
Max-Plus
Extensions
A Study of
Train Delays
Gideon Vissers
Bachelor Thesis
Applied Mathematics

TU Delft

Max-Plus
Extensions

A Study of
Train Delays

by

Gideon Vissers
to obtain the degree of Bachelor of Science

at the Delft University of Technology,
to be defended publicly on Friday June 24, 2022 at 13:00.

Student number: 4998081
Project duration: April 18, 2022 – June 24, 2022
Thesis committee: Dr. J.W. van der Woude, TU Delft, supervisor

Prof. Dr. Ir. M.B. Van Gijzen, TU Delft

This thesis is confidential and cannot be made public until June 24, 2022.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Summary
In this report, we research a model for trains called the max-plus model. We start by introducing the
model and the underlying mathematics, after which we set out to extend the model so that we can in-
fluence the network ourselves. The goal we formulate in the report is the resolution of delays occurring
in train networks. To achieve this goal, we design delay resolution methods. We first verify that these
methods work under some conditions, after which we compare and evaluate them. The comparison
and evaluation is done using a simulation of a train network where delays are added at random. In
this simulation, the delay resolution methods are applied to determine the optimal method. Though the
report is written with the narrative of resolving delays, an added objective is to further study applications
and interactions of max-plus algebra, more specifically max-plus models and their extensions, as well
as form an intuition of how problems in max-plus algebra can be solved computationally.

In chapters 2 and 3, we introduce the max-plus model and an important extension. After this, we
formulate the delay problem: What is the most optimal way to resolve delays. Based on this formula-
tion, we design delay resolution methods. The most important method is the 𝑝-greedy delay resolution
methods. This method seeks to steer the network to the most favourable state in the next 𝑝 time steps.
An interpretation of what a favourable state constitutes is given in chapter 5. In this chapter, we also
introduce obstacles to the network that inhibit our ability to resolve delays. Chapter 6 is dedicated to
the aforementioned simulation. In this chapter we discuss how the simulation was constructed and
apply the delay resolution methods to a day worth of trains. Here, we were able to determine that the
𝑝-greedy delay resolution methods performs best for higher values of 𝑝 on average. This corresponds
to the algorithm thinking further ahead when resolving delays. Though this result is true on average, in
specific cases, other values for 𝑝 are better.

In order to achieve the above results, the switching max-plus extension was formalised and the
multi-switching extensions was designed to make the model more realistic. The delay resolution meth-
ods are based on an intuitive approach, as opposed to obscure theoretical or statistical methods. The
intuition behind these methods can thus be applied to a larger class of computational optimisation or
calamity resolution problems. In addition to the latter, the intuitive nature of the methods also allow
humans to intervene in max-plus modellable networks so solve issues. This is especially interesting in
networks where complicated black-box algorithms are used to regulate the network, such as train net-
works; if the powerful black-box systems fail or malfunction, networks can be kept operational through
human intervention.

The biggest accomplishments of this report are the formalisation of the max-plus extensions, the
formulation of the delay problem and delay resolution methods and the design and implementation of
the train simulation. It is hoped that these achievements can lay the foundation for further max-plus or
logistics related research.

iii

Contents

1 Introduction 1

2 Max-Plus Algebra 2
2.1 Trains and Transfers . 2
2.2 The Max-Plus Algebraic Structure . 3

2.2.1 Properties of Max-Plus Algebra . 4
2.2.2 Max-Plus Matrices and Vectors . 4
2.2.3 Eigenvalues and Eigenvectors. 5

2.3 Generalising the Max-Plus Model . 6
2.4 Finding eigenvalues: The Power Method . 10

3 Switching Max-Plus 11
3.1 Example of a Switching System . 11
3.2 Definitions. 12
3.3 Delayed Trains . 13
3.4 Timetable Improvements . 16

4 Delay Problems 17
4.1 Solving the Problem: Every Possibility . 17

4.1.1 The Combinatorial Method . 17
4.1.2 The Minimal Solution . 20
4.1.3 Computational Restrictions . 21

4.2 Sub-Optimal Methods . 21
4.2.1 The Greedy Delay Resolution Method . 22
4.2.2 The Composite Greedy Delay Resolution Method 25
4.2.3 Time Complexity . 26

4.3 Calamity management: Decoupling . 27
4.3.1 Severe Delays . 27
4.3.2 Decoupling Conditions . 29
4.3.3 Structural Decoupling . 29
4.3.4 Early Departures . 30

4.4 Network Design. 30

5 Multi-Switching Max-Plus 33
5.1 Freight Train Obstruction. 33
5.2 Departure Score . 36
5.3 Modelling Delays . 38

5.3.1 Delayed Classes . 38
5.3.2 Anterior and Posterior Indexing . 39
5.3.3 Delays in Simulations . 40
5.3.4 Implementation of Adjacency Classes. 41

5.4 The Scoring Problem. 42

6 Simulating Train Networks 45
6.1 The Simulated Network . 45
6.2 Implementing Dynamic Delays. 47

6.2.1 Modelling Random Delays . 47
6.2.2 Probabilistic Parameters . 49
6.2.3 Example Delayed Sequences . 50

iv

Contents v

6.3 Applying Delay Resolution . 51
6.4 Speed Up and Decoupling Restrictions . 53
6.5 Resolution Evaluation Criteria . 54
6.6 Results . 55

7 Conclusion 57
7.1 Max-Plus Modelling Results . 57
7.2 Delay Resolution Results . 57
7.3 Network Simulation Results . 58
7.4 Overall Results . 58
7.5 Further Research . 58

A Residual Proofs and Derivations 60
A.1 Max-Plus Algebra. 60
A.2 Switching Max-Plus . 61
A.3 Delay Problems. 62

B Decoupling 63
B.1 Severe Delays . 63
B.2 Decoupling Criteria . 64
B.3 Rush Hour Modelling . 65

B.3.1 Modelling Rush Hour . 65
B.3.2 Transitioning to Rush Hour. 66
B.3.3 Method Parameters . 67

C Systems and Control for Max-Plus Algebra 68
C.1 Max-Plus, Systems and Slow-Downs . 68
C.2 Slowing Down instead of Speeding Up . 69
C.3 State Controller . 69
C.4 Delay Resolution and Control . 70

D Python Code 71
D.1 Classes and Functions . 71

D.1.1 Classes . 71
D.1.2 Functions . 83

D.2 Examples . 85
D.3 Simulation. 92

D.3.1 Simulation Initialisation . 92
D.3.2 Simulation. 93

1
Introduction

Workflow has become a cornerstone of developed civilisation. The ability to efficiently fulfil tasks is
key to all manner of developments in all sectors of society. Now more than ever, people can employ
their skills at those places where they are most desired, due to our ability to transport ourselves. This
is illustrated by the fact that there is a strong correlation between transport infrastructure and regional
economic growth (Hong et al., 2011). As such, it is paramount that the integrity of transport networks
are safeguarded by preventing decreases in their logistic capacity. Despite our best efforts, many peo-
ple are still regularly plagued by logistic failures such as train delays, grounded aeroplanes and traffic
jams. In this report, we will analyse such transport networks and formalise some of the logistic prob-
lems that occur within them, in the hopes of decreasing the negative impact they have on our ability to
commute and ultimately on our ability to contribute to society.

Trains are one of the major transport networks used today. In just one day, Germany’s railway
network transports nearly 12 million passengers (“Facts and figures 2016”, 2016). With this magnitude
of commuters, even small delays can lead to massive collective time loss. Furthermore, a major issue
with delays, is that one delay can cause several other delays. If delays are left to propagate like this, a
delay at the beginning of the day can render a train network useless for the remainder, causing many
passengers to be late to important meetings or unable to fulfil their societal duties. Because of this,
resolving delays as soon as possible and with little propagation is very important, but often far from
simple. Systems are in place to make sure that delays are resolved and train commutes match their
timetables as closely as possible, but due to the seeming complexity of these system, their failure can
have catastrophic results, such as a total halt in all train traffic (Middelkoop, 2022). If such system
failures occur, having more intuitive systems in place allowing for people to monitor the train traffic
and intervene when necessary, allows for large parts of the system to still be functional, preventing a
nation-wide catastrophe.

In this report, we will explore one such intuitive systems, namely so-called max-plus models. Max-
plus systems are systems that can describe processes where new tasks can only be started once
old tasks are completed, yielding the ’max’ component. The model tracks the start time of new tasks
provided the amount of time each task requires, yielding the ’plus’ component. In the context of trains,
these tasks can be interpreted as the commute a train makes from one station to the next. In this
report, we will be modelling trains using max-plus models, disjoint from any existing timetable systems.
The previously discussed obstacle and the main subject of this report is the delay propagation in train
networks. We can summarise the main problem we seek to solve as: ’What is the best way to solve
a delay in a train network’. For the time being, this formulation is quite vague. Throughout the report,
we will provide mathematical definitions and insights that allow us to reformulate this problem in a more
refined manner.

1

2
Max-Plus Algebra

In this chapter, we will briefly discuss max-plus algebra. We will use an example to derive a max-plus
model for modelling time tables of public transport, in our case trains. We will then define what max-
plus algebra entails and state some important properties. We will finish off by introducing the concept
of eigenvalues and eigenvectors in max-plus, establish how to interpret them and finally look at how
to calculate them. The contents of this chapter are heavily based on the book ’Max Plus at Work’
(Heidergott et al., 2006).

2.1. Trains and Transfers
To illustrate all mathematics in this section, we consider a train network, as seen in figure 2.1.

𝑆1 𝑆22

5

3

3

Figure 2.1: The subject train network

This train network can also be found in the book Max Plus at Work (Heidergott et al., 2006). In this
network, we observe 2 train stations, 𝑆1 and 𝑆2. The lines, also called arcs between the train stations
correspond to train tracks. The arrows on these rails show in which direction the train drives and the
numbers show how long it takes for a train to traverse that set of tracks. We now place one train on
each of the tracks leaving the stations, this means we place a total of 4 trains. We allow these trains
to drive from station to station, according to the following set of rules:

• A train will drive from one station to the next in the time indicated on that arcs. Upon arrival, the
train can depart immediately if all other criteria are met.

• All trains at a station can depart only if all trains arriving at the station have arrived, thus allowing
passengers to transfer from one train to another. Once all trains have arrived at a station, they
will all immediately depart.

Now that we have established the rules of the model, we give an example to give some more insight.

Example 1 We place the 4 trains in the stations and allow them to all leave immediately, so their
departure time is 0. After 2 time units the left-most train arrives at station 𝑆1, but the train travelling
from 𝑆2 to 𝑆1 has not arrived yet, so the train can not leave. At time 3, both trains have arrived at station

2

2.2. The Max-Plus Algebraic Structure 3

𝑆2 and so both trains can leave. At time 5, the second train arrives at station 𝑆1, so both trains can
leave. This gives the following departure times:

(𝑆1𝑆2) ∶ (00) → (53) .

The vector (0, 0)𝑇 shows the first departure time and (5, 3)𝑇 shows the second departure time. We can
continue this train of thought to generate the following sequence of departure times:

(𝑆1𝑆2) ∶ (00) → (53) → (88) → (1311) → (1616) → (2119) .

We see here that every second time step, the departure times are a multiple of 8. In addition to this, we
see that consecutive departure times are not evenly spaced. When looking at station 𝑆1 for example,
we see that the difference between consecutive departure times alternates between 5 and 3. We
call sequences that do have evenly spaced departure times ’regular sequences’. The problem we
aim to solve with this model is that we want to determine which regular sequence of departure times is
optimal, i.e. which sequence of departure times has the property of having the smallest constant
between any 2 consecutive departure times. In this example, this sequence would be the following:

(𝑆1𝑆2) ∶ (10) → (54) → (98) → (1312) → (1716) → (2120) . (2.1)

The constant between any 2 consecutive departure times is 4, this can not become smaller as the
average time to traverse the inner loop in figure 2.1 is 4 (8 time units in 2 time steps), which matches
this constant.

Using the above example, we will now derive a mathematical model for this problem. To do this, we
first introduce some notation. We will henceforth call the vectors with the departure times the states of
the system. These states change with every time step, so the state of system at time step 𝑘 is denoted
x(𝑘), with the first departure time being x(0). This means an arbitrary sequence of departure times
(henceforth called departure sequences) in this example looks as follows:

(𝑆1𝑆2) ∶ (𝑥1(0)𝑥2(0)) → (𝑥1(1)𝑥2(1)) → (𝑥1(2)𝑥2(2)) … → (𝑥1(𝑘)𝑥2(𝑘)) → …

Wewrite the vector with the stations before the colon to clearly signify which departure time corresponds
to which station. We now consider station 𝑆1. Following the rules, The arrival times of all trains is the
departure time at their previous station added to the travel time, so for the train in the left-most cycle,
the arrival at station 𝑆1 after a departure at time step 𝑘 is 𝑥1(𝑘) + 2 and for the train travelling from 𝑆2
to 𝑆1, the arrival time is 𝑥2(𝑘) + 5. Since the trains have to wait until both trains have arrived, the new
departure time is equal to the maximum of the two arrivals:

𝑥1(𝑘 + 1) =max(𝑥1(𝑘) + 2, 𝑥2(𝑘) + 5).

The same intuition can be applied to station 𝑆2, so the full model for this example becomes:

{𝑥1(𝑘 + 1) =max(𝑥1(𝑘) + 2, 𝑥2(𝑘) + 5)𝑥2(𝑘 + 1) =max(𝑥1(𝑘) + 3, 𝑥2(𝑘) + 3)

This model is called a max-plus model due to the fact that it entirely consists of taking maxima and
additions. We can easily calculate that all the departure sequences stated in this example match the
above recurrence relation. From this recurrence relation we can also see that a departure sequence is
entirely decided by its first entry, x(0).

2.2. The Max-Plus Algebraic Structure
In order to study the discussed max-plus model and related models, we create an algebraic structure
using the key operators max and plus.

4 2. Max-Plus Algebra

Definition 1 Let ℝ𝑚𝑎𝑥 = ℝ ∪ {𝜀}. Define the operators⊕ and⊗ such that ∀𝑎, 𝑏 ∈ ℝ𝑚𝑎𝑥:

𝑎 ⊕ 𝑏 =max(𝑎, 𝑏) 𝑎 ⊕ 𝜀 = 𝑎
𝑎 ⊗ 𝑏 = 𝑎 + 𝑏 𝑎 ⊗ 𝜀 = 𝜀

We call the algebraic structure (ℝ𝑚𝑎𝑥 ,⊕,⊗) the max-plus algebra.

We will occasionally refer to (ℝ,+, ×), the standard arithmatic algebraic structure, as ’plus-times
algebra’ for convenience. Note that in the above definition 𝜀 acts as −∞. Indeed, max(𝑎, −∞) = 𝑎
and 𝑎 + (−∞) = −∞. We will also often denote 0 ∈ ℝ𝑚𝑎𝑥 as 𝑒, which is the identity element for the
max-plus multiplication. Armed with this definition, we can rewrite the max-plus model applied to the
example as:

{𝑥1(𝑘 + 1) = 𝑥1(𝑘) ⊗ 2⊕ 𝑥2(𝑘) ⊗ 5
𝑥2(𝑘 + 1) = 𝑥1(𝑘) ⊗ 3⊕ 𝑥2(𝑘) ⊗ 3

Where we use the standard order of operations by calculating the max-plus multiplications first. We
can compound max-plus multiplications using powers, denoted 𝑎⊗𝑘, which is equal to the max-plus
product 𝑎 ⊗ 𝑎⊗…⊗ 𝑎, where 𝑎 is repeated 𝑘 times. Note that 𝑎⊗𝑘 = 𝑘 × 𝑎 in plus-times algebra.

2.2.1. Properties of Max-Plus Algebra
Now that we have established a definition for max-plus algebra, we determine some properties of the
structure. We start by summing up the algebraic properties of max-plus algebra:

• Both operations are closed.

• Both operation are associative.

• Both operations are commutative.

• ⊗ is distributive with regards to⊕.

• There is a zero element, or additive identity: 𝜀.

• There is a unit element, or multiplicative identity: 𝑒 = 0.

• The zero is absorbing for⊗: 𝑎 ⊗ 𝜀 = 𝜀 .

• ⊕ is idempotent: 𝑎 ⊕ 𝑎 = 𝑎

These properties imply that max-plus algebra is a commutative, idempotent semiring. We now briefly
discuss inverses to give us insight in how max-plus algebraic problems can be solved. It is easy to see
that a multiplicative inverse exists for any element except 𝜀, namely 𝑎⊗(−1) = −𝑎. The additive inverse
only exists for the element 𝜀. Because of this, not all algebraic operations we are familiar with can be
performed. Consider for example the following equation:

5⊗ 𝑥 ⊕ 2 = 1.

When working in (ℝ,+, ×), we can simply subtract 2 from both sides and continue solving the equation,
but in max-plus algebra, subtraction is not allowed as there is no additive inverse. This means certain
linear equations can not be solved. The above equation is an example of this fact.

2.2.2. Max-Plus Matrices and Vectors
We saw before that the states in a max-plus model can be vectors. Because of this, we introduce
vectors and matrices in the max-plus sense to further simplify notation for the max-plus model. This
notation will eventually even allow us to consider eigenvalues and eigenvectors.

2.2. The Max-Plus Algebraic Structure 5

Definition 2 Let ℝ𝑛×𝑚𝑚𝑎𝑥 be such that ∀𝐴 ∈ ℝ𝑛×𝑚𝑚𝑎𝑥 , 𝐴 is an 𝑛×𝑚 matrix with components 𝑎𝑖𝑗 ∈ ℝ𝑚𝑎𝑥,
we call these matrices max-plus matrices. We write ℝ𝑛×1𝑚𝑎𝑥 = ℝ𝑛𝑚𝑎𝑥 and call its elements max-plus
vectors. We define max-plus matrix addition⊕ and max-plus scalar multiplication⊗ as follows for
𝐴 ∈ ℝ𝑛×𝑚𝑚𝑎𝑥 , 𝐵 ∈ ℝ𝑘×𝑙𝑚𝑎𝑥 , 𝑐 ∈ ℝ𝑚𝑎𝑥:

[𝐴 ⊕ 𝐵]𝑖𝑗 = 𝑎𝑖𝑗⊕𝑏𝑖𝑗 [𝑐 ⊗ 𝐴]𝑖𝑗 = 𝑐 ⊗ 𝑎𝑖𝑗

[𝐴 ⊗ 𝐵]𝑖𝑗 =⨁
𝑘
(𝑎𝑖𝑘⊗𝑏𝑘𝑗)

For 𝑛,𝑚, 𝑘, 𝑙 such that these expressions make sense.

This definition matches the traditional definitions for matrices, vectors, matrix addition and scalar
multiplication with the all sets and operations exchanged for their max-plus counterpart. We note that
as usual, matrix multiplication is not commutative. We interpret powers for matrices the same as for
numbers.

We now once again return to the model established in section 2.1:

{𝑥1(𝑘 + 1) = 𝑥1(𝑘) ⊗ 2⊕ 𝑥2(𝑘) ⊗ 5
𝑥2(𝑘 + 1) = 𝑥1(𝑘) ⊗ 3⊕ 𝑥2(𝑘) ⊗ 3

We observe that this recurrence relation is equivalent to the following:

x(𝑘 + 1) = 𝐴⊗ x(𝑘)

where
𝐴 = (2 5

3 3)

From this recurrence relation we can easily see that the state at the 𝑘’th time step can be determine
using the following formula:

x(𝑘) = 𝐴⊗𝑘⊗ x(0).
Once again showing that an entire departure sequence is determined solely by the first departure.

2.2.3. Eigenvalues and Eigenvectors
Since we have defined matrices and vectors in the max-plus sense along with their operations, we can
consider the equation

𝐴⊗ v = 𝜇 ⊗ v.
Which defines eigenvalues and eigenvectors for max-plus matrices. In this equation, 𝜇 is an eigenvalue
of 𝐴 with corresponding eigenvector v. We notice that the right hand side of the equation simply gives
a translation of v of magnitude 𝜇 of each component:

[𝜇 ⊗ v]𝑖 = 𝜇 + [v]𝑖 .

In other words, the multiplication of v by 𝐴 causes all elements of v to be increased by 𝜇. This property
of eigenvalues previously appeared in the problem we stated in section 2.1, where we wanted to find a
constant such that all differences of the departure times in consecutive states are equal to that constant.
Since the problem we stated involved finding the smallest such constant, we can rephrase the problem
as find the smallest, finite eigenvalue of 𝐴 and a corresponding eigenvector. Since we estab-
lished that a departure sequence is entirely determined by its first entry, finding such an eigenvalue-
eigenvector pair will ensure that we generate an optimal regular departure sequence.

6 2. Max-Plus Algebra

We now show some properties of eigenvalues and eigenvectors to more easily find and use them.
First of all, we note that due to commutativity of max-plus scalar multiplication, exponents of the matrix
carries over to the eigenvalue:

𝐴⊗𝑘⊗ v = 𝜇⊗𝑘⊗ v
where 𝜇 is an eigenvalue of 𝐴 with corresponding eigenvector v. We now also state an important
property of eigenvectors, which is paralleled by eigenvectors in the plus-times structure, namely that a
multiple of an eigenvector is also an eigenvector belonging to the same eigenvalue:

𝐴⊗ (𝑐 ⊗ v) = 𝜇 ⊗ (𝑐 ⊗ v)
Where (𝜇,v) is an eigenvalue-eigenvector pair and 𝑐 ∈ ℝ𝑚𝑎𝑥 is a constant. So for any eigenvector of
a matrix, we can add a constant to each of its components and it will still be an eigenvector. This is a
useful result as it allows us to simplify some calculations by setting the entries of an eigenvector to be
as small as possible without losing its eigenvector properties. We will illustrate this last property with
an example.

Example 2 Consider the max-plus matrix in our example:

𝐴 = (2 5
3 3) .

In section 2.1, we found that this matrix has the eigenvalue 𝜇 = 4 with a corresponding eigenvector
v = (1, 0)𝑇. We now consider the following state:

x = (22532252) .

Since we can add a constant to each component without losing the eigenvector properties, we choose
the constant −2252 to add to both components. This gives the state:

x′ = (10)

from which we can clearly see that since x′ is an eigenvector of 𝐴, x is one as well, meaning we can
determine 𝐴⊗ x without any difficult calculations. This also implies that the initial state (2253, 2252)𝑇
will generate the same departure sequence as the initial state (1, 0)𝑇, translated by the constant 2252.

2.3. Generalising the Max-Plus Model
In this section we will provide a more general way of looking at the max-plus model. We start off by
introducing a way to more concisely visualise the train network using weighted, directed graph. Indeed,
when looking at figure 2.1, we can see the stations as nodes and the railway connections as edges
(also called arcs) with a direction and a weight. Using this observation, we can visualise the example
train network as the following graph:

𝑆1 𝑆2

5

3

2 3

Figure 2.2: The communication graph of the example train network

We now see that the matrix 𝐴 we constructed for this network

𝐴 = (2 5
3 3)

2.3. Generalising the Max-Plus Model 7

Is the adjacency matrix of this graph. As it turns out, this observation can be used to formulate the
max-plus model of any train network characterised by a directed, weighted graph.

Definition 3 Let 𝐺 = (𝑉, 𝐸) be a graph on 𝑛 vertices where each vertex is labelled, so 𝑉 = {𝑝𝑖 , 𝑖 ∈
𝑛} is the set of vertices and 𝐸 = {𝑒 ∈ (𝑉2)} is the set of edges (since 𝐺 is directed, edges are ordered
pairs). Let 𝑤 ∶ 𝐸 → ℝ be the function mapping each edge to its weight. Let 𝐴 ∈ ℝ𝑛×𝑛𝑚𝑎𝑥 such that:

[𝐴]𝑖𝑗 = {
𝑤(𝑒), 𝑒 = (𝑝𝑗 , 𝑝𝑖) ∈ 𝐸
𝜀, 𝑒 = (𝑝𝑗 , 𝑝𝑖) ∉ 𝐸

Then we call 𝐴 = 𝐴(𝐺) the adjacency matrix of 𝐺 and 𝐺 = 𝐺(𝐴) the communication graph of 𝐴.
𝑉 = 𝑉(𝐺) and 𝐸 = 𝐸(𝐺) are called the vertex and edge sets of 𝐺 respectively.

Since we will be using directed, weighted graphs a lot, we will simply call them graphs unless
otherwise specified.

Method 1 Given a graph 𝐺, the max-plus model of 𝐺 can be formulated with the recurrence relation

x(𝑘 + 1) = 𝐴⊗ x(𝑘)

With some initial departure x(0), where 𝐴 is the adjacency matrix of 𝐺.

In definition 3, we see that whenever there is no edge from a vertex 𝑝𝑖 to 𝑝𝑗, their corresponding
matrix entry is set to 𝜀. This is because 𝜀 will not interfere with taking the maximum in the matrix
multiplication, due to being the additive identity. In plus-times matrices, such entries would be set to 0,
as it is the plus-times additive identity. Now that we have established the method for formulating our
model, we will apply it to a slightly more intricate example to demonstrate its effectiveness.

Example 3 Consider the following communication graph:

4 3

21 3

2 4

1

21 4

2

3

Figure 2.3: An example communication graph with labelled vertices

Using our method, we can swiftly determine the adjacency matrix:

𝐴 = (
2 𝜀 𝜀 2
3 𝜀 4 4
𝜀 2 3 𝜀
1 𝜀 1 𝜀

)

8 2. Max-Plus Algebra

Where we see that despite having a lot more arcs than our previous example, the increase in vertices
causes the adjacency matrix to have many 𝜀-elements. The departure sequence with initial departure
x(0) = (0, 0, 0, 0)𝑇 can now easily be determined to be the following:

(
1
2
3
4
) ∶ (

0
0
0
0
) → (

2
4
3
1
) → (

4
7
6
4
) → (

6
10
9
7
) → …

Now that we have generalised the max-plus model to be applicable to every directed, weighted graphs,
we give somemore definitions surrounding themodel tomake discussing properties of themodel easier.
We start by giving some definitions surrounding departure sequences.

Definition 4 Let 𝐴 ∈ ℝ𝑛×𝑛𝑚𝑎𝑥 ,x0 ∈ ℝ𝑛𝑚𝑎𝑥. We callℳ =ℳ(𝐴,x0) the max-plus model of 𝐴 with initial
departure x0 when

ℳ ∶ {x(𝑘 + 1) = 𝐴⊗ x(𝑘)
x(0) = x0

We call the sequence
S ∶ x(0) → x(1) → x(2) → … → x(𝑘) → …

the departure sequence ofℳ. Where x(0) = x0, x(𝑘) = 𝐴⊗𝑘⊗x(0) and S denotes the ordering of
the nodes of the communication graph 𝐺(𝐴) of 𝐴. We say that x0 induces the departure sequence
ofℳ.

Definition 5 Let (x(𝑘))𝑘≥0 be the departure sequence ofℳ(𝐴,x(0)).
We call the sequence (𝑑(x(𝑘)))𝑘≥0 = (x(𝑘+1)−x(𝑘))𝑘≥0 the commute sequence ofℳ. Note that
the departure sequence of a max-plus model is the sequence of the partial sums of the commute
sequence plus the initial departure.

Definition 6 Let (x(𝑘))𝑘≥0 be the departure sequence ofℳ(𝐴,x(0)).
We call ⌊x(𝑘)⌋ = x(𝑘)−||x(𝑘)||𝑚𝑖𝑛 the base of x(𝑘) and (⌊x(𝑘)⌋)𝑘≥0 the base sequence ofℳ. We
call any two departure states with the same base, translations of one another with the magnitude
of the translation equal to the difference of their components.

By this above definition, x⊗ 𝑐 is a translation of x with magnitude 𝑐.

Definition 7 Let (x(𝑘))𝑘≥0 be the departure sequence ofℳ(𝐴,x(0)).
If ∃𝑐, 𝑁 ∈ ℕ ∶ ∀𝑘 ≥ 𝑁 ∶ ⌊x(𝑘 + 𝑛𝑐)⌋ = ⌊x(𝑘)⌋ for each 𝑛 ∈ ℕ, then we call (x(𝑘))𝑘≥0 a periodic
regime with its period being the smallest such 𝑐 and its onset the smallest such 𝑁. We then have
that x(𝑘 + 𝑛𝑐) = x(𝑘) ⊗𝑚 for some 𝑚, we call 𝑚𝑐 the average commute time of the regime.

We now also state some properties of the commute and base sequence.

2.3. Generalising the Max-Plus Model 9

Theorem 1 Let (x(𝑘))𝑘≥0 be the departure sequence ofℳ(𝐴,x(0)).
The commute sequence and base sequence are not changed by translation: ∀𝑐 ∈ ℝ ∶

(𝑑(x(𝑘)))𝑘≥0 = (𝑑(x(𝑘) ⊗ 𝑐))𝑘≥0
(⌊x(𝑘)⌋)𝑘≥0 = (⌊x(𝑘) ⊗ 𝑐⌋)𝑘≥0

This means the behaviour of a departure sequence is characterised by the base of its initial depar-
ture.

We illustrate these definitions with an example.

Example 4 Consider the max-plus modelℳ(𝐴,x0), where

𝐴 = (2 5
3 3) x0 = (

2
0) .

The departure sequence ofℳ is then

(𝑆1𝑆2) ∶ (20) → (55) → (108) → (1313) → (1816) → (2121) → …

with commute sequence and base sequence respectively:

(𝑆1𝑆2) ∶ (35) → (53) → (35) → (53) → (35) → (53) → …

(𝑆1𝑆2) ∶ (20) → (00) → (20) → (00) → (20) → (00) → …

We see that the base sequence is 2-periodic, so the departure sequence is a periodic regime with
period 2 and onset 0. We see that ∀𝑘, 𝑛 ∈ ℕ ∶ x(𝑘⊗2𝑛) = x(𝑘)⊗8𝑛, so the average commute time of
the regime is 4. This matches the state average (average of the components of the state) of the entries
in the commute sequence.

Note that the onset of a periodic regime is not always equal to 0. Consider the max-plus model
ℳ(𝐵,x0), where

𝐵 = (7 7
5 8) x0 = (

1
0) .

Then the departure sequence and base sequence are respectively

(𝑆1𝑆2) ∶ (10) → (88) → (1516) → (2324) → (3132) → (3940) → …

(𝑆1𝑆2) ∶ (10) → (00) → (01) → (01) → (01) → (01) → …

So the departure sequence is a periodic regime with period 1 and onset 2.

We also note that if x0 is an eigenvector of 𝐴 with corresponding eigenvalue 𝜇, then the departure
sequence of ℳ(𝐴,x0) is a periodic regime with period 1 and average commute time 𝜇. Before, we
said that the departure sequence of a max-plus model is entirely determined by its initial departure, but
by theorem 1, we see that translating the initial departure and thus the entire sequence left both the
commute and base sequences unchanged. This means that the behaviour of a departure sequence is
not determined by its initial departure, but by the base of the initial departure. We will therefore always

10 2. Max-Plus Algebra

take our initial departure to be a base, i.e. ||x0||𝑚𝑖𝑛 = 0, to simplify calculations.1

We conclude this section with an important property of the max-plus model.

Theorem 2 Any departure sequence of a max-plus model is causal and forgetful. In other words,
the next entry in a sequence is dependent on the current entry, but not on any prior or future entries.

This above result is important as it tells us that given any term in a departure sequence of a max-
plus model, we can determine every term after the given term, without having to know any prior terms
including the initial departure.

