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Glossary
ACPI Advanced Configuration and Power Interface

General Interface for discovering and interacting with hardware devices on a computer system.

ATS Address Translation Services
PCIe feature used to cache memory translations on the device itself. This allows the device to
use translated addresses without consulting an MMU.

CRC Cyclic Redundancy Check
Basic method of reducing data to a small checksum, used to verify data integrity after transmis­
sion.

DIMM Dual In­line Memory Module
Common form factor for a memory module.

DMA Direct Memory Access
PCIe feature allowing peripherals to directly and independently access memory without processor
intervention.

DMI Direct Media Interface
Interface between the CPU and the PCH.

HDD Hard Disk Drive
Permanent storage device based on a spinning disk.

Hot­Plug
The act of inserting a (new) device into a computer system while the system is still powered­on
(hot).

I/O Input/Output
Indicates any sort of communication going into or out of the computer system.

IntelME Intel Management Engine
Security Subsystem within the PCH.

KASLR Kernel Address Space Layout Randomization
Technique for randomizing the location of the kernel in memory.

LFSR Linear­Feedback Shift Register
Linear sequence generator, commonly used to generate pseudo­random numbers.

LPC Low Pin Count
Low bandwidth I/O bus found on computer systems.

MMU Memory Management Unit
Memory controller residing in the CPU. It provides bus arbitration, cache control, and memory
protection through virtualization.

MOS Metal­Oxide Semiconductor
Production process for making a.o. transistors.

MPU Memory Protection Unit
Smaller version of the MMU, provides only basic memory protection.
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viii Glossary

MTRR Memory Type Range Registers
CPU feature that allows software to control how accesses to certain memory ranges are cached.

NIC Network Interface Controller
A hardware component used to connect a computer system to a network.

OS Operating System
General software allowing users to interact with the underlying hardware.

PAT Page Attribute Table
CPU feature that allows software to control how accesses to certain pages are cached.

PCH Platform Controller Hub
Intel­Specific I/O hub, similar to a southbridge.

PCI Peripheral Component Interconnect
A High­Speed bus used for connecting peripherals to the computer system. Followed up by the
improved PCI Express (PCIe).

RAID Redundant Array of Independent Disks
Feature of Storage Controller that utilizes multiple independent disks to create redundancy in
storage in order to prevent and recover from faults in permanent storage devices.

RAM Dynamic Random Access Memory
A specific type of RAM technology which utilizes a capacitance on the semiconductor fabric to
store the data.

RAM Random Access Memory
The memory a computer system uses to store data temporarily.

SATA Serial Advanced Technology Attachment
Communication bus typically used for storage devices.

SPI Serial Peripheral Interface
A serial I/O interface found on computer systems.

SSD Solid State Drive
Permanent storage device typically based on flash storage.

TLB Translation Lookaside Buffer
A cache which caches Virtual to Physical Address translations.

TLP Transaction Layer Packet
A PCIe packet used on the transaction layer. Used for a.o. sending DMA requests.

VM Virtual Machine
Virtual emulation of a computer system within another computer system.



Abstract
Dutch server hosters contribute significantly to (worldwide) cybercrime. For example, a report by the In­
ternet Watch Foundation published in 2019 indicated that 71% of worldwide child sexual abuse content
is hosted in the Netherlands. Due to the good IT­infrastructure and favourable investment climate, the
Netherlands attracts a lot of server hosters, including ones with ill intentions. Some server hosters fa­
cilitate cybercrime either intentionally (so called “bulletproof hosters”) or unintentionally (“bad hosters”).
When dealing with uncooperative hosters during forensic investigations, it may sometimes be neces­
sary to collect data or information on the servers without help from the owner of the server.

Data within the RAM might prove insightful in, for example, determining active processes or reveal
cryptographically interesting information like encryption keys. The thesis explains key concepts within
memory organization and the PCIe standard. Afterwards, it discusses several techniques for RAM
acquisition and categorizes and evaluates them using a model­based approach. The thesis then dives
deeper into DMA­based memory acquisition using PCIe and proposes several improvements to cur­
rent DMA attacks in order to create a better memory acquisition technique. A novel memory acquisition
technique is created by hot­plugging a PCIe device and skipping over the regular enumeration proce­
dure. This technique allows the memory acquisition to be executed without a reboot and provides a
stealth approach to accessing the memory.
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1
Introduction and General Overview

This chapter provides an introduction to this thesis. It first describes the motivation behind the thesis in
Section 1.1, followed by the context of digital forensics to which this project developed in Section 1.2.
After a state­of­the­art analysis in Section 1.3, it concludes with a description of the contribution of the
thesis and the general structure for the rest of the thesis in Sections 1.4 and 1.5 respectively.

1.1. Motivation
On June 29th 2020, the Dutch Minister of Justice and Security released a progress report [64] about
cybercrime and the ministry’s resulting plan of action. The report discusses Dutch server hosters and
their contribution to (worldwide) cybercrime. Due to the good IT­infrastructure and favourable invest­
ment climate, the Netherlands attracts a lot of server hosters, including ones with ill intentions. These
hosters facilitate cybercrime either intentionally (so called “bulletproof hosters”) or unintentionally (“bad
hosters”). When dealing with uncooperative hosters during forensic investigations, it may sometimes
be necessary to collect data or information on the servers without help from the owner of the server.

The first thing to come to mind when talking about data storage is the hard drive, but hard drives are
not the only relevant type of data storage on the server. Data within the RAM might prove insightful in,
for example, determining currently active processes or reveal cryptographically interesting information
like encryption keys. This thesis will discuss techniques for acquiring the data within the RAM.

Manufacturers are continuously improving security measures in their servers and techniques for
forensic acquisition of memory data that worked previously may not be effective today. Modern solu­
tions may have shortcomings that need to be fixed before they can be utilized effectively, or an entirely
new solution for RAM­data acquisition may need to be developed. Either way, an effective solution for
acquiring the data will lead to more effective forensic investigations.

1.2. Digital Forensics
In order to better understand the context of this thesis, it is important to understand the forensic back­
ground of this project.

Forensic Process
Digital devices are becoming more commonplace in everyday lives by the year. This also means that
digital evidence found on these devices will take a more common role in criminal court cases. Since
digital devices can play a vital role in criminal investigations and provide many opportunities for collec­
tion of evidence, it is of utmost importance that that evidence is applied correctly within the courtroom.
A properly validated scientific method for the process of collecting evidence is fundamental to a sound
forensic process. There is no standard forensic process for collecting digital evidence, although many
have tried to create one over the years [26] [10]. These methods mostly share three common stages

3



4 1. Introduction and General Overview

within the forensic process:

• Seizure The collection of the medium on which the evidence may be located.

• Acquisition The acquisition of the raw data of the evidence.

• Analysis The analysis of the acquired data.

In this thesis, only the second step of the process is considered.

Forensic Soundness For the results of this thesis to be used in forensic research, it is important
that the acquisition method is forensically sound. Vömel and Freiling [68] define three criteria for foren­
sically sound memory acquisition. These criteria are as follows:

• Correctness The snapshot data should reflect the original data stored in the memory. Correct­
ness of the memory acquisition method can be reduced by, for example, the method leaving a
footprint in the snapshot, or bitwise errors caused by the acquisition method.

• Atomicity The snapshot should be free of concurrent memory activity. Atomicity of the memory
acquisition method can be reduced by, for example, the method not preventing writes to memory.

• Integrity The snapshot data reflects the memory data at that timestamp correctly. Integrity of
the memory acquisition method can also be reduced by, for example, the method not preventing
writes to memory.

These are idealized and abstract criteria, but they are nonetheless useful when determining rele­
vant metrics to evaluate the differences between acquisition methods.

1.3. State­of­the­Art Memory Acquisition Techniques
RAM started to become more forensically interesting at the beginning of the 2000’s. Volatile DRAM
(more in Section 2.3.2) was and still is the default temporary memory storage and with the surge of
consumer computer systems, two main use cases for RAM acquisition started to appear [18]. The first
use case was for investigating and countering a new type of computer virus. Worms like Code­Red
[47] and SQL Slammer [61] were worms that resided solely within the RAM. The appearance of these
worms coincided with rising interest with regards to the second use case. Digital forensic investigators
at the time focussed mainly on permanent storage devices. Studies showed that the RAM might also
contain interesting information like passwords and the state of the system at seizure [19]. Already at
this time, the main acquisition technique was DMA (Direct Memory Access, more in Section 2.5.2) over
PCIe (more in Section 3) [18].

Soon after, software tools to acquire memory data on several different OSs were developed [67].
These tools all suffered from the same drawbacks. They were run on the target system itself, which
spoiled a clean RAM acquisition with data from the tool itself. Apart from that, anti­forensic measures
were slowly becoming more commonplace [57]. These countermeasures have, in fact, still not fully
countered memory access using software tools. Even to this day, software tools to acquire a memory
image on the target PC are still fully working and available (more in Section 4.2).

Hardware based (or assisted) methods were considered superior due to DMA not leaving a footprint
in memory and the lack of need for user access to the system [54]. DMA using hardware interfaces
was already easy with PCI, but the introduction of IEEE 1394, also known as FireWire, also allowed
for easy access to a DMA­capable port [2]. Eventually PCI was superseded by PCI Express (more
in Section 3), which continued to support DMA. FireWire did not gain much traction outside of Macin­
tosh systems, and was eventually phased out completely. PCIe, however, is present on most, if not
all, modern computer systems. Its high­speed and access to the memory has led to several memory
acquisition toolkits being developed for PCIe (more in Section 4.3). The emergence of Thunderbolt,
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which supports PCIe and therefore DMA, may open new avenues for PCIe­based vulnerabilities or
DMA based memory access [59] [55] [23] [40]. Over the years, several tools have been developed to
perform ”DMA Attacks” over FireWire (Inception [46]), PCIe (PCILeech [30]), or Thunderbolt (Thunder­
Spy [55], or ThunderClap [59]).

A second hardware­based method emerged around 2008, which took a more direct approach to
acquisition of volatile memory. Cold Boot attacks bring the volatile memory to a lower temperature
[38] [37]. This lower temperature allows the memory to retain the data for longer periods of time. This
allows for a transition period in which the system can be rebooted to a new OS that can extract the
memory data. The memory device can also be transplanted into another computer system for further
acquisition. A third acquisition technique that works on the same level would connect directly to the
DRAM using the memory bus [9].

The main countermeasure against DMA attacks is the IOMMU (more in Section 2.4.2). The IOMMU
promised to prevent DMA attacks, which is a promise on which it has delivered for the most part [59].
But the sentiment in 2007, shortly before the release of Intel’s IOMMU, which was that there would be
a ”goodbye to hardware based memory acquisition”, is not entirely true [5] [54]. This is mostly due to
the poor adoption of the IOMMU by OS vendors. Nowadays, most hardware manufacturers have some
sort of IOMMU implemented in either the CPU or the chipset [69].

Both hardware and software based acquisition methods can be countered using RAM encryption
[48]. The key to a succesful RAM encryption method is the protection of the encryption key. Should
the key be compromised, the encryption becomes useless [15]. A second encryption mechanism can
be found directly on the memory bus. Intel’s memory scrambler succesfully defeats most hardware
attacks that target the memory bus by scrambling the data over the bus using an LFSR [11].

1.4. Contribution
The primary goal of this thesis is to find a technique for RAM acquisition on server systems. The main
contributions of this thesis are:

• A classification and overview of techniques for RAM acquisition
A classification of modern popular acquisition techniques based on the interface at which the
memory data can be acquired. An analysis of the main strengths and drawbacks of each tech­
nique results in an good overview of the current acquisition techniques.

• A model­based approach to determining which techniques are (or can be) effective
A model, adapted for memory acquisition techniques, designed to determine the most promising
acquisition technique, .

• An overview of the main limitations and drawbacks of memory acquisition using DMA at­
tacks with an inserted PCIe device
An overview of the limitations and drawbacks of this technique provides a clear list of focus points
in order to make memory acquisition using this technique more attractive for use in digital foren­
sics.

• Several proposals for improvement of memory acquisition using DMA attacks with an in­
serted PCIe device
Several, including unique and novel, proposals for improving the acquisition technique, solving
some of the limitations and drawbacks from which it currently suffers.

• A demonstration of a successful memory acquisition using DMA attacks with an inserted
PCIe device
A full demonstration of a DMA attack with an inserted PCIe device, including scenarios in which
current DMA attacks would fail. The improved technique results in a wider range of scenarios in
which the technique is effective and increased target system stability during application.
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1.5. Structure Overview
This thesis is divided into 7 chapters.

• Chapter 1: Introduction
The motivation behind the thesis is described, followed by the context of digital forensics. After
a state­of­the­art analysis, it concludes with a description of the contribution of the thesis and the
general structure for the remainder of the thesis.

• Chapter 2: Memory Organization
Here, an overview of modern memory organization is provided by discussing the relevant con­
cepts with regards to the three main building blocks of modern day storage: the cache, the main
memory and permanent storage. It also discusses memory controllers and their impact on com­
puter system memory, as well as the interfaces which can connect to the DRAM.

• Chapter 3: Peripheral Component Interconnect Express
This chapter discusses the basics of PCI Express, and Direct Memory Access (DMA) using PCIe.

• Chapter 4: Memory Acquisition Techniques
This chapter discusses the different existing techniques or concepts of techniques for acquiring
memory. It classifies them into three categories based on the interface where the acquisition is
executed. Next, a model is used to determine to most effective method of memory acquisition.
This chapter discusses the reasoning behind the model, applies it to available hardware methods,
and discusses the result.

• Chapter 5: DMA­based Memory Acquisition Using PCIe
In this chapter, it is described what a DMA attack exactly consists of. It first discusses existing
DMA attacks and the drawbacks of the attacks. Based on a vulnerability analysis of PCIe and
DMA, some improvements to the memory acquisition method are proposed.

• Chapter 6: Validation and Results Analysis
This chapter discusses the platform used to experiment on the PCIe bus, as well as perform the
memory acquisition. It describes the device used to execute the acquisition and the changes that
were made to the device, based on the proposed improvements in Chapter 5.

• Chapter 7: Conclusion
Finally, the conclusion provides a summary of the thesis and recommendations for future work.



2
Memory Organization

This chapter starts with an overiew of modern computer organization in Section 2.1, based upon which
it explains an overview of modern memory organization in Section 2.2, discussing the relevant concepts
with regards to the three main building blocks of modern day storage in Section 2.3: the cache, the main
memory and permanent storage. It also discusses memory controllers and their impact on computer
system memory in Section 2.4, as well as the interfaces which can connect to the DRAM in Section
2.5.

2.1. Modern Computer Organization
In order to understand more about memory and its place within a computer system, it is important to
discuss general computer organization first.

As seen in Figure 2.1, the CPU and the chipset form the centerpiece of any computer system. The
CPU provides all necessary computing power, while the chipset facilitates the interaction for peripherals
with that computing power. The main memory is connected to the CPU using the Memory Management
Unit (MMU) and most peripherals to the southbridge, which has a direct connection to the CPU using
an internal bus.

Current implementations of the southbridge function mostly as a I/O hub, providing connections for
common busses such as SPI, LPC, SATA, or PCIe, but may also contain other devices like IntelME
which provide extra functionality. The northbridge is in charge of controlling the memory and providing
connections for high­speed peripherals (graphics cards over PCIe). Previously, the northbridge and
southbridge were two separate chips on the motherboard, but over time the northbridge got absorbed
by the CPU including all corresponding functionality starting with the memory controller in Intel’s Ne­
halem and AMD’s AMD64 processors and eventually completely in Intel’s Sandy Bridge and AMD’s
APU’s [39]. In more recent processor architectures by AMD, the southbridge is slowly facing the same
fate as well [36].

As can be seen in Figure 2.1, the PCIe bus is an interesting case: it is both used for high­speed
graphics (which prefers a direct connection to the CPU, possibly connected using an IOMMU) as well
as regular peripherals (which can be connected to the southbridge). Therefore the PCIe bus can be
connected to the southbridge, the CPU or both at the same time, depending on the platform.

2.2. Modern Memory Organization
When talking about memory, there is a traditional distinction between primary (main) and secondary
(auxiliary) storage [1]. Secondary storage is not directly accessible by the CPU. It is slow, but contains
large, permanent storage like SSDs or HDDs. Primary storage is directly accessible by the CPU. It
is fast and small. It is usually also volatile: once the system loses power, the data on these storage

7



8 2. Memory Organization

Figure 2.1: Modern General PC Architecture

devices is lost. The exception to this is the Boot ROM, which contains the starting instructions that a
system uses to boot from. Figure 2.1 displays the location of the different types of storage discussed
below. The secondary storage is part of the storage peripherals connected to the southbridge. The
primary storage is divided into the following three parts:

• Register File The register file is used to store data (typically in the order of bytes) inside your
CPU, used for immediate execution. The content of the register file is determined by the program
that is currently running.

• Processor Cache The processor cache is used to store kilobytes of data within your CPU. The
cache is managed by the MMU, which determines which parts of your RAM are copied to the
cache, for faster access by the CPU.

• DRAM The DRAM is used to store gigabytes of data outside of the CPU, and is managed by the
MMU as well. Not only the CPU, but also peripheral devices can access the DRAM.

