
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

A Comparative Study
of Threshold
Multiparty Private Set
Intersection Protocols
for Cyber Threat Intelligence Sharing in a Medical
Setting

Chelsea Guan

A Comparative Study of
Threshold Multiparty

Private Set Intersection
Protocols

for Cyber Threat Intelligence Sharing in a
Medical Setting

by

Chelsea Guan
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday July 2, 2024 at 10:00 AM.

Student number: 5695481
Project duration: November 14, 2023 – July 2, 2024
Thesis committee: Dr Z. Erkin, TU Delft, supervisor

Dr G. Migut, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Thesis contents were enhanced with the assistance of ChatGPT

http://repository.tudelft.nl/

Abstract

Within the field of cyber threat intelligence (CTI), healthcare institutions are one of the most
targeted organizations by cybercriminals. To mitigate future attacks on their digital infrastruc-
tures, healthcare institutions can collaborate and exchange security logs. These logs include
data such as IP addresses, malware hashes, and other indicators of compromise. By identi-
fying shared elements across different datasets, threats that are harmful to a greater number
of organizations—and thus, pose a more significant risk—can be highlighted to detect com-
mon attack patterns. These attack patterns could then provide insight into understanding how
cyber criminals operate on a larger scale. However, disclosing locally collected CTI could
compromise a hospital’s security posture and reputation since it reveals vulnerabilities or at-
tack techniques used by hackers. Furthermore, this cyber threat data is often sensitive. That
is why the threat data needs to be shared in a privacy-preserving manner. Multiparty private
set intersection (MPSI) is a solution that allows parties to find the intersection of all their sets
without learning anything of the other inputs. Although, in many cases, the condition that an
element be present in all sets is too restrictive. A potential threat is still worth investigating
even if it only appears in a portion of sets. Therefore, we focus on threshold multiparty private
set intersection (T-MPSI). However, not all T-MPSI schemes perform equally depending on
the context. Our goal is to determine what makes a T-MPSI protocol effective for application
in medical CTI sharing. To do so, we analyze four state-of-the-art T-MPSI protocols in terms
of security, theoretical communication and computational complexities, and practical runtime
performance.

i

Preface

This thesis marks the end of my two short yet memorable years at TU Delft, during which I
was lucky enough to meet many wonderful people.

First, I wish to extend my heartfelt gratitude to my thesis supervisor, Dr. Erkin, for his
guidance and encouragement throughout the process. It was during his Security and Cryp-
tography course in my first quarter in Delft that I developed an interest for the field, ultimately
leading me to write my thesis under his supervision.

Additionally, I would like to thank the entire CYS group for fostering such a pleasant envi-
ronment for learning and socializing with the guest talks, birthday cakes and coffee chats in
Echo CS offices. I am particularly grateful to Jorrit, my daily supervisor, for discussing ideas
with me and providing valuable feedback. Thanks also to Tianyu, Florine and Jelle for their
helpful suggestions over these past months. And, of course, my thesis experience would not
have been as enjoyable without the company of the other master’s students, Dāvis, Prakhar,
Vojta, Juno, Dan.

Special thanks to Alex, Bogdan, Matteo, Bobe, Roy and Hendy for making my university
experience here extra fun. I hope we can still have our lunches, dinners and various outings
together post-graduation.

Last but not least, I want to express my deepest appreciation to my friends and family back
home for their unconditional love, my parents and grandparents especially, whose unwavering
support has been the cornerstone of all my successes.

Chelsea Guan
Delft, June 2024

And a small shoutout to my dog for being my dog.

ii

Contents

1 Introduction 1
1.1 Cyber Threats to the Medical Domain . 1
1.2 Cyber Threat Intelligence . 2
1.3 Multi-Party Private Set Intersection . 4
1.4 Application in a Hospital Setting . 5
1.5 Research Challenge . 5
1.6 Contributions . 5
1.7 Outline . 6

2 Preliminaries 7
2.1 Security Models . 7

2.1.1 Semi-Honest Security . 7
2.1.2 Malicious Security . 7

2.2 Set Representations . 8
2.2.1 Bloom Filters . 8
2.2.2 Cuckoo Hashing . 9

2.3 Cryptographic Tools . 10
2.3.1 Secret Sharing . 10
2.3.2 Homomorphic Encryption . 11
2.3.3 Oblivious Transfer . 13
2.3.4 Oblivious Pseudorandom Functions . 13

3 Related Work 14
3.1 Comparative Studies of PSI Protocols . 14
3.2 Comparisons of T-MPSI Protocols . 16

4 Methodology for Qualitative Comparison 18
4.1 Gathering Relevant Studies . 18
4.2 Selection Criteria for T-MPSI Studies . 19

5 Qualitative Analysis 21
5.1 T-MPSI Protocol by Kissner and Song . 21
5.2 T-MPSI Protocol by Mahdavi et al. 22
5.3 T-MPSI Protocol by Chandran et al. 23
5.4 T-MPSI Protocol by Bay et al. 24
5.5 Summary of Qualitative Comparison . 26

6 Setup for Quantitative Comparison 27
6.1 Selecting Protocols for Quantitative Comparison 27
6.2 Initial Configuration and Implementation . 27
6.3 Implementation with Parallelization . 29

7 Quantitative Analysis 30
7.1 How the Number of Parties m Affects Runtime 30
7.2 How the Maximum Number of Elements Per Set n Affects Runtime 31

iii

Contents iv

7.3 How the Intersection Threshold T Affects Runtime 32
7.4 Effects of Parallelization . 32
7.5 Additional Practical Performance Comparison 33

8 Extension 36
8.1 Protocol Description . 36
8.2 Implementation . 36

9 Discussion and Future Work 37
9.1 Discussion . 37
9.2 Limitations . 38
9.3 Future Work . 38
9.4 Conclusion . 39

A Results of our Initial Collection of Threshold PSI Studies. 46

B Bash Script for Running the Protocol by Mahdavi et al. 47

C Proof that Intermediate Results Can Be Leaked 49

D Bash Script for Running the Extension 51

E Execution Times of the Implementations for the [28] and [26] T-MPSI Protocols 52

1
Introduction

With the rapidly changing cyber threat landscape, advancements in cyber threat intelligence
(CTI) must continue to be made to keep up with the evolving tactics of attackers. Threats
range from ransomware attacks that lock access to critical patient records to phishing cam-
paigns aimed at stealing sensitive data. One of the most targeted sectors is healthcare. In
the past year in the EU, incidents concerning healthcare centres account for 8% of the total
number, making it the third most attacked sector after public administration and targeted indi-
viduals [1]. The digitalization of medical files, the use of networked medical devices—internet
of medical things—and the increasing reliance on cloud services have collectively enhanced
the efficiency and accessibility of healthcare services [2]. This digital transformation has also
expanded the attack surface for criminals. Cyber attacks on hospitals and other similar institu-
tions are not just prevalent but increasingly sophisticated, leveraging the vulnerabilities in the
interconnected ecosystems of hospitals [2, 3]. Furthermore, health data is especially targeted
since they have more monetary value than other types of data. Indeed, financial gain was the
objective of 83% of the threat actors, most of which are cyber criminals [4]. Medical records
contain enough personal information to commit identity theft, allowing malicious users to ac-
cess healthcare services and medications, open bank accounts, as well as acquire passports
in the victims’ names [4, 3].

1.1. Cyber Threats to the Medical Domain
The strategy primarily employed by these criminals is ransomware, a type of malware de-
signed to block access to a computer system or to encrypt files on the system until a ransom
is paid to the culprit. A notable ransom attack, WannaCry, occurred in 2017. The perpetrators
exploited a Windows vulnerability to infect over 200,000 computers across at least 16 health-
care institutions, encrypting their data in exchange for ransom [5]. Recently, the phenomenon
of ransomware-as-a-service has become increasingly problematic as it enables even more
attackers to target hospitals. In this business model, developers of ransomware market their
code to other individuals with malevolent intentions but who lack the technical skills to write
the malicious software themselves. These buyers or subscribers are denoted affiliates [6].

Distributed denial-of-service attacks are also a prime tactic threat actors use. These at-
tacks disrupt the normal traffic of a victim by leveraging multiple compromised systems—e.g.,
computers and IoT devices—to send traffic to a single victim. This generates a level of demand
that overwhelms the victim’s ability to respond, leading to service degradation or complete ser-
vice unavailability for legitimate users [7]. Consequently, a distributed denial-of-service attack
on software-enabled medical equipment or on websites critical for coordinating vital operations

1

1.2. Cyber Threat Intelligence 2

can thus interrupt business continuity by preventing patients and staff from accessing these
essential resources [4].

These attacks have detrimental effects on society. Firstly, as mentioned previously, they
lead to the disruption of critical services, thereby hindering access to electronicmedical records,
diagnostic services, and other essential healthcare operations. Such disruptions can cause
delays in patient care, lead to the cancellation of procedures, and in severe instances, may
jeopardize patient safety [4]. Secondly, breaches resulting in stolen confidential files are es-
pecially harmful in the health sector because of the sensitivity of healthcare data. A patient’s
medical record contains personal information like their name, date of birth, details of their insur-
ance provider, as well as health and genetic data. Once such private information is exposed,
it becomes impossible to reclaim privacy or to mitigate the psychological and social damages
inflicted [8]. Finally, the financial losses incurred by such cyber threats are substantial. These
include the ransom payment, attack remediation costs, incident handling costs, legal fees,
etc. [4].

1.2. Cyber Threat Intelligence
Therefore, the role of CTI in protecting hospitals has never been more important. CTI in-
volves the collection, analysis, and dissemination of information about potential or current
cyber threats and vulnerabilities [9]. The enhanced situational awareness supplied by this
data allows for proactive defence, risk management and rapid incident response. It provides
insights into evolving threats, enabling organizations to prioritize security measures and allo-
cate resources effectively [10]. IBM [11] identifies three main types of threat data:

• Tactical threat intelligence revolves around indicators of compromise (IoCs) such as
infected IP addresses, malware hashes, domain names of botnet command and control
servers, and email headers indicative of a phishing attack. In addition to helping con-
figure security tools and systems which block or detect the latest known threats, it also
assists threat-hunting teams in uncovering hidden adversaries.

• Operational/Technical threat intelligence focuses on the tactics, techniques, and pro-
cedures (TTPs) employed by cyber criminals. This includes information about their at-
tack methods, their objectives and the security weaknesses they leverage. This contex-
tual data helps organizations anticipate and prepare for specific types of threats.

• Strategic threat intelligence involves trends in cyber threats, geopolitical developments
affecting cyber security, emerging technologies as well as their potential security implica-
tions. It provides a high-level view of the threat landscape for executives without a tech-
nical background, thereby enabling them to make informed decisions about resource
allocation, risk management, and compliance.

Hospitals can even further improve their preemptive and reactive cyber security measures
by sharing CTI, allowing organizations to make informed decisions to protect patient data and
critical healthcare services. As cyber security threats evolve, the ability to share known threats
becomes more important, to the point where stakeholders can be held accountable for failing
to share information that could have prevented a breach. The primary goal of CTI sharing is to
foster situational awareness among stakeholders, enabling them to collectively mitigate future
attacks and strengthen their defences against the ever-changing cyber threat landscape [12].

By identifying shared elements across different security logs, threats that are harmful to
a greater number of organizations—and thus pose a more significant risk—are highlighted to
detect common attack patterns. For instance, multiple institutions may keep a list of suspected
malicious IP addresses. By comparing these suspicious IPs, they are able to narrow down
their search for the culprit. Once they do, they can collectively block this IP and enhance their

1.2. Cyber Threat Intelligence 3

defences against the associated malware. Another example is when several organizations
share TTPs, they find that the same vulnerability in a common software was exploited. Thanks
to this insight, they can prioritize patching that vulnerability to avoid potential breaches against
this specific attack vector.

However, information related to CTI is often personal and protected. For instance, un-
der the General Data Protection Regulation, a set of data protection rules in the European
Union and the European Economic Area, an IP address is considered personally identifiable
information [13]. Disclosing locally collected CTI could compromise a hospital’s security pos-
ture by unintentionally advertising vulnerabilities in their systems or attack techniques used
by hackers, potentially inviting further exploitation by other malicious actors aware of these
weaknesses. Moreover, public knowledge of past breaches may erode patient trust, affecting
a hospital’s reputation for safeguarding sensitive health information [14]. For these reasons,
the exchange of threat data must be done in a privacy-preserving manner to avoid leaking any
additional information.

Anonymization is one of many ways to integrate privacy protections into CTI data handling.
Anonymization describes the process of modifying a dataset so that individual records can-
not be linked back to a single person. This is achieved by removing or altering personally
identifiable information such as names, addresses, social security numbers, and other unique
identifiers. One technique is K-anonymity which ensures that each record is indistinguishable
from at least K − 1 others, making it harder for attackers to re-identify individuals based on
the published information [15]. The prime objective of anonymization is to prevent the identi-
fication of these individuals from shared data. Differential privacy (DP) is another technique
to ensure the privacy of individuals within a dataset [16]. It provides strong guarantees that
the output of a computation cannot be used to infer much about any individual’s data in the
dataset by adding noise to the data or the computation’s results. Once the CTI records have
been anonymized or noise has been added, organizations can exchange this data without
compromising individual privacy. While anonymization and DP effectively protect the privacy
of the data subjects whose personal information is included in the dataset, it is equally impor-
tant to protect the privacy of the data owners. Data owners are the organizations which collect,
manage, and share threat intelligence. If adversaries can trace the owner of the shared CTI
information, they might exploit this knowledge for targeted attacks. Identifying the sources of
CTI also exposes these entities to reputational damage if the information is leaked.

A solution that considers the privacy of the data owners is secure multiparty computation
(MPC). In MPC, various parties perform calculations over their private inputs without revealing
said inputs [17, 18]. MPC would allow multiple hospitals’ CTI teams to pool their threat intel-
ligence to find only the common risks without disclosing any additional vulnerabilities unique
to their respective datasets, thereby preserving the privacy of the data owners. The privacy
of the data subjects is taken into account as well, since when executed correctly, MPC should
only expose records belonging to every participating hospital’s CTI dataset, i.e., records relat-
ing to the shared threat. Other users’ data should remain confidential. By differentiating and
addressing the privacy needs of data subjects and owners, comprehensive protection can be
achieved, ensuring both individual privacy and organizational security.

MPC computes precise results without altering the input data. In contrast, because anonymiza-
tion and DP must modify the input datasets to ensure privacy before performing computations
over them, they produce approximate results, reducing utility. The accuracy of the intersection
set is crucial because it ensures that only relevant threat intelligence is identified and acted
upon, minimizing false positives and focusing efforts where they are most needed. MPC also
provides robust security guarantees security in different adversarial models depending on the
trustworthiness of parties. In the semi-honest model, participating parties are curious, i.e., they

1.3. Multi-Party Private Set Intersection 4

try to find out as much about the other private sets as they can, but honest, i.e., they do so
while following the protocol faithfully [19]. In the malicious model, corrupt parties may deviate
from the protocol in an attempt to learn more about the other party’s set. They can abort the
protocol early and substitute their local inputs [19]. Designing protocols that are secure in the
malicious model is generally more complex and computationally expensive than those secure
under the semi-honest model. Still, they provide stronger security guarantees, making them
essential for applications requiring high levels of trust and security.

1.3. Multi-Party Private Set Intersection
Multiparty private set intersection (MPSI), a type of MPC, is a cryptographic protocol that al-
lows multiple parties to collaboratively compute the intersection of their private sets without
revealing any additional information about the other elements of the sets [20]. It is an ex-
pansion of the two-party private set intersection (PSI) first introduced in 2004 by Freedman
et al. [21]. Since then, MPSI has evolved significantly in terms of efficiency, scalability, and
security. Early schemes were computationally intensive and not scalable for large sets. Over
the years, researchers have introduced more efficient protocols that reduce computation and
communication costs, making MPSI practical for large datasets of up to 220 items between 32
parties [22].

One of its potential applications is in targeted advertising, where many stores may wish
to collaborate in a joint promotional campaign [23, 20]. They would need to determine the
customers they have in common while ensuring the privacy of other clients is not compro-
mised. Other applications of MPSI include setting a suitable meeting time between private
calendars [24], securely identifying mutual contacts in messaging apps [25], private contact
tracing of infectious diseases [26, 22], and of course, usages in cyber security such as CTI
incident information sharing [25] or collaborative intrusion detection [22].

The requirement in MPSI that an element must be present in all sets to appear in the
output may not fit every scenario. In our application of CTI sharing, this condition is overly
restrictive. Consider, for example, five hospitals privately sharing CTI in order to determine
which of the suspected IPs are most likely to be malicious. If the same IP address appears
in every set, then there is a high probability that it is a threat. Furthermore, even if it is not
found in all the sets but in a large enough number, e.g., four out of the five datasets, then it is
still worth investigating. Therefore, in this situation, the participating parties should calculate
the intersections of subgroups of four sets rather than the absolute intersection. This type
of intersection of subgroups is called threshold MPSI (T-MPIS). T-MPSI is an MPSI protocol
which returns items present in a minimum number of sets as specified by the threshold, T [27,
28, 26]. In some papers, it is referred to as over-threshold MPSI (OT-MP-PSI) [28], d-and-over
MPSI [23] or quorum PSI (qPSI) [29]. Note that there are many other definitions of T-MPSI
which complicates research in the field. Alternatively, the threshold can denote the minimal
cardinality of the intersection [30, 31] where the result of the intersection is only outputted if the
size is large enough. The threshold can also denote the maximal difference between private
set sizes [32]. Both these definitions are convenient for cases where the intersection is only
worth computing if the parties have enough in common, e.g., in ride-sharing, where a group of
people will only opt to carpool if the route they would share is long enough. To avoid confusion,
from now on, we refer to these other types of threshold PSI protocols as T’-MPSI.

Even within this definition of T-MPSI, there are multiple perspectives to computing the
output intersection:

• T-MPSIindividual: A party iwishes to obtain the elements of their set i that are also present
in at least a threshold T−1 of the other n−1 parties’ sets [27, 23, 26, 29]. This is denoted
as ”threshold contribution” by Kissner and Song in [27].

1.4. Application in a Hospital Setting 5

• T-MPSIall: Similar to T-MPSIindividual, except that at the end of the protocol, every party
learns which elements are in their private set and at least T − 1 other sets [28]. It is
equivalent to computing the T-MPSIindividual for every party i.

• T-MPSIcollective: All players learn which elements appear at least a threshold number of
times T in the combined private input of the players [27]. This is denoted as ”perfect
threshold” by Kissner and Song in [27].

