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1
Introduction

The thesis is structured as follows: first, a general overview of the storyline will be given in Chapter 1.
The main body of the thesis is presented in Chapter 2 in CVPR style article form. In Chapter 3, a short
overview of Deep Learning methods can be found together with explanations of Convolutional Neural
Networks, translation equivariance and scale equivariance.

1.1. General Storyline
Scale is an important factor to consider in digital image analysis. Objects appear at various distances
from the camera resulting in a variable number of pixels being used to represent the same object in
an image. Additionally, there is the notion of inter-class variation of scale which refers to the difference
in scale between objects of the same class. An example of this is humans themselves; children are
much smaller than adults, and recognising them based on features like their arms should consider the
variation in size. Ideally, we want to be able to recognise objects in an image regardless of their scale
or distance from the camera.

Convolutional Neural Networks (CNNs) have been widely popular in the field of computer vision but
do not consider scale by default. With enough training examples, a CNN can recognise and classify
differently-sized objects in an image. However, CNNs learn to classify differently-sized objects by learn-
ing different features corresponding to the same objects of a different scale. This leads to significant
redundancy in the learned features.

Scale convolution methods, such as SESN [3], extend regular convolution in the scale domain to
make them scale-equivariant. Scale-equivariance means that scaling the input scales the output of the
operation that is scale-equivariant in the same way. Instead of learning differently sized versions of the
same feature, scale convolution methods aim to share the features across a set of chosen scales S.
This leads to an increase in parameter efficiency.

Scale convolution methods require the user to choose the set of scales S to share the features over.
The set S is of limited size since it adds significant computational complexity for each additional scale.
Thus, it is important to configure the set of scales S wisely. However, the current work does not explain
in detail how to choose the set of scales S for different scale distributions.

In this work, we develop an empirical model which links the set of scales S to the data scale distri-
bution and suggests how to choose the internal scales accordingly. The intuition behind the empirical
model is that each filter at a certain scale si is activated for several data scales. We refer to this region
as the tolerance of the scale si ∈ S. We combine the tolerances for all scales S into one mixture model
and use optimisation to fit the mixture model to the known data scale distribution. The response of the
optimisation is a suggestion on how to choose the set of scale S, narrowing down the search space
and reducing the time needed for optional hyperparameter optimisation.

However, the empirical model cannot suggest how to choose the set of scales when the data scale
distribution is unknown. We extend the work done by SESN [3] and parameterise the set of scales S by
a learnable parameter. We adopt a similar approach to N-JetNet [2], directly learning the scales from
the data using gradient optimisation. This allows the network to optimise the set of scales S instead of
having to choose it before training.
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Scientific Article

The main body of the thesis is presented in this chapter. The article is written in CVPR style form and
thus starts on the next page.
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Abstract

In real-life scenarios, there are many variations in sizes
of objects of the same category and the objects are not al-
ways placed at a fixed distance from the camera. This re-
sults in objects taking up an arbitrary size of pixels in the
image. Vanilla CNNs are by design only translation equiv-
ariant and thus have to learn separate filters for scaled vari-
ants of the same objects. Recently, scale-equivariant ap-
proaches have been developed that share features across a
set of pre-determined fixed scales. We further refer to this
set of scales as the internal scales. Existing work gives lit-
tle information about how to best choose the internal scales
when the underlying distribution of sizes, or scale distribu-
tion, in the dataset, is known. In this work, we develop a
model of how the features at different internal scales are
used for samples containing differently-sized objects. The
proposed model return comparable internal scales to the
best-performing internal scales for different data scale dis-
tribution of various width. However, in most cases, the scale
distribution is not known. Compared to previous scale-
equivariant methods, we do not treat the internal scales
as a fixed set but directly optimise them with regard to the
loss, removing the need for prior knowledge about the data
scale distribution. We parameterise the internal scales by
the smallest scale which we refer to as σbasis, and the In-
ternal Scale Range (ISR) that models the ratio between the
smallest and largest scale. By varying the ISR, we learn the
range of the scales the model is equivariant to. We show
that our method can learn the internal scales on various
data scale distributions and can better adapt the internal
scales than other parameterisations. Finally, we compare
our scale learning approach and other parameterisations
to current State-of-the-art scale-equivariant approaches on
the MNIST-Scale dataset.

1. Introduction
Scale is an important factor to take into account in image
processing. The scale, or size in terms of pixels, of an object

in an image can vary because of the distance to the camera
or due to interclass variation. For example, imagine a golf
ball and a volleyball being classified as balls but varying
in size. Vanilla CNNs can learn differently-sized objects
when presented with large amounts of data. However, since
the CNN has no internal notion of scale, separate filters for
differently scaled versions of the same objects are learned,
leading to significant redundancy in the learned features.

Convolutional layers are by design translation equivari-
ant. Translating an object in the image results in a similar
transform applied to the output when convolved. Invariance
is added in the form of a pooling operator and is used for
tasks such as classification. Scale-equivariance and scale-
invariance work the same way but for scaling transforma-
tions. The main benefit of equivariance to different trans-
formations is computational efficiency since features can be
reused across different transformations.

Scale-equivariant and scale-invariant Networks share
features across a fixed set of chosen scales. We will refer
to this set as the internal scales. Sharing the features across
multiple scales increases parameter efficiency by removing
the need to learn separate filters for differently-sized ob-
jects. DSS [17] make use of a Gaussian Scale-Space and
filter dilation to evaluate the filter at different scale levels.
Similarly, [2, 5, 11] use differently sized versions of the in-
put to share features across different integer and non-integer
scales. Alternatively, scale can be accounted for by using
scale group-convolutions [4, 9, 12, 14, 15, 18, 21]. The
general idea behind these scale convolution approaches is
to share a kernel across chosen scales and add a scale di-
mension to regular convolutions. However, current scale-
convolution approaches do not explicitly explain how to
choose the internal scales. We present a model that demon-
strates how to choose the internal scales when the underly-
ing distribution of sizes, or scale distribution, in the dataset,
is known.