• Boot ROM The Boot ROM is a type of non­volatile primary storage. It stores kilobytes of data
outside the CPU. It contains the starting instructions that a system uses to boot from.

An overview of the different types of storage can be seen in Figure 2.2. As the size of the storage
decreases, the latency to access the data decreases, the power required to store the data increases,
as well as the area per storage unit.

The MMU (discussed in Section 2.4) has (full) control over three of the aforementioned storage el­
ements: The cache (Section 2.3.1), the RAM (Section 2.3.2), and permanent storage devices (Section
2.3.3). The register file is too small to hold any forensically interesting data and will not be elaborated
on. The Boot ROM only contains instructions and is therefore also excluded.

2.3. Storage Types
The storage types presented in the previous Section (2.2) are described below.

2.3.1. Cache
The cache resides within the CPU and is implemented in order to have faster access to primary stor­
age. The cache accomplishes this speed­up based on two principles:
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Figure 2.2: Layered Storage Model

Spatial Locality: If some data has been used, it is likely that the data next to it will be used as well.
By bringing this data to the cache, one can use this data immediately, without having to wait for it as
long as the previous request.

Temporal Locality: If some data has been used, it is likely that the data will be used again at a
later date. By keeping this data stored in the cache, one can use this data later immediately, without
having to wait for it as long as the previous request.

Based on the address of the requested data, the correct piece of data can be collected from the
cache. If it is missing, the data may reside in the DRAM or in permanent storage. Once the data is
collected, it will be placed inside the cache for (possible re­)use.

Apart from the size of the cache, the most important attribute is the associativity of the cache. In
a direct mapped cache each memory block is only mapped to one line in the cache. In a set asso­
ciative cache, one cache line can contain multiple different memory blocks. If a memory block is to
be placed on a cache line which already contains the maximum amount of blocks, one will have to be
evicted based on a replacement policy. A cache which only contains one line is called a fully asso­
ciative cache. Although a direct mapped cache is faster, a set associative cache can decrease cache
misses.

The data in the cache is not always perfectly coherent with the data found in the DRAM. When the
CPU changes data in the cache, this data would need to be written back to the DRAM as well. The
reverse is also true, if data is changed in the DRAM, the cache would need to be changed as well.
Features like MTRR (Memory Type Range Register) [33] or PAT (Page Attribute Table) [44] can also
influence the way data is written back/through to the cache or DRAM. These processes can control
memory accesses more directly by, for example, forcing a write­through to the DRAM. This cache co­
herency problem makes acquiring ”memory” for forensic purposes difficult. Determining if the memory
found in the physical DRAM represents the current state of the system is a hard task.
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A cache can consist of multiple levels, usually denoted as L1, L2, etc. Each level of cache increases
in size, but comes with a lower speed with which the cache can be accessed. This level­based structure
of cache relates the frequency of access of the data to the penalty for looking up that data. Lower levels
of cache are implemented as Static RAM (SRAM), while higher levels may sometimes be implemented
using DRAM as well. Different types of DRAM are discussed in Section 2.3.2.

2.3.2. Main Memory
The main memory of the computer system is volatile memory stored outside of the CPU. The most
common form­factor is a DIMM(dual in­line memory module) or RAM­stick of DRAM like the one seen
in Figure 2.3.

Figure 2.3: Front and backside of a 2 GB DDR3 DIMM [8]

The history of RAM on Metal­Oxide Semiconductors (MOS) started as static RAM, in which each
bit is stored using latching circuits. Since this was very area expensive, dynamic RAM was developed
which utilized a capacitance on the semiconductor fabric to store the bit [6]. Since the charge on this
capacitance slowly leaks away (partially due to the transistor leakage current), the charge needs to be
refreshed periodically to maintain a positive value.

As can be seen in Figure 2.3, DRAM does not consist of one big chip, but several smaller ones,
each controlled separately. Memory on a memory stick is often interleaved. In order for memory re­
quests with a similar spatial locality to be completed simultaneously, memory within a similar address
range is not placed on the same chip, but distributed among different memory banks on the memory
stick, as seen in Figure 2.4. This Figure shows data ordered by memory address on the left, and the
location the data on four different chips on the DRAM on the right. This makes memory lookups within
a similar memory range more likely to be able to be looked up in parallel.

Some system peripherals also contain addressable memory regions. To make these regions acces­
sible by the CPU and other peripherals, they take up part of the memory space. This concept is called
Memory mapped I/O (MMIO). Access to that memory is then relayed to the corresponding peripheral
by the MMU.

Some devices on the motherboard do not have memory of their own, but would still like to use
memory. These devices may claim a memory region for themselves and do not allow access to that
region by other devices. Examples are the BIOS or IntelME (Intel Management Engine, used for sys­
tem security). These memory regions can be found at the Top of Low Usable DRAM (TOLUD). This is
at 4GB and the memory regions downward from 4GB will be stolen. Usage of these memory regions
by other programs is (completely) restricted.

2.3.3. Permanent Storage
Permanent storage is non­volatile storage generally located outside the CPU. Examples are HDDs or
SSDs, but also USB storage devices or cassette tapes. The storage content can be determined by
a.o. the user, the OS, the MMU, and a storage controller. Accesses to permanent storage devices are
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Figure 2.4: Interleaving of data onto several chips by Grammatikakis et al. [34]

extremely slow compared to the primary storage.

A common type of permanent storage is a Hard Drive Disk (HDD). The data is stored on a magnetic
rotating disk. More recent and faster variants are Solid State Drives (SSD), which store the data on
flash memory. These storage peripherals connect to the system using the southbridge or a similar
IO­hub on the PCIe bus. SATA is a commonly used bus to connect the peripheral to the system. Since
SATA is bottlenecked by its bandwidth due to a low number of pins, other form factors like mSATA or
M.2 (which work over PCIe) have gained more traction in recent years.

Both the user and the OS can control files on a permanent storage device. However, permanent
storage devices can also contain part of the main memory. The MMU (further described in Section
2.4.1) might store data in permanent storage in a paging file. The MMU handles paging as part of
virtualization (more in Section 2.4). Another device which can control the data on permanent storage
is a storage controller. A storage controller can implement features such as RAID (Redundant Array of
Independent Disks), which utilizes multiple independent disks to create redundancy in storage in order
to prevent and recover from faults in permanent storage devices.
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2.4. Memory Controllers
Memory controllers provide the interaction between the memory and the system. Over time the north­
bridge (which handled memory interactions) was absorbed by the CPU and its functionality distributed
over several parts within the CPU. The term ”memory controller” now not only includes the physical
interaction with the DDR bus, but can also include functionality like virtualization. As long as it provides
some sort of functionality with regards to the memory, it is part of the ”memory controller”. The most
common form of memory controller is the memory management unit (MMU). Its smaller sibling, the
IOMMU, provides similar functionality but for IO peripherals.

2.4.1. Memory Management Unit
The main memory controller in computer systems is the MMU (memory management unit). It resides
in the CPU and provides memory protection, bus arbitration, virtualization, and cache control. The
functionality of the MMU is implemented in the integrated memory controller devices on an internal bus
within the CPU. An example can be seen in Figure 2.5, which shows the Integrated Memory Controllers
on an internal bus in an Intel Xeon E5­1600/2400/2600/4600. On the same bus is also the Intel QPI
controller, which controls the internal bus from the CPU to the southbridge. Some processors feature
a smaller version of an MMU, then called a Memory Protection Unit (MPU).

Figure 2.5: Internal bus containing the integrated memory controller device in the Intel Xeon E5­1600/2400/2600/4600 [22]

Memory virtualization is the process of assigning virtual memory to a separate process running on
the PC. By utilizing virtual memory, each process gets assigned a virtual address range in which it can
store data. It works by providing a larger memory space than is actually available, which results in a
more efficient use of the available memory space. If the main memory is full, it pushes data to a paging
file in the secondary storage. A paging table is used to translate virtual addresses into physical ad­
dresses and can maintain where data is located. This translation incurs a performance penalty, which
has been slightly mitigated using a Translation Lookaside Buffer (TLB). The TLB is a cache that caches
frequently used translations from virtual to physical addresses.
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The MMU and MPU provide memory protection by linking the requested address to the process
that requests it. The MMU will not translate the address (and therefore limit access to the data) if that
process should not have access to that data. Memory protection provides mostly protection against
mistakes made by a process. It does not provide actual full protection against reading unintended
memory ranges.

The MMU also provides bus arbitration for the memory bus. If multiple memory access requests are
made, the MMU decides the order in which the requests are handled. An example of a bus arbitration
scheme is least recently serviced (LRS), which is implemented in the MicroChip PIC32MZ [42].

2.4.2. IOMMU
The IOMMU provides peripherals with Virtual Address space to access, similar to how a MMU provides
processes with a Virtual Address space. DMA accesses (discussed in Section 2.5.2) to that memory
region is then limited based on the device’s PCIe ID (discussed in Section 3.3). The IOMMU is not
a recent development, but it is still not always supported or utilized properly [53]. Vulnerabilities with
regards to the IOMMU can be found in Section 5.3.

Implementations and Support
The three most important CPU vendors (Intel, AMD and ARM) all have an implementation for an

IOMMU:

• Intel ­ Virtualization for Directed IO / VT­d

• AMD ­ AMD­Virtualization / AMD­V / AMD­Vi

• ARM ­ System MMU / SMMU

Most OSs already provide some sort of IOMMU support, but this may not be turned on by default.
BIOS or UEFI should also support turning on Virtualization, which is very common. An overview of OS
support can be seen in Table 2.1.

OS: Windows Linux MacOS
Supports Intel VT­d yes yes yes
Supports AMD­v no yes ?
Supports ARM’s SMMU no yes ?
Default On no no yes

Table 2.1: IOMMU support per OS

Virtualization for Directed IO / VT­d This thesis limits itself to describing Linux’s implementation
of Intel’s VT­d, since this combination fits best into the scenario described in Section 4.5.

VT­d is a hardware unit found in Intel processors since 2008 [5]. The main concept of its implemen­
tation has not changed drastically over the years. VT­d is found on the internal part of the DMI bus, as
seen in Figure 2.6.

The unit consists of multiple DMA remapping hardware devices or DRHDs. Each device provides
page­based translation capabilities to translate IO virtual addresses to physical addresses based on
the PCIe ID of the requesting device and the requested virtual address. The DRHDs are configured by
a concatenation of 6 page tables commonly known as DMA Remapping Tables (DMAR tables) in order
to achieve a translation. Since this incurs a lot of overhead, the translations may be cached in the IO
Translation Lookaside Buffer (IOTLB), similar to a TLB in a regular MMU.

Devices are grouped by domain: a memory area which is completely separate from other domains.
Devices in one domain cannot access the other domain, which is restricted by the PCIe ID. Windows
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Figure 2.6: Internal Extension of the DMI bus to different devices in the Intel Xeon E5­1600/2400/2600/4600 [22]

groups all devices in the same domain, while MacOS groups all devices in separate domains. Linux
can do either based on the IOMMU setup. Certain peripherals can also be set to pass through the
IOMMU altogether. This may be necessary for certain graphics­based peripherals, which are uncom­
mon in servers.

2.5. Memory Interfaces
The following section discusses the interfaces used to interact with the main memory.

2.5.1. Memory Bus
The memory communicates to the CPU using the memory bus. The memory bus became more com­
plex over the years in order to facilitate more bandwidth. This started with the introduction of Synchro­
nized DRAM, which synchronized the clocks of the memory controller and the memory. Although this
was slightly slower than using unsynchronized memory transactions, it allowed for pipelined memory
requests. This pipelining led to an overall increase in performance. Another commonly used form of
DRAM is Double Data Rate (DDR) SDRAM. This protocol utilizes both the upgoing and downgoing
clock flank to send data, making it a complex protocol to analyze and/or utilize. In order to reduce
latency, the memory bus provides a direct connection to the DRAM chips. The standard for DDR is
maintained by JEDEC [43], which is an association with many chip manufacturers as its members.

The controller of the DDR bus is implemented within the Memory Controller. The Intel Memory
Scrambler also scrambles the data on the memory bus with a pseudo random LFSR. This leads to
more uniform data, which means less power spikes, which in turn means better signal integrity. It also
functions as a countermeasure to attacks that target the memory via the memory bus [11].
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2.5.2. Direct Memory Access
Before Direct Memory Access (DMA) existed, the CPU was the only authority that could transfer data
from the memory to a peripheral device. This placed a huge load on the CPU, since for every bit of
data that a peripheral device needed to read or write from memory, it needed to orchestrate the entire
transfer. DMA gives peripheral devices the power to directly access the memory, freeing up CPU re­
sources. DMA can theoretically happen over any IO bus. The most common protocol which supports
DMA is PCIe. More on PCIe and detailed information about DMA over PCIe can be found in Section 3.5.

The process of DMA is started either by the CPU or the peripheral device itself. The CPU can use a
DMA engine, which is implemented within the CPU as seen in Figure 2.6. This DMA engine can control
the DMA transfer between a device and the memory or two memories on two separate devices. A DMA
engine is used when the device is incapable of performing DMA itself, or when memory between two
separate computer systems needs to be shared. A peripheral device can also initiate the DMA process
by themselves. Peripheral devices are assigned a flag called ”Bus Master”. If this flag is set, the device
is allowed to access the memory and perform DMA. The reverse is not true: a device without the bus
master flag enabled is not prohibited from accessing the memory.

Figure 2.7: DMA flow with multiple possible paths

The flow of DMA can vary, depending on who starts the transaction and on top of which protocol
DMA is run. An example of different DMA flows can be seen in Figure 2.7. This figure shows an ex­
ample of DMA using a peripheral connected over PCIe, which is accessing the main memory of the
system it is connected to. If the peripheral is connected to the system through a Root Port of the Root
Complex (more on these PCIe specific devices in Section 3.4). The Root Complex is connected to
the MMU, which is connected to the memory. The device might also be connected through the PCH,
which merely entails a different routing and no functional difference. If the IOMMU is active, the flow
changes to include the IOMMU as well which can, for example, translate the address of the memory
access. If the device is incapable of performing DMA itself, the DMA engine can control the flow. The
DMA engine can be instructed to do so by the processor. Note that in Figure 2.7 there is still a direct
connection between the MMU and the processor. Regular memory accesses by the processor happen
through this internal bus which can also include e.g. communication to the cache.

The specifics of memory accesses utilizing the functionality within the PCIe protocol which enables
DMA can be found in Section 3.5. As DMA is an easy way to access the main memory, the DMA pro­
cess can be misused my malicious actors in order to gain access to the system. This is called a DMA
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attack. Examples of different DMA attacks can be found in Section 4.3. A concept of a DMA attack
using PCIe can be seen in Chapter 5.



3
Peripheral Component Interconnect

Express
This chapter discusses the basics of PCI express and Direct Memory Access (DMA) using PCIe. A
full overview of the entire setup can be seen in Figure 3.3 at the end of this chapter. This Figure is
referenced throughout this chapter. Important busses or connections are indicated with lines, important
processes over those lines are indicated with arrows. Section 3.1 starts with an introduction to PCI and
PCIe, after which the different protocol layers are explained in Section 3.2. Next the details of PCIe
peripherals and the root complex are explained in Sections 3.3 and 3.4 respectively. Finally, the basis
of DMA using PCIe is discussed in Section 3.5.

3.1. Introduction to PCI and PCIe
Peripheral Component Interconnect, or PCI, is a communication protocol developed for connecting pe­
ripheral devices on a computer system. Its successor, PCI Express (PCIe), is currently very common
in any type of modular system. The standard for PCI and PCIe is maintained by PCI­SIG [50].

PCIe is a high­speed serial connection bus, over which a link can be made between two devices
on the bus. The two devices communicate using basic requests, answers to those requests, and inter­
rupts. The speed at which the devices can communicate is largely determined by the amount of lanes
between the devices. PCIe supports multiple lanes, each lane consisting of two serial differential paired
wires between the devices. Several types of devices can exist on the PCIe bus. The most common
is the endpoint, which exposes its main functionality through PCIe, and mostly completes requests by
some other device. Switches provide a way to connect more than two devices together and is capable
of routing packets to a correct destination. Bridges can translate PCIe to a different protocol. The root
complex (See Section 3.4) is the device at the center of the architecture and provides the connection to
the CPU, but can also contain information about connected devices in the system. In newer architec­
tures, the root complex is integrated with the host bridge, the connection to the CPU. The connection
to the CPU does not necessarily need to be a root complex, other devices in the system can take that
role too. An example topology by PCI­SIG can be seen in Figure 3.1. In Figure 3.3, the PCIe bus is
simplified to just the root complex, a switch, and the PCIe device. It is important to understand that
while PCIe is called a bus, it shares more likeness with common network protocols.

PCIe has several versions, but they can be backwards compatible with previous versions, even PCI.
However, there is no guarantee that a newer function will work with older versions. For example: A
device supporting a 5.0 GT/s transfer speed may not support a lower transfer speed of 2.5 GT/s. When
first connecting, both parties negotiate the protocol they will use. The pinout of a PCIe slot with one
lane can be seen in Table 3.1. The signals indicated with blue are the differential signal pairs. These
are used for sending data and for the reference clock. The orange signals are used to help manage
the link. The red and green signals are for the JTAG and SMBus signals respectively, which are also
present on the PCIe interface.