1.4. Application in a Hospital Setting
Although many constructions are proposed for T-MPSI, it remains unclear which would be
best suited for the specific use case of CTI sharing among healthcare institutions. Imple-
menting a T-MPSI protocol that is convenient for CTI sharing between hospitals necessitates
addressing requirements unique to the healthcare environment. Therefore, several assump-
tions are made for practicality. We begin by defining specific roles for the entities involved.
The participating parties in the T-MPSI protocol are hospitals—more specifically, the IT and
security teams hired by those hospitals, which are presumed trustworthy. Given this assump-
tion, it suffices that the construction be secure under a semi-honest threat model. Another
requirement is that the T-MPSI protocol should perform efficiently in a star network topology.
Implementing the protocol in a star topology is desirable since most systems are designed
with a client-server architecture facilitating deployment. In this communication structure, each
assistant shares a bidirectional communication channel with the leader but none with the other
assistants [24]. This minimizes the number of communication channels needed. The maxi-
mum redundancy offered by mesh topology when malicious parties refuse to communicate is
not necessary since parties are trusted hospitals. The exchange of CTI between healthcare
institutions would occur between a smaller number of parties, m, but each party would have
a large number of elements, n, the elements being the CTI data comprising of IoCs, TTPs,
etc. Consequently, the solution should scale well when n is much bigger than m. Lastly, to
ensure broad accessibility among health centres, we require that the protocol be able to run
on a system with the computational power of a high-end laptop.

1.5. Research Challenge
Design choices such as the security model, the set representation and the algorithm for com-
puting the intersection all affect the usability of the T-MPSI protocol in a medical setting. The
specific demands of healthcare CTI sharing underline the need for an in-depth analysis that
evaluates the performance and security of these protocols. This leads to our research ques-
tion:

How can we identify the best method to efficiently compute the threshold intersection of
hospitals’ CTI datasets in a privacy preservingmanner to identify recurring cyber threats?

Although there have been many T-MPSI protocols introduced in recent years [26, 29, 28, 33,
34], there have not been—to the best of our knowledge—any dedicated works comparing
various T-MPSI constructions. This lack of comparison studiesmakes it more difficult to identify
a suitable protocol for our specific use case. Furthermore, a problem in the field of threshold
PSI is the lack of a standardized definition, which makes finding relevant research difficult.

1.6. Contributions
To address this gap, we conduct a comparison study of the state-of-the-art T-MPSI protocols
to highlight each protocol’s key features and its applicability to a hospital setting. Our contri-
butions are as follows:

1.7. Outline 6

1. We present a qualitative analysis of four state-of-the-art T-MPSI protocols, taking into
consideration the unique circumstances and stakeholders of the medical setting.

2. We conduct a more in-depth practical performance evaluation of two state-of-the-art T-
MPSI protocols, [28] and [26] by implementing the protocols and performing runtime
experiments under chosen parameters.

3. We find that [28] is more efficient for smaller numbers of parties and thresholds,m = 5, 6
and T = 2, 3, and [26] is more efficient for larger number of parties and thresholds,
m = 7, 8, 9 and T = 4, 5. However, no existing T-MPSI protocol is efficient enough to be
applied in CTI sharing since threat datasets contain millions of rows, but the compared
protocols scale poorly for numbers of elements beyond n = 4096.

4. As of now, T-MPSIindividual and T-MPSIcollective protocols are not directly comparable in
terms of computational and communication complexities. Therefore, we show a generic
composition that can be applied to any T-MPSIindividual type protocol to turn it into a T-
MPSIcollective type protocol. Unifying both variants of T-MPSI would broaden the oper-
ational scope of the T-MPSIindividual protocols since we demonstrate that the execution
times of the modified protocol are still practical.

1.7. Outline
The remainder of the thesis is structured as follows. Chapter 2 covers the necessary back-
ground to understand the cryptographic protocols and their security guarantees. Chapter 3
provides an overview of the previous works in comparing various MPSI and T-MPSI schemes.
Chapter 4 details the methodology for conducting the qualitative comparison of state-of-the-art
T-MPSI constructions. Chapter 5 discusses the qualitative analysis for four of these construc-
tions. Chapter 6 goes over the implementation details of two out of the four protocols. Chap-
ter 7 compares them in terms of runtime speed. Chapter 8 demonstrates how we can extend
any T-MPSIindividual protocol into a T-MPSIcollective protocol. Finally, Chapter 9 discusses the
results, proposes possible future works in the domain and concludes the thesis.

2
Preliminaries

We now introduce the necessary background and definitions for understanding the T-MPSI
protocols we are comparing. It includes an overview of different security considerations under
semi-honest and malicious models, methods for representing sets in computations, and the
cryptographic primitives that enable secure multiparty computation.

2.1. Security Models
This section introduces the security models used to evaluate the safety and integrity of cryp-
tographic protocols. The security model defines the assumptions under which the system is
analyzed, outlines the capabilities of potential adversaries and establishes the goals of se-
curity measures—all of which are essential for assessing the applicability and strength of a
protocol in various real-world scenarios.

2.1.1. Semi-Honest Security
The semi-honest security model is also referred to as ”honest-but-curious” or ”passive” secu-
rity. In this security model, adversaries might collude to attempt to learn as much information
as they can, i.e., curious, but they do so while following the protocol faithfully, i.e., honest
[19, 35]. Although semi-honest parties correctly perform all computational instructions and
communication requirements, they still try to derive extra knowledge about the honest parties’
private sets by analyzing the timing, size, and pattern of messages they legitimately receive
during the protocol execution, including intermediate computations and received messages.

In this model, the focus is on ensuring that even though parties may attempt to learn addi-
tional information, the protocol itself limits the leakage of sensitive data.

2.1.2. Malicious Security
In the malicious security model, corrupt parties may deviate from the protocol in an attempt to
learn more about the other parties’ set. They can abort the protocol early, alter their local inputs
or perform any other actions that could potentially compromise the integrity or confidentiality
of the computation [19]. For instance, a dishonest party could alter their input by adding fake
elements that they speculate might be in the honest parties’ sets. This would allow them to
verify their guesses based on the intersection results, effectively learning information outside
the scope of the protocol. Protocols designed under this model incorporate mechanisms to
detect and mitigate such behaviours.

Designing secure protocols in the malicious model is generally more complex and compu-
tationally expensive than those secure under the semi-honest model, but they provide stronger

7

2.2. Set Representations 8

security guarantees, making them essential for applications requiring high levels of trust and
security [26].

2.2. Set Representations
In this section, we present common set representations used in the cryptographic protocols
which we will be evaluating.

2.2.1. Bloom Filters
Bloom filters (BFs) are a probabilistic data structure designed for rapid set membership queries
with a constant time complexity, independent of the number of elements in the set. Conceived
by Burton Howard Bloom in 1970 [36], the main advantage of a BF is its extreme space effi-
ciency compared to other data structures like hash tables, lists, or trees. However, this comes
at the cost of potentially yielding false positives. This error rate can be adjusted; a larger bit
array and more hash functions reduce the probability of false positives but consume more
space and use more computation during insertions and queries. BFs do not produce false
negatives—if any bit is not set to 1, it indicates that the element was never added.

A BF, denoted as BF = (BF [0], . . . , BF [j], . . . , BF [m − 1]), represents a set S with a
maximum of n elements within a binary vector of lengthm. It is implemented using a bit array of
m bits, all initially set to 0. k randomly chosen hash functions are used to uniformly map some
set element to one of the m positions. These hash functions are denoted as h1, h2, . . . , hk,
where each hi : {0, 1}∗ → {0, 1, . . . ,m− 1}.

The key functionalities of BFs are as follows:

• Adding an element x: The element x is hashed by each of the k hash functions, and
the correspondingm positions in the bit array are set to 1. The insertion process ensures
that the BF can represent the presence of all elements in S without storing the elements
themselves, thereby achieving significant space savings (space-efficient solution).

• Verifying the presence of an element: To query an item, we hash it with the same hash
functions, and the bits at the resulting positions are checked. If any of the bits are 0, the
element is definitely not in the set. If all are 1, the element might be in the set with a
probability of pk,n,m, where pk,n,m is the false positive rate for a BF with k hash functions
and at most n elements per bit array of size m.

A false positive occurs when all k bits for a non-existent element are set to 1. We can estimate
the upper bound for the probability of this event occurring. Bay et al. use the upper bound
estimation of the false positive probability introduced by Bose et al. [37], which is what we will
present here.

We define p as the probability that a particular bit in the BF is 1, which is expressed by the
following equation,

p
def
= Pr(Bi = 1)1−

(
1− 1

m

)kn

. (2.1)

The upper bound false positive probability ϵ can thus be modelled by

ϵupper = pk

(
1 +O

(
k

p

√
lnm− k ln p

m

))
, (2.2)

where k is the number of hash functions, n is the number of elements, m is the size of the bit
array and p is the probability that a certain bit is set to 1, as observed above.

2.2. Set Representations 9

The lower bound is represented by
ϵlower = pk. (2.3)

Then, the false positive rate of a BF, pk,n,m , is

pk ≤ pk,n,m ≤ pk

(
1 +O

(
k

p

√
lnm− k ln p

m

))
. (2.4)

Since we want to limit the size of the false positive rate, we ensure that m and k follow the
following relations:

• Lower bound for bit array size m:

m ≥ n log2 e · log2
1

ϵ
(2.5)

where e is the base of the natural logarithm.

• Optimal number of hash functions k:

k =
m

n
ln 2 (2.6)

If we decide to set m to its smallest possible value, i.e., the lower bound from 2.5, k would be
equal to:

k = log2
1

ϵ
(2.7)

For example, k = 40 hash functions are required to achieve a maximum false positives rate
of ϵ = 2−40.

Bay et al. also utilize encrypted Bloom filters (EBFs), as described by Davidson et al.
in [38]. EBFs use cryptographic methods to encrypt each bit. More formally, given the BF of
a set S, BF [j], its EBF is EBF [j] = Encpk(BF [j]), where pk represents the public key of a
public key encryption (PKE) scheme. Public key cryptography uses two keys, a public key and
a private key, for encryption and decryption processes [39]. The public key is shared openly,
allowing anyone to encrypt messages, while the private key is kept secret by the recipient to
decrypt these messages securely.

2.2.2. Cuckoo Hashing
The Cuckoo hashing scheme [40] uses two or more hash functions and typically has two tables
for storing items. It provides worst-case constant lookup time, as well as amortized constant
time for insertions and deletions.

Cuckoo hashing scheme is named after the cuckoo bird’s behaviour of hijacking other
birds’ nests and removing the latter’s eggs from their nests. When inserting an element, the
algorithm checks the first hash function’s position. If it is empty, the element is placed there.
If not, the element that was there is moved to an alternative position according to its second
hash function, potentially displacing another element in turn. This process continues until all
elements have found a place, or a loop is detected. In the latter case, the table is rebuilt with
new hash functions or expanded to make room for more elements.

Its approach to collision resolution ensures that the hash table remains with high space
efficiency and balanced load. However, the insertion process can be complex due to poten-
tial cyclic displacements, requiring careful implementation and occasionally necessitating a
rehash of the entire table.

2.3. Cryptographic Tools 10

Cuckoo hashing is a highly efficient hashing scheme used to resolve collisions in hash
tables with guaranteed high performance in lookup, deletion, and insertion operations. It em-
ploys multiple (K) hash functions, denoted as h1, h2, . . . , hK , which map m elements into β
bins.

Cuckoo hashing uses K random hash functions h1, . . . , hK : {0, 1}σ → [β] to map m
elements into β bins.
The algorithm for insertion into a bin is presented below:

• Insertion into an empty bin: When inserting an element x, hash functions are applied
to determine potential bins for placement:

– The element is placed in the first available bin hi(x) for i ∈ [K] according to lexico-
graphic order.

– If no bins are empty, a random bin is selected among hi(x). The current item in the
bin is evicted and replaced with x.

• Handling evictions: If an item is evicted, the displaced item is then inserted using the
same method, potentially causing a series of evictions. This process continues until
all items are successfully placed or a set threshold of relocations is reached. If this
threshold is exceeded, it results in a failure to insert, indicating that an element could not
be accommodated after multiple attempts.

This failure signifies the existence of an element that did not map to any of the bins. Some
variants of Cuckoo hashing maintain a set or a ”stash” to store such elements. Stash-less
cuckoo hashing is where no special stash is maintained. Our protocols can be extended to the
setting with stash. While traditional Cuckoo hashing schemes may employ a stash to handle
elements that cannot be placed after multiple relocations, stash-less variants eliminate this
feature. Such adaptations are critical in maintaining operational efficiency and are commonly
used in modern protocols, particularly in MPSI applications.

Experimental analyses have shown that the failure probability of Cuckoo hashing can be
significantly low when parameters are chosen correctly. For instance, with K = 3, 4, 5 hash
functions and β values of 1.27m, 1.09m, 1.05m respectively, the failure probabilities can be
maintained at extremely low levels (e.g., at most 2−40).

2.3. Cryptographic Tools
This section explains the encryption schemes and other cryptographic techniques used in the
T-MPSI protocols that we will analyze.

2.3.1. Secret Sharing
Secret sharing is a method for distributing a secret amongst a group of participants, each of
whom is allocated a share of the secret. The original secret can be reconstructed only when
a sufficient threshold number of shares are combined. Below this threshold, no information
about the secret can be learned. In particular, Shamir’s secret sharing [41] is a commonly
used secret sharing scheme based on the mathematical concept of polynomial interpolation,
specifically Lagrange interpolation.

The steps of secret sharing are as follows:

1. Defining a secret: To distribute a secret S, choose a random polynomial f(x) of degree
t− 1 such that f(0) = S. The coefficients of the polynomial are chosen randomly from a

2.3. Cryptographic Tools 11

finite field Fp, where p is a prime number larger than the total number of shares and the
secret.

f(x) = S + a1x+ a2x
2 + · · ·+ ak−1x

k−1. (2.8)

2. Generating shares: Generate n shares from the polynomial by evaluating f(x) at n
distinct non-zero points. Each share corresponds to a point on the polynomial,(x, f(x))
for participants i = 1, 2, . . . , n.

3. Reconstructing the secret: The secret S can be reconstructed by any threshold t or
more shareholders by interpolating the polynomial f(x) at x = 0 using their shares. The
core of Shamir’s method lies in the polynomial interpolation formula:

S = f(0) =
t∑

i=1

yi
∏
j ̸=i

xj
xj − xi

mod p, (2.9)

where (xi, yi) are the shares used in the reconstruction.

2.3.2. Homomorphic Encryption
Homomorphic encryption(HE) is a type of encryption that allows computations to be carried
out on ciphertexts. The result is an encrypted result which, when decrypted, corresponds
to the output of operations performed on the plaintexts. This characteristic allows for the
secure processing of confidential information without giving access to the underlying data.
Partially homomorphic encryption is a type of HE that allows unlimited operations, but only of
a single kind. For example, additive homomorphic encryption supports the addition operation
on ciphertexts.
More formally, homomorphic encryption can be defined as follows. For any two plaintexts m1

andm2, and a binary operation ◦ defined over the plaintext space, there exists a corresponding
operation ⋆ defined over the ciphertext space such that:

Dec(Enc(m1) ⋆ Enc(m2)) = m1 ◦m2. (2.10)

The Paillier cryptosystem, introduced by Pascal Paillier in 1999 [42], is a popular asymmet-
ric encryption algorithm known for its homomorphic properties, specifically its additive homo-
morphic encryption scheme. This allows for the encrypted sums of plaintexts to be computed
directly on the ciphertexts. It also supports the multiplication of an encrypted number by a
plaintext number without decryption. Furthermore, it is a probabilistic scheme, generating dif-
ferent ciphertexts for the same plaintext, thereby making it secure against chosen plaintext
attacks.

The main advantage of the Paillier cryptosystem is its simplicity and robustness in sup-
porting additive operations on encrypted data. It is computationally more efficient than fully
homomorphic schemes for tasks that require additive properties only.

It relies on the decisional composite residuosity assumption which states that given a com-
posite n and an integer z, it is hard to determine if z is an n-residue modulo n2. In other words,
it is hard to find a number y such that

z ≡ yn mod n2. (2.11)

We provide the core steps of the Paillier encryption and decryption processes below:

1. Key generation:

2.3. Cryptographic Tools 12

• Select two large prime numbers p and q.
• Compute N = p× q and λ = lcm(p− 1, q − 1).
• Select a random integer g where g is in the set Z∗

n2 .
• Ensure that g has an order that is a multiple of n in Z∗

n2 .
• Publish the public key pk = (N, g) and keep the secret key sk = (p, q) private.

2. Encryption: To encrypt a plaintext message x using the Paillier cryptosystem, compute

Enc(x) = gxrN mod N2 , (2.12)

where g is a generator in the group, r is a random number less than N , and N is part of
the public key.

3. Decryption: Given a ciphertext C, it is decrypted using

Dec(C) =

(
L(Cµ mod N2)

L(gµ mod N2)

)
mod N , (2.13)

where L is a function defined as L(x) = x−1
N , and µ is related to the private key or an

intermediate calculation necessary for decryption.

For scenarios requiring distributed trust, such as in Bay et al.’s T-MPSI protocol, thresh-
old Paillier cryptosystem [43] can be useful. It enables multiple parties to participate in the
encryption and decryption processes without any individual possessing the whole private key.
Threshold Paillier involves the following steps:

1. Key generation:

• Compute N = pq from two prime numbers p and q such that
– p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are two other primed not equal to p

nor q, and
– gcd(n, ϕ(n)).

• Set M = p′q′.
• Randomly choose β ∈ Z∗

n.
• Randomly choose (a, b) ∈ Z∗

n × Z∗
n.

• Set g = (1 + n)abn mod n2.
• Compute ∆ = ℓ! where ℓ is the number of servers.
• The public key is (g,N, θ = aMβmodN).
• The private key, β×M , is shared among the participants using Shamir secret shar-
ing scheme. A secure polynomial sharing scheme.

2. Encryption: To encrypt a message X, perform the following:

C = gXrN mod N2, (2.14)

where r is a random element from Z∗
n.

3. Share decryption: Each server i computes its part of the decryption,

Ci = C2∆ski mod N2, (2.15)

where C is the ciphertext and ∆ = ℓ!.

2.3. Cryptographic Tools 13

4. Combining algorithm: Let S be a subset of t different Ci’s. We use the following equa-
tion to combine elements of S back into the original message X:

X = L

((∏
i∈S

C
2λS

0,i

i

)
mod N2

)
1

4∆2θ
mod N , (2.16)

where λS
0,i = ∆

∏
i′∈S\{i}

(
i′

i−i′

)
∈ Z and L(u) = u−1

N .

2.3.3. Oblivious Transfer
Oblivious transfer (OT) is a cryptographic protocol that enables a sender to transmit one of
potentially many pieces of information to a receiver, without knowing which specific piece the
receiver obtained [44]. The most common form, 1-out-of-2 OT, involves the sender having
two messages, M1 and M2, and the receiver wishing to learn either M1 or M2 without reveal-
ing their choice to the sender. The sender remains oblivious to which message the receiver
chooses while ensuring that the receiver can only learn one of the messages. In PSI, OT facil-
itates the secure and private exchange of data elements, ensuring that each party learns only
the intersection of their sets and no additional information. By using OT, parties can perform
complex set operations while maintaining data privacy and security, making it a foundational
tool in privacy-preserving computations.

