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Abstract

Through new digital business models, the importance of big data analytics continuously grows.
Initially, data analytics clusters were mainly bounded by the throughput of network links and
the performance of I/O operations. With current hardware development, this has changed,
and often the performance of CPUs and memory access became the new limiting factor. Het
erogeneous computing systems, consisting of CPUs and other computing hardware, such
as GPUs and FPGAs, try to overcome this by offloading the computational work to the best
suitable hardware.

Accelerating the computation by offloading work to special computing hardware often re
quires specialized knowledge and extensive effort. In contrast, Apache Spark became one
of the most used data analytics tools, among other reasons, because of its userfriendly API.
Notably, the component Spark SQL allows defining declarative queries without having to write
any code. The present work investigates to reduce this gap and elaborates on how Spark
SQL’s internal information can be used to offload computations without the user having to
configure Spark further.

Thereby, the present work uses the Apache Arrow inmemory format to exchange data
efficiently between different accelerators. It evaluates Spark SQL’s extensibility for providing
custom acceleration and its new columnar processing function, including the compatibility with
the Apache Arrow format. Furthermore, the present work demonstrates the technical feasibil
ity of such an acceleration by providing a ProofofConcept implementation, which integrates
Spark with tools from the Arrow ecosystem, such as Gandiva and Fletcher. Gandiva uses
modern CPUs’ SIMD capabilities to accelerate computations, and Fletcher allows the execu
tion of FPGAaccelerated computations. Finally, the present work demonstrates that already
for simple computations integrating these accelerators led to significant performance improve
ments. With Gandiva the computation became 1.27 times faster and with Fletcher even upto
13 times.
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1
Introduction

1.1. Context
With the creation of new digital business models, the amount of data created every day is
increasing dramatically. In 2018, 33 zettabytes of new data have been created, which is 375
million times more than the size of the internet in 1997. Many companies join together and
analyze the data, gathered from their users, and production processes to improve existing
business models and to find new business opportunities. It is essential for them to be able to
analyze a vast amount of data quickly and costefficiently [61].

Apache Spark is a unified analytics engine for distributed largescale data processing. It
was started in 2009 by a research project at UC Berkeley. Since then, Spark’s popularity has
increased rapidly and it has become one of themost used big data analytics platforms. Apache
Spark is now used in many industries, including large internet companies such as eBay and
Netflix. Furthermore, with more than 1000 contributors, it has developed to being the largest
open source community in big data [15].

Besides the core component, which includes managing the memory, distributing the data,
and coordinating the execution in a cluster, Apache Spark containsmultiple modules to support
further dataprocessing use cases such as streaming data and machine learning [15]. One of
these modules is Spark SQL, which enables Spark to process structured data. This module
integrates relational processing into Spark and allows the users to define their data processing
queries in declarative style (e.g. SQL). Furthermore, it includes the highly extensible optimizer
Catalyst, which optimizes the defined query for better performance before executing it [1].

There are many reasons for Spark’s popularity, in particular, its fast inmemory process
ing, its ability to distribute workloads in clusters and the rich functionality provided by the whole
ecosystem. Furthermore, many different blogs [6, 16, 63] discuss the easytouse APIs as an
important reason for its rapid growth in popularity. Notably, the module, Spark SQL, allows
defining complex data processing workloads with a short and precise code. This userfriendly
API leads to a productivity boost for writing new queries and likewise improves the maintain
ability by providing helpful debugging information.

With the increasing popularity of new hardware such as SSDs and 10 Gps network links,
the costs of IO operations have decreased and the CPU and memory have become the new
performance bottlenecks. To address this problem, Project Tungsten was started, which in
cludes several changes to the execution engine to increase its efficiency [56].

Nevertheless, these optimizations can also not overcome the fact that a CPU has limita
tions in executing computations in parallel. For many dataintensive workloads, it is, therefore,
beneficial to make use of the SIMD capabilities of modern CPUs [32] or to offload computation
intensive work to graphics processing units (GPUs) [43].
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1.2. Contribution 2

Other computing accelerators are fieldprogrammable gate arrays (FPGAs). These hard
ware chips contain a twodimensional array of logic gates that can be reprogrammed. FPGAs
allow developers to program an applicationspecific integrated circuit into the chip after fabri
cation. Generalpurpose CPUs are restricted in their ability to execute operations in parallel.
In comparison, FPGAs do not have this limitation and can process data often faster and with
lower energy consumption than CPUs [8].

With the exploding volume of data and the increasing complexity of processing pipelines,
it is nearly impossible for traditional computer architectures to keep up with the arising perfor
mance requirements. Hence, many experts in highperformance computing are working on
heterogeneous computing platforms that accelerate data analytics applications by offloading
parts of the workload to suitable hardware accelerators such as GPUs and FPGAs [24].

Spark has also recognized the trend of heterogeneous computing. By adding new fea
tures, such as columnar data processing (Spark27396) and acceleratoraware tasksched
uling (Spark24615), to the recently released major version 3.0.0, they have laid a foundation
for integrating Spark with different hardware accelerators.

