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Abstract

Acquiring an accurate estimate of position is a challenging problem in coherent radar processing techniques
such as Synthetic Aperture Radar (SAR). Even more so, for light and agile platforms such as multi-copters. Due
to their unpredictable flight path, their motion must be accurately measured during data acquisition, and
compensated for during processing. To obtain a focused SAR image, each pulse location must be accurately
known to ensure that each pulse is added coherently to the imaging grid. Traditionally, this is achieved with
an Inertial Navigation System (INS). While an INS can provide reasonable performance, its weight and size
are often a constraint for agile platforms, limiting the available options and attainable accuracy.

In this study, we perform an analysis on the applicability of an omnidirectional radar array for explicitly
estimating the motion of a multi-copter platform, and improving on the positioning accuracy achieved by
the on board INS. Building on existing 1D SAR motion compensation techniques, we develop new methods
for estimating the 3D motion of the radar platform by estimating its height and velocity. In addition, we
also present a novel 3D autofocus technique termed multi-beam autofocus. This technique allows for the
correction of 3D trajectory errors from pulse to pulse by exploiting the beamforming capabilities of the array,
and focusing multiple regions as the image is created.

Using an Extended Kalman Filter (EKF), we obtain position estimates from the radar velocity measure-
ments based on the last known INS position. We experimentally verify that using our velocity estimation
method alone, the positioning performance is already improved compared to that of a state-of-the-art INS,
allowing for INS-free imaging using arbitrary flight paths. This enables imaging in GNSS-denied environ-
ments, and has the potential to further reduce the weight of the platform. We also show that fusing the
estimates obtained from our method with the existing INS output yields an additional performance increase
in terms of SAR image focus, improving the resolvability and detectability of weak targets. The presented re-
sults open further avenues of research, not only in agile SAR imaging but also in autonomous GNSS-denied
navigation.
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1
Introduction

Radar systems are extremely useful and versatile sensors. The information contained within the reflected
pulse can be used to derive many parameters about the immediate environment and the targets within it.
Since radar is an active sensor using radio frequencies, it can be used in all lighting and most weather con-
ditions. As a result, radar systems are applied in a wide variety of fields ranging from military applications to
remote sensing and the automotive industry.

The application of digital signal processing to radar data enables more complex radar modes. A notable
example is Synthetic Aperture Radar (SAR). In SAR imaging, a large antenna aperture is synthesized by taking
advantage of the radar platform’s motion. A fine azimuth resolution can be obtained by coherently combining
the contribution of each pulse along the radar trajectory. One of the many challenges in SAR imaging is
acquiring an accurate estimate of the relative position of the radar platform along the synthetic aperture.
This is less of a problem in satellite and aircraft-mounted SAR systems, where the platform is relatively stable,
and its motion can be accurately predicted. In these systems, small phase errors can be compensated using
an onboard Inertial Measurement Unit (IMU).

SAR systems based on multi-copter or ’drone’ platforms have become the topic of increasing research
in recent literature[13, 44, 45]. They are a popular choice for surveillance and object detection in remote
areas, as they are easily deployable and highly maneuverable. This makes it possible to quickly create high-
resolution images of areas of interest. However, as it is still an emerging field in SAR, several problems need
to be solved. One challenge, in particular, is that due to their agility, drone platforms are much more prone
to errors in positioning. The positioning system must be able to track quick movements caused by sudden
changes in direction and/or perturbations caused by environmental conditions. If left uncompensated, mo-
tion errors can cause severe degradation in image quality [38].

For accurate positioning, many IMUs combine measurements from a Global Navigation Satellite System
(GNSS) receiver to get an accurate estimate of the position. This is also known as a GNSS-aided Inertial
Navigation System (INS). For the sake of brevity, when using the term "INS" throughout this thesis, it will
imply a navigation system using both inertial sensors and a GNSS module. The inertial sensors can accurately
track short-term movements while the GNSS can compensate for drift. While highly accurate INSes exist,
the size and weight of the INS is a constraint for drone platforms. This somewhat limits their accuracy, as
shown in the discussion section in [15] by M. Duersch. The radar data itself also contains information about
the platform motion and is also used for motion compensation in SAR imaging, providing one-dimensional
compensation along the radar line of sight. Motion compensation algorithms can be roughly separated into
two groups. Namely, autofocus, which compensates phase errors from pulse to pulse, and Doppler centroid
estimation, which compensates a constant velocity component. Notable examples of both methods are phase
gradient autofocus by Eichel et al. [16], and sign Doppler estimation by S. Madsen [34].

In principle, the short term accuracy of the IMU, combined with the long term stability of the GNSS mod-
ule, should provide a fairly accurate estimate of the radar position. However, as previously mentioned, due
to weight constraints, the available positioning systems are somewhat limited in accuracy. In practice, this
leads to distortions caused by errors in motion estimation. In addition, in case of GNSS outages, the position
estimate from an INS drifts very quickly due to bias in the inertial sensors.

To a certain extent, radar-aided positioning is achieved with traditional SAR motion compensation tech-
niques such as autofocus and Doppler centroid estimation. However, for conventional radar systems, these

1



2 1. Introduction

techniques provide only one-dimensional compensation along the antenna line of sight and are specifically
designed for fixed-wing platforms. Without the constraint of a single beam direction, traditional motion com-
pensation techniques can be extended to take advantage of an omnidirectional antenna array to create a 3D
estimate of platform motion.

This thesis will investigate whether the accuracy of the on-board positioning system can be improved
by incorporating kinematic estimates acquired from radar data using an omnidirectional radar array. We
will specifically investigate this in the context of an agile multi-copter platform, or "drone-radar". Improved
positioning accuracy will provide better image focus, and increased detectability of weak targets. Accurate
positioning also creates the potential for more complex imaging modes, such as interferometric SAR and 3D
imaging. Moreover, radar-aided positioning can be useful in GNSS-denied scenarios, where IMU drift can be
compensated with accurate estimates from radar data.

The combination of the agile multi-copter platform combined with an omnidirectional radar creates the
opportunity for novel signal processing algorithms to be implemented, which take advantage of this unique
architecture. In summary, this thesis will answer the following question:

• To what extent can onboard INS-based positioning accuracy be improved by incorporating data from
an omnidirectional radar array?

This question can be divided into the following sub-questions:

• What are the current algorithms being employed for positioning and motion compensation in high
resolution radar modes?

• Which relevant parameters can be estimated from radar data, and by what means?

• How can the circular radar array be used to improve the accuracy of the parameter estimation tech-
niques?

• How can the estimates from the circular radar array be used to improve the positioning accuracy of the
radar platform?

The rest of this thesis will be organized as follows. In the next two chapters, we will present the back-
ground information required to answer the research questions. Chapter 2 will give an overview of the signal
processing principles behind FMCW radar, and also introduces the concepts of digital beamforming and SAR
in this context. In Chapter 3, we look to the literature and analyze the current techniques being employed for
SAR motion compensation.

Using the background information as a starting point, Chapter 4 begins to answer the posed research
questions by determining how the radar data can be used to obtain information about its motion and po-
sition. In Chapter 5, we adapt existing motion estimation techniques, and introduce a processing chain to
estimate the height of the radar above ground, and the velocity of the radar in the horizontal plane. As an
addition for future work, we also propose a novel 3D coherent positioning algorithm termed multi-beam aut-
ofocus which is verified using simulated data. In Chapter 6, we use an Extended Kalman filter (EKF) to obtain
position estimates from the velocity observations, and fuse data from different sensors.

The accuracy of the obtained position estimates is evaluated in Chapter 7 by analyzing the focus and reg-
istration of subsequent SAR images created with the estimated trajectories. The thesis concludes by reflecting
on the obtained results, and providing definitive answers to the posed research questions. We also present a
short discussion, analyzing the prospects for future work and providing recommendations for possible addi-
tions and improvements.
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2
FMCW Imaging Radar

FMCW radars have many advantages over pulsed radars and are becoming increasingly popular in modern
radar systems. They are even referred to as "radars for the future" in a book on FMCW design by M. Jankira-
man [26]. Some of the mentioned advantages are low power usage, lower sampling requirements for short-
range intervals, and high range resolution. Since a drone-radar is also a "radar for the future", it makes sense
that it too is based on the FMCW principle.

As an introduction to the signal processing techniques presented in later chapters, this chapter gives a
general overview of the FMCW principle, and its processing steps. The basic principles behind digital beam-
forming and SAR are also explained to provide a foundation for the techniques presented in subsequent chap-
ters.

2.1. Data Acquisition
FMCW radars use continuous frequency-modulated signals instead of pulses for data acquisition. The ex-
perimental drone-radar used to verify our method (Appendix C) employs a linear FMCW waveform. A Linear
Frequency Modulated (LFM) waveform consists of a series of linear frequency sweeps between a specified
bandwidth B , at a fixed sweep rate (Figure 2.1).

Time

Fr
eq

ue
nc

y

Received signal
Transmitted signal

Figure 2.1: The principle behind linear FMCW signals. Apart from the up-sweep, there is also a short down-sweep. This is not included
in the beat signal, but influences the sweep repetition frequency.

One of the advantages of FMCW radar over pulsed radar, is that it requires less frequent sampling. As the
signal is only sampled after mixing, the sampling frequency is only determined by the maximum frequency
of the beat signal. To show this, consider the transmitted signal

st (τ) = wr (τ)cos
(
2π f0τ+πKrτ

2) , (2.1)

where f0 is the sweep start frequency, τ is the fast time index, Kr is the sweep rate, and wr is the pulse en-
velope. The received signal is an attenuated, time delayed version of the transmit signal. For a co-located

5



6 2. FMCW Imaging Radar

receiver-transmitter pair, the received signal is given by

sr (τ,η) = A0wr

(
τ− 2R(η)

c

)
wa(η−ηc )cos

(
2π f0

(
τ− 2R(η)

c

)
+πKr

(
τ− 2R(η)

c

)2)
, (2.2)

where η is the slow-time index, and ηc is the slow-time index at the beam center crossing time. The term A0

is a value which describes the attenuation in amplitude. Upon reception, the receive signal is mixed with the
transmit signal

sb(τ,η) = st (τ)sr (τ,η) .

By noting that

cos(x)cos(y) = 1

2

(
cos(x − y)+cos(x + y)

)
,

it can be seen that the signal after mixing has two components. One of which is a sum of phases, and one of
which is a difference of phases. The sum component is removed by filtering the signal and sampling only the
difference component. Considering only the phase difference term θ(τ,η), and simplifying, the phase term
can be expressed as

θ(τ,η) = 4π f0R(η)

c
+Kr

4πR(η)

c
τ−πKr

R(η)2

c2 , (2.3)

where the first term is a constant phase term determined by the intrinsic phase of the scattering cell , and the
range to the scattering cell. The second term is the range dependent beat frequency in rad/s. The third term
is an unwanted residual phase term which is a by-product of processing. The residual phase is very small at
short range but can be compensated if needed. Since the signal is mixed before sampling, the requirements
for the sampling frequency depend linearly on the required unambiguous range interval.

2.1.1. Range Compression
The expression in (2.3) already hints at a method for determining the range to targets. As each range cell has
a specific beat frequency, range compression can be performed by analyzing the frequency components in
the beat signal using a Fourier transform. The beat frequency has a linear relationship to the range of the
scattering cell through

fb(η) = 2Kr R(η)

c
,

where each frequency bin then corresponds to a certain range bin,

R(η) = fb(η)c

2Kr
. (2.4)

The range resolution after range compression depends on the bandwidth, B of the transmitted signal, and is
given by

∆r = c

2B
.

2.1.2. Doppler processing
In some cases, it is useful to transform the signal to the Doppler domain. This allows for the detection of
moving targets, or the estimation of their velocity. In the case relevant to this thesis, the Doppler domain can
provide information on the motion of the platform itself through Doppler centroid estimation. Chapter 3 will
explain this in further detail. An FMCW signal can be transformed into the range-Doppler domain using a 2D
Fourier transform. The fast-time frequency components represent the range compressed signal, while the
slow-time frequency components represent the rate of change of the carrier dependent phase.

From (2.3), the carrier-dependent phase of a point target is given by

φ(η) = 4π f0R(η)

c
= 4π

λ
R(η) , (2.5)

where λ is the center wavelength of the carrier signal. The Doppler frequency of the target is the first-order
derivative of this phase change, and is related to the radial velocity Vr by

fD (η) = 1

2π

dφ(η)

dη
= 2

λ
Vr (η) . (2.6)
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A problem that can arise in Doppler processing, is the smearing of targets in the range and Doppler di-
mensions. This is caused by the coupling which is inherent to the signal. Consider the phase history of the
FMCW signal given in (2.3). If the range is approximated by an initial value, velocity and acceleration, the
phase history can be written as

θ(τ,η) ≈ 4π

c
( f0 +Krτ)(r0 + ṙη+ r̈

2
η2) . (2.7)

This shows that there is a coupling between the slow-time and fast-time dimension. In particular for the
linear velocity component. A simple solution is achieved by using the Keystone transform [40]. The Keystone
transform compensates for the velocity component by appropriately rescaling the slow time axis for each fast
time index using an interpolation filter described by

η̃= f0

f0 +Krτ
η . (2.8)

An example of the Keystone transform applied to a constant velocity point target can be seen in Figure 2.2.
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(b) After applying the Keystone transform

Figure 2.2: These images show the range-Doppler image of a simulated point target at a constant velocity before and after applying the
Keystone transform. The Keystone transform focuses the target in range and Doppler at the expense of some interpolation artifacts.

2.2. Digital Beamforming
To obtain angular resolution with any antenna array, some kind of beamforming needs to be applied. Beam-
forming can be applied either implicitly through an imaging algorithm, or explicitly, by directly combining
the signal from multiple antenna elements using a weighted sum. Digital beamforming can be described as
the multiplication of the signal from each antenna element with a certain weight vector, as described by

y = uTS .

If there are a total of N antenna elements, and M signal samples per element, u is the Nx1 vector of weights,
and y is the 1xM output signal. Each row in the NxM matrix S corresponds to the signal from a certain antenna
element.

The simplest method of applying digital beamforming to an arbitrary antenna array, is using the steering
vector. The steering vector is a complex-valued vector, for which the entries specify the phase shift experi-
enced by each antenna element from a plane wave with a specific incidence angle. The steering vector can
be computed using the generalized array factor

AF =
N−1∑
n=0

Jn exp j k(r̂ · rn) , (2.9)

where Jn is the complex coefficient associated with the nth element, k is the wavenumber, r̂ is the unit vector
in the direction of interest, and rn is the position vector to the nth element with respect to a fixed reference
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point on the antenna array. By taking the center element as the reference point, the components of steering
vector are given by the generalized array factor sum components

a(r̂ ) =

exp j k(r̂ · r1)
...

exp j k(r̂ · rN)

 . (2.10)

A simple beamformer uses the conjugate of the steering vector as its weights. The amplitudes of the weights
can be used to select the active antenna elements. This technique is known as phase-shift beamforming, or
delay-and-sum beamforming, and can be intuitively understood as a projection of the antenna elements to
a plane with normal vector in the direction of interest. This is illustrated in Figure 2.3 for a circular receiver
configuration. More advanced beamformers adjust the amplitude and phase of the weight coefficients to
maximize the Signal to Noise Ratio (SNR) or reduce interference from certain directions. Since we are inter-
ested in maximizing the response from a given steering direction regardless of signal properties, the phase
shift beamformer provides an optimal solution.

The generalized array factor can be used to determine the beam pattern of different receiver configura-
tions. This is shown in Figure 2.4. Here, the value of Jn is determined by the antenna pattern of a single
element. From the graph, the best obtainable angular resolution in azimuth is achieved with 9 receiver ele-
ments with a Half-Power Beamwidth (HPBW) of approximately 15 degrees.
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Figure 2.3: Illustration of beamforming for a circular antenna array using 9 receiver elements. The exact phase shift depends on both the
azimuth and elevation angle
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Figure 2.4: The simulated antenna pattern using different numbers of receiver elements. The image on the left shows the entire antenna
pattern, while the image pn the right shows the crossings of the Half Power line for each configuration.
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2.3. Synthetic Aperture Radar
Similarly to how angular resolution is improved when using multiple antenna elements, the position of the
radar at different time instances can be used as "virtual" antenna elements. This is also known as Synthetic
Aperture Radar (SAR). SAR is typically used to create high-resolution, geometrically accurate images of an
area of interest.

2.3.1. SAR Geometry
Typical imaging SAR systems are side-looking, and follow a straight flight path. In Figure 2.5a, an illustration
of strip map SAR data acquisition is shown for a single point target. The synthetic aperture is defined as the
portion of the sensor path where the target is illuminated by the radar beam.

In some cases, the radar beam is not orthogonal to the sensor path. In this case, the beam is said to be
squinted. This is illustrated in Figure 2.5b. Non-zero squint causes the zero Doppler time to be offset from
the beam center crossing time.

Target

Radar tra
ck

Radar

P1

P2

Flight direction

Ground range

Synthetic aperture

Beam footprint

(a) SAR data acquisition geometry for a squint angle equal to zero

Radar tra
ck

squint angle
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beam footprint

Radar

Flight direction

Ground range
Ideal 

beam footprint

(b) SAR data acquisition geometry in the non-zero squint case

Figure 2.5: Geometry for a side-looking stripmap SAR system in both the zero, and non-zero squint case.

The flight path can also deviate from the ideal straight path. For typical airborne SAR systems, squint and
non-ideal trajectories are not desired as it increases the complexity of the processing. However, these effects
are unavoidable in most cases and are dealt with using motion estimation/compensation techniques. An
overview of different SAR motion compensation techniques is given in Chapter 3.

2.3.2. Data Acquisition
As the radar travels along the sensor path, periodic pulses are transmitted with a certain pulse repetition
frequency (PRF). For FMCW radar, this is equal to the number of sweeps per second. For each position along
the sensor path, the distance to a specific point scatterer on the ground is different. This causes an extra
phase modulation of the return signal from pulse to pulse (slow-time). This is also known as Doppler shift.

Since, the carrier frequency of an FMCW signal is removed through mixing, the sampled signal is already
demodulated. For a point scatterer at a distance R(η) from the radar, where η is the slow-time index, the beat
signal is given by

sb(τ,η) = A0wa(η−ηc ) ·cos
{
θ(τ,η)

}
. (2.11)

In the equation, A0 is the amplitude of the received signal, and wa(η−ηc ) is the received signal strength as
a function of the antenna beam pattern. The antenna beam pattern can be approximated by a sinc-squared
function

wa(η(µ)) = sinc2
(

0.886µ

B3dB

)
,

where, B3dB is the HPBW, and µ is the angle between the scattering cell and the antenna. During sampling,
the lower bound of the PRF should satisfy the Nyquist sampling rate to avoid ambiguities caused by aliasing
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of Doppler frequencies. For pulsed radar systems, the PRF should be small enough to allow for unambiguous
range sampling. This is not a concern for FMCW radars, as the unambiguous range interval depends on the
sampling frequency.