2.3.4. Oblivious Pseudorandom Functions
While the first two-party oblivious pseudorandom function (OPRF) was documented in an arti-
cle by Naor and Reingold in 1997 [45], the term ”OPRF” was introduced in a paper by Freed-
man et al. in 2005 [46]. An OPRF builds on top of pseudorandom function (PRF) to allow a
client to obtain the evaluation of a function on a specific input, without revealing the input or
the function’s output to the server performing the computation. This ensures that the server
remains ”oblivious” to both the input and the output. The function output appears random and
indistinguishable from a truly random function by any efficient statistical test, assuming the
function’s key remains secret.

A high-level general description of an oblivious evaluation is as follows [28, 47]: A PRF is
defined by a function F which takes as inputs an element x and a secret key skPRF , producing
an output y = F (x, skPRF). The server possesses the secret key skPRF while the client
possesses an element x for which they wish to obtain the output y. The client first blinds the
input x, transforming it into x∗ using a blinding factor b. This transformation ensures that x∗
appears unrelated to x. The client sends x∗ to the server. The server computes the PRF on the
blinded input, y∗ = F (x∗, skPRF), and sends y∗ back to the client. The client uses the blinding
factor b to reverse the transformation on y∗, obtaining y = F (x, skPRF). This guarantees that
the client learns y = F (x, skPRF) without knowing skPRF nor F (x′, skPRF) for other inputs,
and that the server does not deduce anything regarding x nor y.

3
Related Work

The exploration of PSI protocols has evolved significantly, with numerous studies aiming to
enhance the privacy and efficiency of these cryptographic protocols. Despite the abundance of
protocols available, there are limited comparative studies on the topic. This chapter discusses
those few previous works that compare different PSI protocols.

3.1. Comparative Studies of PSI Protocols
Morales et al. [48] conduct a systematic literature review (SLR) to address several questions
related to the efficiency, security, and practical applicability of various PSI protocols. Their
study is significant as it categorizes and compares 76 papers based on their security models,
primitives, and performance metrics, offering a valuable reference for researchers deciding
which protocol to implement in different scenarios.

The study categorizes PSI protocols based on their operational principles. Classical PSI
enables two parties to determine their set intersection, but the paper also expands into multi-
party settings, where communication topologies significantly influence protocol efficiency. Spe-
cialized variants include PSI cardinality, which solely discloses the intersection’s size; size-
hiding-PSI, which conceals the cardinality of participating parties’ sets; and authorized PSI
whichmandates prior authorization for participation. Additionally, outsourced-PSI and verifiable-
delegated-PSI introduce third-party computation facilitators, enhancing practicality for complex
topologies and reducing direct computational burdens on the primary parties involved. The au-
thors also briefly mention threshold PSI, giving the schemes by [49, 50] as examples, but their
definition of ”threshold” differs from ours. Their threshold refers to the minimal intersection set
size required to reveal the items in the intersection, whereas ours refers to the minimal subset
of the private inputs which must contain the item for the intersection to be revealed.

The SLR describes the PSI schemes based on their set representation, cryptographic build-
ing blocks and hashing techniques. From the building blocks predominantly used in these
protocols, HE is identified as an easy construction for PSI but is less efficient compared to OT
and OPRF-based PSI, which present more competitive performance. Other building blocks
like generic public key, commutative encryption, and pairings have limitations regarding pro-
tocol capacity or performance.

Various metrics, such as computation, communication, and memory usage, are employed
to assess if PSI protocols are ready for realistic applications, detailing the pros and cons of
existing protocols.

The review by Morales also identifies several open challenges in the field of PSI. Firstly,
performance optimization remains a focus in the development of PSI protocols, particularly

14

3.1. Comparative Studies of PSI Protocols 15

through the refinement of hashing techniques and acceleration of OT processes. Secondly,
while many existing protocols offer robust security against semi-honest adversaries, the chal-
lenge persists in designing efficient proofs of correct behaviour that safeguard against mali-
cious actors without considerably impacting performance. In particular, techniques like zero-
knowledge proofs and commitment schemes must incur additional overhead to maintain se-
curity. Additionally, enhancing the efficiency and scalability of MPSI protocols is essential,
especially as the computational and communication demands escalate with the addition of
more parties. These improvements are vital for advancing the practicality and application of
PSI technologies in various real-world scenarios.

In summary, the study byMorales et al. serves as a reference for understanding the current
landscape of PSI research. It provides a comprehensive overview of the developments in this
field, highlighting the diversity of approaches and the range of applications impacted by PSI
technologies.

Another comprehensive comparison study is conducted by Vos et al. in the form of a
systematization of knowledge (SoK) on collusion-resistant MPSI protocols in the semi-honest
model [24]. They limit their research scope to protocols that do not rely on external parties. If
they did, a third party would receive all private sets, calculate the intersection, and then share
the results, which means they would have access to all data, compromising the privacy of the
input sets. Tomitigate this, some T-MPSI constructions assume the third party is non-colluding.
However, the reliability of this assumption and the inability to easily extend such protocols lead
Vos to focus on protocols without any external parties. They also restrict their evaluations
to the semi-honest model due to its commonality in research and the observation that the
fundamental insights of a protocol generally do not change when moving to the malicious
model.

Since significant aspects of MPSI protocols are more influenced by the types of set encod-
ings used—–such as polynomial roots, bitsets, garbled Bloom filters, and oblivious key-value
stores—–than by the cryptographic primitives themselves, they are the primary focus of the
study.

Their main contribution is the categorization of MPSI protocols based on the operational
principles used to construct them. The three constructions are explained below:

• Private homomorphic set representations: Sets are encoded to fully conceal the orig-
inal inputs. These encoded sets can be homomorphically combined into a single repre-
sentation, which does not reveal any original set information and can safely be disclosed
to the leader for plaintext membership queries. Essentially, encode sets, combine all
sets homomorphically into one in a private manner, decrypt, then query the result in
plaintext. Querying set representation means checking if an element is in the set. Pri-
vate homomorphic set representations include bit sets, hash sets, polynomial roots, etc.

• Leaky homomorphic set representations: The homomorphic operation ⊙ used to
combine the sets might inadvertently leak information about the original inputs. There-
fore, the resulting set representation must remain concealed from all parties. The leader
must perform membership queries privately, ensuring that only the intersection is dis-
closed. Encode sets, combine all sets homomorphically into one in a private manner,
perform private membership queries, then decrypt. Examples of leaky homomorphic set
representations are Bloom filters.

• Aggregatable membership queries: This method involves no homomorphic operation
over the set representations. Instead, the leader employs two-party protocols to query
each participating party’s set separately and determine membership. The leader then

3.2. Comparisons of T-MPSI Protocols 16

aggregates these results to reveal only the intersection. Oblivious programmable PRFs
and oblivious key-value stores constitute aggregatable membership queries.

After introducing the three constructions, Vos et al. present a survey of the current state-
of-the-art MPSI protocols for each type of construction, comparing them based on their cryp-
tographic building blocks, their communication and computational complexities and other key
features of the MPSI schemes. A table is used to clearly summarize all the mentioned proto-
cols with important columns such as the set encoding used, the worst case complexities, the
network topology, the collusion threshold, whether there exists an extension for the malicious
security model, etc.

The SoK also identifies several common pitfalls in MPSI protocols. One issue is the leak-
age from set representations, where certain encoding techniques, such as Bloom filters, may
unintentionally reveal information if not carefully managed. Another concern is unsafe random-
ness during aggregation. Incorrect usage of randomness can create vulnerabilities that allow
colluding parties to infer private information. Additionally, adapting protocols designed for
semi-honest settings to malicious models often presents challenges. This transition increases
complexity and introduces new types of potential attacks, requiring significant modifications to
ensure security.

The contribution of Vos et al. not only provides a detailed classification and evaluation of
existing protocols but also sets a clear agenda for addressing the critical challenges in this
field.

3.2. Comparisons of T-MPSI Protocols
Comprehensive comparative studies specifically focusing on T-MPSI are sparse. Most avail-
able comparisons are embedded within the introduction or related work sections of papers
proposing new protocols. In these situations, the goal of the comparison is not to provide an
in-depth analysis of the field by contrasting various protocols. Rather, it is to supply context
or to benchmark the author’s proposed solutions against existing approaches.

Many authors, such as Badrinarayanan et al. [51] and Chandran et al. [29] describe a few
threshold PSI protocols in the introduction and related work of their papers. However, they
use different definitions of threshold than the one we defined in Section 1.3. Recall that we
refer to these types of threshold PSI as ”T’-MPSI”. In the T’-MPSI protocols presented by
Badrinarayanan, the participating parties may only compute the intersection if their sets differ
by a threshold amount of items or less. In the ones presented by Chandran, the parties may
only output the intersection if its cardinality is above the threshold. This can be confusing,
especially in the case of Chandran, since one of their main contributions is a T-MPSI solution
called quorum PSI, but they discuss T’-MPSI protocols instead of T-MPSI in their related work.

Yu et al. published a paper introducing a new T-MPSI protocol [30]. Their related work
presents many types of MPSI schemes, including threshold PSI. However, the information
about the different variants of MPSI is poorly organized. The description of the T-MPSI protocol
proposed by Mahdavi et al. [28] is intertwined amongst T’-MPSI protocols such as the ones by
Ghosh et al. [50] and Branco et al. [52] without clarifying that these definitions of threshold PSI
all differ. Mahdavi relates the threshold to the number of sets participating in the intersection,
whereas Ghosh and Branco relate it to the number of elements of the intersection.

Similarly, in their paper on T’-MPSI where the threshold represents the minimum cardinality
of the resulting intersection set, Mohanty et al. [53] goes over many previous works in the
domain of threshold PSI, including [27, 50, 51, 28, 26]. However, Mohanty et al. do not clarify
that their concepts of threshold PSI all vary and treat them as if they were comparable.

The related work of Kerschbaum et al.’s paper [54] contains a section on specialized PSI
protocols, but the part on T-MPSI protocols is brief, only mentioning the research done by

3.2. Comparisons of T-MPSI Protocols 17

Kissner and Song [27], as well as, Mahdavi et al. [28].
The problem with these comparisons is that they are not the focus of the paper and are only

meant to provide background information on their proposed protocol. Thus, they oftentimes
mention many variants of MPSI, not only T-MPSI. Being only one section of a paper also
means that they do not go into enough detail analyzing the T-MPSI schemes.

4
Methodology for Qualitative

Comparison

This chapter describes the selection process of state-of-the-art T-MPSI protocols since the first
step to a proper comparison study is establishing a body of literature that is both exhaustive
and relevant. To demonstrate the thoroughness of our approach, we outline the steps of our
methodology below. The challenge in compiling relevant papers arises from the numerous
definitions of T-MPSI. Various forms of MPSI are referred to as T-MPSI despite significant
differences in what the ”threshold” denotes and the outcomes they yield. For example, in
some contexts, the threshold may indicate the minimum number of datasets that must contain
an item for it to appear in the intersection, whereas in others, it might refer to the minimum or
maximum size of the intersection itself. Consequently, a meticulous review of the literature is
essential to identify all T-MPSI protocols pertinent to our study.

4.1. Gathering Relevant Studies
Our comparison study begins by identifying the state-of-the-art papers in the domain of T-
MPSI that would be best suited for application to the hospital setting. The first step is to
familiarize ourselves with the keywords by locating relevant academic articles using Google
Scholar1. Google Scholar’s ability to automatically include related search terms means it pro-
vides broader search capabilities than digital libraries that look for exact keywords. However,
Google Scholar also includes non-peer-reviewed sources, such as theses, preprints, and tech-
nical reports, which means it requires careful screening to ensure the academic rigour of se-
lected sources. Therefore, Google Scholar functions more as a preliminary tool to compile a
list of appropriate keywords for subsequent exploration in a library database rather than as
the sole repository for collecting articles.

We initiate the search with the following key terms:

threshold multiparty private set intersection

This yields about 17,800 results on Google Scholar. We screen titles and abstracts to
shorten that list. For example, many papers focus on MPSI instead of T-MPSI, so we excluded
them. We are left with papers such as [26] by Bay et al. Through reading the Bay et al. paper,
we learn that the ”threshold” aspect of T-MPSI can also be denoted ”d-and-over” or ”over-

1https://scholar.google.com/

18

https://scholar.google.com/

4.2. Selection Criteria for T-MPSI Studies 19

threshold”. Furthermore, some authors spell ”multiparty” as a hyphenated compound word,
”multi-party”. Our search string is expanded to include those synonyms:

(threshold OR d-and-over OR over-threshold) (multiparty OR multi-party) private set
intersection

We then examine the Connected Papers2 graphs for the found articles. Through this
method, we identify another paper on T-MPSI, where the authors refer to T-MPSI as ”quorum
MPSI”: ”Efficient Linear Multiparty PSI and Extensions to Circuit/Quorum PSI” by Chandran
et al. [29] Adding this synonym to our keyword search results in the string:

(threshold OR d-and-over OR over-threshold OR quorum) (multiparty OR multi-party)
private set intersection

Moreover, we notice that certain researchers do not explicitly refer to their protocols as ”mul-
tiparty” in the title, even though they can be applied to more than two parties, e.g., ”Threshold
Private Set Intersection with Better Communication Complexity” by Ghosh et al. [55]. This
leads to a second search string which does not include ”multiparty”:

(threshold OR d-and-over OR over-threshold OR quorum) private set intersection

The next step is to execute our search string in a library database. For the selection of
papers for our comparison study, we choose the Scopus digital library since it covers a wide
range of academic papers, including computer science [56]. On Scopus, the syntax for our
searches is equivalent to the following:

• (threshold OR d-and-over OR over-threshold OR quorum) (multiparty OR multi-party)
private AND set AND intersection)

• (threshold OR d-and-over OR over-threshold OR quorum) private AND set AND inter-
section

We apply our queries to search within titles, abstracts and keywords. Note that all our
searches are restricted to articles published in English. Additionally, although works indexed
on Scopus are generally considered legitimate sources, to further ensure the academic in-
tegrity of the chosen texts, we verified the reliability of their sources, e.g., the conference
proceedings or journal where the paper was published.

4.2. Selection Criteria for T-MPSI Studies
Following the initial collection of data, we reviewed each paper’s abstract, introduction and con-
clusion of each document to gauge the relevance of the study to our specific research focus on
T-MPSI protocols. It allowed us to filter out studies that, despite promising titles or keywords,
did not substantively address the nuances and requirements specific to the threshold-based
set intersection criteria as defined in our study parameters. The results of which are summa-
rized in table A.1 in Appendix A.

We are left with the following works in T-MPSI after filtering out the ones that do not fit our
general criteria:

2https://www.connectedpapers.com/

https://www.connectedpapers.com/

4.2. Selection Criteria for T-MPSI Studies 20

• [23] by Miyaji and Nishida
• [28] by Mahdavi et al.
• [29] by Chandran et al.
• [26] by Bay et al.
• [33] by Ma et al.

Our last strategy to find more relevant research it to investigate the articles which cite the
papers that we have gathered, as well as the ones which are cited by them. This leads to a
text referenced by Mahdavi et al. [27]. Although it is a technical report, we still examine this
work due to the credibility of the authors, Kissner and Song as well as the university, Carnegie
Mellon in the United States. Through this method, we find another paper written by Ruan et
al. [34].

To narrow down the options even further, we formulate these selection criteria for a T-MPSI
protocol to use for medical CTI sharing:

• Honest majority security model: We require that the protocols be resistant to at least
n/2− 1 semi-honest colluding parties.

• No third parties: The protocol should not call for an external party to aid in the calcula-
tion of the intersection. All participating parties should be healthcare institutions.

• No server-aided model: Requiring that the server cannot collude is too constricting;
therefore, we exclude server-aided models in our comparison.

• At most one server: We limit the number of parties with the role of leader/server to at
most one.

• Large balanced sets: Since we are dealing with CTI data, we expect all parties to pos-
sess large datasets, so the protocol should be able to handle sets with many elements.

These additional requirements led to the exclusion of three more articles, summarized in
table 4.1.

Table 4.1: Overview of works in T-MPSI which do not fit with our specified requirements

Work First author Reason for excluding
[23] Miyaji Requires that the server does not collude. The work by Bay et

al. [26] is an improved version of Miyaji and Nishida.

[34] Ruan More suitable for unbalanced scenarios, i.e., when the server
set is much larger than the clients’ and when the number of
parties is large.

[33] Ma Requires two trusted cloud servers. More suitable for small
datasets.

Finally, we are left with four protocols, which we will be comparing in the remainder of the
thesis.

• [27] by Kissner and Song
• [28] by Mahdavi et al.
• [29] by Chandran et al.
• [26] by Bay et al.

5
Qualitative Analysis

We now analyze the protocols selected through the methodology described in Chapter 4. The
goal of this qualitative comparison is to assess the viability and effectiveness of each protocol
in handling sensitive data exchanges within a hospital setting. Our high-level comparison of
the four T-MPSI protocols is in terms of:

• Protocol description
• Security against collusion
• Theoretical complexities
• Network topology.

A summary of the comparison is presented at the end of the chapter in Table 5.2.

Table 5.1: Symbols used throughout this chapter.

Symbol Definition

m Number of parties

n Number of elements per set

T Intersection threshold

λ Statistical security parameter

κ Computational security parameter

5.1. T-MPSI Protocol by Kissner and Song
Kissner and Song [27] were the first to propose a T-MPSI protocol in 2004. It is based on
polynomials and additively homomorphic encryption and is secure against semi-honest adver-
saries.

They provide two variations of T-MPSI: perfect threshold and threshold contribution. Per-
fect T-MPSI conforms to our T-MPSIcollective definition, and threshold contribution to our T-
MPSIall. In the former, the elements which appear in at least a threshold T number of the
private sets are part of the threshold intersection and revealed to everyone. In the latter, par-
ties only learn the elements of the threshold intersection if they also possess it in their private
sets. In this thesis, we analyse their T-MPSIall protocol. Note that Kissner and Song also
present a variant called over-threshold set-intersection, but it is not equivalent to the OT-MP-
PSI protocol presented by Mahdavi et al. [28]. In Kissner and Song’s version, in addition to

21

5.2. T-MPSI Protocol by Mahdavi et al. 22

the parties learning which elements are part of the threshold intersection, they also learn the
frequency of the intersection elements in their private inputs.

Protocol description: Each party first constructs a polynomial with roots corresponding
to their set elements. Starting from the first party, each encrypts their polynomial and sends it
to the next party. Each subsequent party multiplies the received polynomial by their own and
forwards the result, ensuring that the final product is a polynomial that includes contributions
from all parties. The last party sends the fully aggregated polynomial back to the first party, who
then distributes it among a subset of parties. These selected parties then compute a derivative
of the resulting polynomial and mask it to prevent direct decryption. Subsequently, every party
evaluates this polynomial at points corresponding to their set elements. The evaluation is
encrypted, so that the results remain confidential. The parties cooperatively decrypt these
evaluations. If the decrypted value at a point is zero, it indicates that the corresponding set
element meets the threshold condition of appearing in multiple sets. This method preserves
the privacy of individual sets while allowing collective determination of the intersection. No
additional information about non-intersecting elements is disclosed.