The Accelerated Big Data Systems (ABS) group at the TU Delft Computer Engineering
department is also working onmaking the vision of heterogeneous computing platforms reality.
With their Fletcher framework, they simplify the integration of vendorspecific FPGAs into other
data processing tools [48]. This integration is based on Apache Arrow, a languageagnostic
inmemory columnar format that enables data exchange between different processes without
serialization overhead [3]. Spark is also compatible with the Arrow format and uses it mainly to
transfer data to and from python processes [20]. Similarly, this work contributes to the greater
vision of the ABS group by studying Spark’s heterogeneous computing features. It analyzes
how Spark queries can be executed on different hardware accelerators based on the Apache
Arrow format without losing the benefits of the userfriendly API.

1.2. Contribution
As described in the previous section, the module Spark SQL provides an API where a data sci
entist describes a data analytics query in a declarative style, which is understood structurally.
The main aim of the present work is to accelerate the query execution by using this structural
information to offload parts of the query to other hardware accelerators.

The use of hardware accelerations often requires specific knowledge to decide if accel
eration is beneficial. The vision is that a data scientist uses Spark’s userfriendly API and
defines a declarative query, and an algorithm uses execution statistics to decide on using the
available hardware accelerators as efficiently as possible. Following this visionary idea, this
work hides the acceleration and uses the query’s internal structure to accelerate the execution
transparently.

Motivated by the other work of the ABS group, this work concentrates on integrating Spark
with two hardware accelerators from the Apache Arrow ecosystem. Firstly, this work eval
uates the suitability of Gandiva [51], which uses modern CPU SIMD capabilities to process
Arrow data. Secondly, it integrates Spark SQL with Fletcher [48] to accelerate the execution
with FPGAs. Additionally to the accelerators, this work also integrates Spark with the Arrow
Parquet file reader, to demonstrate a whole workflow based on the Arrow format.

The main contribution of this work is the elaboration of the technical feasibility of the de
scribed integrations. The functionality and maturity of the associated technical components
are analyzed and a Proof of Concept (PoC) is implemented to demonstrate the workability.
Nevertheless, the implementation does not fully integrate a specific feature set. Instead, it
solves several significant challenges and demonstrates which additional challenges exist and
should be addressed in further work.

https://issues.apache.org/jira/browse/SPARK-27396
https://issues.apache.org/jira/browse/SPARK-24615


1.3. Research question 3

Even though Spark’s key functionality is to distribute computational work in a cluster, this
work focuses on accelerating the execution on a singlenode. Spark divides the data into
chunks (partitions) and distributes them to different executor threads, which work in paral
lel [66]. However, this work does not consider any challenges related to the distributed setup
(e.g. availability of hardware accelerators). Instead, it concentrates on a single executor and
improves the performance of the individual execution. Nevertheless, the implementation is
fully compatible with Spark’s executor model and can also be executed in a distributed setup
as long as the required hardware accelerators are available.

Finally, the work evaluates the performance of the PoC implementation on some exem
plary use cases. It demonstrates first performance improvements and provides insights on
necessary preconditions for powerful acceleration.

1.3. Research question
The main goal of this work is described by the following main research question:

Can Spark SQL’s internal structural information of the query be used to accelerate the
query execution by offloading work to hardware accelerators based on Apache Arrow?

Answering this question requires the analysis of the technologies, a PoC implementation to
gain further insights, and an evaluation of the performance improvements. To give a well
founded answer to the main question, the following subquestions will also be answered.

1. Does Spark SQL provide sufficient extension points that allow the provision of different
hardware accelerators?

2. Howmature is Spark’s columnar processing function and is it compatible with the Apache
Arrow memory format?

3. Which performance improvements can be identified and what are potential bottlenecks?

1.4. Outline
Chapter 2 introduces the tools integrated during the present work and provides their internal
technical details necessary for the integration described later. This chapter introduces Apache
Spark, Apache Arrow, and Fletcher. Thereby it focuses on the components and features rel
evant for this work.

Based on this background information, Chapter 3 presents the general architecture of
the present work and introduces general concepts necessary for integrating accelerators with
Spark. Firstly, it presents how Spark can be extended with custom columnar processing im
plementations. Secondly, it discusses necessary modifications, so that Spark’s columnar pro
cessing functionality becomes compatible with the Apache Arrow format. Thirdly, it presents
the present work’s approach to exchange Arrow data between Java/Scala code and native
C++ libraries, which enables Spark to use accelerators not implemented in Java.

Afterward, these concepts are applied to concrete accelerator implementations presented
in Chapter 4. This includes the Dataset Parquet Reader and Gandiva from the Arrow project
and the Fletcher runtime, which allows executing FPGAaccelerated functions on Arrow Data.

Chapter 5 evaluates the performance of these accelerated implementations by compar
ing them to the unmodified Vanilla Spark. This chapter discusses the effect of the different
accelerators and evaluates the impact of the batch size.

Finally, Chapter 6 summarizes the results and reflects on the formulated research ques
tions.Furthermore, it shows unsolved challenges and further work necessary to make the vi
sion of a Sparkbased heterogeneous computing platform, including Fletcher, reality.



2
Background

2.1. Spark SQL
Spark SQL is a module that enables Spark to process structured data. Additionally to the
underlying Spark RDD API, Spark SQL allows the users to define declarative queries and
uses the structure of the queries internally together with the structure of the data to optimize
the execution [20].