2.4. Finding eigenvalues: The Power Method
In this section, we will be solving the problem we formulated in section 2.1, by giving an algorithm for
finding a finite eigenvalue. We will not go into specifics of how many eigenvalues a max-plus matrix
has or discuss infinite eigenvalues, as this is not relevant to the formulated problem. We simply want
to find the smallest finite eigenvalue of a given matrix and we will henceforth refer to the corresponding
eigenvalue-eigenvector pair as the eigenvalue and the eigenvector of the given matrix.

Method 2 Power Algorithm (Heidergott et al., 2006)
Let 𝐴 be the adjacency matrix of a strongly connected graph.

1. Take an arbitrary initial departure x0 that has at least one finite element.

2. Calculate terms of the base sequence (⌊x(𝑘)⌋)𝑘≥0 until a periodic regime is reached. Take 2
repeating terms of the base sequence, the 𝑝’th and the 𝑞’th terms and let the magnitude of
the translation from the 𝑝’th to the 𝑞’th term in the departure sequence be 𝑐.

3. The eigenvalue is 𝜆 = 𝑐/(𝑝 − 𝑞), the average commute time.

4. The eigenvector is v =
𝑝−𝑞
⨁
𝑗=1

(𝜆⊗(𝑝−𝑞−𝑗)⊗ x(𝑞 + 𝑗 − 1)).

Throughout this report, we will only consider the eigenvalue and eigenvector of a matrix found using
the power algorithm. We verify that the algorithm works for the example given in figure 2.2, as applying
the power algorithm to this examples yields the initial departure of sequence 2.1.

Henceforth, we will assume to always be working in max-plus algebra unless specified otherwise.
This means max-plus matrices will just be called matrices, max-plus addition will just be called addition,
etc. We will however distinguish between max-plus operations and ’plus-times’ operations, by denoting
the former as⊕,⊗ and the latter as +,× in order to maintain an intuitive element in calculations.

1This also means that when looking at very long departure sequences, we can study parts of the sequence by translating the
entire system in such a way that the first entry is a base.

3
Switching Max-Plus

We can extend the max-plus model by allowing trains to speed up when desired. When allowing for
this speed up, we call the model a switching max-plus model. At each time step, we can choose
which trains to speed up and which to leave at their regular speed. In this chapter, we will discuss
a simple example of a switching max-plus model, based on the example of chapter 2. We will then
provide mathematical definitions and formulations for and related to switching max-plus models. We
will conclude by showing how switching can help with reducing or resolving delays, as well as improving
timetables. The contents of this chapter are based on the bachelor thesis ’Control of Delay Propagation
in Railway Networks Using Max-Plus Algebra’ (Hoekstra, 2020).

3.1. Example of a Switching System
We once again consider the example stated in section 2.1, as seen in figure 3.1.

𝑆1 𝑆2

5

3

2 3

Figure 3.1: The communication graph of the example train network

We now allow the train on the inner arc with weight 5 to speed up, switching the weight to 4. We
allow the train on the right most arc, labelled 3, to do the same so it can perform the commute in 2 time
steps. Allowing these speed-ups, yields new communication graphs and adjacency matrices for this
network:

𝐴0 = (
2 5
3 3) 𝐴1 = (

2 4
3 3)

𝐴2 = (
2 5
3 2) 𝐴3 = (

2 4
3 2)

The first thing onemight do, is see if one of these speed-ups allows for a faster timetable, i.e. a timetable
with a lower average commute time. The answer in this case is yes, but doing so would remove the
switching element from the system, as we would simply create a basic-max plus model using this op-
timal sped-up graph. The switching model allows for some flexibility in case things go wrong, such
as delays. Using switching to optimise timetables would remove this added flexibility. Furthermore,

11

12 3. Switching Max-Plus

increasing the speed of timetables in practice is not desirable. Many trains run on 1-hour or half-hour
timetables, in part because most people’s working day is split up into hours. Creating commutes where
trains drive every 23 minutes for example, would not be practical for the average working person. Since
we started with the network corresponding with adjacency matrix 𝐴0, we call this adjacency matrix the
standard adjacency matrix.

As previously said, the switching model allows for some flexibility in the system. In general, we can
choose which trains to speed up and which to keep at their regular speed. This means at every time
step there is a decision to be made: which adjacency matrix do we apply this time step? This yields
the slightly altered recurrence relation

{x(𝑘 + 1) = 𝐴(𝑘) ⊗ x(𝑘)
x(0) = x0

Where 𝐴(𝑘) ∈ {𝐴0, 𝐴1, 𝐴2, 𝐴3} is chosen at every time step. We can choose which adjacency matrix
to apply in which time step ahead of time when planning timetables. When something goes wrong
however, we have the freedom to choose another adjacency matrix better suited for that situation. Up
to this point, we have been vague about what ’problems’ may occur in the system. In section 3.3, we
will give a concrete and notable example: Train delays.

3.2. Definitions
Before moving on to the example of train delays, we will formulate some definitions and form some
intuition for how a switching max-plus model works on a mathematical level. We start off by formally
introducing switching max-plus models.

Definition 8 Let𝒜 be a set of 𝑛×𝑛max-plus matrices and let x0 ∈ ℝ𝑛𝑚𝑎𝑥. We callℳ𝑆 =ℳ𝑆(𝒜,x0)
the switching max-plus model of 𝒜 with initial departure x0 when

ℳ𝑆 ∶ {
x(𝑘 + 1) = 𝐴(𝑘) ⊗ x(𝑘)
x(0) = x0

Where 𝐴(𝑘) ∈ 𝒜 is the adjacency matrix applied in time step 𝑘. We call 𝒜 the adjacency class of
ℳ𝑆

To determinewhich adjacencymatrix will be applied in which time step, we can use a choice function.
In practice, it can be useful to order the matrices in the adjacency class, both for the sake of intuition and
implementation. In this ordering, we always call the first element, 𝐴0, the standard adjacency matrix.

Definition 9 Let𝒜 = {𝐴0, … , 𝐴𝑛} be an adjacency class. 𝐴0 is called the standard adjacency class
of𝒜. Let 𝐽 be a sequence containing the indices of the adjacency matrices 0, 1, …𝑛 and let 𝐽(𝑘) = 𝑖.
Then 𝐴𝑖 is called the expected adjacency matrix of time step 𝑘. If we apply 𝐴𝑗 , 𝑗 ≠ 𝑖 in time step 𝑘,
we say that we switched from matrix 𝐴𝑖 to matrix 𝐴𝑗 in time step 𝑘. We call 𝐽 an index sequence.

Through the ordering of the adjacency matrices, the choice function can simply map a situation
(this can be a state, but may contain more information) to an index. We call the sequence of indices
produced by the choice function the index sequence 𝐽. If this sequence is know ahead of time, we say
thatℳ𝑆 =ℳ𝑆(𝒜,x0, 𝐽). We illustrate this definition with an example.

Example 5 Consider the switchingmax-plus system given in section 3.1,ℳ𝑆(𝒜,x0),𝒜 = (𝐴0, 𝐴1, 𝐴2, 𝐴3),x0 =
(1, 0)𝑇. We apply matrices 𝐴0 and 𝐴3 in alternating fashion:

3.3. Delayed Trains 13

(𝑆1𝑆2) ∶ (10) → (54) → (88) → (1311) → (1516) → (2119) → …

The index sequence then is 𝐽 = (0, 3, 0, 3, 0, …). The base sequence is:

(𝑆1𝑆2) ∶ (10) → (10) → (00) → (20) → (01) → (20) → …

So we see that the sequence contains a periodic regime with period 2, onset 3 and average commute
time 4. Upon further analysis, we can determine that the eigenvector of 𝐴0 is (1, 0)𝑇 and the eigenvector
of 𝐴3 is (0.5, 0)𝑇, which are not the same. This means that in this departure sequence, we can not
create a 1-periodic regime with the eigenvectors of both matrices. Since the index sequence is periodic
however, we know that in our case:

x(2𝑘) = (𝐴3⊗𝐴0)⊗𝑘⊗ x(0)

This means that if we determine the eigenvectors of 𝐴3⊗𝐴0, we can create a regular timetable using
eigenvectors. However, since these eigenvectors correspond to the application of 2 matrices, we will
not be creating a 1-periodic regime, but a 2-periodic regime. Indeed, when calculating the eigenvector
of 𝐴3⊗𝐴0, we get (0, 1)𝑇, which is exactly every second term in the base sequence after the onset of
the periodic regime.

Theorem 3 If the index sequence 𝐽 of a switching max-plus model 𝑀𝑆 on a strongly connected
graph is 𝑚-periodic, then the eigenvector v of

𝐴 =
𝑚

⨂
𝑖=1

𝐴𝐽(𝑚−𝑖)

induces an 𝑚-periodic regime with average commute time 𝜆
𝑚 , where 𝜆 is the eigenvalue of 𝐴 as-

sociated with v.

We will generally denote the 𝑖’th entry of the index sequence 𝐽 by 𝐽(𝑖) as 𝐽 corresponds to a choice
function projecting a time step 𝑘 = 𝑖 to the index for that time step. The proof of the above theorem
follows directly from the fact thatℳ(𝐴,v) has a 1-periodic regime with average commute time 𝜆 and
the 𝑘’th term of its departure sequence is the (𝑚 × 𝑘)’th term of the departure sequence ofℳ𝑆(𝒜,v).
The full proof of this theorem is given in appendix A. To give an intuitive interpretation of the result, we
can not use the power algorithm to derive an eigenvector corresponding to a single time step of the
system, but it can be used to derive an eigenvector for several consecutive time steps.

3.3. Delayed Trains
In chapter 2, we learned how to design an optimal, regular time table. At every time step, we knew
exactly how long each train would take to reach their next destination. In practice however, trains do not
always arrive at their allocated times, due to delays. Where in the basic max-plus model, we can only
hope that the departure sequence converges back to its equilibrium sequence, the switching model
allows us to actively intervene by speeding up trains.

Example 6 Consider the train network with the adjacency class as described at the beginning of sec-
tion 3.1 and in figure 3.1. When nothing goes wrong, we assume that the standard adjacency matrix
is repeatedly applied. Choosing the initial departure x0 = (1, 0)𝑇, we arrive at the previously seen
departure sequence

(𝑆1𝑆2) ∶ (10) → (54) → (98) → (1312) → (1716) → (2120) → … (3.1)

14 3. Switching Max-Plus

Induced by the initial departure and index sequence 𝐽 = (0, 0, 0, …). Now let us assume that the train
inbound for station 𝑆1 at the first iteration experiences a delay of 2 time units:

(𝑆1𝑆2) ∶ (10) → (5 + 24) → (910) → (1513) → (1818) → (2321) → … (3.2)

When subtracting sequence 3.1 from sequence 3.2, we see the delay propagation in each time step:

(𝑆1𝑆2) ∶ (00) → (20) → (02) → (21) → (12) → (21) → …

If we simply keep applying the standard adjacencymatrix, this sequence will not return to its equilibrium.
We therefore see if applying the other matrices in the adjacency class can resolve this issue. A naive
but effective approach to doing this, is to simply apply every possible combination of adjacencymatrices
and seeing which combination restores the equilibrium as fast as possible. The fastest way to return to
the equilibrium turns out to take 4 time steps. There are a total of 40 possible ways to restore equilibrium
in 4 time steps, one of which is the following:

𝐴⊗31 ⊗𝐴0⊗(74) = (
21
20) .

This results in the delayed departure sequence

(𝑆1𝑆2) ∶ (10) → (5 + 24) → (910) → (1413) → (1717) → (2120) → …

With corresponding index sequence 𝐽 = (0, 0, 1, 1, 1, 0, 0, …). We clearly see that the fifth term of this de-
layed sequence coincides with the fifth term of the timetable sequence. The resulting delay propagation
sequence now becomes

(𝑆1𝑆2) ∶ (00) → (20) → (02) → (11) → (01) → (00) → …

In light of the above example, we provide some more definitions

Definition 10 If a trains do not leave their outbound station at the expected time x(𝑘), we say that
that station is delayed. We call the actual departure time vector x̃(𝑘) the delayed departure and the
difference x̃(𝑘) − x(𝑘) = d(𝑘) the delay state of the system at time step 𝑘. We call the sequence
(d(𝑘))𝑘≥0 the delay propagation sequence of the system, or delay sequence for short.

Trivially, the delay sequence of the departure sequence with itself contains only 0-vectors.

Definition 11 Let (d(𝑘))𝑘≥0 be a delay sequence ofℳ𝑆. We call the first 𝑘 such that d(𝑘) ≠ 0 the
onset of the delay and we call this d(𝑘) the initial state delay.

Definition 12 Let (x(𝑘))𝑘≥0 and (x̃(𝑘))𝑘≥0 be the departure sequence and a delayed departure
sequence ofℳ𝑆. We say that (x̃(𝑘))𝑘≥0 converges to (x(𝑘))𝑘≥0 if:

∃𝑁 ∈ ℕ ∶ ∀𝑘 ≥ 𝑁 ∶ x̃(𝑘) = x(𝑘).

We call the smallest such 𝑁 the resolution time of the delayed departure sequence.

3.3. Delayed Trains 15

Note that by definition 10, sequence 3.2 is the sequence of delayed departures, which we will call
the delayed departure sequence.

It is important to note that in the current statement of the model, delays do not occur. We therefore
need to change the model in order to include delays. There are 2 ways to do this, we can simply add
the delay state to the recurrence relation or we can change the adjacency matrix applied in a time step
to reflect the delay:

x(𝑘 + 1) = 𝐴𝑖⊗ x(𝑘) + 𝛿(𝑘) or x(𝑘 + 1) = 𝐴̃𝑖⊗ x(𝑘).

The first way keeps things more intuitive and easy to implement into code, but it does require the use
of a plus-times addition of 2 vectors1. We call the vector 𝛿(𝑘) the delay term of the model. Notice that
if there is a delay, then 𝛿(𝑘) = d(𝑘 + 1). The latter way introduces a less intuitive element, 𝐴̃𝑖, which
we will henceforth call a delayed adjacency matrix of 𝐴𝑖, but it does match the max-plus structure used
thus far. In order to not needlessly complicate the intuition of the model, we will use the former notation,
despite not maintaining the max-plus form.

We should also note that delays can stack, that is to say that new delays can affect the delay
propagation of a prior delay. When this happens, a completely new delayed departure sequence can
be computed using x(𝑘 + 1) as a starting vector where 𝑘 is the onset of the last delay. Since max-plus
systems are forgetful, the manner in which the resulting delay was induced does not affect the induced
delayed departure sequence.

Definition 13 Letℳ𝑆 = ℳ𝑆(𝒜,x0) and let (x̃(𝑘))𝑘≥0 be a delayed departure sequence ofℳ𝑆. If
x̃(𝑘) = x(𝑘) and 𝛿(𝑘) ≠ 0, then 𝛿(𝑘) is called a simple delay.

To conclude this section, we give an example using the defined concepts.

Example 7 Consider the following departure sequence:

(𝑆1𝑆2) ∶ (00) → (21) → (33) → (54) → (66) → (87) → …

And consider the following delayed departure sequence:

(𝑆1𝑆2) ∶ (00) → (21) → (43) → (54) → (76) → (87) → …

This sequence has 2 delays, 𝛿(1) = (1, 0)𝑇 , 𝛿(3) = (1, 0)𝑇 with onsets 2 and 4 respectively. The
delayed departure sequence induced by 𝛿(1) is resolved at time step 𝑘 = 2 and the delayed departure
sequence induced by 𝛿(3) is resolved at time step 𝑘 = 4.

Generally, looking at several delays in the same sequence can complicate matters. Because of this, we
will treat every delay separately unless stated otherwise. If delays influence each other, we will combine
them by taking the time step immediately after the onset of the last delay 𝛿(𝑘) ≠ 0, as previously stated
above definition 13. It is important to note that we can generally not predict when delays will happen.
This means we will always make decisions in the system without taking possible future delays into
account. Concretely, in example 7, the delayed departure sequence induced by 𝛿(1) does not include
the delay induced by 𝛿(3) since at time step 1 it was not yet known that the delay at times step 3 would
occur.
1An element wise max-plus multiplication of vectors would have the same effect, but this operation has not been used in any
other instances, so introducing it would not be practical.

16 3. Switching Max-Plus

3.4. Timetable Improvements
In addition to resolving delays, switching max-plus systems can also be used to improve departure
sequences, which are referred to as timetables in practice. By speeding up and slowing down trains,
more convenient time tables can be created for regular commuters.

Example 8 Consider the example communication graph in figure 3.1 with the following adjacency ma-
trices:

𝐴0 = (
2 5
3 3) 𝐴1 = (

2 5
2 3)

𝐴2 = (
2 6
3 3) 𝐴3 = (

2 6
2 3)

With initial departure x0 = (1, 0)𝑇. If we simply repeatedly apply 𝐴0, we get the 1-periodic regime:

(𝑆1𝑆2) ∶ (10) → (54) → (98) → (1312) → (1716) → (2120) → …

But let now assume that at time steps 9 a plane arrives at the airport connected to station 𝑆1 and at
time steps 11 a plane departs near station 𝑆2 and there are a lot of passengers that want to transfer
between these two planes. This means there are a lot of passengers that will take the train at 9 in
station 𝑆1 and they will arrive in 𝑆2 at 12, just one time unit too late for their plane. We can choose to
speed up the corresponding train during these time steps by applying adjacency matrix 𝐴1:

(𝑆1𝑆2) ∶ (10) → (54) → (98) → (1311) → (1616) → (2119) → …

So we see these passengers leaving 𝑆1 at 9 make it to 𝑆2 by 11, but the regime has completely changed.
We can now choose to slow down the same train now driving back to station 𝑆1 by applying matrix 𝐴2:

(𝑆1𝑆2) ∶ (10) → (54) → (98) → (1311) → (1716) → (2120) → …

So we see that switching can be used to construct more intricate departure sequences that are tailored
to a specific situation. In theory however, the above process also describes a sort of delay, namely a
predicted, negative delay. As such, we can simply regard such situations as delay situations.

4
Delay Problems

Now that we have laid the foundation of switching max-plus models, we can formally introduce the
problem we seek to research in this report: How can we optimally resolve delays in train networks.

Problem 1 The Delay Problem:
Letℳ𝑆 = ℳ𝑆(𝒜,x0, 𝐽) be a switching max-plus model. Given a delayed departure x̃(𝑚), give an
index sequence ̃𝐽 such that the delayed departure sequence (x̃(𝑘))𝑘≥𝑚 induced by x̃(𝑚) and ̃𝐽
converges to the departure sequence ofℳ𝑆 as quickly as possible, i.e. with the smallest possible
resolution time.

Since we established that we will never act on delays that have not yet happened, we will always
take the elements of ̃𝐽 before the onset of the delay to be the same as 𝐽. We will later come back to the
formulation of this problem and make some changes to refine our search for the index sequence ̃𝐽.

In this chapter, we will start analysing this problem with the concepts we have defined thus far. We
will also introduce some new definitions to aid our analyses. We will start by resolving some example
delays using an exhaustive method. We will then analyse the resulting optimum to see if we can spot
patterns. After this, we will attempt to come up with criteria for finding index sequences using more
elaborate methods. We will conclude this chapter by introducing a more drastic measure that can be
used when delays become unmanageable.

4.1. Solving the Problem: Every Possibility
In this section, we will look into one method for solving the delay problem. This method involves
exhaustively trying every possible combination of index sequences ̃𝐽 and seeing which sequence works.
We will apply this method to an example before formulating the algorithm used. We will then put an
extra condition on the solutions of problem 1 to narrow down our search. We will conclude this section
by showing a restriction of this method to illustrate why it can not always be used in practice.

4.1.1. The Combinatorial Method
We will once again consider the departure and delayed departure sequences from example 6.

Example 9 Consider the switching modelℳ𝑆(𝒜,x0, 𝐽) where

𝐴0 = (
2 5
3 3) 𝐴1 = (

2 4
3 3)

𝐴2 = (
2 5
3 2) 𝐴3 = (

2 4
3 2)

17

18 4. Delay Problems

x0 = (1, 0)𝑇 and 𝐽 = (0, 0, 0, …) This induces the following departure sequence:

(𝑆1𝑆2) ∶ (10) → (54) → (98) → (1312) → (1716) → (2120) → …

Now assume that some delay was caused with initial delay

𝛿(0) = (20) .

Problem 1 dictates that we try to find ̃𝐽 of the smallest size 𝑚 such that:

𝑚

⨂
𝑖=1

(𝐴 ̃𝐽(𝑚−𝑖)) ⊗ x(1) = x(𝑚 + 1). (4.1)

We try every combination and find that the smallest such 𝑚 is 4. A solution index sequence is:

̃𝐽 = 0, 0, 1, 1, 1, 0, 0, …

which induces the following delayed departure sequence:

(𝑆1𝑆2) ∶ (10) → (74) → (910) → (1413) → (1717) → (2120) → …

Which indeed converges to the departure sequence. We notice that since the onset of the delay is 1
and its resolution time is 5, that the only part of ̃𝐽 that resolved the delay, is the four entries after the
first entry: 0, 1, 1, 1.

In light of the above example, we give the following definition.

Definition 14 Let (x̃(𝑘))𝑘≥0 be a delayed sequence with only one initial delay 𝛿(𝑝). Let ̃𝐽 be an
index sequence that resolves the delay with resolution time 𝑘 = 𝑞. We call the finite sequence
𝑅̃ = (̃𝐽(𝑝 + 1), ̃𝐽(𝑝 + 2), … , ̃𝐽(𝑞 − 1)) the resolution sequence of the delay and the index sequence.

In this example, we have also stated problem 1 in its alternative form in equation 4.1.

Problem 2 The Delay Problem
Letℳ𝑆 = ℳ𝑆(𝒜,x0, 𝐽) be a switching max-plus model. Given a delayed departure x̃(𝑚), give an
index sequence ̃𝐽 of minimal length 𝑚 such that

𝑚

⨂
𝑖=1

(𝐴 ̃𝐽(𝑚−𝑖)) ⊗ x(1) = x(𝑚 + 1).

In example 9, we tried every possible index sequence to find a solution to problem 1. We can
formulate this procedure in the following method.

4.1. Solving the Problem: Every Possibility 19

Method 3 The Combinatorial Method
Letℳ𝑆 =ℳ𝑆(𝒜,x0, 𝐽) be a switching max plus model. Let x̃(𝑚) be a delayed departure.

1. Take 𝑛 = 0.

2. For any 𝑅 ∈ 𝒜𝑛:

(a) Calculate x̃(𝑚 + 𝑛) =
𝑛
⨂
𝑖=1
(𝐴𝐽(𝑛−𝑖)) ⊗ x̃(𝑚)

(b) If x̃(𝑚 + 𝑛) = x(𝑚 + 𝑛), then 𝑅 is a resolution sequence 𝑅̃ of the delay with resolution
time 𝑚 + 𝑛.

3. If no 𝑅̃ is found, increment 𝑛 by 1 and return to step 2.

Repeat until a stopping criteria is met.

It is clear to see that since this method calculates every possible outcome, we will always arrive
at the optimal solution to problem 1, if one exists. In practice, whenever there is a delay, we will take
the entries in both the departure and the delayed departure sequences corresponding to the onset of
the delay, translate them such that one of them is a base and create the sequences induced by these
elements. This also ensures that the resolution sequence of the index sequence ̃𝐽 always appears
at the start of ̃𝐽. Because of this, we will often call 𝑛 the resolution time of the delay and 𝑚 + 𝑛 the
resolution time of the delay sequence, as dictated by definition 12.

Example 10 Consider the same switchingmodel as in example 9 with departure and delayed departure
sequences respectively

(𝑆1𝑆2) ∶ (00) → (23) → (55) → (78) → (1010) → (1213) → …

(𝑆1𝑆2) ∶ (00) → (23) → (55) → (78) → (1111) → (1313) → …

and corresponding index sequences respectfully

𝐽 = 0, 0, 0, 0, 0, 0, …
̃𝐽 = 0, 0, 0, 0, 1, 1, …

Since the delay onset happens later in the sequence, the system is forgetful and sequence behaviour
does not change due to translations, we can simply study the following pair of sequences and get the
same result:

(𝑆1𝑆2) ∶ (00) → (23) → (55) → (78) → (1010) → (1213) → …

(𝑆1𝑆2) ∶ (11) → (33) → (55) → (78) → (1111) → (1313) → …

With index sequences respectfully

𝐽 = 0, 0, 0, 0, 0, 0, …
̃𝐽 = 1, 1, 0, 0, 0, 0, …

So we see that the index sequence of the delayed departures is simply shifted to the right without
changing its structure.

20 4. Delay Problems

4.1.2. The Minimal Solution
As mentioned previously in example 6, the solution found in example 9 is not unique. There are a total
of 40 possible resolution sequences of length 4. This means we can choose among the solution which
one we deem the ’most optimal’. Since we want delays to be resolved as quickly as possible however,
we will always consider the minimum resolution time our primary criterion. In this subsection, we will
discuss which possible secondary criteria we can devise for our solution.

The model of example 9 contains the following adjacency matrices:

𝐴0 = (
2 5
3 3) 𝐴1 = (

2 4
3 3)

𝐴2 = (
2 5
3 2) 𝐴3 = (

2 4
3 2)

Where 𝐴0 is the standard matrix. We will therefore compare the other matrices to 𝐴0 for our secondary
criterion. A realistic property of the secondary criterion is that we want to have as few speed ups as
possible. Unnecessary speed ups may cause excess noise or wear down the rails. This gives the
following secondary criterion:

’Find ̃𝐽 such that ∑#{(𝑖, 𝑗) ∶ [𝐴 ̃𝐽(𝑘)]𝑖,𝑗 ≠ [𝐴𝐽(𝑘)]𝑖,𝑗} is as small as possible.’

Another reasonable criterion is that we do not care so much about the amount of speed ups, but rather
the total magnitude of the speed ups. This means we find minor noise pollution in several regions less
problematic than major noise pollution in one region. The same argument can be used for wearing
down the tracks.

’Find ̃𝐽 such that ∑ ||𝐴 ̃𝐽(𝑘) − 𝐴𝐽(𝑘)||1 is as small as possible.’

Where ||𝐴 ̃𝐽(𝑘)−𝐴𝐽(𝑘)||1 is the sum of the absolute element differences of the matrices. If we care more
about maintaining logistic integrity of the network, instead of impact on the environment, a reasonable
criterion could be that we want to cause as little deviation from the regular index sequence as possible.

’Find ̃𝐽 such that #{𝑖 ∶ ̃𝐽(𝑖) ≠ 𝐽(𝑖)} is as small as possible.’

In this section, we will use the second of these secondary criteria as it takes into account both the
occurrence of a speed up and the magnitude of this speed up.

Problem 3 The Minimal Delay Problem
Let ℳ𝑆 = ℳ𝑆(𝒜,x0, 𝐽) be a switching max-plus model. Given a delayed departure x̃(𝑚), give a
smallest resolution sequence 𝑅̃ such that

∑||𝐴𝑅̃(𝑘) − 𝐴𝐽(𝑘)||1

Is as small as possible.

When applying this secondary criterion to example 9, we see that from the original 40 possible
solutions, there are 2 solutions for which ∑ ||𝐴𝑅̃(𝑘) − 𝐴𝐽(𝑘)||1 = 3, which is the minimum. This means
there are 2 optimal solutions:

𝑅̃1 = 0, 1, 1, 1
𝑅̃2 = 0, 3, 0, 1

We call these solutions to problem 3, minimal solutions to problem 1.

4.2. Sub-Optimal Methods 21

The minimal delay problem adds an extra layer onto the delay problem and as such, should only
be considered once the latter problem has been properly solved. Because of this, we will not devote
too much attention to the minimal problem, as to not get ahead of ourselves. The reason for providing
the formulation of the problem, is that in some networks, finding a minimal delay resolution is more
important than in others and so we will be discussing some minimal delay resolution method, but we
will not be analysing them in great detail.

4.1.3. Computational Restrictions
We have seen that the combinatorial method can always find the optimal solutions to both the delay
and the minimal delay problems if they exist. Based on this, one could say the this method is perfect
and does not need to be altered in any way. Unfortunately however, though we can be sure that the
combinatorial method will always find the optimal solution, the speed at which it does so turns out to
be very volatile. For small examples, the computation time does not exceed a second, but for larger
systems, this duration can become unmanageable. To better be able to discuss this issue, we look into
the time complexity of the algorithm.

The algorithm iterates over values for the resolution of the delay until a resolution sequence is
found. Let 𝑁(𝑠) be the time complexity of the iteration with value 𝑛 = 𝑠, then the time complexity of the
combinatorial algorithm is

𝑇(𝐶𝑀) = 𝒪(𝑁(0) + 𝑁(1) + 𝑁(2) + … + 𝑁(𝑛))

At every iteration, every element of the cartesian product 𝒜𝑛 is calculated and applied, meaning the
time complexity of an iteration 𝑁(𝑠) is

𝑁(𝑠) = 𝒪((#𝒜)𝑠)

This yields the time complexity
𝑇(𝐶𝑀) = 𝒪((#𝒜)𝑚)

where 𝑚 is the length of a minimal resolution sequence. If this 𝑚 is known, then the algorithm has
a polynomial time complexity of order 𝑚 in the size of the adjacency class 𝒜. In practice however,
it is unlikely that we know 𝑚 ahead of time, so the algorithm has an exponential time complexity in
𝑚. Furthermore, we can not ensure that the delayed departure sequence converges to the departure
sequence, so it is possible that the algorithm will not produce a result at all, but there is no way to find
out if this is the case using the combinatorial algorithm.

Example 11 Consider a switching max-plus model such that there are 5 connections we can speed up
by 1 time unit. Since we choose for every connection if we speed them up or not, there are 32 possible
adjacency matrices, so the size of the adjacency class is #𝒜 = 32. Suppose a delay is created that
can be resolved in 10 time steps, but not less. Then the time complexity of the combinatorial algorithm
is

𝑇(𝐶𝑀(𝒜, x̃(𝑚))) ≈ 𝐶 × 3210

≈ 𝐶 × 1.126 × 1015

for some 𝐶.

If we assume 𝐶 to be very small, like 𝐶 = 10−10𝑠, this would still leave us with a computation time
of approximately 31 hours. In practice, 𝐶 may be much smaller, but at the same time, the adjacency
matrices may by much larger. Thus national train networks with thousands of connection could not
resolve delays in this way.1

4.2. Sub-Optimal Methods
In order to combat the unreasonable computation times of the combinatorial method, we will attempt to
devise iterative methods. This means we want to create methods that do not attempt to provide a full
1The same calculation for 30 connections and 𝐶 = 10−30𝑠 yields a computation time of more than 6 × 1052 years.

22 4. Delay Problems

solution right-away, but instead calculate partial results which they use to determine the best course
of action for the next time step. We will derive and formally introduce two such methods: The greedy
delay resolution method and the composite greedy delay resolution method. After having formulated
them, we will look at their computation time.

4.2.1. The Greedy Delay Resolution Method
In order to derive an iterative method, we will dissect each time step to see what the best course of
action is for this step.

Example 12 Consider the departure sequence and initial delay of example 9:

(𝑆1𝑆2) ∶ (10) → (54) → (98) → (1312) → (1716) → (2120) → …

𝛿(0) = (20) .