In most cases, the data scale distribution is not known
and configuring the internal scales becomes an even harder
task. Recently, several methods to learn the scales in the
dataset have been proposed. One approach learns the size
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of the underlying continuous function that parameterises
the kernel directly through gradient optimization [13, 20].
Augerino [1] estimates scale and other symmetries through
learning the underlying distribution. SREN [16] instead ap-
proximates the local scale of the input image and transforms
the kernel accordingly. These methods either require choos-
ing constraints for each internal scale to prevent them from
converging to the same value [20], are only limited to a sin-
gle scale [13], require extensive use of transformation oper-
ations [1] or only cover small scale ranges [16]. We present
a model capable of learning multiple scales simultaneously
without defining any constraints. Our method is not reliant
on many transformations of the input image and can cover
large scale-ranges.

In this paper, we present a model of the relationship be-
tween the internal scales and the data scale distribution. We
show empirically the parameters for which this model is
most accurate. Furthermore, we define a parameterization
of the internal scales and draw inspiration from NJet-Net
[13] to learn the internal scales. Our method provides a
way to learn the internal scales without the need for prior
knowledge of the scale distribution of your data.

Our method can adjust the internal scales and achieve
competitive performance. Especially in wide data scale
distributions our Internal Scale Range based approach
leads to more stable internal scales and achieves better
performance than other parameterisations. Furthermore,
our scale-learning-based approach performance is on par
with its non-scale-learning counterpart SESN [14] on
MNIST-Scale [5].

In short, our contributions are:
• We demonstrate that the best internal scales are related to

the used data scale distribution.
• We derive an empirical model that shows approximately

how we should choose the internal scales when the data
scale distribution is known.

• We remove the need for prior knowledge about the data
scale distribution by making the internal scales learnable.

2. Related Work

2.1. Scale spaces

Unlike translation, which uses a linear axis, scale is natu-
rally defined on a logarithmic axis [3]. [10] use this prop-
erty and the notion of scale-spaces to define the scale-space
primal sketch. This method forms the basis of many future
work by providing an explicit description of the relation be-
tween structures at different scales for continuous and dis-
crete signals. More recently, DSS [17] use a scale space
in combination with semi-group theory to create a scale-
equivariant model. While scale-space approaches achieve
a very low equivariance error, they are limited to integer

scale factors which drastically limits the applicability when
more fine-grained control is necessary. We do use theory on
the logarithmic nature of scale to define the internal scale
tolerance model and in the parameterisation of the internal
scales.

2.2. Pyramid Networks

Pyramid-based networks are closely related to scale space
approaches since they also use differently scaled versions
of the input image to share features across different scales.
These approaches differ in the sense that they are not lim-
ited to only integer scale factors. Hierarchical ConvNets
[2] used Laplacian pyramids to evaluate the filters at each
scale disjointly. At the end of the network, the responses
for each scale are aligned and concatenated. SI-ConvNet
[5] instead uses a pooling operation to combine the scale
responses after each convolution. Hierarchical ConvNets
and SI-ConvNet are both scale-invariant, SEVF [11] argues
that this is not always wanted behaviour, for example when
the size of the object encodes important information. SEVF
achieves scale-equivariance by injecting the maximum ac-
tivated scale after each pooling layer into the next layer.
Pyramid-based networks are equivariant over fixed chosen
scales and require many expensive interpolation operations.
Contrarily, our approach can learn the scales without exten-
sive use of interpolations.

2.3. Scale-Convolution approaches

An alternative way to achieve scale-equivariance or scale-
invariance is through the use of group convolution. One
of the earliest networks to achieve local scale-invariance
is SiCNN [18]. SiCNN uses interpolation to share filters
across different scales. Other methods [4, 9, 12, 14, 21]
have proposed to, instead of expensive interpolation, use
a parameterised kernel. The kernel of these methods con-
sists of a weighted sum of fixed multi-scale continuous basis
functions. The resulting continuous kernel is discretized be-
fore the convolution operation. DISCO [15] argues that the
discretisation of the underlying continuous basis functions
leads to increased scale-equivariance error and therefore
leads to worse performance. Instead, they opt to use dilation
for integer scale factors and directly optimise basis func-
tions for non-integer scales using the scale-equivariance er-
ror [15]. While all methods allow for non-integer scale fac-
tors, the scales over which the network is equivariant are
fixed and they provide little instructions on how to best
choose the internal scales.

2.4. Learnable Scale

Continuous kernel parameterisation forms the basis of
methods that aim to learn the scale or scales of the dataset.
NJet-Net [13] learned the scale of the dataset by making
the σ parameter of the Gaussian derivative basis function
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Figure 1. Dynamic Multi-Scale Kernel generation pipeline. Filter basis is parameterised by a discrete set of scales which in turn are
generated from learnable parameters, controlling both the size of the first scale σbasis and the range the internal scales span (ISR). Linear
combination of the Dynamic Filter Basis functions with trainable weights form Multi-Scale Kernel.

learnable. While effective, this method is limited to learn-
ing a single scale. SEUNET [20] builds upon this work
by learning the multiple scales that parameterise the un-
derlying multi-scale Gaussian basis functions. However, it
requires choosing disjoint intervals for each internal scale
to lie between otherwise the σ values collapse. Augerino
[1] takes a more approach and aims to discover symme-
tries present in the dataset through estimating the underly-
ing distribution. At test time, multiple augmentations are
then sampled from the learned distribution which are used
as input to the model. While Augerino achieves invariance
and equivariance it requires many transformations of the in-
put image which is an expensive operation. A different ap-
proach is taken by SREN [16] which instead approximates
the local scale, and rotation, and adapts the continuous ker-
nel accordingly in a modified convolution operator. Our
method can learn multiple internal scales simultaneously
without the use of expensive transformations of the input
and can cover large scale-ranges.

3. Method

3.1. Preliminaries

Before going into detail about our internal scale tolerance
model and scale-learning approach we first discuss equiv-
ariance, basis functions and scale-convolutions.