Security: Kissner and Song’s threshold-contribution protocol is designed to be secure in
the semi-honest model against collusion among up tom−1 dishonest parties in a network ofm
parties. This security level is achieved through the use of zero-knowledge proofs and secure
multi-party computation techniques, which ensure that no single party or group of colluding
parties can derive more information than what is revealed by the protocol output.

Communication and computational complexities: The communication complexity for
the protocol by [27] is detailed in terms of the number of bits exchanged. For a threshold set-
intersection protocol involving two or more honest-but-curious parties, the total communication
complexity is shown as O(m3n) where m is the number of parties in the protocol and n is the
size of their input sets.

The computational complexity is not given in their report.
Network Topology: The protocol assumes a fully connected network topology where each

party can directly communicate with every other party. This is necessary for the distribution
and collection of cryptographic proofs and for the secure aggregation of results.

5.2. T-MPSI Protocol by Mahdavi et al.
Mahdavi et al. [28] introduce two T-MPSIall constructions, denoted t-PSI0 and t-PSI, that use
techniques such as OPRF, hashing, additively homomorphic encryption and secret sharing.
Since the t-PSI scheme is an improvement over the t-PSI0 scheme, it will be the focus of our
analysis. In their work, they denote T-MPSI as over-threshold multi-party PSI.

Protocol description: The T-MPSI protocol by [28] has two main phases: share genera-
tion and reconstruction. Additionally, parties can either have the role of keyholder, reconstruc-
tor, both or neither. The number of keyholders, k, corresponds to the collusion threshold, i.e.,
the maximum number of dishonest parties against which the protocol can be secure. Initially,
each party engages with the keyholder(s) using an oblivious pseudorandom secret sharing
protocol to generate secret shares for each of their elements, which are then stored in bins
of a hash table padded to a pre-determined size and sent to the reconstructor. The recon-
structor(s) form T -sized subsets from these shares across different parties’ bins to recover a
fixed secret, S = 0, confirming the elements are held by at least T parties. This result is then
communicated back to each party, who can identify which of their elements are part of the
threshold intersection. The keyholder is crucial in generating shares without knowing the ele-
ments, ensuring security and privacy, while the reconstructor validates the shared elements.
However, the protocol still leaks the owners of the elements in the threshold.

Security: Assuming semi-honest behaviour among parties, the protocol can handle collu-

5.3. T-MPSI Protocol by Chandran et al. 23

sion of up to k corrupt parties as long as k parties play the role of the keyholder. When there is
a single keyholder, the T-MPSI protocol prohibits them from also having the role of reconstruc-
tor or from colluding with the reconstructor. To maintain the integrity of the protocol in setups
with multiple keyholders and reconstructors, at least one keyholder should not collude with
any reconstruction, and no group of T − 1 dishonest parties should include a reconstructor.

Communication and computational complexities: Mahdavi et al. [28] describe their
T-MPSI construction as running in three communication rounds, two rounds for the share gen-
eration algorithm and one more for the reconstruction of shares. The dominating step is the
generation of shares, sℓi , which takes every party O(nTk), where n is the maximum number of
elements per set, T is the intersection threshold and k is the collusion threshold, i.e., the num-
ber of keyholders. Therefore, for m parties, the total worst case communication complexity is
O(nmTk).

The worst case computational complexity of the protocol is O
(
n(m log n/T)2T

)
per recon-

structor, where n is the maximum number of elements per set, m is the number of parties and
T is the intersection threshold. Since the schemes were presented with a single reconstructor,
we take that number into account for the complexity. Therefore, the computational complexity
is O

(
n(m log n/T)2T

)
for Mahdavi et al. Although it is exponential in the threshold T , the au-

thors argue that their scheme still scales in practice since they have kept the constant values
to a minimum.

Network Topology: The network topology exhibits characteristics of both star and poten-
tially hybrid topologies, depending on the number of keyholders and reconstructors involved.
In the share generation phase, parties send their encrypted data to the keyholder, who pro-
cesses this information and returns the necessary computed results to the parties. if only one
party plays the role of keyholder, then all communication is mediated through that single party,
the keyholder, which acts as a central node. This scenario with one keyholder aligns with a
star configuration. When multiple keyholders are involved, the communication topology tends
toward a hybrid structure—between star and full mesh—because the addition of keyholders
increases the need for new communication channels. Similarly, in the reconstruction phase,
if there is only one reconstructor, the communication retains the star topology, with the recon-
structor at the centre. However, if multiple reconstructors are used, the protocol begins to
resemble a hybrid topology. While each party still communicates their data to one reconstruc-
tor, the reconstructors themselves need to communicate among each other.

5.3. T-MPSI Protocol by Chandran et al.
Chandran et al. [29] provide a cuckoo hashing and secret sharing based T-MPSIindividual proto-
col, where the party leader may only learn which elements in their set are common to at least
T other sets. They use the term quorum PSI instead of T-MPSI. Their paper describes two
types of T-MPSI, quorum I and quorum II, which differ slightly based on the instantiated cryp-
tographic primitive. Since the former performs better than the latter, we focus on the quorum
I scheme in our analysis.

Protocol description: Each party hashes their set elements into tables using a combina-
tion of stash-less cuckoo hashing for the leader party and simpler hashing for others, manag-
ing collisions with dummy values. The parties then engage in a weak private set membership
functionality, which checks for the presence of the leader’s elements in other parties’ tables
without revealing the elements themselves. Following this, the parties engage in an equal-
ity check for each element to confirm that the outputs from the weak private set membership
functionality correspond correctly to the membership status, ensuring that only the common el-
ements across the sets are marked as such. The boolean results from the equality checks are
converted into additive shares, preparing them for final aggregation. Each element’s presence

5.4. T-MPSI Protocol by Bay et al. 24

across sets is then aggregated. A weak comparison protocol—a cryptographic functionality de-
signed to perform a comparison operation among a group of parties while maintaining privacy
constraints—assesses whether the number of parties holding that element meets a predefined
intersection threshold, T . This comparison results in a boolean outcome for each item, indi-
cating whether it appears frequently enough to be considered part of the quorum intersection.
The results of these comparisons are then compiled by the first party, who constructs the final
intersection set by identifying which elements meet the quorum requirement. This process
effectively enables the parties to collectively determine the set intersection without revealing
their individual inputs, ensuring both the confidentiality of private data and the accuracy of the
computed intersection.

Security: The protocol is designed to be secure under the semi-honest model with an
honest majority, i.e., it can withstand collusion attacks, even with the server, as long as less
than half of the parties have been corrupted.

Communication and computational complexities: Chandran et al. [29] claim the com-
munication complexity for their T-MPSI construction is O

(
nmλ(κ + λ logm)

)
, where m is the

number of parties, n is the maximum size of any set, λ is the statistical security parameter
and κ is the computational security parameter. This complexity considers both the data trans-
ferred in hashing the elements and the cryptographic operations involved. They derived this
worst-case complexity from the total costs of the steps of their quorum I algorithm:
n(m− 1)(κσ + 5.8κ+ 14σ + 18T ′(⌈logm⌉+ 1) + 22τ + 10⌈logm⌉), where
σ = λ+ ⌈log n⌉+ ⌈logm⌉+ 2
τ = λ+ ⌈log n⌉+ 3
T ′ = min(T − 1,m− T)
1 ≤ T ≤ m− 1 is the intersection threshold.
However, when we compute the worst-case communication complexity from the above equa-
tion, we obtain a different result.

n(m− 1)(κσ + 5.8κ+ 14σ + 18T ′(⌈logm⌉+ 1) + 22τ + 10⌈logm⌉)
= O

(
nm(κσ + κ+ σ + T ′⌈logm⌉+ τ + ⌈logm⌉)

)
= O

(
nm(κ(λ+ ⌈log n⌉+ ⌈logm⌉) + κ+ (λ+ ⌈log n⌉+ ⌈logm⌉) + T ′⌈logm⌉+ (λ+ ⌈log n⌉) + ⌈logm⌉)

)
= O

(
nm(κ(λ+ log n+ logm) + κ+ λ+ log n+ logm+ T logm+ λ+ log n+ logm)

)
= O

(
nm(κ(λ+ log n+ logm) + κ+ λ+ T logm+ log n+ logm)

)
= O

(
nm(κ(λ+ log n+ logm) + T logm)

)
= O

(
nmκ(λ+ log n+ logm)

)
because κ >> T , so T logm does not affect asymptotic complexity.

For our study, we will still consider the communication cost reported by the authors in [29].
However, to make comparisons simpler, we isolate the security parameters, λ and κ, from the
communication complexity resulting in a total complexity of O(nm logm).

Their computational round complexity is 10+ ⌈logσ⌉+2k′ which is equivalent to O
(
log(λ+

log n+ logm) + T
)
. We simplify this to a total cost of O

(
log(log n+ logm) + T

)
.

Network Topology: The T-MPSI protocol assumes a star network topology where the
server bears the brunt of the computational workload and the rest of the parties have minimal
computational demands. This design is well-suited for client-server environments, ensuring
that the system is both efficient and adaptable, with the majority of clients experiencing light
processing requirements.

5.4. T-MPSI Protocol by Bay et al.
Bay et al. [26] present a T-MPSIindividual protocol which utilizes Bloom filters and threshold
homomorphic public key encryption. Similarly to [29], the goal of their scheme is to return

5.4. T-MPSI Protocol by Bay et al. 25

to the server the elements that appear in their private set as well as at least a threshold T
amount of other sets. Their solution is better suited for dealing with a large number of parties
and fewer elements per set.

Protocol description: The T-MPSI Protocol involves multiple clients (P1 to Pt1) and a
server (Pt), where each client possesses a private set Si. The server initiates the process by
distributing a set of k hash functions to the clients. Each client applies these hash functions
to generate BFs from their private sets, then encrypts their BFs using a shared public key
pk and sends these EBFs to the server. Upon receiving all EBFs, the server’s task is deter-
mining which elements from its own set St are common across the client sets. It does this
by calculating encrypted values for each item in its set, utilizing the hash functions to locate
corresponding indices in each client’s EBF. The server aggregates these indices using homo-
morphic encryption to maintain privacy, re-randomizing and summing the encrypted outputs
to yield a single encrypted count per item per client.

Next, the server employs the secure comparison protocol (SCP) to compare each aggre-
gated count to the number of hash functions k to evaluate whether each item’s presence in
client sets reaches this threshold. The results of these comparisons are then further aggre-
gated across all clients and compared against the intersection threshold T , to determine if the
elements are common to at least T client sets. Elements meeting this threshold are decrypted
collectively by the clients, and those confirmed are compiled into the final result set ST , which
represents the intersection of elements appearing in at least T client sets. This entire process
ensures that any single party cannot independently deduce the presence or absence of spe-
cific elements in other parties’ sets, preserving the privacy of each client’s data while enabling
the collective determination of set intersection.

Security: In the semi-honest model, the protocol resists to collusion by a subset of up to
dishonest parties ℓ − 1 where ℓ is the threshold of a homomorphic PKE scheme. The larger
the threshold for the homomorphic PKE, the more secure the T-MPSI protocol is, but also the
more complex its execution becomes. It can also handle cases where the server is corrupted.

Communication and computational complexities: The protocol’s communication com-
plexity is mainly influenced by the number of rounds, O(m), and the operations within the
ΠSCP protocol. The server’s communication load is heaviest during the initial execution of
ΠSCP , where it transmits O(nmℓ) ciphertexts where n is the size of the sets, m is the number
of parties and ℓ is the threshold for a homomorphic threshold PKE. Each client initially handles
O(λn) ciphertexts. In subsequent rounds, active clients manage O(nm) ciphertexts owing to
the execution of the ΠSCP protocols. The worst case communication complexity per client
per round is, therefore, O

(
max(λ,m)n

)
ciphertexts. To standardize the comparison of com-

plexities, we extract the statistical security parameter, λ, from the communication complexity.
Additionally, we account for the complexity across all clients, resulting in a total communication
complexity of O(m2n).

The computational demands of the protocol are mainly composed of the construction of
encrypted Bloom filters by the clients, O(λm) operations, and the execution of the ΠSCP pro-
tocols nt times. Thus, both the server and each active client undergo O(nℓ) homomorphic
encryptions. The primary computational burden for the clients is O

(
max(λ,m)

)
and O(nℓ) for

the server. Overall, the total complexity for all parties is O(nm).
Network Topology: The protocol by [26] is structured in a star topology where every party

communicates with a central server but not necessarily directly with every other party. This
star topology is beneficial for reducing the complexity of direct peer-to-peer communication,
which can be unmanageable in large networks.

5.5. Summary of Qualitative Comparison 26

5.5. Summary of Qualitative Comparison
We provide an overview of the qualitative comparison in Table 5.2. In terms of security, the
protocols by Kissner and Song [27], Mahdavi et al. [28] and Bay et al. [26] perform similarly
well, with a collusion threshold of up tom−1, wherem is the number of parties. The collusion
threshold for the protocol by Chandran et al. [29] is half as much. Still, all T-MPSI schemes
are secure in the honest majority setting.

[27]’s protocol suffers from high communication costs, which make it impractical for real-
world scenarios. [28]’s protocol also appears to scale poorly due to its computational com-
plexity exponentially increasing with the intersection threshold T . However, Mahdavi et al.
maintain that their scheme remains scalable in practical applications by minimizing constant
values. The runtime complexities for [29] and [26] show better scalability, especially with mul-
tithreading.

As for network topologies, the protocols by [29] and [26] operate under a star topology,
enabling practical deployment in server-client models. [28]’s protocol uses a star or hybrid
topology, depending on the number of parties playing the role of keyholders and reconstructors.
[27] have the least efficient topology, requiring a fully connected mesh network,

Table 5.2: Qualitative comparison of four T-MPSI protocols

Work Collusion
threshold

Total Complexities Network
topologyCommunication Computational

[27] m− 1 O(m3n) Not mentioned Mesh

[28] m− 1 O(mnTk) O
(
n(m log n/T)2T

)
Hybrid

[29]
⌊
m−1
2

⌋
O(mn logm) O

(
log(log n+ logm) + T

)
Star

[26] m− 1 O(m2n) O(m2n) Star

6
Setup for Quantitative Comparison

In this chapter, we provide the methodology for setting up the experiments to conduct a quan-
titative comparison of the practical performances of two T-MPSI constructions. Of the four
protocols from Chapter 5, we select the two most promising based on the qualitative analysis
and implement them on our computer.

6.1. Selecting Protocols for Quantitative Comparison
We must first narrow down the four protocols from chapter 5 to two that we examine in greater
detail by implementing the code on our machine. To make the selection, the protocol’s com-
munication and computational complexities must be optimal. For efficient use in the medical
domain, the protocol should be able to run decently fast. We also require the existence of an
open-source implementation.

Kissner and Song’s algorithm scales poorly, with a communication complexity that is cubic
in the number of parties [27]. Furthermore, they did not provide an implementation for their
T-MPSI schemes. Consequently, we do not consider them for the quantitative analysis.

Although the asymptotic complexities of Chandran et al. [29] are promising, their current
implementation1 is broken. There are open issues regarding adding subdirectories and linking
libraries. Therefore, we also exclude them from further analysis.

To sum up, we decide to perform the quantitative analysis on the T-MPSI protocols by
Mahdavi et al. [28] and Bay et al. [26].

6.2. Initial Configuration and Implementation
The authors of the papers conduct their practical experiments on varying hardware setups,
complicating direct comparisons between studies. To address this, we aim to standardize
testing by running both protocols on the same machine. We obtain the necessary code by
cloning the repositories from GitHub. We conduct two rounds of runtime tests, one on the
original code and another with the parallelization integrated. This section covers the general
hardware setup and the arguments used in our experiments.

The implementation by Mahdavi et al. [28] is available on GitHub2. For share generation
between participants and keyholders, the experiment utilizes virtual machine instances from
Amazon’s Elastic Compute Cloud, which have a single virtual CPU and are connected by
a network with a maximum bandwidth of 25 Gbps. For the reconstruction phase, the setup
includes a server running Ubuntu 18.04 on a 64-bit system, equipped with up to 128 cores from

1https://github.com/shahakash28/PQC-mPSI
2https://github.com/cryspuwaterloo/OT-MP-PSI

27

https://github.com/shahakash28/PQC-mPSI
https://github.com/cryspuwaterloo/OT-MP-PSI

6.2. Initial Configuration and Implementation 28

an IBM POWER8 CPU and up to 1TB of RAM. The cryptographic operations are performed
with a computational security parameter of κ = 2048, adhering to NIST recommendations for
security.

The implementation by Bay et al. [26] is also available on GitHub3. They conduct the
experiments for their T-MPSI construction on a single-thread setup. The system used is a
64-bit Unix-like machine powered by an Intel Core i7-1065G7 processor, which has a clock
speed of 1.30 GHz across eight cores, and is equipped with 16GB of memory. In terms of
security, they opt for a key of κ = 1024 bits, a standard choice for PKE, ensuring robust data
protection during their tests.

We execute our experiments of the two cryptographic protocols on a laptop configured
with a 64-bit Ubuntu 22.04.4 LTS operating system. The hardware includes an AMD Ryzen 9
6900HS processor with 16 cores operating at a maximum frequency of 4.935 GHz as well as
24GB of RAM.

We define the following parameters for both sets of experiments, to make for the most
consistent comparison of the protocols.

• Number of parties: m = 5, 6, 7, 8, 9

• Maximum set sizes: n = 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096

• Intersection threshold: T =
⌊
m+1
2

⌋
• Key length: κ = 1024

• HE threshold (for the Bay et al. construction): ℓ =
⌊
m
2

⌋
To run the Mahdavi et al. implementation [28], we compile a shell file which sequentially

executes the commands from Appendix B. The first line would run the t-PSI scheme (-s 1)
on five parties (-m 5) who each have at most 32 elements (-n 32) in their set. The output
would be all elements which appear in a subgroup of at least three sets (-t 3). The length
of the key prime is 1024 bits (-b 1024). For every execution, the program verifies if the input
datasets already exist. If not, random sets of integer elements are created to simulate the
parties’ data. These elements, as well as the generated shares and logs (-l) are stored in
respective directories with the format based on the parameters: benchmark_[m][n][t]. The logs
detail the runtime in milliseconds for both the share generation phase and the reconstruction
phase.

We modify the logging functionality of the code in [28], so that the total execution time is
measured, instead of printing separate times for the share generation per party and recon-
struction. This makes for a more accurate comparison with the implementation by [26].

To ensure an equitable evaluation, we modify the original code by [26] to read the element
from the elements files outputted from the code by [28]. This way, both protocols are carried
out on the same input sets. The arguments passed are also the same as above. In addition to
those arguments, the implementation by Bay et al. requires that we specify the threshold for
the homomorphic PKE, denoted by ℓ. We set it to

⌊
m
2

⌋
, which complies with the requirements

of the honest majority security model while providing a better runtime efficiency than a higher
value would. Then, for every set of parameters, we execute [26] on a single thread and write
the resulting intersection results as well as the total execution time in milliseconds to a file.