This means the first delayed departure is x̃(1) = (7, 4)𝑇 with corresponding expected departure x(1) =
(5, 4)𝑇. We translate both departures, so one of them is a base, which yields the same departure
sequence as above and the initial delayed departure x̃(0) = (3, 0)𝑇. We now look at each possible
delay propagation by applying each adjacency matrix in the class separately

𝐴0⊗ x̃(0) = (56) 𝐴1⊗ x̃(0) = (56)

𝐴2⊗ x̃(0) = (56) 𝐴3⊗ x̃(0) = (56)

We see at all matrices yield the same result, so we choose the index 𝑖 such that ||𝐴𝑖−𝐴0||1 is minimised,
so 𝑅̃(0) = 0. We now apply the same procedure to x̃(1) = (5, 6)𝑇:

𝐴0⊗ x̃(1) = (119) 𝐴1⊗ x̃(1) = (109)

𝐴2⊗ x̃(1) = (118) 𝐴3⊗ x̃(1) = (108)

When comparing these delayed departures to the expected departure x(2), we notice that some de-
layed departures show promising results.

We can intuitively see that some delayed departures are ’closer’ to the expected departures than others.
Because we have not defined what ’close’ means however, we have no way to quantify which delayed
departure is actually closer. As before, we can define the distance between two states in several ways.
We will limit ourselves to the following well known metrics:

• ||x− y||2 = √∑(𝑥𝑖 − 𝑦𝑖)2, the euclidean metric.

• ||x− y||1 = ∑ |𝑥𝑖 − 𝑦𝑖|, the sum of absolute element differences.

• ||x− y||𝑚𝑎𝑥 =max{|𝑥𝑖 − 𝑦𝑖|}, the maximum absolute element difference.

Each of these metrics have benefits and downsides and must therefore be chosen on a case-by-case
basis for practical applications. In this report, we will be using the last of these three as our primary
metric and the second as our secondary metric. Armed with these new notions of distance, we can
continue example 12.

Continuation of example 12 We see that matrices 𝐴1 and 𝐴3 both minimise the distance ||x̃(2) −
x(2)||𝑚𝑎𝑥, but 𝐴1 is further away according to || ⋅ ||1, so we choose 𝐴3, thus 𝑅̃(1) = 3. In the next

4.2. Sub-Optimal Methods 23

iteration, we get

𝐴0⊗ x̃(2) = (1313) 𝐴1⊗ x̃(2) = (1213)

𝐴2⊗ x̃(2) = (1313) 𝐴3⊗ x̃(2) = (1213)

We now see that all of these delayed departures have the same max-distance to x(3). The departures
corresponding to 𝐴0 and 𝐴2 are closer according to the 1-norm however, so we choose on of them.
Since we also want to minimise the value ||𝐴𝑖−𝐴𝐽(2)||1, we choose the matrix with the smallest distance
to 𝐴0, so 𝑅̃(2) = 0. Continuing this procedure gives us the resolution sequence 𝑅̃ = (0, 3, 0, 1), which
is indeed a minimal resolution sequence and is in fact a solution to the minimal delay problem.

We see that when using just the max-norm, a situation arose where two decisions were evaluated
as equal. In order to combat this, we used the 1-norm to break the tie. It is possible for more such ties
to occur, but in order to avoid complexity, we will not formulate other tie breakers, instead choosing one
of the equal choices based on some criteria2.

Method 4 Greedy Delay Resolution Method
Letℳ𝑆 =ℳ𝑆(𝒜,x0, 𝐽) be a switching max-plus model. Let x̃(𝑚) be a delayed departure.

1. Let 𝑛 = 0

2. If x̃(𝑚 + 𝑛) = x(𝑚 + 𝑛), we are done.

3. For any 𝐴𝑖 ∈ 𝒜, calculate x̃𝑖(𝑚 + 𝑛 + 1) = 𝐴𝑖⊗ x̃(𝑚 + 𝑛).

(a) From the resulting delayed departures, choose the delayed departure(s) x̃𝑖(𝑚 + 𝑛 + 1)
such that ||x̃𝑖(𝑚 + 𝑛 + 1) − x(𝑚 + 𝑛 + 1)||𝑚𝑎𝑥 is minimised.

(b) From the resulting delayed departures, choose the delayed departure(s) x̃𝑖(𝑚 + 𝑛 + 1)
such that ||x̃𝑖(𝑚 + 𝑛 + 1) − x(𝑚 + 𝑛 + 1)||1 is minimised.

4. Choose one of the resulting delayed departures x̃𝑗(𝑚 + 𝑛 + 1) based on some criteria and
set x̃(𝑚 + 𝑛 + 1) = x̃𝑗(𝑚 + 𝑛 + 1) and 𝑅̃(𝑛) = 𝑗.

5. Increment 𝑛 by 1 and return to step 2

The resulting 𝑛 and 𝑅̃ are the resolution time and resolution sequence respectively.

Thismethod has 2major benefits compared to the combinatorial method. The first is that the compu-
tation time is vastly reduced, which we will confirm later on. The second is that while the combinatorial
method can only produce the resolution time and sequence, the greedy delay resolution method can
also produce the intermediary results obtained at each time step. This means we can study the be-
haviour of the delay sequence as we apply the method, which makes it easier to see if the delay will
ever be resolved at all.

Theorem 4 Let 𝒜 be an adjacency class, (x(𝑘))𝑘≥0 and (y(𝑘))𝑘≥0 departure sequences induced
by 𝐽, a choice function generating an index sequence and some initial departures x(0) and y(0)
respectively. Suppose that 𝐽 = 𝐽(x), so the choice function only depends on the current state, then
the following hold:

2If we want to find a minimal solution, choose an index such that ||𝐴𝑗 − 𝐴𝐽(𝑛)||1 is minimised.

24 4. Delay Problems

• If there is a time step 𝑛 where the departure times x(𝑛) = y(𝑛), then the two departure
sequences are equal in every time step after 𝑛.

If ∃𝑛 ∈ ℕ ∶ x(𝑛) = y(𝑛) then ∀𝑘 ≥ 𝑛 ∶ x(𝑘) = y(𝑘)

• Suppose (x(𝑘))𝑘≥0 and (y(𝑘))𝑘≥0 enter 𝑠-periodic regimes with onset 𝑛 and 𝑚 respectively.
Let 𝑘 ≥max(𝑛,𝑚), if x(𝑘) ≠ y(𝑘), then the two departure sequences at no point coincide.

We provide a proof of this theorem in appendix A. Upon close inspection, we see that the choice
function resulting from the greedy delay resolution method fulfils the conditions of this theorem.

This above result shows us that if a switching max-plus delayed departure sequence ever enters
into a periodic regime that does not coincide with the departure sequence, then the delay can not be re-
solved using that choice function. We will illustrate this theorem with an example, whilst simultaneously
showing a severe downside of the greedy delay resolution method.
Example 13 Consider the switchingmax-plusmodelℳ𝑆 =ℳ𝑆(𝒜,x0, 𝐽)with adjacencymatrices, initial
departure and index sequence respectively

𝐴0 = (
𝜀 5
5 𝜀) 𝐴1 = (

𝜀 3
3 𝜀)

𝐴2 = (
𝜀 2
2 𝜀)

x0 = (
0
0) 𝐽 = 0, 0, 0, 0, …

which corresponds to the following communication graph with variable commute times:

𝑆1 𝑆2

5

5

Figure 4.1: The communication graph of the example train network

The departure sequence induced by x0 and 𝐽 is:

(𝑆1𝑆2) ∶ (00) → (55) → (1010) → (1515) → (2020) → (2525) → …

Now consider the delay 𝛿 = (4, 4)𝑇. We use the greedy delay resolution method to resolve this delay.
This produces the following delayed departure sequence:

(𝑆1𝑆2) ∶ (44) → (66) → (1111) → (1616) → (2121) → (2626) → …

along with the resolution sequence 𝑅̃ = (2, 0, 0, 0, …). It is clear to see that by theorem 4, this delay
will never be resolved, the departure sequence and the delayed departure sequence both enter into
1-periodic regimes with different elements. Upon close inspection however, it is easy to see that:

x̃(3) = 𝐴1⊗𝐴1⊗ x̃(0) = (1010) = x(3)

4.2. Sub-Optimal Methods 25

Which implies that by theorem 4, (x̃(𝑘))𝑘≥3 = (x(𝑘))𝑘≥3, So the delay can be resolved, but this solution
is not found by the greedy method.

The above example illustrates that even when a simple resolution exists, the greedy algorithm can not
always find it. It is however not too difficult to show that a solution will not be reached, meaning the
combinatorial method can then be used as an alternative for simple delay problems. Another downside
of the greedy delay resolutionmethod is that even if we set the criteria in step 4 tominimise ||𝐴𝑗−𝐴𝐽(𝑛)||1,
we can not guarantee that if the method produces a solution to the delay problem, this is a minimal
solution. The combinatorial method can ensure this.

4.2.2. The Composite Greedy Delay Resolution Method
We have seen that a major detriment of the combinatorial method is its exponential time complexity
in the resolution time and a major detriment of the greedy delay resolution method is its inability to
consistently produce a result. We will now introduce a resolution method that combines both methods
to counteract their detriments.

The intuition behind the composite greedy delay resolution method is that instead of taking the best
course of action per time step, we combine several time steps and determine the best course of action
over all of them. Determining the best course of action over several time steps can be done using the
combinatorial method. Using the same distance criteria as earlier, we determine which combination of
adjacency matrices gets the delayed departure as close to the expected departure as possible.

Method 5 𝑝-Composite Greedy Delay Resolution Method
Let ℳ𝑆 = ℳ𝑆(𝒜,x0, 𝐽) be a switching max-plus model. Let x̃(𝑚) be a delayed departure. 𝑝 is a
natural number.

1. Let 𝑛 = 0

2. Use the combinatorial method to determine a finite sequence 𝑅̃𝑛 of length 𝑝. such that:

x̃(𝑚 + (𝑛 + 1) × 𝑝) =
𝑝

⨂
𝑖=1

(𝐴𝑅̃𝑛(𝑝−𝑖))⊗ x̃(𝑚 + 𝑛 × 𝑝)

(a) ||x̃(𝑚 + (𝑛 + 1) × 𝑝) − x(𝑚 + (𝑛 + 1) × 𝑝)||𝑚𝑎𝑥 is minimised.
(b) ||x̃(𝑚 + (𝑛 + 1) × 𝑝) − x(𝑚 + (𝑛 + 1) × 𝑝)||1 is minimised.

3. If ∃𝑞 ≤ 𝑝 ∶ x̃(𝑚+𝑛×𝑝+𝑞) = x(𝑚+𝑛×𝑝+𝑞), shorten 𝑅̃𝑛 to its first 𝑞 entries. We are done.

4. Choose one of the resulting finite sequences 𝑅̃𝑛 based on some criteria.

5. Increment 𝑛 by 1 and return to step 2

𝑛 × 𝑝 + 𝑞 is the resolution time and the concatenation of all 𝑅̃𝑖 is the resolution sequence.

For small resolution times, particularly resolution times smaller than 𝑝, this method is the same as
the combinatorial method. For larger resolution times however, this method can harshly reduce the
computation time needed to resolve a delay.

Example 14 Consider the same switching model as in example 13, but this time with the delay 𝛿 =
(100, 100)𝑇. It is easy to show that every time step, we can reduce the delay by at most 3. This
means the delay will take a minimum of 33 time steps to be resolved. The estimated time for using
the combinatorial method to solve this problem is approximately a millennium. When using the greedy
delay resolution method, we encounter the same problem as before that the delay is never resolved.
Now using the 5-composite greedy delay resolution method, we see that as expected, the delay is

26 4. Delay Problems

resolved with resolution time 34:

(
𝑆1
𝑆2
𝑘
) ∶ (

0
0
0
) → … → (

150
150
30
) → (

155
155
31
) → (

160
160
32
) → (

165
165
33
) → (

170
170
34
)

(
𝑆1
𝑆2
𝑘
) ∶ (

0
0
0
) → … → (

160
160
30
) → (

163
163
31
) → (

166
166
32
) → (

168
168
33
) → (

170
170
34
)

Where the resolution sequence is:

(𝐽𝑘) = (20) , (
2
1) , … , (229) , (

2
30) , (

1
31) , (

1
32) , (

2
33) , (

2
34)

The computation time for this method was less than a second.

By increasing 𝑝, more accurate results can be derived, but the computation time increases. In the
extreme where 𝑝 = 1 we have the regular greedy delay resolution method and in the extreme where 𝑝
is equal to the resolution time, the method is the same as the combinatorial method. Note that it is still
possible for this method to fail for values of 𝑝 that are too small, but the larger we set 𝑝, the less likely
this is to happen. We also see that this method, like the regular greedy method, is not guaranteed to
produce a minimal solution even if a solution is reached, which is why both methods are functional, but
sub-optimal methods.

4.2.3. Time Complexity
Now that we have formulated these sub-optimal method to reduce the computation time, we determine
their time complexities to determine how big this improvement really is.

We start with the greedy delay resolution method. Let 𝑚 be the resolution time of a delay using the
greedy method. Let 𝑁(𝑠) be the time complexity of a single iteration with value 𝑛 = 𝑠. Every iteration,
we determine every possible next departure time x̃(𝑘 + 1) by applying all matrices in 𝒜. This means
the time complexity of an iteration is:

𝑁(𝑠) = 𝒪(#𝒜)
This time complexity is the same for every iteration and there are 𝑚 iterations, so

𝑇𝐶(𝐺𝑀) = 𝒪(𝑚 × #𝒜)

Thus this method does not have an exponential time complexity, but instead a time complexity that is
the product of the resolution time and the amount of adjacency matrices.

We now consider the 𝑝-composite greedy delay resolution method. Let 𝑚 be the resolution time of
a delay using the 𝑝-composite method. Let 𝑁(𝑠, 𝑡) be the time complexity of a single iteration spanning
𝑡 time steps. This means that in an iteration where the solution is not found 𝑡 = 𝑝, if a solution is found
within the first 𝑞 time steps of an iteration, then 𝑡 = 𝑞. During an iteration, all combinations of index
sequences of length 𝑡 are computed, this gives the time complexity

𝑁(𝑠, 𝑡) = 𝒪((#𝒜)𝑡)

The resolution time𝑚 is equal to the amount of iteration 𝑙 times the amount of time steps per iteration 𝑝.
If the solution is found in the last iteration, then the residual amount of time steps 𝑞 in this last iteration
are also added, so 𝑚 = 𝑙 × 𝑝 + 𝑞 and the method has the following time complexity:

𝑇𝐶(𝐶𝐺𝑀) = 𝒪(𝑁(0, 𝑝) + 𝑁(1, 𝑝) + … + 𝑁(𝑙, 𝑝) + 𝑁(𝑙 + 1, 𝑞))
= 𝒪((#𝒜)𝑝 + (#𝒜)𝑝 +…+ (#𝒜)𝑝 + (#𝒜)𝑞)
= 𝒪(𝑙 × (#𝒜)𝑝)

At first glance, it looks like the composite method exhibits the same exponential time complexity as
the combinatorial method, but since we can choose 𝑝 freely, we can easily limit the influence of the

4.3. Calamity management: Decoupling 27

exponent.

We now summarise the results found for the 3 methods in table 4.1. The right-most column of this
table shows the amount of delays the method would be applicable to.

Method Time Complexity Applicability
Combinatorial Method
(CM)

𝒪((#𝒜)𝑛) Always

Greedy Delay Resolution
Method (GM)

𝒪(𝑛 × #𝒜) Sometimes

Composite Greedy Delay
Resolution Method
(CGM)

𝒪(𝑙 × (#𝒜)𝑝) Often or always, depending on 𝑝

Table 4.1: The three resolution method introduced in this chapter. 𝑛 = 𝑙 × 𝑝 + 𝑞 is the resolution time and 𝒜 is the adjacency
class

To summarise, the combinatorial method can be applied to any delay and can always find a so-
lution to the minimal delay problem if it exists. Because the combinatorial method has a very high
computation time for delays that propagate longer, the composite greedy method can be used to find
a resolution by trying different values for 𝑝. Solutions found by the composite greedy method are not
guaranteed to be minimal and if the method does not find a solution for small values of 𝑝, it is prone
to encountering the same computation time problems as the combinatorial method. Since both the
previously discussed methods are not easy to intuitively approach, the regular greedy method can be
used when the composite method can not find a solution. In this case, we can manually analyse the
delayed departure sequence induced by the method and attempt to find where the problem lies.

4.3. Calamity management: Decoupling
As we have seen in example 7, the delay of one train can spread to other trains in the network. This
means that if one train is severely delayed, the entire networks ability to function could come crumbling
down. The reason this happens is that even if just one train is delayed, other trains inbound for the
same station have to wait for the delayed train to arrive before departing again. It may be in the net-
work’s best interest to let these other trains leave the station without waiting for the delayed train. We
call this process decoupling, as we remove the (transfer) connection between the delayed train and the
other trains at the station.

In this section, we will introduce and discuss decoupling for simple, severe delays. We will also
discuss criteria for when decoupling may be used and conclude by introducing a reason for structural
decoupling. In this report, we will not go into great details regarding decoupling, in order to avoid its
complexity. Some further considerations concerning decoupling can be found in appendix B, but the
contents of this appendix will not be used further in this report.

4.3.1. Severe Delays
We illustrate the need for decoupling with an example of a severe delay.

Example 15 Consider the switchingmax-plusmodelℳ𝑆 =ℳ𝑆(𝒜,x0, 𝐽)with adjacencymatrices, initial
departure and index sequence respectively

𝐴0 = (
5 5
5 𝜀) 𝐴1 = (

3 3
3 𝜀)

𝐴2 = (
2 2
2 𝜀)

x0 = (
0
0) 𝐽 = 0, 0, 0, 0, …

This model corresponds to the communication graph with standard commute times:

28 4. Delay Problems

𝑆1 𝑆2

5

5

5

Figure 4.2: The communication graph of the example train network

The departure sequence induced by x0 and 𝐽 is:

(𝑆1𝑆2) ∶ (00) → (55) → (1010) → (1515) → (2020) → (2525) → …

Now suppose that one of the trains has stranded for 30 time units, which causes the delay 𝛿 = (30, 0)𝑇.
Resolving this delay using the combinatorial method would yield:

(𝑆1𝑆2) ∶ (300) → (3232) → (3434) → (3636) → (3838) → (4040) → …

As you can see, it takes many time steps before either train can depart on time. This is due to the fact
that in time step 𝑘 = 1, the train that has just arrived on time at station 𝑆1 has to wait for the train on
the left-most loop which is running very late. To resolve this issue, we decouple the trains, allowing the
train arriving on time to also depart on time:

(𝑆1𝑆2) ∶ (300) → (532) → (3410) → (1536) → (3820) → (2540) → … (4.2)

We see that the resolution time of the delay has not changed, but the value ||x̃(𝑘) − x(𝑘)||1 has been
harshly reduced.

Based on the above example, we incorporate decoupling into the model. We do this by incorporating
the decoupling of the connections into the adjacency matrices. The matrix

𝐴 = (𝜀 2
2 𝜀)

is the matrix corresponding to the last delay sequence. This way of modelling decoupling nicely
matches the context of switching, as it simply adds new adjacency matrices.

Definition 15 Letℳ𝑆 =ℳ𝑆(𝒜,x0, 𝐽) be a max-plus switching model. If the communication graphs
𝐺(𝐴𝑖) of the adjacency matrices in𝒜 do not all have the same arcs, thenℳ𝑆 is called a decoupled
max-plus model. Let 𝒜0 be the set of all matrices that have the same arcs as 𝐴0, we call this set
the standard adjacency class and 𝒜𝜀 = 𝒜 ⧵𝒜0 the decoupled adjacency class.

Note that in addition to removing arcs, decoupled models can also add arcs by changing an 𝜀 in an
adjacency matrix to a real number. We can also split the decoupled adjacency class𝒜𝜀 into a partition
where each adjacency matrix in the same member of the partition has the same arcs.

Definition 16 We define ℰ(𝑖,𝑗) to be the matrix with all entries equal to 0 except for entry (𝑖, 𝑗)which
is equal to 𝜀. We call this matrix the (𝑖, 𝑗)-decoupling matrix.

4.3. Calamity management: Decoupling 29

By adding an (𝑖, 𝑗)-decoupling matrix to an adjacency matrix 𝐴 in the plus-times sense 𝐴+ℰ(𝑖,𝑗), we
disconnect the train inbound for station 𝑖 from station 𝑗 from all other trains outbound from station 𝑖.

Example 16 Consider the matrices

𝐴 = (2 2
2 𝜀) 𝐵 = (𝜀 2

2 𝜀)

𝐵 is the (0, 0)-decoupled matrix of 𝐴, as is apparent from the fact that 𝐵 = 𝐴 + ℰ(0,0). If the vertex in
𝐺(𝐴) corresponding to index 𝑖 is labelled 𝑆𝑖, then we can also call 𝐵 (𝑆0, 𝑆0)-decoupled for the sake of
convenience.

4.3.2. Decoupling Conditions
When looking at equation 4.2 in example 15, we see that after just one iteration with decoupling, the
value ||x̃(1) − x(1)||1 is immediately harshly reduced. This means that if we gave the greedy method
access to decoupled matrices, they would immediately apply it, even for smaller delays. This is not
desirable as decoupling comes with a massive practical drawback, namely that passengers can not
transfer between decoupled trains. For regular commuters, a regular occurrence of decoupling could
therefore be a reason to abandon train commutes. Since we do not want this to happen, we want to
limit the use of decoupling only to cases where it is either strictly necessary to resolve delays or vastly
beneficial to the delayed departure sequence.

To ensure that decoupling is only used when necessary, we formulate decoupling conditions. These
are conditions used to tell the resolution methods when they are allowed to use decoupling. We for-
mulate 3 examples of such decoupling criteria.

• ’If a delay can not be resolved without decoupling, then the use of decoupling is allowed.’

• ’If switching with decoupling resolves a delay faster than without decoupling, then the use of
decoupling is allowed.’

• ’If switching with decoupling reduces the total delay ||x̃(𝑘) − x(𝑘)||1 beyond a certain threshold,
then the use of decoupling is allowed.’

Judging whether these criteria are to be used for a given network, has to be decided on a case-by-
case basis. The first criterion may seem useful for each network, but may complicate delay resolution.
If resolving the delay as fast as possible is more important in a case than the ability for passengers to
make their connections, then the second condition can be used. If reducing travel times for commuters
that do not need to transfer is more important in a case than reducing travel times for commuters that
do, then the third condition can be used.

4.3.3. Structural Decoupling
In addition to being useful for managing delays before they are resolved, decoupling can also be used
structurally by adding or removing connections during specific times of the day. The amount of trains in
the network is determined by the amount of arcs, since every arc has one train. An example of structural
decoupling is then to add stations and arcs such that there are enough trains in the network to account
for rush-hour. During normal hours, we can then decouple all excess arcs, leaving enough trains for a
smaller amount of passengers. In case of calamities, we can also use a different type of decoupling to
add arcs. This way, we can create new connections in case existing ones fail. This can be visualised
as train companies allowing passengers tomake their commute by substitute buses when train lines fail.

Throughout this report, we talk at length about methods for resolving delays. In this endeavour,
decoupling is a powerful but precarious tool with many significant benefits and detriments. Because
of its complexity, we will not expand this topic too much as to not stray from our initial goal of solving
delays. In appendix B, some more ideas surrounding decoupling are discussed. These ideas will not
be used for the remainder of this report, as they present some issues that are outside the scope of this
report. The ideas surrounding decoupling discussed in this section will be used throughout this report
and will prove to be a significant tool for resolving delays.

30 4. Delay Problems

4.3.4. Early Departures
The max-plus model allows trains to leave their station as soon as all inbound trains have arrived.
When decoupling occurs for whatever reason, there are less trains to wait for, so it is possible that
trains leave before their scheduled departure time.

Example 17 Consider the max-plus model corresponding to the following communication graph

𝑆1 𝑆2

3

5

2 3

and with corresponding departure sequence

(𝑆1𝑆2) ∶ (10) → (54) → (98) → (1312) → (1716) → (2120) → …

Now suppose that during the first time step, the train travelling from 𝑆2 to 𝑆1 gets decoupled due to a
track failure. This means that at time 3, all trains inbound for station 𝑆1 have arrived, so the departure
sequence becomes

(𝑆1𝑆2) ∶ (10) → (34) → (97) → (1212) → (1715) → (2020) → …

So we see that the sequence has become delayed with a negative delay.

In practice, the above delay can easily be resolved by having a train wait so that the departure in a time
step match the expected departure. We can however also prevent this delay from ever happening by
restricting trains from leaving ahead of their expected departure time in the case of decoupling.

{𝑥(𝑘 + 1) = 𝐴⊗ 𝑥(𝑘) ⊕ 𝜏(𝑘 + 1)
𝑥(0) = 𝑥0

In the above recurrence relation, the state 𝜏(𝑘) corresponds to the 𝑘’th entry of the departure sequence.
In the above example, 𝜏(1) = (5, 4)𝑇, so the early train would not be allowed to leave the station until
5, preventing any delay.

Letting trains wait in stations to match expected departure times can also be used to ensure im-
proved performance of delay resolution method. The reason why we have not used it, is that in the
model, there is no restriction on the amount of trains in a station, but in reality, this constraint does
exist. If delay resolution method let too many trains wait, some stations may get blocked, causing even
more delays. In order to prevent this from happening, we forbid the resolution methods from letting
trains wait by not giving them access to the above recurrence relation and only use the above relation
in the case of decoupling.

4.4. Network Design
We conclude this chapter by discussing the practical implications of network design. The design of
the network we used is in essence the design of the (decoupled) switching max-plus model, which
is entirely characterised by 3 things: The adjacency class 𝒜, the initial departure x(0) and the index

4.4. Network Design 31

sequence 𝐽.

In practice, we should choose x(0) and 𝐽 such that the departure sequence is as convenient as
possible for regular commuters. If this condition is established, we can also look at trying to minimise
delay propagation in the network for example. As for 𝒜, its design is two-fold. On the one hand, we
want to design the standard adjacency matrices of 𝒜 (i.e., the matrices whose index appears in 𝐽) in
the same way as x(0) and 𝐽, to benefit regular commuters. On the other hand however, we want to
add adjacency matrices to𝒜 that allow us to resolve delays as quickly and efficiently as possible. This
latter design is what we will be discussing in this section.

In this chapter, we saw on several occasions that the delay resolution methods may not be able to
solve certain delays at all, even when the method had access to significant speed-ups, like in example
13. We saw in this example that the delayed departure could catch up and even surpass the departure
sequence, but never actually converge. This inability to solve this delay was due to the fact that the
resolution method did not have access to ways to slow down trains.

Example 18 Consider the switching max-plus model with adjacency matrices

𝐴0 = (
𝜀 6
6 𝜀) 𝐴1 = (

𝜀 3
3 𝜀)

With the departure sequence induced by x0 = (0, 0)𝑇 and 𝐽 = (0, 0, 0, …) being

(𝑆1𝑆2) ∶ (00) → (66) → (1212) → (1818) → (2424) → (3030) → …

Then the delay 𝛿 = (1, 1)𝑇 can not be resolved.

In practice, this is not realistic. If a train requires 15 minutes to commute between two stations, then
it should also be able to do it in for example 18 minutes3. Furthermore, since slowing down trains is
often easier than speeding up trains, since the latter comes with an upper bound, adding the ability to
slow down to the model seems a realistic extension.

Adding the ability to slow down trains works the same as speeding up trains or decoupling them,
namely by changing corresponding matrix entries. Again, since most trains can be slowed down and
these slow downs can be as large as possible, this adds a significant amount of new adjacency matri-
ces to the model, which increases the likelihood of the resolution method converging.

In addition to the ability for slow-downs, we can also consider combinations of speed-ups. If we can
speed 2 trains by 2 time units each for example, then we can likely also speed up just one of them. It
is also reasonable to believe that speeding either up by just 1 time unit is also feasible.

Example 19 Consider the switching max-plus modelℳ𝑆 with adjacency matrices

𝐴0 = (
2 4
5 𝜀) 𝐴1 = (

2 2
2 𝜀)

Where 𝐴0 is the standard matrix. This model corresponds to the following network:

3In theory, it is possible that slowing down trains is not feasible, but this would be in very rare situations where the entire train
network is heavily saturated with trains. This would likely be the result of poor network design, which we do not assume to be
a factor.

32 4. Delay Problems

𝑆1 𝑆2

4

5

2

Figure 4.3: The communication graph of the example train network

And matrix 𝐴1 corresponds to slowing down the train from 𝑆1 to 𝑆2 by 3 and the train from 𝑆2 to 𝑆1
by 2. From this, we can expect that combinations of these delays are also possible. Further more,
decoupled matrices are likely also feasible. This gives the following adjacency matrices in addition to
𝐴0 and 𝐴1:

𝐴2 = (
2 3
5 𝜀) 𝐴3 = (

2 2
5 𝜀)

𝐴4 = (
2 3
4 𝜀) 𝐴5 = (

2 2
3 𝜀)

⋮ ⋮

To save space, we do not write down all matrices, as there are a total of 40.

From this example, it becomes immediately apparent why including each possible adjacency matrix
may not be desirable. Even with the improved time complexity of the greedy methods, this vast in-
crease of adjacency matrices proves to be very problematic even for smaller networks. For larger
networks, including every combination becomes unmanageable.

We conclude that although we should take decoupled, delayed and combined adjacency matrices
into account when resolving delays, they can not be fully incorporated into the practical model without
rendering the model unusable due to time restrictions.

5
Multi-Switching Max-Plus

In chapter 3, we introduced the possibility for trains to speed up on certain connections. Part of good
network design is ensuring that networks contain some amount of flexibility to ensure that problems
occurring on the network can be solved without compromising the logistic capacity of the network. It
is possible however, that certain speed-ups are only possible at certain moments in time. There are
various reasons why speed ups can only occur under various conditions, such as the following:

• The speedup causes to much noise in residential areas, so trains can not speed up early in the
morning or late at night.

• Other, less regular trains such as freight trains or international trains are also using certain con-
nections and overtaking them is not possible.

• Other trains in the system are already using the connections and overtaking them is not possible.

This last reason proves to be rather difficult and as such, we will not take this possibility into account.
The issue is briefly discussed in the intermezzo following this chapter. The ability for speed-ups to
become unavailable fall under an extension of the switching max-plus model which we will call multi-
switching.

In this chapter, we will introduce multi-switching max-plus systems with an example. We will then
proceed to formally define the multi-switching max-plus model. When we have established these new
concepts, we will differentiate between several types of multi-switching models. Since the model has
become more complicated, we will introduce the concept of departure scores to help us resolve delays.
We will conclude by modifying the switching based resolution methods to incorporate the previously
mentioned scores.

5.1. Freight Train Obstruction
We introduce multi-switching systems using the following example:

Example 20 We once again consider the example network in section 2.1, as seen in figure 5.1.

𝑆1 𝑆2

5

3

2 3

Figure 5.1: The communication graph of the example train network

33

34 5. Multi-Switching Max-Plus

Both arcs leaving station 𝑆2 can be sped up by 1 time unit.