3.1.1 Scale-Translation-Equivariance

A function is equivariant under a transformation L if there
exists a transformation L′ if for an arbitrary input x it holds

that:
L(f(x)) = f(L′(x)) (1)

in other words, transforming the output of the function is
the same as transforming the input and then applying the
function. For an invariant mapping, L′ is the identity func-
tion.

Our method is equivariant to both translation and scale
transformations. Like SESN [14], our method achieves
scale-equivariance through an inverse mapping of the ker-
nel:

f(Ls[x]) ∗ κ = Ls[f(x) ∗ Ls−1 [κ]] (2)

where Ls represents a scaling transformation, f(x) repre-
sents the value of the input image at position x and κ is the
kernel. Thus, a scaled input convolved with a kernel is the
same as first convolving the original input with an inversely
scaled kernel and then applying the same scaling.

3.1.2 Fixed Filter Basis

Due to the discrete nature of images, we need to approx-
imate the equivariance to translation and scaling by a dis-
crete group. The translation group is approximated by tak-
ing into account all discrete translations. The scaling group
is discretised by NS scales with log-uniform spacing as fol-
lows:

S = [σbasis × ISR
( i
NS−1 ) for i in 0..NS − 1] (3)

where σbasis is a learnable parameter that defines the small-
est scale, and the ISR defines the range between the largest
and smallest scale, also known as the Internal Scale Range.
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Figure 2. Example of possible internal scale tolerance model for
the log-uniform data scale distribution over the range [0.6, 2.0]
with ISRhyp fixed to 2 to reflect internal scales choice in SESN
[14] on MNIST-Scale.

The logarithmic spacing can be attributed to the logarithmic
nature of the scale.

The kernels of the model consist of a weighted sum of
basis functions that are defined at each scale in the inter-
nal scales S. Following [14], we use a basis of 2D Hermite
polynomials with a 2D Gaussian envelope. This basis is
pre-computed at the start of training for all pre-determined
scales if scale learning is disabled. Otherwise, the basis
functions are recomputed at each forward pass.

3.1.3 Scale-Convolution

Scale-convolution is a standard convolution extended by in-
corporating an additional scale dimension [14]. Without
taking into account interscale interactions we define the fol-
lowing two types of scale convolutions:
1. Conv T → H: In this scenario, the input of the scale-

convolution is a tensor without any scale-dimension, or
|S′| = 1. The output, defined over the internal scales
S stems from the convolution of the input with scaled
kernels κs−1 s.t. s ∈ S:

[f ∗H κ](s, t) = f(·) ∗ κs−1(·) (4)

where κs is a kernel scaled by s, ∗H is the scale convo-
lution and ∗ is a standard convolution.

2. Conv H → H: The input is now defined over the inter-
nal scales S, the resulting output at scale s is the convo-
lution of the input at scale s with the scaled kernel κs−1 :

[f ∗H κ](s, t) = f(s, ·) ∗ κs−1(·) (5)

These methods are designed to adhere to the scale-
equivariance equation highlighted in Eq. 2.

3.2. Internal Scale Tolerance Model

We define an empirical tolerance model to estimate which
internal scales to choose when the scale distribution is

known. The tolerance describes the region of data scales
the kernel can generalise to. Previous papers have shown
that the generalisation error to unseen scales follows an ap-
proximate log-normal distribution [5, 9]. Therefore, we use
a Normal distribution on a logarithmic scale to model the
tolerance for each kernel at a certain internal scale. The
log-normal distributions of each internal scale are then com-
bined into one mixture model. An example of a possible
configuration can be seen in Fig. 2.
The internal scale tolerance model has the following param-
eters:
1. Reference Internal Scale: defines the relationship be-

tween the position of the internal scales and the data
scales.

2. ISRhyp: range over which the internal scales are de-
fined, this is the factor between the largest and the small-
est scale.

3. τtol: standard deviation of the underlying log-normal
distribution that is placed on each internal scale.
The reference scale and ISR are specific to each toler-

ance model of a data scale distribution while τtol is inde-
pendent of the data scale distribution and a property of a
kernel.

We make the assumption here that we do know the data
scale distribution. We extend the data scale distribution
at the boundaries by a half-log-normal distribution with
σ = 0.4 to model the generalisation to unseen scales. The
Kullback-Leibler [7] is used to fit the tolerance model on
the data scale sampling distributions.

3.3. Moving away from fixed Scale Groups

To make the scales of the network learnable we move away
from fixed multi-scale basis functions and make the scales
of the basis functions dynamic. The scales that parameterise
the basis functions are continuous and have a gradient with
regard to the loss allowing for direct optimisation. This al-
lows us to simultaneously learn the kernel shape and scales,
see Fig. 1. Unlike SEUNET [20], we do not parameterise
the scales directly but parameterise the internal scales by
σbasis and the ISR using Eq. 6.

We observe that a value for the ISR lower or equal to 1
is unwanted as this would result in kernels at the same scale
or a subsequent scale smaller than the base scale defined by
σbasis. We do not use a ReLU activation as this can lead to
a dead neuron and zero gradient. We parameterise the ISR
using the following formula:

ISR = 1 + γ2 (6)

where γ is the learnable parameter. We will only mention
the ISR since it is closely related to the learnable parameter
and more intuitive to understand.

Various size basis functions lead to difficulties in choos-
ing the best kernel size before training. We use the method
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Conv T → H , Hermite, NS = 3, 16 filters

scale-projection

batch norm, relu

42 x 42 max pool

fully-connected, softmax

Table 1. Toy Architecture used in Experiments 4.1 and 4.2 to show
the impact of choosing the internal scales and scale-learning abil-
ities.

by Pintea et al. [13] to learn the size of the kernel based on
the ISR:

l = 2⌈k(σbasis × ISR)⌉+ 1 (7)

where k is a hyperparameter that determines the extent of
the approximation of the continuous basis functions. Thus,
the kernel size used in convolution is determined by the
largest scale in the set of internal scales which is directly
parameterised by σbasis and the ISR.