17
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Figure 3.1: PCIe Example Topology from PCI­SIG [3]

3.2. Protocol Layers
The PCIe protocol is divided into three separate layers, which can be seen in Figure 3.2.

• Physical Layer: This layer contains the Electrical and Logical sub­blocks and provides the base
for simple data transmission.

• Data Link Layer: This intermediate layer provides functionality like error detecting/reporting to
support the Transaction Layer.

• Transaction Layer: This layer contains the main source of communication: the Transaction
Layer Packet (TLP). TLPs are used for all high­level communication with a PCIe peripheral

3.2.1. Physical Layer
The electrical part of the physical layer only concerns translating logic into electrical signals and vice
versa. The main functionality provided by the physical layer is implemented within the logical block.
The data transmitted by PCIe is encoded using symbols. Depending on the transfer speed, this is
either 8b/10b or 128b/130b encoding. This means that 10 bits are used to send 8 bits of data. Some
symbols or symbol combinations can represent data, others can represent the beginning or ending of
packets sent on other layers. If more than one lane is available, the data is interleaved over the lanes,
in order to increase bandwidth and prevent different packets arriving at the same time. All control and
interrupt messages also use the same data lanes. The data symbols can also be scrambled using a
pseudo­random LFSR. This scrambling is turned on by default, but can be turned off during initialization.

The physical Layer also implements the the Link Training and Status State Machine, which is further
discussed in Section 3.3, about device initialization. The LTSSM helps in discovering the link width (the
amount of lanes which are available), the data rate (the transfer speed at which data can be send) and
provides functionality like lane reversal (which can reverse the polarity of lanes).
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Pin Side B Connector Side A Connector
# Name Description Name Description
1 +12v +12 volt power PRSNT#1 Hot plug presence detect
2 +12v +12 volt power +12v +12 volt power
3 +12v +12 volt power +12v +12 volt power
4 GND Ground GND Ground
5 SMCLK SMBus clock JTAG2 TCK
6 SMDAT SMBus data JTAG3 TDI
7 GND Ground JTAG4 TDO
8 +3.3v +3.3 volt power JTAG5 TMS
9 JTAG1 +TRST# +3.3v +3.3 volt power
10 3.3Vaux 3.3v volt power +3.3v +3.3 volt power
11 WAKE# Link Reactivation PERST# PCI­Express Reset signal

Mechanical Key
12 RSVD Reserved GND Ground
13 GND Ground REFCLK+ Reference Clock
14 HSOp(0) Transmitter Lane 0, REFCLK­ Differential pair
15 HSOn(0) Differential pair GND Ground
16 GND Ground HSIp(0) Receiver Lane 0,
17 PRSNT#2 Hotplug detect HSIn(0) Differential pair
18 GND Ground GND Ground

Table 3.1: Pinout of PCIe slot with one lane (Adapted from pinouts.ru [52])

Figure 3.2: PCIe Protocol Layers from PCI­SIG [3]

3.2.2. Data Link Layer
This layer mainly concerns the correct delivery of packets. This is perfomed using acknowledgment
packets or ACK, which confirm that a packet has arrived at its destination correctly. The exact opposite,
NACK, confirms that there was something wrong with the packet. This allows the sender and receiver
to make sure every packet is sent correctly.

In order to not send more packets than the link is physically capable of, the receiver gives credits to
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a sender, with every sent packet consuming a credit. If credits run out, the sender cannot send more
and has to wait for the receiver to give it more credits. This credit system is handled using Data Link
Layer Packets, or DLLPs. The data link layer does not check for credits itself. The actual implementa­
tion of the credit system is present within in the Transaction Layer.

The data link layer also provides error detection through the Cyclic Redundacy Checks (CRCs)
present in the TLPs. In case a TLP arrive with an error, the data link layer provides TLP buffering
thereby allowing the TLP to be re­send.

3.2.3. Transaction Layer
This layer creates and controls the Transaction Layer Packets (TLP). It also maintains the credit system
mentioned in the data link layer. The TLP consists of a header followed by the data. The header
contains relevant information about the destination, receiver, and the contents of the packet. Commonly
used TLPs are:

• Configuration Read/Write which allows for accessing the configuration space registers, which
is discussed in Section 3.3.2.

• Memory Read/Write which allows a device to read and write to the main memory. These packets
are discussed in detail in Section 3.5. They provide the backbone for DMA transfers over PCIe.

• Completions (with or without data). A response packet confirming the (in)completion of an action
requested in a received TLP. These packets are also discussed in Section 3.5.

• Messages which can contain a wide variety of information like power management, interrupts,
vendor defined messages, etc.

3.3. PCIe Peripherals
A PCIe device is a device that is connected to the computer system over a PCIe enabled bus. The
connection itself does not necessarily have to be PCIe, as long as it does enable the PCIe functionality.
Examples are Intel’s Thunderbolt [23], which was mentioned earlier, or DMI [21], Intel’s internal bus for
communication between the CPU and the southbridge.

3.3.1. Device Initialization
For a new device to start connecting with other devices on a PCIe bus, it first needs to start a process
called ”Link Training”. This process starts by synchronizing the clock, using standardized packets. Af­
terwards, protocol specifics like the data rate or lane width are negotiated, after which the device is
able to communicate over the bus. This linking process happens between the device, and the nearest
upstream device. This process is handled by the LTSSM (Link Training Status State Machine). After
the link training is completed, the device is able to talk on the bus using the correct protocol. This
process is also indicated in Figure 3.3. Exact information about the LTSSM can be found in the PCIe
specification [3].

Since the device maintains the current state of the link using the LTSSM, checking the status of
the LTSSM is possible on that device only. When the device is used in a ”normal” fashion, the device
always reaches a resting state in which the device is ready to receive/send packets. The LTSSM is
implemented solely on the physical layer. The result of the LTSSM can be used by other layers to
confirm the proper functioning of the physical layer.

Afterwards, a second phase called ”Enumeration” is started. Here, the device is given a unique
identifier, such that the device knows where in the network it is located. Using this ID, the device can
communicate to any other upstream PCIe device, and receive packets from them. The unique identifier
consists of three parts:

• Bus Number: A bus gets a new number after the downstream port of a switch or bridge.
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• Device Number: In order to indicate multiple devices on the same bus.

• Function Number: The same device can hold multiple functions, which can be addressed dif­
ferently.

This identifier is referred to as a PCIe ID or BDF (From Bus/Device/Function). Enumeration is an
exhaustive breadth first search which requests the first configuration register of a device, containing
the Vendor and Device ID. Is there a device on that PCIe ID, the device responds, otherwise the up­
stream device responds with 0xFFFF. Based on the Vendor and Device ID, software is then able to
find an appropriate driver and initialize the device properly on the software side. Should the device ID
and Vendor ID be configured as 0xFFFF, the software cannot distinguish the response from a default
response, therefore not initializing the device at all.

Enumeration is started when the system boots, or when the OS specifically re­scans the PCIe bus.
On Linux this can be performed by writing to ”sys/bus/pci/rescan”, which triggers the enumeration se­
quence performed by the kernel. It usually happens simultaneously with the MMIO and allocating other
memory needed for correct functioning of the device within the OS, as well as finding a correct driver
for the device based on the Vendor and Device ID of the device. This process is indicated with a green
arrow in Figure 3.3. The BIOS can also start the enumeration process early during boot. The MMIO
of the root complex is usually part of the stolen memory space and cannot be accessed later. On
Linux, a manual rescan of the PCIe bus, also triggers enumeration of any new devices found on the
bus. Through placing debug information within the kernel, it is possible to see exactly the interaction
the kernel has using PCIe with a new device during the enumeration sequence. A short excerpt of the
interaction can be seen in Appendix A.

3.3.2. Device Configuration
The general way of configuring a PCIe device is through the registers on the device. MMIO makes
these registers more accessible to the main system, as previously mentioned in Section 2.3.2. The
main registers can be found in the Configuration Space, which is a standardized set of registers. The
configuration space contains information like the Device and Vendor ID, based upon which an OS can
load a correct driver, or readstatus registers, with which the device can announce its status to the OS
or driver. These registers can also be written to by using TLPs. Examples are the interrupt register,
or registers that control options like time­outs or link speed. For more, and device specific, registers,
the Base Address Registers (BAR) are used. The standard configuration space for PCIe endpoints
contains two BARs, but more are possible.

The device can also use Extended Capability registers to advertise device capabilities. These regis­
ters form a linked list between their headers, in which the header contains a pointer to the next header,
for the next capability. These capabilities can be used by software to improve interactions with the
device. Examples are Advanced Error Reporting (which extends the errors the device can report, for
better debugging) or Address Translation Services (which allows the device to perform Virtual Address
Translations itself).

3.3.3. Hot­plug
It is possible to hot­plug a PCIe device as per the PCIe specification. This requires support from three
different parts of the system: the software, the PCIe slot, and the PCIe device. The core principle
of hot­plug according to the specification provided by PCI­SIG is to have both the slot and the device
keep the software updated on the current status of the device. This way, the software can anticipate re­
moval and/or addition of devices and provide feedback to the device and slot on how to do this correctly.

The ”Slot Capabilities” Register is a standard register, which can provide information about the slot,
including Hot­plug support. This register is implemented in the switch that provides the slot. Hot­plug
support in software and devices is common, but Hot­plug support in slots is not. The two servers that
were tested did not have Hot­plug capable slots. This may change in the future due to the rise of PCIe
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capable user­interfaces like Thunderbolt.

Hot­plug support can be divided into two sections: electrical (involving the device and the slot/­
motherboard) and software (which involves the slot and the OS). If an electrical Hot­plug succeeds, the
software may be informed of the device anyways (by for example a manual rescan). A succesful elec­
trical hot­plug would mean the device is successfully connected to the motherboard and has completed
the LTSSM. A successful software hot­plug would mean enumeration of the device and that software
initialization was successful.

If an electrical Hot­plug is not supported, the system may respond unexpectedly to removing or
adding new devices. On some systems, plugging in a new device resulted in a complete and immedi­
ate system failure and shutdown. In other systems, the operating system started to lag and slow down,
or the operating system did not respond and continued to operate normally.

3.4. Root Complex
The root complex is the top­level entity within the PCIe hierarchy. It always has a PCIe ID of 0x0000
and its main functionality is providing the interaction with the memory and is usually combined with
being the host bridge, i.e., the bridge between the processor and the PCIe bus. During boot, the BIOS
or OS configures the root complex using the configuration registers.

The root complex is often located in the CPU and can also be seen in Figure 2.6, where it is located
on the DMI bus (the internal bus between the southbridge (PCH) and the CPU) and is depicted as the
”Host Bridge”. It can also be seen in Figure 2.7, where it is part of the DMA process. It is from the root
complex where the enumeration process is started. The BIOS or OS utilizes the root complex to send
and receive the packets on the PCIe bus required for enumeration.

The root complex also provides the interaction with memory. DMA using PCIe uses the packets
described in Section 3.5. These packets are send to the root complex and the root complex also sends
back the required Completion packets.

3.5. DMA Using PCIe
This section discusses the implementation of DMA on PCIe. For a general explanation of DMA, more
information can be found in Section 2.5.2. When a device is ready to read or write to the main memory
of the system, a PCIe peripheral can send a read or write memory TLP on the PCIe bus, which is
automatically routed to the root complex. The data from the memory is used by the root complex to
route a Completion packet back based on a requester ID send with the request TLP. This requester ID
is the PCIe ID acquired during enumeration. This means a device that does not have a PCIe ID (e.g.
because it is not enumerated) can (in theory) not perform DMA.

DMA using PCIe is therefore mainly performed using TLP’s on the PCIe Bus. The two main TLPs
that are being send back and forth during a DMA request are MRd (Memory Read) and Cpl/CplD (Com­
pletion/Completion+Data). The purpose and headers are explained below:

Memory Read Requests There are two types of MRd TLPs: MRd32 and MRd64. The difference
is the length of the address that the TLP contains and a change in the fmt space in the first bits of
the TLP, indicating the length of the header. Some protocols can enable PCIe, but don’t enable 64­bit
addressing. The MRd64 header format can be seen in Figure 3.4.

The TLP consists of the following fields:

• Fmt + Type These indicate the type of TLP that is being sent. For Mrd64 this would be 0x010000

• Traffic Class (TC) The traffic class of the TLP. This may change the way the TLP is routed.
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Each TC may belong to a Virtual Channel for higher priority routing, or another different routing

Figure 3.3: Full overview of several mechanics of PCIe and DMA
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Figure 3.4: MRd64 header format [50]

treatment.

• Attributes Several attributes to configure the ordering of the request. Also contains a ”no snoop”
preference, which is used for hardware coherency management and can prevent other devices
from interpreting (snooping) the packet.

• Trafficking and Processing Hints (TH & PH) TH indicates the presence of processing hints (in
PH). PHs may be used to help the memory completer with information about the frequency and
temporal locality of the memory request.

• TLP Digest TD indicates the presence of a TLP digest. For example, using ECRC to validate the
integrity of the TLP.

• Error Forwarding / Data poisoning When a packet is malformed, it may be useful to still route
the packet to the destination. In that case, the EP bit is set in order to confirm a malformed packet.

• Address Translation Used to indicate whether the address in the TLP is translated or not. Used
for ATS.

• Length Used to indicate the length of the requested memory.

• Requester ID The source PCI ID of the requester. Completions are routed back to this address.

• Tag
A tag used for tagging transactions. A completion will return with the same tag, allowing the
requester to link a request with a completion.

• DW Enable
Amask for which DoubleWord should be read out (or written with aMWr64). Used for fine­grained
control over reads or writes.

• Address
The actual base address of the memory request.

Memory Read Completion There are two types of Completion TLPs: Cpl and CplD. The difference
is the second one contains data and a change in the length field, according to the amount of data send
back. The Cpl Header can be seen in Figure 3.5.

Most fields in the Cpl TLP are similar to the one in a MRd TLP. In case of a CplD TLP, the data is
send directly after the header. The Cpl TLP contains the following different fields:

• Completer ID
The Device that completed the transaction. For MRd requests, the completer is the root complex,
meaning this field will be set to 0x0000.

• Completion Status
Indicates the status of the completion. With no error, this is set to all 0. For an unsupported
request, for example when attempting to access inaccessible memory space, the status is set to
1.
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Figure 3.5: Cpl header format [50]

• Byte Count Modified
Used only by PCI­X Completers.





4
Memory Acquisition Techniques

This chapter discusses the different concepts and techniques for acquiring memory. They are classified
based on the interface at which the acquisition happens in Section 4.1. These classes are software
based techniques (Section 4.2), DMA based techniques (Section 4.3), and DRAM based techniques
(Section 4.4). The target scenario in which these techniques would be required to function is discussed
in Section 4.5 Next, a model is used to determine to most effective method of memory acquisition. This
chapter discusses the reasoning behind the model in Section 4.6, applies it to available hardware
methods in Section 4.7, and discusses the result in Section 4.8.

4.1. Classification of Memory Acquisition Techniques
The different acquisition techniques are divided into three categories. The first two categories are
based on the two main memory access processes: through the OS, or through DMA. The third type
attempts to directly connect to the DRAM or its interface: the memory bus. Software based techniques
require some sort of program running on the CPU itself. They use the regular means of accessing
the DRAM, which is through the MMU. DMA based techniques use any type of interface that supports
DMA. If the host directly connects to such an interface, it is classified as a direct DMA based technique.
If a device which is already connected to such an interface is targeted, then it is considered an indirect
DMA based technique. The last technique targets the DRAM in a more direct way. This concerns at­
tacks that focus on the DRAM­stick itself or the DDR bus with which the DRAM is connected to the CPU.

4.2. Software Based Acquisition Techniques
The first type of acquisition technique is software based. This includes running native or 3rd party soft­
ware tools on the system itself to provide a memory snapshot.

• Virtual Machine
In some cases the server is not running directly on machine hardware, but on a virtual machine.
In that case, the virtual machine can provide native tools to directly store and access a memory
snapshot. Virtualbox is an example of a Virtual Machine providing that functionality [28]. Although
native tools like this are fast and reliable, they require admin access and a login, and it only works
if the target system is run on a Virtual Machine.

• Native OS Tools
Windows provides a native toolset for making memory images and analyzing them [14]. Although
this is fast and reliable, it requires admin access, a login, and a reboot. It also leaves a memory
footprint (overwriting part of the memory snapshot), and the source code of the application is
unknown, making it difficult to verify the correct functionality of the application.

• Hibernation File Conversion
Windows stores a hibernation file on your hard drive to reconstruct the system state from after

27
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hibernation. This hibernation file can be unpacked into a readable format by a 3rd party tool [58].
In contrast to the previous method, this method does not leave a memory footprint. However, it
still requires a reboot to generate the hibernation file and admin access and a login to access the
file. The extent to which parts of memory are stored in the hibernation file is also unknown.

• 3rd Party Tools
There are various 3rd party software tools on the market that can provide memory imaging. A
collection can be found in Table 4.1. On Windows, these tools usually do not always require
admin access, but this is a requirement on Mac OS and Linux. These tools are usually fast and
do not require a system reboot, but still require a login and leave a memory footprint.