𝐴0 = (
2 5
3 3) 𝐴1 = (

2 4
3 3)

𝐴2 = (
2 5
3 2) 𝐴3 = (

2 4
3 2)

and the network has departure the departure sequence induced by 𝐽 = 0, 0, 0, …

(𝑆1𝑆2) ∶ (10) → (54) → (88) → (1311) → (1516) → (2119) → …

We introduce a delay with initial delayed departure x̃(0) = (3, 0)𝑇. Using the combinatorial method, we
find a possible resolution for this delay is as follows:

(
𝑆1
𝑆2
̃𝐽
) ∶ (

3
0
0
) → (

5
6
3
) → (

10
8
0
) → (

13
13
1
) → (

17
16
0
) → …

So the resolution sequence is 𝑅 = (0, 3, 0, 1). We now introduce a multi-switching aspect to the system.
Every third time step, a freight train uses the upper arc in the inner cycle, making speed ups impossible.
This means that during these time steps, we can not use matrices 𝐴1 and 𝐴3, leaving only 𝐴0 and 𝐴2.
We now copy these latter two matrices 𝐵0 = 𝐴0 and 𝐵2 = 𝐴2 and put them in a new adjacency class
ℬ = {𝐵0, 𝐵2}. The sequence for which adjacency matrix is available in each time step is now ℋ =
(ℬ,𝒜,𝒜, ℬ,𝒜,𝒜,…). When looking at the resolution sequence, we see that 𝑅(3) = 1, but ℋ(3) = ℬ,
so adjacency matrix 𝐴1 is not available during this time step. We thus need to only take the available
adjacency matrices into account for the combinatorial method. When doing this, we find the following
equality

x(6) = 𝐴1⊗𝐴0⊗𝐵0⊗𝐴0⊗𝐴3⊗𝐵0⊗ x̃(0),
so the resolution sequence in the multi-switching system is equal to 𝑅 = (0, 3, 0, 0, 0, 1).
We see that the multi-switching component changed the resolution time from 4 to 6. This shows us
that adding the multi-switching component to the model can drastically influence delay resolution. The
change from a switching model to a multi-switching model in this situation, was due to the addition of
the freight train. This freight train is a train that is not modelled by the network, but does occasionally
use the connections in it. The following are more general examples of situations that warrant multi-
switching:

• External trains: Trains outside the network using connections.

• Speed limits: During certain times of day, like late at night or during rush-hour, speeding up
trains may cause excess noise or risk.

• Delay: Delays can also be dynamically modelled using multi-switching. This will be discussed in
section 5.3.

An important observation we make based on the above situations, is that we have no control over the
multi-switching aspects of a system. For the index sequence which decides which matrix in a class to
use, we can choose which trains to speed up or slow down, but the sequence choosing which adjacency
class can be used in each time step, is determined entirely by external factors outside of our control.

Definition 17 Let Ω be a set of adjacency classes and let x0 ∈ ℝ𝑛𝑚𝑎𝑥. We callℳ𝑀 = ℳ𝑀(Ω,x0)
the multi-switching max-plus model of Ω with initial departure x0 when

ℳ𝑀 ∶ {
x(𝑘 + 1) = 𝐴(𝑘) ⊗ x(𝑘)
x(0) = x0

Where 𝐴(𝑘) ∈ 𝒜(𝑘) is the adjacency matrix applied in time step 𝑘 and𝒜(𝑘) is the adjacency class
available in time step 𝑘. We call Ω the adjacency array ofℳ𝑀

5.1. Freight Train Obstruction 35

This definition is identical to the definition of the switching max-plus model (definition 8) apart from
the last part. As such, the choice function and index sequence 𝐽 have essentially the same meaning.
The aspect that is added to this definition, is the sequence that determines which adjacency class is
applied in which time step. For this, we use another index sequence which we call the class sequence.

Definition 18 Let ℳ𝑀 be a multi-switching max-plus model with adjacency array Ω =
{𝒜0, 𝒜1, … ,𝒜𝑚}. Letℋ be a sequence of indices 𝐻𝑖 ∈ {0,…𝑚}. If 𝐻𝑘 = 𝑖 (also denotedℋ(𝑘) = 𝑖),
then

x(𝑘 + 1) = 𝐴(𝑘) ⊗ x(𝑘)
where 𝐴(𝑘) ∈ 𝒜𝑖. We call thisℋ the class sequence ofℳ𝑀

If the class sequence is known, we can also denote ℳ𝑀 = ℳ𝑀(Ω,x0,ℋ) and if even 𝐽 is known
thenℳ𝑀 = ℳ𝑀(Ω,x0,ℋ, 𝐽). In this latter case, the model will produce a single departure sequence.
We illustrate these definitions by applying them to example 20

Continuation of example 20 In this example, we have that Ω = {𝒜,ℬ} where

𝒜 = {(2 5
3 3) , (

2 4
3 3) , (

2 5
3 2) , (

2 4
3 2)}

ℬ = {(2 5
3 3) , (2 5

3 2) }

labelled 𝒜 = {𝐴0, 𝐴1, 𝐴2, 𝐴3} and ℬ = {𝐵0, 𝐵2}. We have that the initial departure is x(0) = (1, 0)𝑇, the
class sequence is ℋ = (1, 0, 0, 1, 0, 0, …) and the index sequence is 𝐽 = (0, 0, 0, …). Notice that since
𝐴0 = 𝐵0, the class sequence has no influence on the matrix being chosen by this index sequence.
We want to find the resolution sequence 𝑅 so that 𝑅 resolves the delay with initial delayed departure
x̃(0) = (3, 0)𝑇. As seen in the example, the solution to this problem is 𝑅 = (0, 3, 0, 0, 0, 1).

Like for switching, we define some additional concepts for multi-switching

Definition 19 Let Ω = {𝒜0, … ,𝒜𝑛} be an adjacency array. We call 𝒜0 the standard adjacency
class of Ω. Let ℋ be a class sequence and ℋ(𝑘) = 𝑖, then 𝒜𝑖 is called the expected adjacency
class of time step 𝑘. If𝒜𝑗 , 𝑗 ≠ 𝑖 is used in time step 𝑘, we say that the network has shifted from𝒜𝑖
to 𝒜𝑗.

Now that we have established a basic understanding of multi-switching max-plus models, we trans-
late the delay problem to match this new model.

Problem 4 The Delay Problem:
Letℳ𝑀 =ℳ𝑆(𝒜,x0,ℋ, 𝐽) be a multi-switching max-plus model. Given a delayed departure x̃(𝑚),
give an index sequence ̃𝐽 such that the delayed departure sequence (x̃(𝑘))𝑘≥𝑚 induced by x̃(𝑚)
and ̃𝐽 converges to the departure sequence of ℳ𝑀 as quickly as possible, i.e. with the smallest
possible resolution time.

To give an intuitive interpretation of how delay resolution works, we give the order of events for
multi-switching systems in every time step.

36 5. Multi-Switching Max-Plus

1. We start with the class indexℋ(𝑘) = 0 for the standard adjacency class.
2. We evaluate the current situation to determine the shift of the network in the given situation
ℋ(𝑘) = 𝑖.

3. From adjacency class 𝒜𝑖, we choose the most suitable matrix 𝐴𝑗 ∈ 𝒜𝑖.

4. We apply 𝐴𝑗 to the current departure.
Which corresponds to the following scheme:

Standard Class Choose Index Adjacency MatrixSituational
Shift

Figure 5.2: The order of event in a multi-switching system

In this scheme, the square is the only moment where we can influence the system by making a
decision.

5.2. Departure Score
The addition of multi-switching makes the model more realistic, as we can now handle external factors
influencing the model. The problem that arises however, is that as we have seen in example 20, re-
solving delays can become more difficult. Furthermore, the tools available to the system for solving a
delay can change at every time step, making delay resolutions less direct.

To combat the issue of more complicated delay resolutions, we give each delayed departure a
score to reflect how good it is compared to the expected departure. The problem of resolving the delay
over an unknown amount of time steps then becomes equivalent to minimising the score over a given
amount of time steps, simplifying the problem.

Definition 20 Let 𝑋 = (x(𝑘))𝑘≥0, 𝑌 = (y(𝑘))𝑘≥0 be departure sequences with the same dimension.
We call s = s(𝑋, 𝑌, 𝑘) ∈ ℝ𝑛≥0 a score vector of x(𝑘) in 𝑋 with respect to 𝑌 if s = 0 if and only if
x(𝑘) = y(𝑘).

Based on this concept of score, we can now design algorithms to resolve delays. The way we do
this is to at each time step choose the course of action that leads to the ‘minimal’ score in the hopes of
at some point reaching the score 0, as this results in delay being resolved by the definition of scores.
Before we can minimize scores however, we first need to order them.

Definition 21 Let s1, s2 ∈ ℝ𝑛≥0 be departure scores. We define the score ordering as follows:
s1 < s2 if the first non-zero component of s1 − s2 is negative. If all components are zero then
s1 = s2.

We notice that in the greedy methods (method 4 and method 5), we wanted to minimize 2 metrics.
First we wanted to minimize the metric 𝑠1 = ||x̃(𝑘) − x(𝑘)||𝑚𝑎𝑥 and then we wanted to minimize the
metric 𝑠2 = ||x̃(𝑘) − x(𝑘)||1. If we define a score based on these metrics we get:

s(𝑋, 𝑌, 𝑘) = s(x̃(𝑘),x(𝑘)) = (||x̃(𝑘) − x(𝑘)||𝑚𝑎𝑥
||x̃(𝑘) − x(𝑘)||1)

5.2. Departure Score 37

In the following example, we will see that minimizing the 2 metrics as done by the greedy methods is
the same as minimizing the score vector.

Example 21 Consider three possible delayed departures which, when compared to the expected de-
parture, give the following metrics

||x̃1 − x||𝑚𝑎𝑥 = 1 ||x̃1 − x||1 = 7
||x̃2 − x||𝑚𝑎𝑥 = 1 ||x̃2 − x||1 = 6
||x̃3 − x||𝑚𝑎𝑥 = 2 ||x̃3 − x||1 = 2

The greedy methods will first choose x̃1 and x̃2 based on their minimal max-norm. From these two, x2
will then be chosen based on its minimal 1-norm. We now look at the score of each departure where
s(𝑋̃, 𝑋, 𝑘) = (||x̃− x||𝑚𝑎𝑥 , ||x̃− x||1)𝑇:

s1 = (
1
7) s2 = (

1
6) s3 = (

2
2)

And we look at their pairwise differences d𝑖𝑗 = s𝑖 − s𝑗:

d12 = (
0
1) d13 = (

−1
5) d23 = (

−1
4)

From this, we can derive the inequalities

𝑠2 < 𝑠1 < 𝑠3

We see that just like for the greedy methods, x̃1 and x̃2 are more favourable than x̃3 and x̃2 is more
favourable than x̃1.

Since minimising the score is the same as minimising the metric criteria, we can reformulate the greedy
method.

Method 6 𝑝-Composite Greedy Delay Resolution Method
Letℳ𝑀 =ℳ𝑀(Ω,x0,ℋ, 𝐽) be a multi-switching max-plus model. Let x̃(𝑚) be a delayed departure.
𝑝 is a natural number.

1. Let 𝑛 = 0

2. Use the combinatorial method to determine a finite sequence 𝑅̃𝑛 of length 𝑝. such that:

x̃(𝑚 + (𝑛 + 1) × 𝑝) =
𝑝

⨂
𝑖=1

(𝐴ℋ(𝑚+𝑛×𝑝),𝑅̃𝑛(𝑝−𝑖))⊗ x̃(𝑚 + 𝑛 × 𝑝)

Where s(𝑋̃, 𝑋,𝑚 + 𝑛 + 1) is minimised.

3. If ∃𝑞 ≤ 𝑝 ∶ x̃(𝑚+𝑛×𝑝+𝑞) = x(𝑚+𝑛×𝑝+𝑞), shorten 𝑅̃𝑛 to its first 𝑞 entries. We are done.

4. Choose one of the resulting finite sequences 𝑅̃𝑛 based on some criteria.

5. Increment 𝑛 by 1 and return to step 2

Where 𝐴ℋ(𝑚+𝑛×𝑝),𝑅̃𝑛(𝑝−𝑖) is the adjacency matrix corresponding with the index 𝑅̃𝑛(𝑝 − 𝑖), in the
adjacency class corresponding with index ℋ(𝑚 + 𝑛 × 𝑝). 𝑛 × 𝑝 + 𝑞 is the resolution time and the
concatenation of all 𝑅̃𝑖 is the resolution sequence.

38 5. Multi-Switching Max-Plus

With the regular greedy method still being the same as the 1-composite greedy method. This more
general formulation of the greedy method also allows us to change the score function to possibly find
a more favourable delay resolution criterion. We also notice that the criteria mentioned in step 4 was
previously used to find minimal solutions, which could also be incorporated into the score. Not doing
this however, grants us the possibility to differentiate between the criteria that resolve a delay efficiently
and the criteria that choose a suitable resolution from a set of possible efficient resolutions.

5.3. Modelling Delays
With the addition of multi-switching, we can now also dynamically model delay. Up to this point, we have
only considered single delays and the delayed departure sequence they induced. In reality however,
delays can happen at any time and if the resolution methods are to be used in practice, the delays need
to be modelled in a manner that is as realistic as possible. They way delays have been modelled so
far is as follows:

x(𝑘 + 1) = 𝐴⊗ x(𝑘) + 𝛿(𝑘)
Where 𝛿(𝑘) signifies the delay. With multi-switching we can model this delay in a more natural way
whilst also accounting for the fact that there are different types of delay. The notions of these different
types will come in handy in chapter 6 where we will make a simulation based on multi-switching delay
modelling.

In this section, we will model delays into a multi-switching model using delayed adjacency classes.
We will then look at how delayed classes affect the resolution methods by defining the concepts of
anterior and posterior indexing. We will conclude by showing how stochastic multi-switching delay
modelling can be applied in practical situations.

5.3.1. Delayed Classes
The idea of delayed adjacency classes, which we will also call delayed classes, is that every adjacency
matrix is linked to a delayed adjacency matrix via some delay. We illustrate this with an example.

Example 22 Consider the following communication graph

𝑆1 𝑆2

3

4

2

Figure 5.3: The communication graph of the example train network

With adjacency matrices

𝐴0 = (
2 3
5 𝜀) 𝐴1 = (

2 3
4 𝜀)

and departure sequence

(𝑆1𝑆2) ∶ (01) → (45) → (89) → (1213) → (1617) → …

Now suppose that the train on the bottom arc of the central cycle is delayed by 1 time unit. This means
we need to add one to the matrix entries corresponding to that commute

𝐴̃0 = (
2 3
6 𝜀) 𝐴̃1 = (

2 3
5 𝜀) .

5.3. Modelling Delays 39

This results in the delayed departure sequence:

(𝑆1𝑆2) ∶ (01) → (46) → (99) → (1214) → (1717) → …

As we can see, this has the same effect as adding the delay 𝛿(0) = (0, 1)𝑇. We now suppose that the
left-most arc is delayed by 1 time unit. This yields the following delayed adjacency matrices:

𝐴̃0 = (
3 3
5 𝜀) 𝐴̃1 = (

3 3
4 𝜀)

and departure sequence

(𝑆1𝑆2) ∶ (01) → (45) → (89) → (1213) → (1617) → …

This means that even though there is a delay, it does not propagate.

The above example illustrates that depending on where the delay happens, it may propagate more, less
or even not at all. Determining this without the use of delayed classes would require calculations to be
done outside of the model. By letting delays change the adjacency matrices through multi-switching, no
additional calculations have to be done. As we can also see by the example, all the delayedmatrices are
transformations of their original counterparts. We can place these delayed matrices in a new adjacency
class which we will call the delayed class

Definition 22 For any 𝑐 ∈ ℝ𝑚𝑎𝑥, we define 𝑐(𝑖,𝑗)(𝑚, 𝑛) as the 𝑚×𝑛 matrix with all elements equal
to 0 except for element (𝑖, 𝑗), which is equal to 𝑐. If the size of the matrix is clear from the context,
then we write 𝑐(𝑖,𝑗).

Definition 23 Let 𝒜 be an adjacency class and let 𝒜̃(𝑖,𝑗) = {𝐴 + 𝑐(𝑗,𝑖) ∶ 𝐴 ∈ 𝒜}. Then 𝒜̃(𝑖,𝑗) is
called a (𝑖, 𝑗)-delayed adjacency class of 𝒜 with delay 𝑐.

If several delays occur in a single time step, we simply call the resulting adjacency class the delayed
adjacency class of that time step.

5.3.2. Anterior and Posterior Indexing
Because delays are often not predictable, we can not base the decisions in a time step on the delays
that will happen during that time step. This means the matrix we really apply may differ from the matrix
that was originally chosen.

Example 23 Consider the multi-switching max-plus model with Ω = {𝒜, (⋃ 𝒜̃)}, where ⋃𝒜̃ is the
collection of every possible delayed adjacency class and where

𝒜 = {(2 5
3 3) , (

2 4
3 3) , (

2 5
3 2) , (

2 4
3 2)}

and with departure sequence and delay respectively

(𝑆1𝑆2) ∶ (10) → (54) → (98) → (1312) → (1716) → …

40 5. Multi-Switching Max-Plus

𝛿(1) = (02) .

When applying the greedy algorithm for 1 time step, it chooses the second matrix in𝒜, 𝐴1. This would
result in 𝑥(1) = (6, 4)𝑇. However, due to a delay, a delayed adjacency matrix is applied instead:

𝐴1 = (
2 4
3 3) → 𝐴̃1 = (

6 4
3 3)

This results in 𝑥(1) = (7, 4)𝑇, which does not match the expected result. Since the delay could not be
foreseen, the algorithm can not influence this altered outcome.

When delays are the only cause for shifting, shifts only happen after an index has already be chosen.
This order of event corresponds with the following scheme:

Standard Class Choose Index Adjacency MatrixDelay
Shift

Figure 5.4: The order of event in a multi-switching system with anterior indexing

Since the index is chosen before the shifting has occurred, we call this anterior indexing. An impor-
tant property of anterior indexing is that every adjacency class must be of the same size. The reason
for this is that since the index 𝑖 is chosen based on the standard adjacency class 𝒜0, the index 𝑖 must
also make sense for the other adjacency classes. We notice that since the delay shift happens after
choosing the index, it does not have any influence on the choice, only on the effect.

The opposite of anterior indexing is posterior indexing. This happens when the index is chosen
after the shifting has occurred. In this case, the choice is based on all information in the time step as
no further shifting will occur after the choice is made. It is also not necessary for the adjacency classes
to be of the same size as the index is chosen based on the adjacency class that was shifted to.

In many cases, shifting can occur both before and after indexing. We call this mixed indexing and
it corresponds to the following order of events scheme:

Standard Class Choose Index Adjacency MatrixPredictable
Shift

Unpredictable
Shift

Figure 5.5: The order of event in a multi-switching system with mixed indexing

We choose the index of the time step in the same way as normally, basing the decision on the known
information. The adjacency matrix corresponding to this index when a delay occurs is then exactly the
delayed adjacency matrix of the originally chosen matrix.

5.3.3. Delays in Simulations
Now that we have added delays to the model, we can introduce delays to a departure sequence dynam-
ically. This means we are no longer limited to having just one predetermined set of delays. By adding
delays at random to a network, we can simulate the course of a real train network, which we will do
in chapter 6. Dynamic delays are not useful for formulating intuitive delay resolution methods, as their
random nature would make this too complicated, but they can be used to evaluate the performance of
resolution methods in more realistic systems. For now, we will limit ourselves to discussing how we
can model dynamic delays in a realistic manner.

5.3. Modelling Delays 41

In this report, we will consider 3 possible types of delays. The occurrence and sustaining of these
delays is randomly distributed using Bernoulli distributions for simplicity, a delay either occurs, or it does
not. The types we consider are:

• Track Delays: Due to rail or train obstructions, the weight of one arc is increased by a constant.

• Station Delays: Due to a departure problem, all trains at a station leave at a later time.

• Track Failure: Due to a catastrophic rail or track incident, one arc can not be used.

As previously said, in simulation, the onset of any of these delays happens according to a Bernoulli
distribution. For track delays and failures however, it is possible that the delay is not resolved in one
time step. In these cases, their sustaining is also modelled according to a Bernoulli distribution. We
assume that station delays to not sustain like this. We first look at the onset distributions:

ℙ(𝑂(𝑇𝐷)) = 𝑝1 𝑂(𝑇𝐷) = Onset Track Delay
ℙ(𝑂(𝑆𝐷)) = 𝑝2 𝑂(𝑆𝐷) = Onset Station Delay
ℙ(𝑂(𝑇𝐹)) = 𝑝3 𝑂(𝑇𝐹) = Onset Track Failure

where 𝑝1, 𝑝2 and 𝑝3 are probabilities between 0 and 1 and the onset variables are all binary variables.
Now considering the resolution:

ℙ(𝑆(𝑇𝐷)) = 𝑞1 × 𝑇𝐷 𝑆(𝑇𝐷) = Sustain Track Delay
ℙ(𝑆(𝑆𝐷)) = 0 𝑆(𝑆𝐷) = Sustain Station Delay
ℙ(𝑆(𝑇𝐹)) = 𝑞3 × 𝑇𝐹 𝑆(𝑇𝐹) = Sustain Track Failure

where 𝑞1 and 𝑞3 are probabilities between 0 and 1 and the sustaining variables are binary variables.
The variables 𝑇𝐷, 𝑆𝐷 and 𝑇𝐹 are also binary variables that start at 0, become 1 when the corresponding
onset variable is one and returns to 0 when the corresponding sustaining variable is zero. In practice,
different types of delays and distributions may be more accurate. When creating a multi-switching max-
plus simulation based on a real train network, these delays and distributions will have to be determined
empirically and statistically.

5.3.4. Implementation of Adjacency Classes
When implementing simulations for multi-switching max-plus systems with mixed indexing, we can
implement every adjacency class that is caused by a predictable shift, as there are generally not that
many and they are required to make shifting decisions. We can however not implement every possible
delayed adjacency class as theoretically, there is an infinite amount of possible delays. Furthermore,
since delays can not be used to make shifting decisions, there is no need for them to be implemented
at the beginning of the simulation. Instead, we just apply delays that occur to each of the adjacency
classes which yields all delayed adjacency classes. We illustrate this with an example.

Example 24 Consider a multi-switching max-plus model with adjacency array

Ω = {𝒜0, 𝒜1, 𝒜2} ∪ {(⋃𝒜̃0) , (⋃𝒜̃1) , (⋃𝒜̃2)} .

The unions of delayed adjacency classes can be infinitely large, but only a finite number of them are
used. At every time step, the predictable shift yields one of the adjacency class, call the resulting class
𝒜𝑖. A function signifying potential delays is then applied to 𝒜𝑖. This function projects this adjacency
class to itself if there is not delay and to the appropriate delayed class if there is a delay:

𝛿 ∶ 𝒜𝑖 ↦ 𝒜̃𝛿
𝑖 .

As an example, we take the adjacency class

𝒜𝑖 = {(
3 3
4 4) , (

2 2
3 3)}

42 5. Multi-Switching Max-Plus

with the possible delays:

𝒜𝑖
𝑇𝐷(0,1)∶5−−−−−−→ {(3 3

9 4) , (
2 2
8 3)}

𝒜𝑖
𝑆𝐷(1)∶4−−−−−→ {(3 7

4 8) , (
2 6
3 7)}

𝒜𝑖
𝑇𝐹(1,0)−−−−−→ {(3 𝜀

4 4) , (
2 2
3 3)}

5.4. The Scoring Problem
We have seen that greedy methods can be generalised using the concept of scores. All the greedy
methods do is minimise a score over a certain number of steps. The score function we chose for the
examples in this report has the max-norm and the 1-norm as components, but completely different
score functions can be chosen. The greedy methods therefore correspond not just with one method,
but with an entire class of methods, each utilising different scoring criteria. This gives rise to the score
problem for delay resolution.1

Problem 5 Given a delay problem, which score function 𝑠 ∶ {x̃(𝑘)}𝑘≥0 → ℝ𝑛≥0 yields the most
efficient instance of a 𝑝-composite greedy delay resolution method?

The solution to this problem may vary based on the network and possible delays. The solution can
be attempted to be solved either by closely analysing networks and adjacency matrix interactions to
devise an optimal score deductively, or by analysing optimal solutions and extrapolating an optimal
score inductively. In the case where a lot of data is available, statistical methods may even be used.
Using state scores also opens the door for machine learning algorithms to appoint score, which they
can be taught using reinforcement learning.

The scoring problem is a massive problem on its own, and outside the scope of this report. A
major downside of using scoring criteria based on non-obvious metrics, is that the resolution of delays
becomes a black-box process. The intuition will become so convoluted that if the algorithms were to
fail, a make-shift resolution could not be intuitively created using human intervention. Because of the
above reasons, we keep using the previously formulated scoring criteria.

1Note that the scoring problem can be formulated for any state-based system where we have control over the next state.

Intermezzo: Modelling Restrictions and
Systems Theory

Before moving on to simulate a real train network, we will briefly discuss some restrictions of the max-
plus models. The max-plus models aim to model logistics networks in a simple and intuitive manner.
This simplicity sometimes causes the model not to be realistic for networks in the real world. In this
chapter, we will briefly discuss 3 such restrictions: desynchronisation, time offset and recoupling. After
this, we will discuss the link between the topics discussed in the previous chapters and mathematical
systems theory.

Desynchronisation
When train networks contain a cycle, the trains on the cycle travel continuously to consecutive stations
on this cycle. Consider a train commuting on a cycle with 3 stations 𝑆1, 𝑆2, 𝑆3 for example with all com-
mute times equal to 1, as seen in figure 5.6. Depending on the direction in which the train drives, the
train will repeatedly travel through these 3 stations in a 3-periodic fashion. On this cycle, there will be

𝑆1 𝑆2

𝑆3

1

11

Figure 5.6: Triangular Network

3 trains present at any time, one between each of the stations. We let all trains depart their starting
station at time 0 to their next station. The train travelling from 𝑆1 to 𝑆2 incurs a delay of 5 time units due
to an engine failure. This means the next departure at station 𝑆2 will be 6. However, the train starting
at 𝑆3 has already travelled through 𝑆1 and to 𝑆2 by this time, surpassing the delayed train. This means
there is a train at station 𝑆2 ready to depart at time 2.

In the max plus model, all trains are believed to traverse exactly one arc per time step. As we can
see above however, it is possible that due to delays, one train can traverse many arcs in the same
time that another train can traverse one arc. We will call the property of max-plus systems that trains
travel one arc per time unit the synchronicity of max-plus systems. In events like described above,
breaking this synchronicity is a very logical step, which we call desynchronisation. Simply decoupling
the delayed train does not suffice to desynchronise the network, as this simply means other trains can
depart station 𝑆2 while no train from 𝑆1 has arrived. It can be achieved however, by adding an arc
from 𝑆3 to 𝑆2 with weight 2. Doing this complicates the max-plus model a lot, as like delays, these
ghost routes have to be added dynamically in the case of severe delays. As such, we will not allow for
desynchronisation in any simulations.

Time Offset
A problem that can be encountered in multi-switching max-plus models is the occurrence of time offset.
Consider a train network like the one in figure 5.6. Suppose that on any time interval of the form [3𝑘, 3𝑘+
1], 𝑘 ∈ ℤ, a freight train uses the arc (𝑆1, 𝑆2) so that no other trains can change their commute time at

43

44 5. Multi-Switching Max-Plus

this time. If there are no delays, this obstacle corresponds to the class sequence ℋ = 1, 0, 0, 1, 0, 0, …
where 𝒜1 corresponds to the impossibility of commute changes on (𝑆1, 𝑆2). This class sequence is a
direct result from the departure sequence:

(
𝑆1
𝑆2
𝑆3
) ∶ (

0
0
0
) → (

1
1
1
) → (

2
2
2
) → (

3
3
3
) → (

4
4
4
) → (

5
5
5
) → (

6
6
6
) → …

Now suppose that at time step 𝑘 = 1, all trains are delayed by 1 time unit. This changes the departure
sequence to

(
𝑆1
𝑆2
𝑆3
) ∶ (

0
0
0
) → (

1
1
1
) → (

3
3
3
) → (

4
4
4
) → (

5
5
5
) → (

6
6
6
) → (

7
7
7
) → …

So the class sequence is ℋ′ = 1, 0, 1, 0, 0, 1, 0, …. It is plausible to believe that external trains such as
freight trains to not restrict themselves to our time steps, but rather to their own timetables. This means
that if commute times change, the time steps in which these freight trains obstruct the system is not
perfectly predictable, but dependent on random delays. As such, to properly model external trains using
the network, we would need to dynamically change the class sequence. Since delays can happen in
between time steps, doing so is not always possible, as we would need to change the class index in
the middle of the time step it correlates to. In order to avoid further complicating the already extensive
multi-switching and in order to prevent improper modelling, we will assume that external trains always
take the time steps of the network into account.

Recoupling
The last modelling constraint we will discuss in this chapter concerns decoupled trains. In the max-
plus models, by design, decoupled trains are trains that are disconnected from their destination station.
This means that for as far as the model is concerned, the train never actually arrived at the station. In
reality, this is of course not the case; the train did arrive, but at a later time. In most cases we have seen
thus far in this report, trains arriving at a station are the same trains that leave that station in the next
time step. This means that the delayed train, despite never having arrived at the station, does leave
it again. If no train is present to substitute the decoupled train, this means there is a ghost train in the
network. The recoupling problem is concerned with ensuring that this ghost train and its corresponding
decoupled train reach the same point in the network as soon as possible.

The recoupling problem is an issue of train logistics and as such, its solutions are dependent on
properties of the given train network. Solutions can strongly differ based on the amount of backup trains
or safety nets to prevent major errors. These properties generally fall outside of the max-plus models
we employ and as such, we will not implement methods for dynamic recoupling. Since the recoupling
problem is in essence the same problem that arises for the transition to and from rush hour however,
as is discussed in appendix B, we assume that the same method can be used where all trains resume
their regular schedule, including the ghost train, and the decoupled train manoeuvres with the other
trains to at some point coincide with the ghost train.

Systems Theory
The concepts we have defined and discussed in this report, have been formulated in a manner that is
as intuitive as possible. To this end, we did not lean much on existing mathematics for new concepts,
so that every step makes sense on its own. There is however a strong link between the concepts
discussed in this report an conventional systems and control theory. While we will not confuse the
reader by introducing alternative notation for the concepts we have defined, we will discuss this link in
order to provide some additional context for max-plus algebra and its extensions. This extra context
will be provided in appendix C for the interested reader.

6
Simulating Train Networks

In the previous chapters, we have aimed to build a solid basis for max-plus models and their extensions
in order to depict a real train network in a somewhat realistic manner. In this chapter, we will use the
acquired models to simulate a real train network for an entire day. The aim is to create a realistic train
network where delays occasionally occur and where the methods are used to resolve delays as quickly
as possible. We will achieve this result by first creating the simulated train network and establishing
a periodic timetable. We will then dynamically model delays as discussed in chapter 5 and use the
delay resolution methods to resolve these delays. Applying methods to a randomised simulation is a
good way of benchmarking any problem solving method, we will thus formulate some statistics for the
simulation that can be used to aid the benchmarking process.

R

DH

A

U

E

108

12

9 4

5

4

4

6

Figure 6.1: The subject network.