4. Experiments
In this section, we first validate the importance of match-
ing the internal scales with the data scale distribution and
compare the results with the suggested values of the Inter-
nal Scale Tolerance model. Secondly, we verify that we
can indeed learn the internal scales by evaluating the mod-
els on the same data scale distribution and comparing the
results. Next, we test the effect of initialisation and parame-
terisation of the scale parameter on the performance and sta-
bility of the model. Lastly, we compare our scale-learning
method with existing scale-equivariant and scale-invariant
approaches with fixed internal scales on the commonly used
MNIST-Scale dataset [5].

In Section 4.1 and 4.2, we use the toy architecture shown
in Tab. 1 on the Dynamic Scale MNIST dataset with a Log-
arithmically Uniform data scale distribution with a range
of 1 to 21.5, 22.25 and 23 corresponding to 2.83, 4.76, and 8
scale factors of MNIST respectively. Appx. A gives a com-
plete description of all datasets used in the experiments. A
description of the training procedures can be found in Appx.
B.

4.1. Validation

4.1.1 Do Internal scales really matter?

We test our assumption that the internal scale range (ISR),
the factor between the largest and smallest internal scale
influences the performance. Furthermore, we compare the
optimal ISRs we discovered with the suggested values of
the Internal Scale Tolerance model. The ISRs are chosen
on a logarithmic scale in the range of [1.5, 7.65].

21 22 23

ISR

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

Te
st

 E
rr

or

Data Scale Range
2.83
4.76
8.0
Best

Figure 3. Impact on Test Error when varying Internal Scale
Range (ISR) for different log-uniform data scale distributions
from 1 scale factor of MNIST to 2.83, 4.76 and 8 scale factors
MNIST. The value of the Internal Scale Range (ISR) for the best-
performing model increases together with the width of the model.

The results in Fig. 3 indicate that smaller ISRs are better
for narrow data scale distributions, while larger ISRs per-
form better for wider data scale distributions. Thus, for a
log-uniform distribution that spans a small scale range nar-
row internal scales are preferred. Conversely, for a log-
uniform distribution that spans a large scale range, wide
internal scales are preferred. Looking at the test error of
individual data scales in Fig. 4, we see that at the boundary
regions of wide scale distributions narrow internal scales
achieve significantly higher test error than wider internal
scales indicating that the model cannot share features across
the whole data scale distribution. Narrow internal scales
perform slightly better than wider internal scales when eval-
uated on narrow distributions. This statement aligns with
results found in Fig. 3, which indicates less test error vari-
ation between ISR values for the log-uniform distribution
between 1 and 2.83.

The results of the combined optimisation of the tolerant
model and the three sampling distributions can be found in
Fig. 5. The optimisation leads to τtol = 0.459. The op-
timisation fits ISR values approximately similar to the best
ISRs depicted in Fig. 3. Again, the ISR values follow an in-
creasing pattern when the data scale distribution gets wider.
Additionally, Fig. 5 shows increasing gaps in the tolerance
hypothesis between internal scales for wide distributions.

4.1.2 Can we learn the internal scales?

To test our scale-learning capabilities, we evaluate our
scale-learning on three log-uniform data scale distributions.
The ISR is parameterised according to Eq. 6 and the scale
parameters are initialised with σbasis = 2 and ISR = 3.
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Figure 4. Test Error per data scale for multiple data scale distributions and values for the Internal Scale Range (ISR). Models with narrow
internal scales especially deteriorate in performance in the large-scale region for wide distribution.

Data Scale Range Scale Learning σbasis ISR Test Error

[1,2.83] ✓ 1.96 ± 0.081 3.390 ± 0.545 2.291 ± 0.067
✗ 2 2.34 2.239 ± 0.060

[1,4.76] ✓ 2.001 ± 0.063 3.321 ± 0.024 2.510 ± 0.084
✗ 2 4.76 2.503 ± 0.045

[1,8] ✓ 1.943 ± 0.064 4.196 ± 0.159 2.872 ± 0.070
✗ 2 5.35 2.805 ± 0.028

Table 2. Learned parameters for the Basis Min Scale σbasis

and Internal Scale Range (ISR) compared to the configuration
of the best-performing model with fixed internal scales on differ-
ent ranges of the log-uniform data scale distribution. Apart from
the log-uniform distribution with boundaries [1, 2.83], the learned
scale parameters σbasis and ISR follow a similar pattern as the
manually found scale parameters. The test error of our scale-
learning method is also comparable to the best-performing models
with fixed scales.

The results of learning the ISR and σbasis compared to the
best-performing ISRs without scale learning enabled can
be found in Table 2. Apart from the narrowest scale dis-
tribution, the ISR values learned increase when enlarging
the range of the data scale distribution. Our scale learn-
ing method gives comparable performance to the baselines
while not using hyperparameter optimisation to determine
the best ISR.

4.2. Model Choices

4.2.1 How does initialisation of the scales scale learn-
ing behaviour?

We test the importance of the initialisation of the internal
scales by varying the starting values of σbasis and ISR and
report the classification error and variation in learned scale
parameters. We vary the σbasis between 1 and 4 and the ISR
between 1.5 and 6 in a logarithmic fashion.

Table 3 show the results for the log-uniform distributions
between [1, 2.83], [1, 4.76] and [1, 8]. The results indicate

Data Scale Range Init σbasis Init ISR Learned σbasis Learned ISR Test Error

[1,2.83] 1 1.5 1.268 ± 0.061 2.609 ± 0.269 2.487 ± 0.108
3.0 1.236 ± 0.139 3.300 ± 0.082 2.357 ± 0.024
6.0 1.313 ± 0.102 4.350 ± 0.396 2.309 ± 0.021

2 1.5 1.810 ± 0.057 2.405 ± 0.167 2.260 ± 0.025
3.0 1.973 ± 0.079 3.635 ± 0.647 2.368 ± 0.055
6.0 1.994 ± 0.012 5.336 ± 0.283 2.359 ± 0.097

4 1.5 2.778 ± 0.092 2.521 ± 0.199 2.421 ± 0.050
3.0 2.703 ± 0.081 3.817 ± 0.245 2.483 ± 0.089
6.0 2.832 ± 0.001 5.211 ± 0.416 2.420 ± 0.124