2.3.3. Azimuth Resolution
Before processing, the resolution of a physical antenna with beamwidth B3dB is given by [12]

ρ′
a = R(ηc )B3dB = 0.886R(ηc )λ

La
, (2.12)

where La is the length of the physical antenna, and λ is the wavelength of the carrier signal. Similarly to
range compression, the resolution after azimuth compression is approximately given by the reciprocal of the
bandwidth. In this case, the Doppler bandwidth, Bd .

ρa = 1

Bd
(2.13)

2.3.4. Doppler Centroid
The Doppler frequency at the antenna beam center is called the Doppler centroid and is proportional to the
rate of change of phase at this position. From (2.3), the carrier-dependent phase of a point target is given by

φ(η) = 4π f0R(η)

c
= 4π

λ
R(η) . (2.14)

The Doppler shift at the antenna beam center crossing time, ηc is defined as the rate of change of this phase
term and can be written as

fD (ηc ) = 1

2π

dφ(η)

dηc
= 2

λ
Vr (ηc ) .

Where Vr is the radial velocity of the platform with respect to the target. The observable Doppler spectrum of
a signal depends on the PRF[12]. The maximum unambiguous velocity is given by

|Va | = λ ·PRF

4
. (2.15)

Because of this, the Doppler centroid can be expressed in two parts

fDC = f ′
ηc

+Mamb ·PRF, (2.16)

where f ′
ηc

is the fractional part, and Mamb is the ambiguity number. Instead of a group of strong targets, the
reflected SAR signal typically consists of a distribution of many targets. If these targets are mostly stationary,
the Doppler centroid is a projection of the antenna pattern which is centered around the radial velocity of the
radar in the steering direction. This will also be demonstrated in Chapter 4.

2.3.5. Backprojection Imaging
While there are numerous imaging algorithms available for synthetic aperture radar, their underlying princi-
ple is very similar. The main goal is to map the contributions from a given pulse to the correct location on an
imaging grid. This can be achieved using either frequency domain, or time-domain algorithms.

Since the drone-radar should be able to image in any direction for arbitrary flight paths, an algorithm
without approximations is desired. This can be achieved using the backprojection algorithm [55]. The back-
projection algorithm adds the contribution from each range bin to the appropriate pixels in an imaging grid,
while also applying the appropriate phase shift such that the contributions add coherently. Provided that the
radar’s position is accurately known, motion compensation is implicit in the algorithm itself. When using a
radar system with multiple antenna elements, each element can be considered as a separate location in the
synthetic aperture. By doing this, beamforming is also implicit in the algorithm itself. This idea is illustrated
in Figure 2.6, where both the relative positions of the real antenna elements, and positions along the synthetic
aperture contribute to the angular resolution.

Backprojection goes a few steps further than conventional beamforming by calculating the required phase
correction for each range bin separately. This is useful in near-range scenarios where a plane wave assump-
tion might not be valid.

The backprojection algorithm can be summarized as follows:
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Figure 2.6: SAR imaging for an arbitrary flight path. Both the real array and the virtual array are treated as being part of the total aperture.

• For a given pulse location, the two-way range to each pixel in an imaging grid is calculated. eg. the
range from the transmitter to the pixel, and back to the receiver.

• The pulse contributions corresponding to the calculated ranges are determined through interpolation
and added to the imaging grid.

• A range dependent phase correction term is applied to each pixel. This ensures that signal contribu-
tions from different pulse locations add coherently when they correspond to the same location on the
imaging grid.

• This process is repeated for each pulse location and antenna element until the entire synthetic aperture
has been processed.

The interpolated, phase-corrected signal at the nth pulse location, for a given pixel location ρn is given by

Pn(ρn) = IP(rc (n),ρn) ·exp j (φcor r (ρn)) , (2.17)

where IP represents the non linear interpolating function, which maps the range compressed signal rc to the
correct ranges as specified by the coordinates of the imaging grid. The pixel location ρn is a vector from the
antenna location to the pixel of interest. φcor r is the phase correction factor which is determined by the range
to a pixel in the imaging grid, and is given by

φcor r (ρn) =−4π f0R(ρ)

c
. (2.18)

The imaging process can then be expressed by

In = In−1 +Pn , (2.19)

where In represents the SAR image after adding the nth interpolated, phase corrected pulse. It should be
noted that the pulse contributions do not need to be added sequentially. If permitted by memory limits,
multiple pulses can be processed in parallel for increased performance. A more detailed explanation of the
backprojection algorithm, along with a basic Matlab framework, is given by Gorham et al. in [21].





3
SAR Motion Compensation

The previous chapter outlined the signal processing principles behind FMCW radar and introduced the ba-
sics of SAR imaging. The flight path in most airborne SAR systems is not ideal and must be appropriately
compensated by estimating the motion of the radar platform. This is especially true for agile platforms such
as multi-copters. The goal of SAR motion compensation is to estimate the motion of the radar platform with
enough accuracy to improve overall imaging quality. Aside from techniques specifically designed for SAR mo-
tion compensation, there are several proposed methods in literature from a broad spectrum of radar systems.
In most cases, these approaches are based on reference points in the radar return signal, utilizing constant
false alarm rate (CFAR) detection and image processing techniques to determine the relative change in po-
sition and velocity of strong reference points. The relative position of the radar platform is determined by
tracking the changes of visual features in range compressed radar data.

One example of this is scan-matching [20], where the relative motion of a scene from scan to scan is
used to determine the position of the radar platform. The drawback of a scan-matching approach is the
requirement for scene contrast. Also, successive scans need to be sufficiently correlated to determine relative
motion. Improved scan matching algorithms have also been presented. In [8], Cen et al. propose a keypoint
extraction algorithm for more accurate scan matching. Another approach is proposed by Barnes et al. [5],
where machine learning is used to detect suitable keypoints and suppress multipath effects for improved
correlation performance.

Alternatively, artificial keypoints with known locations can be used. In [10], Clark et al. use a set of omni-
directional reflectors with known locations as beacons. Their relative locations are then used as observations
in a Kalman filter to obtain an estimate of the radar’s position. An addition to this approach is presented in
[9], where a method for navigation using natural features is presented.

Most of the previously mentioned motion estimation techniques are designed for automotive radar sys-
tems. Radar-aided positioning for multi-copter platforms is less common in literature. However, there are
some proposed techniques. An example is a radar-aided positioning system for GNSS-denied environments
by Mostafa et al.[37], which estimates the forward velocity of a multi-copter platform from radar data and
fuses it with other sensors. A similar approach is presented by Scannapieco et al. [43], where the motion for a
lightweight drone is estimated using the range and bearing to targets. A key difference between the systems
used in these methods and the study presented in this thesis, is the geometry of the radar system. The drone-
radar provides an instantaneous 360-degree field of view while the methods presented in the literature are
forward-looking linear arrays.

The phase information in a radar pulse also contains useful information about the state of the radar plat-
form, specifically, its velocity. By measuring the Doppler spectrum of the reflected ground surface, an esti-
mate of velocity can be made. The accuracy of the velocity estimate can be increased by incorporating mul-
tiple sensors facing in different directions. This was also the working principle behind Doppler navigation
systems used in commercial aviation in the 1960’s [19] (Figure 3.1b). In more recent literature, this technique
has also been applied to automotive radar sensors that measure the road surface [23, 29, 54] (Figure 3.1a). In
principle, this technique can also be applied to the drone-radar. However, for a drone platform, analysis of
the Doppler spectrum is complicated by non-homogeneous clutter and terrain elevation. Moreover, quick
changes in position and attitude may also deteriorate the estimation accuracy. On the other hand, the multi-
channel architecture of the drone-radar allows for a large number of digital beams which can improve the
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overall estimation accuracy.

(a) Automotive, ground speed velocity estimation using 4 downward facing
radar sensors. Image adapted from [29]

(b) The principle behind radar aided navigation for commercial aviation in the
1960s. Image adapted from [19]

Figure 3.1: Doppler velocity estimation in automotive and airborne radar systems.

As improving SAR imaging quality is one of the main motivators of this thesis, conventional SAR motion
compensation techniques will be used as a starting point for the techniques developed in later chapters.
To a certain extent, this is also a form of motion estimation. The difference being that conventional SAR
motion compensation techniques typically only estimate one-dimensional motion along the radar line of
sight. Regardless, these techniques can provide some insight into the attainable positioning accuracy for
airborne radar systems. There are two main categories of motion compensation in SAR imaging. These are
Doppler centroid estimation (DCE) and autofocus. This chapter will give an overview of different techniques
for DCE and autofocus, and explore their applicability to the drone-radar system.

3.1. Doppler Centroid Estimation
DCE techniques perform first-order motion compensation by estimating the centroid of the Doppler spec-
trum in SAR data. This gives an estimate of the velocity of the radar in its line of sight. For a traditional side-
looking SAR system, the Doppler centroid may be non-zero due to the unintentional squint of the antenna.
For the drone radar, the Doppler centroid varies according to the velocity of the platform and is different for
each direction, and each digital beam. In this case, DCE can be used to estimate the velocity vector of the
radar platform by combining the centroid estimates from different antenna directions. There are many dif-
ferent centroid estimation algorithms in various signal domains. These are time-domain, frequency-domain,
and image-domain.

In [4], M. Bamler shows that frequency domain DCE methods can be grouped into a framework of "Correlation-
based estimators". In this framework, the Doppler centroid is found by correlating the azimuth power spec-
trum with some weighting function

D( f ) =
∫

A(g )B(g − f )d g , (3.1)

where, A is the azimuth power spectrum, and B is the weighting function. The DC estimate is then found at
the zero point of the correlation result

D( f̂dc ) = 0.

The estimation techniques then differ by the weighting function used for estimation, with the most notable
being energy balancing, matched-correlation and maximum-likelihood.
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The Doppler centroid of a signal can also be estimated by measuring the change of phase from pulse to
pulse in the time domain[12]. For a given azimuth sample s(η), the phase difference between another sample
separated by ∆η is given by the angle of the average cross correlation coefficient at lag 1

C (∆η) =∑
η

s∗(η)s(η+∆η) .

The fractional part of the Doppler centroid is then given by

f ′
ηc

= Fa

2π
∠(C (η)) .

In literature, this method is referred to as correlation Doppler estimation (CDE).
Aside from frequency and time domain methods performed on echo data. There are also several Doppler

centroid methods that are based on approaches related to image processing. Namely, a method based on
slope estimation by Young-Kyun et al. [56], and an improved version by I. Cumming and S. Li [11]. Here,
the Doppler centroid is estimated using the radon transform and is related to the slope in the range profile
of strong targets. Another example is morphological edge detection by Mao et al. [35], where the forward
velocity is estimated using the clutter edge. Long et al. propose a method based on image entropy as a cost
function based approach [32]. A more detailed overview of different centroid estimation techniques can be
found in Appendix A.1.

Frequency domain techniques are more flexible for the drone-radar and can be easily manipulated to
account for effects from the antenna pattern and high squint angles. This will be shown in Chapter 5. In
addition, the matched-correlation doppler centroid estimator achieves the lowest variance in experimental
scenarios as shown by W. Yu, and Z. Zhu in [52]. In Chapter 5, we will modify and combine the ideas of
matched-correlation and clutter edge detection to develop a generalized velocity estimation technique for
the drone-radar.

3.2. Autofocus
Autofocusing of SAR images is generally used to correct phase errors from pulse to pulse. As the contribution
from each pulse is a complex number with a magnitude and phase, small motion errors can cause these
pulses to add incoherently. With autofocus, the image quality is increased by estimating the phase error and
applying the corresponding phase correction factor. A drawback of most autofocus techniques is that the
total phase error should be smaller than a single resolution cell.

An intuitive, generalized formulation of the autofocus problem is presented by both J. Ash [3], and Duer-
sch et al. [14], in their papers on autofocus for the backprojection algorithm. The problem can be understood
as follows. Given a group of M pixels

A = {a1, a2, a3, ..., aM } ,

each pixel can be expressed as the sum of N pulses

am =
N∑

n=1
Rnme jδn ,

where Rnm is a complex term denoting the complex sample corresponding to the given pixel and δn is a phase
error term present in the nth pulse. Assuming that the same phase error is present in each pixel for a given
pulse, the phase error can be estimated by minimizing some cost function F (A). One example of such a cost
function is the image sharpness which has been shown to be well suited for SAR images by T. Schulz [46]. The
optimal sharpness function is defined as the sum of squared pixel magnitudes

F (φδN ) =−
M∑

m=1
am a∗

m , (3.2)

where ∗ denotes complex conjugation. The set of estimated phase errors is then given by

δ̂N = argmin
δN

F (A) . (3.3)

There are several proposed solutions to solve the autofocus problem. With the most notable ones being
phase gradient autofocus (PGA) [49], and map drift autofocus (MDA) [7]. PGA is a non-parametric autofocus
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technique and can estimate arbitrary phase errors, while MDA is a model-based technique that estimates
linear or quadratic phase error between different sub-apertures. PGA operates on defocused SAR images and
assumes a Fourier relationship between the image domain and range compressed data [3]. The optimization
problem in (3.3) can also be solved on a per pulse basis. As it has no closed-form solution it must be solved
using iterative methods such as coordinate descent. In [3], J. Ash derives a closed-form solution for each
coordinate using a geometrical interpretation. The approach by Duersch et al. [14], also uses coordinate
descent. However, a line search is used to optimize each coordinate.

Autofocus algorithms do not explicitly estimate the motion of the radar platform. However, they can
be used to estimate 3D trajectory deviations as proposed by Ran et al. [41]. Here, phase estimates from
several local regions in a SAR image are combined to obtain the 3D phase error from pulse to pulse. Another
promising approach is presented by A. Sommer and J. Ostermann [48], where estimated phase errors are used
to calculate equivalent range errors, which are propagated along the trajectory at each pulse location. This
allows for the estimation and correction of much larger errors.

In Chapter 5, we will expand on the principle of local images for trajectory deviation to exploit the omni-
directional field of view, and multi-channel architecture of the drone-radar. We will also combine this with
the idea of error propagation to develop an omnidirectional autofocus algorithm that can both focus a SAR
image, and estimate the sensor path.

3.3. Kalman Filtering
While not typically applied in conventional SAR processing, the goal of this thesis is to combine estimates
from both the INS and radar in an optimal way. When dealing with observations from multiple sources that
all contain information about a system’s state, some kind of "sensor fusion" is required to obtain the final state
estimate. When the parameters are corrupted by additive Gaussian noise, the maximum likelihood estimator
of the parameter is given by a covariance weighted average of the observations [28].

In practical scenarios, there may also be prior information on the state of a system. In such cases, a
bayesian approach can be adopted. For example, using a model, the state of a system at the next time step
can be predicted with some uncertainty depending on the model’s accuracy. The posterior likelihood of the
system state is then obtained by multiplying the likelihood function given by the measurements, and the
likelihood function given by the prediction. The optimal estimate is given at the maximum of this posterior
likelihood function.

In essence, this is also what a Kalman filter does under the assumption of Gaussian probability distri-
butions. In this section, the principle behind the Kalman filter for sensor fusion will be introduced using a
simple linear model.

3.3.1. Standard Kalman Filter
Given a system model without inputs, the system state equation is given by

xt |t−1 = Ft xt−1|t−1 +wt , (3.4)

where x is the state vector, F is the state transition matrix which predicts the current state using the previous
state, and wt is the process noise which can be used to model the uncertainty of the system model. The
subscripts in the equation specify the current time step, and which time step a state estimate is based on.
xt|t−1 denotes the state estimate at time step t based on a prediction from time step t −1. On the other hand
xt−1|t−1 denotes the state estimate in time step t −1 after updating with measurements in time step t −1.

If the 3D position and velocity are included, the state vector is given by

x = [
x ẋ y ẏ z ż

]>
. (3.5)

In addition, there are also a number of measurements which provide information on the state of the system.
These are described by the measurement equation

zt = Hxt +vt , (3.6)

where zt is the measurement vector, vt is the measurement noise, and H is the measurement matrix which
maps the observations to the system states. The process noise and measurement noise are distributed ac-
cording to covariance matrices Qt and Rt respectively. Kalman filtering is a sequential algorithm which can
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be roughly divided into two parts at each iteration. Namely, a prediction step, and an update step. The pre-
diction step calculates the prior state estimate using the state transition matrix (3.4). In addition, a prediction
of the covariance matrix of the state estimate is also done through

Pt = Ft Pt F>
t +Qt . (3.7)

The update equations then incorporate the measurements to compute the final state estimate:

xt |t = xt |t−1 +Kt (zt −Hxt |t−1) , (3.8)

Pt |t = Pt |t−1 −Kt HPt |t−1 , (3.9)

where Kt is the Kalman gain matrix, which quantifies the magnitude of the update step and weighs the con-
tributions from each sensor on the state estimate. The Kalman gain is given by

Kt = Pt |t−1H>(HPt |t−1H>+Rt )−1 . (3.10)

An intuitive derivation of the update equations (3.8) and (3.9), is given by R. Faragher in [18].

3.3.2. Extended Kalman Filter
In radar systems in particular, the kinematic states are not observed in Cartesian coordinates. In most cases,
the position of a target is expressed in either polar or spherical coordinates. It will become apparent in later
chapters that this is also true when estimating the states of the radar system. Instead of a linear relationship
between the measurements and the states through H, a non-linear function h(xt ) now holds. Consider the
following observations:

zt =
[|vh| θC

]>
(3.11)

where |vh| is the velocity magnitude, and θC is the course angle. If the measurements are converted into the
state vector coordinate system, the measurement covariance matrix might not be Gaussian. The relationship
between the observations and the state in (3.8), is now given by

zt = h(xt) =
[p

ẋ2 + ẋ2

arctan ẏ
ẋ

]
. (3.12)

In the other equations, the measurement matrix is replaced by a time dependent matrix Ht , given by the
Jacobian of h at the predicted state:

Ht =
[

0 ẋ
|vh| 0 ẏ

|vh| 0 0

0 − ẏ
ẋ2+ẏ2 0 ẋ

ẋ2+ẏ2 0 0

]
. (3.13)

As the variance of the course estimate and the variance of the velocity magnitude will be based on different
metrics, we will employ the extended Kalman filter framework. This will be detailed in Chapter 6.
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Problem Analysis and System Design

19





4
Observable States

In the previous chapter, we discussed the motivation and background behind the problem, and some insight
was given into the signal processing aspects of an FMCW imaging radar. In addition, several different tools for
SAR motion compensation were presented. This chapter goes into more detail by examining the kinematic
states of the radar, and determining which states can be observed through radar measurements.