Figure 2.1: Interfaces to Spark SQL, and interaction with Spark [1]

Spark SQL is built on top of the functional programming API and extends Spark’s function
ality (Figure 2.1). It exposes an SQL interface, which can be accessed through JDBC/ODBC
or a commandline tool. Therefore, endusers and applications can interact with Spark SQL
without the users having to write any code. Furthermore, Spark SQL includes the DataFrame
API, which can be called from all programming languages supported by Spark [1, 20].

This work evaluates several very recent features of Spark. Hence, the implementation
and testing done during this work are based on Apache Spark version 3.0.0 [60], which is the
most recent version at the time of writing. This new major version was released in June 2020
and was not available at the beginning of this work. Consequently, the first evaluations and
implementations began with the publicly available preview version (3.0.0preview2) but
were later migrated to the officially released version.

2.1.1. Spark RDD API
Apache Spark is a generalpurpose cluster computing engine that offers a functional program
ming API, allowing users to manipulate Resilient Distributed Datasets (RDDs) that are data
collections distributed among different nodes [1]. These RDD abstractions are specially de
signed for efficient faulttolerance and data reuse. In contrast, to other frameworks, Spark

4



2.1. Spark SQL 5

also provides an abstraction for distributed memory and allows the users to explicitly persist
intermediate results in memory and control the partitioning of the data [66].

RDDs are an immutable collection of records that can be created by referencing data in
external storage systems (e.g. shared filesystem) or transforming other RDDs. A transforma
tion describes a deterministic operation such as map, filter, or join, that can be applied to one
or multiple RDDs and creates a new RDD. The new RDD then stores the information how
it was derived from other RDDs. As a result, the RDD does not need to be materialized the
whole time. Instead, the information can be used to recreate the RDD at any time (e.g. in a
case of failure) [66].

The second type of operation is an action. This is similar to a transformation, as it is applied
to an RDD. However, in contrast, it returns a materialized result value. Therefore, executing
an action triggers a computation. In Contrast, transformations are evaluated lazily. They
are only computed when required by an action. Internally, Spark creates a lineage directed
acyclic graph (DAG), which stores the dependencies between the RDDs and only executes
the transformations when required by an action to compute a result [19, 66].

In general, there are two different types of transformations. Firstly, there are the narrow
transformations, where each partition of the parent RDD can only be used once to compute
a partition of the resulting RDD. Secondly, there are wide transformations where partitions of
the parent RDD may be used many times. Examples of the different types of transformations
are shown in Figure 2.2 [66].

union 

groupByKey 

join with inputs not 
co-partitioned 

join with inputs 
co-partitioned 

map, filter 

Narrow Dependencies: Wide Dependencies: 

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.

join 

union 

groupBy 

map 

Stage 3 

Stage 1 

Stage 2 

A: B: 

C: D: 

E: 

F: 

G: 

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

Figure 2.2: Examples of narrow and wide dependencies. Each box is an RDD, with partitions shown as shaded
rectangles [66].

To use Spark, developers write a driver program by using the Spark RDD API. As shown
in Figure 2.3, this driver program controls the lineage DAG and forwards partitions (subsets)
of RDDs to a cluster of worker nodes. The driver program then invokes the computation of
the transformations and actions and gathers the results from the worker nodes [66].

In the distributed setup, it becomes apparent that narrow transformations can be executed
much faster than wide ones. For narrow operations, a worker node can compute the partition
of a new RDD from the partitions of the parent RDD without having to exchange any data with
the other worker nodes. Additionally, further optimization, such as pipelining, can be applied,
whereby multiple transformations may be grouped and executed in one pass. In contrast,
wide transformations are slow. They require a data exchange (shuffle), which has a negative
impact on the performance because of the network latency.

As described in the previous chapter, this work focuses on the evaluation of different ap
proaches for the improvement of a single worker node’s performance. Translated into Spark’s
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Figure 2.3: Spark runtime. The user’s driver program coordinates the computation on a worker node cluster [66].

terminology, this means this work focuses on improving the execution of narrow transforma
tions.

2.1.2. DataFrame API
As described above, the DataFrame API allows users to control Spark SQL from another pro
gramming language. At the time of writing, the API is available for Scala, Java, Python, and
R [20]. The central abstraction is a DataFrame which is equivalent to a table in a relational
database. Simultaneously, a DataFrame can also be viewed as an RDD of rows. The combi
nation of these two principles allows the user to manipulate a DataFrame with either relational
operators, such as where and groupBy, or with procedural operators similar to the RDD API,
such as map or filter [1].

Apart from the relational API, a user can register a DataFrame as a temporary table and
query it using SQL [1]. With version 1.6, Spark introduced the additional DataSet abstraction
which extends the API with a stronglytyped, objectbased API for procedural operators [41].
The following code example shows on a simple use case that all three approaches can be
mixed easily to create functionally equivalent computations.