[1, 4.76] 1 1.5 1.294 ± 0.110 3.462 ± 0.410 3.033 ± 0.130
3.0 1.253 ± 0.070 3.829 ± 0.126 2.762 ± 0.087
6.0 1.331 ± 0.091 4.612 ± 0.188 2.727 ± 0.101

2 1.5 1.931 ± 0.068 2.932 ± 0.169 2.767 ± 0.128
3.0 1.975 ± 0.060 3.309 ± 0.092 2.527 ± 0.120
6.0 2.041 ± 0.092 4.882 ± 0.007 2.501 ± 0.157

4 1.5 2.515 ± 0.038 3.093 ± 0.157 2.648 ± 0.073
3.0 2.587 ± 0.040 3.638 ± 0.169 2.575 ± 0.070
6.0 2.803 ± 0.098 5.662 ± 0.204 2.709 ± 0.078

[1, 8] 1 1.5 1.450 ± 0.130 3.767 ± 0.171 3.087 ± 0.173
3.0 1.275 ± 0.076 4.158 ± 0.123 3.131 ± 0.179
6.0 1.331 ± 0.097 5.423 ± 0.529 3.087 ± 0.178

2 1.5 1.755 ± 0.156 3.444 ± 0.025 3.010 ± 0.198
3.0 1.982 ± 0.068 4.095 ± 0.078 2.921 ± 0.082
6.0 2.079 ± 0.061 5.053 ± 0.375 2.745 ± 0.012

4 1.5 2.453 ± 0.151 3.466 ± 0.216 2.935 ± 0.036
3.0 2.607 ± 0.078 4.401 ± 0.343 2.803 ± 0.085
6.0 2.655 ± 0.044 5.268 ± 1.071 2.957 ± 0.140

Table 3. Mean and standard deviation of learned scale param-
eters (σbasis, ISR) and Test Error for different initialisation of
σbasis and ISR for log-uniform data scale distribution between
[1, 2.83], [1, 4.76] and [1, 8]. Learned σbasis and ISR values are
highly dependent on the values they are initialised on. Initialisa-
tion with a large ISR for a wide data scale distribution leads to
significantly lower test error than initialisation at a low ISR.

that the learned σbasis and ISR values can be adapted to fit
the data scale distribution but the initialisation of the values
has a big impact on the learned scales and thus also the test
error. Initialisation with a large ISR for a wide data scale
distribution leads to significantly lower test error. Fig. 6
shows the ISR over time during training, indicating the ISR
stabilises after around 20 epochs while the best-performing
model has a significantly larger ISR.
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Figure 5. Results of combined optimisation of tolerance hypothesis models and three log-uniform data scale distributions. The blue dashed
line indicates the proposed internal scales, while the continuous blue line represents the tolerance hypothesis for a specific data scale
distribution. The red dashed lines indicate the boundaries of the loguniform distribution. The result of fitting the tolerance model results in
increasing ISRhyp similar to results best performing ISRs found for each data scale distribution in Fig. 3.
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Figure 6. ISR parameter overtime for run initialised with σbasis =
2, ISR = 3 on log-uniform distribution with boundaries [1,8].
After around 20 epochs, the learnable ISR stabilises while the
value for the ISR of the best-performing model is significantly
larger.

4.2.2 How does parameterisation of learnable scales
affect learnability?

We test the importance of our scale learning parameterisa-
tion method on the stability and classification performance
against other possible parameterisation methods. We ini-
tialise all scale learning approaches with the internal scales:
[2.0, 3.47, 6]. The parameterisation methods that we com-
pare are:
1. Learning the first scale (σbasis) and the ISR using the

parameterisation from Eq. 6 (Ours)
2. Learning the first scale (σbasis) and the individual spac-

ings between subsequent scales
3. Learning the individual scales directly, based on [20] but

without defining intervals the internal scales adhere to.
Table 4 shows the parameterisation methods, the classifica-
tion error and the variation in the learned internal scales.
Unlike shown in [20] directly learning the scales without
constraints between the internal scales does not lead to in-

Data Scale Range Parameterisation Scale 1 Scale 2 Scale 3 Test Error

[1, 2.83] Direct 1.965 ± 0.047 3.500 ± 0.193 6.235 ± 0.497 2.321 ± 0.095
Individual Spacing 1.967 ± 0.079 3.591 ± 0.329 6.930 ± 1.374 2.285 ± 0.038
ISR 1.960 ± 0.081 3.608 ± 0.435 6.672 ± 1.311 2.291 ± 0.067

[1, 4.76] Direct 1.865 ± 0.046 3.357 ± 0.105 6.450 ± 0.049 2.554 ± 0.093
Individual Spacing 1.996 ± 0.013 3.626 ± 0.158 6.830 ± 0.167 2.565 ± 0.061
ISR 2.001 ± 0.063 3.647 ± 0.127 6.647 ± 0.255 2.510 ± 0.084

[1, 8] Direct 1.689 ± 0.109 3.262 ± 0.107 6.997 ± 0.282 3.057 ± 0.015
Individual Spacing 1.902 ± 0.085 3.648 ± 0.165 8.093 ± 0.229 3.007 ± 0.049
ISR 1.943 ± 0.063 3.977 ± 0.053 8.145 ± 0.057 2.872 ± 0.070

Table 4. Mean and standard deviation of learned scales and Test
Error of different parameterisations for multiple log-uniform dis-
tributions with internal scales initialised as [2.0, 3.46, 6.0]. Learn-
ing the ISR leads to more stable learned internal scales and bet-
ter performance for wide distributions further away from the ini-
tialised scales.

ternal scales converging to the same value. The methods do
not vary significantly in performance for the log-uniform
distribution between [1, 2.83] and [1, 4.76] but this changes
when training on wider distributions. All methods adjust the
scales somewhat to account for the wider scale distribution
but our method of learning the Internal Scale Range (ISR)
is more stable and achieves significantly better test Error.