• Warm Reboot
It is sometimes possible to reboot the system without losing power to your memory. If the BIOS is
also hijacked, it is possible to boot a new OS, specifically designed for memory acquisition [56].
Although this methods circumvents the need for admin access or a login, it still leaves a memory
footprint. The data collection is performed over a serial bus, resulting in a very slow acquisition.

Windows winpmem, DumpIt, Magnet RAM Imager, Memoryze,
FastDump, BelkalMager, RamCapture

Linux Linpmem, LiME
Mac OS Osxpmem, Memoryze

Table 4.1: Different 3rd Party Tools for RAM Imaging

4.3. DMA Based Acquisition Techniques
DMA provides a straightforward way of accessing the memory. This category is divided into two subcat­
egories: if the DMA channel can be directly accessed by a device the attacker chooses, it is classified
as a direct DMA channel. If it requires subverting an existing device with a DMA channel, it is classified
as an indirect DMA channel.

4.3.1. Direct DMA Channels
• FireWire
Firewire, also known as IEEE 1394 [2], is an old protocol used for high­speed data communication
which also supports DMA. It is fast, reliable, does not need login or admin access, and is hot­
pluggable. FireWire can be utilized easily to acquire memory [32]. FireWire slowly lost support
in the computing world and it is not regularly used in servers any longer.

• PCIe
PCIe is another protocol capable of making DMA requests. By inserting a device that can access
the PCIe bus, it is possible to make DMA requests and acquire memory through the PCIe bus [27].
This requires a host computer to control the device through software [30]. Although this method
is fast and widely supported, it suffers from stability issues and relies on the host PC properly
accepting the PCIe device before a DMA call can be made, sometimes requiring a reboot before
it accepts the device. It is also countered by the IOMMU, which can block memory accesses from
PCIe devices.

• Thunderbolt
Thunderbolt [23] is a relatively new protocol and can be run over USB. Thunderclap [59] is an
attack that uses this protocol to access the memory. When the vulnerabilities of Thunderbolt were
revealed, improvements were made to limit the capabilities of Thunderbolt, but those improve­
ments were circumvented as well by ThunderSpy [55] in 2020. Thunderbolt is not featured on
many servers yet, but can be a fast and stable method of memory acquisition. Any acquisition
method using Thunderbolt would need to work around the newer security measures, as well as
the IOMMU.
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4.3.2. Indirect DMA Channels
Since devices over direct DMA channels struggle to gain an accepted or trusted position in the system,
one could also look for devices that already have a trusted position within the system.

• Rogue Devices
A common device in every server with DMA access over the PCIe bus is the Network Interface
Controller (NIC). The controller can be compromised and its firmware replaced [45]. This method
is fast and does not leave a memory footprint, but NIC’s still vary a lot per server. This means it
is difficult to develop broad support for this technique.

• LOM
Most servers also carry some form of Lights­Out Management like integrated Lights­Out for HPE
and Remote Access Control for Dell. These provide some form of out­of­band management
and implement common protocols such as IPMI. LOM’s have been generally considered to be
insecure [25] [16]. This makes it possible to find an exploit, patch new firmware and expose DMA
requests [51]. However, finding an exploit can take time and existing exploits can be patched.
On top of that, different manufacturers have different implementations, which makes it difficult to
develop broad support for this technique. The advantage of this method is that the LOM generally
is a high­level entity within the system, even hidden to the real OS.

4.4. DRAM Based Acquisition Techniques
The memory can also be accessed directly over the memory bus and also can be targeted directly,
which constitute the last category of memory acquisition method. In contrast to software­based mem­
ory acquisition techniques, hardware­based techniques have the advantage that they do not require
admin access or a login.

• Cold Boot
As discussed in Chapter 2, once the DRAM loses power, it loses its data because the volatile
RAM needs to be refreshed. By cooling down the memory chip, the charge that maintains the
bit’s value depletes slower. By taking the memory out of the target system and transplanting it
into a controlled system, the memory can be read out [63]. This method is fast, but the charge
decays quickly and requires a complex setup. It is also countered by the Intel Memory scrambler
(see Section 2.5), which would need to be reverse­engineered for the method to work correctly.

• MMU Impersonation
It is possible to connect another MMU directly to the memory chip and communicate with the
memory through that MMU instead [9]. This method is complex due to the signal integrity issues
already existing in the DDR protocol and the fact that there is already an MMU connected to the
memory. It is also directly countered by the Intel Memory scrambler, which needs to be reverse­
engineered for the method to work correctly.

• Floating Gate SEM analysis
Reading out an EEPROM using an electron microscope is possible [24]. This directly reveals
the information stored on the chip. Since DRAM also consists of a floating gate transistor based
memory cell, a similar technique might be applied in tis case. This technique would also be
disadvantaged by the fast­depleting capacitance, so cooling might me needed. It also requires
disassembling of the RAM and is also countered by the Intel Memory Scrambler.

4.5. Target Scenario
In order to limit the scope of the thesis, a scenario in which a solution would need to operate is described
below.

• This thesis focusses specifically on one computer system: a rack server. This is a type of com­
puter system specifically build to perform high­end computing tasks and fitted to a flat form factor
to optimize the use of physical space.
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• The main advantage in the scenario described above is that physical access to the server is
considered to be available. This grants direct access to the hardware and software on which the
system runs, opening up several memory acquisition techniques.

• we consider the server running the latest version of LinuxOSwith all patches and updates from the
servermanufacturer applied. Linux was chosen becauseNFI was interested in this OS specifically
and Linux is easier to debug than other OSs.

• We consider the operating system to be locked and no login credentials are available to unlock
the operating system, the BIOS, or the LOM.

• The system is turned on. We assume that a reboot can lead to a loss of information in the memory.
Therefore, a reboot must be avoided.

• The system does not have an active IOMMU (See Section 2.4.2). The IOMMU and its vulnera­
bilities are discussed in Section 5.3.2, but a workaround / solution is not expected or necessary.

This scenario immediately excludes most software based techniques, since they require login cre­
dentials. This leaves the following techniques to be evaluated:

• Warm Reboot

• DMA using FireWire

• DMA using PCIe

• DMA using Thunderbolt

• DMA using a Rogue Device

• DMA using the LOM

• Cold Boot

• MMU Impersonation

• Floating Gate SEM analysis

4.6. Model Creation
The model is based on the Attack Vector Evaluation Model by van Beusekom [62], which was in turn
based on the CVSS3 Vulnerability Assessment Model [4]. The model was altered to only use positive
metrics and the descriptions of certain metrics was changed to better fit the the use­case of memory
acquisition. The different metrics are described and divided into four categories. A low point value is
considered favorable to a high point value.

4.6.1. Research Complexity
Full point values in Table 4.2

• Knowhow: The amount of missing knowledge, before work on development of the method can
start.

• Effort: The amount of setup/research time required to develop the method. This includes the
development of workarounds to fit the scenario described in Section 4.5.

4.6.2. Execution Complexity
Full point values in Table 4.3

• Specialized Tools: To what extent the method needs any specialized tools, or knowledge about
specialized equipment to execute the method.

• Time Requirements: How long the acquisition takes to execute. Infeasible if the acquisition
takes longer than the time this thesis takes to write. A memory acquisition that takes too long is
also undesirable with regards to forensic soundness of the acquired image. The memory image
acquired should resemble the memory image at device seizure as closely as possible and with a
long acquisition time, the confidence in a correct memory image is decreased.
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4.6.3. Usefulness
Full point values in Table 4.4

• Reproducibility (same device): The time it takes to reproduce the same attack on the same
device.

• Reproducibility (similar device): The time it takes to reproduce the same attack on a similar
device.

• Determinism: How often a properly executed attack will yield results. The attack should produce
consistent and correct results in order to be used in forensic investigations in the field.

• Reusability: Towhat extent the attack can be reused among differentmanufacturers/devices/sys­
tems.

• Device Impact: To what extent the attack invalidates the security for the entire device or parts of
the device.

4.6.4. Risk
Full point values in Table 4.5. The original model included economic and environmental Risk. These
have been left out of this model since they are not relevant to these methods.

• Personal Impact: To what extent the attack impacts areas such as personal privacy, security or
freedom.

• Destructiveness: To what extent the attack destroys the targeted device. Risk of destruction of
the device also increases the risk of loss of information stored on the device.



Research Complexity
Knowhow

0 5 10 20 50
No knowledge or
outstanding assumptions
required

Missing knowledge or
outstanding assumptions
require little time
investment to resolve

Missing knowledge or
outstanding assumptions
require considerable time
investment to resolve

Missing knowledge or
outstanding assumptions
require significant time
investment to resolve

Missing knowledge or
outstanding assumptions
require extreme time
investment to resolve

Research Complexity
Effort

0 5 10 20 50
Virtually no setup/research
time

Some setup/research time Considerable
setup/research time

Significant setup/research
time

Extreme setup/research time

Table 4.2: Elaborate Values for Research Complexity Metrics

Execution Complexity
Specialized Tools

0 5 10 20 50
Requires no specialized
tools or knowledge

Cheap specialized tools and
limited specialized
knowledge required

Expensive specialized tools
and knowledge required

Very expensive specialized
tools and knowledge required

Extremely expensive
specialized tools and
knowledge required

Execution Complexity
Time Requirements

0 5 10 20 50
Attack takes up to a few sec­
onds

Attack takes up to a few min­
utes

Attack takes up to a few hours Attack takes up to a few days Attack takes longer than a few
days

Table 4.3: Elaborate Values for Execution Complexity Metrics



Usefulness
Same device
reproducibility

0 5 10 20 50
Attack can be reproduced on
the same device without
extra research

Attack can be reproduced on
the same device with
minimal extra research

Attack can be reproduced on
the same device with
moderate extra research

Attack can be reproduced on
the same device with
extensive extra research

Attack can be reproduced at
the same time it took to
attack the first device

Usefulness
Similar device
reproducibility

0 5 10 20 50
Attack can be reproduced on
a similar device without
extra research

Attack can be reproduced on
a similar device with
minimal extra research

Attack can be reproduced on
a similar device with
moderate extra research

Attack can be reproduced on
a similar device with
extensive extra research

Attack can be reproduced at
the same time it took to
attack the first device

Usefulness
Determinism

0 5 10 20 50
Properly executed attack will
always yield results

Properly executed attack will
generally yield results

Properly executed attack will
mostly yield results

Properly executed attack will
sometimes yield results

Properly executed attack will
rarely yield results

Usefulness
Reusability

0 5 10 20 50
Results can be reused for all
computer systems

Results can be reused for all
server manufacturers

Results can be used among
device family

Results can be used among
production batch

Results are per device and
cannot be carried over

Usefulness
Device Impact

0 5 10 20 50
Attack results in total loss of
security of entire device

Attack results in total loss of
security for important
subsystems, but not entire
device

Attack results in partial loss of
the device’s security

Attack results in partial loss of
the device’s subsystems

Attack does not result in
(additional) loss of security of
the device or its
subsystems

Table 4.4: Elaborate Values for Execution Usefulness Metrics

Risk
Personal Impact

0 5 10 20 50
No impact in areas such as
personal privacy, security, or
freedom

Slight impact in areas such as
personal privacy, security, or
freedom

Considerable impact in areas
such as personal privacy,
security, or freedom

Significant impact in areas
such as personal privacy,
security, or freedom

Severe impact in areas such
as personal privacy, security,
or freedom

Risk
Destructiveness

0 5 10 20 50
No risk for the device Low risk to device, opening

the casing, soldering on the
device required

Medium risk to the device,
Desoldering or transplanting
required

Higher risk to device,
attack may damage device

High risk to device,
attack may destroy device
completely

Table 4.5: Elaborate Values for Execution Risk Metrics
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4.7. Model Application
This section discusses the reasoning behind the score of the methods per model metric. The precise
scoring can be found in Table 4.6.

• Research Complexity ­ Knowhow:
Memory acquisition techniques using a DMA enabled port are less complex and better docu­
mented than the other techniques. A warm reboot based method is also executed using simple(r)
protocols. Using a rogue device or a LOM requires extra research into the vulnerable piece of
the target device. Research into Cold Boot, MMU impersonation, or SEM analysis requires more
research into the physical properties of the memory.

• Research Complexity ­ Effort:
RAM acquisition methods over DMA enabled ports are already documented and proven to be
viable. However, ports like FireWire and Thunderbolt are rarely present on server systems (See
Appendix D). For warm reboot, some more research needs to be done for it to work on a broad
spectrum of targets. For indirect DMA attacks, it is usually necessary to find an exploit, which
would be difficult. Researching DIMM level attacks would take a lot of time to both reverse­
engineer the Memory Scrambler as well as deal with the signal integrity issues. SEM analysis on
DRAM would most likely require extreme amounts of effort to get working.

• Execution Complexity ­ Specialized Tools:
FireWire and Thunderbolt are protocols intended to be directly accessed by consumers. This
means that there will be very little speicialized tools required to target those channels. PCIe
and Warm Reboot require additional tools, but those are readily available. A Cold Boot setup is
difficult because of the temperature requirements. A MMU impersonation is difficult due to the
engineering issues with regards to signal integrity. SEM analysis requires a SEM, which is an
expensive piece of hardware.

• Execution Complexity ­ Time Requirements:
Methods with a connection over a PCIe enabled bus are fairly fast and the attack takes up a few
minutes. The Warm Reboot is over a Serial connection and is therefore slower. The bottleneck
for the LOM is the connection to the LOM itself, which is most likely over TCP. Even if it is possible
to read a single bit with SEM analysis, reading out the entire memory will take a long time.

• Usefulness ­ Reproducibility (Same Device):
If the attack works once for the same device, there is no reason why it should not work a second
time. The DIMM level methods might deal with an LFSR, which may cause some extra time.

• Usefulness ­ Reproducibility (Similar Device):
If the attack works on one device, it should generally work for a similar device with minimal effort.
Exceptions to this are the Rogue Device and LOM methods, since there is no guarantee that the
similar device has the same hardware and software available that you targeted, which means a
new plan of attack needs to be made for the new device, requiring more extensive research. The
viability of SEM analysis needs to be evaluated per device, since different memory may have a
different layout.

• Usefulness ­ Determinism:
A properly executed attack should yield results in most cases. The DIMM level methods, which
may struggle with decrypting the relevant data because of the memory scrambler. The viability
of SEM analysis on DRAM is unproven.

• Usefulness ­ Reusability:
The only interfaces with memory access consistently present on all servers are the PCIe and
DIMM interfaces. The warm reboot attack may struggle to find the same or similar patterns of
connections. The rest of the attack interfaces are only sparsely available.

• Usefulness ­ Device Impact:
The LOM is a high level entity, with access to almost anything an OS has. If a technique results
in full live memory access, it is most likely also able to subvert the OS. Warm reboot, cold boot,
SEM analysis only target the RAM and disable the system completely.
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• Risk ­ Personal:
All methods cause the same level of privacy violation, since they all have the same end result.
The goal of the attack is to achieve a privacy violation: the memory contains private data. It is
preferable to have an technique to be able to only target the memory data needed. For example:
a server with four users, of which only one is malicious. A method that could focus its memory
acquisition only on the malicious user is preferable over a method that collects the entire memory
regardless. That being said, determining the ”correct” memory that needs to be acquired can
lead to (possibly) missing valuable data. Whether or not data is ”valuable” can always be de­
termined after the acquisition. Therefore, although DMA­enabled methods can target memory
ranges seperately during the acquisition, all methods are considered to have a significant impact
on personal privacy.

• Risk ­ Destructiveness:
Thunderbolt, FireWire, and the LOM are/have user­level interfaces and do not require the device
to be opened. Warm Reboot, PCIe, Rogue Devices, LOM, and MMU impersonation require the
device to be opened to access the relevant interface. A Cold Boot attack also requires transplant­
ing the DIMM’s, resulting in a larger risk to the device.

4.8. Results
The results can be seen at the top of Table 4.6. The lowest score indicates the most effective memory
acquisition method, which is DMA using PCIe. DMA attacks in general provide a fast way to access
the memory, while not requiring as much knowhow, since they are well researched. Specifically DMA
using PCIe is a relatively low effort attack since the equipment and effort to perform the basics of the
attack are already available. This thesis will continue to look into how DMA using PCIe functions, and
to what extent the technique can be improved upon.



Relevant Attacks: Warm Reboot FireWire PCIe Thunderbolt Rogue Devices LOM Cold
Boot

MMU Impersonation SEM analysis

Total Score: 90 140 65 145 170 145 205 200 440
Research Complexity Knowhow 10 5 5 5 10 10 20 20 20

Effort 10 50 10 50 20 20 50 50 50
Execution Complexity Specialized Tools 5 0 5 0 0 0 20 20 50

Time Requirements 10 5 5 5 5 10 5 5 50
Usefulness Reproducibility

(Same Device)
0 0 0 0 0 0 5 5 0

Reproducibility
(Similar Device)

5 5 5 5 50 30 5 5 50

Determinism 0 0 0 0 0 0 20 20 50
Reusability 20 50 0 50 50 50 0 0 50
Device Impact 5 10 10 10 10 5 50 50 50

Risk Personal 20 20 20 20 20 20 20 20 20
Destructiveness 5 0 5 0 5 0 10 5 50

Table 4.6: Model Score for RAM Acquisition Methods per Metric



5
DMA­Based Memory Acquisition Using

PCIe
This chapter further details the concept of what a DMA attack exactly is. It first discusses existing DMA
attacks in Section 5.1 and afterwards it explains the main countermeasures and drawbacks of acquiring
memory based on these attacks in Section 5.2. Based on a vulnerability analysis of PCIe and DMA in
Section 5.3, improvements to the memory acquisition method are proposed in Section 5.4.

