors  of  participants.  In  detail,  the  decision  charac-

teristics are defined as the factors that drive participants to deviate
their  decisions  from  those  made  under  the  perfect-rational-man
hypothesis. Two decision characteristics are typically used in market
competition analysis: risk preference and bounded rationality.

4.2.1    Risk preference

In  actual  power  market  situations,  many  participants  not  only
attach importance to profit expectations but also pay close attention
to the financial risks of their bidding decisions. This phenomenon
is more apparent in market participants with higher uncertainties,
such as renewable energy generators, load aggregators and energy
storage systems.

Risk preferences can usually be divided into three degrees: risk
aversion,  risk neutrality  and risk seeking.  Many participants  with
higher uncertainty are more likely to be risk averse. For example,
distribution companies that buy energy from the wholesale market
and  sell  it  in  the  retail  market  face  uncertainty  from  renewable
energy and demands. They are usually assumed to be risk averse[98].
A  risk-averse  optimal  bidding  strategy  is  proposed  for  EV  and
energy  storage  aggregators  to  participate  in  day-ahead  frequency
regulation markets[99]. The risk-averse features of various generators
are formulated, and the influences of risk preferences are analyzed
based on an EPEC model[100]. This proves that different risk-averse
levels  and  market  ownership  structures  will  result  in  different
market  equilibria,  demonstrating  the  importance  of  formulating
risk preferences in market equilibrium analysis. Recently, Moret et
al.  discuss  the  heterogeneous  risk  preferences  in  decentralized
power markets and analyze how they change the market equilib-
rium and payments[101].

To control risks, many methods are utilized and integrated into
decision-making process modelling. For example, an optimal bid-
ding strategy for a strategic wind power producer is proposed by
integrating conditional value at risk (CVaR) to control the revenue
risks caused by wind generation uncertainty[102].  A robust bidding
strategy for a hybrid energy generation company (GENCO) con-
stituted by energy generation and retailing business is proposed[103],
which is modelled as a max-min bilevel MPEC, while the risks of
rivals’ uncertain bidding  strategies  are  handled  by  robust  opti-
mization. An information gap decision theory (IGDT) approach is
also developed to help microgrids make risk-constrained optimal
bidding strategies[104].

4.2.2    Bounded rationality

Compared  with  the  concept  of  risk  preferences,  the  bounded
rationality  concept  in  power  markets  is  a  newcomer.  Bounded
rational theory  is  put  forward  and  developed  by  Daniel  Kahne-
man, Amos Tversky and Richard Thaler, who are all Nobel-prize
winners.  This theory now has a well-established body of work in
the fields of economics and psychology. The core idea of bounded
rationality used in the power market area is that many participants
often  seek  a  satisfactory  rather  than  optimal  solution.  Several
methods from bounded rational theory have been introduced into
the power market area, including prospect theory[105] (in the form
of  framing  effects[106] or  weighting  effects[107])  and  fairness
standards[108].

Since the bounded rationality of retail participants such as resi-
dential houses is more apparent, the bounded rational formulation
is first introduced into studies in the field of retail power markets.
For example, the bounded rational behaviors of an active consumer
under variable  electricity  pricing in retail  markets  are  formulated
based on prospect theory and a Stackelberg game. The impacts of
irrationality on customers and aggregators are both analyzed. Fur-
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thermore,  bounded  rationality  has  been  introduced  into  many
other  aspects,  such  as  demand-side  management[109],  EV
charging[110], and virtual power plant control[111].

With  increasing  evidence  proving  that  some  participants  in
wholesale  markets  also  have  bounded  rational  features,  some
studies also try to integrate bounded rational formulation into the
bidding  decision-making  process  and  equilibrium  analysis.  First,
the bounded rationality of GENCOs in day-ahead power markets
with  bilateral  contracts  is  formulated  based  on  the  weighting
effects  of  prospect  theory[112].  The  GENCOs  are  further  modelled
in  a  game,  and  the  effects  of  bounded  rationality  on  the  market
equilibrium have been analyzed. Then, the bounded rationality of
duopoly power providers is formulated, and the interaction process
is modelled as an evolutionary game[113].  The Nash equilibrium of
the market and how information asymmetry affects the results are
also  discussed.  Furthermore,  a  more  detailed  model  of  GENCOs
with bounded rationality is developed, where both prospect theory
in  the  form of  framing effects  and fairness  constraints  on profit-
seeking are formulated[114].