We repeat these experiments 10 times for every combination of parameters for both proto-
cols. The means and standard deviations are presented in a Table E.4 to E.7 in Appendix E.

3https://github.com/jellevos/threshold-multiparty-psi

https://github.com/jellevos/threshold-multiparty-psi

6.3. Implementation with Parallelization 29

6.3. Implementation with Parallelization
Although the reconstruction step of Mahdavi et al.’s T-MPSI protocol is parallelized, the share
generation step is not. The implementation of Bay et al.’s T-MPSI protocol also does not
include multithreading. To simulate more realistic client-server interactions and to optimize
the efficiency of the program, we integrate parallel processing of certain tasks into the original
codes.

The reconstruction phase of [28]’s implementation is parallelized with OpenMP4, an API
that supports multi-platform shared-memory parallel programming in C, C++, and Fortran. Its
main advantage is its simplicity and ease of use through compiler directives, library routines,
and environment variables, enabling developers to parallelize code with minor modifications.
For consistency, we decide to parallelize the share generation phase using OpenMP as well.
The #pragma omp for directive from OpenMP distributes the iterations of a for loop across
different threads, while the #pragma omp critical directive designates a block within the
parallelized loop which must be executed on one thread, maintaining data integrity.

In the modified parallelized share generation process, we initiate a new thread for each
client that interacts with the keyholder, enabling concurrent communication between the key-
holder and all participants. This can be achieved by specifying the #pragma omp for directive
before the for loop which manages the client interactions with the server. Therefore, the cre-
ation of client instances, their connections to the server, the loading of input elements and
the share generation for the elements can be done concurrently for every party. We are also
interested in enhancing the efficiency of the generating shares phase by grouping several el-
ements into batches for each round and distributing the computations across parallel threads.
To do so, the #pragma omp for directive is inserted before the for loop that iterates over the
elements of a client, allowing multiple elements to be processed simultaneously.

To be consistent, we use OpenMP to add multithreading to Bay et al.’s T-MPSI imple-
mentation as well. Each client’s data set is processed in parallel using the #pragma omp for
directive before a for loop to create encrypted inverted Bloom filters. Then, arrays for storing
client ciphertexts are initialized for each client in parallel to prepare for further cryptographic
operations. This directive is applied during the two occasions where we run SCP protocols
with any ℓ clients. The first time for comparing intermediate ciphertexts to the encryption of the
number of hash functions k, and the second time for comparing the encryption of the number
of participant sets which contain a certain element against the encryption of the intersection
threshold T . Each comparison operation is independent and can be processed in parallel, sig-
nificantly speeding up the SCP phase. Lastly, #pragma omp for is used for the collaborative
decryption of ciphertexts, where each encrypted value is decrypted in parts by multiple par-
ties. Since each decryption operation is independent, parallelizing them reduces the overall
computation time.

4https://www.openmp.org/

https://www.openmp.org/

7
Quantitative Analysis

We continue our quantitative comparison and provide an in-depth analysis of the performance
results for the implementations of T-MPSI by [28] and [26]. Both implementations are run on
our machine with identical parameters to provide a fair comparison in terms of runtime. The
goal is to determine the most apt protocol for CTI sharing between healthcare institutions.

In our experimental setup, we executed each configuration of the program parameters 10
times to obtain a diverse set of runtime data. This repetition allowed us to assess the stability
of the performance across runs under identical conditions.

For each T-MPSI protocol and implementation—with or without additional parallelization—
we present the mean execution times and their standard deviations in Tables E.1, E.2, E.3,
E.4, E.5, E.6 and E.7 in Appendix E. While plots visually illustrate trends, tables offer more
precise numerical insights on the specific execution times, which could help determine how
practical running a T-MPSI solution is. Furthermore, the low standard deviations observed in
the runtime experiments indicate that our results are repeatable and consistent across multiple
trials.

7.1. How the Number of Parties m Affects Runtime
We now vary the number of participant sets m.

(a) Original Mahdavi et al. [28] and Bay et al. [26]
implementations

(b) Parallelized Mahdavi et al. [28] and Bay et al. [26]
implementations

Figure 7.1: Average runtimes for varying number of parties m with n = 1024 and T = 4

30

7.2. How the Maximum Number of Elements Per Set n Affects Runtime 31

According to the total asymptotic complexities presented by both authors,O
(
n(m log n/T)2T

)
for Mahdavi et al. [28] and O(m2n) for Bay et al. [26], the original version of their T-MPSI
schemes should have quadratic runtimes in m, the number of parties. This is evidenced by
plot 7.1a. We observe that the original implementation of Mahdavi et al. [28] performs bet-
ter than that of Bay et al. [26]. However, once parallelized, the protocol by [26] achieves
quicker runtimes that appear linear in m. [28]’s runtimes remain in the thousands of seconds,
while [26]’s decrease to the hundreds, even for the largest m, making it much more practical.

7.2. How the Maximum Number of Elements Per Set n Affects Run-
time

In this section, we vary one of the three main parameters of a T-MPSI construction—the num-
ber of items per set n—to see how runtime is affected.

(a) Original Mahdavi et al. [28] and Bay et al. [26]
implementations

(b) Parallelized Mahdavi et al. [28] and Bay et al. [26]
implementations

Figure 7.2: Average runtimes for varying number of elements n with m = 6 and T = 3

(a) Original Mahdavi et al. [28] and Bay et al. [26]
implementations

(b) Parallelized Mahdavi et al. [28] and Bay et al. [26]
implementations

Figure 7.3: Average runtimes for varying number of elements n with m = 6 and T = 3 in logarithmic scale

Figures 7.2 and 7.3 illustrate an increase in runtime as the set size grows. For a fixed

7.3. How the Intersection Threshold T Affects Runtime 32

number of parties m and a set intersection threshold T , both the runtimes for Mahdavi et
al.’s [28] and Bay et al.’s [26] implementation increase linearly, albeit, [28] faster than [26].
Figure 7.3 specifically shows how [28] outperforms [26] for all values of n, given m = 6 and
T = 1024.

7.3. How the Intersection Threshold T Affects Runtime
Here, we vary the third the intersection threshold T to see how runtime is affected.

(a) Original Mahdavi et al. [28] and Bay et al. [26]
implementations

(b) Parallelized Mahdavi et al. [28] and Bay et al. [26]
implementations

Figure 7.4: Average runtimes for varying thresholds T with m = 6 and n = 1024

For smaller threshold values, T = 2, 3, 4, the original implementation by Mahdavi et al. [28]
outputs the intersection in less time than that by Bay et al. [26]. However, beginning from
T = 5, [28]’s execution time increases at a faster rate, surpassing [26] in time. A similar
relationship is observed between the parallelized versions of both constructions, with [28]’s
performance being better up to T = 3, then deteriorating after T = 4, while [26]’s time remains
consistent.

According to their paper, the protocol by [28] exhibits an asymptotic worst-case commu-
nication complexity of O(nmTk) and computational complexity of O

(
n(m log n/T)2T

)
. There-

fore, the main factor affecting the runtime is the fact that it is exponential in the intersection
threshold T , while n and m are less important. This aligns with our practical experiments, as
figure 7.4 shows that the execution time scales fastest with increasing T values.

In contrast, Bay et al.’s runtime complexity is not dependent on the intersection threshold,
as evidenced by figure 7.4. It reveals no strong relation between the threshold value and
execution times, as illustrated by the relatively constant runtimes despite variations in the
threshold. This aligns with its claimed communication and computational complexities from
the paper [26], which is O(mn) per client.

7.4. Effects of Parallelization
The authors note in their paper [26] that the reported runtimes reflect a worst-case scenario due
to the absence of multithreading. With the introduction of parallelization, there is a significant
improvement in execution times.

As shown in Table 5.2, the claimed worst case communication and computational complex-
ities of Bay et al. areO(mn) per client, therefore, O(m2n) in total if we perform the calculations
sequentially instead of concurrently. This aligns with the plot of our experiments. Comparing

7.5. Additional Practical Performance Comparison 33

plot a and b of Figures 7.2, 7.1 and 7.4, we observe that the non-parallelized implementation of
the scheme by Bay et al. [26] has much slower runtimes compared to the parallelized version.
The reason for this is that parallelization effectively distributes the computational load across
multiple processors, thus reducing overall runtime, particularly as the number of participants,
m, increases. This scaling advantage becomes more pronounced with higher m values. Al-
though we see a drastic improvement in execution time from the original to the parallelized
implementation for [26], the runtime reduction for [28]’s parallelized version is minimal. This
could be due to the fact that Mahdavi et al.’s had already incorporated parallelization into the
reconstruction phase of their original code. Thus, the gains from adding multithreading of the
share generation phase in the parallelized code are not as substantial.

7.5. Additional Practical Performance Comparison
Given our goal of finding the most effective T-MPSI protocol for CTI sharing among healthcare
institutions, we also evaluate the performances of [28] and [26] with intersection thresholds
dependent on the number of sets m. In this case, the elements of the sets are records in CTI
datasets, e.g., IP addresses, domain names, TTPs. The parties are hospital CTI staff trying
to identify a common threat. We assume that a user attempting to hack into at least half of the
hospitals’ systems is malicious, thus we set the threshold T to ⌊m+1

2 ⌋. Additionally, we only
showcase the results for the parallelized implementation, as it represents the most efficient
approach for applying the protocol in practice.

(a) Mahdavi et al. [28] parallelized implementation (b) Bay et al. [26] parallelized implementation

Figure 7.5: Average runtimes for different number of parties m varying the number of elements per set n with
threshold T =

⌊
m+1

2

⌋

7.5. Additional Practical Performance Comparison 34

(a) Mahdavi et al. [28] parallelized implementation (log
scale)

(b) Bay et al. [26] parallelized implementation (log
scale)

Figure 7.6: Average runtimes for different number of parties m varying the number of elements per set n with
threshold T =

⌊
m+1

2

⌋
in logarithmic scale

Figures 7.5 and 7.6 present the plots of how runtime increases as the maximum set size n
increases for various m and T values. Since with nine parties, [28]’s protocol could not finish
execution within a practical timeframe for larger values of n, we graphed the extrapolation of
m = 9 for n = 256 to n = 4096 in 7.5a and 7.6a. The extrapolation should help in estimating
how the protocol might behave under larger-scale conditions, so that we may still compare [28]
to [26] when n is large.

In the implementations by Mahdavi et al., the runtimes remain relatively low for fewer num-
ber of parties, m = 5, 6, 7, 8. Indeed, their implementation outperforms [26]’s for m = 5, 6.
However, a notable increase in runtime is observed for m = 9 as the number of elements
per set n increases, reflecting a significant escalation in computational load with an increase
in parties. Moreover, recall that we set the intersection threshold T to be dependent on the
number of parties m, and as demonstrated in Figure 7.4, [28]’s runtime scales exponentially
with T . Figure 7.6 illustrate these trends better by using a logarithmic scale. We observe not
only that the runtimes increase more drastically when more parties are involved, but also when
the threshold increases. The runtime plots for m = 5 and m = 6, both having a threshold of
T = 3 are relatively closer together, as are the plots for m = 7 and m = 8 which share a
threshold of T = 4. Finally, the plot for m = 9 is the steepest, with a threshold of T = 5. Thus,
Mahdavi et al.’s T-MPSI scheme is only suitable for scenarios where the number of parties
and the threshold is limited to lower values.

Plots 7.5b and 7.6b indicate that Bay et al.’s protocol has better scalability as both the
number of parties and the threshold increase. Although there is still an increase in runtime
as the number of parties increases, the plots remain linear and predictable across different
values of m.

To sum up, [28] performs better for smaller values of m and T , whereas [26] scales better
with higher values of m and T .

7.5. Additional Practical Performance Comparison 35

(a) Mahdavi et al. [28] parallelized implementation (b) Bay et al. [26] parallelized implementation

Figure 7.7: Average runtimes for different number of elements per set n varying the number of parties m with
threshold T =

⌊
m+1

2

⌋

(a) Mahdavi et al. [28] parallelized implementation (log
scale)

(b) Bay et al. [26] parallelized implementation (log
scale)

Figure 7.8: Average runtimes for different number of elements per set n varying the number of parties m with
threshold T =

⌊
m+1

2

⌋
in logarithmic scale

Figures 7.7 and 7.8 display the runtime performance of Mahdavi et al.’s implementation
and Bay’s implementation, both plotted against the number of parties m and the number of
elements per set n, with threshold T being a function of m.

Similarly to plots 7.5a and 7.6a, a dramatic increase in runtime for all values of n as the
number of parties m increases to 9. This is particularly pronounced for larger values of n. For
n = 256, the runtime at m = 9 is around 6000 seconds, highlighting a significant performance
drop as complexity increases.

Even at n = 4096, the highest runtime recorded at m = 9 is just above 2000 seconds,
indicating a more robust performance under high complexity.

8
Extension

We now present an extension to transform any T-MPSIindividual scheme [26, 29] into a T-
MPSIcollective scheme [27].

8.1. Protocol Description
To recap, in a T-MPSIindividual type construction, one party receives the intersection of its ele-
ments and a threshold number T −1 of the otherm−1 sets. In MPSIcollective, every participant
receives the threshold intersection of everyone’s sets, i.e., all elements which appear in at
least T of the m sets are outputted to all parties even if they do not possess the element.

We see that to go from T-MPSIindividual to T-MPSIcollective, we must first execute the T-
MPSIindividual protocol m times so that every participant has a turn to be the server to obtain
their MPSIindividual result. Then, we combine every party’s T-MPSIindividual output in a privacy
preserving manner. For that, we can usemultiparty private set union (MPSU). In MPSU, each
participant holds a private set, and the objective is to find the union of all these sets without re-
vealing any additional information about the individual sets beyond what can be inferred from
the final result, i.e., the union [57]. The final result is equivalent to the T-MPSIcollective outcome.

Note that the intermediate results of T-MPSIindividual protocols, Ri, possibly reveal the out-
put of the T-MPSIindividual i in plaintext to each participant i. However, this leakage does not
compromise the privacy of the overall protocol since given the end result R and the party’s
own private set Si, Ri can be derived anyway.

We provide the proof in Appendix C.

8.2. Implementation
To the best of our knowledge, no prior implementation exists to convert between types of T-
MPSI protocols. We present a generalized extension which can be applied to any T-MPSIindividual
scheme to transform it into a T-MPSIcollective scheme. In this thesis, we provide an example
of such a pipeline using [26] as the initial T-MPSIindividual protocol. We begin by modifying
the protocol code to concurrently find the T-MPSIindividual for every party. If we are working
with a T-MPSIall protocol instead of T-MPSIindividual, we do not need to add this multithread-
ing step since the T-MPSIall scheme already guarantees that every participant obtains their
T-MPSIindividual set. We store the intermediate intersections in JSON files. Then, we apply
the MPSU protocol by [58] on these intermediate results. The resulting union represents the
T-MPSIcollective set, See appendix D for the bash script to execute the pipeline.

36

9
Discussion and Future Work

In this chapter, we discuss the results and limitations of our comparative study, suggest some
areas for future work, and conclude this thesis with final remarks.

9.1. Discussion
The objective of this thesis is to answer the question, How can we efficiently compute the
threshold intersection of hospitals’ CTI datasets in a privacy preserving manner to identify
recurring cyber threats?

In other words, we want to determine which state-of-the-art T-MPSI protocol hospitals
should employ to share their CTI data with each other. In our attempt to do so, we conduct an
SLR, a qualitative analysis and a quantitative analysis. The selected protocols were evaluated
based on their ability to securely and efficiently facilitate CTI sharing among hospitals. The
protocols analyzed include those by Kissner and Song [27], Mahdavi et al. [28], Chandran et
al. [29], and Bay et al. [26].

Our study assesses the suitability for deployment in hospital CTI sharing of four T-MPSI
protocols mainly in terms of its security, as well as communication and computational com-
plexities. All four protocols provided security guarantees against semi-honest adversaries.
Although this model provides a weaker security guarantee than the malicious model, it still
ensures no leakage of sensitive information, which aligns with our requirements. Malicious
adversaries may be considered in the case of man-in-the-middle attacks. However, prevent-
ing these attacks is not within the scope of our research. Our focus is on developing and
analyzing secure protocols rather than broader network security strategies like vulnerability
management. The schemes by Kissner and Song [27], Mahdavi et al. [28] and Bay et al. [26]
offer the highest level of security as they are secure against collusion among up to m− 1 dis-
honest parties out of m parties in total, whereas the scheme by Chandran et al. [29] is secure
in the honest majority setting with at most m−1

2 dishonest parties. This collusion threshold is
acceptable because the parties participating in the intersection are trusted entities, meaning
the highest level of security is not required. The drawbacks of the Kissner and Song proto-
col are that it exhibits a higher asymptotic communication complexity and lacks a concrete
implementation. Furthermore, [29]’s protocol yields promising communication and computa-
tional complexities. However, their implementation on GitHub is non-functional. Therefore,
we proceed with the two other protocols for further comparison, [28] and [26].

We implement those two T-MPSI schemes on the same machine in order to have com-
parable results. To simulate real-life scenarios and improve performance, we incorporate
multithreading into both schemes. We conduct our runtime tests on both the original and

37

9.2. Limitations 38

parallelized implementations of the protocols, [28] and [28], to determine how their practical
runtimes are impacted by the number of parties m, the maximum size of the sets n and the
intersection threshold T .

We find that Mahdavi et al.’s protocol is faster than Bay et al.’s for a smaller number of par-
ties and smaller thresholds. Therefore, we recommend employing [28] if six or fewer hospitals
are interested in computing the threshold intersection of three subsets or fewer. Otherwise,
we recommend the protocol proposed by Bay et al. [26], as it scales more efficiently for larger
values of m and T . However, considering the scalability and efficiency requirements of the
healthcare sector, neither the Bay et al. nor the Mahdavi et al. protocol is efficient in practice.
CTI datasets often contain millions of entries, which translates to millions of elements per set,
yet we observe runtime bottlenecks for both protocols starting at thousands of elements when
there are slightly more parties. Unless all participating hospitals are equipped with powerful
computers, it is difficult to employ these T-MPSI protocols in a large-scale hospital setting.

9.2. Limitations
A limitation of our comparison study is that not all T-MPSI protocols have a concrete imple-
mentation available for us to compare. Consequently, our quantitative analysis is incomplete,
with only execution times for the protocols by Mahdavi et al. [28] and Bay et al. [26]. We do
not have practical performance results for the protocols proposed by Kissner and Song [27]
and Chandran et al. [29]. Ideally, we would have performed runtime experiments on all four
schemes to provide a fair assessment of their practicability in CTI sharing.

Moreover, the actual methodology for performing the quantitative comparison also has
limitations. We only use lists of integers as input sets for testing the implementations of the
T-MPSI protocols. A wider range of datasets which resemble actual CTI would provide a better
simulation of real-world scenarios. By benchmarking the protocols under a broader range of
inputs, we can more accurately assess their efficiency and suitability for specific applications.