1 // import a json file as DataFrame
2 val df: DataFrame = spark.read.json(”employees.json”)
3

4 // Using the DataFrame API
5 val r1 = df.where(col(”age”) < 30).count()
6

7 // Using a temporary table with pure SQL
8 df.createTempView(”employees”)
9 val r2 = spark.sql(”SELECT count(*) FROM employees WHERE age < 30 ”)

10

11 // Using the stronglytyped DataSet abstraction
12 case class Employee(name: String, age: Long)
13 import spark.implicits._
14 val dataset = df.as[Employee] // map each record to the Employee class
15 val r3 = dataset.filter( employee => employee.age < 30).count()

Listing 2.1: Three different ways of using the DataFrame API

The DataFrame operations are similar to the RDD transformations in that they are lazy and
are only executed when an “output operation” is called. The sequence of operations defined
by the user represents a logical plan which is then optimized before execution [1].

The three approaches from the previous example are functionally equivalent, but their log
ical plan representations are not. In particular the lambda expression passed to the filter
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method of the DataSet API is executed within the JVM as in any other java function. As a
result, Spark SQL does not understand the lambda expression structurally and is, therefore,
limited in the abilities to optimize the lambda expression or to execute it in another environ
ment. Analyzing the JVM byte code would be one solution to overcome this limitation, which
is proposed and discussed in feature Spark14083 of the Spark backlog [59]. However, this
work highly depends on understanding the structure of the logical plan. Therefore, only logical
plans created by the other approaches are considered in the implementation of this work.

The DataFrame API supports atomic SQL types such as boolean, integer, double, decimal,
and string and complex types such as structs and arrays [1]. This work analyzes the technical
feasibility of integrating Spark with other tools and focuses only on the simple case, the atomic
data types.

2.1.3. Catalyst  the query optimizer
As already discussed, one of the main advantages of using Spark SQL is that it uses the struc
tural information of the data and the query to optimize the latter before executing it. Within
Spark SQL, the responsible component is called Catalyst. This optimizer follows an extensi
ble design so that new optimization techniques can be added easily by internal and external
developers. For adding new rules to Catalyst, no complex domain specific language (DSL)
is required. Instead, Catalyst is based on functional features of the Scala programming lan
guage, such as patternmatching [1].

Within Catalyst, every query is represented by a tree of operations (e.g. filter) and expres
sions (e.g. “x > 5”) that can be manipulated by applying rules to them. The most common way
to define a rule is to use Catalyst’s transform method, which iterates through a tree and
replaces every subtree that matches a particular pattern [1].

By using Scala’s pattern matching syntax, these rules can be implemented quite easily.
For example, the following code snippet defines a rule for constant folding of additions. When
applying this rule to the expression x+(1+2), this results in the new expression x+3 (see
Figure 2.4) [1].

1 tree.transform{
2 case Add(Literal(c1), Literal(c2)) => Literal(c1+c2)
3 }

Listing 2.2: Constant folding rule defined with pattern matching

Add

Attribute(x) Add

Literal(1) Literal(2)

Add

Attribute(x) Literal(3)

transform

Figure 2.4: Applying constantfolding rule to the Catalyst tree for the expression x+(1+2)

As shown in Figure 2.5, the optimization of Catalyst is conducted in 4 phases: Firstly, the
logical plan is analyzed and all references are resolved. Secondly, the plan is logically opti
mized and then mapped to different physical executors. Finally, the best physical mapping is
chosen on a costbased model and used to generate Java byte code. The following describes
these 4 phases in detail [1].

As described in the previous section, there are multiple ways to define a Spark SQL query.
However, all approaches result in a tree of operations and expression, which is called an
unresolved logical plan. During the analysis phase, all references (e.g. column names) are

https://issues.apache.org/jira/browse/SPARK-14083
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Figure 2.5: Phases of query planning in Spark SQL [1]

resolved and their data types are determined. This information is then used to validate the
query, for example, by ensuring that the data types are compatible between operations [1].

The resolved logical plan is then optimized for a faster execution by applying a set of rules.
These rules include constant folding, predicate pushdown, projection pruning and boolean
expression simplification [1].

The next phase is to find the best way to execute a logical plan. Every logical operation
is mapped to at least one potential physical operator, which is a concrete implementation of
logical operations containing detailed instructions to compute the desired result [41]. Concep
tually, this mapping could lead to multiple variants from which a costbased model chooses
the best fitting one. However, the current implementation of Spark maps most logical oper
ations to precisely one physical operator. A different physical operator is only used for Join
operations on small data sets. Therefore, there is no need for a complex costbased model
and it has not been implemented at the time of writing [1].

Additionally, in this phase, further physical optimizations such as predicate pushdown are
applied. Predicate pushdown means that some filter operations are not executed by Spark,
but instead directly by the data source. As a result, fewer data must be loaded into the memory
or transferred over the network. For example, Parquet files are organized in chunks and store
various statistics about each chunk’s data, such as the maximum value of a column. When
applying predicate pushdown, these statistics are used to decide early if a chunk contains
data matching the filter expression and the loading of not matching chunks into memory can
be avoided [12, 41].

Especially for operations parameterized with expression trees, such as filter or projection,
the evaluation of the expression trees is a costly operation. For avoiding this, Catalyst gener
ates Java byte code from the expression tree and applies this generated code to every row,
which is processed. With the Wholestage Code Generation, introduced in Subsection 2.1.4,
Spark enhanced this functionality and started to generate Java byte code from the whole phys
ical plan and not only from the expressions of one physical operator.