There are two main properties of the radar signal that can be exploited, namely, the magnitude and phase
of the range compressed signal. The magnitude is typically used for range measurements from pulse to pulse,
while the phase of the signal is typically analyzed over multiple pulses to obtain an estimate of velocity.

Throughout this chapter, simulated range-Doppler images are shown to illustrate and present different
ideas. The data used to create these images was simulated by a developed raw signal simulator, which is
presented in detail in Appendix B. An overview of the reference frames and angles used to describe position
and attitude is given in Appendix D.

4.1. Velocity
The velocity of the radar can be estimated through measurements of the radial velocity in each direction. The
range-Doppler domain describes the projection of the radial velocity at a particular steering angle. When
observing the Doppler spectrum of the radar signal, its distribution depends on both the motion of the targets
in the scene and the motion of the radar platform itself. If the illuminated scene is relatively homogeneous,
the observed spectrum is a projection of the antenna pattern. This projection contains information on the
platform velocity and is the working principle behind frequency domain Doppler centroid estimators.

In conventional airborne SAR systems, the radar platform is relatively far from the scene being imaged.
Because of this, the Doppler centroid does not vary significantly as a function of range. For a drone platform,
however, the radar is relatively close to the scene of interest. As a result, the Doppler centroid varies signif-
icantly as a function of both range and cross-range. To understand how the velocity and orientation of the
radar influence the measured Doppler centroid, we will use a simplified geometrical framework based on the
following assumptions:

• The elevation beamwidth along the radar line of sight is large enough such that the scene is illuminated
from directly below the radar to the largest range of interest.

• The azimuth beamwidth after steering is small enough such that there is a distinct beam center at each
range.

Based on these two assumptions, the center of the beam footprint can be modeled as the intersection of the
ground plane with the plane defined by the axis pointing along the radar line of sight and its z-axis. This is
illustrated in Figure 4.1. The measured radial velocity is the scalar projection of the velocity vector and is
given by

Vr = v · r

|r| . (4.1)

Where v is the velocity vector, and r is the vector from the radar to a point on the intersecting line. It is also
important to note that the projection also depends on the angle of the steering direction with respect to the
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angle of the velocity vector. This is illustrated in Figure 4.2, and shown through simulation in Figure 4.3. When
the difference between the steering direction and the velocity vector is smaller than half the beamwidth, as in
the forward-looking case, the spectrum overlaps. This is because the projected velocities on both sides of the
beam have the same sign. Because of this, the beams aligned with the velocity vector contain less information
on the course of the radar and will have a biased centroid. This must be taken into account when estimating
the velocity.
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N

Figure 4.1: This figure illustrates the footprint of the antenna beam center as the intersection between two planes. The radar line of sight
is aligned with the y axis and the attitude is aligned with the inertial East-North-Up(ENU) reference frame.
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Figure 4.2: Geometry of the radar beam when steering in different directions.
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(a) Range Doppler image when the beam is steered to 0 degrees (East North)
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(b) Range Doppler image when the beam is steered to 90 degrees (East North)

Figure 4.3: A comparison between the range-Doppler image when the radar has a constant velocity in the x-direction. In this simulation,
the velocity of the radar is 5 m/s, and all attitude angles are 0. For beamforming, 9 antenna elements are used. 192 pulses are used to
create the Doppler image.

4.2. Attitude
While the attitude of the radar is not directly observed, a non-zero attitude affects the perceived value of the
radial velocity. To show this, we consider the same scenario as shown in Figure 4.3. This time, however, the
radar has a positive non-zero pitch of 15 degrees. The effect of non-zero pitch can be seen in Figure 4.4.
The range-Doppler spectra show that a non-zero pitch has almost no impact on the perceived radial velocity
aligned with the velocity vector. On the other hand, a non-zero pitch has a significant, range-dependent
impact on the perceived radial velocity orthogonal to the velocity vector. This can be explained using the
simplified geometrical framework.
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(a) Range Doppler image when the beam is steered to 0 degrees (East North)
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(b) Range Doppler image when the beam is steered to 90 degrees (East North)

Figure 4.4: A comparison between the range-Doppler image when the radar has a constant velocity in the x-direction, and non-zero
pitch. In this simulation, the velocity of the radar is 5 m/s, and the pitch angle is 15 degrees. For beamforming, 9 antenna elements are
used. 192 pulses are used to create the Doppler image.

When the radar has a non-zero attitude, the intersecting plane is rotated as well. This causes the position
and orientation of the centerline to change. For a rotation around the axis normal to the plane (x-axis in
Figure 4.1), the intersecting line does not change. However, a rotation around the axis defined by the steering
direction causes the intersection to shift as a function of the rotation angle and radar altitude. This is shown
in Figure 4.5.

To determine the offset in estimated velocity caused by a non-zero attitude, we first consider the case
where the radar is moving in the East direction , and the heading is zero (Figure 4.5). For a beam steered in
the y-direction, the observed velocity should be zero. However, there is an offset caused by a rotation around
the y-axis. In this case, the offset is given by

v ′(θst ,r ) = vx
h tanβ

r

∣∣∣∣
θst= π

2

, (4.2)

where β is the rotation around the y-axis, h is the height of the radar above the ground plane, and r is the
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Figure 4.5: This figure illustrates the center of the antenna footprint when the radar is rotated along the y-axis. The centerline shifts as a
function of the rotation angle and radar altitude.

range. This result can be generalized to a velocity offset for an arbitrary attitude by defining a velocity per-
pendicular to the steering angle vp , and a rotation βst around the axis aligned with the steering angle θst .
For a given horizontal velocity vector vh, The offset caused by the pitch and roll in a given steering angle, and
range bin, can be found by analyzing the rotation matrices

Ry x′ = Ry (β)Rx′ (γ) =
 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

1 0 0
0 cosγ sinγ
0 −sinγ cosγ

 (4.3)

=
 cosβ sinβsinγ sinβcosγ

0 cosγ −sinγ
−sinβ cosβsinγ cosβcosγ

 .

where the subscript indicates the order of rotation. In this case, the first rotation is around the x-axis, and the
second rotation is around the rotated y-axis(y ′). When the beam is steered in a particular direction, this can
be seen as a yaw rotation in the local reference frame around the rotated z-axis z ′′. This can be described by
the rotation matrix

Ry x′z ′′ = Ry x′ ·
cosθst −sinθst 0

sinθst cosθst 0
0 0 1

 . (4.4)

The angle βst is equal to the angle between the rotated y-axis y ′′ and the ground plane. This can be found by
computing the angle between the second column of Ry x′z ′′ , and the normal vector of the ground plane. βst is
found to be

βst = π

2
−arccos

(
sinβsinθst +cosβsinγcosθst

)
. (4.5)

The velocity vp on the other hand, requires the velocity vector itself to be known, and is given by,

vp = |vh|sinδ (4.6)

where δ is defined as the angle between the steering direction and the velocity vector, and |vh| is the absolute
value of the velocity vector in the horizontal plane. This implies that the actual non-offset velocity must
be known to estimate the offset caused by the attitude. Fortunately, we will show in Chapter 5 this can be
substituted by using the initial biased centroid estimate to calculate the velocity vector for a negligible loss
of accuracy. When moving forward, drones typically pitch down. Because of this, this effect must be taken
into account when estimating velocity. Chapter 5 will also show how the omnidirectional array can be used
to suppress the effects of attitude.

4.3. Relative Horizontal Position
In typical scenarios, it is not possible to determine the horizontal position of the radar in a global reference
frame. Doing so requires all pulses to be sufficiently correlated to an initial reference pulse. What is more
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Figure 4.6: The actual perpendicular velocity component when moving forward versus the measured Doppler centroid due to non-zero
pitch plotted onto the range-Doppler image. For this simulation, the altitude, pitch, and forward velocity are 15m, 15 degrees, and 5m/s
respectively.

commonly done in literature, is the estimation of relative motion from pulse to pulse. This is done using
the magnitude in scan matching approaches, and using the phase in autofocus. In essence, this is also a
form of measuring velocity. A requirement for this approach to achieve adequate performance is contrast in
the scene. Contrast can be used as reference points for the phase and magnitude from pulse to pulse. This
thesis proposes an alternative relative positioning method termed multi-beam autofocus, for positioning.
This approach will be presented in the next chapter.

4.4. Altitude
If the terrain is relatively flat, it is possible to determine the absolute position in the upwards direction, as
the reference point stays the same. This technique is also known as radar altimetry and is widely used in
satellites and airplanes. Most literature on radar altimetry deals primarily with long-range altimeters and
the complications associated with it. Short-range altimetry is not a difficult problem by itself. However,
being mostly side-looking, the drone-radar is not designed as an altimeter and requires a slightly different
processing approach.

In conventional satellite altimeters, the impulse response of the surface is characterized by the so-called
"Brown model", which was introduced by G. Brown [6]. This model parametrizes the leading edge and trailing
edge of the surface reflection based on the pointing angle and the surface roughness to form an optimal
matched filter. As the drone-radar has a wide beam and is not strictly down-looking, the leading edge has
a relatively gentle slope. Figure 4.7 shows the impulse response predicted by the brown model for different
nadir angles compared to the range profile of a pulse from the drone radar.
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Figure 4.7: The left image shows the surface response as predicted by brown for a typical nadir looking pulsed radar system. In the image
the effect of changing the nadir angle ξ is also shown. The right image shows the range profile of an arbitrary pulse from the drone-radar.
As expected, the wide beam and side looking architecture result in a relatively gentle slope.
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It is difficult to design a matched filter for the range profile due to the noisy response. However, there is
still a clear difference in power level. If we instead observe the range profile on a log-scale, the change point
is much sharper and resembles a step function, this is shown in Figure 4.8. In Chapter 5, we will show that
the change point detector proposed by M. Lavielle [30], produces a stable estimate of the height above the
surface for the drone-radar.
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Figure 4.8: The range profile of a single radar pulse presented on a log-scale. The first reflecting target can easily be recognized by an
order of magnitude change in received signal power.

While the altitude of the radar is technically observable, it will become clear that the terrain elevation is
not negligible and has a significant impact on the quality of the estimate.
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4.5. Summary
In this chapter, we analyzed the observability of the kinematic states of the radar platform in the radar data.
More specifically, this chapter observed how velocity, attitude and altitude are represented in the radar data.
The radar can be used as a velocity sensor, estimating the velocity using either the Doppler shift of the radar
over multiple pulses, or relative changes in reference points from pulse to pulse. In addition, the radar sen-
sor can also be used as an altimeter by analyzing the range profile and determining the closest reflection.
Table 4.1 gives an overview of the states of the system and specifies which states are observable using radar
data.

Table 4.1: The kinematic states of the radar and their observability using either radar data or INS measurements.

Radar INS

State Observable Method Observable Method

Position (E, N) No - Yes GNSS,IMU
Position (U) Yes Radar altimeter Yes GNSS,IMU,barometer

Velocity (E, N) Yes
Doppler centroid estimation,
scan-matching,
autofocus

Yes GNSS,IMU

Velocity(U) Yes Radar altimeter Yes GNSS,IMU
Yaw (α) No - Yes Magnetic compass, GNSS
Pitch(β) Partly Doppler centroid Yes IMU
Roll(γ) Partly Doppler centroid Yes IMU





5
State Estimation Using Radar Data

The previous chapter performed an analysis on the observability of the various kinematic states of the radar
and analyzed the effect of non-zero attitude on the velocity estimate. This chapter will further examine the
radar data, and derive the appropriate methods to extract the desired parameters. The chapter will be orga-
nized as follows.

The first section will focus on estimating the height of the radar above ground by formulating the problem
as a change point detection problem. In the second section, a velocity estimator is proposed to estimate the
velocity of the radar in the horizontal plane. Simulated data will be used to verify the performance of the
velocity estimator for different antenna configurations. Using experimental data, a qualitative comparison
between the INS velocity estimate, and radar velocity estimate will also be given. A detailed description of the
radar system and the experimental setup can be found in Appendix C.

In the final section, we will present a novel autofocus method, specifically designed for the omnidirec-
tional radar, which can estimate relative position using phase changes from pulse to pulse.

5.1. Height Estimation
While the drone radar is not designed as an altimeter, it can still be used to estimate the height above the
ground by exploiting the characteristics of the received signal. Since the returns from directly below the radar
are usually observed first in the range profile, they are easily distinguishable through a sharp power level
change in the range profile. This can be used to estimate the height of the radar with respect to the ground
surface.

The range profile obtained from the sum of antenna elements can be seen in Figure 5.1 for simulated data.
In this figure, a comparison is shown between a non-coherent summation and a coherent summation of the
receiver antenna elements. While coherent summation is a powerful tool in radar signal processing, it is not
always the optimal approach. Because of the random phase distribution of the ground reflections, a coherent
summation randomly adds contributions both constructively and destructively, resulting in a noisier edge.
On the other hand, a non-coherent addition lacks interference and only adds magnitudes. Because of this,
the channels are added non coherently when estimating height.

5.1.1. Change-point Detection
Since the ground reflection is observed as a change in power level instead of a peak, the location of the change
point between power levels needs to be found. One possible way of doing this is through the gradient, sim-
ilar to an edge detection problem. The problem with this approach is that the performance of the gradient
method depends on the sharpness of the edge and the amount of noise. In this case, a better approach is to
find the change point in the mean by considering the entire data segment. The change point is the point at
which some statistical property ( in this case, the mean) changes most significantly. One popular means for
change point detection is through minimization of a quadratic cost function as proposed by M. Lavielle [30]

Jcp =
K∑

k=1

τk∑
n=τk−1+1

(yn − ȳk )2 , (5.1)

29
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(a) Range profile when antenna elements are coherently summed.
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(b) Range profile when antenna elements are non-coherently summed.

Figure 5.1: A comparison between the range profile of the sum of antenna elements for both a coherent, and non-coherent summation.

where K is the number of sections in the series, and τk represents the change point of the k th segment. ȳk

is the empirical estimate of the mean of the k th segment. The value of the cost function represents the total
squared error of each detected region from its estimated mean. Given a prior number of sections K, the goal
is to find the values of τk that minimize this cost function. For the estimation of height, there is only one
significant change point that needs to be estimated. The problem then simplifies to minimizing,

Jcp (τ, y) =
τk−1∑
n=1

(yn − ȳk )2 +
N∑

n=τk

(yn − ȳk+1)2. (5.2)

Minimizing this equation finds the point τk that minimizes the sum of the errors between the means of
the estimated segments. Substituting yn with the range compressed signal, τk is now the range index of the
height above ground. An example of a detected change point for a single pulse can be seen in Figure 5.2.
For the reasons specified in the previous chapter, the change point detector is applied to log-scale data. This
makes it easier to detect the order of magnitude change in signal strength between the background noise and
the closest target.

It is not immediately apparent from the range profile of the simulated data-set (Figure 5.1) that the change
point detector achieves better performance. To show the effectiveness of a cost function approach compared
to a gradient approach, an experimental data segment is used. While the gradient is quite noisy and produces
noisy estimates as a result, the change point detector is more stable due to incorporating information from
the entire data segment in its cost function. This can be seen in Figure 5.3, where the result from the two
methods is compared.
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Figure 5.2: This figure shows the estimated change point using an experimental data set.
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Figure 5.3: The estimated altitude using the change point detector compared to the estimated altitude using the gradient.
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To get an indication of the performance of the altitude estimate, the method was tested on 35 s of sim-
ulated data. For the simulations, all available channels are used. The simulations are done using various
maneuvers both with pitch and without pitch. The estimated standard deviation was found to be 0.018
m, and the bias was found to be 0.32 m. This means that the estimator has a significant bias. This bias is
likely caused by the slope in the leading edge of the range profile. Unfortunately, this slope depends on the
roughness of the terrain, which is an unknown parameter. A similar problem occurs in satellite altimetry
due to varying penetration depth over surfaces such as land, water, and snow. The technique used to solve
this problem is termed retracking. The most common method is the threshold first maximum retracking al-
gorithm (TFMRA)[47]. This algorithm sets the "tracking-point" to a percentage of the detected peak echo
power. The percentage is empirically set based on the terrain, with common values being 40%,50%, and 80%.

For the drone-radar, the slope is not only caused by surface penetration, but also because the radar system
has a wide beamwidth and relatively low gain in the downward direction. Furthermore, the power from the
ground echo in experimental data will be higher due to the perpendicular grazing angle. Since the simulated
data is not an accurate representation of the terrain in experimental scenarios, this bias is left as-is. A tunable
parameter can be defined to correct the actual range to a percentage of the initial detected range, similarly to
TFMRA.

5.1.2. Considerations For Experimental Data
Two additional factors need to be taken into consideration when dealing with experimental data. First, while
the estimate may be accurate, it should be noted that the obtained estimate is the distance between the radar
and the closest reflecting object to the radar. This means that the estimated height does not always corre-
spond to the reflection directly below the radar. As such, nearby tall objects will deteriorate the estimation
accuracy. Moreover, a hilly terrain makes it impossible to estimate the radar’s height with respect to a fixed
reference point.

The first problem can be solved by performing the estimate in the range-Doppler domain. By performing
the estimate around the zero-Doppler line, a true estimate of the distance directly below the radar is obtained.
A possible problem with this approach is that fewer samples are used to create the estimate, possibly leading
to more outliers. Also, when the altitude of the radar is increasing or decreasing, the true altitude is no longer
around the zero Doppler line. As a result, the estimation method should be selected based on the scene and
the trajectory.

Another way to increase the altimeter resolution is through delay-Doppler or SAR altimetry [42]. Similar
to conventional SAR, the idea behind SAR altimetry is to create a finer spot resolution by synthesizing a larger
antenna aperture. This is done by coherently adding ground returns using a rough initial estimate of velocity
and height. We implemented SAR altimetry in the current study. However, the ground returns lacked enough
coherence to provide additional benefits. In the end, the noncoherent summation of the range compressed
signal was used.

The second problem can be solved by using a digital elevation model (DEM) of the scene. In The Nether-
lands, the freely available AHN3 DEM can be used which provides a 0.5 m resolution DEM [2]. It should be
noted that this requires the GNSS location of the radar to be known with reasonable accuracy. However, it
should be sufficient to eliminate slow variations in terrain elevation. To test this, the AHN3 dataset of the
measurement area was downloaded and processed to match the coordinate system. An image of the pro-
cessed DEM can be seen in Figure 5.4. The elevation is referenced to the selected origin of the ENU reference
frame. At each point in the radar trajectory, the DEM is probed to obtain the elevation at this coordinate. The
DEM profile is adequately smoothed and subtracted from the radar height estimate. The result can be seen
inv Figure 5.5. The compensated radar height is compared to the integrated GNSS velocity to get a qualitative
indication of performance.
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(a) Digital elevation model of the measurement area. The radar trajectory for
this test is also shown in red.
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(b) Probed elevation and mean subtracted radar height estimate.