5.1. Existing DMA Attacks
DMA Attacks are attacks that abuse DMA in order to gain access to the systems memory, or subvert
the system by writing to the memory. The actual ”attack” is not an attack on DMA, but an attack on the
system memory or a process within system memory.

The first use cases of DMA­based memory acquisition were not malicious, but instead focussed
on memory analysis for forensic or investigative purposes. Dedicated PCI cards like Tribble [17] or
CoPilot by Komoku [65] were intended to for discover, detect, and remove memory rootkits. Both
these cards worked according to the standard DMA principles. The card is insterted before system
boot and used DMA to access the system memory. The memory could be scanned or transferred to
a permanent storage device for analysis. Should malicious data be encountered on the memory it
could be destroyed by writing to it. Rutkowska [54] predicted multiple countermeasures against this
type of memory acquisition and named in particular the IOMMU as the final nail in the coffin for memory
acquistion, stating one could ”say goodbye to hardware­based memory acquisition” due to the IOMMU.

The first ”successful” commercial DMA attacks came with Inception [46] in 2012. Inception used
the FireWire [2] or IEEE1394 to access system memory. Using an Adapter, Inception could also work
on PCI/PCIe ports. Inception provides easy methods to unlock a target system, insert Kernel Module
implants, and privilege escalation to further attack a computer system. Inception was not the only tool
to use the FireWire port, but was the first one to be widely commercially adopted. FinFireWire [35] by
Gammagroup was already used by government agencies and provides more functionality in the form
of memory image analysis. The main drawback of using FireWire is its limited to accessing 4GB of
memory and the form factor was not widely adopted.

The next main commercially available DMA attack was PCILeech [30]. PCILeech provides similar
functionality to Inception, but with a flexible front­ and back end. PCILeech supports multiple access de­
vices like FPGAs connected to PCIe or M.2, USB hubs, or compromised HP iLO on the target system.
It provides an API which can be utilized to develop exploits on the memory (for unlocking the system or
implanting memory), or forensic memory analysis. When using a PCIe card, the process is similar to
earlier DMA attacks. The card is inserted to the target PC, which immediately allows for DMA access.
Its main drawbacks are the same: The card has to be inserted beforehand, and (if implemented cor­
recly) the IOMMU still counters PCILeech by severely restricting thememory regions it is able to access.
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The Thunderbolt [23] port facilitates PCIe and can therefore also be used for DMA. In 2019 Mar­
kettos et al. [59] presented ThunderClap, which emphasized the danger of DMA attacks by presenting
several attack scenarios and discussing IOMMU vulnerabilities. This work discussed in a more formal
fashion the affected (operating) systems and analyzed to what extent a DMA attack can impact it. Their
main contribution is the analysis of the shortcomings of current IOMMU implementations. Their plat­
form can attack a system using Thunderbolt or PCIe. The extension of a DMA attack to Thunderbolt
is an important development considering the recency and wide adoption of Thunderbolt. ThunderSpy
[55] also uses the Thunderbolt port on a Mac to perform a DMA attack. Since MacOS automatically
enables an IOMMU, which resides on a separate chip on the motherboard, this attack is usually coun­
tered. By flashing new firmware on the chip containing the IOMMU, ThunderSpy is still able to perform
DMA over Thunderbolt.

In conclusion, current attacks using DMA all revolve around plugging in a malicious device, or com­
promising a device that is already plugged in. After that, the device is ready to read or write to the main
memory of the system, provided there is no IOMMU. The core of a DMA attack using PCIe are the
TLPs presented in Section 3.5, which are used to read memory data.

5.2. DMA Limitations
DMA attacks over PCIe suffer from the following drawbacks or countermeasures.

Unavailable Slots
If all slots on a system are already in use, there is no other options than to un­plug a device, in order
to free up a slot. Unplugging a device will change the system state, which may alert the system that
something is wrong, makes the memory image less true to the image at device seizure, and may also
cause electrical instability of the system. Unplugging a critical device like a storage controller may lead
to a full system crash.
As long as a newly plugged in device at the same slot is not enumerated, the device will not respond
to requests directed at the PCIe ID belonging to the slot.

Electrical Instability while Hot­Plugging
As described in Section 3.3, Hot­Plugging a PCIe device can lead to system failure. In most crashes,
the system indicates a lost connection to other peripherals within the system. The other devices may
either be triggered by an electrical glitch caused by the inserted device itself, or an unexpected system
response within the OS, CPU, or chipset.

LTSSM interaction while Hot­Plugging
When the device is inserted, it first needs to be able to communicate on the PCIe bus. As described
in Section 3.3, this happens through the LTSSM. The LTSSM is an interaction between the upstream
and the inserted device. This means that the upstream device still needs to recognize the insertion and
proceed with the LTSSM process in order for correct operation of the downstream device.

Enumeration while Hot­Plugging
The lack of enumeration means the device is not able to use its own PCIe ID to send TLPs since it has
none. The lack of a PCIe ID means the device can (in theory) not perform DMA.

Software Recognition while Hot­Plugging
The lack of software recognition means the device is not able to be connected to a driver or use its
capability registers to advertise device capabilities. A device is only recognized by software during the
enumeration process. If the device is enumerated it will have impact on the memory through MMIO
(See Section 2.4). This prevents a completely clean memory image.

Rebooting
For forensic research it is important that the acquired memory data represents the memory at the time
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of the device seizure as closely as possible. A reboot may cause a loss of information, which is why a
hot­plugged DMA attack is preferred.

IOMMU
The main countermeasure against DMA attacks is the IOMMU. A correctly implemented IOMMU only
allows a peripheral to access the memory using virtual addresses provided by the IOMMU. A further
analysis was made in Section 2.4.2.

RAM Encryption
DMA attacks can be countered using RAM encryption [48]. The key to a successful RAM encryption
method is the protection of the encryption key. As storing the key in RAM would not work, this means
the key is hidden in another I/O device or in seperate registers within the CPU [48]. Once the key is
compromised, the encryption becomes useless [15].

5.3. Vulnerability Analysis
Several vulnerabilities still exist within the PCIe protocol and the IOMMU.

5.3.1. PCIe Vulnerabilities
PCIe is a common and unsecured protocol which can access the memory through DMA. Vulnerabilities
within PCIe can aid an attacker in executing a successful DMA attack:

• PCIe ID Spoofing
The PCIe ID is used to route packets back to the device where they came from. A PCIe device
can also read packets with a different ID, when they are routed on the same or downstream
busses. This way, a device can effectively impersonate any other PCIe device. This allows a non­
enumerated device to spoof any ID in order to perform DMA requests. A simple countermeasure
against ID Spoofing is Access Control Services (ACS), a PCIe Capability implemented in PCIe
Switches. ACS can block suspicious or unexpected PCIe traffic. Although ACS is recently gaining
more support in Intel processors [70], it is not used a lot.

• Changing Configuration Space
Modifying the configuration space of the device can lead to different interactions with software.
Changing the Vendor or Device ID allows the device to pretend to be a completely different de­
vice. This changes the way software interacts with the device. For example, it might load a
different driver. This could be for example used to load a particularly badly written driver in order
to abuse some vulnerability within that driver. The capability registers, which indicate extra device
functionality, may cause certain software functionality to be prepared for the device as well. As
mentioned earlier in Section 3.3.1, a Vendor and Device ID of 0xffff can be used during the
enumeration process as well. Since this process starts with reading these registers and stops
when reading 0xffff since it is a response that indicates the lack of a device.

• Lack of ID checking at memory request
The PCIe ID passed on with a memory request is not checked. This means non­existing IDs will
still trigger a response from the Root Complex.

• Routability of non­existing PCIe IDs
PCIe switches can route PCIe IDs which are non­existent. The exact behaviour is unknown, since
this falls outside the specification. A PCIe ID with a very high bus number is likely to pass through
the entire system, since all switches will route it through to the next bus if they cannot route it
themselves properly.

5.3.2. IOMMU Vulnerabilities
It has been shown that the IOMMU is not bulletproof yet [59]. However, enabling it makes creating a
complete memory image very difficult. Vulnerabilities often rely on further escalation in order to provide
complete access to the entire memory. This often means completely disabling the IOMMU or bypassing
it altogether.
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PCIe vulnerabilities still apply when interacting with the IOMMU:

• PCIe ID Spoofing
Unless specifically prevented by ACS, ID spoofing still applies. This means an attacker still has
access to all memory spaces allocated to any peripheral. If there is a peripheral capable of
passing through the IOMMU, spoofing that ID would most likely allow for full access.

• Changing Configuration Space Loading certain drivers that implement certain device transac­
tions badly are still present in Linux. Exploitation of the driver interaction may still lead to memory
access [41], but most likely requires some form of escalation. Since the device needs to be
recognized by software before the driver is loaded, a reboot is also required.

The IOMMU uses the PCIe ID to provide address translation. This means non­existing IDs are
not going to be able to pass through to the memory any more. IOMMU specific vulnerabilities can be
grouped into four categories:

• Boot race conditions
Race conditions at boot target the initial DMA Remapping (DMAR) tables in memory. This can be
used to overwrite a new DMAR table, allowing certain devices to pass through the IOMMU [12].
It can also be used to misconfigure VT­d entirely, as first demonstrated by Wojtczuk et al. [60].
Markettos et al. [59] claims Apple and Microsoft and partners have patched these issues, with
Microsoft using signature verification of the ACPI DMAR table during the boot process.

• Address Translation Services (ATS)
PCIe provides a specification for buffering virtual address to physical address translations on
the device itself. The translated address can then be used by the device directly, also setting
the Address Translated (AT) flag correctly in the PCIe TLP. Previously, Linux enabled ATS by
default for every device that advertised the capability to do ATS. This was later changed to only
include devices that are ”trusted”, meaning only devices on internal PCIe busses. For Linux kernel
versions of 4.19 and lower, ATS should still work and provide a full IOMMU bypass. This does
require software device recognition, and therefore a system reboot.

• Page Granularity
The IOMMU translation is page based, with a standard 4KiB granularity. This means that when
the address space allocated to the PCI device is not perfectly aligned, some data gets leaked.
This is not really that useful, since it is difficult to consistently and effectively utilize the leaked
memory space.

• Escalation within accessible memory
The accessible memory space may still be leveraged to gain code execution on the target PC.
Markettos et al. [59] finds several of these attacks against several OSs. If there is kernel­level
code execution, this may be utilized to disable the IOMMU, but doing so would require more
extensive research and damages the integrity of the acquired memory image. Kernel Address
Space Layout Randomization (KASLR) also randomizes the memory layout of the kernel, making
some of these attacks even more difficult.

In the end, no known vulnerability directly gives full access to the memory on a latest version of
Linux.

5.4. Proposed Improvements
Considering the limitations and vulnerabilities described in Sections 5.2 and 5.3, the flowchart in Figure
5.1 gives an overview of the steps that need to be taken to perform a succesful memory acquisition
using a DMA attack using PCIe. Starting at the top of the diagram, one can follow the answers in the
diagram to determine whether a DMA attack using PCIe is possible or not.
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Figure 5.1: Flowchart for executing a succesful DMA Attack using PCIe for memory acquisition

5.4.1. Electrical Instability During Hot­Plug
A reboot may cause a loss of information, which is why a hot­plugged DMA attack is preferred. If the
device is to be hot­plugged a number of issues arise. One of these issues is the electrical instability
which may occur when a PCIe car is hot­plugged.

In order to prevent electrical instability, various solutions are proposed.

• Externally Power Device while inserting
By powering the device before insertion, the card will not draw too much power from the mother­
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board. This may reduce glitches in important voltage lines and prevent other devices from being
affected by those glitches. A seperate extender board like the PE4H [20] can be used, or the
device can be powered itself through a power­capable interface which could be present on the
device.
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Pin Side B Connector Side A Connector
# Name Description Name Description
1 +12v +12 volt power PRSNT#1 Hot plug presence detect
2 +12v +12 volt power +12v +12 volt power
3 +12v +12 volt power +12v +12 volt power
4 GND Ground GND Ground
5 SMCLK SMBus clock JTAG2 TCK
6 SMDAT SMBus data JTAG3 TDI
7 GND Ground JTAG4 TDO
8 +3.3v +3.3 volt power JTAG5 TMS
9 JTAG1 +TRST# +3.3v +3.3 volt power
10 3.3Vaux 3.3v volt power +3.3v +3.3 volt power
11 WAKE# Link Reactivation PERST# PCI­Express Reset signal
Mechanical Key
12 RSVD Reserved GND Ground
13 GND Ground REFCLK+ Reference Clock
14 HSOp(0) Transmitter Lane 0, REFCLK­ Differential pair
15 HSOn(0) Differential pair GND Ground
16 GND Ground HSIp(0) Receiver Lane 0,
17 PRSNT#2 Hotplug detect HSIn(0) Differential pair
18 GND Ground GND Ground

Table 5.1: Pinout for isolated PCIe extender (Adapted from pinouts.ru [52])

• Isolation of Power Cables
The power to and from the device could also be completely isolated. In this case only the rele­
vant differential pairs and the helper signals will be needed. An overview of which pins will be
connected can be found in Table 5.1.

• Measures against ESD and floating grounds
In order to prevent glitches in the voltage occurring through electrostatic discharge, the inserted
device and the target device should have a common ground and operator inserting the device
should also take precautions like wearing an ESD bracelet.

5.4.2. Enumeration During Hot­Plug
DMA requires a PCIe ID, which is obtained through the enumeration process. However, any device
can perform DMA by using another PCIe ID, even if it is not its own ID. Therefore, enumeration is not
needed to perform DMA. When another ID is used as the requester ID in a memory read or write TLP, it
still needs to be chosen in such a way that the completion TLP is routed back to the device. Otherwise
the completion with the requested data will not arrive at the device.

Bus numbers are assigned dynamically, which means that the same bus number might not refer
to the same physical slot. The ID might change depending on the system configuration and which
peripherals are plugged in. Brute­forcing every ID to find which ID causes a completion to be routed
back to the device is possible, since the amount of possible numbers is only 32 bits. By fixing this ID to
0xffff, the TLP is likely to be routed back through the entire PCIe network, since it is the last possible
ID. IT is also very unlikely that the 0xffff ID is used by other devices.

The PCIe device will need to be configured to pick up TLPs with the specified ID. Since the device
is not enumerated, it will need to operate outside of the specification provided by PCI­SIG. The com­
pletions also contain a tag, which can be used to verify if the completion data belongs to a TLP that
was sent by the device, even if another device is using that PCIe ID.
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Using PCIe IDs in this way falls outside of the PCIe specification. Exact behaviour is therefore un­
known and might differ per system.

5.4.3. Configuration Space
When the device is attempted to be enumerated, it will return the Vendor and Device ID. If the device
is enumerated it will pollute the memory image slightly. To avoid this, the Vendor and Device ID is fixed
to 0xffff. As mentioned in Section 3.3, this will prevent enumeration.

The Vendor and Device ID can be manipulated further: they can also be changed to the Vendor and
Device ID of another device. Should the device be enumerated the OS recognizes the device by the
Vendor and Device ID. This means any device with a known Vendor and Device ID can be spoofed.

The configuration space also contains the PCIe capability registers. Extra capabilities like ATS can
be added using these registers.
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Validation and Results Analysis

This chapter discusses the platform used to experiment on the PCIe bus as well as perform the memory
acquisition in Section 6.1. It describes the device used to execute the attack and the changes that were
made to the device, based on the proposed improvements in Section 5.4

6.1. Platform Description
This section describes the hardware and software used to execute the DMA attack and the target
systems it was tested on.

6.1.1. Attack Platform
The attack platform should provide the means to send TLPs on a PCIe bus, while posing as a legiti­
mate device according to the PCIe specification. The physical device chosen in this project was a M.2
Screamer Card by LambdaConcept [27]. Using an adapter, the card can also fit in PCIe slots both
1 and 4 lanes. The gateware [31] (the HDL running on the FPGA) and accompanying software [30]
called PCILeech is made by Ulf Frisk and is open source, released under a GPL 3.0 license. When
talking about the gateware , this report uses ”PCILeech­FPGA”, when talking about the software, it
uses ”PCILeech”.

M.2 Screamer and PCILeech­FPGA
The M.2 Screamer consists of two main parts: a USB connection to the host and the FPGA which im­
plements the PCIe core. It can be powered partially through the JTAG interface, which is also used to
program the FPGA. The open­source PCILeech­FPGA gateware allows the user fine­grained control
over the FPGA and the PCIe core. The FPGA is a Xilinx 7 Series XC7A35T[72], which has a built­in
PCIe core [71], which can be controlled via the FPGA through an IP provided by Xilinx. This core is
not written in an HDL and cannot be altered. The core does provide information and some functionality
from PCIe to the user­side on the FPGA. The PCILeech M.2 card can be seen in Figure 6.1.