Catalyst’s extensible design makes it easy for thirdparty developers to add new rules to all
phases of the optimization. The present work, uses this API extensively, to provide different
implementations for certain logical operations.

2.1.4. Project Tungsten
The use of SSDs and faster Ethernet connections led to a massive increase in I/O perfor
mance. CPU and memory access has now become the new bottleneck in big data process
ing [41]. Project Tungsten was started to overcome this, combining different changes to the
execution engine to improve the efficiency of memory and CPU [14]. In the following, some of
these changes, such as memory management and code generation are presented indepth.
Then, columnar processing for better SIMD support is discussed in the next section.
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Memory management
Generally the JVM garbage collector is responsible for managing the whole life cycle of Java
objects and their memory usage. The garbage collector is a very complex and powerful com
ponent optimized for a wide variety of applications. However, Spark wants to achieve the
highest performance possible and wants to avoid the overhead through the Java memory
layout and the garbage collector [41, 64].

The memory layout of Java objects is designed for typical workloads and is not optimized
for small memory consumption. Every object stored in memory contains additional headers
and hash codes. Which results in a simple 4 byte UTF8 String object consuming 48 bytes
memory [64].

The garbage collector continuously monitors the references of an object. After it detects
no reference exist anymore, it destroys the object and frees the memory. To manage the
objects as efficiently as possible, it estimates the life span based onmany heuristics. However,
whenever this estimate is wrong, the garbage collector is not handling the objects ideally. In
contrast to the garbage collector, Spark manages the data flow through the computation and
knows the lifespan of the data objects exactly. It can use these insights tomanage thememory
more efficiently [41, 64].

For managing the memory format of the data, Spark has introduced in version 1.4 the
UnsafeRow, a binary representation of a data row. The implementation is based on Java’s
internal sun.misc.Unsafe package, which provides advanced functionality that allows C
style memory access, such as explicit allocation, deallocation and pointer arithmetics [64].

The memory layout of an UnsafeRow consists of three different regions (Figure 2.6). The
first region, the null bit set region, indicates, with a bit, whether a value of the field is null or
not. This region is beneficial for nonnull filtering because, for this, loading the actual value
is not necessary. The fixedlength value region has reserved an 8 byte spot for every field
of the row. Values fitting into 8 bytes such as int, long or double are stored directly in
their reserved spot. When the values are larger (or undefined), they are stored instead in the
variablelength value region. The spot in the fixedlength value region is used to refer to the
location by storing the starting offset and length. Additionally, all regions are 8byte aligned,
so that they fit exactly into 64 bit CPU registers [41].

 00000100

0 1 8

Padding ...

indicates 3rd
value is null

5

0 8

0    6 0

16 24 32

offset length

6    5

offset length

A p a c h e S p a r k ...

start      
2nd value  

 start
4th value

0 8 16

null bit set region fixed length values region variable length values region

Figure 2.6: Memory layout of Spark’s UnsafeRow with the values: [5, “Apache”, null, “Spark”]

Whole Stage Code Generation
As described in the previous section, the initial version of Spark SQL Catalyst already con
tained a code generation step. It has converted trees of expressions (e.g. a filter predicate)
into Java byte code and has executed it when processing a row. With Apache Spark 2.0,
an improved version of code generation was introduced. The new function generates one
coherent piece of code of all physical operators executed on the same node (“a stage”) [41,
57].

Similar to other database systems, previous versions of Spark used a query execution
strategy based on the volcano iterator model [57]. In this model, every processing step imple
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ments a next() method that returns the next processed data record. Internally, this method
calls the next() method of the predecessor and applies its transformation to it. Thereby,
a chain of next() methods is created, which allows processing one data record completely
independently of the other records [29].

SELECT	`name`
FROM	`employees`
WHERE	`age`	<	30

calls

next()

next()

next()

calls

Projection

Filter

Scan

Catalyst

Figure 2.7: Example of volcano model based execution

An example of this is shown in Figure 2.7 on a query filtering for employees less than
30 years old. Catalyst maps the shown SQL query to a physical plan consisting of three
operators. Calling the next method on the projection operator results in a chain of next()
calls and finally returns the name of the first employee younger than 30 years. The whole
stage code generator combines multiple operators into one function, similar to the following
pseudocode:

1 Iterator scanIterator = ... //database reader
2

3 while (scanIterator.hasNext()){
4 // get next record from database
5 Row row = scanIterator.next();
6

7 // filter
8 if (! (row.age < 30) )
9 continue;

10

11 // projection
12 Row newRow = new Row(row.name);
13

14 append(newRow);
15 }

Listing 2.3: Pseudo Java Code demonstrating the whole stage code generation output

In comparison to the volcano model, the generated code has various advantages. Firstly,
it contains fewer virtual function calls. Secondly, the volcano model requires that the inter
mediate records are stored in memory (function call stack). For the generated version, it is
sufficient to hold most intermediate records in the CPU registers. Moreover, modern compil
ers, like the Java Justintime (JIT) compiler, optimize the code, for example, with pipelining,
prefetching, and instruction reordering. The compiler can use these optimization techniques
much better for coherent code, than for complex function call graphs [57].