Lastly, we run our experiments for both protocols on a single machine to keep our testing
environment as consistent as possible, but there are always slight variations in hardware,
software, or other environmental factors that can affect runtime measurements. If conditions
are not strictly controlled or documented, comparisons across different experiments may be
unreliable.

9.3. Future Work
While this thesis has provided a comprehensive comparative analysis, several areas warrant
further investigation.

Validating asymptotical complexities claimed in papers: We can conduct a more thor-
ough investigation and actually validate the runtime complexities to avoid solely relying on the
theoretical claims made by authors. This involves conducting systematic experiments to test
the scalability and performance under varied conditions and configurations that extend beyond
the initial setups described in the literature.

Improvements on extension for T-MPSIindividual to T-MPSIcollective: In this thesis, we in-
troduce a general extension applicable to any T-MPSIindividual scheme [26, 29] to convert it into
a T-MPSIcollective scheme [27]. This extension has significant potential for further enhancement.
Specifically, future work could provide an analysis of both communication and computational
complexities. Additionally, evaluating the security measures against collusion among partic-
ipants would be essential to ensure robustness. Conducting empirical runtime experiments
would also provide insights into the practicality and efficiency of the extended protocol.

Extension for MPSI to T-MPSI: A similar direction for future work would be to develop an
efficient extension for transforming an MPSI protocol into a T-MPSI protocol, as only the naive

9.4. Conclusion 39

approach exists for now. Currently, MPSI schemes can be adapted into T-MPSI schemes by
computing the intersection for all subgroups of size T of the m total sets and aggregating the
results. This method proves to be highly costly since the number of subgroups of size T is

(
m
t

)
,

which indicates a significant increase in computational demand as m and t grow. Creating a
more effective conversion process would significantly enhance the research utility of MPSI by
facilitating its adaptation to T-MPSI applications.

Considering available network bandwidth and evaluating throughput: Finally, there is
a need to expand the metrics used in the protocol’s performance evaluation. Beyond average
runtime, other metrics, such as network throughput, should be examined to better assess the
applicability of the T-MPSI protocols to real-world scenarios. When exchanging CTI data in a
privacy-preserving manner, the volume of data transferred between parties can be substantial,
especially when the sets are large or the protocol requires multiple rounds of communication.
For many cryptographic protocols, including T-MPSI, the network can often be a bottleneck.
The available bandwidth in a region could be a critical factor in determining the feasibility
of deploying a T-MPSI protocol. Even if a protocol is computationally optimized, its overall
effectiveness could be compromised by insufficient bandwidth, leading to inefficient execution
times.

9.4. Conclusion
A prevalent issue observed throughout the literature is the conflation of various T-MPSI proto-
cols. Many studies do not clearly differentiate between threshold MPSI, which focuses on the
presence of an element in a minimum number of sets, and cardinality MPSI, which centres on
the size of the intersection set. This ambiguity complicates the selection of appropriate proto-
cols for specific applications, such as CTI sharing in medical settings, where the distinction can
significantly impact both the privacy and utility of shared data. To address this confusion and
provide a clearer understanding of protocol performance, we conducted a detailed comparison
study.

We conclude that [28]’s protocol performs better than [26]’s for small values ofm = 5, 6 and
T = 2, 3, but [26]’s protocol scales better as m7, 8, 9 and T = 4, 5 increase. Still, no T-MPSI
protocol could realistically be used for threat intelligence sharing between hospitals. Both the
Mahdavi et al. and Bay et al. implementations struggle with the large data volumes typical in
CTI, rendering them inefficient for real-world applications.

Bibliography

[1] Claudio Ardagna et al. ENISA Threat Landscape 2023. European Network and Informa-
tion Security Agency, 2023. DOI: 10.2824/782573.

[2] European Union Agency for Cybersecurity. Smart hospitals – Security and resilience for
smart health service and infrastructures. European Network and Information Security
Agency, 2016. DOI: 10.2824/28801.

[3] Lynne Coventry and Dawn Branley. “Cybersecurity in healthcare: A narrative review of
trends, threats and ways forward”. In: Maturitas 113 (2018), pp. 48–52. ISSN: 0378-
5122. DOI: https://doi.org/10.1016/j.maturitas.2018.04.008. URL: https:
//www.sciencedirect.com/science/article/pii/S0378512218301658.

[4] Albert Haro Abad and Stephen Corbiaux. ENISA Threat Landscape: Health Sector. Eu-
ropean Network and Information Security Agency, 2023. DOI: 10.2824/163953.

[5] John Soldatos, James Philpot, and Gabriele Giunta, eds. Cyber-Physical Threat Intelli-
gence for Critical Infrastructures Security: A Guide to Integrated Cyber-Physical Protec-
tion of Modern Critical Infrastructures. Now Publishers, 2020. ISBN: 978-1-68083-686-8
978-1-68083-687-5. DOI: 10.1561/9781680836875.

[6] IBM. What is ransomware-as-a-service (RaaS)? URL: https://www.ibm.com/topics/
ransomware-as-a-service (visited on 02/12/2024).

[7] Saman Taghavi Zargar, James Joshi, and David Tipper. “A Survey of Defense Mecha-
nisms Against Distributed Denial of Service (DDoS) Flooding Attacks”. In: IEEE Com-
mun. Surv. Tutorials 15.4 (2013), pp. 2046–2069. DOI: 10.1109/SURV.2013.031413.
00127. URL: https://doi.org/10.1109/SURV.2013.031413.00127.

[8] Salem T. Argaw et al. “Cybersecurity of Hospitals: discussing the challenges and work-
ing towards mitigating the risks”. In: BMC Medical Informatics Decis. Mak. 20.1 (2020),
p. 146. DOI: 10.1186/S12911-020-01161-7. URL: https://doi.org/10.1186/s12911-
020-01161-7.

[9] NICCS. Cyber Threat Intelligence. Aug. 16, 2022. URL: https://niccs.cisa.gov/
education-training/catalog/sans-institute/cyber-threat-intelligence (vis-
ited on 02/13/2024).

[10] Sophos. Cyber Threat Intelligence (CTI). URL: https://www.sophos.com/en- us/
cybersecurity - explained / cti - cyber - threat - intelligence# : ~ : text = Why %
20is%20CTI%20Important%3F, visibility%2C%20detection%20and%20response%
20actions. (visited on 02/13/2024).

[11] IBM. What Is Threat Intelligence? URL: https : / / www . ibm . com / topics / threat -
intelligence (visited on 02/12/2024).

[12] Thomas D. Wagner et al. “Cyber threat intelligence sharing: Survey and research di-
rections”. In: Comput. Secur. 87 (2019). DOI: 10.1016/J.COSE.2019.101589. URL:
https://doi.org/10.1016/j.cose.2019.101589.

[13] European Comission. What Is Personal Data? URL: https://commission.europa.
eu/law/law-topic/data-protection/reform/what-personal-data_en (visited on
02/15/2024).

40

https://doi.org/10.2824/782573
https://doi.org/10.2824/28801
https://doi.org/https://doi.org/10.1016/j.maturitas.2018.04.008
https://www.sciencedirect.com/science/article/pii/S0378512218301658
https://www.sciencedirect.com/science/article/pii/S0378512218301658
https://doi.org/10.2824/163953
https://doi.org/10.1561/9781680836875
https://www.ibm.com/topics/ransomware-as-a-service
https://www.ibm.com/topics/ransomware-as-a-service
https://doi.org/10.1109/SURV.2013.031413.00127
https://doi.org/10.1109/SURV.2013.031413.00127
https://doi.org/10.1109/SURV.2013.031413.00127
https://doi.org/10.1186/S12911-020-01161-7
https://doi.org/10.1186/s12911-020-01161-7
https://doi.org/10.1186/s12911-020-01161-7
https://niccs.cisa.gov/education-training/catalog/sans-institute/cyber-threat-intelligence
https://niccs.cisa.gov/education-training/catalog/sans-institute/cyber-threat-intelligence
https://www.sophos.com/en-us/cybersecurity-explained/cti-cyber-threat-intelligence#:~:text=Why%20is%20CTI%20Important%3F,visibility%2C%20detection%20and%20response%20actions.
https://www.sophos.com/en-us/cybersecurity-explained/cti-cyber-threat-intelligence#:~:text=Why%20is%20CTI%20Important%3F,visibility%2C%20detection%20and%20response%20actions.
https://www.sophos.com/en-us/cybersecurity-explained/cti-cyber-threat-intelligence#:~:text=Why%20is%20CTI%20Important%3F,visibility%2C%20detection%20and%20response%20actions.
https://www.sophos.com/en-us/cybersecurity-explained/cti-cyber-threat-intelligence#:~:text=Why%20is%20CTI%20Important%3F,visibility%2C%20detection%20and%20response%20actions.
https://www.ibm.com/topics/threat-intelligence
https://www.ibm.com/topics/threat-intelligence
https://doi.org/10.1016/J.COSE.2019.101589
https://doi.org/10.1016/j.cose.2019.101589
https://commission.europa.eu/law/law-topic/data-protection/reform/what-personal-data_en
https://commission.europa.eu/law/law-topic/data-protection/reform/what-personal-data_en

Bibliography 41

[14] Eranga Bandara et al. “LUUNU - Blockchain, MISP, Model Cards and Federated Learn-
ing Enabled Cyber Threat Intelligence Sharing Platform”. In: Annual Modeling and Sim-
ulation Conference, ANNSIM 2022, San Diego, CA, USA, July 18-20, 2022. Ed. by
Cristina Ruiz Martin et al. IEEE, 2022, pp. 235–245. DOI: 10 . 23919 / ANNSIM55834 .
2022.9859355. URL: https://doi.org/10.23919/ANNSIM55834.2022.9859355.

[15] Maurizio Atzori. “Weak k-Anonymity: A Low-Distortion Model for Protecting Privacy”. In:
Information Security, 9th International Conference, ISC 2006, Samos Island, Greece,
August 30 - September 2, 2006, Proceedings. Ed. by Sokratis K. Katsikas et al. Vol. 4176.
Lecture Notes in Computer Science. Springer, 2006, pp. 60–71. DOI: 10.1007/11836810\
_5. URL: https://doi.org/10.1007/11836810%5C_5.

[16] Muneeb Ul Hassan, Mubashir Husain Rehmani, and Jinjun Chen. “Differential Privacy
Techniques for Cyber Physical Systems: A Survey”. In: IEEE Commun. Surv. Tutorials
22.1 (2020), pp. 746–789. DOI: 10.1109/COMST.2019.2944748. URL: https://doi.
org/10.1109/COMST.2019.2944748.

[17] Silvio Micali and Phillip Rogaway. “Secure Computation (Abstract)”. In: Advances in
Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 11-15, 1991, Proceedings. Ed. by Joan Feigenbaum. Vol. 576.
Lecture Notes in Computer Science. Springer, 1991, pp. 392–404. DOI: 10.1007/3-540-
46766-1_32. URL: https://doi.org/10.1007/3-540-46766-1%5C_32.

[18] Donald Beaver. “Foundations of Secure Interactive Computing”. In: Advances in Cryp-
tology - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 11-15, 1991, Proceedings. Ed. by Joan Feigenbaum. Vol. 576.
Lecture Notes in Computer Science. Springer, 1991, pp. 377–391. DOI: 10.1007/3-
540-46766-1_31. URL: https://doi.org/10.1007/3-540-46766-1%5C_31.

[19] Oded Goldreich. “Secure multi-party computation”. In: Manuscript. Preliminary version
78.110 (1998).

[20] Vladimir Kolesnikov et al. “Practical Multi-party Private Set Intersection from Symmetric-
Key Techniques”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017. Ed. by Bhavani Thuraisingham et al. ACM, 2017, pp. 1257–1272. DOI: 10.1145/
3133956.3134065. URL: https://doi.org/10.1145/3133956.3134065.

[21] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. “Efficient Private Matching
and Set Intersection”. In: Advances in Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings. Ed. by Christian Cachin and Jan Camenisch.
Vol. 3027. Lecture Notes in Computer Science. Springer, 2004, pp. 1–19. DOI: 10.1007/
978-3-540-24676-3_1. URL: https://doi.org/10.1007/978-3-540-24676-3%5C_1.

[22] Aner Ben-Efraim et al. “PSImple: Practical Multiparty Maliciously-Secure Private Set In-
tersection”. In: ASIA CCS ’22: ACMAsia Conference on Computer and Communications
Security, Nagasaki, Japan, 30 May 2022 - 3 June 2022. Ed. by Yuji Suga et al. ACM,
2022, pp. 1098–1112. DOI: 10.1145/3488932.3523254. URL: https://doi.org/10.
1145/3488932.3523254.

[23] Atsuko Miyaji and Shohei Nishida. “A Scalable Multiparty Private Set Intersection”. In:
Network and System Security - 9th International Conference, NSS 2015, New York, NY,
USA, November 3-5, 2015, Proceedings. Ed. by Meikang Qiu et al. Vol. 9408. Lecture
Notes in Computer Science. Springer, 2015, pp. 376–385. DOI: 10.1007/978-3-319-
25645-0_26. URL: https://doi.org/10.1007/978-3-319-25645-0%5C_26.

https://doi.org/10.23919/ANNSIM55834.2022.9859355
https://doi.org/10.23919/ANNSIM55834.2022.9859355
https://doi.org/10.23919/ANNSIM55834.2022.9859355
https://doi.org/10.1007/11836810_5
https://doi.org/10.1007/11836810_5
https://doi.org/10.1007/11836810%5C_5
https://doi.org/10.1109/COMST.2019.2944748
https://doi.org/10.1109/COMST.2019.2944748
https://doi.org/10.1109/COMST.2019.2944748
https://doi.org/10.1007/3-540-46766-1_32
https://doi.org/10.1007/3-540-46766-1_32
https://doi.org/10.1007/3-540-46766-1%5C_32
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/3-540-46766-1%5C_31
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3%5C_1
https://doi.org/10.1145/3488932.3523254
https://doi.org/10.1145/3488932.3523254
https://doi.org/10.1145/3488932.3523254
https://doi.org/10.1007/978-3-319-25645-0_26
https://doi.org/10.1007/978-3-319-25645-0_26
https://doi.org/10.1007/978-3-319-25645-0%5C_26

Bibliography 42

[24] Jelle Vos, Mauro Conti, and Zekeriya Erkin. “SoK: Collusion-resistant Multi-party Private
Set Intersections in the Semi-honest Model”. In: IACR Cryptol. ePrint Arch. (2023). URL:
https://eprint.iacr.org/2023/1777.pdf.

[25] Benny Pinkas, Thomas Schneider, and Michael Zohner. “Scalable Private Set Intersec-
tion Based on OT Extension”. In: ACM Trans. Priv. Secur. 21.2 (2018), 7:1–7:35. DOI:
10.1145/3154794. URL: https://doi.org/10.1145/3154794.

[26] Aslí Bay et al. “Practical Multi-Party Private Set Intersection Protocols”. In: IEEE Trans.
Inf. Forensics Secur. 17 (2022), pp. 1–15. DOI: 10.1109/TIFS.2021.3118879. URL:
https://doi.org/10.1109/TIFS.2021.3118879.

[27] Lea Kissner and Dawn Song. Private and Threshold Set-Intersection. 2004. URL: http:
//www.dtic.mil/docs/citations/ADA461119.

[28] Rasoul Akhavan Mahdavi et al. “Practical Over-Threshold Multi-Party Private Set In-
tersection”. In: ACSAC ’20: Annual Computer Security Applications Conference, Vir-
tual Event / Austin, TX, USA, 7-11 December, 2020. ACM, 2020, pp. 772–783. DOI:
10.1145/3427228.3427267. URL: https://doi.org/10.1145/3427228.3427267.

[29] Nishanth Chandran et al. “Efficient Linear Multiparty PSI and Extensions to Circuit/Quo-
rum PSI”. In: CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communi-
cations Security, Virtual Event, Republic of Korea, November 15 - 19, 2021. Ed. by
Yongdae Kim et al. ACM, 2021, pp. 1182–1204. DOI: 10.1145/3460120.3484591. URL:
https://doi.org/10.1145/3460120.3484591.

[30] Xiaopeng Yu et al. “Multiparty Threshold Private Set Intersection Protocol with Low Com-
munication Complexity”. In: Security and Communication Networks 2022 (2022). Ed. by
Arijit Karati, pp. 1–12. ISSN: 1939-0122, 1939-0114. DOI: 10.1155/2022/9245516. URL:
https://www.hindawi.com/journals/scn/2022/9245516/ (visited on 02/14/2024).

[31] Feng-Hao Liu, En Zhang, and Leiyong Qin. “Efficient Multiparty Probabilistic Thresh-
old Private Set Intersection”. In: Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2023, Copenhagen, Denmark, Novem-
ber 26-30, 2023. Ed. by Weizhi Meng et al. ACM, 2023, pp. 2188–2201. DOI: 10.1145/
3576915.3623158. URL: https://doi.org/10.1145/3576915.3623158.

[32] Satrajit Ghosh and Mark Simkin. “The Communication Complexity of Threshold Private
Set Intersection”. In:Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part II. Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11693. Lecture Notes
in Computer Science. Springer, 2019, pp. 3–29. DOI: 10.1007/978-3-030-26951-7_1.
URL: https://doi.org/10.1007/978-3-030-26951-7%5C_1.

[33] Liju Ma et al. “Over-threshold multi-party private set operation protocols for lightweight
clients”. In: Comput. Stand. Interfaces 88 (2024), p. 103781. DOI: 10.1016/J.CSI.2023.
103781. URL: https://doi.org/10.1016/j.csi.2023.103781.

[34] Ou Ruan et al. “A Practical Multiparty Private Set Intersection Protocol Based on Bloom
Filters for Unbalanced Scenarios”. In: Applied Sciences 13.24 (2023), p. 13215. URL:
https://doi.org/10.3390/app132413215.

[35] Yehuda Lindell and Benny Pinkas. “A Proof of Security of Yao’s Protocol for Two-Party
Computation”. In: J. Cryptol. 22.2 (2009), pp. 161–188. DOI: 10.1007/S00145- 008-
9036-8. URL: https://doi.org/10.1007/s00145-008-9036-8.

https://eprint.iacr.org/2023/1777.pdf
https://doi.org/10.1145/3154794
https://doi.org/10.1145/3154794
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1109/TIFS.2021.3118879
http://www.dtic.mil/docs/citations/ADA461119
http://www.dtic.mil/docs/citations/ADA461119
https://doi.org/10.1145/3427228.3427267
https://doi.org/10.1145/3427228.3427267
https://doi.org/10.1145/3460120.3484591
https://doi.org/10.1145/3460120.3484591
https://doi.org/10.1155/2022/9245516
https://www.hindawi.com/journals/scn/2022/9245516/
https://doi.org/10.1145/3576915.3623158
https://doi.org/10.1145/3576915.3623158
https://doi.org/10.1145/3576915.3623158
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-030-26951-7%5C_1
https://doi.org/10.1016/J.CSI.2023.103781
https://doi.org/10.1016/J.CSI.2023.103781
https://doi.org/10.1016/j.csi.2023.103781
https://doi.org/10.3390/app132413215
https://doi.org/10.1007/S00145-008-9036-8
https://doi.org/10.1007/S00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8

Bibliography 43

[36] Burton H. Bloom. “Space/Time Trade-offs in Hash Coding with Allowable Errors”. In:
Commun. ACM 13.7 (1970), pp. 422–426. DOI: 10.1145/362686.362692. URL: https:
//doi.org/10.1145/362686.362692.