There are numerous amounts of FPGAs that provide a similar functionality with regards to PCIe.
The M.2 Screamer was chosen because of the already open­source project that supports it and is
specifically designed for this purpose, a lower cost compared to full development kits, and the small
size which allows it to be placed more easily.

The core allows changing most of the registers within the configurations space by reprogramming
the core. A small portion can be changed on a live device as well. The entire configuration space can
be read out to check the status of the device. The core can also be configured to let any TLP it finds
through to the attacker, even TLPs with a different PCIe ID than the core.

PCILeech and LeechCore
PCIleech is open­source software build on the open­source LeechCore [29] library. LeechCore pro­
vides the interaction with the device and the tools for executing the DMA attack. PCILeech utilizes

45
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Figure 6.1: The PCILeech M.2 Card in a PCIe x4 Adapter

System CPU Chipset PCIe Form Factor
Dell PowerEdge R330 Intel Xeon E3­1240 C236 x16
Dell PowerEdge R320 Intel Xeon E5­2430 C600/X79 x16
Dell Precision T5400 Intel Xeon E5410 631xESB x8 and x16

Table 6.1: The three platforms upon which was tested

those tools to execute the attack and also contains examples for injecting modules in order to attack
common OSs. It also allows to send custom TLPs on the PCIe bus, as long as the device has been
completed the LTSSM properly.

6.1.2. Target Description
The acquisition method was tested on three platforms, which can be seen in Table 6.1. All platforms
were running Ubuntu version 20.04.1. The Dell Precision T5400 had two open PCIe slots. These
slots displayed different behaviour.

6.2. DMA­based Memory Acquisition Using PCILeech
This section discusses the experiments that have been performed in order to validate and to attempt
to improve upon DMA­based memory acquisition using PCILeech. It first discusses the electrical sta­
bility while hot­plugging the device. After the device has been successfully hot­plugged, Section 6.2.2
describes the attempt of simulating enumeration by modifying the configuration space on the device.
Section 6.2.4 discusses the experiments to manipulate the PCIe ID used in the TLPs that support DMA.
Section 6.2.3 takes describes manipulating the vendor and device ID in configuration space and adding
PCIe capability registers. Section 6.2.5 confirms the ability to read and write to memory using TLPs.
These TLPs are then used to perform a full memory acquisition, which is discussed in Section 6.2.6.
The setup used in this section can be seen schematically in Figure 3.3.

6.2.1. Electrical Stability During Hot­Plug
The Electrical and LTSSM response for different set­ups was tested. The results can be seen in Table
6.2. The device was tested without modifications, with an extender cable with only the pins from Table
5.1 connected, through the PE4H Extender Board, and with the board directly powered from the JTAG
interface used to program the board.

As can be seen from Table 6.2, all options decrease the chance of a system crash. However, while
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System Crash on Hot­Plug
Standard Extender Cable PE4H JTAG

System Dell PowerEdge R330 Sometimes, Delayed No No No
Dell PowerEdge R320 No No No No
Dell T5400 — Slot 1 Yes, Immediately No No No
Dell T5400 — Slot 2 Yes, Delayed No No No

Successful LTSSM on Hot­Plug
Standard Extender Cable PE4H JTAG

Dell PowerEdge R330 Yes Yes ­ Yes
Dell PowerEdge R320 No No No No
Dell T5400 — Slot 1 No No Yes Yes
Dell T5400 — Slot 2 Sometimes Yes Yes Yes

Table 6.2: Results for Electrical Stability tests

the PE4H and powering the board through JTAG improve the chance at a successful link training se­
quence, the extender cable does this merely to a lesser extent. How exactly the upstream port detects
a new device and why the extender cable does not work in this case is unknown.

6.2.2. Simulating Enumeration by Modifying the Configuration Space
When the device is hot­plugged (inserted into the system, while the system is live), the device is not
enumerated. At first, an attempt was made to simulate enumeration by modifying the configuration
space of the device. This could be performed by accessing the configuration space through the host
PC, which controls the device on the target PC. This was unsuccessful however.

First, the enumeration sequence as performed by the Linux kernel has been analyzed. This has
been performed by altering the kernel and placing extra debug information in /drivers/pci/ac­
cess.c. The result of this extra debug information can be found in Appendix A. The PCIe Core by
Xilinx provides a way to read and write to the configuration space. Using this functionality, it is at­
tempted to perform the same actions as executed by the kernel, but now executed from the host PC.

Writing to the configuration space proved less effective. Although a part of the configuration space
could be written to, most of the registers remained unchanged. In Listing 6.1, the configuration space
of the device is displayed. One can note the first register in the configuration space, which is the Ven­
dor and Device ID. In this case the Vendor ID is 0x10ee, corresponding to Xilinx. The Device ID is
0x0666, which corresponds to an Ethernet Adapter. By attempting to write 0xbbbb to every register, it
may become clear to what extent the configuration space can be altered live. In Appendix B, the result
after attempting to write 0xbbbb can also be seen. The IP Core by Xilinx apparently does not allow
modifying every register for an unknown reason.

This method of simulating enumeration also proved flawed since the PCIe ID is not stored in the
configuration space. The register containing the PCIe ID is instead only set when receiving a configu­
ration read or write request TLP on the PCIe, upon which it assumes the ID used in that TLP. This is
impossible to do through the host PC. This, combined with the fact that the configuration space limits
writing to certain registers, makes simulating enumeration through the host impossible for this platform.

6.2.3. Configuration Space Manipulation
The IP Core by Xilinx has been changed to use 0xffff as vendor and device ID. This resulted in
the device not being enumerated when hot­plugged, even when a PCIe bus rescan was performed as
indicated in Section 3.3. When the device is inserted before boot, the BIOS may still recognize the
existence of the device, and indicates a (sometimes fatal) error with the PCIe device. For an unknown
reason, this may result in not being able to boot with the device plugged in.
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Listing 6.1: The PCILeech­FPGA Configuration Space before Enumeration

o f f s e t data i n l i t t l e −endian
0000 ee 10 66 06 07 00 10 20 02 00 00 02 00 00 00 00
0010 00 00 d0 92 00 00 00 00 00 00 00 00 00 00 00 00
0020 00 00 00 00 00 00 00 00 00 00 00 00 ee 10 07 00
0030 00 00 00 00 40 00 00 00 00 00 00 00 f f 01 00 00
0040 01 48 03 78 08 00 00 00 05 60 80 00 00 00 00 00
0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0060 10 00 02 00 e2 8 f 2c 01 3e 29 00 00 12 f4 03 00
0070 40 00 12 10 00 00 00 00 00 00 00 00 00 00 00 00
0080 00 00 00 00 02 00 00 00 06 00 00 00 00 00 00 00
0090 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 f0 00 00 00 00 00 00 00 00 00 00 00 00 03 00 c1 10
0100 00 00 00 00 35 0a 00 01 01 00 00 00 00 00 00 00
0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01 f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

In a second experiment, the vendor and device ID were changed to match a Intel Host Bridge. The
capability registers on the device were changed in such a way to indicate the support for ATS (Address
Translation Services, mentioned in Section 3.3.2). The result can be seen in Figure 6.2. The PCIe
device can still be enumerated after a rescan and is recognized as an Intel Host Bridge, as seen at the
top of the Figure. The extra ATS functionality is recognized as well and can be seen at the bottom of the
Fgiure. Although enabling ATS did not bypass the IOMMU on this version of Linux, it proves that this
strange combination of vendor and device ID and functionality is accepted by the software nonetheless.
This greatly opens up opportunities for finding bad/outdated drivers or code corresponding to the IDs
and functionality.

Altering the configuration space to show a different device with different capabilities opens up possi­
bilities for exploits within software. However, the device needs to be enumerated before these changes
have actual effect. Changing the vendor and device ID to 0xffff might also prove useful in order to
hide the device from the OS. It does not mean the device is fully invisible: requesting another register
from the configuration space will give a ”normal” response.
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Figure 6.2: A Device with altered configuration space as seen from the target PC (Dell PowerEdge R330)

6.2.4. PCIe ID Manipulation
PCILeech previously checked to see if the device was properly initialized by checking the PCIe ID,
which is exposed to the software by the PCIe core. The software has been altered to accept and still
communicate with an unenumerated device. This gives us more flexibility to communicate with the
PCILeech FPGA.

The PCIe IP Core previously only accepted TLPs if they matched the internal PCIe ID of the IP Core.
The only thing it accepts before that are Configuration Read and Write Requests, since those are used
to enumerate the device. The IP Core has been altered to accept any incoming TLP, regardless of
the PCIe ID corresponding to the TLP. One can compare this to a ”promiscuous” mode in a Network
Controller.

These two changes combined successfully allow a hot­plugged and Link­Trained device to commu­
nicate on the PCIe bus of a Dell PowerEdge R330 with some specifically crafted TLPs. It has been
discovered that a memory write TLP is always routed to the root complex and executed as if it were a
legitimate TLP coming from a legitimate PCIe device, even if a device belonging to the PCIe ID does
not exist. The only exception is when the sender is puts its PCIe ID as 0x0000, i.e. the root complex’s
PCIe ID. The TLP is rejected then.

Completions are routed back to the correct device based on a PCIe ID. Since the device now ac­
cepts any TLP presented on its bus, the only thing required to see the completion is to have it routed to
the bus on which the device is present. The exact behaviour for routing TLPs with unknown PCIe IDs
is unknown and most likely device­specific as well, since the PCIe specification provides no guidelines
for them. It is theorized that by putting the PCIe ID as 0xffff, the TLP will be routed furthest away
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and will pass through all known busses in order to find the correct device with that PCIe ID.

6.2.5. Reading and Writing Memory
By Hot­Plugging the device, waiting for Link Training, and using the adaptations to PCILeech presented
in the previous section, the device can successfully perform memory read and writes. An example of
a memory read can be seen in Listing 6.2. This shows a Memory Read TLP, requesting some data.
The second TLP is the completion with the data attached to it.

Listing 6.2: A Memory Read TLP with its according Completion with the memory data

TX: MRd64: Len : 020 ReqID : f f f f BE_FL : f f Tag : 81 Addr : 0000000180000080
0000 20 00 00 20 f f f f 81 f f 00 00 00 01 80 00 00 80

RX: CplD : Len : 020 ReqID : f f f f CplID : 0000 Status : 0 BC: 080 Tag : 81
LowAddr : 00

0000 4a 00 00 20 00 00 00 80 f f f f 81 00 2e 6c 00 00
0010 9c 3c 00 00 95 60 00 00 d2 73 00 00 d5 3 f 00 00
0020 0a 01 00 00 5d 6a 00 00 7e 11 00 00 fd 74 00 00
0030 50 79 00 00 93 73 00 00 06 74 00 00 2d 56 00 00
0040 a5 31 00 00 23 54 00 00 ef 5d 00 00 e8 7c 00 00
0050 54 7a 00 00 b6 04 00 00 8 f 68 00 00 3a 53 00 00
0060 07 33 00 00 e3 4c 00 00 72 49 00 00 90 53 00 00
0070 46 5b 00 00 a3 21 00 00 fd 06 00 00 cd 7a 00 00
0080 3b 0c 00 00 06 48 00 00 51 60 00 00

The following extra limitations were found:

• Only a maximum of 256 bytes can be requested per TLP. In a normal situation, one TLP can
return an entire page (4kB) of data. Why this is not possible using an unenumerated device is
not known. It also indicates that the root complex is able to differentiate between an enumerated
device and an unenumerated device.

• Completions are sometimes randomly split up into multiple completions. An example can be seen
in Listing 6.3. This displays two separate completions responding to the same memory request.
This may be due to the link running out of credits on the Data Link Layer, or a sudden decrease
in bandwidth in an upstream link.

• Certain parts of the memory cannot be read. They return a completion with a status of 1. This
can be seen in Listing 6.4, where the reponse to the memory read is stil a completion, but instead
of the data, it contains a ”status” of 1, which indicates a failed completion. This may occur when
reading to stolen memory space, or IOMMU protected memory space.

The kernel symbol jiffies was chosen to demonstrate the reading and writing capabilities of a
DMA using PCIe. jiffies is a counter which increments based on a programmable interrupt timer. It
is used to measure time since boot, and check whether the CPU is still performing normally. jiffies
has been chosen because of the following reasons:

• It is a simple and universal value in Linux distributions which allows for verifiability, even if Linux
changes.

• The value of jiffies changes regularly, which allows a demonstration of repeated reading of
the same memory.

• The OS depends on this value and tinkering with the value is most likely going to cause unex­
pected system behaviour.



6.2. DMA­based Memory Acquisition Using PCILeech 51

Listing 6.3: A Memory Read TLP with a split completion with the memory data

TX: MRd64: Len : 020 ReqID : f f f f BE_FL : f f Tag : 80 Addr : 0000000180000000
0000 20 00 00 20 f f f f 80 f f 00 00 00 01 80 00 00 00

RX: CplD : Len : 010 ReqID : f f f f CplID : 0000 Status : 0 BC: 080 Tag : 80
LowAddr : 00

0000 4a 00 00 10 00 00 00 80 f f f f 80 00 0a 64 00 00
0010 e9 66 00 00 08 12 00 00 65 1c 00 00 52 25 00 00
0020 ec 70 00 00 ac 7 f 00 00 b7 50 00 00 df 2 f 00 00
0030 f c 7c 00 00 9b 71 00 00 cb 6c 00 00 45 69 00 00
0040 26 7e 00 00 41 63 00 00 aa 40 00 00

RX: CplD : Len : 010 ReqID : f f f f CplID : 0000 Status : 0 BC: 040 Tag : 80
LowAddr : 40

0000 4a 00 00 10 00 00 00 40 f f f f 80 40 75 5a 00 00
0010 6e 2e 00 00 24 68 00 00 11 0d 00 00 4a 0 f 00 00
0020 11 40 00 00 1a 28 00 00 d2 5e 00 00 5e 14 00 00
0030 0d 34 00 00 ba 6b 00 00 78 39 00 00 22 07 00 00
0040 e3 79 00 00 10 4d 00 00 2a 55 00 00

Listing 6.4: A Memory Read TLP with a failed Completion without the memory data

TX: MRd64: Len : 020 ReqID : aaaa BE FL : f f Tag : 80 Addr : 00000001fe000000
0000 20 00 00 20 aa aa 80 f f 00 00 00 01 fe 00 00 00

RX: Cpl : 0000 Len : 200 ReqID : aaaa CplID : 2000 Status : 1 BC: 080 Tag : 80
LowAddr : 00

0000 0a 00 00 00 00 00 20 80 aa aa 80 00

Reading (and writing near) to jiffies using a hot­plugged device was successful. Finding the lo­
cation of jiffies can be performed using /proc/iomem to locate the kernel and boot/System.map
to locate the exact place of jiffies within the kernel.

In order verify that Jiffies works correctly, it is first read from the target PC, which can be seen in
Listing 6.5. This listing displays a repeated read to the address of jiffies. It can be seen in the response
that jiffies is slowly counting up. Jiffies is then read from the host PC. The result can be seen in Figures
6.3 and 6.4. The difference between the two figures is indicated in red, and it can be seen that there
are two counters for jiffies, both counting up slowly.

Reading jiffies using PCILeech:

6.2.6. Memory Acquisition Using PCILeech
First, a partial memory range of 16MB on the target PC (The Dell PowerEdge R330) was written to
using PCILeech and then read back using PCILeech and on the target server using fmem [49]. The
three dumps were compared using an MD5 Hash. This way it is possible to verify the correctness of
the acquisition method.

At first a file, filled with randomized data of 16MB is created using rdfc[13] and its signature verified
in Listing 6.6. This file is then inserted into the target memory using PCILeech.the memory is then
acquired using PCILeech and the result trimmed down to 16MB. The output file has the same hash as
the input file. The memory is also read out on the target system, which was the Dell PowerEdge R330.
This can be seen in Listing 6.7.

Acquiring a full memory image was partially successful. The results when reading memory can be
seen in Listing 6.8. A number of pages failed to read. These pages are part of the Stolen Memory Re­
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Listing 6.5: Reading Jiffies from the Target PC

server1@server1 : −$ sudo dd i f = / dev / fmem bs=1 count=16 sk ip=$ ( ( 0 x382406980 )
) o f=temp .dump ; hexdump temp .dump

16+0 records i n
16+0 records out
16 bytes copied , 0 ,000175502 S, 91 ,2 kB / s
0000000 ac5a 002 f 0001 0000 0000 0000 0000 0000
0000010
server1@server1 : −$ sudo dd i f = / dev / fnen bs=1 count=16 sk ip=$ ( ( 0 x382406980 )

) o f=temp .dump ; hexdump temp .dump
16+0 records i n
16+0 records out
16 bytes copied , 0 ,000165958 5 , 96 ,4 kB / s
0000000 af4b 002 f 0001 0000 0000 0000 0000 0000
0000010
server1@server1 : $ sudo dd i f = / dev / fmem bs=1 count=16 sk ip=$ ( ( 0 x382406980 )

) o f=temp .dump ; hexdump temp .dump
16+0 records i n
16+0 records out
16 bytes copied , 0 ,000196499 5 , 81 ,4 kB / s
0000000 boe2 002 f 0001 0000 0000 0000 0000 0000
0000010
server1@server1 : $ sudo dd i f = / dev / fmem bs=1 count=16 sk ip=$ ( ( 0 x382406980 )

) o f=temp .dump ; hexdump temp .dump
16+0 records i n
16+0 records out
16 bytes copied , 0 ,000196585 s , 81 ,4 kB / s
0000000 b24c 002 f 0001 0000 0000 0000 0000 0000
0000010
server1@server1 : $ sudo dd i f = / dev / fmem bs=1 count=16 sk ip=$ ( ( 0 x382406980 )

) o f=temp .dump ; hexdump temp .dump
16+0 records i n
16+0 records out
16 bytes copied , 0 ,000180344 s , 88 ,7 kB / s
0000000 b340 002 f 0001 0000 0000 0000 0000 0000
0000010

gions, as explained in Section 2.4. The exact address range can be seen in Listing 6.9. When dumping
memory with an IOMMU active and a Hot­Plugged device, no pages can be read from the memory.