Figure 5.4: An image of the DEM is shown on the first figure along with the radar trajectory from one of the data segments. The second
figure shows the probed elevation along the radar trajectory along with the mean subtracted height estimate.
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Figure 5.5: The compensated radar height estimate alongside the integrated upwards GNSS velocity. In this figure, the mean from both
estimates is subtracted to aid visual comparison.
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5.1.3. Overview
The processing steps of the proposed altimeter can be summarized as follows:

• The data from each channel is pre-processed, and range compressed. In addition, a range segment of
interest with a minimum allowable range is selected to remove the direct cross-feed between receivers
and transmitters.

• The pre-processed data from all channels is non-coherently summed.

• Using the change point detector described by (5.2), the point at which the signal strength changes most
significantly is found. This point represents the altitude estimate.

• If needed, the obtained altitude estimates are compensated with a DEM referenced by the GNSS.

Multi-channel
data

Pre-processsing non-coherent
summation

Change point
Detection

Altitude Estimate

DEM Compensation

Figure 5.6: Flowchart of the altimeter processing steps. The highlighted DEM compensation step is not strictly required and depends on
the terrain.
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5.2. Velocity Estimation
In the previous section, an altimeter processing chain is proposed to estimate the altitude of the radar. This
section will look at aspects of the radar data which can be used to estimate its velocity. To estimate the hori-
zontal velocity, two distinct features of the range Doppler map can be exploited. The Doppler centroid pro-
vides an estimate of the radial velocity in the steering direction. The absolute value of the velocity vector, on
the other hand, is reflected by the distinct edge on both sides of the spectrum. The clutter edge corresponds
to the returns which are aligned with the velocity vector, as these have the highest Doppler component. Both
of these features are clearly visible in Figure 5.7, where the centroid and clutter edge are highlighted for a
simulated beamformed range-Doppler image.

Figure 5.7: A simulated range Doppler image for a horizontal velocity of 5 m/s with the beam steered 90 degrees from the local x-axis.
The clutter edge and Doppler centroid are also highlighted.

5.2.1. Velocity Magnitude
To estimate the absolute value of the horizontal velocity vector, we propose to use a parameterized edge
detector. A similar approach is proposed by Mao et al. [35] for Doppler beam sharpening. Here, the clutter
edge is detected using a threshold, followed by a series of morphological filtering operations. The velocity
parameters are then extracted using a least-squares fit through the detected edge. While thresholding might
work in cases where the main lobe is pointing forward, this would not work for a semi-side looking case as
shown in Figure 5.7 due to the presence of the beam pattern. Instead, we can parameterize the edge before
detection to simplify the problem. For a given Altitude h, and absolute horizontal velocity |vh|, the radial
velocity at a range R is given by,

vr (R) = |vh|
√

1−
(

h

R

)2

. (5.3)

The values along this curve can be calculated for the range of possible velocities by interpolating the velocity
axis for each range-bin, and summing along the range dimension. For each range bin, the new velocity axis ṽ
is given by

ṽ = v
1√

1−
(

h
R

)2
. (5.4)

The interpolation is visually shown in Figure 5.8 using a range-Doppler image from an experimental data
segment.

After summing, the problem is reduced to a 1-dimensional edge detection problem as shown in Figure 5.9.
To increase the Signal to Noise Ratio (SNR) of the edge, the spectrum is folded over along the centerline to
add both edges together. Since many range bins are averaged, the resulting edge is not very noisy and can be
easily detected by its gradient. The estimator is applied to each digital beam separately. To gauge the quality
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Figure 5.8: Transformation of the range-Doppler spectrum to a Doppler spectrum representing the horizontal velocity at each range bin.
The spectrum is transformed by interpolating the Doppler axis at each range bin.
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Figure 5.9: The 1D spectrum obtained after interpolating the Doppler axes in the original spectrum, and summing along the range
dimension.

of each estimate, the peak-to-background ratio (PTBR) of the gradient magnitude is used as a metric. The
PTBRs are normalized and used to weigh the contribution to the final estimate.

The estimator is first tested on 30 seconds of simulated data for a variety of maneuvers. The estimation
was performed multiple times using different sets of parameters. The parameters that were changed were
the number of antenna elements per beam and the step size between beam steering angles. The standard
deviation, bias, and RMS errors can be seen in Table 5.1. The error does not vary significantly as a function of
these parameters. However, in general, a larger number of antenna elements and a smaller step size yield a
slightly better RMS error. This can be explained by the fact that there will be more estimates from the forward
and rear looking regions with high SNR, decreasing the overall error.

The main difference between the simulated data and experimental data is caused by thermal noise and
scene contrast. This can be observed when comparing the experimental range-Doppler spectrum with the
simulated one (Figures 5.8 and 5.7 ). As contrast does not affect the edge, thermal noise is the most signifi-
cant factor. The obtained velocity estimates are compared to the INS velocity over several experimental data
segments for a qualitative indication of performance. Details of the experimental setup can be found in Ap-
pendix C. Two data segments consist of straight passes with a constant course and are 45 s in length each. In
the third data segment, which is 30 s in length, the movement of the drone is more dynamic. The results are
shown in Figures 5.10 to 5.12.
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Table 5.1: The standard deviation, bias, ans RMS error of the edge velocity estimator for simulated data. A number of different values
are used for the steering step size and the number of antenna elements to test the dependence on different processing configurations.

stepsize 15 30 45

#Rx 5 7 9 5 7 9 5 7 9

σ (m/s) 0.0168 0.021 0.018 0.021 0.024 0.021 0.020 0.030 0.028
ε̄ (m/s) -0.015 -0.010 -0.012 -0.018 -0.010 -0.011 -0.012 -0.011 -0.014
RMS (m/s) 0.023 0.024 0.022 0.027 0.026 0.024 0.022 0.031 0.031
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Figure 5.10: The estimated velocity magnitude and the INS velocity estimate. A data segment of 45 seconds is used, with 8 active side-
looking receive elements. The RMS value of the error for this segment is 0.37 m/s.
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Figure 5.11: The estimated velocity magnitude and the INS velocity estimate. A data segment of 45 seconds is used, with 8 active side-
looking receive elements. The RMS value of the error for this segment is 0.14 m/s.
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Figure 5.12: The estimated velocity magnitude and the INS velocity estimate. A data segment of 30 seconds is used with 8 active receive
elements. For this data segment, an arbitrary flight path is flown. The RMS value of the error for this segment is 0.32 m/s.
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For each estimate, a burst of 192 slow-time samples is used to compute the Doppler spectrum. The effec-
tive velocity resolution is given by

PRF

NFFT

c0

2 fc
. (5.5)

For a PRF of 814 Hz, the velocity resolution is approximately 0.07 m/s. Qualitatively, the velocity estimates
match the estimates produced by the INS quite well. Producing errors which are close to the specified per-
formance of the INS. Something that can be noted from visual inspection, is that the radar velocity estimate
is not able to estimate zero-velocity very well. This can be seen in Figure 5.12 at the start. It can also be ob-
served in the other figures when the radar slows down and changes direction. This effect is caused by the zero
Doppler components having a width larger than zero when the radar is not moving. This should be taken into
account when fusing sensor data.

Overview
A flowchart of the estimator can be seen in Figure 5.13. The processing steps can be summarized as follows:

• For a given data segment, the range-compressed data is coherently added to create a number of digital
beams.

• For each digital beam, the velocity is estimated by finding the velocity for which the gradient along a
curve parameterized by the velocity is maximized

• Estimates from each beam are weighed by their normalized peak-to-background ratio to form the final
estimate.

Pre-processing Spectrum
Interpolation

Compute gradient
and find peak

Compute weighted
average

Compute peak to
background ratio

Multi-channel
sweep burst Altimeter

Figure 5.13: A flowchart of the steps used to compute the magnitude of the horizontal velocity vector.
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5.2.2. Doppler Centroid
By estimating the edge of the Doppler spectrum, a constraint is obtained for the magnitude of the velocity
vector. The angle of the velocity vector with respect to East (x-axis of the inertial reference frame) can be
estimated from the Doppler centroid. The Doppler centroid at a certain range bin is an estimate of the ra-
dial velocity in that direction. There are several different Doppler centroid estimation algorithms available
which are designed to deal with different scenarios. However, The majority of algorithms can be grouped
into a framework of correlation-based estimators, which correlate the spectrum with a weighing function.
The Doppler centroid is then found at the zero points (or peak, depending on the weighing function). The
weighing function can incorporate prior information about the antenna pattern or noise distribution [4, 52].

The accuracy of the centroid estimate depends on several factors, which are mostly present in experimen-
tal data. The most notable being the distribution of targets in the illuminated scene. Strong, point-like targets
cause unpredictable spikes in the spectrum and can make it difficult to detect its peak. Shadowed areas like
the one present in Figure 5.8, also distort the spectrum further. Aside from the target distribution, there is
also distortion in the antenna pattern when the squint angle is non-zero. This is because there is a non-linear
relationship between the Doppler centroid velocity and the squint angle. The relationship is given by

|θDC | = arccos
vDC

vh
, (5.6)

where θDC is the angle between the velocity vector and the steering direction, vDC is the Doppler centroid
velocity, and vh is the magnitude of the horizontal velocity vector. The result of this is that the spectrum is
compressed on one side at high squint angles. This was already introduced in the previous chapter. Typical
centroid estimators in literature do not address this problem, as the relationship is approximately linear in
the side looking region used for SAR imaging. However, due to its dynamic motion, the drone platform has
rapidly changing Doppler centroid values spanning the entire bandwidth.

Figure 5.14: An illustration of the distortion in the Doppler spectrum caused by velocity projection from high squint angles. When the
steering direction is close to the velocity vector, the spectrum overlaps, which is illustrated by the dotted line.

To solve the first problem and reduce scene contrast, a 2D cell averaging constant false alarm rate (CA-
CFAR) detector is used to remove targets with very high Signal to Clutter (SCR) values (> 10dB). The CFAR
window is narrow in azimuth to estimate the clutter level of a particular part of the antenna pattern. The
range-Doppler image for an experimental data segment after CFAR thresholding is shown in Figure 5.15.
While there is still contrast caused by scene features such as the shadowing seen on the left of the image, the
overall "spikiness" of the spectrum is reduced. This is also visible in the main lobe of the 1D spectrum in
Figure 5.16. The CFAR thresholding step is applied to the interpolated range-Doppler spectrum as defined
for the edge detector.
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Figure 5.15: The interpolated range Doppler image before (left) and after (right) removing strong targets with a CFAR detector. Notable
removed targets are the two corner reflectors in the nulls of the antenna pattern, and te strong reflections in the main lobe around 80 m.
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Figure 5.16: A comparison between the computed 1D spectrum without removing strong targets (left), and after removing strong targets
using a CFAR detector (right).

It has been shown that the centroid estimator achieving the lowest variance in practice, is a correlation-
based estimator that uses the nominal antenna pattern as its weighting function [52]. The expected antenna
pattern can be calculated using the generalized array factor as defined in (2.9). As the spectrum axis is cur-
rently represented in units of velocity, the axis is first interpolated according to (5.6) to transform each velocity
to an angle with respect to the velocity vector. This projects the spectrum back to a polar representation, mini-
mizing the distortion of the spectrum at higher squint angles. The spectrum before and after interpolating, for
an experimental data segment can be seen in Figure 5.17. After interpolating, the spectrum is correlated with
the nominal antenna pattern computed using the array factor and the antenna configuration (Figure 5.18).
The peak of the correlation result is then selected as the centroid estimate.

The estimated Doppler centroid can now be interpreted as a centroid angle that quantifies the angle be-
tween the steering direction and the velocity vector. Figure 5.19 shows the estimated centroid for simulated
linear motion. For this simulation, a steering step size of 15 degrees is chosen. This means that the centroid
spacing should remain constant as a function of steering direction. It can be seen that the spacing between
subsequent estimates is mostly constant except for very high squint estimates (< 20 deg and > 160 deg). Since
these estimates will always exhibit bias, they can be disregarded if enough estimates within a reliable range
exist.

The centroid angle from a single steering direction provides only an estimate of the absolute angle be-
tween the steering direction and the velocity vector. The relationship can be described by

|θst ,n −θx
c,n | = |θDC ,n | , (5.7)

where θst ,n represents the steering direction of the nth estimate, θx
c,n represents the angle of the velocity

vector with respect to the local x-axis, and θDC ,n represents the nth centroid estimate. This is also visually
illustrated in Figure 5.20.



5.2. Velocity Estimation 41

-4 -3 -2 -1 0 1 2 3 4
Horizontal velocity (m/s)

-35

-30

-25

-20

-15

-10

-5

0
N

or
m

al
iz

ed
 p

ow
er

 (d
B)

0 20 40 60 80 100 120 140 160 180
Angle from velocity vector (deg)

-35

-30

-25

-20

-15

-10

-5

0

N
or

m
al

iz
ed

 p
ow

er
 (d

B)

Figure 5.17: A comparison between the 1D spectrum after summing along the range dimension (left), and the 1D spectrum after inter-
polating the axis to an equivalent angle from the velocity vector (right).
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Figure 5.18: The measured spectrum along with the calculated nominal antenna pattern. The antenna pattern is shifted on top of the
measured spectrum in this image to visually show their correlation.
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Figure 5.19: The figure on the left shows the estimated Doppler centroid for each steering direction as a function of of the sample
number, where each sample represents the centroid angle obtained for a given sweep burst. The figure on the right shows the estimated
centroid for each steering direction averaged over the time samples. The centroid estimates are obtained using a simulated data-segment
containing linear motion.
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Figure 5.20: Illustration of the angles measured by the centroid estimator. The local reference frame is offset from the inertial reference
frame in this illustration to stress that the radar has a non-zero heading, α in the inertial reference frame.

To obtain the sign of the estimate, at least two independent centroid estimates are required. This problem
can be reformulated as a least-squares problem in the following way. Each steering direction can be repre-
sented by a unit vector hn . Since the estimated centroid angle is the absolute value between the steering
vector and the velocity vector in the local reference frame, the cosine of the centroid angle is equal to the
scalar projection of the unit velocity vector onto the unit steering vector

ĥ>
n · v̂h = cos(θDC ,n) . (5.8)

This can be generalized to any number of centroid estimates for a single data section. By defining a matrix H
of steering directions, and a vector y of centroid cosines: cos(θDC ,1)

...
cos(θDC ,N )

=

hn,x̂ hn,ŷ
...

...
hn,x̂ hn,ŷ

 ·
[

v x̂

v ŷ

]
⇔ y = H · v̂ . (5.9)

if the noise in the centroid estimates is assumed to be Gaussian, a linear estimation problem can be formu-
lated

y = H · v̂h +w , (5.10)

where w is an additive Gaussian noise vector distributed according to N (0,W). Here, W is the covariance
matrix of the system containing the variances of each measurement. The least-squares estimator for v̂ is then

v̂h = (HTW−1H)−1HTW−1y . (5.11)

In this equation, the covariance matrix weighs each centroid estimate. In practice, the variance of each radial
centroid estimate should be determined according to some quality criterion. The covariance matrix of the
final velocity estimate is given by

C = (HTW−1H)−1 ,

where each diagonal element represents the variance of a spatial component. From the above equation, it
can be seen that if more independent, low-variance centroid estimates are incorporated, the variance of the
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overall estimate can be reduced. The course with respect to the local reference frame is then

θx
c = arg

(
v ŷ + j · v x̂

)
, (5.12)

To compute the course with respect to the inertial (East-North) coordinate system, the estimated centroid
must be referenced to an inertial heading. The course of the radar, which is defined as the angle between the
horizontal projection of the velocity vector and the East direction, can be calculated using

θc =α+θx
c , (5.13)

where α is the heading, which is defined as the angle between the x-axis of the INS and the East direction.
For a simple case, the matrix W in (5.11) can be assumed to be equal to the identity matrix. However, it

has been shown that the variance of a centroid estimate is directly proportional to scene contrast, which is
defined by

SC = 〈I 2〉
〈I 〉2 , (5.14)

where I is the pixel intensity and 〈·〉 represents an averaging operator. In practical scenarios, the difference in
contrast between different sides of the radar might be substantial. In [4], R. Bamler shows that the variance
of a correlation-based Doppler centroid estimator can be approximated by

var( fDC ) = PRF ·SC

N
·

∑B/2
−B/2

(
A( f ) ·B( f )

)2(∑B/2
−B/2 A( f ) ·B ′( f )

)2 , (5.15)

where N represents the total number of samples contributing to the estimate of fDC , and B is the processing
bandwidth. A( f ) and B( f ) represent the nominal antenna pattern and correlating function respectively.

The value of N is mainly determined by the number of slow-time samples and range bins used for esti-
mation. In addition, when there is contrast in the scene, the number of effective samples is divided by the
contrast factor SC [4, 34, 52]. The expression in (5.15) can also be written in terms of the centroid angle θDC ,
as

var(θDC ) = PRF ·SC

NB
·

∑B/2
−B/2 (A(θ) ·B(θ))2(∑B/2
−B/2 A(θ) ·B ′(θ)

)2 , (5.16)

where NB represents the number of samples corresponding to the range from −π/2 to π/2, which is deter-
mined by the magnitude of the velocity vector. Without going into the details of the antenna pattern and
correlation function, two important observations can be made. First, the variance for a single estimate is di-
rectly proportional to the scene contrast. And second, the variance is also approximately proportional to the
magnitude of the velocity vector. The contrast can be used to weigh individual course estimates, while the
second observation can be used when fusing the radar estimates with INS estimates.

Accounting For Non-zero Attitude
There are two main ways to combat offset caused by non-zero attitude. The easiest way is by simply using
beams pointing in opposite directions. This is also called a Janus configuration and is commonly found in
acoustic Doppler logs on navy ships. The idea behind a Janus configuration is that the offsets caused by atti-
tude on opposite sides of the sensor will cancel each other out. This is because while the horizontal velocities
have opposite signs, the offset caused by attitude is the same on both sides. In the same way, the vertical
velocity component is also suppressed.

If only one side of the radar is available, the offset caused by the attitude can still be compensated. How-
ever, this must be done using the attitude estimates obtained from the INS. (4.5) in the previous chapter,
describes the velocity offset caused by a particular attitude. To simplify the analysis, the average offset over
a specific window can be observed. Recall that the spectrum is integrated along the range lines for a zero
attitude assumption. As the offset is proportional to 1/R, the average offset for a range from R1 to R2 is given
by the integral of the offset

〈vs (R1,R2)〉 = 1

R2 −R1

∫ R2

R1

vs (R)dR = vp h tanβst (θst ,β,γ)
log R2

R1

R2 −R1
. (5.17)

The average centroid offset is then

〈θc,o〉 = arcsin
〈vs (R1,R2)〉

vh
. (5.18)
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x
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Figure 5.21: Illustration of a Janus configuration using 4 beams on the drone radar.