6.1. The Simulated Network
The network we will simulate is a small part of the dutch railway network, as can be seen in figure 6.1.
The simulation we will construct could be used in the case where the systems currently in use by the

45

46 6. Simulating Train Networks

network operator fail, in order to make sure that at least a primitive amount of train travel is possible.
Since we want the most important part of the train network to be operational, the network will include
many of the major dutch cities. In order to give meaning to the weights of the graph, we assume that
1 time unit corresponds to 6 minutes in the real world. The letters at each of the stations correspond
with the following cities:

E: Eindhoven DH: The Hague
U: Utrecht R: Rotterdam
A: Amsterdam

The colours of the arcs correspond with train routes. Trains travelling on identically coloured arcs
need to wait for each other, but train on different coloured arcs do not. This means that the train trav-
elling from DH to R will not wait for the train from R to DH before departing. In order to model this
disconnect, we split station DH into 2 separate stations, as can be seen on figure 6.2 On red coloured

R

DH1 DH2

A

U

E

108

12

9 4

5 4

4

6

Figure 6.2: The subject network. The station corresponding to The Hague is split into two separate routes.

stations, all trains need to wait for each other. This means that regardless of the colours of the incom-
ing arcs, these stations never need to be split. In this network, we deem Utrecht and Rotterdam to be
important stations, so they will allow transfers between all trains.

To construct the standard adjacency matrix, we construct a table with all arcs and their weights.

E U A DH1 DH2 R
E: 𝜀 𝜀 𝜀 𝜀 𝜀 12
U: 10 𝜀 4 𝜀 𝜀 𝜀
A: 𝜀 𝜀 6 9 𝜀 𝜀

DH1: 𝜀 𝜀 𝜀 𝜀 𝜀 5
DH2: 𝜀 4 𝜀 𝜀 𝜀 𝜀
R: 𝜀 8 𝜀 𝜀 4 𝜀

Table 6.1: The communication table of the subject network.

6.2. Implementing Dynamic Delays 47

The inbound stations in this table are written in the first column and the outbound stations in the
first row. This table can then easily be transformed into the standard adjacency matrix. For the sake of
convenience, we include the station corresponding to each row.

𝐴0 =
⎛
⎜
⎜

⎝

𝐸 ∶ 𝜀 𝜀 𝜀 𝜀 𝜀 12
𝑈 ∶ 10 𝜀 4 𝜀 𝜀 𝜀
𝐴 ∶ 𝜀 𝜀 6 9 𝜀 𝜀
𝐷𝐻1 ∶ 𝜀 𝜀 𝜀 𝜀 𝜀 5
𝐷𝐻2 ∶ 𝜀 4 𝜀 𝜀 𝜀 𝜀
𝑅 ∶ 𝜀 8 𝜀 𝜀 4 𝜀

⎞
⎟
⎟

⎠

Using this standard adjacency matrix, we can construct a periodic regime using the eigenvalues of the
above matrix.

⎛
⎜⎜⎜⎜

⎝

𝑘
𝐸
𝑈
𝐴
𝐷𝐻1
𝐷𝐻2
𝑅

⎞
⎟⎟⎟⎟

⎠

∶
⎛
⎜⎜⎜⎜

⎝

0
8
8
0
1
2
6

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

1
18
18
10
11
12
16

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

2
28
28
20
21
22
26

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

3
38
38
30
31
32
36

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

4
48
48
40
41
42
46

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

5
58
58
50
51
52
56

⎞
⎟⎟⎟⎟

⎠

→ …

The above regime is the timetable of the train network. This means the goal of this chapter is to have
the network operate in a manner that resembles the above regime as closely as possible. We see that
the initial departure of this timetable is the eigenvector x(0) = (8, 8, 0, 1, 2, 6)𝑇, which corresponds to
the eigenvalue 10, which is a 1-hour-periodic regime.

6.2. Implementing Dynamic Delays
Now that we have established the network and its timetable, we can add delays to the network. We
will start by modelling delay onset and delay sustaining. We will then discuss realistic parameters for
the probability distributions, concluding by showing some delayed departure sequences.

6.2.1. Modelling Random Delays
The delays present in a network can caused by some new obstacle in the network, but it can also be
caused by an obstacle in a previous time step that has not yet been removed. As such, we need to
model both random delay onset, but also random delay sustaining. We start with the former. Before we
show any of the algorithms, note those shown in this section are simplified versions of the algorithms
actually used in the code. The algorithms we discuss here are simply used to clarify the methods used,
they are not completely functional.

As discussed in subsection 5.3.3, delays will be added following independent Bernoulli distributions.
As such, we define binary random variables for each possible delay:

𝑂(𝑇𝐷)(𝑖, 𝑗) ∼ 𝐵𝑒𝑟(𝑝) 𝑂(𝑇𝐷) = Onset Track Delay on arc (𝑖, 𝑗)
𝑂(𝑆𝐷)(𝑗) ∼ 𝐵𝑒𝑟(𝑝) 𝑂(𝑆𝐷) = Onset Station Delay in station 𝑗
𝑂(𝑇𝐹)(𝑖, 𝑗) ∼ 𝐵𝑒𝑟(𝑝) 𝑂(𝑇𝐹) = Onset Track Failure on arc (𝑖, 𝑗)

Once these variables are initialised, we can model delay onset. We will also model the sustaining of
prior delays into the current time step. To be able to do this, we need to remember which delays were
present in the previous time step. To do this, we initialise a dictionary, TD_dict and a list TF_lst.
When there is a track delay onset, the arc will be placed into TD_dict, along with the weight of the
delay. When there is a track failure, the corresponding arc will be places into TF_lst. Since station
delays can not sustain, they do not need a list.

48 6. Simulating Train Networks

Algorithm 1: Delay Onset
for outbound in Stations do

if O(SD)(outbound) then
A⟵ station_delayed_matrix(A, outbound, delay_prob)

for inbound in Stations do
if O(TD)(inbound, outbound) then

TD_dict[(inbound, outbound)] = track_delay(inbound, outbound, delay_prob)
if O(TF)(inbound, outbound) then

TF_lst.append((inbound, outbound))

We note that in this algorithm, it is possible for a train to experience both a track and a station delay.
The above algorithm gives us the delayed variant of the adjacency matrix to be applied in this time
step, assuming no prior delays sustained to the current time step.

Now there are lists with all present delays that have a chance to sustain. If a new delay arises on
an arc that was already delayed, then the new delay is simply the maximum of the two delays to avoid
complications. At the beginning of each time step, we again define binary random variables for each
possible delay sustaining:

𝑆(𝑇𝐷)(𝑖, 𝑗) ∼ 𝐵𝑒𝑟(𝑞) 𝑂(𝑇𝐷) = Sustain Track Delay on arc (𝑖, 𝑗)
𝑆(𝑇𝐹)(𝑖, 𝑗) ∼ 𝐵𝑒𝑟(𝑞) 𝑂(𝑇𝐹) = Sustain Track Failure on arc (𝑖, 𝑗)

Note that the above variables only need to be defined if (𝑖, 𝑗) is in TD_dict or in TF_lst respectively.
At the start of the time step, these random variables dictate whether the delay is sustained. If it is not,
then the arc (𝑖, 𝑗) is removed from the corresponding dictionary or list.

Algorithm 2: Sustaining Delays
for (inbound, outbound) in TD_dict do

if not S(TD)(inbound, outbound) then
TD_dict.remove((inbound, outbound))

for (inbound, outbound) in TF_lst do
if not S(TF)(inbound, outbound) then

TF_lst.remove((inbound, outbound))

Now we have a list with all delays present in the current time step, both recent and prior delays.
After all other calculations in the time step are done (such as switching to a desirable adjacency matrix),
all delays are applied to the current matrix.

Algorithm 3: Applying Delays
for delay in TD_dict do

A⟵ track_delayed_matrix(A, inbound, outbound, delay)
for delay in TF_lst do

A⟵ track_failure_matrix(A, inbound, outbound)

Note that algorithm 1 already added the station delay, so this delay does not need to be added
again. The order in which the algorithms are to be executed is the following: First, it is determined
which delays carry over from the previous time step using algorithm 2, then all other computations of
the current time step are done, as said previously. After this, new delays are determined using algorithm
1 and finally, the delays are applied using algorithm 3.

6.2. Implementing Dynamic Delays 49

6.2.2. Probabilistic Parameters
In the previous subsection, we initialised numerous binary random variables, as well as some discrete
random variables, namely the variables called delay. We already discussed that the binary variables
were initialised using the Bernoulli distribution. As for the delay variables, we initialise them using the
following probability mass function:

ℙ(delay = 𝛿) = delay_distr[𝛿]
Where delay_distr is a dictionary containing all possible delays with their probabilities. All the prob-
ability parameters are chosen before running the simulation.

We now need to determine which choice of these probability parameters is most suitable for the
simulation. One might expect that choosing realistic parameters would be desired, but since we only
simulate a single day, this may not be the case. Some days are more eventful than others, and where
creating delay resolution method for calm days may be easy, it is the more eventful days where pow-
erful methods are really important. As such, we will choose the probabilistic parameters so that the
resulting model has a sufficiently large amount of delays, without them spiralling out of control. This
way, the simulation can benchmark how well the method handles busy days with a large amount of
delays.

Our network consists of 6 stations and 9 connections. Furthermore, we assume one time unit to be
equal to 6 minutes. The equilibrium regime we formulated in section 6.1 repeated every 10 time units,
or 1 hour. In order to have an eventful day, we want an average of 2 trains to be delayed every time
step. We also want 1 station to be delayed and 1 connection to fail every 2 time steps. We start with
the chance of the onset of a station delay, as it can not sustain. We do this by using the formula of the
expected value of a Bernoulli distribution.

𝔼(#𝑆𝐷) = ∑
𝑗∈stations

𝔼(𝑂(𝑆𝐷𝑖))

= #stations × 𝑝𝑂(𝑆𝐷)
= 6𝑝𝑂(𝑆𝐷).

We want this number to be equal to 1
2 , so 𝑝𝑂(𝑆𝐷) =

1
12 . We now move on to the chance of the onset of

a track delay.

𝔼(#𝑇𝐷) = ∑
(𝑖,𝑗)∈arcs

𝔼(𝑇𝐷(𝑖,𝑗)) (6.1)

where the expected value for the presence of a track delay is equal to the chance that a new track
delay arises plus the chance that an old track delay carries over. Letting 𝑒 be the amount of arcs on
the communication graph, we get:

𝔼(#𝑇𝐷) = 𝑒 × 𝑝𝑂(𝑇𝐷) + 𝑒 × 𝑝𝑂(𝑇𝐷) × 𝑝𝑆(𝑇𝐷) + 𝑒 × 𝑝𝑂(𝑇𝐷) × 𝑝2𝑆(𝑇𝐷) +…

= 𝑒 × 𝑝𝑂(𝑇𝐷) ×
∞

∑
𝑘=0

𝑝𝑘𝑆(𝑇𝐷).

Since 𝑝𝑆(𝑇𝐷) is a probability, raising it to high powers gives very small numbers, so we neglect each
term of the series apart from the first one1:

𝔼(#𝑇𝐷) ≈ 𝑒 × 𝑝𝑂(𝑇𝐷) + 𝑒 × 𝑝𝑂(𝑇𝐷) × 𝑝𝑆(𝑇𝐷).
We wanted this expected value to be approximately 2. Furthermore, our network has 9 connections,
so this equation yields

2 = 9 × 𝑝𝑂(𝑇𝐷) + 9 × 𝑝𝑂(𝑇𝐷) × 𝑝𝑆(𝑇𝐷)
2
9 = 𝑝𝑂(𝑇𝐷)(1 + 𝑝𝑆(𝑇𝐷))

1The series can be evaluated exactly, but since we only want to estimate probability parameters, this is not necessary.

50 6. Simulating Train Networks

We choose the values 𝑝𝑂(𝑇𝐷) =
2
10 and 𝑝𝑆(𝑇𝐷) =

1
9 which satisfy the above equation. The same

procedure can be applied to the expected amount of track failures, which yields:

𝑝𝑂(𝑇𝐷) =
2
10 𝑝𝑆(𝑇𝐷) =

1
9

𝑝𝑂(𝑆𝐷) =
1
12

𝑝𝑂(𝑇𝐹) =
1
20 𝑝𝑆(𝑇𝐹) =

1
9

Now that we have established the chances for delays to occur and sustain, we will move on to
model the distribution for the probability of delay sizes. For the sake of simplicity, we will use a simplified
version of the normal distribution with average delay size 2 and standard deviation 1 for the track delays:

Track Delay Size Distribution |𝛿𝑇| ∼ 𝑁(2, 1)
ℙ(|𝛿𝑇| = 1) = 0.25 𝑓(|𝛿𝑇| = 1) ≈ 0.24
ℙ(|𝛿𝑇| = 2) = 0.5 𝑓(|𝛿𝑇| = 2) ≈ 0.4
ℙ(|𝛿𝑇| = 3) = 0.25 𝑓(|𝛿𝑇| = 3) ≈ 0.24

Table 6.2: The delay size distribution (left) compared to the probability density of the normal 𝑁(2, 1) distribution (right).

and we will use the following simple distribution for station delays

ℙ(|𝛿𝑇| = 1) =
2
3 ℙ(|𝛿𝑇| = 2) =

1
3

6.2.3. Example Delayed Sequences
When running the simulation multiple times, the random delays established above will not be the same
between runs. This means that any results we derive from a run, may not be reproducible. To solve this
issue, we will always be using a seed when running a simulation, to make sure we can reproduce the
results. The seed we will use for the random delays is 123, as signified by the line random.seed(123)
in the python code. Running the simulation with this seed and the random delays enabled yields the
delayed departure sequence

⎛
⎜⎜⎜⎜

⎝

𝑘
𝐸
𝑈
𝐴
𝐷𝐻1
𝐷𝐻2
𝑅

⎞
⎟⎟⎟⎟

⎠

∶
⎛
⎜⎜⎜⎜

⎝

0
8
8
0
1
2
6

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

1
21
22
10
14
12
16

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

2
28
34
23
24
26
30

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

3
42
38
36
35
38
36

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

4
49
52
47
42
42
48

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

5
62
62
52
57
58
60

⎞
⎟⎟⎟⎟

⎠

→ …

which corresponds to the delay sequence

⎛
⎜⎜⎜⎜

⎝

𝑘
𝐸
𝑈
𝐴
𝐷𝐻1
𝐷𝐻2
𝑅

⎞
⎟⎟⎟⎟

⎠

∶
⎛
⎜⎜⎜⎜

⎝

0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

1
3
4
0
3
0
0

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

2
0
6
3
3
4
4

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

3
4
0
6
4
6
0

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

4
1
4
7
1
0
2

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

5
4
4
2
6
6
4

⎞
⎟⎟⎟⎟

⎠

→ …

As may be apparent, we now run into a problem of notation. Not only are the above departure se-
quences difficult to interpret, it is also difficult to determine which delays are new and which are a result
of pre-existing delays. We will attempt to resolve this issue as follows using 2 measures. The first is
that when a train encounters a delay, we write this delay separately from the departure time in the case
that the delay had not happened. If a train was scheduled to depart at 5, but was delayed by 2 time
units, we write

5 + 2.

6.3. Applying Delay Resolution 51

The second measure we take is that whenever a train is still delayed from a previous delay, then we
write the departure time in red. If the above train departing at 7 departs from the next station at 9, while
he should have departed at 8, we write the departure time

9. (6.2)

If an old delay causes a late departure and this departure is further delayed by a new delay, then we
combine the notation, writing

9 + 3.
The above notation is not perfect, as the notation in (6.2) does not show the severity of the delay, but
it prevents overly messy notation. We now rewrite the delayed departure sequence using the new
notation.

⎛
⎜⎜⎜⎜

⎝

𝑘
𝐸
𝑈
𝐴
𝐷𝐻1
𝐷𝐻2
𝑅

⎞
⎟⎟⎟⎟

⎠

∶
⎛
⎜⎜⎜⎜

⎝

0
8
8
0
1
2
6

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

1
18 + 3
18 + 4
10

11 + 3
12
16

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

2
28

31 + 3
23

21 + 3
26
30

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

3
42
38

39 + 3
35
38

42 − 6

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

4
48 + 1
52

44 + 3
41 + 1
42

46 + 2

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

5
60 + 2
59 + 3
53 − 1
53 + 4
56 + 2
60

⎞
⎟⎟⎟⎟

⎠

→ …

We observe that in the table above, some delays are negative, for example 𝛿𝑅(3) = −6.2 This nega-
tive delay is caused by decoupling. A delayed train was decoupled from its inbound station due to a
track failure, because of which, the other trains in the station did not need to wait for the delayed train,
allowing them to depart sooner.

We see that the delayed departure sequence has not become less intimidating, but it has become
easier to spot where new delays arise and how long large combinations of delays last. We can clearly
see in the above sequence for example, that the fifth departure is completely delayed; not a single train
departed on time. In later sections, we will determine properties of the delayed departure sequence,
so that manually studying delayed departure sequences is no longer necessary.

6.3. Applying Delay Resolution
Now that we have added random delays to the model, we can connect the delay resolution methods
we devised in chapter 4. We have seen before that the combinatorial and greedy methods are simply
specific instances of the 𝑝-greedy method and as such, we will apply the 𝑝-greedy method with varying
values for 𝑝. In this section, we will choose 𝑝 = 3, in later sections, we will use various values for 𝑝 for
the sake of benchmarking.

We apply the delay resolution methods to the dynamic simulation as straight-forward as possible.
Given a delayed state, the method determines the fastest way to resolve the delay and applies the
necessary switches until a new delay occurs.

Method 7 Given is a multi-switching simulation, a delayed state in this simulation 𝑥̃(𝑘) and a delay
resolution method 𝑀.

1. Set 𝑥̃ = 𝑥̃(𝑘)

2. Determine the resolution sequence 𝑅 = 𝑀(𝑥̃) produced by the delay resolution method.

3. Let 𝑅(0) be the first entry of the resolution sequence. Switch to matrix 𝐴𝑅(0) in the current
adjacency class.

4. Let the simulation perform one step with 𝐴𝑅(0) yielding 𝑥̃(𝑘 + 1) = 𝐴𝑅(0) + 𝛿(𝑘), where 𝛿(𝑘)
is the delay that occurs in time step 𝑘.

2Here we use the notation 𝛿𝑖(𝑘) = ’the delay at station 𝑖 at time unit 𝑘’

52 6. Simulating Train Networks

5. Set 𝑥̃ = 𝑥̃(𝑘 + 1) and return to step 2.

Since the above method does not have an exit condition, it does not terminate. This is caused by
the assumption that train networks do not stop operating. In the event of maintenance or a pause in
the network, exit conditions can be added. One might expect the method to terminate once all delays
are resolved, but since non-delayed departures can be regarded as delayed departures with delay 0,
this is not necessary. One should also notice that while the entire resolution sequence 𝑅 is calculated
in step 2, only its first entry is used, as new delays may change the necessary steps to resolve delays.
Through this last remark, we notice that using our concept of score, we can reduce the computation
time by only calculating a part of the delay resolution sequence.

Method 8 Given is a multi-switching simulation, a delayed state in this simulation 𝑥̃(𝑘) and a 𝑝-
greedy delay resolution method 𝑀𝑝.

1. Set 𝑥̃ = 𝑥̃(𝑘)

2. Determine the first 𝑝 terms, 𝑅̃1, of the delay resolution sequence 𝑅 = 𝑀𝑝(𝑥̃) produced by the
delay resolution method.

3. Let 𝑅(0) be the first entry of the resolution sequence segment 𝑅̃1. Switch to matrix 𝐴𝑅(0) in
the current adjacency class.

4. Let the simulation perform one step with 𝐴𝑅(0) yielding 𝑥̃(𝑘 + 1) = 𝐴𝑅(0) + 𝛿(𝑘), where 𝛿(𝑘)
is the delay that occurs in time step 𝑘.

5. Set 𝑥̃ = 𝑥̃(𝑘 + 1) and return to step 2.

This above method only works for iterative delay resolution methods, i.e. methods that produce
intermediate results. This means it works for greedy methods, but not the combinatorial method. For
such iterative methods, methods 7 and 8 produce the same results.

We now show the results of these delay resolution method. We use the same departure sequence
and randomizer seed as in in section 6.2. As for the possible switches, we allow every commute time
to be decreased by 1 time unit. If the commute time exceeds 8 time units, a speed up of 2 time units is
permitted. This gives the following delayed departure sequence:

⎛
⎜⎜⎜⎜

⎝

𝑘
𝐸
𝑈
𝐴
𝐷𝐻1
𝐷𝐻2
𝑅

⎞
⎟⎟⎟⎟

⎠

∶
⎛
⎜⎜⎜⎜

⎝

0
8
8
0
1
2
6

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

1
18 + 3
18 + 4
10

11 + 3
12
16

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

2
28

31 + 3
23

21 + 3
26
29

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

3
41
38

33 + 3
34
38

41 + 5

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

4
48 + 1
50

43 + 3
41 + 1
42

46 + 2

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

5
60 + 2
59 + 3
52

53 + 4
54 + 2
57

⎞
⎟⎟⎟⎟

⎠

→ …

Though at first glance, no noticeable changes are present, when looking at the total delay per time
step, we do notice a significant difference.

k 0 1 2 3 4 5 6 7 8 9 10 Cumulative
No Resolution 0 10 20 20 15 26 33 33 36 36 38 267
3-composite 0 10 19 18 12 21 26 24 23 24 23 200

Table 6.3: The total delay per time step.

6.4. Speed Up and Decoupling Restrictions 53

We see here that at time step 10, the network using the resolution method has 15 time units, or 90
minutes of delay less than when no resolutions are attempted. Furthermore, over these 10 time steps,
the ’No Resolution’ network has accumulated 67 time units, or more than 6 hours of delays, more
than its ’3-composite’ counterpart. We do see that some severe delays still persist. This becomes
abundantly apparent when looking at the delay sequence of the above delayed departure sequence.

⎛
⎜⎜⎜⎜

⎝

𝑘
𝐸
𝑈
𝐴
𝐷𝐻1
𝐷𝐻2
𝑅

⎞
⎟⎟⎟⎟

⎠

∶
⎛
⎜⎜⎜⎜

⎝

0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

1
3
4
0
3
0
0

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

2
0
6
3
3
4
3

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

3
3
0
6
3
6
0

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

4
1
2
6
1
0
2

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

5
4
4
2
6
4
1

⎞
⎟⎟⎟⎟

⎠

→ …

Here we see that at time step 𝑘 = 5, some departures are delayed up to 6 time units, or 36 minutes.
In order to prevent delays of this scale, we set the following decoupling condition:

If a train arrives at its inbound station equal or more than half its commute time late, then other
trains at the station do not need to wait for it.

For example, if a train is supposed to arrive at 16 at a station after an 8 time unit commute, but the train
arrives at 20 due to delays, other trains do not have to wait for it. When adding this to the simulation,
we get the following delay sequence:

⎛
⎜⎜⎜⎜

⎝

𝑘
𝐸
𝑈
𝐴
𝐷𝐻1
𝐷𝐻2
𝑅

⎞
⎟⎟⎟⎟

⎠

∶
⎛
⎜⎜⎜⎜

⎝

0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

1
3
4
0
3
0
0

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

2
0
0
3
3
4
3

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

3
2
0
6
3
0
0

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

4
1
0
6
1
0
2

⎞
⎟⎟⎟⎟

⎠

→
⎛
⎜⎜⎜⎜

⎝

5
3
0
2
6
2
0

⎞
⎟⎟⎟⎟

⎠

→ …

With this, we can once again create a table showing the total delay per time step.

k 0 1 2 3 4 5 6 7 8 9 10 Cumulative
No Resolution 0 10 20 20 15 26 33 33 36 36 38 267
3-composite 0 10 19 18 12 21 26 24 23 24 23 200

3-C, decoupling 0 10 13 11 11 19 19 16 16 19 10 144

Table 6.4: The total delay per time step.

We see here that the cumulative delay has further decreased and in almost every time step, the
total delay was reduced. From the results, this method seems to be much better than the other two,
but one needs to keep in mind that decoupling can be a significant inconvenience to many travellers,
so this method may not always be viable.

6.4. Speed Up and Decoupling Restrictions
During some parts of the day, speed ups and decoupling may not be possible in a network due to
obstacles that present at a certain time. In order to properly translate this in the simulation, we first
need a notion of time. We already assumed that each time unit corresponds to 6 minutes, and now
we will also introduce a start and end time for the train network. We set these two times to be 6 in the
morning and 10 in the evening, allowing for 16 operational hours. Since the timetable is 10-periodic,
we assume that each time step corresponds with 1 hour. We do not account for any delays in this
assumption in order to avoid further complexity. Now in order to realistically simulate a day’s worth of
trains, we implement the following speed up and decoupling restrictions:

• From 6:00 to 10:00 and from 20:00 to 22:00 (time steps 0-4 and 14-16) only speed ups of 1 time
unit are allowed.

54 6. Simulating Train Networks

• During rush hour, from 8:00 to 10:00 and from 17:00 to 19:00 (time steps 2-4 and 11-13), no
decoupling is allowed

• Once per day, at 13:00 (time step 7), all networks are occupied by freight trains, so no speed ups
are allowed.

Using the 3-composite greedy method with decoupling, we get the following results when adding the
above restrictions:

k 0 1 2 3 4 5 6 7 8 … 16 Cumulative Decoupling
No Restrictions 0 10 13 11 11 19 19 16 16 … 8 200 8
Restricted 0 10 13 11 11 19 19 17 17 … 14 210 8

Table 6.5: The total delay per time step using the 5-composite greedy method with decoupling conditions.

We see that the extra restrictions do not have a major impact on the results, though we should keep
in mind that the restrictions cause an additional full hour of delays over the entire day. Such delays are
not to be underestimated in our real-world context.

6.5. Resolution Evaluation Criteria
We now have all building blocks required to start evaluating delay resolution methods. We simulated a
full day of train traffic, connected the resolution methods to the simulation and added resolution restric-
tions to make the simulation more realistic. In previous sections, we have already used a few properties
of simulation runs to study changes in the simulations. These were the total delays per time unit, the
cumulative delay over the entire day and the amount of decoupling in a day. In this section, we will
introduce some more of these simulation properties, which we will henceforth call simulation statistics.

We start by defining some simple simulation statistics based on the delay sequence.

• Maximum Delay per time unit: the largest delay of a departure in a single time unit 𝑘,3

max
𝑖∈ℳ

𝛿𝑖(𝑘)

• Maximum delay per station: the largest delay at a station 𝑖 from 𝑘 = 0 up to and including some
time step 𝑘 = 𝑛,

max
0≤𝑘≤𝑛

𝛿𝑖(𝑘)

• Cumulative Delay per Station: the sum of all delays at a station 𝑖 from 𝑘 = 0 up to and con-
cluding some time step 𝑘 = 𝑛,

𝑛

∑
𝑘=0

𝛿𝑖(𝑘)

In the tables in the previous chapters, we repeatedly used the ’total delay’ per time unit. Condensing
an entry in the delay sequence into a single number makes it easier to study the behaviour of the delay,
so we will continue to consider this statistic. For the sake of simplicity, we will henceforth denote the
total delay per time unit as Δ(𝑘) = ∑𝑖∈ℳ 𝛿𝑖(𝑘). Using this notation, we can now define some simulation
statistics.

• Cumulative Total Delay (CTD): The sum of all total delays from 𝑘 = 0 up to and concluding
some time step 𝑘 = 𝑛,

𝑛

∑
𝑘=0

Δ(𝑘)

3We use the notation that 𝑖 ∈ ℳ if 𝑖 is a station in the network corresponding toℳ.

6.6. Results 55

• Maximum Total Delay (MTD): The maximum total delay from 𝑘 = 0 up to and including some
time step 𝑘 = 𝑛,

max
0≤𝑘≤𝑛

Δ(𝑘)

• Mean Total Delay: The maximum total delay divided by the amount of time steps. The first time
step 𝑘 = 0 is not taken into account as its total delay is always 0.

Δ = 1
𝑛

𝑛

∑
𝑘=1

Δ(𝑘)

• Standard Deviation of the Total Delay (SD): this can be used to measure how consistent the
total delay is across time steps.

𝑆𝐷(Δ) = √ 1
𝑛 − 1

𝑛

∑
𝑘=1
(Δ(𝑘) − Δ)2

The above statistics can be used to perform in-depth analyses of delay resolution methods. These
analyses can then be used to fine-tune resolution methods. Performing such analyses and fine-tuning
are outside the scope of this report, and as such, we will perform some simpler analyses using only the
latter 4 statistics for the sake of comparing the delay resolution methods we formulated.

6.6. Results
We now set out to evaluate the 𝑝-composite greedy method for various values of 𝑝, to determine the
optimal value. We run the simulation for the values 𝑝 = 0, 1, 2, 3, 4, 5, where 𝑝 = 0 corresponds to not
intervening in the delay propagation. The results can be found in table 6.6.

𝑝 CTD(𝑝) MTD(𝑝) SD(Δ)(𝑝) Decoupled Time(𝑝)
0 222 26 6.34 9 0.015s
1 244 24 6.26 6 0.018s
2 186 21 5.08 6 0.069s
3 210 19 4.97 8 0.979s
4 232 23 6.10 7 13.174s
5 212 19 4.98 8 146.614s

Table 6.6: Various statistics for the 𝑝-composite greedy delay resolution method with varying values for 𝑝. The used seed is 123.

Since the simulation has a heavy random element, results based on a single run are of little statistical
value. As such, we conduct 100 such runs for each value of 𝑝. The seeds we use for these runs are
0, 1, 2, … , 99. We then take the average of each statistic over the different runs to yield results with a
higher statistic relevance.

𝑝 CTD(𝑝) MTD(𝑝) SD(Δ)(𝑝) Decoupled
0 165.89 22.12 6.22 4.81
1 144.33 18.82 5.34 3.04
2 139.32 17.97 5.10 2.55
3 138.06 17.56 5.07 2.37
4 134.11 17.18 4.96 2.58

Table 6.7: Average statistics of 100 runs of the simulation with various values for 𝑝.

In the above table, we do not show the computation time, as table 6.6 clearly shows that the com-
putation time quickly ramps up, which is consistent with our expectations. Any results beyond that

56 6. Simulating Train Networks

observation are of little substance. We also omitted 𝑝 = 5 from the above table due to long compu-
tation times. Of interest is that tables 6.6 and 6.7 tell very different stories. In table 6.7, we see that
as 𝑝 increases, the total cumulative delay decreases. This result is not entirely unexpected as higher
value of 𝑝 essentially correspond to a ’smarter’ delay resolution method. In table 6.6, a very different
result can be observed. In this table, 𝑝 = 2 is superior in cumulative total delay and decoupled trains
compared to the other values of 𝑝. This implies that being able to look further into the future is not
always beneficial to a greedy method.

Figure 6.3: The average total delay per hour over 100 samples. The x-axis represents the time of day and the y-axis the average
total delay. Higher values of 𝑝 are beneficial, but this difference decreases as 𝑝 gets larger.

We can conclude that in general, higher values for 𝑝, and thus looking further into the future, ben-
efits the 𝑝-greedy delay resolution method. This benefit is more significant for smaller values for 𝑝
and diminishes for very large values of 𝑝. The computation times for the method become increasingly
bigger for larger values of 𝑝 and at 𝑝 = 5, we deem the computation time sufficiently large to stop
increasing 𝑝 further. From the single run corresponding to table 6.6, we can observe that the general
result does not necessarily hold for specific cases. It is thus possible that in specific circumstances,
specific smaller values of 𝑝 yield better results than large values.

The last assertion is an interesting topic for further study. Using the simulation, one might be able
to pinpoint specific criteria for which a value of 𝑝 is more optimal. In addition to this, changing the
probability parameters may have a significant effect on the results of the simulation. As it is not within
the scope of this report, we will not dabble in such analyses, but the reader is warmly invited to seek
such results for themselves.