4.3    Methods to reveal individual characteristics
Although  the  individual  bidding  characteristics  have  been
increasingly  utilized  in  the  modelling  of  the  bidding  decision-
making process, their exact parameters are usually unknown and
determined  by  expert  experiences,  which  would  inevitably  cause
deviations  in  individual  bidding  modelling.  To  overcome  this
problem, many studies have proposed methods to reveal the indi-
vidual characteristics hidden below numerous market data. These
methods can be roughly divided into two types: The first type is to
enhance the information acquisition ability to overcome the chal-
lenges  caused  by  information  asymmetry;  The  second  type  is  to
identify and quantify the individual decision features that are nat-
urally  inapparent,  such  as  risk  preferences  or  rationality  degrees.
Figure  3 shows  how  historical  data  can  empower  equilibrium
analysis.

4.3.1    Information acquisition enhancement

Many methods have been proposed to solve the problems caused
by  information  asymmetry,  such  as  the  limited  information  of
power  system  topology,  rivals’ operation costs  or  bidding  strate-
gies, and future power market competition situations.

Many works have been performed to recover the grid topology
based on publicly  available  information.  For example,  Kekatos  et
al. use sparse matrix decompositions and congestion information
to reveal the power transfer distribution factor (PTDF), a topology-

related matrix of  the power market[115].  Birge et  al.  then apply the
inverse  optimization  method to  the  shadow prices  of  constraints
and  LMP  data  to  estimate  the  PTDF[116].  Recently,  Zheng  et  al.
propose  an  unsupervised  approach  to  analyze  the  fundamental
distribution  of  the  congestion  part  LMPs  in  high-dimensional
Euclidean  spaces[117].  The  subspace  attributes  of  an  LMP  vector
under  various  congestion  status  of  all  the  transmission  lines  are
also discussed.

Many studies have been proposed to speculate on rivals’ bidding
strategies.  For  example,  an  online  learning  algorithm  based  on
sparse  Bayesian  learning  for  GENCOs  is  developed  and  can  be
used for each GENCO to build a private probabilistic model based
on the dynamic Bayesian network to infer rivals’ optimal bidding
behaviors  in the future[118].  The GENCOs are  further  modelled as
agents,  and the  market  equilibrium is  analyzed.  Later,  an inverse
optimization approach is proposed to estimate rivals’ variable cost
functions[119]. Many historical market data, such as market clearing
prices and individual cleared capacities, have been used as model
inputs.

To  unveil  future  power  market  competition  situations,  many
studies  have  been  proposed  to  infer  or  predict  aggregate  supply
curves (ASCs) or residual demand curves (RDCs). For example, a
Bayesian inference approach is developed based on Markov chain
Monte Carlo and sequential Monte Carlo methods, which can be
used  to  infer  ASC  in  day-ahead  power  markets[120]. Later,  a  feed-
forward  neural  network  method  is  developed  to  predict  ASCs.
However,  the  method  is  only  tested  on  markets  with  no  more
than  12  participants  and  artificial  data[121]. Recently,  a  novel  fore-
casting model is proposed to help market participants and operators
predict  ASCs  based  on  principal  component  analysis  (PCA)  and
the long-short-term memory (LSTM) model[122]. It should be noted
that this paper is the first to utilize actual historical market data to
predict  ASC,  and  a  detailed  ASC data  processing  method is  also
introduced.

4.3.2    Decision feature identification

Apart  from  identifying  observable  parameters  such  as  system
topology  or  operation  cost,  many  studies  try  to  identify  the
nonobservable  parameters  underlying  the  participants’ bidding
behaviors, such as risk preferences or bidding preferences. Due to
the  development  of  data-driven  analysis  methods,  this  kind  of
research has gradually developed in recent years.

First, a data-driven risk preference analysis method for genera-
tors  to  participate  in  DA  energy  markets  is  developed  based  on
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Fig. 3    Use of historical data to empower equilibrium models.
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inverse reinforcement learning algorithms. The algorithm is tested
on actual market data of the Australian Energy Market Operator
(AEMO)[123]. Recently, some researchers have found ways to reveal
the  individual  bidding  preferences  of  participants  from  market
data. A deep inverse reinforcement learning approach is applied to
generators  in  energy  markets  to  identify  their  bidding  objective
functions[124].  The extracted reward functions have been modelled
as a feed-forward neural network to demonstrate its high-dimen-
sional  nonlinear  mapping  from  market  status,  such  as  clearing
prices and capacities, to its perceptive rewards. Then, an improved
inverse  reinforcement  learning  method  is  proposed  to  reveal  the
bidding preferences of energy storage systems in multiple markets,
including  two  energy  (up  and  down)  and  six  frequency  control
ancillary service (FCAS) markets[125].