The velocity vp used to calculate the offset, depends on the unbiased course itself. However, if the biased
course is used as an initial estimate, the relative error made in correcting the offset is small. To show this,
consider the case where the radar is moving linearly at 5/ms , has a positive pitch of 15 degrees, and the beam
is steered to 90 degrees in the local reference frame.

The centroid offset as a function of course angle can be seen in Figure 5.22. The figure shows the average
offset over a range from 30 to 80 m at a height of 15 m with a pitch of 15 degrees. It can be seen that while
an initial estimate of the course is necessary to determine the centroid offset, the error made when using the
initial biased estimate is small. For larger course angles, the difference in offset between subsequent angles
becomes larger. However, the process could be iterated several times to converge at the correct estimate.
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Figure 5.22: The average offset in course for a pitch of 15 degrees in a range from 30 to 80 m as a function of the course angle. The left
data-tip highlights the measured course offset when the actual course is 90 degrees. The right datatip highlights the error made when
the biased course is used to calculate the offset.

Evaluation

To get an indication of the performance of the centroid estimator, the centroid estimator is first tested on the
set of simulated data previously also used for the edge velocity estimator. The obtained results can be seen
in Table 5.2. This shows that the accuracy of the estimate depends mostly on the number of beams that are
used. In addition, beams using more antenna elements also reduce the error. This is an expected result as the
overlapping effect shown in Figure 5.14 is reduced for narrow beamwidths.
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Table 5.2: The average standard deviation, bias, and RMS error of the centroid estimator using the set of simulated data. The error
statistics are calculated for a number of antenna configurations and steering step sizes.

stepsize 15 30 45

#Rx 5 7 9 5 7 9 5 7 9

σ (deg) 0.38 0.30 0.27 0.56 0.38 0.32 0.92 0.71 0.75
ε̄ (deg) 0.05 0.05 0.02 0.04 0.09 0.04 0.13 0.14 0.17
RMS (deg) 0.38 0.29 0.27 0.56 0.39 0.32 0.93 0.72 0.77
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Figure 5.23: The Course with respect to East (left) and offset from the INS (right) corresponding to the velocity graph in Figure 5.10.
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Figure 5.24: The Course with respect to East (left) and offset from the INS (right) corresponding to the velocity graph in Figure 5.11.
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Figure 5.25: The Course with respect to East (left) and offset from the INS (right) corresponding to the velocity graph in Figure 5.12.
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After testing on simulated data, the obtained course estimate can be compared to the INS course estimate
using the same data segments as with the velocity magnitude. The results can be seen in Figures 5.23 to 5.25.
Visually, The obtained course estimates are relatively close to the estimates obtained from the INS, with the
largest differences being seen at direction changes and low velocities (around 25 s in Figure 5.24 and from 0
to 3 s in Figure 5.25). However the estimation accuracy is still relatively stable considering there are much
fewer samples used to estimate the course.

5.2.3. Overview Of Velocity Estimation
Now that all parts of the velocity estimator have been presented, the velocity estimation procedure can be
summarized as follows:

1. For the current data segment, the height is estimated using the radar altimeter.

2. A number of digital beams are defined and the appropriate channels are coherently added together.

3. For each digital beam, the velocity axis of each range bin is interpolated to represent the velocity in the
horizontal plane. The spectrum is summed in the range direction to obtain a 1D spectrum.

4. The magnitude of the horizontal velocity vector is determined by finding the edge of this spectrum.
Individual estimates from different beams can be weighed using the peak-to-background ratio of the
edge gradient.

5. Using the integrated spectrum, and previously estimated velocity magnitude, the spectrum is interpo-
lated to a polar form.

6. The interpolated spectrum is correlated with the array factor of the constructed receiver array to esti-
mate the centroid angle.

7. Using multiple centroid angles, and the heading in the inertial reference frame, the course in the hori-
zontal plane can be determined.

8. If only one-sided data is available, the offset caused by a non-zero attitude can be compensated using
the output of the INS.

A flowchart of the velocity estimator is shown in Figure 5.26. The final estimate consists of a magnitude |vh|
which specifies the horizontal velocity, and a course θc which specifies the angle of the horizontal velocity
with respect to the East direction. Depending on the requirements, this polar form may also be transformed
into a Cartesian representation.

Range compression

Change-point
detection

Spectrum
Interpolation

Doppler processing

Spectrum edge
detection

Course estimation

Multi-channel
sweep burst

 Digital beamforming

Platform
orientation

 digital beams

Figure 5.26: A flowchart of the entire velocity estimation procedure. A vector notation is used to indicate outputs from multiple steering
directions. Here A(vr ,R) corresponds to the range-Doppler spectrum, and A(|vh|) corresponds to the interpolated 1D spectrum.
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5.3. Multi-Beam Autofocus
In the previous section, an estimator was proposed for estimating the horizontal velocity vector. The estima-
tor exploits the clutter distribution of the Doppler spectrum to obtain an estimate of course and velocity. The
performance of the velocity estimate is optimal when scene contrast is minimal and deteriorates when con-
trast is present. Scene contrast, however, also provides useful information about platform motion. To exploit
scene contrast, a different estimation method needs to be used. Contrast is the basis of many autofocus tech-
niques in SAR imaging. Autofocus is a very powerful technique, in the sense that it provides wavelength level
error correction provided that it is correctly implemented. In this section, we propose an extension to tra-
ditional autofocus techniques. The technique is specifically designed for an omnidirectional antenna array
and is termed multi-beam autofocus. This section will describe the proposed implementation of autofocus
for ego-motion estimation of the drone radar. First, the general autofocus problem will be presented. After
which an equivalent convex problem will be derived which can be efficiently solved as a Semidefinite Pro-
gram (SDP) using a row-by-row method. Various techniques presented in recent literature will be adapted
and combined to develop a new relative positioning algorithm for an omnidirectional radar array.

5.3.1. The Autofocus Problem
Consider the autofocus problem as formulated in Section 3.2. A group of de-focused pixels can be expressed
as an N ×M matrix

A =


R11 exp jφδ1 R12 exp jφδ1 . . . R1M exp jφδ1

R21 exp jφδ2 R22 exp jφδ2 . . . R2M exp jφδ2
...

...
. . .

...
RN 1 exp jφδN RN 2 exp jφδN . . . RN M exp jφδN

 , (5.19)

where each row of A represents a "pulse" contribution to the pixel tile. Note that it is assumed that the pixels
are already projected to the imaging grid. This is also illustrated in Figure 5.27.

Figure 5.27: This figure shows the construction of the A matrix in (5.19) using radar geometry.

The group of pixels is assumed to be chosen such that the phase error φδn for a given pulse is the same
across all pixels. Moreover, the phase error is assumed to be smaller than a single resolution cell such that
RN M does not change. To correct the phase error present in each pulse, the matrix A should be multiplied by
a vector x with entries equal to the conjugate of the estimated phase error in each pulse. Where x is given by

x =


exp j φ̂δ1

exp j φ̂δ2
...

exp j φ̂δN

 . (5.20)
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The phase corrected pixels are then given by

Acorr = xHA . (5.21)

Here, Acorr is a vector of pixels which can be reshaped into the original pixel tile. In order to obtain an estimate
of xH, the image sharpness can be used as a metric. This metric has shown to be well suited to SAR imagery
[14]. The sharpness function is defined as the sum of squared pixel values and can be written as

G(x) = (xHA)(xHA)H = xHA AHx . (5.22)

By defining

C = A AH ,

the following constant modulus quadratic program (CMQP) is obtained:

minimize
x

−xHC x

subject to |xi| = 1, i = (1, . . . , N ) .
(5.23)

While the objective function is convex, the set over which x is defined, is not. CMQP’s belong to the set of
Non-Polynomial time (NP) hard problems. M. Duersch [14] solves the problem using a coordinate descent
approach. Each entry of x is optimized separately using a grid search. The problem can be solved more
efficiently by solving a separate convex problem for which the same solution is obtained. A popular relaxation
method for CMQP’s is semi-definite relaxation (SDR) [33]. The idea of applying SDR to autofocus was first
proposed by Lui et al [31]. Here, they apply it to phase gradient autofocus (PGA) and multichannel autofocus
(MCA). It was also shown to be a tighter relaxation in terms of objective value than other methods. The
Application of SDR to bistatic backprojection was shown by Evers et al. [17]. Here they show its application
in an experimental on-rail setup using metal plates as focusing points. The semi-definite program (SDP) is
obtained as follows. By noting that

xHC x = Trace(xHC x) = Trace(C xxH) ,

and defining

X = xxH ,

the following equivalent SDP is obtained

minimize
X

−Tr(CX)

subject to diag(X) = (1, . . . ,1),

X º 0,

rank(X) = 1,

(5.24)

In this problem, the remaining non-convex constraint is the rank-1 constraint on matrix X . The problem can
be relaxed by eliminating this constraint, yielding the following convex optimization problem

minimize
X

−Tr(CX)

subject to diag(X) = (1, . . . ,1),

X º 0

(5.25)

SDPs are commonly solved using so-called interior point (IP) methods. However, these are fairly computa-
tionally complex for large scale problems. To ease the computational burden, we propose to use the row-by-
row method as applied by Wai et al. [50] to multiple input multiple output (MIMO) detection, to efficiently
solve the SDP. This is explained in Appendix A.2.

Once X is obtained, the relative phase error with respect to the first pulse x, is given by the first row or
column of X. The first off-diagonal of X contains the phase difference from pulse to pulse.
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5.3.2. Focusing A Single Target
Guo et al. show in [22], that autofocus can be integrated into an imaging algorithm, provided that the pulse-
to-pulse phase error is smaller than λ

2 . This is done by focusing each pulse as it is processed. This means that
storing all pulses is not required. This principle can also be applied to the multi-beam autofocus algorithm.

Given an incomplete, but focussed backprojected image In−1, and the subsequent pulse Sn , the image
after processing the nth pulse is given by

In = In−1 +Sn exp( jφδn) , (5.26)

where k is the wavenumber and φδn is the phase correction computed by the autofocus algorithm. The pulse
contribution Sn is assumed to be interpolated to the correct location and phase-corrected according to the
range of the radar.

To test the autofocus algorithm, a single simulated point target imaged using a trajectory error. For the
trajectory error, a cross-range acceleration is introduced along a straight flight path. This is illustrated in
Figure 5.28. The target before and after focusing can be seen in Figure 5.29.
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Figure 5.28: The actual simulated radar trajectory shown in blue and the "measured" flight path shown in orange. The point target is
positioned at the origin. The total trajectory comprises 1 second of data.

5.3.3. Ego-motion Estimation
By itself, autofocus provides only 1-D compensation along the radar line of sight. While this is adequate for
far-range SAR imaging, there is too much range variation when dealing with near-range scenes. This means
that only a single part of the image will be focused. Moreover, corrections are usually limited to within a single
resolution cell since only the phase is corrected.

In [48], A. Sommer and J. Osterman address the problem of phase wrapping through the correction of
flight trajectory while performing autofocus. They propose to propagate each phase correction to all sub-
sequent pulses as an equivalent range error, allowing for a much larger compensation along the total flight
path while only requiring that the maximum error from pulse to pulse is limited to λ

2 . However, for near field
imaging, the measured range error does not correspond well to the actual trajectory error. This is illustrated
in Figure 5.30 where only a single point target is used for trajectory correction.

To account for the variability of the phase error over the entire image, Ran et al. [41] propose the use of
multiple local images within a synthetic aperture to calculate a 3D phase adjustment. We propose to combine
both the idea of 3D phase error correction and error propagation and generalize it to an omnidirectional array.
If it is assumed that the phase error is only caused by motion errors, the two-way radial range error is given
by

∆r = λ

4π
φAF
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Figure 5.29: Autofocusing a single point target with a range acceleration error. The left image shows the unfocussed while the right image
shows the focussed target.
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The problem geometry is illustrated in Figure 5.31. Under the assumption that n −1 pulses are focussed, the
unit vector from the center of the i th focussing image to the radar is given by pi

n. The measured radial range
error can be expressed as a scalar projection of the 3D trajectory error on pi

n.

Actual position

Measured position

Figure 5.31: An illustration of the pulse by pulse range error for 3 focussing regions. The estimated relative range errors ∆r i
n are projec-

tions of the actual error
[
∆x ∆y ∆z

]

∆r i
n = pi

n
T ·∆xn (5.27)

For I images, the problem can be written as

∆rn = Pn ·∆xn (5.28)

where ∆rn is the vector of radial errors and P is the measurement matrix containing the unit vectors from
each local image to the radar in its rows

∆rn =

∆r i
n

...
∆r I

n

 ,P =

p i
n(x) p i

n(y) p i
n(x)

...
p I

n(x) p I
n(y) p I

n(z)

 .

If a simple additive noise model is assumed, the maximum likelihood estimator for ∆xn is given by the
weighted least squares estimator

∆x̂n = (PTW−1P)−1PTW−1∆rn , (5.29)

where W is the covariance matrix, containing the variances of each measurement in its diagonal.
The proposed positioning method combines both range error propagation and multiple local imaging,

such that the entire trajectory is updated after each estimate of ∆x̂n. This makes it possible to obtain an
estimate of relative position from pulse to pulse for arbitrary trajectories. However, a rough estimate of the
actual trajectory should be available.

To exploit the capabilities of the omnidirectional array, a digital beam is steered to the appropriate di-
rection as illustrated in Figure 5.32. Beam steering is performed implicitly through the imaging algorithm by
selecting the appropriate antenna elements depending on the direction of the focusing region. We propose
to use a total of 9 antenna elements per beam for increased resolution. Selecting the appropriate center an-
tenna element ensures that the highest resolution is obtained by minimizing the amount of digital steering
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that needs to be performed. For each pulse, the range compressed signal is then interpolated to the grid and
the appropriate phase shift is applied, before adding the contribution from each antenna element. By doing
this, the interference from nearby scattering regions is minimized. This process is repeated for each region
and each pulse.

Figure 5.32: Illustration of beam steering to different focussing regions.

5.3.4. Proof Of Concept
To verify the feasibility of the proposed positioning method, a simulation of the radar system is used. The
reflected signal of several point targets is simulated for an unknown trajectory. To simplify the simulation,
the initial position with respect to the targets is assumed to be known and the location of the point targets is
also assumed to be known. This is a reasonable assumption since the relative position of the targets can be
determined from a single pulse for which the azimuth resolution is approximately 10 degrees. For relatively
flat terrain, the altitude of the radar can be determined from the nadir return, while local regions to be used
for focusing can be selected based on criteria such as reflectivity or contrast.

The setup used for the simulation is shown in Figure 5.33. Four Point targets are arbitrarily placed on a
Cartesian grid. The radar trajectory is chosen to be a straight trajectory along the x direction with arbitrary
perturbations (velocity error in x, oscillation in y and acceleration in z). The perturbations in each axis are
given by

εx = n

N

εy =0.3sin
14n

N

εz =n2

N
,

where n is the pulse number and N is the total number of pulses. The velocity is chosen to be 6 m/s and
the duration is 2 seconds. The unperturbed trajectory is considered to be the measured trajectory or initial
guess. The trajectory is first estimated with a clean signal. The results are shown in Figure 5.34 and Figure 5.35
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Figure 5.33: Geometry used for the simulation. The radar moves along the positive x direction with perturbations in each axis.
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Figure 5.35: The estimated trajectory error in meters. The total length corresponds to a duration of 2 seconds.

shows the error between the estimated trajectory and the actual trajectory. To test the robustness in a more
realistic scenario, additive noise is added to the range compressed signal. Down to an SNR value of -25 dB,
the estimation performs reasonably well with only a slight increase in error. The estimation accuracy starts to
degrade around -27 dB. This can be seen in Figures 5.36 and 5.37. The errors manifest as jumps on the order
of a wavelength. These are most likely caused by phase wrapping.
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Figure 5.36: The estimated trajectory with an SNR of -27 dB.

5.3.5. Conclusion
This section proposed a 3D positioning method based on autofocus. A flowchart of the proposed algorithm
can be seen in Figure 5.38. On simulated radar data the proposed method performs very well, achieving sub-
resolution accuracies for an SNR of -27 dB. It is important to note that the targets used for this simulation
are point targets with a constant reflectivity across all illumination angles. In practical scenarios, this is not
the case. The focussing regions could be adaptively selected in order to maintain a relatively constant re-
flectivity. The sidelobes of other areas might also pose a problem to autofocus performance. This is reduced
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Figure 5.37: Estimation error for an SNR of -27 dB.

by beamforming in the appropriate direction. However, the actual performance needs to be validated with
real data. The performance could be improved by taking the dynamics of the radar platform into account.
By applying constraints to the maximum velocity and acceleration, noisy estimates can be filtered. It is also
beneficial to estimate the covariance matrix, W in (5.29). This will reduce the effect of noisy estimates, and
provide information when incorporating the estimates with INS data.

 pulse data

Select focusing
regions

Select antenna
elements

Autofocus

Projection to imaging
grid

Compute trajectory
deviation

Position and
orientation

Figure 5.38: A top-level flowchart for the proposed multi-beam autofocus algorithm. The inputs are highlighted in green. The selection
of focusing regions is highlighted in orange, as this is currently done manually but could be automated using a detection approach.
Note that the projection to the imaging grid is done twice per pulse. Once to interpolate the range bins, and once to update the phase
corrections based on the corrected trajectory.
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5.4. Summary
In this chapter, we analyzed the characteristics of the radar signal to develop a number of motion estimation
techniques for the drone-radar. The developed techniques built on the existing fields of radar altimetry, and
SAR motion compensation, and introduced new, generalized algorithms for dealing with data from an om-
nidirectional radar array. The proposed velocity estimator is universal in the sense that it can be applied to
a wide number of receiver configurations, both omnidirectional and fixed-look receive arrays, and is mostly
invariant to the direction of the radar beam with respect to the velocity vector. In addition, the estimate does
not depend on reference objects, allowing accurate estimates in many scenarios.

On the other hand, a method was also proposed to exploit scene contrast. The proposed multi-beam aut-
ofocus builds on the works of Ran et al. [41] and Sommer et al. [48] to provide a framework for simultaneous
omnidirectional imaging and trajectory correction while taking advantage of the beamforming capabilities
of the antenna array.



6
Sensor Fusion

In the previous chapter, several algorithms were developed to estimate kinematic states from radar data. We
obtained estimates for the height and horizontal velocity and developed an extended autofocus algorithm
for correcting relative motion from pulse to pulse by exploiting contrast in a number of local images. To
summarize,

• The altitude was estimated using the ground reflection compensated by a DEM, providing an estimate
of the height of the radar with respect to a fixed origin point in the scene.

• The horizontal velocity magnitude was estimated using the edge of the clutter spectrum.

• The course of the radar was estimated through the Doppler centroid from multiple steering directions.
Combined with the velocity magnitude, this provides a velocity in the East - North plane.