4.3. Does Learnable scales improve baseline on
popular scale-equivariant image classification
baselines?

We compare our scale-learning ability against existing
scale-equivariant baselines by evaluating on the MNIST-
Scale [5] dataset. We reuse the code provided in DISCO
[15] to compare our results to a baseline CNN and other
methods that take into account scale variations such as
SI-ConvNet [5], SS-CNN [4], SiCNN [19], SEVF [11],
DSS [17], SESN [14] and DISCO [15]. All methods adopt
the same training strategy apart from our scale learning
method having a different learning rate scheduler for its
scale parameters (Appx. B).
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Model MNIST-Scale MNIST-Scale+ # Params.

CNN 2.02 ± 0.07 1.60 ± 0.09 495k
SiCNN 2.02 ± 0.14 1.59 ± 0.03 497k
SI-ConvNet 1.82 ± 0.11 1.59 ± 0.10 495k
SEVF 2.12 ± 0.13 1.81 ± 0.09 495k
DSS 1.97 ± 0.08 1.57 ± 0.09 475k
SS-CNN 1.84 ± 0.10 1.76 ± 0.07 494k
SESN (Hermite) 1.68 ± 0.06 1.42 ± 0.07 495k
DISCO 1.52 ± 0.06 1.35 ± 0.05 495k

Ours (Learn ISR) 1.72 ± 0.05 1.44 ± 0.09 495k
Ours (Learn Spacings) 1.70 ± 0.10 1.50 ± 0.08 495k
Ours (Learn Scales Directly) 1.74 ± 0.06 1.50 ± 0.08 495k

Table 5. Classification error of Vanilla CNN and other methods
that take into account scale variations in the data. The error is
reported for runs with and without data scale augmentation, the
”+” denotes the use of data scale augmentation. Learnable scale
approaches perform on par with the non-learnable scale baseline
SESN [14].

Model Scale 1 Scale 2 Scale 3 Scale 4

SESN 1.5 1.89 2.38 3
DISCO 1.8 2.27 2.86 3.6

Ours (Learn ISR) 1.390 ± 0.016 1.890 ± 0.061 2.572 ± 0.164 3.503 ± 0.338
Ours (Learn Spacing) 1.390 ± 0.011 1.930 ± 0.099 2.614 ± 0.300 3.776 ± 0.600
Ours (Learn Scales Directly) 1.375 ± 0.008 1.889 ± 0.054 2.383 ± 0.044 3.297 ± 0.086

Ours (Learn ISR)+ 1.381 ± 0.013 2.066 ± 0.012 3.092 ± 0.038 4.627 ± 0.095
Ours (Learn Spacing)+ 1.373 ± 0.013 1.859 ± 0.069 2.847 ± 0.091 4.646 ± 0.306
Ours (Learn Scales Directly)+ 1.360 ± 0.014 1.741 ± 0.062 2.485 ± 0.050 3.775 ± 0.083

Table 6. Learned scale parameters of our model on MNIST-Scale
compared to values chosen in SESN [14]. The ”+” denotes the use
of data scale augmentation. The learned scales of all scale learning
methods are much wider than the initialised scales in SESN [14]
and DISCO [15], especially when scale data augmentation is used.

We also compared our Internal Scale Range based pa-
rameterisation with other parameterisations such as: learn-
ing the individual spacings between internal scales and
learning the scales directly. Learning the scale directly is
similar to the approach taken by [20] but without defining
intervals the internal scales have to adhere to.

As can be seen from Table 5, the performance of the
scale learning approaches are very comparable with SESN
[14] without learnable scales. All three scale-learning ap-
proaches achieve test error performance within 1 standard
deviation of SESN with fixed scales. The learned scales,
found in Table 6, are consistently more spread out than the
default scales used in SESN [14] especially when scale data
augmentation is used.

5. Discussion
We have shown to be able to learn the internal scales, but
the problem of choosing the number of internal scales re-
mains an issue. For wide scale distribution, wide inter-
nal scales achieve the best performance. However, if the
models were truly scale-equivariant, the resulting test error
would be similar to the test error for the log-uniform data

scale distribution between 1 and 2.83. More specifically,
if the spacing between the internal scales is too large the
implied scale-equivariance over the entire range of the in-
ternal scales does not hold up. The model again needs to
learn duplicate filters to cover the entire data scale range.
This hypothesis also matches up with our Internal Scale tol-
erance model seen in Fig. 5, which shows dips in between
internal scales. We expect that increasing the number of in-
ternal scales restores the scale equivariance over the entire
scale group with the downside of reduced computational ef-
ficiency.

Another difficulty of learning the scales is the initialisa-
tion of the internal scales. We have found that the initialisa-
tion of the internal scales has a large impact on the learned
scales and as a result the performance. However, we do
expect that this can be resolved by tuning the training pro-
cedure.

In addition, our method adds a significant computational
overhead since it has to reconstruct the dynamic filter ba-
sis functions on each step instead of being able to reuse the
fixed multi-scale basis. However, hyperparameter optimisa-
tion of the scale parameters would take significantly longer.

To conclude, we have shown to be able to make a good
approximation of good scale parameters if the data scale
distribution is known using our Internal Scale tolerance
model. In the more realistic scenario of not knowing the
data scale distribution, we have developed a method to learn
the internal scales instead. Our results show that we can
indeed learn the internal scales but the initialisation plays
an important role in the process. We demonstrate that all
scale-learning parameterizations perform on par with state-
of-the-art scale-equivariant approaches that have been con-
figured on MNIST-Scale. However, our method of learning
the internal scale range is able to adapt to a wider data scale
distribution.

Learnable scales did not add significant gains in classifi-
cation tasks but for other tasks with larger scale-variations
the importance of choosing internal scales becomes more
important. We leave this as future work. Furthermore, we
anticipate that the ability to learn the internal scales is espe-
cially beneficial in more complicated scenarios with more
complicated data scale distributions, like a Normal distri-
bution. To learn the internal scales for more advanced data
scale distributions it might be essential to find a way to ad-
ditionally learn or adapt the number of internal scales based
on a heuristic.
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A. Dataset Description
A.1. Dynamic Scale MNIST

The Dynamic Scale MNIST pads the original 28x28 im-
ages from the MNIST dataset [8] to 168x168 pixels and
then on initialisation of the dataset, an independent scale
for each sample is drawn from the chosen scale distribution.
Only scales e larger than 1 are sampled during training time
to prevent the influence of information loss which occurs
when downsampling the data. Since each digit is upsam-
pled upon accessing no additional storage is needed to use
this dataset for various scale distributions. After initialisa-
tion the dataset is normalised.