5    Development in  equilibrium  solution  algo-
rithms
The  changes  in  competition  modelling  have  also  promoted  the
development  of  solution  algorithms.  In  previous  research  where
the  settings  are  relatively  simple,  the  equilibrium  model  can  be
solved by  basic  analytical  techniques.  However,  with  the  increas-
ingly complicated market setting,  the traditional  analytical  model
may  be  intractable.  To  this  end,  several  studies  have  provided
refined techniques within the scope of analytical solutions. On the
other hand, the agent-based model is further explored to adapt to
the increasingly complicated market environment.

5.1    Refined analytical techniques
The  recent  research  focuses  on  equilibrium  analysis  in  the  more
practical MPEC and EPEC models. Several techniques have been
explored to  handle  nonlinearities  in  bi-level  problems,  and  equi-
librium verification  and choice  are  the  subjects  of  heated  discus-
sions.

5.1.1    The refined techniques in solving MPEC

The complicated market setting will pose challenges to the analytical
algorithm  of  the  bi-level  equilibrium  model.  Traditionally,  the
strong  duality  theorem  or  KKT  condition  is  used  to  derive  the
optimality condition of the lower-level linear programming prob-
lem, and the bi-level problem can be transformed into MPEC[126].
However, the introduction of integers and nonlinearities will pose
challenges.

The  modelling  of  unit  commitments  or  grid  reconfiguration
will  introduce  integers  in  the  lower-level  clearing,  but  the  KKT
conditions  cannot  be  derived  for  integer  programming.  The
divide-and-conquer strategy is  proposed where iterative  methods
and cut-adding are used. The feasibility cut and optimality cut can
be obtained when solving the lower-level problem and added into
the  upper-level  problem  sequentially  to  approximate  the  lower-
level  optimality  conditions[127, 128].  The  convergence  within  finite
steps has been proven[129],  and a gap tolerance can be designed to
save computational time[130].

The  consideration  of  ACOPF  in  the  distribution  clearing  will
introduce  nonlinear  constraints,  but  the  derived KKT conditions
cannot necessarily  guarantee  optimality  for  nonlinear  program-
ming. In this case, special techniques are used to recast the bilevel
problems  as  a  mixed-integer  second-order  conic  programming
(MISOCP)  model[44].  Given  that  the  SOCP  relaxation  may  be
inexact, an extension of the market mechanism is proposed based
on the convex-concave procedure[131].

The  coupling  of  multi  markets  can  introduce  nonlinear  terms

in the objective function, such as one market’s clearing quantities
multiplying another market’s clearing prices. The binary expansion
approach[132] is  introduced,  where  one  variable  is  discretized  and
the nonlinear terms can be converted to an integer multiplying a
continuous  variable.  This  method  has  been  widely  adopted  in
solving joint gaming problems[94, 133].

5.1.2    Equilibrium verification and choice in EPEC

The challenges in EPEC problems originate from the choice of the
equilibrium points. The EPEC solution is the Nash equilibrium of
several MPEC  problems,  and  the  diagonalization  or  KKT  refor-
mulation is used to derive it.

However, since  the  MPEC problems are  nonconvex,  the  algo-
rithm may not necessarily converge to a locally optimal point but
to  a  hurdle  point  instead.  In  this  case,  an  equilibrium  checking
method  is  proposed  based  on  diagonal  optimal  strategy
verification[134, 135].  The  MPEC  problem  of  each  firm  is  solved
sequentially by holding rival firms’ offers as the EPEC solution. If
the MPEC solution is identical to the EPEC solution, it verifies the
Nash equilibrium since no one wants to deviate from the point.

In addition, there could exist several Nash equilibriums for the
EPEC  problems,  and  a  refined  method  needs  to  be  proposed  to
select  the one with proper economic meanings.  Common choice
principles  include  social  welfare  maximization  and  aggregated
generation profit maximization[14].