[37] Prosenjit Bose et al. “On the false-positive rate of Bloom filters”. In: Inf. Process. Lett.
108.4 (2008), pp. 210–213. DOI: 10.1016/J.IPL.2008.05.018. URL: https://doi.
org/10.1016/j.ipl.2008.05.018.

[38] Alex Davidson and Carlos Cid. “An Efficient Toolkit for Computing Private Set Oper-
ations”. In: Information Security and Privacy - 22nd Australasian Conference, ACISP
2017, Auckland, NewZealand, July 3-5, 2017, Proceedings, Part II. Ed. by Josef Pieprzyk
and Suriadi Suriadi. Vol. 10343. Lecture Notes in Computer Science. Springer, 2017,
pp. 261–278. DOI: 10.1007/978-3-319-59870-3_15. URL: https://doi.org/10.
1007/978-3-319-59870-3%5C_15.

[39] Robert W. Shirey. “Internet Security Glossary, Version 2”. In: RFC 4949 (2007), pp. 1–
365. DOI: 10.17487/RFC4949. URL: https://doi.org/10.17487/RFC4949.

[40] Rasmus Pagh and Flemming Friche Rodler. “Cuckoo Hashing”. In: Algorithms - ESA
2001, 9th Annual European Symposium, Aarhus, Denmark, August 28-31, 2001, Pro-
ceedings. Ed. by Friedhelm Meyer auf der Heide. Vol. 2161. Lecture Notes in Computer
Science. Springer, 2001, pp. 121–133. DOI: 10 . 1007 / 3 - 540 - 44676 - 1 \ _10. URL:
https://doi.org/10.1007/3-540-44676-1%5C_10.

[41] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979), pp. 612–613.
DOI: 10.1145/359168.359176. URL: https://doi.org/10.1145/359168.359176.

[42] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes”. In: Advances in Cryptology - EUROCRYPT ’99, International Conference on
the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, May
2-6, 1999, Proceeding. Ed. by Jacques Stern. Vol. 1592. Lecture Notes in Computer
Science. Springer, 1999, pp. 223–238. DOI: 10 . 1007 / 3 - 540 - 48910 - X \ _16. URL:
https://doi.org/10.1007/3-540-48910-X%5C_16.

[43] Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. “Sharing Decryption in the
Context of Voting or Lotteries”. In: Financial Cryptography, 4th International Conference,
FC 2000 Anguilla, British West Indies, February 20-24, 2000, Proceedings. Ed. by Yair
Frankel. Vol. 1962. Lecture Notes in Computer Science. Springer, 2000, pp. 90–104.
DOI: 10.1007/3-540-45472-1_7. URL: https://doi.org/10.1007/3-540-45472-
1%5C_7.

[44] Shimon Even, Oded Goldreich, and Abraham Lempel. “A Randomized Protocol for Sign-
ing Contracts”. In: Commun. ACM 28.6 (1985), pp. 637–647. DOI: 10.1145/3812.3818.
URL: https://doi.org/10.1145/3812.3818.

[45] Moni Naor and Omer Reingold. “Number-theoretic Constructions of Efficient Pseudo-
random Functions”. In: 38th Annual Symposium on Foundations of Computer Science,
FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997. IEEE Computer Society,
1997, pp. 458–467. DOI: 10.1109/SFCS.1997.646134. URL: https://doi.org/10.
1109/SFCS.1997.646134.

[46] Michael J. Freedman et al. “Keyword Search and Oblivious Pseudorandom Functions”.
In: Theory of Cryptography, Second Theory of Cryptography Conference, TCC 2005,
Cambridge, MA, USA, February 10-12, 2005, Proceedings. Ed. by Joe Kilian. Vol. 3378.
Lecture Notes in Computer Science. Springer, 2005, pp. 303–324. DOI: 10.1007/978-
3-540-30576-7_17. URL: https://doi.org/10.1007/978-3-540-30576-7%5C_17.

https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1016/J.IPL.2008.05.018
https://doi.org/10.1016/j.ipl.2008.05.018
https://doi.org/10.1016/j.ipl.2008.05.018
https://doi.org/10.1007/978-3-319-59870-3_15
https://doi.org/10.1007/978-3-319-59870-3%5C_15
https://doi.org/10.1007/978-3-319-59870-3%5C_15
https://doi.org/10.17487/RFC4949
https://doi.org/10.17487/RFC4949
https://doi.org/10.1007/3-540-44676-1_10
https://doi.org/10.1007/3-540-44676-1%5C_10
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X%5C_16
https://doi.org/10.1007/3-540-45472-1_7
https://doi.org/10.1007/3-540-45472-1%5C_7
https://doi.org/10.1007/3-540-45472-1%5C_7
https://doi.org/10.1145/3812.3818
https://doi.org/10.1145/3812.3818
https://doi.org/10.1109/SFCS.1997.646134
https://doi.org/10.1109/SFCS.1997.646134
https://doi.org/10.1109/SFCS.1997.646134
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-30576-7%5C_17

Bibliography 44

[47] Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. “SoK: Oblivious Pseudorandom
Functions”. In: 7th IEEE European Symposium on Security and Privacy, EuroS&P 2022,
Genoa, Italy, June 6-10, 2022. IEEE, 2022, pp. 625–646. DOI: 10.1109/EUROSP53844.
2022.00045. URL: https://doi.org/10.1109/EuroSP53844.2022.00045.

[48] Daniel Morales Escalera, Isaac Agudo, and Javier López. “Private set intersection: A
systematic literature review”. In: Comput. Sci. Rev. 49 (2023), p. 100567. DOI: 10.1016/
J.COSREV.2023.100567. URL: https://doi.org/10.1016/j.cosrev.2023.100567.

[49] Per A. Hallgren, Claudio Orlandi, and Andrei Sabelfeld. “PrivatePool: Privacy-Preserving
Ridesharing”. In: 30th IEEE Computer Security Foundations Symposium, CSF 2017,
Santa Barbara, CA, USA, August 21-25, 2017. IEEE Computer Society, 2017, pp. 276–
291. DOI: 10.1109/CSF.2017.24. URL: https://doi.org/10.1109/CSF.2017.24.

[50] Satrajit Ghosh and Mark Simkin. “The Communication Complexity of Threshold Private
Set Intersection”. In:Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part II. Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11693. Lecture Notes
in Computer Science. Springer, 2019, pp. 3–29. DOI: 10.1007/978-3-030-26951-7_1.
URL: https://doi.org/10.1007/978-3-030-26951-7%5C_1.

[51] Saikrishna Badrinarayanan et al. “Multi-party Threshold Private Set Intersection with
Sublinear Communication”. In: Public-Key Cryptography - PKC 2021 - 24th IACR Inter-
national Conference on Practice and Theory of Public Key Cryptography, Virtual Event,
May 10-13, 2021, Proceedings, Part II. Ed. by Juan A. Garay. Vol. 12711. Lecture Notes
in Computer Science. Springer, 2021, pp. 349–379. DOI: 10.1007/978-3-030-75248-
4_13. URL: https://doi.org/10.1007/978-3-030-75248-4%5C_13.

[52] Pedro Branco, Nico Döttling, and Sihang Pu. “Multiparty Cardinality Testing for Thresh-
old Private Intersection”. In: Public-Key Cryptography - PKC 2021 - 24th IACR Interna-
tional Conference on Practice and Theory of Public Key Cryptography, Virtual Event,
May 10-13, 2021, Proceedings, Part II. Ed. by Juan A. Garay. Vol. 12711. Lecture Notes
in Computer Science. Springer, 2021, pp. 32–60. DOI: 10.1007/978-3-030-75248-
4_2. URL: https://doi.org/10.1007/978-3-030-75248-4%5C_2.

[53] Tapaswini Mohanty et al. “Quantum Secure Threshold Private Set Intersection Protocol
for IoT-Enabled Privacy-Preserving Ride-Sharing Application”. In: IEEE Internet Things
J. 11.1 (2024), pp. 1761–1772. DOI: 10.1109/JIOT.2023.3291132. URL: https://doi.
org/10.1109/JIOT.2023.3291132.

[54] Florian Kerschbaum, Erik-Oliver Blass, and Rasoul Akhavan Mahdavi. “Faster Secure
Comparisons with Offline Phase for Efficient Private Set Intersection”. In: 30th Annual
Network and Distributed System Security Symposium, NDSS 2023, San Diego, Cali-
fornia, USA, February 27 - March 3, 2023. The Internet Society, 2023. URL: https :
/ / www . ndss - symposium . org / ndss - paper / faster - secure - comparisons - with -
offline-phase-for-efficient-private-set-intersection/.

[55] Satrajit Ghosh and Mark Simkin. “Threshold Private Set Intersection with Better Commu-
nication Complexity”. In: Public-Key Cryptography - PKC 2023 - 26th IACR International
Conference on Practice and Theory of Public-Key Cryptography, Atlanta, GA, USA, May
7-10, 2023, Proceedings, Part II. Ed. by Alexandra Boldyreva and Vladimir Kolesnikov.
Vol. 13941. Lecture Notes in Computer Science. Springer, 2023, pp. 251–272. DOI:
10.1007/978-3-031-31371-4_9. URL: https://doi.org/10.1007/978-3-031-
31371-4%5C_9.

https://doi.org/10.1109/EUROSP53844.2022.00045
https://doi.org/10.1109/EUROSP53844.2022.00045
https://doi.org/10.1109/EuroSP53844.2022.00045
https://doi.org/10.1016/J.COSREV.2023.100567
https://doi.org/10.1016/J.COSREV.2023.100567
https://doi.org/10.1016/j.cosrev.2023.100567
https://doi.org/10.1109/CSF.2017.24
https://doi.org/10.1109/CSF.2017.24
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-030-26951-7%5C_1
https://doi.org/10.1007/978-3-030-75248-4_13
https://doi.org/10.1007/978-3-030-75248-4_13
https://doi.org/10.1007/978-3-030-75248-4%5C_13
https://doi.org/10.1007/978-3-030-75248-4_2
https://doi.org/10.1007/978-3-030-75248-4_2
https://doi.org/10.1007/978-3-030-75248-4%5C_2
https://doi.org/10.1109/JIOT.2023.3291132
https://doi.org/10.1109/JIOT.2023.3291132
https://doi.org/10.1109/JIOT.2023.3291132
https://www.ndss-symposium.org/ndss-paper/faster-secure-comparisons-with-offline-phase-for-efficient-private-set-intersection/
https://www.ndss-symposium.org/ndss-paper/faster-secure-comparisons-with-offline-phase-for-efficient-private-set-intersection/
https://www.ndss-symposium.org/ndss-paper/faster-secure-comparisons-with-offline-phase-for-efficient-private-set-intersection/
https://doi.org/10.1007/978-3-031-31371-4_9
https://doi.org/10.1007/978-3-031-31371-4%5C_9
https://doi.org/10.1007/978-3-031-31371-4%5C_9

Bibliography 45

[56] Angela Carrera-Rivera et al. “How-to Conduct a Systematic Literature Review: A Quick
Guide for Computer ScienceResearch”. In:MethodsX 9 (2022), p. 101895. ISSN: 22150161.
DOI: 10.1016/j.mex.2022.101895. URL: https://linkinghub.elsevier.com/
retrieve/pii/S2215016122002746 (visited on 05/03/2024).

[57] Jiahui Gao, SonNguyen, and Ni Trieu. “Toward A Practical Multi-party Private Set Union”.
In: IACR Cryptol. ePrint Arch. (2023), p. 1930. URL: https://eprint.iacr.org/2023/
1930.

[58] Jelle Vos, Mauro Conti, and Zekeriya Erkin. “Fast Multi-party Private Set Operations in
the Star Topology from Secure ANDs and ORs”. In: IACR Cryptol. ePrint Arch. (2022),
p. 721. URL: https://eprint.iacr.org/2022/721.

[59] Dana Dachman-Soled et al. “Secure Efficient Multiparty Computing of Multivariate Poly-
nomials and Applications”. In: Applied Cryptography and Network Security - 9th Inter-
national Conference, ACNS 2011, Nerja, Spain, June 7-10, 2011. Proceedings. Ed. by
Javier López and Gene Tsudik. Vol. 6715. Lecture Notes in Computer Science. 2011,
pp. 130–146. DOI: 10.1007/978-3-642-21554-4_8. URL: https://doi.org/10.
1007/978-3-642-21554-4%5C_8.

[60] Fattaneh Bayatbabolghani and Marina Blanton. “Secure Multi-Party Computation”. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. Ed. by David Lie et al.
ACM, 2018, pp. 2157–2159. DOI: 10.1145/3243734.3264419. URL: https://doi.org/
10.1145/3243734.3264419.

[61] Benny Pinkas et al. “Efficient Circuit-Based PSI via Cuckoo Hashing”. In: Advances in
Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part III. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10822. Lec-
ture Notes in Computer Science. Springer, 2018, pp. 125–157. DOI: 10.1007/978-3-
319-78372-7_5. URL: https://doi.org/10.1007/978-3-319-78372-7%5C_5.

[62] En Zhang, Jian Chang, and Yu Li. “Efficient Threshold Private Set Intersection”. In: IEEE
Access 9 (2021), pp. 6560–6570. DOI: 10.1109/ACCESS.2020.3048743. URL: https:
//doi.org/10.1109/ACCESS.2020.3048743.

[63] Shengnan Zhao et al. “Lightweight Threshold Private Set Intersection via Oblivious
Transfer”. In: Wireless Algorithms, Systems, and Applications - 16th International Con-
ference, WASA 2021, Nanjing, China, June 25-27, 2021, Proceedings, Part III. Ed. by
Zhe Liu, Fan Wu, and Sajal K. Das. Vol. 12939. Lecture Notes in Computer Science.
Springer, 2021, pp. 108–116. DOI: 10.1007/978-3-030-86137-7_12. URL: https:
//doi.org/10.1007/978-3-030-86137-7%5C_12.

[64] Dan Meng et al. “t-PSI: Efficient Multi-party Private Set Intersection with Threshold”. In:
IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Commu-
nications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles,
SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta 2022, Haikou, China, December
15-18, 2022. IEEE, 2022, pp. 8–15. DOI: 10.1109/SMARTWORLD- UIC- ATC- SCALCOM-
DIGITALTWIN- PRICOMP- METAVERSE56740.2022.00029. URL: https://doi.org/10.
1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.
00029.

https://doi.org/10.1016/j.mex.2022.101895
https://linkinghub.elsevier.com/retrieve/pii/S2215016122002746
https://linkinghub.elsevier.com/retrieve/pii/S2215016122002746
https://eprint.iacr.org/2023/1930
https://eprint.iacr.org/2023/1930
https://eprint.iacr.org/2022/721
https://doi.org/10.1007/978-3-642-21554-4_8
https://doi.org/10.1007/978-3-642-21554-4%5C_8
https://doi.org/10.1007/978-3-642-21554-4%5C_8
https://doi.org/10.1145/3243734.3264419
https://doi.org/10.1145/3243734.3264419
https://doi.org/10.1145/3243734.3264419
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7%5C_5
https://doi.org/10.1109/ACCESS.2020.3048743
https://doi.org/10.1109/ACCESS.2020.3048743
https://doi.org/10.1109/ACCESS.2020.3048743
https://doi.org/10.1007/978-3-030-86137-7_12
https://doi.org/10.1007/978-3-030-86137-7%5C_12
https://doi.org/10.1007/978-3-030-86137-7%5C_12
https://doi.org/10.1109/SMARTWORLD-UIC-ATC-SCALCOM-DIGITALTWIN-PRICOMP-METAVERSE56740.2022.00029
https://doi.org/10.1109/SMARTWORLD-UIC-ATC-SCALCOM-DIGITALTWIN-PRICOMP-METAVERSE56740.2022.00029
https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00029
https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00029
https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00029

A
Results of our Initial Collection of

Threshold PSI Studies.

Table A.1: Overview of papers that we deem irrelevant to our comparisons, as explained in Section 4.2

Work First author Reason for excluding
[59] Dachman-Soled Not a T-MPSI protocol, just MPSI.

[60] Bayatbabolghani Not a T-MPSI protocol, main focus is MPC.

[61] Pinkas Different definition of T-MPSI.

[50] Ghosh Two-party protocol with a different T-MPSI definition.

[51] Badrinarayanan Different T-MPSI definition focusing on set differences.

[52] Branco Different T-MPSI definition focusing on set cardinality.

[62] Zhang Different T-MPSI definition focusing on intersection cardinality.

[63] Zhao Two-party protocol with a cardinality-based T-MPSI definition.

[64] Meng Not a T-MPSI protocol, utilizes Shamir’s secret sharing.

[30] Yu Two-party protocol with a set difference-based T-MPSI definition.

[55] Ghosh Focuses on set differences in T-MPSI.

[31] Liu Emphasis on probabilistic threshold in intersection size.

[53] Mohanty Focuses on quantum security and threshold cardinality.

46

B
Bash Script for Running the Protocol

by Mahdavi et al.