• In ideal conditions (multiple high contrast areas), the presented multi-beam autofocus provides rela-
tive positioning from pulse to pulse in 3 dimensions.

To combine these estimates in a meaningful way, both with each other, and with the INS, some kind
of sensor fusion needs to be applied. In this chapter, the available observations will be analyzed and used
to decide on a sensor fusion framework for combining multiple observations. The first section will give a
summary of the available observations from the radar and INS. Thereafter, based on practical considerations
about the system’s use cases, a sensor fusion algorithm will be selected that is suited for the task at hand.

6.1. Fusion Framework
While the terminology used in this report, and the presentation of the observations in the previous section
already hint at a Kalman filter implementation, it is not immediately apparent that the Kalman filter is an
appropriate fusion mechanism in this case. After all, several problems can present themselves when using
a Kalman filter. The Kalman filter is a probabilistic filter that uses both measurements and predictions. The
predictions are based on a kinematic model of the system being observed. This can be very advantageous
if the system is modeled well, but also detrimental when this is not the case, as inaccurate predictions can
deteriorate the estimates very rapidly.

An advantage of using a prediction based approach is that predictions are done based on information
from the last estimated state. This means that a velocity observation will not cause the position estimate
to drift over time if an absolute observation of position is also available, as would be the case if the velocity
estimate were to be integrated from the initial time step before fusion.

Since, in this case, the system of interest is a moving object with on board sensors, its behavior is well
modeled by a kinematic model. Thus, it makes sense to use a Kalman filter. Modeling the dynamics of multi-
rotor aircraft is a well-studied problem, and there is a large amount of documentation and software available.

Ideally, the radar estimates should be incorporated into one of these existing frameworks. However, the
design of an optimal system model and software implementation is an extensive research topic in itself. As
this thesis focuses mostly on the signal processing aspects of the radar data, a simple model will be used to
obtain the absolute position from velocity estimates. To observe the advantage of accurate velocity estimates,

57



58 6. Sensor Fusion

this chapter will also include results from a tightly coupled Kalman filter which directly fuses the raw sensor
readings with the radar estimates, showing the advantage of radar estimates in a more practical scenario.

6.1.1. System Model
For the system model, a constant-acceleration model is used. This means that the state in the next time step
is predicted by linearly propagating the acceleration and velocity estimate. The state vector is given by

x = [
x ẋ ẍ y ẏ ÿ z ż z̈

]>
, (6.1)

and the state transition matrix is given by

F =



1 dT
d 2

T
2 0 0 0 0 0 0

0 1 dT 0 0 0 0 0 0

0 0 1 dT
d 2

T
2 0 0 0 0

0 0 0 1 dT 0 0 0 0

0 0 0 0 1 dT
d 2

T
2 0 0

0 0 0 0 0 1 dT 0 0

0 0 0 0 1 0 1 dT
d 2

T
2

0 0 0 0 0 0 0 1 dT


, (6.2)

where dT is the size of the time step. The prediction equation is then given by

xt = Fxt−1 +wt , (6.3)

where wt is a random vector which introduces noise to the state estimate, and is described according to the
process noise covariance matrix Q as presented in Chapter 3.

6.1.2. State Observations
An overview of the radar state observations can be seen in Table 6.1.

Table 6.1: Observations obtained from radar data.

State State

Position (U) Radar altimeter
Velocity (E, N) Doppler centroid estimation, Multi-beam autofocus
Velocity (U) Multi-beam autofocus

The measurement vector of radar estimates is given by

zR = [
vh θC Pu

]>
, (6.4)

where the subscript R indicates that the observations originate from the radar data. Note that the observa-
tions from the multi-beam autofocus are omitted in this observation vector, because they rely on an initial
estimate. Because of this, these will be fused in a later stage. The output of the Xsens MTi-G-710 used on the
experimental setup (Appendix C) consists of an already fused, GNSS and IMU position estimate. In addition,
there is also a GNSS velocity estimate. Since these estimates are the output of the Kalman filter present in the
INS, they can be seen as a separate state vector

xI =
[
x ẋ y ẏ z ż

]>
, (6.5)

where the subscript I indicates that the state estimates originate from the INS. The INS observations measure
the states directly, while the radar observations are non-linear functions of the states. Although it is not
specifically stated in the user manual of the Xsens g710, judging from the specified accuracies, the velocity
vector is obtained using the instantaneous Doppler shift of the GNSS signal. It is also unclear wether the
velocity estimate is already incorporated into the position estimate output by the INS. We will look at this
in more detail in Chapter 7 when evaluating the accuracy of the obtained position estimates using quality
metrics for SAR imaging.
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At this point, there is a choice between converting the measurements to Cartesian coordinates and im-
plementing a standard Kalman filter or leaving the measurements in their original domain and linearizing
the measurement matrix at each state. Recall from the previous chapter that the radar velocity estimate is
comprised of a magnitude and an angle. The magnitude and course are also estimated using different mech-
anisms, indicating that their noise is independent. This means that there is a coupling between the x and y
directions which changes for different course angles. As the jacobian of the measurement matrix is not too
difficult to compute and has already been shown in Chapter 3, the Extended Kalman Filter (EKF) will be used.
The relationship between the radar measurements and the system states is given by

hR (x) =


√

ẋ2 + ẏ2

arctan( ẏ
ẋ )

z

 , (6.6)

and its Jacobian is given by

HRt =


0 ẋp

ẋ2+ẏ2
0 ẏp

ẋ2+ẏ2
0 0 0 0 0

0 − ẏ
ẋ2+ẏ2 0 ẋ

ẋ2+ẏ2 0 0 0 0 0

0 0 0 0 1 0 0 0 0

 . (6.7)

6.1.3. Noise Model
To correctly calculate the Kalman gain and apply the update equations, the noise in both the system model,
and state observations needs to be modeled using a set of covariance matrices. Namely, the process noise
covariance Q, and the measurement noise covariance R. The process noise will be modelled as an extra
unpredicted perturbation in acceleration. This is known as a piecewise white noise model [24]. A common
choice is to choose the standard deviation to be around half of the maximum expected acceleration. The
variance of the acceleration is then given by

σ2
a = a2

max

4
. (6.8)

The variance for each direction is given by

C =
σ2

a,x 0 0
0 σ2

a,y 0
0 0 σ2

a,z

 . (6.9)

The process covariance matrix can then be calculated by defining a matrix

G =



d 2
T

2 0 0
dT 0 0
1 0 0

0
d 2

T
2 0

0 dT 0
0 1 0

0 0
d 2

T
2

0 0 dT

0 0 1


. (6.10)

The covariance matrix can then be found through

Q = GCG> . (6.11)

Since it is difficult to determine the variances of the measurements in absolute values, a heuristic ap-
proach will be used to determine the quality of an observation, and scale the variance with respect to an
initial value. For the velocity magnitude estimate, the variance is scaled by the ratio between the peak of the
gradient and the average background value. For the course estimate, the variance is scaled by the magnitude
of the velocity vector.
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It is difficult to determine the quality of the radar height estimate. This is because while the height esti-
mate itself may be accurate, its accuracy in representing the motion of the radar depends on the terrain and
how well the elevation is compensated by the DEM. Because of this, the variance of the height estimate will
be left as a constant tunable parameter.

The Xsens INS estimates and radar estimates can technically be fused directly. However, since the INS
data is the state estimate of a previous Kalman filter, the noise between different states is correlated accord-
ing to the covariance matrix of its state estimate. As this matrix is unknown, the fusion result might be sub-
optimal. Because of this, the radar estimates will also be considered separately and compared to the INS
estimates for a qualitative indication of performance. The noise covariance of the INS is set to a constant
diagonal matrix containing the variances specified in the datasheet [1].

6.1.4. Initial Results

We first look at estimates from two simulated data sets, to observe the behavior of the system model. Esti-
mates from both a constant acceleration data segment and sinusoidal motion segment are provided as input
to the proposed Kalman filter. The estimated position can be seen in Figure 6.1. This figure shows both the
strength and weaknesses of a given model. Since sinusoidal motion has a constantly changing velocity and
acceleration, it is difficult to track using a constant acceleration model. On the other hand, the model can
predict constant accelerations in the right figure quite well.
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Figure 6.1: This figure shows a comparison of the constant velocity Kalman filter output for two different simulated maneuvers in the
horizontal plane. The Kalman filter uses only the radar velocity estimate to obtain the position. The same parameters were used in both
scenarios

The estimates from the INS and the radar are sampled at different frequencies. This problem can be solved
by using a variable time step and sorting estimates in the order in which they arrive. This means that the mea-
surement matrix is also updated at each time step to reflect the available measurements. The problem with
this approach is that it can cause discontinuities in the filter output. This effect can be alleviated with a better
model of the system dynamics but is still present to some extent. Wang et al.[51] propose to fit a Bezier curve
to the low-frequency data points and the next prediction, effectively interpolating the measurements. Since
the goal is to obtain a smooth estimate of the position able to be used for SAR imaging, the radar estimates
will be interpolated to ensure that the trajectory does not contain discontinuities. The radar estimates from
two different experimental data segments are used as an input to the Kalman filter. The first segment consists
of flight along a straight line, while the second segment contains some maneuvers. The state is initialized
using the first entry in the Xsens position estimate. Since the estimates from all fused sensors provided no
qualitative insight, we compare the estimated position using only radar estimates first, to get an indication of
the positioning accuracy of the radar estimates. This is shown in Figure 6.2. Figure 6.3 shows the horizontal
error between the radar position estimate and the Xsens position estimate. The error in the height estimate
can be seen in Figure 6.4. In Chapter 7, the results for different fusion configurations will be quantitatively
compared using SAR imaging quality metrics.
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Figure 6.2: This figure shows a comparison of the constant velocity Kalman filter output for two different experimental data segments
in the horizontal plane. The left image shows the estimate for a 45 second data segment consisting of linear flight in the horizontal
direction. The right image shows the estimate for a 30 second data segment following an arbitrary flight path. The Kalman filter uses
only the radar velocity estimate to obtain the position. The same parameters were used in both scenarios
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Figure 6.3: This figure shows the horizontal error in meters between the radar-only output of the Kalman filter and the Xsens position
estimate as shown in Figure 6.2
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Figure 6.4: This figure shows the horizontal error in meters between the height output of the Kalman filter and the Xsens height estimate.

The initial results are very promising, as the estimates with experimental data are only performed using
8 antenna elements on one side of the antenna array. We have shown in Chapter 5 that the RMS error of the
velocity estimate is greatly reduced by incorporating estimates from multiple directions, reducing both the
bias caused by non-zero attitude and the error caused by scene contrast.
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6.1.5. Tightly Coupled Kalman Filter
Ideally, the radar estimates should be fused with the raw IMU and GNSS data. Unfortunately, there was no
access to the Xsens raw data for the current experiment. To still achieve this to some extent, the mission logs
from the drone flight computer were downloaded. The following measurements are available:

• The GNSS coordinates in latitude and longitude.

• Barometer readings from 2 separate sensors.

• Magnetometer readings from 3 separate sensors.

• Accelerometer readings from 3 separate sensors.

• Gyroscope readings from 3 separate sensors.

It should be noted that these sensor readings may be of lower quality than the Xsens MTi-G-710 readings, as
the Xsens unit is a high-grade "flagship" INS. The estimates for a 30 s data segment were processed by the
Intelligent Autonomous Systems department at TNO, using their proprietary Kalman filter implementation.
The filter is based on an Unscented Kalman filter using a kinematic model. Aside from position, velocity,
attitude, and acceleration, the Kalman filter also estimates the bias of the attitude and inertial sensors. We
will present the results from the filter output to more accurately show the effect that the presence and absence
of different sensors have on the accuracy of the state estimate.

All sensors other than GNSS will be grouped under the term "inertial sensors". The Kalman filter was
applied to the dynamic data segments using 4 different configurations.

• First, the navigation performance of the inertial sensors is analyzed without any external sensors.

• The second configuration incorporates the standard GNSS and inertial sensor fusion implementation.

• The third configuration incorporates estimates from radar along with the inertial sensors.

• The final configuration incorporates data from all sources into the Kalman filter framework.

The fused results can be seen in Figure 6.5. Again, for now, we can only make a qualitative conclusion
on the results of radar-only navigation. When using only the inertial sensors, the estimate quickly drifts and
becomes unusable within a matter of seconds (Figure 6.6). By incorporating the velocity estimate from the
radar, both the position estimate, and IMU bias estimate can be maintained (Figure 6.7). This is an important
result as it stresses the value of an accurate velocity estimate in a GNSS-denied scenario.

-20 -15 -10 -5 0 5 10 15 20 25
East (m)

25

30

35

40

45

50

55

60

N
or

th
 (m

)

Radar and Inertial sensors
GPS and Inertial sensors
Radar, GPS, and Inertial sensors

Figure 6.5: Sensor fusion result for different Kalman filtering configurations using a tightly coupled Kalman filtering approach. The total
duration of the flight path is 30 seconds.

In practical scenarios, the bias in the inertial sensors may already have been estimated before the GNSS
signal is lost. Thus navigation using the inertial sensors may perform slightly better in practice. However, the
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Figure 6.6: The position estimate using only inertial sensors. Due to bias in the sensors, the estimate drifts very quickly and is practically
unusable.

bias in the sensors is typically not constant as is shown in Figure 6.7. While the estimated bias is relatively
constant over a short period, it slowly changes over time.
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Figure 6.7: This figure shows the bias in both the accelerometers (left), and gyroscopes (right) as a function of time when using only
radar as an additional sensor. The plots (unlabeled) in each figure correspond to both y and x biases. The bias slowly converge to a
semi-constant value.

6.2. Incorporating Multi-beam autofocus
While we did not verify the performance of the proposed autofocus algorithm with experimental data, some
insight can be provided on how it can be optimally combined with the other proposed methods. When pre-
sented, the trajectory corrections obtained were directly applied to the radar trajectory. However, in exper-
imental scenarios, we can expect the phase corrections for each region to be noisy. Because of this a better
approach would be to incorporate the phase updates into the EKF framework as a radial velocity in the direc-
tion of the focusing regions.

6.3. Conclusion
In this chapter, we combined the course and velocity estimates from the radar and incorporated them into
a constant acceleration EKF. The position estimates were qualitatively compared to the output of the INS,
and the observed horizontal error was found to be around 2 meters for data segments of 45 and 30 seconds
when using only radar data in the EKF. We also analyzed the results from a tightly coupled Kalman filter which
uses raw data from the inertial sensors. From this, it was qualitatively shown that the radar velocity estimate
is a very valuable addition when a GNSS signal is not available. Sensor fusion between the Xsens INS and
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radar was also performed. However, the figures lack enough information to convey the advantage of such a
configuration. In the next chapter, we will develop a quantitative approach to determine the accuracy of the
position estimate using SAR imaging and compare the results from different sensor fusion configurations.



III
Evaluation and discussion
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7
Quantifying Performance

In the first part of this thesis, we introduced our problem and the background behind the tools required to
solve it. We also analyzed similar problems in literature to use as a starting point. In the second part, we
developed a processing chain to determine both the height of the radar system above ground, and the course
and velocity magnitude in the horizontal plane. This was done by exploiting the specifics of the radar and
making use of its omnidirectional beamforming capabilities.

The developed methods were quantitatively tested using simulated data, and qualitatively compared to
the INS output. The last chapter combined all sub-methods into an EKF framework to estimate the position of
the radar from the different sensor inputs. Here, we qualitatively compared the output of the radar-only EKF
and found it to be very promising. We also showed that the radar velocity estimate is a very useful addition in
GNSS-denied scenarios through the use of a tightly coupled Kalman filter using raw inertial data.

In this chapter, we will quantify the performance of the proposed methods using backprojection SAR
imaging. Since an accurate estimate of position is required to obtain a high quality image, we can use image
quality metrics to quantify the accuracy of the position estimates. The first section will introduce the metrics
used to test image quality. This will be followed by a comparative analysis using the two experimental data
segments as detailed in Appendix C.

7.1. SAR Quality Metrics
The chosen image quality metrics need to test both the short term accuracy and the long term accuracy of
the position estimates. To do this, we will divide the data segment in to a number of sub-apertures. The
short term accuracy is then tested by examining the focus of each sub-aperture, and the long term accuracy
is tested by comparing the registration between subsequent sub-apertures. Appendix C shows the details of
the measurement setup. There are a number of reference objects in the scene, including 2 corner reflectors
and a vehicle labeled "Jeep". These reference objects will be used to determine the focus and registration of
each SAR image.

The performance tests are split between a number of different cases, each employing different sensor
combinations. The cases are defined as follows:

1. The first case consists of the position estimate output by the INS without any post-processing. Since the
position output of the INS is a Kalman filtered output, this represents a standard baseline performance
for a typical user.

2. In the second case, only estimates from the radar (velocity, height) will be used in the Kalman filter
framework described in the previous chapter.

3. The third case will combine both the position output from the INS and its velocity output in the Kalman
filter.

4. The fourth case will combine all estimates in the Kalman filter: radar height, radar velocity, INS position
and INS velocity.
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For each sub-aperture, 814 pulses are used, yielding an integration time of 1 second. The trajectories consist
of both constant motion, turns, and decelerations to test the performance in a number of different scenarios.
The images are created using a standard backprojection algorithm as outlined in Chapter 2.

7.1.1. Peak To Background Ratio
To quantify the focus of the image, and get an indication of the detectability of targets, the ratio of the peak
squared intensity and the average squared background intensity of the image will be used. This is known as
the Peak to Background Ratio (PTBR) [36]. The PTBR is given by

PTBR = max[I (kx ,ky )]2

〈I (kx ,ky )〉2 , (7.1)

where I represents the pixel values of the SAR image indexed by kx and ky , and 〈·〉 denotes an averaging
operation. As a corner reflector will be used to determine this metric, the PTBR will be highest when all
pulses add coherently.

7.1.2. Spatial Resolution
Aside from the detectability of targets, their resolvability is also important. This is determined by the reso-
lution of the SAR image. The resolution can be determined by examining the response from a point target.
In this case, the corner reflector is used as an experimental point target. As the radar movement is dynamic,
we will average the spatial resolution in both dimensions. The resolution is determined using the half power
width of the response from the corner reflector. This is illustrated in Figure 7.1.
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Figure 7.1: The image on the right shows the response from the corner reflector for a single sub-aperture. The image on the right shows
the image thresholded at -3dB from the peak value. The average between the East and North resolution of this response is defined as the
resolution of the image.

7.1.3. Image Registration
While a short integration time may yield a focused image, short integration times do not reflect the long term
positioning accuracy. To determine the relative positioning accuracy with respect to a certain initial position,
we can use both the known geometrical locations of the reference objects, and the SAR image registration
between sub-apertures. Errors in the velocity will be most noticeable for course errors by a rotation of the
entire image around the aperture location. The rest of the errors wil be seen as absolute shifts in the position
of the reference targets. In a near-range case, errors in positioning can cause distortion in the scene as the
error is not constant over the entire image. An illustration of the effects caused by errors in course, cross-
range, and height, can be seen in Figure 7.2.