5.2    Multi-agent-based models and solving methods
With the increase in multiple heterogeneous market participants,
such as energy storage systems and VPPs, traditional optimization-
based  models  have  difficulty  simulating  such  complex  market
equilibrium results. Multi-agent-based models and corresponding
solving methods provide a  numerical  approach to estimating the
market equilibrium. Due to the construction and expanding sim-
plicity,  an  increasing  number  of  studies  focus  on  multi-agent-
based models.

In recent years, a new trend is the emergence and enhancement
of  agent  learning  abilities.  An  agent  with  learning  ability  is  no
longer  fixed  to  execute  preset  strategies  but  updates  its  strategies
during  the  interaction  in  the  market  trading  process.  With  the
rapid  development  of  reinforcement  learning  (RL)  algorithms  in
recent years,  modelling market agents’ bidding behavior with RL
models  has  attracted  increasing  attention.  Numerous  RL-based
models have been used to model market participants as a part of
the multi-agent simulation framework.

The main advantages of models with learning ability are as fol-
lows. First, learning ability could be used to search for the optimized
bidding strategy in a complex market environment. It is simpler to
build, while  traditional  optimization-based  models  rely  on  mod-
elling all the market settings and solving the analytical model. Sec-
ond, in complex market environments,  RL-based learning agents
usually need less computation time, so learning ability can be used
to increase the simulation scale, even to simulate the actual market.
Third, agents with learning ability are closer to the actual participant
because  participants  in  actual  markets  are  also  improving  their
strategies in trading interaction with the market.

Considering the need for learning, a training process is usually
required  in  addition  to  the  simulation  process.  The  simulation
process is conducted after the agent’s model is well trained. In the
training process, the agent starts from an initial strategy and con-
verges  to  an  optimal  strategy  through  a  training  process.  The
dynamic intermediate results do not represent the simulated market
result.  It  only  represents  the  iterative  convergence  process  of  the
agent’s  strategy.  After  convergence,  the  final  equilibrium  or  the
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following simulation equilibrium is treated as the simulated market
result.  This  is  similar  to  the  traditional  fixed  strategy  models
because the agent’s strategy is fixed in the simulation process. The
main  difference  is  that  the  learning  model  relies  less  on  preset
model parameters. In contrast, some of the model parameters are
learned during the training process to improve its strategy.

Most of the current studies focus on the steady market equilib-
rium result. Its learning usually happens only in the training pro-
cess. Some studies also allow learning in the simulation process to
simulate  the  evolution  of  the  agent’s  strategy  through  dynamic
behavior. The significant feature of these models is that the agent’s
strategy may automatically change during the simulation process.
This characteristic is closer to the actual participant in theory but
is also difficult to control.

The  reviewed  literature  is  listed  in Table  3.  RL-based  models
account  for  most  of  the  research.  The  Q-learning  algorithm  is  a
classic  and  interpretable  RL  algorithm  that  is  widely  used  in
several models to simulate the behavior of various market partici-
pants[137, 140, 141, 146, 152, 153]. However, the Q-learning algorithm is weak in
dealing  with  the  continuous  bidding  action  space.  Some  studies
are  also  investigating  policy-based  models,  such  as  the  deep
policy  gradient  (DPG)[148],  deep  deterministic  policy  gradient
(DDPG)[142–144, 147],  multi-actor-attention-critic  (MAAC)[136],  and
asynchronous advantage actor-critic (A3C)[138].

Although  modern  RL  models  have  been  widely  investigated,
classic  RL models  (such as  Q-learning and Roth-Erev[145, 149, 151])  are
utilized in most literature, which focus on strategy changes during
the  simulation  process.  A  possible  reason  is  that  deep  learning
methods are  still  not  stable  and interpretable  enough to simulate
the  strategy  evolution  process  of  market  participants.  There  are
also  some  models  which  are  not  based  on  RL  framework.  Some
studies  reach  the  equilibrium  among  agents  through  their  own
iteration  rules[139, 150] or other  supervised  machine  learning  algo-
rithm, such as support vector machines SVM[154].

6    Key  issues  in  the  gaming  and  equilibrium
analysis
Based on the reviewed literature, this section attempts to summarize
the  key  issues  in  gaming  and  equilibrium  analysis.  According  to
the  nature  of  the  interaction,  different  gaming  modes  should  be
distinguished so  that  the  corresponding analysis  instruments  can
be  used.  In  equilibrium  modelling,  the  comprehensive  market
mechanism should  be  incorporated,  and  the  heterogeneous  par-
ticipants’ characteristics  should  be  considered.  In  addition,  the
model  completeness  and  tractability  constitute  a  trade-off,  and
processing techniques should strike a balance between them. How
to  use  the  growing  market  data  to  empower  the  equilibrium
model  with  more  predictability  also  remains  a  problem.  In  the
dynamic  equilibrium  convergence,  we  should  consider  how  to
better capture participants’ learning abilities.