7
Conclusion

In this final chapter, we sum up the results written down in this report. The obtained results are split
into 3 parts: max-plus modelling, delay resolution and network simulation. Each of these parts built on
the foundations of the previous, but also came with results of their own, which we will discuss in detail.
We will conclude this chapter with a brief summary of these results and a list of possible further topics
of research based on the achieved results.

7.1. Max-Plus Modelling Results
In chapter 2, we gave the basics of max-plus algebra and max-plus modelling. This chapter acted as a
necessary mathematical foundation to build upon. The mathematics in this chapter are heavily based
on the book Max Plus at Work (Heidergott et al., 2006). In chapter 3, we built upon the basic max plus
model in the form of switching. The concept of switching was based on the bachelor thesis ’Control
of Delay Propagation in Railway Networks Using Max-Plus Algebra’ (Hoekstra, 2020). The aim of the
chapter was to introduce a more formal notation for switching systems in order to make them more
suitable for more sophisticated mathematical procedures and extensions. In chapter 5, we expanded
the switching model to account for changing network environments, such as network obstructions or
switching restrictions. Adding this extension made the model more realistic and thus more widely ap-
plicable.

The achieved end result of the modelling component of this thesis is the ability to convert logistic
networks, such as train networks, into mathematical models. These models can account for controlled
changes such as speed ups through switching and they can account for uncontrolled changes such as
network obstructions through shifting as introduced in the multi-switching model.

7.2. Delay Resolution Results
Delays were introduced in chapter 3, with the formal formulation of the delay problem in chapter 4.
In this latter chapter, we immediately formulated 3 methods for resolving delays: the Combinatorial
Method, the Greedy Delay Resolution Method and the 𝑝-Composite Greedy Delay Resolution Method.
The first two methods are special cases of the 𝑝-greedy method for certain values of 𝑝. We found that
for smaller values of 𝑝, the 𝑝-greedy method is faster, but worse at resolving delays, in some cases
even unable to resolve delays that can in fact be resolved. For larger values of 𝑝, the method becomes
better at resolving delays but significantly slower. We also explored the possibility of decoupling trains
and formulated possible conditions for decoupling. We found that decoupling can have a massively
beneficial effect on delay resolution, though it may prove an inconvenience for commuters in the net-
work. In chapter 5, we also introduced the concept of scores. These scores offered a way to evaluate
the quality of a departure (or state) and helped the resolution methods resolve the delays.

57

58 7. Conclusion

7.3. Network Simulation Results
In chapter 6, we were able to create a simulation for a train network containing some of the major dutch
cities. We were able to implement the multi-switching model and delay resolution methods along with
delay resolution restrictions. We implemented dynamic random delay to make the simulation realistic.
In the simulation, we saw that applying the 𝑝-composite greedy delay resolution method reduces the
delay and in general, higher values for 𝑝 yield better results. We also saw however, that this is not
always the case and in specific cases, specific, lower values for 𝑝 yield better results.

7.4. Overall Results
If there is one thing the reader should take away from this report, it is the following. The existing max-
plus model has been extended to account for speed ups and network restrictions. Train delays have
been studied and delay resolution methods have been designed. Finally, a simulation was made to
study the behaviour of train networks while delays are added at random. This simulation has also been
used to evaluate the delay resolution methods.

7.5. Further Research
Like the concluding results, we will discuss the potential further research for each aspect of the report
separately. In chapter 4, we already mentioned the importance and complexity of decoupling. Though
appendix B was dedicated to discussing this topic, many of its implications are still left untouched. A
potential topic for further research is the modelling of max-plus systems where trains can be decoupled
and recoupled without altering the network or disappearing from it entirely. Such a modelling method
would allow for improved modelling of rush hours or other modified timetables. This would allow logistic
networks to operate more dynamically, changing the timetables when the situation calls for it.

Concerning delay resolution, there are two possible directions for research. The first is studying
delay resolution methods. One could look into the behaviour of the methods discussed in this report to
determine strong and weak points to improve the methods. One could also think of other clever ways
to resolve delays and make a new resolution method based on these ideas. The other direction is
studying the score problem introduced in chapter 5. One could choose different scores to determine if
there is a better score criterion to resolve delays. This process of choosing scores could also be done
using machine learning algorithms through reinforcement learning.

For the simulation, there are 2 potential topics for further research as well. The first is to use the
current simulation to determine properties and behaviour of delays and the delay resolution methods.
As said before, in some situations, specific, lower values of 𝑝 perform better than higher values. De-
termining which underlying process determines the optimum may provide some further insights into
the workings of dynamically delayed max-plus systems. The other potential direction for research is to
extend the current simulation to include rush hour or even external processes, such as flight transfers
or external trains. Especially the latter may prove to be interesting topics as modelling interactions
between the subject network and other, external networks, would allow larger networks to be modelled
separately and then be connected using this interaction modelling.

In appendix C, we linked the max-plus models discussed in this report to conventional systems and
control theory, mentioning some topics such as state feedback, predictive controllers and repetitive
controllers. Researching to which extend max-plus models and systems and control theory are con-
nected may be another interesting topic for study. Performing this research may also bring to light how
existing methods from conventional systems theory could help to solve problems such as the delay
and scoring problems.

Bibliography
Breckon, D. (n.d.). Cover image: Great western 5037 leaving reading station. https://www.courtenaysfineart.

com/Don_Breckon.html
Facts and figures 2016. (2016). https : / /www .deutschebahn . com /en / facts_ figures - 6929164# :~ :

text=In%5C%20the%5C%20Passenger%5C%20transport%5C%20division,nearly%5C%
2012%5C%20million%5C%20passengers%5C%20daily.

Heidergott, B., der, W. J. v., & Olsder, G. J. (2006). Max plus at work: Modeling and analysis of syn-
chronized systems. Princeton University Press.

Hoekstra, M. (2020). Control of delay propagation in railway networks using max-plus algebra. http:
//resolver.tudelft.nl/uuid:b5816386-0ed9-4760-a6de-f0db0c3a5226

Hong, J., Chu, Z., & Wang, Q. (2011). Transport infrastructure and regional economic growth: Evidence
from china. Transportation, 38(5), 737–752.

Middelkoop, A. (2022). Zondag 3 april: Tot 20.00 uur geen treinverkeer. https://nieuws.ns.nl/zondag-
3-april-vanmiddag-geen-ns-treinen/

Ramos, G. A., Costa-Castelló, R., & Olm, J. M. (1970). Repetitive control. https://link.springer.com/
chapter/10.1007/978-3-642-37778-5_2

Schwenzer, M., Ay, M., Bergs, T., & Abel, D. (2021). Review onmodel predictive control: An engineering
perspective - the international journal of advanced manufacturing technology. https : / / link .
springer.com/article/10.1007/s00170-021-07682-3#citeas

59

https://www.courtenaysfineart.com/Don_Breckon.html
https://www.courtenaysfineart.com/Don_Breckon.html
https://www.deutschebahn.com/en/facts_figures-6929164#:~:text=In%5C%20the%5C%20Passenger%5C%20transport%5C%20division,nearly%5C%2012%5C%20million%5C%20passengers%5C%20daily.
https://www.deutschebahn.com/en/facts_figures-6929164#:~:text=In%5C%20the%5C%20Passenger%5C%20transport%5C%20division,nearly%5C%2012%5C%20million%5C%20passengers%5C%20daily.
https://www.deutschebahn.com/en/facts_figures-6929164#:~:text=In%5C%20the%5C%20Passenger%5C%20transport%5C%20division,nearly%5C%2012%5C%20million%5C%20passengers%5C%20daily.
http://resolver.tudelft.nl/uuid:b5816386-0ed9-4760-a6de-f0db0c3a5226
http://resolver.tudelft.nl/uuid:b5816386-0ed9-4760-a6de-f0db0c3a5226
https://nieuws.ns.nl/zondag-3-april-vanmiddag-geen-ns-treinen/
https://nieuws.ns.nl/zondag-3-april-vanmiddag-geen-ns-treinen/
https://link.springer.com/chapter/10.1007/978-3-642-37778-5_2
https://link.springer.com/chapter/10.1007/978-3-642-37778-5_2
https://link.springer.com/article/10.1007/s00170-021-07682-3#citeas
https://link.springer.com/article/10.1007/s00170-021-07682-3#citeas

A
Residual Proofs and Derivations

In this appendix, we will show some derivations that were omitted from the main report due to being to
long or not immediately relevant. We will also proof all theorems given in this report, as well as give
some additional intuitions.

A.1. Max-Plus Algebra
In chapter 2, an important theorem was given that says that a departure sequence of a max-plus model
is entirely characterised by the base of its initial departure (and the adjacency matrix)

Theorem 1 Let (x(𝑘))𝑘≥0 be the departure sequence ofℳ(𝐴,x(0)).
The commute sequence and base sequence are not changed by translation: ∀𝑐 ∈ ℝ ∶

(𝑑(x(𝑘)))𝑘≥0 = (𝑑(x(𝑘) ⊗ 𝑐))𝑘≥0
(⌊x(𝑘)⌋)𝑘≥0 = (⌊x(𝑘) ⊗ 𝑐⌋)𝑘≥0

This means the behaviour of a departure sequence is characterised by the base of its initial depar-
ture.

Proof. Let (x(𝑘))𝑘≥0 be a departure sequence. Consider the translation of this sequence (y)𝑘≥0 =
(x(𝑘) ⊗ 𝑐)𝑘≥0 for some 𝑐 ∈ ℝ. Consider the commute sequence of this latter departure sequence:

𝑑(y(𝑘)) = y(𝑘 + 1) − y(𝑘)
= (x(𝑘 + 1)⊗ 𝑐) − (x(𝑘) ⊗ 𝑐)
= (x(𝑘 + 1) + 𝑐) − (x(𝑘) + 𝑐)
= x(𝑘 + 1) − x(𝑘)
= 𝑑(x(𝑘))

Thus proving the first assertion. As for the second assertion, we know that

⌊x(𝑘)⌋ = x(𝑘) − ||x(𝑘)||𝑚𝑖𝑛
But we know that ||x(𝑘) ⊗ 𝑐||𝑚𝑖𝑛 = ||x(𝑘)||𝑚𝑖𝑛 + 𝑐, therefore

⌊y(𝑘)⌋ = y(𝑘) − ||y(𝑘)||𝑚𝑖𝑛
= (x(𝑘) + 𝑐) − (||x(𝑘)||𝑚𝑖𝑛 + 𝑐)
= x(𝑘) − ||x(𝑘)||𝑚𝑖𝑛
= ⌊x(𝑘)⌋

Thus proving the second assertion.

60

A.2. Switching Max-Plus 61

The reason why this theorem implies that the behaviour of a departure sequence is characterised by
the base of its initial departure is that if we translate a departure sequence such that its initial depar-
ture is a base, both the commute sequence and the base sequence remain unchanged. These two
sequences exactly show the behaviour of a sequence.

We now consider a theorem that formulates an important properties of the max-plus model.

Theorem 2 Any departure sequence of a max-plus model is causal and forgetful. In other words,
the next entry in a sequence is dependent on the current entry, but not on any prior or future entries.

Proof. The proof of this theorem follows from the fact that a max-plus model is defined with a recurrence
relation. In this recurrence relation, we have that x(𝑘 + 1) = 𝐴⊗ x(𝑘), where it is clear to see that no
past or future terms appear.

The above theorem is not difficult to proof, but the theorem is extremely important as it also holds for
switching systems. This means that when making choices in a switching system, we do not need to
consider past or future entries (we can if this is desired, but this much complicates the system).

A.2. Switching Max-Plus
In this chapter, only one theorem was proven. This theorem shows a result for switching max-plus
system where the standard index sequence is not constant.

Theorem 3 If the index sequence 𝐽 of a switching max-plus model 𝑀𝑆 on a strongly connected
graph is 𝑚-periodic, then the eigenvector v of

𝐴 =
𝑚

⨂
𝑖=1

𝐴𝐽(𝑚−𝑖)

induces an 𝑚-periodic regime with average commute time 𝜆
𝑚 , where 𝜆 is the eigenvalue of 𝐴 as-

sociated with v.

Proof. Let 𝒜 be an adjacency matrix and 𝐽 an index sequence drawing matrices from 𝒜. Let 𝑗1, … , 𝑗𝑚
be the repeating elements in 𝐽. Let 𝜆,v be the eigenvalue-eigenvector pair of

𝐴 =
𝑚

⨂
𝑖=1

𝐴𝐽(𝑚−𝑖)

This means that 𝐴 and v induce a departure sequence where each time step causes a translation of
the departure with magnitude 𝜆. So the induced sequence with initial departure v(0) = v is

(v(𝑘))𝑘≥0 = v(0) → v(1) → v(2) → …
= v → v+ 𝜆 → v+ 2𝜆 → …

Now let x0 be the initial departure of a departure sequence induced by 𝐽 with 𝒜. This means that

x(𝑘 + 𝑚) = 𝐴𝑗𝑚 ⊗ x(𝑘 + 𝑚 − 1)
= 𝐴𝑗𝑚 ⊗𝐴𝑗𝑚−1 ⊗ x(𝑘 + 𝑚 − 2)
= …

=
𝑚

⨂
𝑖=1

𝐴𝐽(𝑚−𝑖)⊗ x(𝑘)

62 A. Residual Proofs and Derivations

This means that if we let x0 = v, then

x(0) = v
x(𝑚) = v(1) = v+ 𝜆
x(2𝑚) = v(2) = v+ 2𝜆

⋮
x(𝑘𝑚) = v(𝑘) = v+ 𝑘𝜆

So x(𝑘𝑚) = x((𝑘 − 1)𝑚) ⊗ 𝜆, which implies that the departure sequence induced by x(0) = v and 𝐽
with 𝒜 is an 𝑚-periodic regime with average commute 𝜆

𝑚 .

A.3. Delay Problems
The first theorem in this chapter revolved around convergence of delay sequences.

Theorem 4 Let 𝒜 be an adjacency class, (x(𝑘))𝑘≥0 and (y(𝑘))𝑘≥0 departure sequences induced
by 𝐽, a choice function generating an index sequence and some initial departures x(0) and y(0)
respectively. Suppose that 𝐽 = 𝐽(x), so the choice function only depends on the current state, then
the following hold:

• If there is a time step 𝑛 where the departure times x(𝑛) = y(𝑛), then the two departure
sequences are equal in every time step after 𝑛.

If ∃𝑛 ∈ ℕ ∶ x(𝑛) = y(𝑛) then ∀𝑘 ≥ 𝑛 ∶ x(𝑘) = y(𝑘)

• Suppose (x(𝑘))𝑘≥0 and (y(𝑘))𝑘≥0 enter 𝑠-periodic regimes with onset 𝑛 and 𝑚 respectively.
Let 𝑘 ≥max(𝑛,𝑚), if x(𝑘) ≠ y(𝑘), then the two departure sequences at no point coincide.

Proof. The first assertion follows from the following observation:

x(𝑛) = y(𝑛)
⟹ 𝐽(x(𝑛)) = 𝐽(y(𝑛))

Letting 𝐽(x(𝑛)) = 𝑗, it holds
x(𝑛 + 1) = 𝐴𝑗⊗ x(𝑛) = 𝐴𝑗⊗ y(𝑛) = y(𝑛 + 1)

Which inductively holds for every future sequence entry. From this we can conclude that both sequence
starting from the index 𝑚 and 𝑛 respectively must be the same.

We nowmove on to the second assertion. Let (x(𝑘))𝑘≥0 and (y(𝑘))𝑘≥0 enter into 𝑠-periodic regimes
with onset 𝑛 and 𝑚 respectively. Let 𝑀 = max(𝑚, 𝑛), 𝑘 ≥ 𝑀 and x(𝑘) ≠ y(𝑘). Suppose by contradic-
tion that the two sequences converge to one another. Consider only the time steps 𝑡 ≥ 𝑀. This means
that.

x(𝑀) = x(𝑀 + 𝑙𝑠) y(𝑀) = y(𝑀 + 𝑙𝑠)
x(𝑀 + 1) = x(𝑀 + 1 + 𝑙𝑠) y(𝑀 + 1) = y(𝑀 + 1 + 𝑙𝑠)
x(𝑀 + 2) = x(𝑀 + 2 + 𝑙𝑠) y(𝑀 + 2) = y(𝑀 + 2 + 𝑙𝑠)

⋮ ⋮ ⋮ ⋮
x(𝑀 + 𝑠 − 1) = x(𝑀 + 𝑠 − 1 + 𝑙𝑠) y(𝑀 + 𝑠 − 1) = y(𝑀 + 𝑠 − 1 + 𝑙𝑠)

If the two sequences converge, there is a time step 𝑇 ≥ 0 so that ∀𝑡 ≥ 𝑇 ∶ x(𝑡) = y(𝑡). Let 𝑞 = 𝑠 − 𝑇(
mod 𝑀), then x(𝑘+𝑇+𝑞) = y(𝑘+𝑇+𝑞) and 𝑇+𝑞 is a multiple of 𝑠, so 𝑇+𝑞 = 𝑙𝑠 for some 𝑙. This means
that x(𝑘) = x(𝑘 + 𝑙𝑠) = y(𝑘 + 𝑙𝑠) = y(𝑘), which contradicts the assumption that x(𝑘) ≠ y(𝑘).

B
Decoupling

In chapter 4, we briefly discussed decoupling without going into detail. In this appendix, we will combine
the intuition discussed there with the new addition of multi-switching to consider the implications of
decoupling. We will reintroduce decoupling using an example and refresh some important definitions.
We will then discuss when decoupling should be used to resolve delays. Decoupling can also be used
to remove or add trains in the network, which we will illustrate by modelling rush-hour. We will conclude
this appendix by discussing some modelling restrictions of decoupling.

B.1. Severe Delays
As seen in the identically named subsection 4.3.1, the need for decoupling arises in the case of large
delays. We will thus give an example of such an instance.
Example 25 Consider the multi-switching max-plus model ℳ𝑀 = ℳ𝑀(Ω, (1, 0)𝑇 ,ℋ, 𝐽) corresponding
to the following network:

𝑆1 𝑆2

5

3

2 3

Figure B.1: The communication graph of the example train network

Where the standard adjacency matrix corresponding to the weights in the graph are repeatedly
applied (𝐽 = 0, 0, 0, … ,ℋ = 0, 0, 0, …). This gives the departure sequence

(𝑆1𝑆2) ∶ (10) → (54) → (98) → (1312) → (1716) → (2120) → …

Due to a delay, the train travelling from 𝑆2 to 𝑆1 takes 16 time units instead of 5. If nothing is done to
amend this delay, the resulting delayed departure sequence is

(𝑆1𝑆2) ∶ (10) → (164) → (1819) → (2422) → (2727) → (3230) → …

Since the train in the middle upper arc is the only train that is severely delayed, we can simply allow
the other train in station 𝑆1 to depart without waiting for the delayed train. This decoupling yields

(𝑆1𝑆2) ∶ (10) → (34) → (97) → (1212) → (1715) → (2020) → …

63

64 B. Decoupling

Since this delayed departure sequence is ahead of the expected departure sequence, we can simply
slow down the necessary trains such that it converges.

We can see that for severe simple delays, decoupling is an easy resolution method. As we will see
later in this appendix however, it comes with some aspects that need to be dealt with carefully. Before
continuing, we will briefly remind ourselves of some definitions surrounding decoupling.

Definition 24 (15) Let ℳ𝑆 = ℳ𝑆(𝒜,x0, 𝐽) be a max-plus switching model. If the communication
graphs 𝐺(𝐴𝑖) of the adjacency matrices in 𝒜 do not all have the same arcs, then ℳ𝑆 is called a
decoupled max-plus model. Let 𝒜0 be the set of all matrices that have the same arcs as 𝐴0, we
call this set the standard adjacency class and 𝒜𝜀 = 𝒜 ⧵𝒜0 the decoupled adjacency class.

Definition 25 (16) We define ℰ(𝑖,𝑗) to be the matrix with all entries equal to 0 except for entry (𝑖, 𝑗)
which is equal to 𝜀. We call this matrix the (𝑖, 𝑗)-decoupling matrix.

We call 𝐴 + ℰ(𝑖,𝑗) the (𝑖, 𝑗)-decoupled matrix of 𝐴. In the above example, we used the (𝑆1, 𝑆2)-
decoupled matrix to decouple the delayed train. In subsection 5.3.4, we showed that instead of imple-
menting every possible delayed adjacency matrix, we could define a function that would map adjacency
matrices to their delayed form. We can use this same method to prevent having to implement every
possible decoupling, by using a function that maps the network to a specific decoupled variant of it. We
define this decoupling function as follows:

ℰ(𝑖,𝑗)(𝐴) = 𝐴 + ℰ(𝑖,𝑗)

This function can be repeatedly applied to decouple several trains.

We have also seen that decoupling can happen as a result of for example track failure. Since we
have no control over this type of decoupling, it will not be a major topic in this appendix. If such a delay
occurs over a long period of time, alternative transport options such as buses may need to be provided,
but we will not consider the implications of such changes.

B.2. Decoupling Criteria
Since decoupling is detrimental to the logistic functionality of networks as they disconnect networks, it
is important to only allow for decoupling if this is strictly necessary or sufficiently beneficial. In section
4.3, we introduced 3 conditions for decoupling. In this section, we had not established the concept of
score. This means we can now reformulate these criteria in a more mathematical manner.

• ’If a delay can not be resolved without decoupling, then the use of decoupling is allowed.’

• ’If the delay resolution time is too great, then we can allow decoupling to reduce this time.’

Decouple if 𝑅𝑇(𝛿) ≥ 𝐶

• ’if decoupling strongly reduces the resolution time, then it is also allowed.’

Decouple if 𝑅𝑇(𝛿) ≥ 𝑅𝑇𝐷(𝛿) + 𝐶

In the above conditions 𝐶 is a constant 𝛿 is a delay and 𝑅𝑇(𝛿) is the resolution time of the delay. The
subscript 𝐷 corresponds to decoupling.

B.3. Rush Hour Modelling 65

• ’If the delay is too great, then we can allow decoupling.’

Decouple if 𝑠(x̃) ≥ 𝐶

• ’if allowing for decoupling in one iteration of the method results in a greatly reduces score, then
allow decoupling.’

Decouple if 𝑠(𝑀 ⊗ x̃) ≥ 𝑠(𝑀𝐷⊗ x̃) + 𝐶

In the above conditions, we determine the size of the delay by the score 𝑠(𝑥̃). 𝑀 ⊗ 𝑥̃ is the result of
one iteration of the given method starting from 𝑥̃.

Other decoupling criteria may be desirable, but this is another instance where the used criteria
should be determined on a case by case basis.

B.3. Rush Hour Modelling
In some train networks, the amount of trains is not always constant. An example of this is the occurrence
of rush hour, during which, the amount of (train) traffic can be increased in order to accommodate for
more people commuting. In a lot of networks, rush hour occurs twice per day, once in the morning when
people travel to work and once in the evening when people travel back home. We will be introducing
several ways to model rush hour, discus transitioning into rush hour and discuss some required model
changes.

B.3.1. Modelling Rush Hour
In order to illustrate the various ways to model rush hour in a train network, we will use the following
example network:

𝑆1 𝑆2

4

4

Figure B.2: The communication graph of the example train network

It is clear to see that a periodic regime for this network would be

(𝑆1𝑆2) ∶ (00) → (44) → (88) → (1212) → (1616) → (2020) → (2424) → …

Which means every 4 time units a train leaves both stations. Now suppose that during rush hour, it is
desirable that a train leaves every 2 time units. One way to achieve this, is to simply add more trains
to the network. Since the model accounts for one train per arc however, this means we would have to
add more arcs. We can do this by simply doubling up certain arcs:

𝑆1 𝑆2

4

4

4

4

66 B. Decoupling

Since we want the trains to depart in a staggered pattern, we do not want all of them to wait for each
other, meaning we need to decouple some trains. The resulting communication graph is isomorphic to
the following graph:

𝑆1

𝑆2

𝑆1

𝑆2

44 44

So we see the graph is no longer strongly connected. Another method to add more arcs is to also
add more nodes. Adding an extra station on each arc would also add an extra arc and thus an extra
train:

𝑆1 𝑆2

𝑆3

𝑆4

2

2 2

2

But now we have the problem that when rush hour is over, the added train remains. We can resolve
this issue by adding extra arcs between 𝑆1 and 𝑆2 with weight 4, but this would needlessly complicated
the network. Instead, we can just let the excess trains traverse the theoretical network while removing
the physical trains from the tracks. This results in ’ghost trains’, trains that exist in the simulation, but
not in reality. These ghost trains are not a problem, as they can not interact with other trains. As such,
this latter solution is sound method for modelling rush hour.

B.3.2. Transitioning to Rush Hour
When transitioning into and out of rush hour, we are adding trains to the train tracks. It may however
not be possible for a train to immediately be at the location where it is desired. In order to make sure
that the network is fully operational during rush hour, we need to ensure that all trains are at their de-
sired location. The simplest way to do this is to have room for storing a train at each station. This is
however not always possible and quite expensive. Instead, it would be easier to have central points in
the network where trains are stored. Right before rush hour, a transition period can then be used to
get all trains to their desired positions.

Since the simulation already accounts for the rush hour trains at any time, we can simply allow these
trains to match the simulation. This is essentially turning ghost trains into real trains in the network. If
we do this, we do need to make sure that the trains start to follow their rush hour regime early enough,
to make sure they are not too late for rush hour commuters.

B.3. Rush Hour Modelling 67

B.3.3. Method Parameters
It is important to note that rush hour is a very busy period on the train network in terms of both trains
and passengers. As such, it may not suffice to use the same criteria for the delay resolution methods
as normally. It may for example be wise to change the criteria for decoupling, as decoupling would
inconvenience more passengers. These kind of changes can be seen as parametric changes; we
change the choicesmade by themethods without changing the underlying functionality. Which changes
to make should be decided on a case by case basis, but some options are to change the score function
or change the thresholds in the decoupling criteria.

C
Systems and Control for Max-Plus

Algebra
The issue of resolving a delay in a max-plus system is very much the same problem as steering the
system from one state to another. This aim is therefore parallel to problems occurring in mathematical
systems and control theory. In this appendix, we will take the time to reformulate some of the defini-
tions of this report into the language of systems and control theory. Doing so will not only show the
link between max-plus systems and conventional systems, but also reveal some additional interactions
that may provide topics for further study.

The contents of this chapter are meant to situate max-plus algebra in the context of systems and
control theory. None of the notation in this chapter are used in any other part of the report, as the
report aims to build up an intuitive formulation of max-plus networks and extensions without relying on
existing mathematics.

C.1. Max-Plus, Systems and Slow-Downs
We start by showing the similarity between max-plus systems and conventional systems. Throughout
this report, we have assumed that we are aware of the exact position of each train. This is not an
unrealistic assumption, but there are two reasons we may want to reconsider it.

• In some systems with less advanced equipment, we may not know the exact departure time of
each station.

• Basing resolution sequences on the entire network causes very large computation times. Reduc-
ing the amount of departure times to consider in each time step, decreases this time.

We can add the restriction of only being able to observe some trains in the network as follows:

{x(𝑘 + 1) = 𝐴⊗ x(𝑘)
y(𝑘 + 1) = 𝐵 ⊗ x(𝑘)

Where 𝐵 is a matrix containing some of the rows of 𝐴. When looking at the above system, we can
clearly see its similarity to conventional systems.

The above system corresponds to a regular max-plus model. We now seek to extend this model to
a switching model while still using system theoretical notations. We can do this, by adding the control
term to the model, in the same fashion as conventional systems theory.

{x(𝑘 + 1) = 𝐴⊗ x(𝑘) ⊕ u(𝑘)
y(𝑘 + 1) = 𝐵 ⊗ x(𝑘) (C.1)

68

C.2. Slowing Down instead of Speeding Up 69

The question now becomes: how can we interpret this input. Since the input term is added to 𝐴⊗x(𝑘)
in the max-plus sense, the next departure times are the maximum between the departure times in
𝐴 ⊗ x(𝑘) and the departure times in u(𝑘). This means that the input corresponds to increases in the
departure times, which can be interpreted as slow downs of the trains. From this, one could conclude
that the input term u(𝑘) can be interpreted as the delay onset in time step 𝑘, but this is not logical, as
we should be able to control the input term. This means that u(𝑘) corresponds to slow downs of the
trains in the network, chosen by the network operator.

Slowing down trains is one aspect of the switching model, but speeding up is the other. In the above
system, the input term only allows slow-downs, so it seems we can not quite model switching perfectly.
In the next section however, we will show that speed-ups can be modelled using these slow-downs,
resulting in a properly implemented switching model.

C.2. Slowing Down instead of Speeding Up
In this report, we always assumed that the standard adjacency matrix, 𝐴0, of an adjacency class was
the matrix containing the standard commutes of the corresponding train networks. When trains sped
up, the entries in this standard matrix would then be decreased to yield the matrix corresponding to the
sped up commutes. Since we can not speed up the commutes in the system (C.1), we will assume the
standard matrix 𝐴0 to be the matrix containing all the fastest commutes. The input term u(𝑘) can then
be used to slow down the trains in case speed-ups are not necessary.

Example 26 Letℳ𝑆 be a switching max-plus model. The standard commute times are shown in the
following adjacency matrix.

𝐴 = (4 6
4 6)

Both arcs with commute time 6 can be sped up by 1 time unit. In the regular switching model used in
this report, the resulting adjacency class is

(𝐴0, 𝐴1, 𝐴2, 𝐴3) = ((
4 6
4 6) , (

4 5
4 6) , (

4 6
4 5) , (

4 5
4 5)) .

In the system theoretical model, there is only one adjacency matrix

𝐴′ = (4 5
4 5) .

The input term u(𝑘) can be set as the pre-determined timetable of the system, so trains will never
depart before their scheduled time.

C.3. State Controller
In the previous section, we simply let the input u(𝑘) be equal to the pre-determined time table, so trains
do not depart too early. We however also implement the input similarly to the way it is often done in
conventional systems theory, namely as a function of x(𝑘):

u(𝑘) = 𝐶 ⊗ x(𝑘)

Since the max-plus multiplication is distributive with regards to the max-plus addition, we can now
rewrite the system as

{x(𝑘 + 1) = (𝐴⊕ 𝐶)⊗ x(𝑘)
y(𝑘 + 1) = 𝐵 ⊗ x(𝑘)

If we now let 𝐶 be one of the adjacency matrices of the system, 𝐴𝑖, then we know that

𝐴⊕ 𝐴𝑖 = 𝐴𝑖 (C.2)

70 C. Systems and Control for Max-Plus Algebra

as 𝐴 is the most sped-up adjacency matrix of the system. Using this method for implementing the input,
we can return to our way of denoting the standard adjacency matrices we used in the regular switching
system. We can now write every adjacency class of matrices as follows:

𝒜 = (𝐴′, 𝐴0, 𝐴1, … , 𝐴𝑛)

which corresponds to the system

{x(𝑘 + 1) = (𝐴′⊕𝐴𝑖) ⊗ x(𝑘)
y(𝑘 + 1) = 𝐵 ⊗ x(𝑘)

and 𝑖 is chosen at every time step. Because the notation for the standard model now matches the
notation for the system theoretical model, we can apply the delay resolution methods to the system
theoretical model as-is, without requiring any changes. This can be confirmed by the fact that as long
as equality C.2 holds, we have that (𝐴′⊕𝐴𝑖)⊗x(𝑘) = 𝐴𝑖⊗x(𝑘), which is the same recurrence relation
we used to formulate our resolution methods.