6.3. General Evaluation and Discussion
The proposed improvements have been successful in accomplishing their goal. Using a PE4H ex­
tender or powering the device through the available JTAG port prevents crashing the system. The
extender cable also prevents crashing, but prevents a successful LTSSM in the Dell T5400. This is
interesting since it means some systems might use other mechanisms for detecting PCIe devices than
just the PRSNT pins. The Dell Poweredge R320 has a PCIe slot which does not appear to be ac­
tive when it boots without a card inside the PCIe slot. The LTSSM can successfully complete when
a PCIe device has been inserted during boot, but removed to free the slot for the PCILeech­fpga device.

When the LTSSM was successful, a memory acquisition could be performed. On one slot on the
Dell T5400, the machine responded to memory read requests with a Vendor­Defined Message within
the Message protocol of PCIe. The contents of this message indicate that the message is from an Intel
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Figure 6.3: Reading jiffies for the first time

Figure 6.4: Reading jiffies for a second time

device. The message does not contain the memory data and the exact meaning of the message is
unknown. To what extent the improvements were successful can be seen in Table 6.3.

These experiments have only been tested on three different systems and more testing on a wider
variety of systems is necessary to draw a stronger conclusion on the viability of a Hot­Plugged DMA­
based memory acquisition. Although improvements were made on these systems, the process showed
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Pin Side B Connector Side A Connector
# Name Description Name Description
1 +12v +12 volt power PRSNT#1 Hot plug presence detect
2 +12v +12 volt power +12v +12 volt power
3 +12v +12 volt power +12v +12 volt power
4 GND Ground GND Ground
5 SMCLK SMBus clock JTAG2 TCK
6 SMDAT SMBus data JTAG3 TDI
7 GND Ground JTAG4 TDO
8 +3.3v +3.3 volt power JTAG5 TMS
9 JTAG1 +TRST# +3.3v +3.3 volt power
10 3.3Vaux 3.3v volt power +3.3v +3.3 volt power
11 WAKE# Link Reactivation PERST# PCI­Express Reset signal

Mechanical Key
12 RSVD Reserved GND Ground
13 GND Ground REFCLK+ Reference Clock
14 HSOp(0) Transmitter Lane 0, REFCLK­ Differential pair
15 HSOn(0) Differential pair GND Ground
16 GND Ground HSIp(0) Receiver Lane 0,
17 PRSNT#2 Hotplug detect HSIn(0) Differential pair
18 GND Ground GND Ground

Table 6.3: Improvements to memory acquisition on various systems

a lot of quirks. Instances like the Extender Cable preventing the LTSSM indicate the need for more re­
search into how the chipset actually functions. Most of the techniques here are not within the PCIe
specification. The specification even explicitly forbids a device from using a Vendor and Device ID
of 0xffff. This means it is difficult to say whether these techniques actually hold up outside of the
currently tested systems.

The memory dumps that can be made are also verified to be true to the memory image using the
MD5 Hash. However, this only concerns memory the memory acquisition method can reach. Us­
ing /proc/iomem, which can be seen in Appendix C one can confirm the memory mapping of the
main memory. PCILeech indicates a failure in reading pages from 0x8f000000 to 0x100000000.
/proc/iomem shows that this memory range contains the following data:

• Memory reservations for the software for PCIe devices

• Memory reservations for the configuration spaces of PCIe devices

• Memory related to the interrupt controller for IO devices

• Memory for the HPET (High Precision Event Timer)

• Memory for plug­and­play devices like USB devices

The kernel is still located outside of this area, which means it is still possible to access it like proven
in Section 6.2.5.

As proven in Section 6.2.5 with reading jiffies, this memory acquisition method is not perfectly
atomic. The acquisition speed is roughly 26MB/s. Memory acquisitions using an enumerated device
are faster, because in that case the maximum amount of memory data that is being received per MRd
TLP is 4KiB (one page). An unenumerated method is therefore less atomic. An unenumerated method
is better in regards of correctness. An enumerated device takes up a small amount memory on the
target itself through MMIO, which does not happen with an unenumerated device. The integrity of the
method is verified using the experiment in Section 6.2.6. Data can be acquired from the memory and
is the same from both the point of view from the target, as well as the host system.
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Listing 6.6: Validating a memory dump from the Host PC

The Hash of the randomly generated f i l e :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pc i leech \ f i l e s > c e r t u t i l − hash f i l e co r r . t e s t MD5
MD5 hash of co r r . t e s t :
520f676e713c4ed64e48ffcda542638f
Ce r t U t i l : − hash f i l e command completed success fu l l y .

The f i l e i s i nse r t ed i n t o the t a r ge t memory :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pc i leech \ f i l e s >pc i leech . exe w r i t e −min 0x180000000 − in 16mb2. t e s t

Memory Wri te : Successfu l .

pc i l eech \ f i l e s >pc i leech . exe dump −min 0x180000000 −max 0x190000000

Current Act ion : Dumping Memory
Access Mode : Normal
Progress : 256 / 256 (100%)
Speed : 85 MB/ s
Address : 0x0000000190000000
Pages read : 65536 / 65536 (100%)
Pages f a i l e d : 0 (0%)
Memory Dump: Successfu l .

The memory dump i s trimmed down to 16MB
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pc i leech \ f i l e s >dd i f =pc i leech − 180000000−190000000−20210320−220748.raw
of=cor r5 . t e s t bs=1 count=16000000

rawwr i te dd f o r windows vers ion 0.6 beta3 .
Wr i t t en by John Newbigin < jn@i t . swim . edu . au>
This program i s covered by terms of the GPL Version 2 .

16000000+0 records i n
16000000+0 records out

The output f i l e i s hashed again and shows the co r r ec t Hash
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pc i leech \ f i l e s > c e r t u t i l − hash f i l e cor r5 . t e s t MD5
MD5 hash of cor r5 . t e s t :
520f676e713c4ed64e48ffcda542638f
Ce r t U t i l : − hash f i l e command completed success fu l l y .
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Listing 6.7: Validating a memory dump from the Target PC

Ret r i ev i ng the data from memory using fmem on the t a r ge t PC:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

server1@server1 : ~ / Documents / fmem/ fmem$ dd i f = / dev / fmem of=temp .dump bs=1
count=16000000 sk ip=$ ( ( 0 x180000000 ) ) ; hexdump temp .dump −n40

16000000+0 records i n
16000000+0 records out
16000000 bytes (16 MB, 15 MiB ) copied , 32 ,3772 s , 494 kB / s
0000000 640a 0000 66e9 0000 1208 0000 1c65 0000
0000010 2552 0000 70ec 0000 7 fac 0000 50b7 0000
0000020 2 f d f 0000 7c fc 0000
0000028

Computing the hash of the acquired memory using md5sum:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

server1@server1 : ~ / Documents / fmem/ fmem$ md5sum temp .dump
520f676e713c4ed64e48ffcda542638f temp .dump

Listing 6.8: Reading full memory from target

>pc i leech . exe probe
I n i t i a l DeviceID check Fa i led
Unable to r e t r i e v e requ i red Device PCIe ID , Spoof ID in sof tware? ( y / n )у

Memory Map:
START END #

PAGES
0000000000000000 000000000009 f f f f 0000000
000000000000000 000000008 e f f f f f f 0008ef40
0000000100000000 000000046 f f f f f f f 00370000
Current Act ion : Probing Memory
Access Mode : Normal
Progress : 18176 / 18176 (100%)
Speed :
370 MB/S
Address :
0x0000000470000000
Pages read : 4190176 / 4653056 (90%)
Pages f a i l e d :
462880 (9%)
Memory Probe : Completed .
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Listing 6.9: Reading failing memory from target

>pc i leech . exe probe −max 0x100000000 −min 0x8f000000
I n i t i a l DeviceID check Fa i led
Unable to r e t r i e v e requ i red Device PCIe ID , Spoof ID in sof tware? ( y / n )
y
Memory Map:
START END #PAGES
Current Act ion : Probing Memory
Access Mode : Normal
Progress : 1808 / 1808 (100%)
Speed :
361 MB/ s
Address : 0x00000000000000
Pages read :
0 / 462848 (0%)
Pages f a i l e d :
462848 (100%)
Memory Probe : Completed .





7
Conclusion

This chapter provides a summary of the thesis in Section 7.1 and recommendations for future work in
Section 7.2.

7.1. Summary
Chapter 1: Introduction describes the motivation behind the thesis, followed by the context of

digital forensics to which this project developed. The state­of­the­art analysis outlines the past devel­
opments regarding memory analysis and current memory acquisition techniques. It concludes with a
description of the contribution of the thesis and the general structure for the rest of the thesis.

Chapter 2: Memory Organization provides an up­to­date overview of modern memory organiza­
tion, discussing the relevant concepts with regards to the three main building blocks of modern day
storage: the cache, the main memory and permanent storage. It also discusses memory controllers
and their impact on computer systemmemory, as well as the interfaces which can connect to the DRAM.

Chapter 3: Peripheral Component Interconnect Express discussed the basics of PCI express
and the three layers that constitute the protocol. It describes how a PCIe device is initialized and can
be configured. Afterwards, Direct Memory Access (DMA) using PCIe is discussed. The relevant TLPs
and their purpose within DMA are explained.

Chapter 4: Memory Acquisition Techniques discusses the different existing techniques or con­
cepts of techniques for acquiring memory. It classifies them into three categories based on the interface
where the acquisition is executed. The first type of acquisition technique is software based. This in­
cludes running native or 3rd party software tools on the system itself to provide a memory snapshot.
The second category uses DMA and provides a straightforward way of accessing the memory. This
category is divided into two subcategories: if the DMA channel can be directly accessed by a device the
attacker chooses, it is classified as a direct DMA channel. If it requires subverting an existing device
with a DMA channel, it is classified as an indirect DMA channel. The memory can also be accessed
directly over the memory bus and also can be targeted directly, which constitute the last category of
memory acquisition method. In contrast to software­based memory acquisition techniques, hardware­
based techniques have the advantage that they do not require admin access or a login.

In order to limit the scope of the thesis, a scenario in which a solution would need to operate is de­
scribed. Next, an adapted model is used to determine to most effective method of memory acquisition.
This chapter discusses the reasoning behind the model, applies it to available hardware methods, and
discusses the result.

Chapter 5: DMA­based Memory Acquisition Using PCIe further details what a DMA attack ex­
actly is. It first discusses past usages of DMA and a state­of­the­art of modern DMA attacks. It then
describes the main countermeasures and drawbacks of acquiring memory based on these attacks.
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Based on a vulnerability analysis of PCIe and DMA, improvements to the memory acquisition
method have been proposed. These improvements intend to facilitate a hot­plug of the attack de­
vice by ensuring electrical stability of the system and a device that functions without enumeration. By
changing the vendor and device ID in configuration space, it is possible to make sure that enumeration
does not happen, which ensures an untouched memory image.

Chapter 6: Validation and Results Analysis discusses PCILeech: the platform used to exper­
iment on the PCIe bus, as well as perform the memory acquisition. It described the device used to
execute the acquisition and the changes that were made to the device, based on the proposed im­
provements in Chapter 5.

Section 6.2 discusses the experiments that have been performed in order to validate and to attempt
to improve upon DMA­based memory acquisition using PCILeech. It first discusses the electrical sta­
bility while hot­plugging the device. After the device has been successfully hot­plugged, it describes
the attempt of simulating enumeration by modifying the configuration space on the device. Afterwards,
it describes the experimentation to manipulate the PCIe ID used in the TLPs that support DMA and to
manipulate the vendor and device ID in configuration space and adding PCIe capability registers. The
ability to read and write to memory using TLPs is displayed and these TLPs are then used to success­
fully perform a full memory acquisition.

Memory acquisition using DMA over PCIe was successful. The proposed improvements provided
a way to perform DMA without having to reboot the target system and have less impact on it. These
improvements can aid a forensic investigator in performing a better memory analysis.

7.2. Future Work
This thesis proposes several areas of potential future work.

• LTSSM / PCH / Switches / Chipset interaction
What exactly triggers Link Training after a Hot­Plug and how the interaction is handled between
the downstream device and an upstream device is still unknown. It would be insightful to further
research how the device interacts with several upstream devices like the PCH, a PCIe switch or
the chipset.

• IOMMU
When the IOMMU is active and correctly implemented, it can counter a DMA attack almost com­
pletely. Further research into the IOMMU and its interaction with PCIe may prove insightful to
bypass (some parts of) the IOMMU.

• DMI
The DMI bus connects the PCH to the CPU and functions as an extension of the PCIe network.
the DMI bus is PCIe bus 0. This means all packets pass through this bus. It also connects
directly to the Root Complex and the IOMMU also communicates to the Root Complex over this
bus. Further understanding of this bus and the possibility to connect to it might lead to finding
interesting exploits.

• Warm reboot
A reboot might destroy (parts of) the memory. A ”warm” reboot keeps the RAM and CPU turned
on. This may keep the memory data intact after a reboot. Further research into the effects of a
reboot on the RAM and possible system subversion during a system reboot can lead to a better
acquisition technique.

• SMBus / JTAG
The PCIe interface automatically includes a JTAG and SMBus interface. It is currently not know
exactly what impact these protocols could have and to what extent they can influence upstream
devices.
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• Cache coherency
Reading and Writing to RAM may be successful, but there might also be data in the CPU. The
cache within the CPU is usually not fully up­to­date with the main memory. If the RAM is changed
after a memory write through DMA, will the cache be updated automatically? The same could be
true for the reverse: Is there newer memory data within the cache, which is currently not the same
in the main memory. Further research may reveal information about the coherency between the
cache and the CPU during a DMA­based acquisition.

• Different systems
The memory acquisition has been shown to work on these specific systems, but testing the
method on a higher amount of systems, with other CPUs and/or chipsets will yield a stronger
conclusion about the robustness, flexibility, stability, and applicability of the method.

• Different PCIe slots
The device has currently only been inserted in any available PCIe slot. However, some slots are
connected to a switch, others to a PCH, and others directly to the root complex. Investigating
the behaviour of the device in different slots can lead to a better understanding of the acquisition
method.

• PCIe device detection
The experiments in Section 6.2.1 showed a difference in device detection when the PE4H connec­
tor was used compared to the extender cable. This behaviour also differed per tested system.
Finding out how a system detects and sets up a hot­plugged PCIe device can lead to a more
stable hot­plug method.
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A
Enumeration Kernel Debug

A short excerpt with explanation of some dumped debug information during a re­enumeration sequence
in the Linux kernel. This debug information was acquired by changing /drivers/pci/access.c and
recompiling the Linux Kernel. This new kernel was run on the Dell PowerEdge R330.

A print statement has been added in PCI_OP_READ and PCI_OP_WRITE, which are the base
functions any driver uses to read and write to pci devics. The information in the debug print statement
is as follows:

• Function: Where the debug statement is in the code

• Devfn: The device function number that is being addressed, part of the full PCIe ID

• Pos: The position of the register that is being accessed

• Len: The length of the register(s) that is being accessed in bytes

• Data: The data that is read from the device

• &data: where the data is stored on the target system

• Value: The data written to the device

[ 102.712778] Funct ion : PCI_OP_READ, devfn i s 11 , pos i s 0 , len i s 4 ,
data i s f f f f f f f f ,

Exp lanat ion :
Target : The device ID and Vendor ID r e g i s t e r
What i t does : Attempt to read out some device on some bus . I f the r e s u l t

i s f f f f f f f f , t h i s i nd i ca t es t ha t the device does not e x i s t ( or has
f f f f f f f f as a device / vendor ID )

[ 102.729858] Funct ion : PCI_OP_READ, devfn i s 0 , pos i s 0 , len i s 4 , data
i s 66610ee

Explanat ion :
Target : The device ID and Vendor ID r e g i s t e r
What i t does : Attempt to read out some device on some bus . In t h i s case ,

the device and vendor ID have been re turned . The Vendor ID i s 10ee ,
corresponding to X i l i n x Corp . The Device ID i s 0666 ( Ethernet Adapter )

[ 102.729941] pc i 0000:01 :00 .0 : Funct ion : pc i_wr i te_con f ig_word
[ 102.729945] Funct ion : PCI_OP_WRITE, devfn i s 0 , pos i s 4 , len i s 2 ,

value i s 400
Explanat ion :
Target : Command Regis te r
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What i t does : Enable Fast Back−to −Back t r ans f e r s

[ 102.730191] pc i 0000:01 :00 .0 : Funct ion : pc i_wr i te_con f ig_word
[ 102.730195] Funct ion : PCI_OP_WRITE, devfn i s 0 , pos i s 104 , len i s 2 ,

value i s 2930
Explanat ion :
Target : Device Cont ro l Reg is te r i n extended c a p a b i l i t i e s
What i t does : Change max payload s ize from 128 to 256



B
Writing to Configuration Space Using the

IP Core
The configuration space before enumeration can be seen in Listing B.1. Next, in order to demonstrate
the extent to which this configuration space can be written to, it is attempted to write 0xbbbb to every
data word in the configuration space. The result can be seen in Listing B. It can be seen that barely
any registers are affected by this write.