2.1.5. Columnar processing
As part of Project Tungsten, Apache Spark 2.0 started to use a columnar memory format
for individual physical operators such as the parquet file reading [41]. In the justreleased
version 3.0, the next step has been taken with feature Spark27396 that extends Catalyst’s
public APIs with a generic design to specify columnarbased implementations for all physical
operators [59]. At the time of writing, Spark itself does not contain many columnarbased
implementations. Nevertheless, the new design, introduced in Spark27396, is a fundamental
basis for the implementations of this work and is therefore, described as follows:

https://issues.apache.org/jira/browse/SPARK-27396
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Spark’s initial memory follows a rowbased layout (Figure 2.8a). With this approach, every
row (or data record) is serialized as one chunk into memory. As the layout of the UnsafeRow
(described in the previous section) shows, multiple different data types are combined and
written in a contiguous block of memory. In contrast, in the columnbased layout (Figure 2.8b),
the same fields of multiple rows are grouped and stored as one block in memory [41].

Field1 Field 2 Field 3Row 1

Field1 Field 2 Field 3Row 2

Field1 Field 2 Field 3Row 3

(a) rowbased layout

Field 1 Field 1 Field 1Column 1

Field 2 Field 2 Field 2Column 2

Field 3 Field 3 Field 3Column 3

Row 1 Row 2 Row 3

(b) columnbased layout

Figure 2.8: Comparison of rowbased and columnbased memory layout

Generally, in a rowbased layout, a single record can be read or modified easily, however
for many use cases (e.g. aggregating a single field) much unnecessary data is read. For
columnbased layouts, it is the opposite. Only the relevant fields can be loaded into memory,
but reading a whole row leads to multiple memory accesses [31].

In 1966, Michael Flynn [27] classified different computer architectures based on their han
dling of datalevel parallelism and tasklevel parallelism. The category single instruction multi
ple data (SIMD) describes a computer architecture, where multiple processors apply the same
operations to different data streams simultaneously. However, the computer still has only a
single instruction memory and control processor. This architecture implements datalevel par
allelism and is suitable for many data processing use cases such as matrix computations or
image processing. Today most GPUs fall into this category and also modern CPUs come with
a separate SIMD unit for such use cases [32].

Modern implementations typically load a whole vector of data into the memory and process
all elements of this vector simultaneously. Naturally, this computer architecture works well
together with the columnbased memory layout. The processor can load a whole column
without reorganizing it and can process multiple data rows at once. Accordingly, the columnar
memorylayout is an important precondition for processing data in heterogeneous clusters
using different computing hardware such as GPUs and FPGAs.

Analyzing Spark’s source code [58] reveals the details of the columnarprocessing imple
mentation. The most important abstraction is the ColumnarBatch, representing a chunk of
data and combining multiple ColumnVector. Important to notice is that a ColumnarBatch
is a chunk of data within one partition. As shown in Figure 2.9, Spark splits the full dataset into
partitions, which are processed in parallel by multiple executor threads. Typically, a single par
tition is then processed rowbyrow within a single thread. However, the ColumnarBatch im
plementation splits the data of one partition once more and enables the processing in batches.

The ColumnVector is an interface abstracting one column of inmemory data. Spark in
cludes multiple implementations of this interface. An implementation based on Apache Arrow
(ArrowColumnVector) is also part of the project. Even though this is a long term goal, the
Spark contributors have decided not to use the Arrowbased implementation as the current
default. In the discussion of feature Spark27396 in Spark’s issue tracker [59] the contributors
decided not to expose any Arrowrelated APIs, before the release of an Arrow major version.
Instead, the Arrowbased implementation is internally used to exchange data with Pandas [18].

https://github.com/apache/spark/blob/v3.0.0/sql/catalyst/src/main/java/org/apache/spark/sql/vectorized/ColumnarBatch.java
https://github.com/apache/spark/blob/v3.0.0/sql/catalyst/src/main/java/org/apache/spark/sql/vectorized/ColumnVector.java
https://github.com/apache/spark/blob/v3.0.0/sql/catalyst/src/main/java/org/apache/spark/sql/vectorized/ArrowColumnVector.java
https://issues.apache.org/jira/browse/SPARK-27396
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Dataset Partitions
(data chunks that are processed in parallel)

ColumnarBatch
(data chunk that is processed at once)

ColumnarBatch

ColumnVector

Figure 2.9: Different levels of data splitting in Spark.

The implementation of feature Spark27396 provides an API that enables physical oper
ators to process data in batches. The base class of the physical operators SparkPlan was
extended with new methods. To create a operator with columnar processing support, the
following two methods need to be implemented:

1 /**
2 * The base class for physical operators.
3 */
4 abstract class SparkPlan extends QueryPlan[SparkPlan] {
5

6 /**
7 * Return true if this stage of the plan supports columnar execution.
8 */
9 def supportsColumnar: Boolean = false

10

11 /**
12 * Produces the result of the query as an ‘RDD[ColumnarBatch]‘
13 */
14 protected def doExecuteColumnar(): RDD[ColumnarBatch] = {
15 throw new IllegalStateException(s”column support mismatch”)
16 }
17 //...
18 }

Listing 2.4: Excerpt from class SparkPlan [58]

A new transformation phase was added to the Catalyst optimizer to combine columnar and
noncolumnar operators (Figure 2.10). This phase introduces additional operators that either
convert thememory into the columnar format (RowToColumnarExec) or the other way around
(ColumnarToRowExec). Two new extension points have been introduced to add custom
transformation rules. The first set of rules (pre) is executed before inserting the transformation
and allows injecting operators with columnarprocessing support. The second set of rules
(post) allows further addition of optimizations or replacement of transformations with custom
implementations.