We note that it is important for the equality in equation C.2 to hold for the above input method to
work. In the case where specific combinations of speed-ups are not possible, the equality does not
hold, which may cause undesirable behaviour.

C.4. Delay Resolution and Control
As stated in the previous section, the delay resolution methods we formulated in this report can be
applied to the system theoretical max-plus model, and as such, we will not further discuss them much.
The subject of this section is the link between control theory and delay resolution. We will be talking
about three common controls: State feedback, model predictive control and repetitive control.

State feedback is a control method where the input of a time step is partially determined using the
state in that time step. This method is the one we used when formulating our input, u(𝑘) = 𝐶 ⊗ x(𝑘).
State feedback is a very useful tool in control theory, as using the current state to determine the control
is very intuitive. A downside of feedback control however, is that it only takes into account the current
state, not future or past states. Both these issues can be solved using the other two control methods
we mentioned, predictive control and repetitive control.

In order to consider future stated, model predictive control (MPC) can be used. With MPC, we
predict future perturbations from the expected course of events and base our input on these predicted
perturbations (Schwenzer et al., 2021). An example of this is rush hour. During rush hour, the amount
of delays may increase. To combat this increase, we could decide to more drastically resolve delays
leading up to rush hour as to not be left with residual delays in addition to new delays.

The use of repetitive control (RC) fixes the issue of considering past states. Repetitive control is
a method of control used on periodic signals (Ramos et al., 1970). Though the delays in our models
are not periodic signals, we can use the underlying concept of RC to resolve recurring delays. If a
certain delay or set of delays has already occurred and been resolved in the past, the same resolution
sequence may once again work. Given enough data, delay resolution methods could thus use pre-
optimised methods for resolving common delays or become better at resolving recurring delays.

Neither of the above control methods will be implemented, as they are massive concepts of their
own. Both could be interesting subjects for further research, linking max-plus algebra and systems
theory even further.

D
Python Code

This appendix contains all the python code used for the computations shown in this thesis. The code
is split up into 3 major parts: Classes and functions, examples and the simulation. All three parts are
imported by the main.py file found below.

1 from examples import *
2 from simulation import Simulation
3

4

5 def main():
6 # Enter example here
7 example = 26
8 make_example(example)
9 Sim = Simulation()
10

11 #Uncomment to run a single simulation for various p
12 p_range = 4
13 Sim.simulation_various_p(p_range)
14

15 # Uncomment to run 100 sample simulation
16 p_range = 2
17 Sim.stat_run_sim(p_range)
18 return
19

20 if __name__ == ’__main__’:
21 main()

D.1. Classes and Functions
This section contains the classes and functions that acted as the back-bone of the computations.

D.1.1. Classes
1 # Packages
2 import numpy as np
3 import time
4 import random
5 import copy
6 import math
7

8 # Modules
9 from functions import *
10

11 eps = ’\u03B5’
12 inf = ’infty’
13 tab_len = 4
14 random.seed(123)
15

16

71

72 D. Python Code

17 # All important max-plus operations
18 class MaxPlus:
19 class Operation:
20 @staticmethod
21 def max(lst):
22 M = eps
23 for el in lst:
24 if el == eps:
25 continue
26 elif M == eps:
27 M = el
28 elif el > M:
29 M = el
30 return M
31

32 @staticmethod
33 def min(lst):
34 m = inf
35 for el in lst:
36 if el == inf:
37 continue
38 elif m == inf:
39 m = el
40 elif el == eps:
41 return eps
42 elif el < m:
43 m = el
44 return m
45

46 @staticmethod
47 def add(a, b):
48 if a == eps or b == eps:
49 return eps
50 return a + b
51

52 @staticmethod
53 def mul(a, b):
54 if a == eps or b == eps:
55 return eps
56 return a * b
57

58 @staticmethod
59 def state_add(x1, x2):
60 nx = []
61 for i, el in enumerate(x1):
62 nx.append(MaxPlus.Operation.add(el, x2[i]))
63 return nx
64

65 @staticmethod
66 def state_max(state_lst):
67 nx = []
68 for i in range(len(state_lst[0])):
69 row = []
70 for j in range(len(state_lst)):
71 row.append(state_lst[j][i])
72 nx.append(MaxPlus.Operation.max(row))
73

74 return nx
75

76 @staticmethod
77 def scalar_add(x, c):
78 nx = []
79 for el in x:
80 nx.append(MaxPlus.Operation.add(el, c))
81 return nx
82

83 @staticmethod
84 def scalar_mul(x, c):
85 nx = []
86 for el in x:
87 nx.append(MaxPlus.Operation.mul(el, c))

D.1. Classes and Functions 73

88 return nx
89

90 @staticmethod
91 def base(x):
92 if type(x[0]) != list:
93 sub = MaxPlus.Operation.min(x)
94 return MaxPlus.Operation.scalar_add(x, -sub)
95 res = []
96 for state in x:
97 res.append(MaxPlus.Operation.base(state))
98 return res
99

100 @staticmethod
101 def mat_mul(A, B):
102 new_mat = []
103 for i in range(len(A)):
104 row = []
105 for j in range(len(A[i])):
106 entry = []
107 for k in range(len(A[i])):
108 entry.append(MaxPlus.Operation.add(A[i, k], B[k, j]))
109 row.append(MaxPlus.Operation.max(entry))
110 new_mat.append(row)
111 return new_mat
112

113 @staticmethod
114 def norm1(A, B):
115 res = 0
116 for i in range(len(A)):
117 if not type(A[i]) == int and not type(A[i]) == float:
118 for j in range(len(A[i])):
119 res += abs(A[i][j] - B[i][j])
120 else:
121 res += abs(A[i] - B[i])
122 return res
123

124 @staticmethod
125 def sequence_norm1(Alst, J1, J2):
126 res = 0
127 for i in range(min(len(J1), len(J2))):
128 res += MaxPlus.Operation.norm1(Alst[J1[i]], Alst[J2[i]])
129 return res
130

131 @staticmethod
132 def normmax(A, B):
133 res = []
134 for i in range(len(A)):
135 if not type(A[i]) == int and not type(A[i]) == float:
136 for j in range(len(A[i])):
137 res.append(abs(A[i][j] - B[i][j]))
138 else:
139 res.append(abs(A[i] - B[i]))
140 return MaxPlus.Operation.max(res)
141

142 @staticmethod
143 def score1(xd, x):
144 return [MaxPlus.Operation.normmax(xd, x), MaxPlus.Operation.norm1(xd, x)]
145

146 @staticmethod
147 def argmin_score(score_lst):
148 ret = [1 for _ in score_lst]
149 for i in range(len(score_lst[0])):
150 entry_lst = []
151 for j, score in enumerate(score_lst):
152 if ret[j] == 1:
153 entry_lst.append(score[i])
154 entry_min = min(entry_lst)
155 for j, score in enumerate(score_lst):
156 if score[i] > entry_min:
157 ret[j] = 0
158 out = []

74 D. Python Code

159 for i in range(len(ret)):
160 if ret[i]:
161 out.append(i)
162 return out
163

164 @staticmethod
165 def station_delay(A, station, delay):
166 A = copy.deepcopy(A)
167 for i in range(len(A)):
168 A[i][station] = MaxPlus.Operation.add(A[i][station], delay)
169 return A
170

171 @staticmethod
172 def track_delay(A, arc, delay):
173 A = copy.deepcopy(A)
174 i, j = arc[0], arc[1]
175 A[i][j] = MaxPlus.Operation.add(A[i][j], delay)
176 return A
177

178 class Regime:
179 @staticmethod
180 def max_plus(x, A):
181 new_x = []
182 for i in range(len(x)):
183 entry = []
184 for j in range(len(x)):
185 entry.append(MaxPlus.Operation.add(x[j], A[i][j]))
186 new_x.append(MaxPlus.Operation.max(entry))
187 return new_x
188

189 @staticmethod
190 def regime(x, A, n):
191 res_lst = [x]
192 for _ in range(n):
193 x = MaxPlus.Regime.max_plus(x, A)
194 res_lst.append(x)
195 return res_lst
196

197 @staticmethod
198 def switching_regime(x, Alst, J):
199 res_lst = [x.copy()]
200 for ind in J:
201 x = MaxPlus.Regime.max_plus(x, Alst[ind])
202 res_lst.append(x)
203 return res_lst
204

205 @staticmethod
206 def multi_switching_regime(x, class_list, class_index, J):
207 res_lst = [x.copy()]
208 for i in range(min(len(class_index), len(J))):
209 adj_class = class_list[class_index[i]]
210 index = J[i]
211 A = adj_class[index]
212 x = MaxPlus.Regime.max_plus(x, A)
213 res_lst.append(x)
214 return res_lst
215

216 @staticmethod
217 def delay_sequence(regime, delayed_regime):
218 l = min(len(regime), len(delayed_regime))
219 res = []
220 for i in range(l):
221 res.append(list_sub(regime[i], delayed_regime[i]))
222 return res
223

224 class Simulation:
225 def __init__(self, x0, Omega, H, J, stoch, end, method=None, method_param=0, decouple

=False, info=False):
226 self.x = x0
227 self.regime = [self.x]
228 self.Omega = Omega

D.1. Classes and Functions 75

229 self.H = H
230 self.eqJ = J
231 self.J = []
232 if not method:
233 self.J = self.eqJ
234 self.info = info
235

236 self.method = method
237 self.method_param = method_param
238

239 self.TD_dict = {}
240 self.SD_dict = {}
241 self.TF_lst = []
242

243 self.decouple = decouple
244 if not decouple:
245 self.decouple = []
246 self.decouple_lst = []
247 self.decoupled = 0
248

249 self.end = end
250 self.equilibrium = MaxPlus.Regime.multi_switching_regime(x0, Omega, H, J)
251 self.delays = [[0 for _ in x0]]
252 self.total_delay = [0]
253

254 self.onset_stoch = stoch[0]
255 self.sustain_stoch = stoch[1]
256 self.delay_distr = stoch[2]
257

258 self.dim = len(Omega[0][0])
259 self.arcs = self.get_arcs()
260

261 self.current = None
262 self.time_step = 0
263

264 self.time = time.time()
265

266 def simulate(self):
267 while self.time_step < self.end:
268 self.current = copy.deepcopy(self.Omega[self.H[self.time_step]])
269 self.step()
270 if self.info:
271 self.print_info()
272 self.SD_dict = {}
273 self.time_step += 1
274

275 def step(self):
276 self.decouple_lst = []
277 self.sustain_delay()
278 self.switch()
279 self.current = self.current[self.J[-1]]
280 expected_departure = MaxPlus.Operation.scalar_mul(MaxPlus.Regime.max_plus(self.x,

self.current), -1)
281 self.onset_delay()
282 self.apply_delay()
283 if self.time_step in self.decouple:
284 self.shift_decouple()
285 self.decouple_correction()
286 self.x = MaxPlus.Regime.max_plus(self.x, self.current)
287 self.regime.append(self.x)
288 self.delays.append(MaxPlus.Operation.state_add(self.x, expected_departure))
289

290

291 def switch(self):
292 if self.method == ’Combinatorial’:
293 res = MaxPlus.Solve.multi_combinatorial(self.Omega, self.H, self.equilibrium[

self.time_step:],
294 self.x, timer=False, timeout=30)
295

296 elif self.method == ’P-Composite’:
297 p = self.method_param

76 D. Python Code

298 ts = self.time_step
299 # res = MaxPlus.Solve.multi_p_greedy(self.Omega, self.H[ts:], self.

equilibrium[ts:],
300 # self.x, p, timer=False, timeout=30)
301

302 res, _ = MaxPlus.Solve.multi_partial_comb(self.Omega, self.H[ts:ts+p], self.
equilibrium[ts:ts+p+1],

303 self.x)
304

305 else:
306 return
307 if not res:
308 index = self.eqJ[self.time_step]
309 else:
310 index = res[0]
311 self.J.append(index)
312

313 def onset_delay(self):
314 for outbound in range(self.dim):
315 onset_SD = Probability.bernoulli(self.onset_stoch[’SD’])
316 if onset_SD:
317 delay = Probability.discrete(self.delay_distr[’SD’])
318 self.SD_dict[outbound] = delay
319

320 for arc in self.arcs:
321 onset_TD = Probability.bernoulli(self.onset_stoch[’TD’])
322 if onset_TD:
323 if arc not in self.TD_dict:
324 self.TD_dict[arc] = Probability.discrete(self.delay_distr[’TD’])
325 else:
326 self.TD_dict[arc] = max(self.TD_dict[arc], Probability.discrete(self.

delay_distr[’TD’]))
327

328 onset_TF = Probability.bernoulli(self.onset_stoch[’TF’])
329 if onset_TF and arc not in self.TF_lst:
330 self.TF_lst.append(arc)
331

332 def sustain_delay(self):
333 dict_copy = self.TD_dict.copy()
334

335 for arc in dict_copy:
336 sustain = Probability.bernoulli(self.sustain_stoch[’TD’])
337 if not sustain:
338 del(self.TD_dict[arc])
339

340 for arc in self.TF_lst:
341 sustain = Probability.bernoulli(self.sustain_stoch[’TF’])
342 if not sustain:
343 self.TF_lst.remove(arc)
344

345 return
346

347 def apply_delay(self):
348 for arc in self.TD_dict:
349 track = self.arcs[arc]
350 self.current = MaxPlus.Operation.track_delay(self.current, track, self.

TD_dict[arc])
351

352 for arc in self.TF_lst:
353 track = self.arcs[arc]
354 self.current = MaxPlus.Operation.track_delay(self.current, track, eps)
355

356 for outbound in self.SD_dict:
357 self.current = MaxPlus.Operation.station_delay(self.current, outbound, self.

SD_dict[outbound])
358

359 def shift_decouple(self):
360 for j in range(len(self.x)):
361 for i in range(len(self.current)):
362 if self.current[i][j] != eps:
363 arrival = self.x[j] + self.current[i][j]

D.1. Classes and Functions 77

364 if arrival >= self.equilibrium[self.time_step+1][j] + self.current[i
][j]//2:

365 self.current = MaxPlus.Operation.track_delay(self.current, [i,j],
eps)

366 self.decouple_lst.append(i+self.dim*j)
367 self.decoupled += 1
368

369

370

371 def decouple_correction(self):
372 for arc in self.TF_lst+self.decouple_lst:
373 track = self.arcs[arc]
374 inbound = track[0]
375 outbound = track[1]
376 self.current[inbound][outbound] = self.equilibrium[self.time_step+1][inbound]

- self.x[outbound]
377

378 def get_arcs(self):
379 arcs = {}
380 for j in range(self.dim):
381 for i in range(self.dim):
382 A = self.Omega[0][0]
383 if A[i][j] != eps:
384 arcs[i+self.dim*j] = [i,j]
385 return arcs
386

387 def print_info(self):
388 print(f’Time Step: {self.time_step}’)
389 print(’Track delays:’)
390

391 for delay in self.TD_dict:
392 print(f’\t{self.arcs[delay]}: {self.TD_dict[delay]}’)
393

394 print(’Station delays:’)
395

396 for delay in self.SD_dict:
397 print(f’\t{delay}: {self.SD_dict[delay]}’)
398

399 print(’Track Failures:’)
400

401 for delay in self.TF_lst:
402 print(f’\t{self.arcs[delay]}’)
403 print(f’Decouple: {self.decouple_lst}’)
404 print(f’Time: {time.time()-self.time}’)
405 print(200*’#’)
406

407 # @staticmethod
408 # def get_delay_index(A, p_lst):
409 # delayed = []
410 # station_delayed = []
411 # decoupled = []
412 # for i in range(len(A)):
413 # for j in range(len(A)):
414 # # Check for track delay
415 # if Probability.bernoulli(p_lst[0]):
416 # delayed.append([i, j])
417 # # Check for track failure
418 # if Probability.bernoulli(p_lst[2]):
419 # decoupled.append([i, j])
420 # # Check for station delay
421 # if Probability.bernoulli(p_lst[1]):
422 # station_delayed.append(i)
423 #
424 # return delayed, station_delayed, decoupled
425 #
426 # @staticmethod
427 # def stoch_delays(A, index, delay_lst, p_lst):
428 # A = A.copy()
429 # delay = Probability.discrete(delay_lst, p_lst)
430 # i, j = index[0], index[1]
431 # A[i][j] = MaxPlus.Operation.add(A[i][j], delay)

78 D. Python Code

432 # return A
433 #
434 # @staticmethod
435 # def station_delay(A, station, delay_lst, p_lst):
436 # A = A.copy()
437 # delay = Probability.discrete(delay_lst, p_lst)
438 # for i in range(len(A)):
439 # A[i][station] = MaxPlus.Operation.add(A[i][station], delay)
440 # return A
441 #
442 # @staticmethod
443 # def get_delayed_matrix(A, bernoulli_p_lst, delay_lst, delay_p_lst,

station_delay_lst, station_delay_p_lst):
444 # delayed, station_delayed, decoupled = MaxPlus.Operation.get_delay_index(A,

bernoulli_p_lst)
445 # for index in delayed:
446 # A = MaxPlus.Operation.stoch_delay(A, index, delay_lst, delay_p_lst)
447 #
448 # for station in station_delayed:
449 # A = MaxPlus.Operation.station_delay(A, station, station_delay_lst,

station_delay_p_lst)
450 #
451 # for index in decoupled:
452 # A = MaxPlus.Operation.stoch_delay(A, index, [eps], [1])
453 # return A
454 #
455 # @staticmethod
456 # def stochastic_regime(x: list, omega: list, H: list, J: list, stoch):
457 # TD_dict = {}
458 # TF_lst = []
459 #
460 # for
461

462 class Solve:
463 @staticmethod
464 def karp(A):
465 dim = len(A)
466 x = [eps for _ in range(dim)]
467 x[0] = 0
468 regime = MaxPlus.Regime.regime(x, A, dim)
469

470 meta_lst = []
471 for k in range(dim):
472 xn = regime[dim]
473 xk = regime[k]
474

475 xk_min = MaxPlus.Operation.scalar_mul(xk, -1)
476

477 meta_lst.append(MaxPlus.Operation.scalar_mul(MaxPlus.Operation.state_add(xn,
xk_min), 1 / (dim - k)))

478

479 max_lst = []
480 for arr in meta_lst:
481 max_lst.append(MaxPlus.Operation.max(arr))
482

483 return MaxPlus.Operation.min(max_lst)
484

485 @staticmethod
486 def power(A):
487 dim = len(A)
488 x = [0 for _ in range(dim)]
489 done = False
490 regime = [x]
491 while not done:
492 x = MaxPlus.Regime.max_plus(x, A)
493 for k, state in enumerate(regime):
494 for i in range(1, MaxPlus.Operation.max(x) + 1):
495 translate = True
496 for j in range(len(state)):
497 if state[j] + i != x[j]:
498 translate = False

D.1. Classes and Functions 79

499 if translate == True:
500 done = True
501 p = len(regime)
502 q = k
503 c = i
504 regime.append(x)
505

506 mu = c / (p - q)
507 ev_lst = []
508 for j in range(1, (p - q) + 1):
509 el = MaxPlus.Operation.scalar_add(regime[q + j - 1], mu * (p - q - j))
510 ev_lst.append(el)
511

512 ev = MaxPlus.Operation.state_max(ev_lst)
513 ev = MaxPlus.Operation.scalar_add(ev, -MaxPlus.Operation.min(ev))
514

515 return mu, ev
516

517 @staticmethod
518 def combinatorial_method(Alst, regime, x0, minimal=False, J_ref=None, timer=False,

timeout = 30):
519 st = time.time()
520 res = []
521 for i in range(len(regime)):
522 res = []
523 exhaust = comb([j for j in range(len(Alst))], i)
524 for J in exhaust:
525 x = x0.copy()
526 for j in J:
527 x = MaxPlus.Regime.max_plus(x, Alst[j])
528 if x == regime[i]:
529 res.append(J)
530 if time.time()-st > timeout:
531 print(f’Runtime Error: Iteration {i} reached’)
532 return i
533 if timer:
534 print(f’Iteration {i}: {time.time() - st}’)
535 if res:
536 break
537

538 out = res
539 if minimal:
540 min_norm = []
541 for R in res:
542 Anorm = sum([MaxPlus.Operation.norm1(Alst[R[i]], Alst[J_ref[i]]) for i in

range(len(R))])
543 min_norm.append(Anorm)
544 min_norm = MaxPlus.Operation.min(min_norm)
545

546 out = []
547

548 for R in res:
549 Anorm = sum([MaxPlus.Operation.norm1(Alst[R[i]], Alst[J_ref[i]]) for i in

range(len(R))])
550 if Anorm == min_norm:
551 out.append(R)
552 return out
553

554 @staticmethod
555 def greedy_method(Alst, regime, x0, minimal=False, J=None):
556 x = x0
557 res = []
558 for i in range(len(regime) - 1):
559 score_lst = []
560 for j in range(len(Alst)):
561 nx = MaxPlus.Regime.max_plus(x, Alst[j])
562 score = MaxPlus.Operation.score1(nx, regime[i+1])
563 if minimal:
564 score.append(MaxPlus.Operation.norm1(Alst[j], Alst[J[i]]))
565 score_lst.append(score)
566

80 D. Python Code

567 min_score = MaxPlus.Operation.argmin_score(score_lst)
568 index = min_score[0]
569

570 x = MaxPlus.Regime.max_plus(x, Alst[index])
571 res.append(index)
572 return res
573

574 @staticmethod
575 def partial_combinatorial_method(Alst, regime, x0, minimal=False, Jref=None):
576 exhaust = comb([j for j in range(len(Alst))], len(regime) - 1)
577 score_lst = []
578 for J in exhaust:
579 x = x0.copy()
580 Anorm = 0
581 for i, j in enumerate(J):
582 x = MaxPlus.Regime.max_plus(x, Alst[j])
583 if minimal:
584 Anorm += MaxPlus.Operation.norm1(Alst[j], Alst[Jref[i]])
585

586 score = MaxPlus.Operation.score1(x, regime[-1])
587 if minimal:
588 score.append(Anorm)
589

590 score_lst.append(score)
591

592 index = MaxPlus.Operation.argmin_score(score_lst)[0]
593 res = exhaust[index]
594 nx = MaxPlus.Regime.switching_regime(x0.copy(), Alst, res)[-1]
595 if nx == regime[-1]:
596 return MaxPlus.Solve.combinatorial_method(Alst, regime, x0)[0], nx
597

598 return res, nx
599

600 @staticmethod
601 def p_greedy(Alst, regime, x0, p, minimal=False, J=None, timer=False, timeout=30):
602 st = time.time()
603 n = len(regime) // p
604 x = x0.copy()
605 res = []
606 for i in range(n):
607 regime_part = regime[i * p:(i + 1) * p + 1]
608 if minimal:
609 J_part = J[i * p:(i + 1) * p + 1]
610 else:
611 J_part = None
612 R_part, x = MaxPlus.Solve.partial_combinatorial_method(Alst, regime_part, x,

minimal=minimal, Jref=J_part)
613 res += R_part
614 if len(R_part) != p or x == regime_part[-1]:
615 return res
616 if timer:
617 print(f’Iteration {i}: {time.time() - st}’)
618 if time.time()-st > timeout:
619 print(f’Runtime Error: Iteration {i} reached’)
620 return res
621

622 @staticmethod
623 def multi_combinatorial(array, H, regime, x0, minimal=False, J_ref=None, timer=False,

timeout=30):
624 st = time.time()
625 res = []
626 for i in range(len(regime)):
627 res = []
628 exhaust = multi_comb([[j for j in range(len(array[k]))] for k in range(len(

array))], H[:i])
629 for J in exhaust:
630 x = x0.copy()
631 for k, j in enumerate(J):
632 x = MaxPlus.Regime.max_plus(x, array[H[k]][j])
633 if x == regime[i]:
634 res.append(J)

D.1. Classes and Functions 81

635 if time.time() - st > timeout:
636 print(f’Runtime Error: Iteration {i} reached’)
637 return i
638 if timer:
639 print(f’Iteration {i}: {time.time() - st}’)
640 if res:
641 break
642

643

644 out = res
645 if minimal:
646 min_norm = []
647 for R in res:
648 Anorm = sum([MaxPlus.Operation.norm1(array[H[i]][R[i]], array[H[i]][J_ref

[i]]) for i in range(len(R))])
649 min_norm.append(Anorm)
650 min_norm = MaxPlus.Operation.min(min_norm)
651

652 out = []
653

654 for R in res:
655 Anorm = sum([MaxPlus.Operation.norm1(array[H[i]][R[i]], array[H[i]][J_ref

[i]]) for i in range(len(R))])
656 if Anorm == min_norm:
657 out.append(R)
658 return out
659

660 @staticmethod
661 def multi_partial_comb(array, H, regime, x0, minimal=False, Jref=None):
662 exhaust = multi_ncomb(array, H)
663 score_lst = []
664 for J in exhaust:
665 x = x0.copy()
666 Anorm = 0
667 for i, j in enumerate(J):
668 Alst = array[H[i]]
669 x = MaxPlus.Regime.max_plus(x, Alst[j])
670 if minimal:
671 Anorm += MaxPlus.Operation.norm1(Alst[j], Alst[Jref[i]])
672 score = MaxPlus.Operation.score1(x, regime[-1])
673

674 if minimal:
675 score.append(Anorm)
676

677 score_lst.append(score)
678

679 index = MaxPlus.Operation.argmin_score(score_lst)[0]
680 res = exhaust[index]
681 nx = MaxPlus.Regime.multi_switching_regime(x0.copy(), array, H, res)[-1]
682 if nx == regime[-1]:
683 return MaxPlus.Solve.multi_combinatorial(array, H, regime, x0)[0], nx
684

685 return res, nx
686

687 @staticmethod
688 def multi_p_greedy(array, H, regime, x0, p, minimal=False, J=None, timer=False,

timeout=30):
689 res = []
690 l = min(len(H), len(regime)) // p
691 x = x0.copy()
692 st = time.time()
693 for i in range(l):
694 regime_part = regime[i*p: i*p+p+1]
695 H_part = H[i * p:(i + 1) * p]
696 if minimal:
697 J_part = J[i * p:(i + 1) * p]
698

699 else:
700 J_part = None
701 R_part, x = MaxPlus.Solve.multi_partial_comb(array, H_part, regime_part, x,

minimal=minimal,

82 D. Python Code

702 Jref=J_part)
703 res += R_part
704 if len(R_part) != p or x == regime_part[-1]:
705 return res
706 if timer:
707 print(f’Iteration {i}: {time.time() - st}’)
708 if time.time() - st > timeout:
709 print(f’Runtime Error: Iteration {i} reached’)
710 return
711 return res
712

713 class String:
714

715 @staticmethod
716 def regime_string(regime, integer=False):
717 string = ’’
718 for i in range(len(regime[0])):
719 row = f’{i}:\t’
720 for j in range(len(regime)):
721 time = regime[j][i]
722 if integer:
723 time = int(time)
724 row += f’{time}\t\t’
725 string += f’{row}\n’
726 return string[:-1]
727

728 @staticmethod
729 def mat_string(A):
730 string = ’’
731 for i in range(len(A)):
732 row = f’[\t’
733 for j in range(len(A[i])):
734 row += f’{A[i][j]}\t’
735 string += f’{row}]\n’
736 return string[:-1]
737

738 @staticmethod
739 def multi_matrix(names, mats):
740 string = ’’
741 nrows = len(mats[0])
742 nmats = len(mats)
743 for i in range(nrows):
744 row = ’’
745 for j in range(nmats):
746 name = names[j]
747 matrix = mats[j]
748 if i == nrows//2 - 1:
749 row += f’{name} = \t[\t’
750 else:
751 row += (len(name)//tab_len + 2) * ’\t’ + ’[\t’
752

753 if type(matrix[i]) != list:
754 row += f’{matrix[i]}\t’
755 else:
756 for k in range(len(matrix)):
757 row += f’{matrix[i][k]}\t’
758

759 row += ’]\t’
760 row += ’\n’
761 string += row
762 return string[:-2]
763

764

765 class Probability:
766 @staticmethod
767 def bernoulli(p):
768 num = random.randint(0, 99)
769 if num < p*100:
770 return True
771 return False
772

D.1. Classes and Functions 83

773 @staticmethod
774 def discrete(distr):
775 event_lst = []
776 p_lst = []
777 for event in distr:
778 event_lst.append(event)
779 p_lst.append(distr[event])
780 P = sum(p_lst)
781 num = random.randint(0, P-1)
782 intervals = cumulative_interval(p_lst)
783 for i in range(len(p_lst)):
784 if intervals[i] <= num < intervals[i + 1]:
785 return event_lst[i]
786 print(’error’)
787

788

789 class Statistics:
790 @staticmethod
791 def list_dif(lst1, lst2):
792 res = 0
793 for i in range(len(lst1)):
794 res += abs(lst1[i]-lst2[i])
795 return res
796

797 @staticmethod
798 def mean(lst):
799 return sum(lst)/len(lst)
800

801 @staticmethod
802 def SD(lst):
803 S = 0
804 for el in lst:
805 S += (el-Statistics.mean(lst))**2
806 Var = S / (len(lst)-1)
807 return math.sqrt(Var)
808

809

810 class Stochast:
811 def __init__(self):
812 self.dict = {}
813

814 def add_bernoulli(self, p, label):
815

816 def bernoulli():
817 P = 100 * p
818 num = random.randint(0, 100)
819 if num <= P:
820 return True
821 return False
822

823 self.dict[label] = bernoulli
824

825 def add_discr_distr(self, p_lst, event_lst, label):
826

827 def discr():
828 P = sum(p_lst)
829 num = random.randint(0, P)
830 intervals = cumulative_interval(p_lst)
831 for i in range(len(p_lst)):
832 if intervals[i] <= num < intervals[i+1]:
833 return event_lst[i]
834

835 self.dict[label] = discr

D.1.2. Functions
1 eps = ’\u03B5’
2

3 def fact(n):
4 if n == 0:

84 D. Python Code

5 return 1
6 return fact(n-1)
7

8 def ncomb(n,k):
9 num = fact(n)
10 denom = fact(k)*fact(n-k)
11 return num/denom
12

13 def comb(lst, n):
14 if n == 0:
15 return [[]]
16 else:
17 pre_lst = comb(lst, n-1)
18 new_lst = []
19 for part in pre_lst:
20 for el in lst:
21 copy_part =part.copy()
22 copy_part.append(el)
23 new_lst.append(copy_part)
24 return new_lst
25

26 def multi_comb(lst, H):
27 n = len(H)
28 if n == 0:
29 return [[]]
30 res = []
31 old_res = multi_comb(lst, H[:-1])
32 for el in lst[H[-1]]:
33 for lst in old_res:
34 nlst = lst.copy()
35 nlst.append(el)
36 res.append(nlst)
37 return res
38

39 def multi_ncomb(lst, H):
40 n = len(H)
41 if n == 0:
42 return [[]]
43 res = []
44 old_res = multi_ncomb(lst, H[:-1])
45 for i, el in enumerate(lst[H[-1]]):
46 for lst in old_res:
47 nlst = lst.copy()
48 nlst.append(i)
49 res.append(nlst)
50 return res
51

52 def argmin(lst):
53 min_lst = min(lst)
54 res = []
55 for i, el in enumerate(lst):
56 if el == min_lst:
57 res.append(i)
58 return res
59

60 def list_min(lst_lst, ind=0):
61 res = []
62 el_lst = []
63 for lst in lst_lst:
64 el_lst.append(lst[ind])
65

66 lst_min = min(el_lst)
67 for lst in lst_lst:
68 if lst[ind] == lst_min:
69 res.append(lst)
70 return res
71

72 def cumulative_interval(lst):
73 res = [0]
74 current = 0
75 for num in lst:

D.2. Examples 85

76 current += num
77 res.append(current)
78 return res
79

80 def list_sub(lst1, lst2):
81 if len(lst1) != len(lst2):
82 return
83 res = []
84 for i in range(len(lst1)):
85 res.append(lst1[i] - lst2[i])
86 return res
87

88 def count(lst, el):
89 c = 0
90 for i in lst:
91 if i == el:
92 c += 1
93 return c
94

95 def get_arcs(A):
96 arcs = []
97 for i in range(len(A)):
98 for j in range(len(A)):
99 if A[i][j] != eps:
100 arcs.append([i,j])
101 return arcs

D.2. Examples
This section contains the code for the examples used throughout the report. All examples can be run
through the main.py file.