Aside from focus and registration we can also examine the geometrical location of the reference objects
with respect to the actual known location. This allows us to determine how well the radar estimates can track
its position from the last known GNSS location. In addition, it also gives an indication of the noise in the
position estimates of the INS.
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Figure 7.2: An illustration of the registration errors caused by relative errors between different sub-apertures. The first image shows the
effect of an error in course, the second image shows the effect of an error in cross range, while the third image shows that a 3D error can
cause distortion in the image due to the range to each target being different.

7.2. Short-term Performance
A visual comparison between the four different cases for a single sub-aperture from a mostly linear trajectory
is shown in Figure 7.3. From the defocused image in Figure 7.3a, we can already observe that the INS produces
a suboptimal position estimate. Visually, using a radar-only approach (Figure 7.3b) produces a similar result
as fusing the position and velocity estimate from the INS (Figure 7.3c). The same can be said for the case
when all estimates are combined (Figure 7.3d).

The same experiment was repeated for a different trajectory, where the radar is decelerating into a turn.
The results are seen in Figure 7.4. Here it can be seen that the radar estimates perform better than the INS un-
der the influence of an acceleration. We can also see some geometrical distortion around the radar trajectory
when using the INS estimates caused by an incorrect height estimate.

To quantify the image focus for the linear trajectory, we zoom in on the corner reflectors, and compute
the average PTBR and spatial resolution for a number of sub-apertures. The total duration used for each
trajectory is highlighted in Figure 7.5. The PTBR for subsequent 1 second sub-apertures is then calculated
for each case, using both the linear and dynamic trajectory. Figure 7.6 shows the normalized average PTBR
for the linear trajectory. We can apply the same method to the dynamic trajectory. However, due to the
orientation of the active antenna elements, the corner reflectors are not properly illuminated for a large part
of the trajectory. Because of this, "Corner1" and "Jeep" will be used to compute the PTBR. For "Corner1", the
trajectory from 13 s to 17 s is used. For "Jeep", the entire highlighted segment from 13 s to 26 s is used. While
the jeep is an extended target, it consists of strong point-like reflections at each aperture location, making it
useful for comparison. The average PTBRs for the dynamic trajectory are shown in Figure 7.8.

The spatial resolution is computed for both corner reflectors in the linear case using the entire highlighted
trajectory. The average resolution can be seen in Figure 7.7. In the dynamic case the average spatial resolution
is calculated for corner reflector 1 using the trajectory from 13 s to 17 s. This is shown in Figure 7.9.
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(a) Case 1: INS position output
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(b) Case 2: Kalman filtered radar-only estimates
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(c) Case 3: Kalman filtered INS position and velocity

Corner1

Corner2

-60 -40 -20 0 20 40
East (m)

-50

-40

-30

-20

-10

0

10

20

30

N
or

th
 (m

)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

(d) Case 4: Kalman filtered INS position, velocity, and radar estimates

Figure 7.3: This figure shows SAR images for a single sub-aperture from a linear trajectory for 4 different cases. The velocity of the radar
during acquisition is relatively constant. The radar trajectory is shown in black and the 1 s integration period is highlighted in green. The
ground truth location of the reference objects are highlighted as well. The images are displayed in dB. Details about the measurement
setup can be found in Appendix C. The integration time starts at 18 seconds from the start of the recording.
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(a) Case 1: INS position output

Corner1

Corner2

Jeep

-20 0 20 40
East (m)

-20

-10

0

10

20

30

40

50

60

70

N
or

th
 (m

)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

(b) Case 2: Kalman filtered radar-only estimates
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(c) Case 3: Kalman filtered INS position and velocity
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(d) Case 4: Kalman filtered INS position, velocity, and radar estimates

Figure 7.4: This figure shows SAR images for a single sub-aperture from a dynamic trajectory for 4 different cases. The radar is turning
and decelerating during the integration time. The radar trajectory is shown in black and the 1 s integration period is highlighted in
green. The ground truth location of the reference objects are highlighted as well. The images are displayed in dB. Details about the
measurement setup can be found in Appendix C. The integration time starts at 16 seconds from the start of the recording
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Figure 7.5: The period used to calculate the average image focus for both the linear (left) and dynamic(right) trajectory. The segment
highlighted in green corresponds to the total trajectory used to determine the image focus. Note that this period is divided into 1-second
sub-apertures. The total length of the integration time is 13 seconds and 14 seconds for the linear and dynamic case respectively. The
time in seconds at each aperture location is also shown.
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Figure 7.6: The average PTBR of both corner reflectors for each sub-aperture for the linear trajectory. Each graph value corresponds to a
different sensor configuration. The PTBRs for each corner reflector are normalized to the baseline INS value to make it easier to compare
the results.

It can be concluded that for the linear trajectory, on average, the position estimates obtained from the
radar produce a better focused image than the sensor configurations using only INS position estimates. This
result is consistent for both corner reflectors. Similar performance is obtained by fusing INS position and
velocity estimates. In the case where estimates from radar and INS are combined in a Kalman filter, a further
improvement is seen in both the PTBR and resolution, surpassing both a radar-only and INS-only approach.

The performance metrics are more difficult to evaluate in the dynamic case, as the reference targets were
not properly illuminated during the entire trajectory and were in the forward looking regions of the antenna.
However, the evaluated PTBR for the first corner reflector and jeep target show consistent result, indicating
increased performance for fused data. The images obtained in in Figure 7.4 also provide some empirical
evidence to the added value of the radar estimates.

The performance can probably be further improved by tuning the filter and/or applying more advanced
adaptive Kalman filtering techniques. However, the result shows that for a 1-second coherent integration
time, the radar position estimates significantly improve upon the performance of an off-the-shelf INS.
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Figure 7.7: The average spatial resolution of each corner reflector over all sub-apertures for the linear trajectory. Each graph value
corresponds to a different sensor configuration. The shown resolution is the average resolution in x and y for the aperture positions
highlighted on the left in Figure 7.5.
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Figure 7.8: This figure shows the average PTBR for corner reflector 1, and the jeep present in the scene using the dynamic trajectory. The
PTBR for the corner reflector is calculated using 5 one-second sub-apertures from 13 s to 17 s as shown in Figure 7.5. For the jeep, the
entire highlighted segment from 13 s to 17 s is used. The PTBRs are normalized to the baseline INS value to make it easier to compare
the results.

7.3. Long-term Performance
While it is already clear that combining estimates from radar with the INS produces better focused images,
the position estimate may drift over time. In this section, we will examine the long term positioning accuracy
using each sensor configuration. This will be done by determining the position of the corner reflector in
a series of SAR images and calculating the course and range error responsible for the observed offset. The
locations of the reference objects were measured using handheld GNSS devices and can be considered as
ground truth. The course offset relative to the ground truth can be determined from the angle between the
vector from the current aperture to the ground truth location and the vector from the current aperture to
the observed location. The calculated course offset is shown in Figure 7.10 and the calculated range error is
shown in Figure 7.11.

As the Kalman filter was tuned based on the image quality, relatively large emphasis is placed on the
velocity estimates. This is also observed in the relative course error. Overall, the course error of the fused
estimate relative to the initial location is low, drifting approximately 2 degrees from the initial location over
13 s for the linear trajectory, and 2 degrees over 6 s for the dynamic trajectory. The added benefit of the INS
estimates can be seen in the dynamic trajectory in Figure 7.10, resulting in a reduced drift compared to the
radar-only estimate. The Kalman filter is initialized with the INS positions at 0 s. This indicates that the radar
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Figure 7.9: The average spatial resolution over the sub-apertures from 13 s to 17 s using the dynamic trajectory. The resolution is calcu-
lated using corner reflector 1.

velocity estimate has a relatively low bias, as the position estimate is maintained with relatively low bias up
to the observation window.
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Figure 7.10: The course error along each position with respect to the ground truth course. The image on the left shows the course error for
the linear trajectory and the image on the right shows the course error for the dynamic trajectory. The ground truth course is determined
using the vector from the actual location of the corner reflector, to the estimated center of the current aperture.
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Figure 7.11: The range error along each position with respect to the ground truth range. The image on the left shows the range error for
the linear trajectory and the image on the right shows the range error for the dynamic trajectory.



8
Conclusion and Recommendations

The research question formulated at the start of this thesis was framed in the context of coherent processing
on an agile radar platform; specifically SAR imaging. As such, we presented the signal processing principles
behind the system of interest in Chapter 2, introducing both the concept of FMCW radars and the principles
behind digital beamforming and coherent processing. In Chapter 3, we looked towards the literature and
presented the state of the art techniques in radar-aided motion estimation/compensation.

Using the field of SAR motion compensation as a starting point, we analyzed the specifics of a drone-
radar in Chapter 4 to determine which kinematic states could be observed in radar data, and how they were
represented. With this knowledge, we provided extensions to current state-of-the-art techniques in radar
altimetry, Doppler centroid estimation, and autofocus in Chapter 5. Here we proposed new, generalized
algorithms for dealing with data from an omnidirectional array, and provided adaptations to deal with the
effects of attitude and high squint angles. We also introduced a new autofocus technique for omnidirectional
SAR systems termed multi-beam autofocus, which is able to correct the position of the radar while focusing
an image. This technique was verified using simulated data.

After obtaining the estimates from radar data, we turned to sensor fusion in Chapter 6 and presented an
EKF framework for combining estimates from radar data with an INS. We also showed results from a tightly-
coupled Kalman filter implementation, stressing the added benefit of radar velocity estimates in GNSS-denied
environments.

In Chapter 7, we evaluated the performance of the developed velocity estimator on experimental data
using quality metrics for SAR imaging, giving a quantitative result to the developed methods. In this chapter,
we reflect on our initial research questions and answer them based on our findings.
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8.1. Conclusion
Based on the results presented throughout this thesis, most notably the performance evaluation in Chapter 7,
we can now formulate concise answers to our research questions.

• What are the current algorithms being employed for positioning and motion compensation in high-
resolution radar modes?

In Chapter 3, we found that there is limited research addressing the problem of radar-aided po-
sitioning for multi-copter platforms. The methods presented in the literature deal mostly with
antenna arrays looking to one side, typically forward, and are usually based on the velocity of
strong targets in the reference pulse. The field of SAR motion compensation provides forms of ve-
locity estimation, and coherent scan-matching by methods such as Doppler centroid estimation
and autofocus. However, these methods typically only provide one-dimensional motion compen-
sation for fixed-wing radar platforms. Nevertheless, these methods provided a robust framework
for the techniques developed throughout this thesis.

• Which relevant parameters can be estimated from radar data, and by what means?

By analyzing simulated radar data in Chapter 4, we found that the horizontal velocity of the radar
can be estimated using the Doppler shift of the background clutter, eliminating the need for strong
reference targets. We also found that the height can be estimated from the ground reflection,
providing an absolute position in the Up direction. we also showed that relative position from
pulse to pulse can be estimated using the autofocus method presented in Chapter 5.

• How can the circular radar array be used to improve the accuracy of the parameter estimation tech-
niques?

In Chapter 5, we developed techniques to estimate the height and horizontal velocity of the radar,
and showed that combining estimates from multiple digital beams reduced the variance of the
overall estimate. In simulations, incorporating narrower beams reduced the variance further.
However, this might not be the case in practical scenarios with high contrast, as the estimate is
more easily skewed. We also found through simulated scenarios that a digital Janus configuration
is effective in suppressing the offset caused by a non-zero attitude. The proposed velocity esti-
mation technique was tested on experimental data using a subset of 8 antenna elements and was
found to be close to the error margin of the INS estimates. Additionally, we also showed how the
idea of autofocus can be extended to an omnidirectional array by focusing multiple regions using
multiple independent digital beams, potentially providing 3D trajectory corrections from pulse-
to-pulse on the order of a single wavelength using only a rough estimate of the initial velocity.

• How can the estimates from the circular radar array be used to improve the positioning accuracy of
the radar platform?

In Chapter 6, we transformed our radar estimates into position estimates using an EKF employing
a constant acceleration model, providing a sensor-fusion framework for radar and INS observa-
tions. Here we showed that position estimates obtained from radar data only are accurate enough
to stay within 2.5 m of the INS estimate over a period of 45 s. With this result, we showed the
potential for GNSS-denied navigation with our method, opening avenues for further research in
autonomous radar-only navigation.
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• To what extent can onboard INS-based positioning accuracy be improved by incorporating data from
an omnidirectional radar array?

In Chapter 7, the performance of the developed methods were quantified using SAR image qual-
ity metrics on experimental data segments, providing a definitive answer to the main research
question. It was found that in terms of peak-to-background ratio (PTBR) and resolution, using
the radar estimates significantly improved SAR imaging quality compared to the baseline INS ap-
proach. For a standard SAR acquisition trajectory, the average PTBR increased by a factor of 3.9,
while the average resolution is improved by a factor of 1.7. This is a very important result since
the general consensus is that backprojection, especially on agile platforms, requires the position
to be measured accurately using some inertial sensor. With our results, we have essentially shown
that focused images from arbitrary trajectories can be formed by exploiting the beamforming ca-
pabilities of the radar array and estimating motion explicitly, practically eliminating the need for
an INS.

In the case where both radar and INS data is available, we have shown that fusing these two es-
timates yields an additional focusing performance, surpassing both a radar-only and INS-only
approach. The PTBR increased by a factor of 4.2 compared to the baseline approach, while the
resolution is improved by a factor of 2. The improved image focus does not only yield a higher
quality SAR image, but the observed increase in PTBR also suggests an increased detectability of
weak targets in strong clutter, opening further avenues for target detection through SAR imaging.

8.2. Recommendations
While the methods developed in this thesis provided very promising initial results, there are some aspects
that could be improved by further research.

While accurate, the proposed velocity estimator is currently limited by the pulse repetition frequency
(PRF) of the radar. The velocity estimation can be made more robust by adaptively changing the estimation
method when the PRF threshold is crossed. When the forward velocity is higher than the ambiguity limit, the
velocity estimation should be performed on the side looking beams for which this threshold is not yet crossed
by estimating the centroid velocity instead of the centroid angle.

The proposed multi-beam autofocus was only verified using simulated data since only 8 elements of the
receiver array were available in experimental data. This technique should be further investigated using om-
nidirectional experimental data. It should also be investigated whether the estimates obtained from autofo-
cusing should be incorporated in the initial sensor fusion step, or applied at a later stage. In addition, there
are a number of parameters that can be experimented with. For example, the number of antenna elements
used per focused pulse, and the number of pulses which are focused together. Alternatively, the focusing
could also be applied between short subsequent sub-apertures to further reduce noise and interference. The
autofocus principle could also be used to determine other parameters such as attitude. This could be done
by maximizing the image sharpness as a function of the radar orientation.

A non-coherent scan matching approach can also be employed to estimate motion from pulse to pulse in
high contrast environments. This has the advantage of being able to better exploit structure in the scene com-
pared to the proposed coherent approach. Using this approach, the drift in course over longer periods could
be reduced. For increased correlation, the scan-matching can be performed on short subsequent synthetic
apertures.

The proposed sensor fusion algorithm was tested using the filtered output of the INS. A further improve-
ment in positioning performance could be realized by using a more accurate kinematic model. In addition, a
tightly coupled Kalman filter using raw sensor estimates could also result in increased performance by incor-
porating a more accurate estimate of the noise covariance. The sensor fusion step can also be further tuned
using more advanced adaptive filtering.

In conclusion, we have shown that 3D radar-aided positioning can be achieved using an omnidirectional
radar-array, and provides a significant improvement in positioning accuracy. Its application to practical sce-
narios provides an interesting multidisciplinary challenge for future research.
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A
SAR motion Compensation

A.1. Doppler centroid estimation
A.1.1. Frequency domain Estimation
Frequency domain Doppler centroid algorithms can be categorized by the window functions used in the cor-
relation step. The most notable window functions are energy balancing, matched-correlation, and maximum
likelihood estimation.

Energy balancing

The Doppler centroid can be calculated by observing the power spectrum of the SAR data along a constant
range azimuth line[34]. Assuming the power spectrum is symmetric, the Doppler centroid can be found by
finding the energy centroid of the spectrum. This is also known as energy balancing. It can be described by
using the following reference function:

R( f ) =
{

1 Bd
2 ≤ f ≤ 0

−1 0 ≤ f ≤ Bd
2

, (A.1)

where Bd is the bandwidth of the power spectrum.

Matched-correlation

The Energy balancing approach can be improved to take into account the two-way antenna power pat-
tern, W ( f ) =G2( f ). This can be done by setting the Reference function equal to its derivative [4, 12], W ′( f ).

R( f ) =W ′( f ) (A.2)

Maximum likelihood estimation

Under the assumption of complex Gaussian distributed, uniform backscatter, a maximum-likelihood es-
timator that reaches the Cramer-Rao lower bound can be formulated[4]. The estimator can be written in
terms of a correlation based estimator with weighting function

R( f ) = G ′( f )

G2( f )
. (A.3)

A problem with applying correlation based methods as-is, is that the estimation will be very sensitive to
non-homogenities in the scene. That is, the variance of the estimator is proportional to the scene contrast[34].
This can also be seen as reducing the number of effective samples [4]. This can be improved by using longer
estimation windows in high contrast scenes. For a multi-copter platform, this is less then ideal since the
velocity of the platform may not be constant over a large number of samples. Another approach presented
in [27], is to perform the Doppler centroid on multiple sets of samples grouped by their intensity, creating
multiple spectra with similar contrast.
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A.1.2. Time domain estimation
The Doppler frequency of a signal can also be estimated by measuring the change of phase from pulse to
pulse in the time domain.

For a given azimuth sample s(η), the phase difference between another sample separated by ∆η is given
by the angle of the average cross correlation coefficient at lag 1[12].

C (∆η) =∑
η

s∗(η)s(η+∆η)

The fractional part of the Doppler centroid as given in Appendix 2.3.4 is given By

f ′
ηc

= Fa

2π
∠(C (η))

This method is referred to as correlation Doppler estimation (CDE). CDE has been shown to be equivalent to
a frequency domain Doppler centroid estimator with windowing function

R( f ) = sin

(
2π f

PRF

)
. (A.4)

In order to lessen the bias from bright targets, the signs of the real and imaginary parts of the signals can
be used for cross correlation[34]. This is referred to as sign Doppler estimation (SDE). This also lessens the
computational cost, which is beneficial for real time systems.

A.1.3. Image processing techniques
Aside from frequency and time domain methods performed on echo data. There are a number of Doppler
centroid methods that are based on approaches related to image processing. Namely, methods based on
slope estimation[11, 56], morphological edge detection[35], and image entropy [32].