Additionally, this dataset can also be used to evaluate
across a range of scales by sampling each test digit individ-
ually on multiple scales. The scales to evaluate are rounded
to the nearest half-octave of 2. The number to evaluate is
determined by the range of octaves times 10. Thus for Fig.
4, 45 scales are sampled between 2−0.5 and 23.5 in a loga-
rithmic manner. The underlying MNIST dataset [8] is split
into 10k training samples, 5k validation samples, and 50k
test samples and 3 different realisations are generated and
fixed.

A.2. MNIST-Scale

The images in the MNIST-Scale dataset are rescaled images
of the MNIST dataset [8]. The scales are sampled from a
Uniform distribution in the range of 0.3 - 1.0 of the original
size and padded back to the original resolution of 28x28
pixels. The dataset is split into 10k training samples, 2k
validation samples and 50k test samples and 6 realisations
are made.

B. Experimental Details
B.1. Dynamic Scale MNIST

For all experiments on the Dynamic Scale MNIST dataset,
we use the toy architecture highlighted in Table 1. Each fil-
ter is parameterised by 5x5 parameters but the extent varies
according to Eq. 7 with k = 4. If not otherwise specified
the scales are chosen or initialised according to Eq. 6 with
σbasis = 2, ISR = 3, NS = 3.

B.2. MNIST-Scale

Following SS-CNN [4], SESN [14] and DISCO [15] we use
1 upsample layer which upsamples the digits by 2, 3 convo-
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Model MNIST-Scale

SiCNN [0.3, 0.45, 0.67, 1.0, 1.49, 2.23, 3.33]
SI-ConvNet [0.3, 0.45, 0.67, 1.0, 1.49, 2.23, 3.33]
DSS [1,2]
SS-CNN [1.0, 1.33, 1.67, 2.0, 2.33]
SESN (hermite) [1.0, 1.26, 1.59, 2.0]
DISCO [1.0, 1.26, 1.59, 2.0]

Table 7. Internal Scales configuration for different models on the
MNIST-Scale dataset.

lutional layers, scale projection layer if necessary, followed
by 2 fully connected layers. Each filter is parameterised by
7x7 parameters. In the case of CNN, this means a filter of
7x7 pixels while for kernel parameterisation methods the
actual kernel size can vary depending on the scales. The
number of parameters are kept roughly the same, around
495k using different number of hidden channels in the con-
volution used. The fully connected layers have 256 and
10 hidden channels respectively. The internal scale fac-
tors for the models and their values are summarised in Ta-
ble 7 for each model. Following SESN [14] the internal
scales for our method are initialised according to Eq. 6 with
σbasis = 1.5, ISR = 2, NS = 4. The kernel size is learn-
able according to Eq. 7 with k = 4

We use an Adam optimizer [6] with default settings
β1 = 0.9, β2 = 0.999 and train for 60 epochs with a batch
size of 128. The learning rate for scale learning parameters
is initialised at 0.005 and a warmup is used of 10 epochs.
The learning rate for other parameters is initialised at 0.01
and both learning rates are divided by 10 every 20 epochs.
Additionally, if scale learning is enabled we use a warmup
of 10 epochs for the scale learning parameters with a learn-
ing rate of 0.01. The learning rate for the scale learning
parameters is also divided by 10 every 20 epochs.
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3
Supplemental Materials

In this chapter, the technical required knowledge will be explained. First, a general overview of deep
learning in computer vision will be given. Secondly, Convolutional Neural Networks and their translation-
equivariance property will be described in more detail. Additionally, we will discuss how we achieve
scale-equivariance using a different kind of convolution.

3.1. Deep Learning for Images
Deep learning refers to a subset of methods in machine learning whose aim is to learn useful represen-
tations in training data. The representations are learned using an architecture called Neural Networks.
Neural Networks consist of interconnected nodes, or neurons, divided into layers. This layer of neurons
is referred to as a fully connected layer since every neuron in the layer is connected to all other neurons
in the previous layer. Each neuron takes in several inputs, performs a weighted sum, and outputs a
single value. The computation of the output of the network is referred to as the forward pass since
information passes through each layer. A helpful way to visualise this forward pass is to think about
the weights being on the line between nodes. The goal of the network is to change the weights of all
of these neurons in such a way as to output the correct value. The main task we are dealing with in
our paper is classification and thus the correct value would be the label that corresponds to the input
image. A visual representation of a network can be seen in Fig. 3.1.

Figure 3.1: A visual representation of a (fully connected) Neural Network with 4 inputs, a hidden layer with 5 units and 3
outputs. From [4].
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3.1. Deep Learning for Images 14

3.1.1. Backpropagation
Deep learning methods use the backpropagation algorithm to efficiently calculate the derivatives of
the weights with respect to the loss function. The loss function calculates the distance between the
prediction of the Neural Network and the wanted output. Computing the gradients of each weight with
respect to the loss function individually is a very costly operation. The backpropagation algorithm uses
the chain chain rule to efficiently compute the derivatives of each parameter. The chain rule makes
it possible to reuse already calculated derivatives. The final derivatives are later used to update the
weights of the network and train the network.

Suppose we have the network highlighted in Fig. 3.2 consisting of two input pixels, two (hidden)
nodes, and one output node. The forward pass is calculated as y′ = w1

y(w
1
fx1+w2

fx2)+w2
y(w

1
gx1+w2

gx2).
The prediction is compared to the actual label of the sample and the loss L is calculated. The backward
pass algorithm starts at the last node with dL

dy′ and dL
dwa

o
= dL

dy′
dy
dwa

o
for a ∈ [0, 1]. Deeper in the network we

get dL
dw1

g
= dL

dy
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g
. Notice that we can reuse the previously calculated value for dL

dy here. If we compute
the topological ordering of the graph and evaluate the derivatives in the reverse order we can, much
more efficiently, compute the derivatives with respect to the weights.
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Figure 3.2: An example Neural Network to help visualize the backpropagation algorithm. It consists of 2 input nodes 2 x1 and
x2, 2 hidden nodes f and g and an output node y.