2.2. Apache Arrow
In 2016, the Apache Foundation announced the Apache Arrow project, which defines a lan
guageagnostic inmemory columnar format embedded in a software framework. This mem

https://github.com/apache/spark/blob/v3.0.0/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkPlan.scala
https://github.com/apache/spark/blob/v3.0.0/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkPlan.scala
https://github.com/apache/spark/blob/v3.0.0/sql/core/src/main/scala/org/apache/spark/sql/execution/Columnar.scala#L405
https://github.com/apache/spark/blob/v3.0.0/sql/core/src/main/scala/org/apache/spark/sql/execution/Columnar.scala#L60
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Figure 2.10: Additional memory transformation phase in Catalyst planning (based on [1])

ory format and the multilanguage implementations enable different processes to share data
between them. Because of the shared layout, this can be done without serialization, deserial
ization, or memory copies. Therefore, Apache Arrow usage is especially beneficial for multi
system workloads, in which the overhead of the crosssystem communication can be reduced
dramatically. As discussed in Subsection 2.1.5, the columnar layout is especially beneficial
for modern hardware such as CPUs and GPUs and was, therefore, a logical design decision
for Arrow [28].

Arrow provides implementations for a wide variety of programming languages to read and
write the defined memory format. The Java and C++ implementations are especially relevant
for the present work. Furthermore, it includes additional computing libraries and functionality
supporting interprocess communication (IPC). In this work, the included Parquet file reader
and Gandiva, a toolset for executing SIMD operations, are used [3].

During the work on this thesis, Arrow version 0.17.1 has been released and is used for all
implementations.

2.2.1. Arrow columnar format
The Arrow Columnar Format defines a physical layout to store datastructures inmemory.
This layout is optimized for sequential access (data adjacency), constant random access, and
SIMD operations. Additionally, in sharedmemory, it can be accessed from multiple processes
without copying data.

In Arrow, a sequence of values with a known length, all having the same data type, is
called an array. The elements of an array can be nested and can contain further child types.
However, for this work, the nested types are not relevant and therefore only the socalled
primitive types which do not have any child types are considered. Primitive types can either
have a fixed bitwidth (e.g. an integer) or a variable size (e.g. a string).

An Arrow array is defined by two signed 64bit integers and different memory buffers. In
Arrow, a buffer represents a contiguous memory block. Firstly, the two integers store the
length of the array and the number of null elements. The first buffer is called validity buffer
and uses one bit to indicate if an array element is null or not. Within this buffer, leastsignificant
bit (LSB) numbering is used and a “0” indicates that an element is null. This buffer is optional
when either all or zero elements of the array are null.

The value buffer stores the values of the elements of an array. As Figure 2.11a shows, for
every element of a fixed bitwidth type, a slot of the matching size is used. For data types with
a variable length, every element has a different size. Therefore, a further offset buffer stores
the start index of every element (see Figure 2.11b).

The Arrow documentation recommends aligning the buffers on 64 bytes. This means the
memory address and the length of a buffer should be a multiple of 64. Naturally, buffers are
than larger then required but instead, they are optimized for loading into the cache [2].

For IPC, Arrow introduces the RecordBatch container that holds multiple arrays. Besides
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Length: 4

Null Count: 1

Validity Buffer:  00001011

0 1 64

Padding ...

indicates 3rd
element is null

Value Buffer: 1

0 4 64

Padding ...7 0 9

8 12 16
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integer element

(a) Int32 Array: [1, 7, null, 9]

Length: 4

Null Count: 0

Validity Buffer: not needed (no null elements)

Value Buffer: tu

0 64

Padding ...delft

2 7 9

nl

Offset Buffer: 0

0 4 64

Padding ...2 7 7

8 12 16

(b) UTF8 String Array: [”tu”, “delft”, “”, “nl”]

Figure 2.11: Schematic representation of the columnar memory layout of Arrow arrays

the buffers’ memory addresses, the processes also exchange metadata about the structure
of the data. This metadata is called Schema and is transferred in Flatbuffer format. By using
this widespread format, it can be serialized into many different programming languages [2].

2.2.2. Arrow Java library
For this work, the Java library is used extensively. The custommemory layout cannot be easily
accessed with the regular JVM’s memory management and therefore a custom implementa
tion is provided.

The Arrow library manages the memory independently of the garbage collector (offheap).
This is similar to Spark’s UnsafeRow implementation, discussed in Subsection 2.1.4. The
source code [4] shows that the memory allocation is abstracted by the BufferAllocator
interface, which provides methods to allocate new Arrow buffers. Internally, the default imple
mentation BaseAllocator uses Netty’s Buffer API [53] to access the offheap memory.