Slope estimation DCE

Slope estimation based DCEs estimate the Doppler centroid by estimating the associated squint angle of
the antenna. This is done by measuring the slope of the target azimuth response. In [56], a method based on
the radon transform, called geometry-based Doppler estimation (GDE) is proposed.

This method applies the radon transform on the range compressed SAR data, g (x, y).

R f (ĝ (ρ,θ)) = g (x, y)

Each line in the range azimuth plot is projected onto a point with coordinate θ,ρ. Here, θ represents the
angle of the line and ρ represents the distance from the image center.

The squint angle is then estimated by finding the angle for which the variance of the radon transform
along the range direction is approximately maximized.

To obtain an estimate of the Doppler centroid or platform velocity, either one of these parameters has to
be known before hand. For a platform with along track velocity Vst , the Doppler centroid is approximately
given by

fηc = 2
Vst

λc
si n(θs )

where θs is the squint angle. This means that this method cannot be applied as-is for velocity estimation.
However, this method could be useful to determine the general velocity direction by finding the squint angle
of beams in different directions. This could be used to apply corrections to the direction of the estimated
velocity vector.

Some improvements to this algorithm are proposed in [11]. The most notable ones being:

1. Removing the quadratic range cell migration

2. Performing a localized radon transform

3. Adding estimator quality criteria
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This method works best when strong point-like scatterers are present in the scene, as they will have a
more defined azimuth slope.

Edge detection DCE

A property of the Doppler spectrum for a forward looking radar, is that it is symmetric. In [35], this prop-
erty is exploited and applied to Doppler estimation. Because of the symmetry of the Doppler spectrum in the
forward looking region, the highest frequency is found at the center of the antenna beam, creating an edge at
the highest frequency component.

The Doppler frequency is then extracted using morphological edge detection followed by curve fitting.
This method has been shown to achieve good estimation accuracy even in the presence of low signal to noise
ratio (SNR). The drawback of this method is that it can only be applied in the forward looking region as the
highest frequency component does not represent the Doppler centroid for other squint angles. Since pointing
the beam directly forward would require knowledge of the velocity vector, this technique actually estimates
the velocity magnitude, and not the Doppler centroid.

Entropy minimization DCE

Another image-based DCE is the minimum-entropy Doppler estimator (MEDE). In this method, orignally
applied to Doppler beam sharpening [32], the quality of an image is quantified through its entropy. The scene
is processed with different Doppler centroid values to iteratively minimize the total entropy given By

H( f ′
ηc

) =−
M∑

m=1

N∑
n=1

Dm,n( f ′
ηc

) lnDm,n( f ′
ηc

) ,

where Dm,n( f ′
ηc

) is given by

Dm,n( f ′
ηc

) =
Im,n( f ′

ηc
)∑M

m=1
∑N

n=1 Im,n( f ′
ηc

)
.

Here, Im,n is the intensity of a given pixel.

A.2. Autofocus Using Row-By-Row coordinate Descent
A popular method for solving SDPs are so called interior point methods (IP). These are also employed by off-
the-shelf solvers such as cvx. However, IP methods are not suited for large problems due to their complexity.
This can pose a problem when dealing with a large number of pulses. One low-complexity method for solving
SDPs, is the row-by-row method presented in [53]. The row-by-row method exploits the structure of matrix X
to compute cheap updates at each iterate. The row-by-row method has been applied to MIMO detection for
BPSK signals [50]. This section will show that the same method can also be applied for the autofocus problem
without any significant adjustments.

To start, a barrier function is added to problem 5.25

minimize
X

Tr(−CX)−σ logdetX

subject to diag(X) = (1, . . . ,1)
(A.5)

whereσ is the barrier parameter. The barrier function ensures that the solution stays within the set of positive
semidefinite matrices. as X and C are both hermitian matrices, they can be separated into blocks.

X =
[

X11 ξH1
ξ1 X̄11

]
,C =

[
C11 cH1
c1 C̄11

]
(A.6)

where ξ1 represents the 1st column of X with the 1st row removed and X̄11 represents X with the 1st row and
column removed. The same definition holds for c1 and C̄11. The optimization of ξ1 can be written as

minimize
ξ1 ∈Rn−1

2cH1 ξ1 −σlog(1−ξH1 X̄†
11ξ1) (A.7)

This problem has a closed form solution which can be obtained by setting its gradient to zero. the optimal
value for ξ1 is then given by

ξ∗1 =
{
− 1

2γ (
√
σ2 +4γ−σ)X̄11c1 if γ> 0.

0, ifγ= 0.
(A.8)
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where γ = cH1 X̄11c1. In the backprojection algorithm, the image is constructed by coherently adding pulses.
This makes it possible to focus pulses as they are added to the image. Under the assumption that the previous
pulses are already focussed, (A.8) only needs to be computed once for each pulse.



B
Raw Data simulator

While real experimental data is always preferred when analyzing performance, a simulation can also provide
valuable insight into the system. A simulation enables testing of algorithms in ideal and non-ideal scenarios,
while having access to the ground truth of each parameter.

For the purpose of Testing and analysis, A raw signal simulator was developed in Matlab. The simulator
simulates the signal received in each receiver channel from a number of point targets. The simulator incorpo-
rates the antenna pattern of the receiver in both azimuth and elevation. The simulator can be used to model
both strong stationary targets, and background clutter.

B.1. Signal model and Simulation geometry
The signal in each receive channel is simulated on a sweep by sweep basis, where each sweep corresponds
to a different location. The location of the receive elements is computed using the parameters of the receive
array and a yaw pitch and roll angle.

The antenna pattern is incorporated by calculating the orientation of the receiver with respect to the
inertial reference frame. The appropriate antenna gain is then calculated from the relative angle of arrival
of a given target signal. For a given half-power beamwidth in azimuth and elevation, The antenna gain is
approximated by the following sinc squared function:

Wa(θaz ,θel ) = sinc2
(
0.886

θel

BWel

)
· sinc2

(
0.886

θaz

BWaz

)
(B.1)

Where θel and θaz are the azimuth and elevation angles of the target with respect to the antenna element
orientation. The orientation of an antenna element is defined as the normal vector from the center of the
antenna ring to the position of the antenna element. BW is denotes the half power beamwidth in the azimuth
and elevation dimensions.

B.2. Target Distribution
In addition to specific point target configurations, the simulator can also be used to model background clut-
ter. This can be done by considering the statistics of a typical SAR scene. Typically, there are multiple scat-
terers in a single resolution cell. The phase of a scattering cell will depend on the position of the radar with
respect to each target. As the position of the radar changes, the intrinsic phase of each scatterer is added
randomly, resulting in a circular symmetric Gaussian process [34].

The scattering cells can be simulated using a collection of spatially uniform distributed point targets with
a circular symmetric Gaussian distribution. For real valued signals, this is equivalent to a Rayleigh distributed
magnitude, and a uniformly distributed phase. While this creates the correct magnitude distribution, the
intrinsic phase of each scattering cell is stationary. However, If a sufficient number of scatterers are simulated,
multiple targets will fall within the same resolution cell, creating the desired statistical distribution as the
position of the radar changes over time.

Figure B.2 shows the range-Doppler image of a clutter simulation. For this simulation, approximately
2.5e5 point targets are simulated at random locations in a radius of 100m around the radar. The radar has a
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Figure B.1: Simulated antenna geometry

constant velocity of 5 m/s, and the beam is steered perpendicularly to the velocity vector using 8 antenna ele-
ments. The antenna pattern is clearly visible, and the image also exhibits a speckle pattern which is expected
from random background clutter

-6 -4 -2 0 2 4 6
Doppler velocity (m/s)

0

10

20

30

40

50

R
an

ge
(m

)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Figure B.2: Range Doppler image for simulated clutter. For this simulation, 2.5e5 point targets were simulated in a radius of 100m. The
beam is steered perpendicularly to the velocity vector using 8 antenna elements

B.2.1. Simulated Trajectories
Each simulated trajectory simulates 5 s of data and incorporates around 2.5e5 point targets to simulate back-
ground clutter. The simulations consist of the following scenarios:

• Linear motion with constant velocity

• Motion with cross range acceleration

• Sinusoidal motion
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For each scenario, a data segment without pitch, and with a 15 degree down pitch was simulated.





C
Experimental Setup

C.1. Radar System Description

The experimental radar platform used throughout this thesis is a recent development in drone-mounted
radar systems presented by Otten et al. [39]. Here, a novel, omnidirectional radar system is proposed for agile
drone platforms. The radar system has been developed, and tested in a variety of experimental scenarios
at TNO, the Netherlands. The radar system consists of two circular antenna arrays. The transmitter array
consists of 16 elements which can be switched on and off to shape the transmit beam, while the receive array
consists of 32 digitized receive channels, allowing for digital beamforming on receive. The system is operated
on X-band frequencies, and the transmit signal is modulated with a Frequency Modulated Continuous Wave
(FMCW) waveform.

An image of the radar system can be seen in Figure C.1. Figure C.2 shows the radar system mounted to
a multi-copter platform. The radar system, including battery, weighs approximately 800 grams and is well-
suited for an agile platform. Table C.1 shows a list of system specifications.

Figure C.1: The radar system designed by TNO. The image on the left shows the two antenna rings. The larger ring being the receiver ring
and the smaller ring being the transmitter ring. The image on the right shows the sensor in the upright position with the INS mounted
on top of the. Also seen on the image are the metal reflectors which direct the beam approximately 30 degrees from horizontal.
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Figure C.2: The radar system mounted to a multi-copter platform hovering above the ground.

Table C.1: Overview of the system specifications for the radar system developed by TNO. The half-power beamwidths for the antenna
elements are also shown. Note that these correspond to both receive and transmit elements as they are approximately the same.

Data acquisition
Operating frequency 9 - 10 GHz (X-band)
Waveform FMCW
Bandwidth 1 GHz
PRF 814 Hz

Antenna
TX Elements 16
TX Diameter 12 cm
RX Elements 32
RX Diameter 22 cm

Element beam properties
Azimuth−3dB 100◦
Elevation−3dB 50◦
Depression angle 30◦

Alongside conventional radar modes, the system also allows for high-resolution SAR imaging. Currently,
the position of the radar is tracked using the Xsens MTi-G-710; an INS consisting of a gyroscope, accelerome-
ter, magnetometer, barometer, and GNSS module. Each output is combined to provide estimates of velocity,
position, and attitude. Its specifications are listed in Table C.2. To establish some consistency throughout the
rest of this thesis, the system of interest will be referred to as the ’drone-radar’.

Table C.2: Overview of measurement accuracy for the Xsens MTi-G-710[1].

Parameter Measurement Value
Sensor data
Roll/pitch Static 0.2

Dynamic 0.3
Yaw 0.8
Position and Velocity
Horizontal position 1 σ 1.0 m
Vertical position 1 σ 2.0 m
Velocity accuracy (@30 m/s) RMS 0.05m/s
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C.2. Measurement Setup
To test the developed algorithms in realistic scenarios, and give credibility to the simulated results, several
experimental data segments were recorded. All data were recorded in the same area for several different
flight paths and receiver configurations.

C.2.1. Recording area
The data was recorded over grassy terrain, consisting of a relatively large open area. The area also contains
some vegetation and a wall (figure C.3). In terms of elevation, the terrain is relatively flat, but has a slight
slope, resulting in a peak to peak elevation deviation of around 1 m. For reference, several stationary targets
were placed in the scene. Namely, 3 corner reflectors differing in size, and a metal box. The Figure below
shows a map of the area with the locations of the reference objects highlighted.
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Figure C.3: The image on the left shows a photograph of the measurement area from the radar mounted camera. The image was taken
with the drone hovering above the ground at an altitude of approximately 10 meters. The legs of the drone are also visible on the image.
The image on the right shows a map of the area, with some highlighted reference objects.

C.2.2. Radar setup
The radar was mounted to the drone using a rigid mounting system, which can be seen in Figure C.4. This
means that the attitude of the radar is tied to the attitude of the drone. The signal parameters used during
recording can be seen in Table C.3.

Unfortunately, due to technical problems in the radar software, only 8 receive channels were able to be
recorded simultaneously. To make the most out of the available experimental data, different maneuvers were
performed during the recordings to emulate as many different scenarios as possible.

Table C.3: Signal parameters used for all recordings.

Parameter Value

PRF 814 Hz
Sampling Rate 2 MHz
Center frequency 9.5 Ghz
Bandwidth 1 Ghz

C.2.3. Flight trajectories
This section will give an overview of the flight trajectories for the experimental data segments that are refer-
enced throughout this thesis.
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Figure C.4: The image on the left shows a photograph of the drone and radar system with the GNSS antennas visible. The radar mounted
camera is also visible. The image on the right shows the radar system mounted to the drone. In the image, the Xsens G710 INS is also
visible as the red module on top of the radar.
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Figure C.5: The two trajectories used for the experimental data segments. The trajectory on the left consist of a straight pass in a side
looking setup. The trajectory on the right consists of an arbitrary manuever, more representative of actual flight. The recording lengths
are 45 seconds and 30 seconds respectively. The shown tracjectory is the output of the INS.

To test the velocity estimator, two data segments are used. These are shown in Figure C.5. Both trajectories
use a setup with an array of 8 active receive elements. For trajectory C.5a, the squint is close to zero, while for
trajectory C.5b the squint changes throughout the maneuver.



D
Geometry And Pre-processing

This chapter will give an overview of the geometry of the radar, and give some insight into the steps needed
to compute the location of each antenna element. The first section will present the definitions used for the
global reference frame, and the convention used when defining rotations. The second section will outline
some pre-processing steps which precede many of the algorithms presented in this thesis.

D.1. Global Reference Frame and Euler Angles
Throughout this thesis, the global reference frame is defined as East,North,Up. This means that the local axis
is x,y,z respectively. Rotations are applied in the positive direction using a right handed convention. The
rotations are applied in the following order.

• The first rotation is around the global Z axis (Up) with an angle α (Yaw)

• The second rotation is around the rotated local y axis (y’) with an angle β (Pitch)

• The final rotation is around the rotated local x axis (x”) with an angle γ (Roll)

The rotations can also be described by the following multiplication of rotation matrices:

R(α,β,γ) = R(α)R(β)R(γ) , (D.1)

where

R(α) =
cosα −sinα 0

sinα cosα 0
0 0 1

 , (D.2)

R(β) =
 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

 , (D.3)

R(γ) =
1 0 0

0 cosγ sinγ
0 −sinγ cosγ

 . (D.4)

A visual illustration of the order of rotations can be seen in Figure D.1. Figure D.2 gives an illustration of how
the reference frame would look for the drone hovering above the ground.
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Figure D.1: The order of rotations as used throughout this thesis. the accents above each axis represent how many times that axis has
already been rotated.
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Figure D.2: The global and local reference frame visualized for the drone hovering above the ground.

D.1.1. Computing Antenna Positions
Before any data processing, the position of each antenna element at each pulse location needs to be com-
puted using the known antenna geometry, and the attitude information provided by the INS. When comput-
ing the position of each antenna element, the offset between the antenna array and the GNSS antenna also
needs to be accounted for, as there is a significant lever arm when the drone pitches or rolls. To compute the
position of each antenna element, the following information is required:

• The attitude offset between the radar and the INS. This applies mostly to the yaw direction and is de-
fined by using a single antenna element as a reference. In this case, the first antenna element is used.

• The position offset between the GNSS antenna and the radar.

• The diameter of each antenna array.

• The offset between the receive and transmit array.

For the receiver array, if it is assumed that the offset in roll and pitch is zero, the position of the nth antenna
element in the inertial reference frame is given by

N PR X ,n =N PI N S +N R(α,β,γ)G (G PR X ,c +C PR X ,n) , (D.5)

where the caligraphic notation determines the current reference frame. C denotes the reference frame cen-
tered at the middle of the antenna array, G is the reference frame centered at the GNSS antenna, and N is the
reference frame centered at the global origin. the subscript c indicates the center of the antenna array. The
rotation matrix applies the correct yaw, pitch and roll represented by α,β and γ respectively. The position of
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a single antenna element with respect to the center of the receive array is described by,

C PR X ,n =−dR X

2

n −1

32
2π . (D.6)

Note that there is a minus sign due to the numbering of antenna elements being defined as clockwise in an
ENU coordinate system. The same steps can be applied to the transmitter array by adding the offset between
the center of the two arrays. An image of the calculated antenna positions for an arbitrary pulse location can
be seen in Figure D.3.
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Figure D.3: The antenna setup used for the tracks in Figure C.5

D.2. Data Processing
Before the data is processed in the estimation algorithms, several pre-processing steps are applied. The pre-
processing steps prepare the data for further processing and improve some aspects of performance. This
section will discuss downsampling, range loss correction, windowing and Doppler processing.

D.2.1. Downsampling
At first, it may seem strange to downsample the data, as this removes information. While this is true to some
extent, it can also have a positive impact on performance. Recall from Chapter 2 that the maximum observ-
able range depends on the fast-time sampling frequency. In some cases, however, the area of interest may
only correspond to a narrow range interval. The processing can be optimized by only computing the Fourier
transform for the frequency of interest. This is also known as the zoom- Fast Fourier Transform(FFT) [25].
By downsampling in fast-time, the maximum range is limited. However, the FFT now requires fewer samples
to obtain the same range resolution in the area of interest. This can be seen from the equation for the FFT
resolution

δ f = fs

NFFT
(D.7)

Where fs is the sampling rate and NFFT is the number of samples used to compute the FFT. It should be noted
that the data is first low-pass filtered before downsampling to remove aliasing.
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D.2.2. Range Compression And Loss Compensation
As explained in Chapter 2, Range compression can be performed through a Fourier transform. For experi-
mental data, there is a loss caused by the propagation of waves in a spherical manner. The one-way loss is
proportional to 1

R2 . the reflection also experiences the same loss causing the total effect for a single target

to be 1
R4 . However, since the background reflects most of the energy back, the loss for the entire scene is

only proportional to 1
2R2 , as the scene background can be seen as a wall that doesn’t alter the shape of the

transmitting wave.
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Figure D.4: The average range profile for an experimental data segment 1 second in length. It can be seen that the range loss is approxi-
mately quadratic.

D.2.3. Doppler Processing
The Doppler frequency is determined from pulse to pulse using a slow-time Fourier transform. This is applied
after the data has been range-compressed. The number of slow-time samples used per pulse is chosen based
on an empirical estimate of the acceleration of the radar platform. As the Doppler spectrum provides an av-
erage velocity over a certain time interval, it is important to ensure that the total change in velocity during
this interval is not too great. On the other hand, enough pulses need to be used such that there is sufficient
frequency resolution. Based on experiments with simulated data, it was found that the noise in the velocity
estimate was acceptable when at least 150 samples were used. In cases where more digital beams are incorpo-
rated, from the perspective of Doppler Centroid Estimation, the effective resolution increases proportionally,
allowing for shorter time spans. However, this is only true when the beams are uncorrelated.
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