3.1.2. Optimization
We have shown how to compute the forward pass of the network to compute the prediction of the
network and the backward pass to calculate the gradients of the network but have not shown how to
update the weights. The weights of the network are updated as follows: w′ = w − ϵ dLdw . ϵ represents
the learning rate and it controls the magnitude of how much to update the weights. The gradient with
respect to the loss is calculated with backpropagation and is often not calculated over the whole dataset
but over a small subset or batch of the data. This results in slightly more noisy gradients but leads to
faster convergence in the end. By repeated updating of the weights eventually, the network is trained
to perform the task.

Optimizers in deep learning are responsible for tuning the learning rate during training. This is an
important aspect since later optimisation steps in the training phase require precise updates of the
weights and thus a lower learning rate. Furthermore, isotropic parameter spaces can lead to large
oscillations in the gradient steps for certain parameters. Optimizers leverage past gradient update
statistics to update the learning rate, aiming for faster and better convergence.

The optimizer we use in our experiments is called the AdamOptimizer. First, Adam usesmomentum
that smooths the average of the gradient using exponentially weighted moving averaging (EWMA).
Momentum uses the EWMA of past gradient updates to increase the step size in the directions the
gradients are moving. Secondly, it makes use of an algorithm called RMSprop. RMSprop also uses the
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EWMA of the zero-centred variance of the gradients to normalise the learning rate for each parameter.
This has the effect of stabilising the optimisation process and reducing oscillation.

3.1.3. Other Operations
Fully connected layers are not the only type of layers or operations commonly used in Neural Net-
works. In this section, we highlight other popular layers and operations we use in Chapter 2 apart from
Convolution Layers that will be explained in the next section.

Activation functions are used at each neuron output to add non-linearity. Without activating func-
tions, a fully connected Neural Network would be purely linear and capable of only modelling other
linear functions. Activation functions are used to extend the capacity of the network to non-linear func-
tions. A common activation function is the rectified linear unit or ReLu defined by g(x) = max(0, x).
ReLU remains close to linear, preserving many properties of linear models that are helpful, such as
easy optimisation and good generalizability.

Another operation which is commonly used in practice is pooling. Pooling functions summarise the
responses over a certain neighbourhood. Pooling can be used for multiple purposes such as reducing
the number of output nodes of a layer, allowing the network to take in variable-size inputs and achieving
invariance. Translation invariance means that if we move the object in the image, the output of the
pooling layer does not change.

3.2. Convolutional Neural Networks
Convolutional Neural Networks are another type of neural network which are especially successful on
grid-like data where patterns play an important role, such as time series data or images. Convolution in
the image domain consists of sliding a flipped kernel of weights over the input of the layer. The output
of each node is the multiplication of the flipped kernel entries with the entries in the surrounding input
data of the same size. Deep Learning libraries used in practice often do not flip the kernel. An example
of a convolution without a flipped kernel can be seen in Fig. 3.3. In this example, no padding is applied
so that the resulting output is smaller than the input. The output of a convolutional layer is often called
a feature map since it is a mapping of how much a certain feature or kernel is found in the input. Using
multiple kernels in a convolution layer allows us to detect and locate multiple features in the input.

Figure 3.3: Example of a Convolution Operation on an image without flipped kernel and no padding of the input. From [1]

Convolutional layers allow for many useful properties that can improve the network. The kernel
used in convolutional layers is often significantly smaller than the input feature map and thus the output
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Figure 3.4: Scale-Convolution operation in practice. Left: the input feature map f does not contain scale dimension. Right: the
input feature map f contains a scale dimension. For the sake of simplicity, the spatial component of the input and kernel is left

out. From: SESN [3].

takes significantly less time to compute. Moreover, the kernel is used at various locations making it
possible to locate features at multiple locations without having to learn separate weights reducing the
number of parameters needed.

3.2.1. Translation-Equivariance
An important property of convolution is translation-equivariance. Equivariance to certain transforma-
tions means that transforming the input transforms the output similarly. In the case of convolution,
moving a certain object in the image changes the output feature map in the same way. Translation
equivariance is especially helpful in detection tasks where the objective is both classifying the object
and locating it.

3.2.2. Scale-Equivariance
Convolution is by default not equivariant to scaling or other transformations. A common way to extend
the equivariance property to other transformations is through the use of group convolutions. Group
convolutions apply multiple convolutions of the image with transformed versions of the same kernel.

In practice, group convolutions are implemented in a slightly different manner. We will only explain
the case where the group is the scale-translation group, but it works for other group transformations
too. Assume you have a kernel size of 5 by 5 pixels and have 32 features in the convolution layer
and an input feature map of 16 channels. A regular convolution would perform a convolution with
the input feature map and the tensor of size [16, 32, 5, 5]. For the scale convolution, the kernels are
first scaled according to a set of scales S. This has the additional effect of changing the kernel size
since only upscaling is used. The resulting tensor of shape [16, 32, S, V ′, V ′] is then expanded to size
[16, 32×S, V ′, V ′]. The output feature map is then of size [16×S,U, U ], this is expanded to [16, S, U, U ].
The output feature map consists of all feature maps of the transformed kernels stacked together.

A special case of scale convolution arises when the input feature comes from another scale convo-
lution layer. In this case, the kernel is transformed similarly and again has a tensor shape in the form
of [Cout, Cin, S, V

′, V ′] but now, to preserve the scale equivariance property, each kernel with scale
index si is convolved with the input feature map with the same scale index si. A visualization of the two
cases can be seen in Fig. 3.4.

The benefits of scale-equivariance are similar to the benefits of translation-equivariance. Sharing
kernels across various scales reduces the number of parameters we need since the network does not
have to learn a separate representation for a scaled object.
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