6.1    The analysis of various gaming modes in different market
settings
With the  decarbonization and decentralization of  the  power  sys-
tem,  there  have  been  fundamental  changes  in  the  power  flow,
generation mix and participant structure, rendering more diversi-
fied competition and interactions.

It is essential to capture the nature of gaming and interaction in
a  new  market  setting  and  choose  the  respective  instruments  to
analyze and compute the equilibrium.

For example, the wholesale market is organized as a centralized
first-price sealed-bid  auction  and can  be  analyzed  by  Nash  equi-
librium  theory.  In  the  distribution  market,  the  P2P  equilibrium
can be analyzed by a distributed algorithm. According to different
DER aggregation modes,  the  core  stability  theory  can be  used to
analyze  cooperative  games,  and  the  best-response  derivation  can
be used to analyze Stackelberg games.

Additionally,  in  some  new  market  settings,  the  interaction
 

Table 3    Categorization of reviewed literature according to learning ability and technical implementation

Reviewed literature Multi-agent Learning ability Learning in simulating Learning algorithm RL

[136] √ √ MAAC √

[137] √ √ Q-learning √

[138] √ PPO(A3C) √

[139] √

[140] √ √ Q-learning √

[141] √ Q-learning

[142] √ √ DDPG √

[143] √ √ DDPG √

[144] √ DDPG √

[145] √ √ √ √

[146] √ √ √ Q-learning √

[147] √ √ DDPG √

[148] √ √ DPG √

[149] √ √ √ Roth-Erev √

[150] √

[151] √ √ √ Roth-Erev √

[152] √ √ Q-learning √

[153] √ √ Q-learning √

[154] √ √ SVM
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mechanism has to be modelled on a case-by-case basis, and several
other  gaming  modes,  such  as  generalized  Nash  game[155] and
repetitive game[156], have been applied.

6.2    A comprehensive  equilibrium  analysis  framework  incor-
porating multiple markets
In the equilibrium model, the market mechanism usually serves as
an  important  setting  or  even  a  gamer.  The  introduction  of  new
trading  products  and  the  growing  importance  of  risk  hedging
have  gradually  extended  the  competition  to  multiple  stages  and
products.  To  approximate  real  market  equilibria,  it  is  of  great
importance to capture the comprehensive market  rules  and their
coupled relationships.

On the one hand, the diversified clearing rule for different mar-
kets  should be modelled,  including the determination of  product
requirements,  bidding  structures,  clearing  models  and settlement
rules.

On  the  other  hand,  the  coupled  relationship  among  markets
should be modelled. In some cases, the market organizers directly
conduct joint clearing, such as energy and reserve in PJM, and this
affects the underlying market mechanism. In some cases, the mar-
kets are not cleared jointly, but the feasible bidding regions of par-
ticipants  are  mutually  coupled,  which  constitutes  a  trade-off  in
their decision processes.

6.3    The  modelling  of  heterogeneous  market  participants’
characteristics
The  modelling  of  participants  lies  in  the  core  of  the  equilibrium
analysis. Their operating and decision characteristics have a great
impact on  their  bidding  behaviors  and  the  formulated  equilib-
rium.

The  operating  characteristics  can  be  diversified  due  to  the
emergence of new kinds of participants, such as renewables, stor-
age, VPP and aggregators.  When analyzing the equilibrium, cus-
tomized  bidding  problems  should  be  formulated  based  on  the
modelling of physical operating constraints and cost functions.

Furthermore,  the  subjective  decision  characteristics  could  be
different within a certain kind of participant. As key parameters in
the bidding problem, the intro-group differences in the willingness
to pay, risk attitude and rationality are nonnegligible and must be
modelled carefully.

6.4    The  trade-off  between  completeness  and  tractability  in
equilibrium
To  better  capture  the  market  interactions  and  approximate  the
real equilibrium, practical factors, including multi-market clearing,
uncertainty,  and  heterogenous  participants’ preferences,  need  to
be  incorporated.  However,  the  overcomplicated  model  might  be
intractable, which calls for proper simplifications that strike a bal-
ance between practicability and tractability.