1 #!/bin/bash
2 ./benchmark all -m 5 -n 8 -t 3 -b 1024 -s 1 -l &&
3 ./benchmark all -m 5 -n 16 -t 3 -b 1024 -s 1 -l &&
4 ./benchmark all -m 5 -n 32 -t 3 -b 1024 -s 1 -l &&
5 ./benchmark all -m 5 -n 64 -t 3 -b 1024 -s 1 -l &&
6 ./benchmark all -m 5 -n 128 -t 3 -b 1024 -s 1 -l &&
7 ./benchmark all -m 5 -n 256 -t 3 -b 1024 -s 1 -l &&
8 ./benchmark all -m 5 -n 512 -t 3 -b 1024 -s 1 -l &&
9 ./benchmark all -m 5 -n 1024 -t 3 -b 1024 -s 1 -l &&

10 ./benchmark all -m 5 -n 2048 -t 3 -b 1024 -s 1 -l &&
11 ./benchmark all -m 5 -n 4096 -t 3 -b 1024 -s 1 -l &&
12 ./benchmark all -m 6 -n 8 -t 3 -b 1024 -s 1 -l &&
13 ./benchmark all -m 6 -n 16 -t 3 -b 1024 -s 1 -l &&
14 ./benchmark all -m 6 -n 32 -t 3 -b 1024 -s 1 -l &&
15 ./benchmark all -m 6 -n 64 -t 3 -b 1024 -s 1 -l &&
16 ./benchmark all -m 6 -n 128 -t 3 -b 1024 -s 1 -l &&
17 ./benchmark all -m 6 -n 256 -t 3 -b 1024 -s 1 -l &&
18 ./benchmark all -m 6 -n 512 -t 3 -b 1024 -s 1 -l &&
19 ./benchmark all -m 6 -n 1024 -t 3 -b 1024 -s 1 -l &&
20 ./benchmark all -m 6 -n 2048 -t 3 -b 1024 -s 1 -l &&
21 ./benchmark all -m 6 -n 4096 -t 3 -b 1024 -s 1 -l &&
22 ./benchmark all -m 7 -n 8 -t 4 -b 1024 -s 1 -l &&
23 ./benchmark all -m 7 -n 16 -t 4 -b 1024 -s 1 -l &&
24 ./benchmark all -m 7 -n 32 -t 4 -b 1024 -s 1 -l &&
25 ./benchmark all -m 7 -n 64 -t 4 -b 1024 -s 1 -l &&
26 ./benchmark all -m 7 -n 128 -t 4 -b 1024 -s 1 -l &&
27 ./benchmark all -m 7 -n 256 -t 4 -b 1024 -s 1 -l &&
28 ./benchmark all -m 7 -n 512 -t 4 -b 1024 -s 1 -l &&
29 ./benchmark all -m 7 -n 1024 -t 4 -b 1024 -s 1 -l &&
30 ./benchmark all -m 7 -n 2048 -t 4 -b 1024 -s 1 -l &&
31 ./benchmark all -m 7 -n 4096 -t 4 -b 1024 -s 1 -l &&
32 ./benchmark all -m 8 -n 8 -t 4 -b 1024 -s 1 -l &&
33 ./benchmark all -m 8 -n 16 -t 4 -b 1024 -s 1 -l &&
34 ./benchmark all -m 8 -n 32 -t 4 -b 1024 -s 1 -l &&
35 ./benchmark all -m 8 -n 64 -t 4 -b 1024 -s 1 -l &&
36 ./benchmark all -m 8 -n 128 -t 4 -b 1024 -s 1 -l &&
37 ./benchmark all -m 8 -n 256 -t 4 -b 1024 -s 1 -l &&

47

48

38 ./benchmark all -m 8 -n 512 -t 4 -b 1024 -s 1 -l &&
39 ./benchmark all -m 8 -n 1024 -t 4 -b 1024 -s 1 -l &&
40 ./benchmark all -m 8 -n 2048 -t 4 -b 1024 -s 1 -l &&
41 ./benchmark all -m 8 -n 4096 -t 4 -b 1024 -s 1 -l &&
42 ./benchmark all -m 9 -n 8 -t 5 -b 1024 -s 1 -l &&
43 ./benchmark all -m 9 -n 16 -t 5 -b 1024 -s 1 -l &&
44 ./benchmark all -m 9 -n 32 -t 5 -b 1024 -s 1 -l &&
45 ./benchmark all -m 9 -n 64 -t 5 -b 1024 -s 1 -l &&
46 ./benchmark all -m 9 -n 128 -t 5 -b 1024 -s 1 -l &&
47 ./benchmark all -m 9 -n 256 -t 5 -b 1024 -s 1 -l &&
48 ./benchmark all -m 9 -n 512 -t 5 -b 1024 -s 1 -l &&
49 ./benchmark all -m 9 -n 1024 -t 5 -b 1024 -s 1 -l &&
50 ./benchmark all -m 9 -n 2048 -t 5 -b 1024 -s 1 -l &&
51 ./benchmark all -m 9 -n 4096 -t 5 -b 1024 -s 1 -l &&
52

53 ./benchmark all -m 6 -n 1024 -t 2 -b 1024 -s 1 -l &&
54 ./benchmark all -m 6 -n 1024 -t 4 -b 1024 -s 1 -l &&
55 ./benchmark all -m 6 -n 1024 -t 5 -b 1024 -s 1 -l &&
56

57 ./benchmark all -m 5 -n 1024 -t 4 -b 1024 -s 1 -l &&
58 ./benchmark all -m 6 -n 1024 -t 4 -b 1024 -s 1 -l &&
59 ./benchmark all -m 9 -n 1024 -t 4 -b 1024 -s 1 -l

C
Proof that Intermediate Results Can

Be Leaked

Let us consider an example with the threshold t = 3 and the number of parties m = 4.
Parties P1, P2, P3, P4 respectively each have a set S1, S2, S3, S4.

We define R as the union of intersections of all combinations of t = 3 sets out of the m = 4
sets.

R = (S1 ∩ S2 ∩ S3) ∪ (S1 ∩ S2 ∩ S4) ∪ (S1 ∩ S3 ∩ S4) ∪ (S2 ∩ S3 ∩ S4)

We define R1 as the intersection of R1 with the union of intersections of all combinations of
t− 1 = 2 sets out of the m− 1 = 3 other sets (so excluding R1) as follows:

R1 = S1 ∩ [(S2 ∩ S3) ∪ (S2 ∩ S4) ∪ (S3 ∩ S4)]

= (S1 ∩ S2 ∩ S3) ∪ (S1 ∩ S2 ∩ S4) ∪ (S1 ∩ S3 ∩ S4)

Consider S1 ∩R:

S1 ∩R = S1 ∩ (S1 ∩ S2 ∩ S3) ∪ (S1 ∩ S2 ∩ S4) ∪ (S1 ∩ S3 ∩ S4) ∪ (S2 ∩ S3 ∩ S4)

= (S1 ∩ S1 ∩ S2 ∩ S3) ∪ (S1 ∩ S1 ∩ S2 ∩ S4) ∪ (S1 ∩ S1 ∩ S3 ∩ S4) ∪ (S1 ∩ S2 ∩ S3 ∩ S4)

= (S1 ∩ S2 ∩ S3) ∪ (S1 ∩ S2 ∩ S4) ∪ (S1 ∩ S3 ∩ S4) ∪ (S1 ∩ S2 ∩ S3 ∩ S4)

= R1 ∪ (S1 ∩ S2 ∩ S3 ∩ S4)

Since S1 ∩ S2 ∩ S3 ∩ S4 ⊆ S1 ∩ S2 ∩ S3∩ ⊆ R1,

S1 ∩R = R1

Therefore, a participant i can generate Ri from Si and R, which are known to them.

We can generalize this to prove for all t and m that Si ∩R = Ri:
Let R represent the union of intersections of all combinations of t participant sets out of

the total m sets:

R =
∪

J⊆{1,...,m}
|J |=t

∩
j∈J

Sj (C.1)

49

50

Let Ri, for a specific party i, be defined as:

Ri = Si ∩
∪

J⊆{1,...,m}\{i}
|J |=t−1

∩
j∈J

Sj (C.2)

We want to prove that we can obtain Ri from the intersection of Si and R. We start by
expanding R:

Si ∩R = Si ∩

 ∪
J⊆{1,...,m}

|J |=t

∩
j∈J

Sj

 .

Using the distributive property of intersection over union, this becomes

Si ∩R =
∪

J⊆{1,...,m}
|J |=t

(Si ∩
∩
j∈J

Sj).

If we focus on subsets J such that i ∈ J , this reduces to considering intersections of t− 1
other sets with Si because the presence of Si in the intersections is guaranteed

Si ∩R =
∪

J⊆{1,...,m}\{i}
|J |=t−1

(Si ∩
∩

j∈J∪{i}

Sj).

Since i is added back to J to form t elements, and J initially contains t − 1 elements not
including i, the equation reduces to

Si ∩R =
∪

J⊆{1,...,m}\{i}
|J |=t−1

(Si ∩
∩
j∈J

Sj).

By the distributive property of sets, we can extract the intersection of Si out of the union

Si ∩R = Si ∩
∪

J⊆{1,...,m}\{i}
|J |=t−1

∩
j∈J

Sj .

This is exactly the definition of Ri as given by equation C.2, so we conclude that

Si ∩R = Ri

This generalization shows that each participant i can generate Ri from Si and R, which
confirms the privacy-preserving properties of the protocol despite potential exposures of in-
termediate results Ri’s. This ensures the protocol’s confidentiality and integrity under the
assumption that R and each participant’s Si are secure.

D
Bash Script for Running the Extension

1 #!/bin/bash
2

3 cd threshold -multiparty -psi
4

5 echo "Running␣T-MPSI␣individual."
6 mkdir build
7 cd build
8 cmake ..
9 make

10 ./multiparty_psi_fresh
11

12 mv tmpsi_ind.json ../../private -logic -and-mpso
13

14 echo "Running␣MPSU."
15

16 # Compile and run the Rust program
17 cd ../../private -logic -and-mpso
18

19 cargo build --release
20 cargo run --release exact -set-union 3 10 3706452992 2
21

22 echo "Done."

51

E
Execution Times of the

Implementations for the [28] and [26]
T-MPSI Protocols

Table E.1: Mahdavi et al. and Bay et al. original and parallelized protocols under different numbers of elements
per set n with m = 6 and T = 3 - Runtime in seconds

n Mahdavi Original Mahdavi Parallelized Bay Original Bay Parallelized

8 1.572± 0.239 1.423± 0.043 8.224± 0.179 2.439± 0.063
16 3.304± 0.411 3.082± 0.047 17.588± 0.445 5.157± 0.066
32 6.658± 0.825 6.284± 0.059 35.791± 0.627 9.926± 0.079
64 14.088± 1.835 13.459± 0.108 73.049± 0.726 19.947± 0.091
128 25.722± 2.816 24.775± 0.448 140.338± 1.550 38.809± 0.192
256 38.462± 4.338 36.826± 0.195 248.967± 2.922 70.189± 0.221
512 91.968± 10.202 88.463± 0.319 529.322± 9.809 161.499± 0.832
1024 124.711± 4.341 122.663± 0.388 927.223± 12.746 329.802± 2.298
2048 428.019± 36.205 414.298± 1.037 2288.518± 33.390 622.106± 3.950
4096 659.274± 7.381 655.056± 1.380 4080.347± 27.907 1183.389± 6.127

Table E.2: Mahdavi et al. and Bay et al. original and parallelized protocols under different numbers of parties m
with n = 1024 and T = 3 - Runtime in seconds

m Mahdavi Original Mahdavi Parallelized Bay Original Bay Parallelized

5 362.3± 3.06 363.9± 4.47 828.7± 9.14 210.7± 1.65
6 376.3± 2.80 375.2± 3.49 962.8± 14.43 299.1± 2.10
7 726± 10.80 724.6± 6.17 1509± 30.43 330.7± 1.65
8 1183± 8.51 1188± 12.54 1958± 16.22 398.2± 2.47
9 1988± 13.09 1985± 6.41 3029± 14.49 611.5± 31.57

Note that certain parameters values in the T-MPSI protocols cause the protocol to run for
longer than what is practical in real-world settings. Consequently, for instances where the
protocol did not complete execution within a reasonable timeframe, such as in Tables E.4, E.5
and E.6, we leave the entry blank.

52

53

Table E.3: Mahdavi et al. and Bay et al. original and parallelized protocols under different intersection thresholds
T with m = 6 and n = 1024 - Runtime in seconds

T Mahdavi Original Mahdavi Parallelized Bay Original Bay Parallelized

2 109.4± 2.22 110.3± 0.52 1048± 15.7 297.1± 1.42
3 124.7± 4.34 122.7± 0.39 927.2± 12.75 329.8± 2.3
4 376.4± 2.796 375.2± 3.49 963± 14.43 299.1± 2.1
5 3802± 43.38 3874± 55.46 1086± 23.44 321.4± 3.24

Table E.4: Mahdavi et al. original implementation with threshold T =
⌊
m+1

2

⌋
- Runtime in seconds

Maximum number of
elements per set n

Number of parties m

5 6 7 8 9

8 1.44 ± 0.03 1.57 ± 0.24 2.05 ± 0.09 3.45 ± 0.11 7.26 ± 0.07
16 2.19 ± 0.06 3.3 ± 0.41 4.65 ± 0.13 7.42 ± 0.05 58.51 ± 0.84
32 5.54 ± 0.09 6.66 ± 0.82 9.67 ± 0.18 14.66 ± 0.12 205.7 ± 2.85
64 10.02 ± 0.1 14.09 ± 1.83 29.68 ± 0.36 40.85 ± 0.23 639.1 ± 4.55
128 21.86 ± 0.15 25.72 ± 2.82 65.33 ± 0.83 96.84 ± 0.55 1962 ± 18.35
256 25.91 ± 0.2 38.46 ± 4.34 123.9 ± 1.44 223.9 ± 1.18 5988 ± 91.03
512 115.1 ± 0.4 91.97 ± 10.2 542.8 ± 6.34 903.6 ± 9.86 —
1024 169.6 ± 3.08 124.7 ± 4.34 726 ± 10.8 1184 ± 8.51 —
2048 389.1 ± 3.27 428 ± 36.2 1881 ± 25.05 2974 ± 34.77 —
4096 538.3 ± 3.65 659.3 ± 7.38 3996 ± 223 6385 ± 53.5 —

Table E.5: Mahdavi et al. parallelized implementation with threshold T =
⌊
m+1

2

⌋
- Runtime in seconds

Maximum number of
elements per set n

Number of parties m

5 6 7 8 9

8 1.5 ± 0.11 1.42 ± 0.04 2.06 ± 0.05 3.46 ± 0.06 7.34 ± 0.22
16 2.22 ± 0.05 3.08 ± 0.05 4.62 ± 0.07 7.35 ± 0.04 58.61 ± 0.94
32 5.6 ± 0.2 6.28 ± 0.06 9.69 ± 0.12 14.63 ± 0.14 205.2 ± 2.48
64 9.99 ± 0.1 13.46 ± 0.11 29.92 ± 0.38 40.79 ± 0.28 640.3 ± 5.83
128 22 ± 0.36 24.77 ± 0.45 65.66 ± 0.89 96.88 ± 0.67 1962 ± 24.23
256 25.79 ± 0.23 36.83 ± 0.2 125.1 ± 1.93 223.6 ± 1.39 6002 ± 35.69
512 115.3 ± 1.16 88.46 ± 0.32 546.2 ± 6.34 899.9 ± 4.26 —
1024 168.5 ± 1.05 122.7 ± 0.39 724.6 ± 6.17 1188 ± 12.54 —
2048 388.7 ± 2.76 414.3 ± 1.04 1880 ± 23.15 2980 ± 29.24 —
4096 537.7 ± 3.26 655.1 ± 1.38 3970 ± 53.67 6415 ± 40.43 —

54

Table E.6: Bay et al. original implementation with threshold T =
⌊
m+1

2

⌋
- Runtime in seconds

Maximum number of
elements per set n

Number of parties m

5 6 7 8 9

8 6.26 ± 0.15 8.22 ± 0.18 12.04 ± 0.07 19.74 ± 0.29 26.2 ± 0.24
16 11.14 ± 0.19 17.59 ± 0.45 24.16 ± 0.38 36.42 ± 0.55 60.64 ± 1.48
32 26.87 ± 2.2 35.79 ± 0.63 45.94 ± 0.77 64.31 ± 0.55 114.8 ± 2.01
64 47.78 ± 0.71 73.05 ± 0.73 115 ± 1.72 150.9 ± 2.59 206.1 ± 4.14
128 66.64 ± 15.73 140.3 ± 1.55 222.6 ± 2.6 303.4 ± 4.47 361.5 ± 10.47
256 161.5 ± 3.21 249 ± 2.92 362 ± 3.68 578.3 ± 6.18 786.8 ± 17.69
512 460.5 ± 6.17 529.3 ± 9.81 861.7 ± 50.19 1120 ± 9.44 1412 ± 15.69
1024 782.5 ± 10.16 927.2 ± 12.75 1509 ± 30.43 1958 ± 16.22 3364 ± 49.29
2048 1689 ± 29.72 2289 ± 33.39 3385 ± 18.84 4170 ± 18.02 6726 ± 44.17
4096 2804 ± 29.54 4080 ± 27.91 6856 ± 223.98 8649 ± 39.5 —

Table E.7: Bay et al. parallelized implementation with threshold T =
⌊
m+1

2

⌋
- Runtime in seconds

Maximum number of
elements per set n

Number of parties m

5 6 7 8 9

8 1.68 ± 0.03 2.44 ± 0.06 2.6 ± 0.08 4 ± 0.08 4.71 ± 0.2
16 3.43 ± 0.03 5.16 ± 0.07 5.06 ± 0.07 8.06 ± 0.07 9.91 ± 0.44
32 6.15 ± 0.05 9.93 ± 0.08 10.77 ± 0.12 15.1 ± 0.11 19.15 ± 1.16
64 11.46 ± 0.13 19.95 ± 0.09 23.65 ± 0.17 30.25 ± 0.21 37.98 ± 2.41
128 25.38 ± 0.25 38.81 ± 0.19 44.02 ± 0.21 64.5 ± 0.33 72.23 ± 3.52
256 43.24 ± 0.28 70.19 ± 0.22 73.27 ± 0.39 122.7 ± 0.52 155.4 ± 7.86
512 109.2 ± 0.45 161.5 ± 0.83 181.7 ± 1.04 261.4 ± 1.24 292.3 ± 12.16
1024 203.2 ± 1.14 329.8 ± 2.3 330.7 ± 1.65 398.2 ± 2.47 608.6 ± 19.32
2048 440.1 ± 1.96 622.1 ± 3.95 777.6 ± 4.5 983.2 ± 2.93 1183 ± 56.68
4096 877.8 ± 7.17 1183 ± 6.13 1507 ± 4.94 2102 ± 10.42 2533 ± 89.67

	Introduction
	Cyber Threats to the Medical Domain
	Cyber Threat Intelligence
	Multi-Party Private Set Intersection
	Application in a Hospital Setting
	Research Challenge
	Contributions
	Outline

	Preliminaries
	Security Models
	Semi-Honest Security
	Malicious Security

	Set Representations
	Bloom Filters
	Cuckoo Hashing

	Cryptographic Tools
	Secret Sharing
	Homomorphic Encryption
	Oblivious Transfer
	Oblivious Pseudorandom Functions

	Related Work
	Comparative Studies of PSI Protocols
	Comparisons of T-MPSI Protocols

	Methodology for Qualitative Comparison
	Gathering Relevant Studies
	Selection Criteria for T-MPSI Studies

	Qualitative Analysis
	T-MPSI Protocol by Kissner and Song
	T-MPSI Protocol by Mahdavi et al.
	T-MPSI Protocol by Chandran et al.
	T-MPSI Protocol by Bay et al.
	Summary of Qualitative Comparison

	Setup for Quantitative Comparison
	Selecting Protocols for Quantitative Comparison
	Initial Configuration and Implementation
	Implementation with Parallelization

	Quantitative Analysis
	How the Number of Parties m Affects Runtime
	How the Maximum Number of Elements Per Set n Affects Runtime
	How the Intersection Threshold T Affects Runtime
	Effects of Parallelization
	Additional Practical Performance Comparison

	Extension
	Protocol Description
	Implementation

	Discussion and Future Work
	Discussion
	Limitations
	Future Work
	Conclusion

	Results of our Initial Collection of Threshold PSI Studies.
	Bash Script for Running the Protocol by Mahdavi et al.
	Proof that Intermediate Results Can Be Leaked
	Bash Script for Running the Extension
	Execution Times of the Implementations for the Mahdavi2020T-MPSI and Bay2022MPSI T-MPSI Protocols