Listing B.1: The PCILeech­FPGA Configuration Space before Enumeration

o f f s e t data i n l i t t l e −endian
0000 ee 10 66 06 07 00 10 20 02 00 00 02 00 00 00 00
0010 00 00 d0 92 00 00 00 00 00 00 00 00 00 00 00 00
0020 00 00 00 00 00 00 00 00 00 00 00 00 ee 10 07 00
0030 00 00 00 00 40 00 00 00 00 00 00 00 f f 01 00 00
0040 01 48 03 78 08 00 00 00 05 60 80 00 00 00 00 00
0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0060 10 00 02 00 e2 8 f 2c 01 3e 29 00 00 12 f4 03 00
0070 40 00 12 10 00 00 00 00 00 00 00 00 00 00 00 00
0080 00 00 00 00 02 00 00 00 06 00 00 00 00 00 00 00
0090 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 f0 00 00 00 00 00 00 00 00 00 00 00 00 03 00 c1 10
0100 00 00 00 00 35 0a 00 01 01 00 00 00 00 00 00 00
0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01 f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
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01e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

o f f s e t data i n l i t t l e −endian
0000 ee 10 66 06 03 01 10 00 02 00 00 02 bb 00 00 00
0010 00 b0 bb bb 00 00 00 00 00 00 00 00 00 00 00 00
0020 00 00 00 00 00 00 00 00 00 00 00 00 ee 10 07 00
0030 00 00 00 00 40 00 00 00 00 00 00 00 bb 01 00 00
0040 01 48 03 78 0b 1b 00 00 05 60 b1 00 b8 bb bb bb
0050 bb bb bb bb bb bb 00 00 00 00 00 00 00 00 00 00
0060 10 00 02 00 e2 8 f b8 0b bb 3b 11 00 12 f4 03 00
0070 9b 0b 12 10 00 00 00 00 bb 13 a0 00 1b 00 00 00
0080 00 00 00 00 02 00 00 00 1b 03 00 00 00 00 00 00
0090 bb 1b 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 f0 00 00 00 00 00 00 00 00 00 00 00 00 03 00 c1 10
0100 00 00 00 00 35 0a 00 01 01 00 00 00 00 00 00 00
0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01 f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00



C
Memory Mapping with /proc/iomem

Using /proc/iomem one can confirm the memory mapping of the main memory. PCILeech indicates
a failure in reading pages from 0x8f000000 to 0x100000000. Through /proc/iomem we see that
this memory mainly contains MMIO related memory contents. The kernel is still located outside of this
area, which means we can still access it like proven in Section 6.2.5.

Listing C.1: The content of /proc/iomem for a memory dump

00000000−00000 f f f : Reserved
00001000−00057 f f f : System RAM
00058000−00058 f f f : Reserved
00059000−0009 f f f f : System RAM
000a0000−000 b f f f f : PCI Bus 0000:00
000f0000 −000 f f f f f : System ROM
00100000−857ae017 : System RAM
857ae018−857de057 : System RAM
857de058−857df017 : System RAM
857df018 −8580f057 : System RAM
8580f058 −85c09017 : System RAM
85c09018−85c21457 : System RAM
85c21458−85d0f017 : System RAM
85d0f018−85d17057 : System RAM
85d17058−8d480 f f f : System RAM
8d481000−8d481 f f f : ACPI Non− v o l a t i l e Storage
8d482000−8 d4cb f f f : Reserved
8d4cc000−8d613 f f f : System RAM
8d614000−8 e f 6 9 f f f : Reserved

8d6c4b98−8d6c4b98 : wdat_wdt
8e303018−8e303067 : APEI ERST
8e303070−8e303077 : APEI ERST
8e303078−8e305017 : APEI ERST

8ef6a000−8 e f 9 9 f f f : ACPI Non− v o l a t i l e Storage
8ef9a000−8 e f e 6 f f f : ACPI Tables
8efe7000−8 e f f f f f f : System RAM
8f000000−8 f f f f f f f : RAM bu f f e r
90000000− d f f f f f f f : PCI Bus 0000:00

90000000−9001 f f f f : pnp 00:08
90100000−901 f f f f f : PCI Bus 0000:04

90100000−9013 f f f f : 0000:04:00.0
90140000−9017 f f f f : 0000:04:00.1

91000000−91 f f f f f f : PCI Bus 0000:05
91000000−91 f f f f f f : PCI Bus 0000:06
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91000000−91 f f f f f f : PCI Bus 0000:07
91000000−91 f f f f f f : PCI Bus 0000:08

91000000−91 f f f f f f : 0000:08:00.0
91000000−91 f f f f f f : mgadrmfb_vram

92000000−929 f f f f f : PCI Bus 0000:05
92000000−929 f f f f f : PCI Bus 0000:06

92000000−928 f f f f f : PCI Bus 0000:07
92000000−928 f f f f f : PCI Bus 0000:08

92000000−927 f f f f f : 0000:08:00.0
92800000−92803 f f f : 0000:08:00.0
92800000−92803 f f f : mgadrmfb_mmio

92a00000−92 a f f f f f : PCI Bus 0000:04
92a00000−92 a 0 f f f f : 0000:04:00.1

92a00000−92 a 0 f f f f : tg3
92a10000−92 a 1 f f f f : 0000:04:00.1

92a10000−92 a 1 f f f f : tg3
92a20000−92 a 2 f f f f : 0000:04:00.1

92a20000−92 a 2 f f f f : tg3
92a30000−92 a 3 f f f f : 0000:04:00.0

92a30000−92 a 3 f f f f : tg3
92a40000−92 a 4 f f f f : 0000:04:00.0

92a40000−92 a 4 f f f f : tg3
92a50000−92 a 5 f f f f : 0000:04:00.0

92a50000−92 a 5 f f f f : tg3
92b00000−92 c f f f f f : PCI Bus 0000:03

92b00000−92 b f f f f f : 0000:03:00.0
92c00000−92 c 0 f f f f : 0000:03:00.0

92c00000−92 c 0 f f f f : megasas : LSI
92c20000−92 c 3 f f f f : 0000:03:00.0

92d00000−92 d 0 f f f f : 0000:00:14.0
92d00000−92 d 0 f f f f : xhci −hcd

92d10000−92 d13 f f f : 0000:00:1 f .2
92d14000−92 d15 f f f : 0000:00:17.0

92d14000−92 d15 f f f : ahc i
92d16000−92d167f f : 0000:00:17.0

92d16000−92d167f f : ahc i
92d17000−92d170f f : 0000:00:17.0

92d17000−92d170f f : ahc i
e0000000− e f f f f f f f : PCI MMCONFIG 0000 [ bus 00− f f ]

e00fa000− e00 f a f f f : Reserved
e00fd000− e00 f d f f f : Reserved

fd000000− f e 7 f f f f f : PCI Bus 0000:00
fd000000− f d a b f f f f : pnp 00:00
fdad0000− f d a d f f f f : pnp 00:00
fdc00000− f d c f f f f f : Reserved

fdc6000c−fdc6000c : wdat_wdt
fe000000− f e 0 10 f f f : Reserved
fe036000− f e 0 3b f f f : pnp 00:00
fe03d000− f e 3 f f f f f : pnp 00:00
fe410000− f e 7 f f f f f : pnp 00:00

fec00000− fec003 f f : IOAPIC 0
fed00000− fed003 f f : HPET 0

fed00000− fed003 f f : PNP0103:00
fed10000− f e d 17 f f f : pnp 00:08
fed18000− f e d 18 f f f : pnp 00:08
fed19000− f e d 19 f f f : pnp 00:08
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fed20000− f e d 3 f f f f : pnp 00:08
fed45000− f e d 8 f f f f : pnp 00:08
fed90000− f e d 93 f f f : pnp 00:08
fee00000− f e e f f f f f : pnp 00:08

fee00000− f e e 00 f f f : Local APIC
ff000000 − f f f f f f f f : INT0800 :00

ff400000 − f f f f f f f f : Reserved
100000000−46 f f f f f f f : System RAM

421400000−422402496 : Kernel code
422600000−422 e c d f f f : Kernel rodata
423000000−4233662 f f : Kernel data
423625000−423 b f f f f f : Kernel bss

2000000000−2 f f f f f f f f f : PCI Bus 0000:00
2 f f f f 00000 −2 f f f f 0 0 0 f f : 0000:00:1 f .4
2 f f f f 01000 −2 f f f f 0 1 f f f : 0000:00:16.1
2 f f f f 02000 −2 f f f f 0 2 f f f : 0000:00:16.0
2 f f f f 03000 −2 f f f f 0 3 f f f : 0000:00:14.2

2 f f f f 03000 −2 f f f f 0 3 f f f : I n t e l PCH thermal d r i v e r





D
Common Server Configurations

In order to better understand the landscape of server models and configurations, an exploration has
been performed to analyze the current best selling servers on Amazon [7]. If the server configuration
contains the mentioned property, the value will be 1, otherwise 0. For example, if a server has an
RDIMM form factor, the value in the table under RDIMM for that particular server is 1. The numbering
on the left­hand side of the table is the same for every table. From this analysis it is clear that Intel is
currently dominant with regards to CPUs and that the only common user interfaces are PCIe and some
USB interface.
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Server
Brand Type TypeNr. Generation

1 HP Proliant DL360p 8
2 Dell Poweredge T40
3 Dell Poweredge R720
4 HP Proliant Microserver 10
5 HP Proliant DL160 6
6 HP Proliant DL360p 7
7 HP Z440
8 Dell Poweredge R810
9 HP Proliant ML350 10
10 Dell Poweredge R820
11 Dell Poweredge T320
12 Dell Poweredge R620
13 HP Proliant ML110 10
14 HP BL460c 10
15 Dell Poweredge T340
16 Dell Poweredge R610
17 Dell Poweredge T20
18 Dell Poweredge 2950
19 Lenovo Thinkstation P500
20 HP Proliant DL360

Table D.1: Common server types. The number on the left is the same number used in the next tables.

CPU RAM
Brand Type TypeNr. Microarchitecture RDIMM LRDIMM UDIMM

1 Intel Xeon E5­2640 Sandy Bridge 1 0 0
2 Intel Xeon E­2224G Coffee Lake 0 0 1
3 Intel Xeon E5­2670 Sandy Bridge 1 0 0
4 Intel Xeon E­2224 Coffee Lake 0 0 1
5 Intel Xeon X5650 Westmere 1 0 1
6 Intel Xeon X5650 Westmere 1 0 1
7 Intel Xeon E5­2630 Sandy Bridge 1 0 1
8 Intel Xeon E7­4870 Westmere 1 0 1
9 Intel Xeon Gold 5118 Skylake 1 0 0
10 Intel Xeon E5­4650 Sandy Bridge 1 0 0
11 Intel Xeon E5­2430 Sandy Bridge 1 0 0
12 Intel Xeon E5­2660 Sandy Bridge 1 1 1
13 Intel Xeon Silver 4210 Cascade Lake 1 0 0
14 Intel Xeon Gold 5120 Skylake 1 1 0
15 Intel Xeon E­2124 Coffee Lake 0 0 1
16 Intel Xeon E5540 Nehalem 1 0 1
17 Intel Xeon E3­1225 v5 Skylake 0 0 1
18 Intel Xeon 5130 Woodcrest 1 0 0
19 Intel Xeon E5­2620 Haswell 1 1 0
20 Intel Xeon Gold 6248 Cascade Lake 1 1 0

Table D.2: Common CPU configurations and RAM Form Factors
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Management Network Controller Storage Controller
Type Firmware Brand Type Brand Type TypeNr.

1 HP iLO HP iLO 4 HP 331FLR HP Smart Array P420i
2 None None Intel I219 Intel VROC 6.X
3 Intel iDRAC7 iDRAC 7 Intel I350 Dell PERC H710P
4 HP iLO HP iLO 5 Intel i350 AM4 HP Smart Array S100i SR Gen 10
5 HP iLO 100i HP NC362i HP Smart Array B110i
6 HP iLO HP iLO 3 HP NC382i HP Smart Array P410i
7 None None Intel I218 LSI None 9217­4i

8 Intel iDRAC6 iDRAC6 Broadcom NetExtreme II
5709 Dell Perc H700

9 HP iLO HP iLO 5 HP 369i HP Smart Array P408i­a
10 Intel iDRAC 7 iDRAC 7 Broadcom 5720 Dell PERC H710
11 Intel iDRAC7 iDRAC 7 Broadcom 5720 Dell PERC H710
12 Intel iDRAC iDRAC 7 Broadcom 5720 Dell PERC H310
13 HP iLO HP iLO 5 HP 331T HP Smart Array S100i SR Gen 10
14 HP iLO HP iLO 5 HP FlexFabric 536FLB HP Smart Array S100i SR Gen 10
15 Intel iDRAC iDRAC 9 Broadcom 5720 Dell PERC S140
16 Intel iDRAC iDRAC 6 Broadcom 5709 Dell PERC 6i
17 Intel AMT AMT 11.0 Intel I219­LM Intel Rapid Storage 12.x
18 BMC Broadcom Qlogic 5708 Dell PERC 5i
19 Intel AMT AMT 9 Intel i218LM None
20 HP iLO iLO 5 Unknown HP Smart Array S100i

Table D.3: Common management engines, network controllers and storage controllers

HDD PCIe
SATA SAS LFF SFF uFF 1.0 2.0 3.0 x16 x8 x4 PCI PCI­X

1 0 1 0 1 0 0 0 1 1 1 0 0 0
2 1 0 1 0 0 0 0 1 1 0 1 1 0
3 1 1 1 0 0 0 0 1 1 1 0 0 0
4 1 0 1 0 0 0 0 1 1 0 0 0 0
5 1 1 1 1 0 0 1 0 1 0 1 0 0
6 1 1 0 1 0 0 1 0 1 1 0 0 1
7 1 1 0 1 0 0 1 1 1 1 1 1 0
8 1 1 0 1 0 0 1 0 1 1 1 0 0
9 1 1 0 1 0 0 0 1 1 1 1 0 0
10 1 1 0 1 0 0 0 1 1 1 0 0 0
11 1 1 1 0 0 0 0 1 1 1 0 0 0
12 1 1 0 1 0 0 0 1 1 1 0 0 0
13 1 1 1 1 0 0 0 1 1 1 1 0 0
14 1 1 0 1 0 0 0 1 1 0 0 0 0
15 1 1 1 0 0 0 0 1 1 1 0 0 0
16 1 1 0 1 0 0 1 0 0 1 1 0 0
17 1 0 0 0 0 0 0 1 1 0 1 1 0
18 1 1 0 1 0 0 1 0 0 1 0 1 0
19 1 1 1 0 0 0 1 1 1 0 1 1 0
20 1 1 0 0 1 0 0 1 1 1 0 0 0

Table D.4: Common server configurations for the storage and PCIe interfaces
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On­Board Interfaces User­Interfaces (non­USB)
Intel QPI Intel UPI FSB RJ45 PS2 Thunderbolt IEEE 1394 (FireWire)

1 1 0 0 1 0 0 0
2 0 1 0 1 1 0 0
3 1 0 0 1 0 0 0
4 0 1 0 1 0 0 0
5 1 0 0 1 0 0 0
6 1 0 0 1 0 0 0
7 1 0 0 1 1 0 0
8 1 0 0 1 0 0 0
9 0 1 0 1 0 0 0
10 1 0 0 1 0 0 0
11 1 0 0 1 0 0 0
12 1 0 0 1 0 0 0
13 0 1 0 1 0 0 0
14 0 1 0 1 0 0 0
15 0 1 0 1 0 0 0
16 1 0 0 1 0 0 0
17 0 1 0 1 0 0 0
18 0 0 1 1 0 0 0
19 1 0 0 1 1 1 1
20 0 1 0 1 0 0 0

Table D.5: Common server configurations for the on­board and non­USB user interfaces

User Interfaces ­ USB
USB­B USB­C USB 2.0 USB 3.0 USB 3.1 USB 3.2

1 0 0 1 0 0 0
2 0 1 1 1 1 0
3 0 0 1 0 0 0
4 0 0 1 0 0 1
5 0 0 1 0 0 0
6 0 0 1 0 0 0
7 0 0 1 1 0 0
8 0 0 1 0 0 0
9 0 0 1 1 0 0
10 0 0 1 0 0 0
11 0 0 1 0 0 0
12 0 0 1 0 0 0
13 0 0 1 1 0 0
14 0 0 1 0 0 0
15 0 0 1 1 0 0
16 0 0 1 0 0 0
17 0 0 1 1 0 0
18 0 0 1 0 0 0
19 0 0 1 1 0 0
20 0 0 1 1 0 0

Table D.6: Common server configurations for USB interfaces
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