1 import numpy as np
2

3 from classes import MaxPlus as MP
4 from classes import eps, inf
5

6

7 def make_example(n):
8 k = 150
9 print(k * ’=’)
10 print(k * ’=’)
11

12 print(f’Example {n}:\n’)
13 eval(f’example_{n}()’)
14

15 print(k * ’=’)
16 print(k * ’=’)
17

18

19 def example_1():
20 A = [[2, 5],
21 [3, 3]]
22

23 x0 = [0, 0]
24

25 print(MP.String.multi_matrix([’x0’, ’A’], [x0, A]))
26

27 print(’\nResult: \n’)
28

29 regime = MP.Regime.regime(x0, A, 10)
30 print(MP.String.regime_string(regime))
31

32

33 def example_3():
34 A = ([[2, eps, eps, 2],
35 [3, eps, 4, 4],
36 [eps, 2, 3, eps],
37 [1, eps, 1, eps]])
38

86 D. Python Code

39 x0 = [0, 0, 0, 0]
40

41 print(MP.String.multi_matrix([’x0’, ’A’], [x0, A]))
42

43 print(’\nResult: \n’)
44

45 regime = MP.Regime.regime(x0, A, 10)
46 print(MP.String.regime_string(regime))
47

48

49 def example_4():
50 A = [[2, 5], [3, 3]]
51 x0 = [2, 0]
52

53 print(MP.String.multi_matrix([’x0’, ’A’], [x0, A]))
54

55 print(’\nResult: \n’)
56

57 regime = MP.Regime.regime(x0, A, 10)
58 base_regime = MP.Operation.base(regime)
59

60 print(’Departure sequence:’)
61 print(MP.String.regime_string(regime))
62 print(’\nBase Sequence:’)
63 print(MP.String.regime_string(base_regime))
64

65

66 def example_5():
67 A0 = [[2, 5], [3, 3]]
68 A1 = [[2, 4], [3, 3]]
69 A2 = [[2, 5], [3, 2]]
70 A3 = [[2, 4], [3, 2]]
71 Alst = [A0, A1, A2, A3]
72 J = [0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0]
73

74 x0 = [1, 0]
75

76 print(MP.String.multi_matrix([’x0’, ’A0’, ’A1’, ’A2’, ’A3’], [x0, A0, A1, A2, A3]))
77 print(f’\nJ = {J}’)
78

79 print(’\nResult: \n’)
80

81 regime = MP.Regime.switching_regime(x0, Alst, J)
82 base_regime = MP.Operation.base(regime)
83

84 print(’Departure sequence:’)
85 print(MP.String.regime_string(regime))
86 print(’\nBase Sequence:’)
87 print(MP.String.regime_string(base_regime))
88 print(’\nEigenvalue and eigenvector:’)
89 print(MP.Solve.power(A0))
90 print(MP.Solve.power(A3))
91

92

93 def example_6():
94 A0 = [[2, 5], [3, 3]]
95 A1 = [[2, 4], [3, 3]]
96 A2 = [[2, 5], [3, 2]]
97 A3 = [[2, 4], [3, 2]]
98 Alst = [A0, A1, A2, A3]
99

100 x0 = [5, 4]
101 xd = [7, 4]
102

103 J = [0 for i in range(10)]
104

105 print(MP.String.multi_matrix([’x0’, ’A0’, ’A1’, ’A2’, ’A3’, ’xd’], [x0, A0, A1, A2, A3,
xd]))

106 print(f’\nJ = {J}’)
107

108 print(’\nResult: \n’)

D.2. Examples 87

109

110 regime = MP.Regime.regime(x0, A0, 10)
111

112 Jlst = MP.Solve.combinatorial_method(Alst, regime, xd)
113

114 print(’Departure sequence:’)
115 print(MP.String.regime_string(regime))
116

117 for i, J_i in enumerate(Jlst):
118 delayed_regime = MP.Regime.switching_regime(xd, Alst, J_i)
119 print(f’\nDelay Solution {i+1}: J tilde = {J_i}’)
120 print(MP.String.regime_string(delayed_regime))
121

122

123 def example_8():
124 A0 = [[2, 5], [3, 3]]
125 A1 = [[2, 5], [2, 3]]
126 A2 = [[2, 6], [3, 3]]
127 A3 = [[2, 6], [2, 3]]
128 Alst = [A0, A1, A2, A3]
129

130 x0 = [1, 0]
131

132 J = [0, 0, 0, 0, 0, 0, 0, 0, 0]
133 J_changed = [0, 0, 1, 2, 0, 0, 0, 0, 0]
134

135 print(MP.String.multi_matrix([’x0’, ’A0’, ’A1’, ’A2’, ’A3’], [x0, A0, A1, A2, A3]))
136

137 print(’\nResult: \n’)
138

139 regime = MP.Regime.regime(x0, A0, len(J))
140 changed_regime = MP.Regime.switching_regime(x0, Alst, J_changed)
141

142 print(f’Departure sequence: J = {J}’)
143 print(MP.String.regime_string(regime))
144

145 print(f’\nAltered sequence: J = {J_changed}’)
146 print(MP.String.regime_string(changed_regime))
147

148

149 def example_9():
150 A0 = [[2, 5], [3, 3]]
151 A1 = [[2, 4], [3, 3]]
152 A2 = [[2, 5], [3, 2]]
153 A3 = [[2, 4], [3, 2]]
154 Alst = [A0, A1, A2, A3]
155

156 x0 = [5, 4]
157 xd = [7, 4]
158

159 J = [0 for i in range(10)]
160

161 print(MP.String.multi_matrix([’x0’, ’A0’, ’A1’, ’A2’, ’A3’, ’xd’], [x0, A0, A1, A2, A3,
xd]))

162 print(f’\nJ = {J}’)
163

164 print(’\nResult:’)
165

166 regime = MP.Regime.regime(x0, A0, 10)
167 Jlst = MP.Solve.combinatorial_method(Alst, regime, xd)
168

169 for i, J_i in enumerate(Jlst):
170 delayed_regime = MP.Regime.switching_regime(xd, Alst, J_i)
171 print(f’\nDelay Solution {i + 1}: J tilde = {J_i}, ’)
172 print(MP.String.regime_string(delayed_regime))
173

174

175 def example_10():
176 A0 = [[2, 5], [3, 3]]
177 A1 = [[2, 4], [3, 3]]
178 A2 = [[2, 5], [3, 2]]

88 D. Python Code

179 A3 = [[2, 4], [3, 2]]
180 Alst = [A0, A1, A2, A3]
181 J = [0 for i in range(10)]
182

183 print(MP.String.multi_matrix([’A0’, ’A1’, ’A2’, ’A3’], [A0, A1, A2, A3]))
184

185 print(’\nResult:’)
186

187 x0 = [10, 10]
188 xd = [11, 11]
189

190 print(’Solutions for:’)
191 print(MP.String.multi_matrix([’x0’, ’xd’], [x0, xd]))
192

193 regime = MP.Regime.regime(x0, A0, 10)
194

195 J1 = MP.Solve.combinatorial_method(Alst, regime, xd, minimal=True, J_ref = J)[0]
196 delayed_regime = MP.Regime.switching_regime(xd, Alst, J1)
197 print(f’\nSolution: J tilde = {J1}’)
198 print(MP.String.regime_string(delayed_regime))
199

200 x0 = [0, 0]
201 xd = [1, 1]
202

203 print(’\nSolutions for:’)
204 print(MP.String.multi_matrix([’x0’, ’xd’], [x0, xd]))
205

206 regime = MP.Regime.regime(x0, A0, 10)
207

208 J1 = MP.Solve.combinatorial_method(Alst, regime, xd, minimal=True, J_ref=J)[0]
209 delayed_regime = MP.Regime.switching_regime(xd, Alst, J1)
210 print(f’\nSolution: J tilde = {J1}’)
211 print(MP.String.regime_string(delayed_regime))
212

213

214 def example_11():
215 size_A = 32
216 m = 10
217 TC = size_A**m
218 print(f’Time Complexity: C*{TC}’)
219 print(f’Log Time Complexity: Log(C)+{np.log10(TC)}’)
220

221

222 def example_12():
223 A0 = [[2, 5], [3, 3]]
224 A1 = [[2, 4], [3, 3]]
225 A2 = [[2, 5], [3, 2]]
226 A3 = [[2, 4], [3, 2]]
227 Alst = [A0, A1, A2, A3]
228 x0 = [1,0]
229 J = [0 for i in range(10)]
230 matrices = [’A0’, ’A1’, ’A2’, ’A3’]
231

232 xd = [3, 0]
233

234 print(MP.String.multi_matrix([’x0’, ’A0’, ’A1’, ’A2’, ’A3’, ’xd’], [x0, A0, A1, A2, A3,
xd]))

235

236 regime = MP.Regime.switching_regime(x0, Alst, J)
237

238 print(’\nDeparture Sequence:’)
239 print(MP.String.regime_string(regime))
240

241 print(’\nResult:’)
242

243 print(’\nTime step 1:’)
244 x1lst = []
245 names1 = []
246 for i, A in enumerate(Alst):
247 x1lst.append(MP.Regime.max_plus(xd, A))
248 names1.append(f’{matrices[i]} X x0’)

D.2. Examples 89

249

250 print(MP.String.multi_matrix(names1, x1lst))
251

252 xd = [5, 6]
253

254 print(’\nTime step 2:’)
255 x2lst = []
256 names2 = []
257 for i, A in enumerate(Alst):
258 x2lst.append(MP.Regime.max_plus(xd, A))
259 names2.append(f’{matrices[i]} X x1’)
260

261 print(MP.String.multi_matrix(names2, x2lst))
262

263 xd = [10, 8]
264

265 print(’\nTime step 3:’)
266 x3lst = []
267 names3 = []
268 for i, A in enumerate(Alst):
269 x3lst.append(MP.Regime.max_plus(xd, A))
270 names3.append(f’{matrices[i]} X x2’)
271

272 print(MP.String.multi_matrix(names3, x3lst))
273

274 xd = [13, 13]
275

276 print(’\nTime step 4:’)
277 x4lst = []
278 names4 = []
279 for i, A in enumerate(Alst):
280 x4lst.append(MP.Regime.max_plus(xd, A))
281 names4.append(f’{matrices[i]} X x3’)
282

283 print(MP.String.multi_matrix(names4, x4lst))
284

285

286 xd = [3, 0]
287 res = MP.Solve.greedy_method(Alst, regime, xd, minimal=True, J=J)
288 print(f’\nMinimal Solution: J = {res}’)
289 delayed_regime = MP.Regime.switching_regime(xd, Alst, res)
290 print(MP.String.regime_string(delayed_regime))
291

292

293 def example_13():
294 A0 = [[eps, 5], [5, eps]]
295 A1 = [[eps, 3], [3, eps]]
296 A2 = [[eps, 2], [2, eps]]
297 Alst = [A0, A1, A2]
298

299 x0 = [0, 0]
300 xd = [4, 4]
301

302 J_greedy = [0 for i in range(10)]
303 regime = MP.Regime.switching_regime(x0, Alst, J_greedy)
304

305 names = [’x0’, ’A0’, ’A1’, ’A2’, ’xd’]
306 matrices = [x0, A0, A1, A2, xd]
307 print(MP.String.multi_matrix(names, matrices))
308 print(’\nDeparture Sequence:’)
309 print(MP.String.regime_string(regime))
310

311 print(’\nResult:’)
312

313 J_greedy = MP.Solve.greedy_method(Alst, regime, xd)
314 J_comb = MP.Solve.combinatorial_method(Alst, regime, xd)[0]
315

316 regime_greedy = MP.Regime.switching_regime(xd, Alst, J_greedy)
317 regime_comb = MP.Regime.switching_regime(xd, Alst, J_comb)
318

319 print(f’\n(False) Solution with Greedy Method: J = {J_greedy}’)

90 D. Python Code

320 print(MP.String.regime_string(regime_greedy))
321

322 print(f’\nSolution with Combinatorial Method: J = {J_comb}’)
323 print(MP.String.regime_string(regime_comb))
324

325

326 def example_14():
327 A0 = [[5, eps], [eps, 5]]
328 A1 = [[3, eps], [eps, 3]]
329 A2 = [[2, eps], [eps, 2]]
330 Alst = [A0, A1, A2]
331

332 x0 = [0, 0]
333 xd = [100, 100]
334 J = [0 for i in range(34)]
335 regime = MP.Regime.switching_regime(x0, Alst, J)
336 for i, state in enumerate(regime):
337 state.append(i)
338

339 names = [’x0’, ’A0’, ’A1’, ’A2’, ’xd’]
340 matrices = [x0, A0, A1, A2, xd]
341 print(MP.String.multi_matrix(names, matrices))
342 print(’\nDeparture Sequence:’)
343 print(MP.String.regime_string(regime[20:]))
344

345 print(’\nResult:’)
346

347 print(’\nRunning the 5-composite greedy method:’)
348 J_greedy = MP.Solve.p_greedy(Alst, regime, xd, 5, timer=True)
349

350 print(’\nRunning the combinatorial method:’)
351 J_comb = MP.Solve.combinatorial_method(Alst, regime, xd, timer=True, timeout=1)
352

353 regime_greedy = MP.Regime.switching_regime(xd, Alst, J_greedy)
354 for i, state in enumerate(regime_greedy):
355 state.append(i)
356 print(f’\nSolution with 5-greedy method: J = {J_greedy}’)
357 print(MP.String.regime_string(regime_greedy[20:]))
358

359

360 def example_20():
361 A0 = [[2, 5], [3, 3]]
362 A1 = [[2, 4], [3, 3]]
363 A2 = [[2, 5], [3, 2]]
364 A3 = [[2, 4], [3, 2]]
365

366 A = [A0, A1, A2, A3]
367 B = [A0, A2]
368 Omega = [A, B]
369 H = [1, 0, 0, 1, 0, 0, 1, 0 ,0]
370

371 x0 = [1, 0]
372 xd = [3, 0]
373

374 timetable = MP.Regime.regime(x0, A0, 10)
375 res_seq = MP.Solve.multi_combinatorial(Omega, H, timetable, xd)
376

377 print(f’R = {res_seq[0]}’)
378

379

380 def example_22():
381 A0 = [[2, 3], [5, eps]]
382 A1 = [[2, 3], [4, eps]]
383

384 B0 = [[2, 3], [6, eps]]
385 B1 = [[2, 3], [5, eps]]
386

387 C0 = [[3, 3], [5, eps]]
388 C1 = [[3, 3], [4, eps]]
389 A = [A0, A1]
390 B = [B0, B1]

D.2. Examples 91

391 C = [C0, C1]
392

393 x0 = [0, 1]
394 H = [0,0,0,0,0]
395 Ht = [1, 0, 0, 0, 0]
396 Htt = [2, 0, 0, 0, 0]
397 J = [0,0,0,0,0]
398

399 print(MP.Solve.power(A0))
400

401 omega = [A, B, C]
402 regime = MP.Regime.multi_switching_regime(x0, omega, H, J)
403 dregime = MP.Regime.multi_switching_regime(x0, omega, Ht, J)
404 ddregime = MP.Regime.multi_switching_regime(x0, omega, Htt, J)
405

406 print(MP.String.regime_string(regime))
407 print()
408 print(MP.String.regime_string(dregime))
409 print()
410 print(MP.String.regime_string(ddregime))
411

412

413 def example_25():
414 A0 = [[2, 5], [3, 3]]
415 A1 = [[2, 16], [3, 3]]
416 A2 = [[2, eps], [3, 3]]
417

418 x0 = [1,0]
419

420 Omega = [[A0, A2], [A1, A2]]
421 H = [0, 0, 0, 0, 0, 0]
422 Hd = [1, 0, 0, 0, 0, 0]
423 J = [0, 0, 0, 0, 0, 0]
424 Jd = [1, 0, 0, 0, 0, 0]
425

426 regime = MP.Regime.multi_switching_regime(x0, Omega, H, J)
427 delayed_regime = MP.Regime.multi_switching_regime(x0, Omega, Hd, J)
428 resolved_regime = MP.Regime.multi_switching_regime(x0, Omega, Hd, Jd)
429

430 print(’Regime:’)
431 print(MP.String.regime_string(regime))
432 print(’\nDelayed Regime:’)
433 print(MP.String.regime_string(delayed_regime))
434 print(’\n Resolved Regime:’)
435 print(MP.String.regime_string(resolved_regime))
436

437

438 def example_26():
439 A_0 = [[2, 5], [3, 3]]
440 A_d = [[2, eps], [3, 3]]
441 x0 = [1, 0]
442 Omega = [[A_0], [A_d]]
443 H = [1, 0, 0, 0, 0]
444 J = [0, 0, 0, 0, 0]
445

446 print(MP.String.multi_matrix([’x0’, ’A_0’, ’A_d’], [x0, A_0, A_d]))
447

448 print(’\nResult: \n’)
449

450 regime = MP.Regime.multi_switching_regime(x0, Omega, H, J)
451

452 print(’Departure sequence:’)
453 print(MP.String.regime_string(regime))
454

455

456 def example_101():
457 A0 = [[5, eps], [eps, 5]]
458 A1 = [[3, eps], [eps, 3]]
459 A2 = [[2, eps], [eps, 2]]
460 Alst = [A0, A1, A2]
461 Alst2 = [A2, A1, A0]

92 D. Python Code

462 Omega = [Alst, Alst2]
463

464 x0 = [0, 0]
465 xd = [100, 100]
466 J = [0 for i in range(34)]
467 H = [0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0]
468 regime = MP.Regime.switching_regime(x0, Alst, J)
469 for i, state in enumerate(regime):
470 state.append(i)
471

472 names = [’x0’, ’A0’, ’A1’, ’A2’, ’xd’]
473 matrices = [x0, A0, A1, A2, xd]
474 print(MP.String.multi_matrix(names, matrices))
475 print(’\nDeparture Sequence:’)
476 print(MP.String.regime_string(regime[20:]))
477

478 print(’\nResult:’)
479

480 print(’\nRunning the 5-composite greedy method:’)
481 J_greedy = MP.Solve.multi_p_greedy(Omega, H , regime, xd, 5, timer=True)
482 print(J_greedy)
483

484 print(’\nRunning the 5-composite greedy method:’)
485 J_greedy = MP.Solve.p_greedy(Alst, regime, xd, 5, timer=True)
486 print(J_greedy)
487

488 print(’\nRunning the combinatorial method:’)
489 J_comb = MP.Solve.combinatorial_method(Alst, regime, xd, timer=True, timeout=1)
490

491 regime_greedy = MP.Regime.switching_regime(xd, Alst, J_greedy)
492 for i, state in enumerate(regime_greedy):
493 state.append(i)
494 print(f’\nSolution with 5-greedy method: J = {J_greedy}’)
495 print(MP.String.regime_string(regime_greedy[10:]))

D.3. Simulation
This section contains the code for the simulation discussed in chapter 6. The code can be run through
the main.py file.

D.3.1. Simulation Initialisation
1 from classes import MaxPlus, eps
2 from functions import get_arcs
3

4 A_0 = [[eps, eps, eps, eps, eps, 12],
5 [10 , eps, 4 , eps, eps, eps],
6 [eps, eps, 6 , 9 , eps, eps],
7 [eps, eps, eps, eps, eps, 5],
8 [eps, 4 , eps, eps, eps, eps],
9 [eps, 8 , eps, eps, 4 , eps]]
10

11 def init_Omega():
12 Alst0 = [A_0]
13 arcs = get_arcs(A_0)
14

15 for arc in arcs:
16 i = arc[0]
17 j = arc[1]
18 A = MaxPlus.Operation.track_delay(A_0, (i,j), -1)
19 Alst0.append(A)
20 if A[i][j] >= 9:
21 A = MaxPlus.Operation.track_delay(A_0, (i, j), -1)
22 Alst0.append(A)
23

24 Alst1 = [A_0]
25 arcs = get_arcs(A_0)
26 for arc in arcs:
27 i = arc[0]

D.3. Simulation 93

28 j = arc[1]
29 A = MaxPlus.Operation.track_delay(A_0, (i,j), -1)
30 Alst1.append(A)
31

32 Alst2 = [A_0]
33

34 Omega = [Alst0, Alst1, Alst2]
35 return Omega

D.3.2. Simulation
1 from classes import MaxPlus as MP, eps, Probability, Statistics
2 from functions import count
3 from simulation_data import init_Omega, A_0
4 import matplotlib.pyplot as plt
5 import scipy.interpolate
6 import random
7

8

9 class Simulation:
10 def __init__(self):
11 self.Omega = None
12 self.J = None
13 self.regime = None
14 self.H = None
15 self.stoch = None
16 self.decouple = None
17

18 self.init_omega()
19 self.get_regime()
20 self.get_H()
21 self.init_prob()
22 self.init_decouple()
23

24 def init_omega(self):
25 done = False
26 while not done:
27 done = True
28 ret = input(’Allow Switching? (Y/N) ’)
29 if ret == ’Y’ or ret == ’y’:
30 self.Omega = init_Omega()
31 elif ret == ’N’ or ret == ’n’:
32 self.Omega = [[A_0]]
33 else:
34 print(’Invalid input’)
35 done = False
36

37 def get_regime(self):
38 self.J = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
39 ev, self.x0 = MP.Solve.power(A_0)
40 self.regime = MP.Regime.regime(self.x0, A_0, 10)
41

42 def get_H(self):
43 done = False
44 while not done:
45 done = True
46 ret = input(’Allow Shifting? (Y/N) ’)
47 if ret == ’Y’ or ret == ’y’:
48 self.H = [1, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0]
49 elif ret == ’N’ or ret == ’n’:
50 self.H = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
51 else:
52 print(’Invalid input’)
53 done = False
54

55 def init_prob(self):
56 empty_p = {’TD’: 0, ’SD’: 0, ’TF’: 0}
57 onset_p = {’TD’: 0.2, ’SD’: 1/12, ’TF’: 0.05}
58 sustain_p = {’TD’: 1/9, ’SD’: 0, ’TF’: 1/9}
59 TD_distr = {1: 1, 2: 2, 3: 1}

94 D. Python Code

60 SD_distr = {1: 2, 2: 1}
61 delay_distr = {’TD’: TD_distr, ’SD’: SD_distr}
62 done = False
63 while not done:
64 done = True
65 ret = input(’Allow Delays? (Y/N) ’)
66 if ret == ’Y’ or ret == ’y’:
67 self.stoch = [onset_p, sustain_p, delay_distr]
68 elif ret == ’N’ or ret == ’n’:
69 self.stoch = [empty_p, sustain_p, delay_distr]
70 else:
71 print(’Invalid input’)
72 done = False
73

74 def init_decouple(self):
75 done = False
76 while not done:
77 done = True
78 ret = input(’Allow (Restricted) Decoupling? (R/Y/N) ’)
79 if ret == ’Y’ or ret == ’y’:
80 self.decouple = [i for i in range(16)]
81 elif ret == ’N’ or ret == ’n’:
82 self.decouple = []
83 elif ret == ’R’ or ret == ’r’:
84 self.decouple = [0, 1, 5, 6, 7, 8, 9, 10, 14, 15]
85 else:
86 print(’Invalid input’)
87 done = False
88

89 def simulation(self, p, info=False, regime = False, seed=123, results=False):
90 random.seed(seed)
91 # print(f’Simulate: p = {p}’)
92 sim = MP.Simulation(self.x0, self.Omega, self.H, self.J, self.stoch, 16, ’P-Composite

’, p,
93 decouple=self.decouple, info=info)
94 sim.simulate()
95

96 DS = MP.Regime.delay_sequence(sim.regime, sim.equilibrium)
97 delays = sim.delays
98

99 if regime:
100 print(MP.String.regime_string(sim.equilibrium, integer=True))
101 print()
102 print(MP.String.regime_string(sim.regime, integer=True))
103 print()
104 print(MP.String.regime_string(DS, integer=True))
105 print()
106 print(MP.String.regime_string(delays, integer=True))
107

108

109

110 total_delay = []
111 for state in DS:
112 total_delay.append(sum(state))
113

114 if results:
115 print(f’Decoupled Trains: {sim.decoupled}’)
116 print(total_delay)
117 print(f’Cumulative Total Delay: {sum(total_delay)}’)
118 print(f’Maximum Total Delay: {max(total_delay)}’)
119 print(f’SD Total Delay: {Statistics.SD(total_delay)}’)
120

121 return total_delay, sim.decoupled
122

123 def simulation_various_p(self, rang, seed=123):
124 total_delay_array = []
125 decoupled_lst = []
126 for p in range(rang):
127 total_delay, decoupled = self.simulation(p, seed=seed)
128 decoupled_lst.append(decoupled)
129 total_delay_array.append(total_delay)

D.3. Simulation 95

130 print()
131

132 print(’p\t\tCTD\t\tMTD\t\tSDTD\t\t\t\t\tDT’)
133 for i, total_delay in enumerate(total_delay_array):
134 print(f’{i}\t\t{int(sum(total_delay))}\t\t{int(max(total_delay))}\t\t{Statistics.

SD(total_delay)}\t\t{decoupled_lst[i]}’)
135

136

137 p = 0
138 plt.figure()
139 for total_delay in total_delay_array:
140 x = [i for i in range(len(total_delay))]
141 xnew = [i/5 for i in range(len(total_delay)*5-4)]
142 xx = [i/5+6 for i in range(len(total_delay)*5-4)]
143 f = scipy.interpolate.interp1d(x, total_delay, kind=’cubic’)
144 plt.plot(xx, f(xnew), label=p)
145 plt.legend()
146 p+=1
147 plt.show()
148 return total_delay_array, decoupled_lst
149

150 def sample_simulation(self, p, time_check=False):
151 TD = []
152 CTD = []
153 MTD = []
154 SDTD = []
155 DT = []
156 for i in range(100):
157 if time_check and i%10 == 0:
158 print(f’{p}: Iteration {i}’)
159

160 total_delay, decoupled_lst = self.simulation(p, seed=i)
161 TD.append(total_delay)
162 CTD.append(sum(total_delay))
163 MTD.append(max(total_delay))
164 SDTD.append(Statistics.SD(total_delay))
165 DT.append(decoupled_lst)
166 return TD, CTD, MTD, SDTD, DT
167

168 # simulation_various_p()
169

170 def stat_run_sim(self, rang):
171 print(’p\t\tCTD\t\t\tMTD\t\t\tSDTD\t\t\t\t\tDT’)
172

173 ylst = []
174

175 for p in range(rang):
176 TD, CTD, MTD, SDTD, DT = self.sample_simulation(p, time_check=True)
177 print(p, end=’\t\t’)
178 print(Statistics.mean(CTD), end=’\t\t’)
179 print(Statistics.mean(MTD), end=’\t\t’)
180 print(Statistics.mean(SDTD), end=’\t\t’)
181 print(Statistics.mean(DT))
182

183 y = []
184 for i in range(len(TD[0])):
185 horizontal = []
186 for j in range(len(TD)):
187 horizontal.append(TD[j][i])
188 y.append(Statistics.mean(horizontal))
189

190 ylst.append(y)
191

192 plt.figure()
193 for p, y in enumerate(ylst):
194 x = [i for i in range(len(y))]
195 xnew = [i / 5 for i in range(len(y) * 5 - 4)]
196 xx = [i / 5 + 6 for i in range(len(y) * 5 - 4)]
197 f = scipy.interpolate.interp1d(x, y, kind=’cubic’)
198 plt.plot(xx, f(xnew), label=f’p = {p}’)
199 plt.xlabel(’Time (Hours)’)

96 D. Python Code

200 plt.ylabel(’Time (6 minutes)’)
201 plt.title(’The mean of \u0394(k) over 100 runs’)
202 plt.legend()
203 plt.show()
204

205 plt.figure()
206 for p, y in enumerate(ylst):
207 x = [i for i in range(len(y))]
208 plt.plot(x, y, label=f’p = {p}’)
209 plt.xlabel(’Time (Hours)’)
210 plt.ylabel(’Time (6 minutes)’)
211 plt.title(’The mean of \u0394(k) over 100 runs’)
212 plt.legend()
213 plt.show()
214

215

216 # for i in range(len(reg)):
217 # for j in range(len(reg[i])):
218 # print(f’{int(reg[i][j]-delays[i][j])}’,end=’’)
219 # if int(delays[i][j]) != 0:
220 # print(f’\\r+{int(delays[i][j])}\\\\’)
221 # else:
222 # print(’\\\\’)
223 # print()
224

225 # for i in range(len(DS)):
226 # for j in range(len(DS[i])):
227 # print(f’{int(DS[i][j])}\\\\’)
228 # print()

	Introduction
	Max-Plus Algebra
	Trains and Transfers
	The Max-Plus Algebraic Structure
	Properties of Max-Plus Algebra
	Max-Plus Matrices and Vectors
	Eigenvalues and Eigenvectors

	Generalising the Max-Plus Model
	Finding eigenvalues: The Power Method

	Switching Max-Plus
	Example of a Switching System
	Definitions
	Delayed Trains
	Timetable Improvements

	Delay Problems
	Solving the Problem: Every Possibility
	The Combinatorial Method
	The Minimal Solution
	Computational Restrictions

	Sub-Optimal Methods
	The Greedy Delay Resolution Method
	The Composite Greedy Delay Resolution Method
	Time Complexity

	Calamity management: Decoupling
	Severe Delays
	Decoupling Conditions
	Structural Decoupling
	Early Departures

	Network Design

	Multi-Switching Max-Plus
	Freight Train Obstruction
	Departure Score
	Modelling Delays
	Delayed Classes
	Anterior and Posterior Indexing
	Delays in Simulations
	Implementation of Adjacency Classes

	The Scoring Problem

	Simulating Train Networks
	The Simulated Network
	Implementing Dynamic Delays
	Modelling Random Delays
	Probabilistic Parameters
	Example Delayed Sequences

	Applying Delay Resolution
	Speed Up and Decoupling Restrictions
	Resolution Evaluation Criteria
	Results

	Conclusion
	Max-Plus Modelling Results
	Delay Resolution Results
	Network Simulation Results
	Overall Results
	Further Research

	Residual Proofs and Derivations
	Max-Plus Algebra
	Switching Max-Plus
	Delay Problems

	Decoupling
	Severe Delays
	Decoupling Criteria
	Rush Hour Modelling
	Modelling Rush Hour
	Transitioning to Rush Hour
	Method Parameters

	Systems and Control for Max-Plus Algebra
	Max-Plus, Systems and Slow-Downs
	Slowing Down instead of Speeding Up
	State Controller
	Delay Resolution and Control

	Python Code
	Classes and Functions
	Classes
	Functions

	Examples
	Simulation
	Simulation Initialisation
	Simulation