There are several techniques in the modelling step. For example,
the stochastic scenarios of some variables with different values and
probabilities are usually used to replace the probability distributions
of the variables with imperfect information, where the latter is dif-
ficult to calculate in an optimization model.

The  simplifications  can  also  be  conducted  in  the  solution  by
using  methods  such  as  discretization.  The  binary  expansion
approach  discretizes  the  power  output  and  consumption,  which
narrows  the  feasible  region  and  may  discard  the  optimal  value.
However,  the  nonlinear  terms  are  converted  into  mixed-integer
terms, and  the  optimality  gap  will  be  acceptable  when  the  dis-
cretization level is refined.

6.5    The use of data-driven methods to increase practicability
Some  key  parameters  in  the  equilibrium  are  private  information
and  unknown  to  the  analyzers,  and  the  arbitrary  manual  setting
may cause deviation in the predicted results. Thanks to the growing
availability of  historic data,  we can embed data-driven parameter
extraction to empower the equilibrium model.

On the one hand, the physical characteristics can be learned by
data mining methods such as nonintrusive detection. The operating
constraints and cost functions can be modelled, and the ability to
provide  regulation,  energy  and  ramping  can  thus  be  evaluated.
The  detection  can  be  made  more  complicated  by  considering
intertemporal coupling and cluster interaction.

On  the  other  hand,  the  individual  decision  characteristics  can
be  revealed,  including  risk  preferences  and  rationality  degrees.
After modelling  the  decision optimization problem,  reverse  opti-
mization  or  inverse  reinforcement  learning  can  be  used  to  infer
decision parameters from the observed decisions.

6.6    The representation of participants’ learning characteristics
in the equilibrium computation
With the increasingly complex and dynamic market environment,
participants’ bidding behavior will  no longer remain the same. It
will change according to the market rules, market boundaries, and
other  competitors’ conditions. The real  behaviors  of  market  par-
ticipants are a consistent learning process instead of static market
equilibriums.  However,  current  equilibrium  models  can  barely
simulate  this  characteristic.  How to represent  participants’ ability
to learn from the market is still an unsolved problem.

Several existing studies attempt to simulate the learning process
with the agent’s training process in RL. However, such simulation
results have not been proven to be representative of reality. Neither
is the convergence of training RL agents in a changing environment
or with some changing competitors well documented or analyzed.

7    Conclusions
In  the  changing  electricity  market  with  decarbonization  and
decentralization,  this  article  reviews  the  recent  developments  in
the  equilibrium  analysis  instruments.  We  review  the  research
from the perspective of modelling methods, practical settings and
solution techniques.

It  is  found  that  the  modelling  methods  vary  across  different
market settings, including incooperative Nash games in wholesale
markets,  P2P  trading  in  distribution  markets  and  cooperative
games  or  Stackelberg  games  in  DER  aggregation.  Compared  to
traditional gaming and equilibrium analysis, the novel studies pay
more attention to emerging entrants, novel trading categories and
multi-market participation. Additionally, the assumption of perfect
information  and  complete  rationality  is  relaxed,  and  data-driven
extraction of characteristics is widely studied. We also recommend
study  focus  on  refined  analytical  techniques  and  agent-based
models, which  can  properly  address  the  increasing  model  com-
plexity.

By gathering up the thread of relevant research, six key issues in
gaming and equilibrium analysis  are  summarized.  First,  we need
to  distinguish  between  various  gaming  natures  and  choose  the
proper modelling instruments. In the modelling process, we need
to  consider  the  comprehensiveness  of  market  mechanisms  and
heterogeneity of participants’ characteristics. The trade-off should
be  carefully  considered,  and  balance  needs  to  be  struck  between
modelling completeness and tractability. The utilization of historical
data is also a hot topic that can eliminate the weaknesses in arbitrary
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parameter  settings.  Finally,  the  representation  of  participants’
learning  ability  is  also  significant,  especially  in  a  continuously
changing market environment.

Potential  future  research  directions  include  the  modelling  of
new market participants and emerging trading products, the equi-
librium  analysis  in  the  distribution  market,  the  consideration  of
imperfect  information  and  rationality,  more  practicable  and
tractable solution algorithms.

We  hope  our  review  provides  useful  references  and  insights
into future equilibrium analysis research.
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