In the Java library, the VectorSchemaRoot is a central container, holding data batches.
Unlike the RecordBatch in other language implementations, the VectorSchemaRoot can
be seen more as a pipeline, through which data flows. The ValueVector interface is the java
abstraction of an Arrow array and, therefore, stores a sequence of values having the same
type. As previously described, the memory allocation is not handled by the garbage collector,
so the user is responsible for allocating and freeing the memory used by a ValueVector. The
interface providesmethods for this, which are forwarded to the internal BufferAllocator [2,
4].

2.2.3. Parquet reader
Apache Parquet is a columnar data storage format from the Hadoop ecosystem. It is designed
to store complex and nested data structures and supports efficient compression and encoding
schemas. The format is not limited to a specific tool and is supported by most data processing
frameworks within the Hadoop ecosystem [46].

The columnar storage format of Parquet works well together with Arrow, so in 2018, the
Apache Foundation moved the parquet C++ library into the Arrow project [2].

Additionally to this library, Arrow includes the Arrow C++ Datasets component, which pro
vides a higher abstracted API for processing Parquet files. Besides the pure reading and
writing functions, this component addresses issues such as parallel processing, handling dis
tributed files, partitioning and filtering [4].

These additional features better suit the functionality provided by the Spark Parquet reader

https://github.com/apache/arrow/blob/apache-arrow-0.17.1/java/ memory/src/main/java/org/apache/arrow/memory/BufferAllocator.java
https://github.com/apache/arrow/blob/apache-arrow-0.17.1/java/memory/src/main/java/org/apache/arrow/memory/BaseAllocator.java
https://github.com/apache/arrow/blob/master/java/vector/src/main/java/org/apache/arrow/vector/VectorSchemaRoot.java
https://github.com/apache/arrow/blob/master/java/vector/src/main/java/org/apache/arrow/vector/ValueVector.java
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implementation. Consequently, this work uses the Arrow C++ Datasets component, even
though it is still in an alpha/beta status at the time of writing. Due to this early development
stage, no extensive documentation was available, and mainly, the tests in the Arrow reposi
tory [4] were used to understand the usage of the API.

2.2.4. Gandiva

Figure 2.12: Gandiva architecture overview [51]

The company Dremio is developing a Data Lake Engine of the same name based on the
Apache Arrow format. As part of their product, they have developed Gandiva, an LLVMbased
execution kernel, for running analytical executions on Arrow data and donated it in 2018 to the
Apache Arrow project [5].

Figure 2.12 shows the two main components of Gandiva. Firstly, the runtime expression
compiler takes a tree of Gandiva expressions as input and converts them into assembly code.
Using the JIT compilation capabilities of the LLVM compiler internally, the resulting assembly
code is highly optimized for the underlying hardware. Secondly, Gandiva contains an execu
tion kernel which consumes Arrow arrays and applies the generates assembly code to it [51].

As previously discussed, most modern CPUs include SIMD units and can simultaneously
process multiple data points. Additionally, data based on the Arrow memory layout can be
loaded cachefriendly into the CPU [2]. These properties support the LLVM compiler’s auto
vectorization function [21], optimizing the assembly code for the execution on CPUs with SIMD
support.

Gandiva’s main function is implemented in C++. However, it provides an additional Java
integration because it was developed as part of the Javabased Dremio. The Java API allows
the definition of expression trees and the execution of them on Arrow data. Internally, the
expression trees are mapped to a Protobuf structure and passed to the underlying native
code that interacts with the LLVM compiler.

2.3. Fletcher
Following the vision to make data stored in Apache Arrow format accessible to tools in any
computing environment, the Accelerated Big Data Systems group at the TU Delft Computer
Engineering department has developed Fletcher, a fullyopen sourced vendoragnostic FPGA
acceleration framework [30, 48].

FPGAs are programmable devices, whose internal circuit can be configured after manufac
turing. By applying different parallelism techniques to the circuit, the FPGAs outrun CPUs for
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certain computations [25]. Therefore, FPGAs are being used for numerous computeintensive
big data applications, such as data decompression [26], image processing [33], and genomics
algorithms [34, 49].

The Fletcher framework has two main capabilities summarized in Figure 2.13. On the
one hand it supports the development of hardwareaccelerated function (HAF) by generating
templates that include FPGA bitstreams to access the Arrow data. On the other hand, the
Fletcher runtime component simplifies the integration and execution of HAF.

This work elaborates on calling the Fletcher runtime component from Spark and, therefore,
the development of HAF and Fletcher’s functionality is not considered here.

The Fletcher runtime includes an API that provides highlevel functions to prepare and send
Arrow data to the FPGA, to control the execution of the HAL on different platforms (currently
supported: Amazon EC2 F1 and OpenPOWER CAPI) and to read the result data back after
the execution [30, 48].

The Fletcher runtime has also been designed to be languageagnostic, by using the lan
guageindependent Arrow format. Generally, Fletcher can be used from all languages that
support the Apache Arrow format. At the time of writing, implementations of the runtime li
brary exist for Python and C++ [30].

Figure 2.13: Fletcher overview [48]

2.4. Related work
Many computationally intensive workloads, e.g. machine learning algorithms containing dense
matrix algorithms, are good candidates for GPU acceleration [24]. Because GPUs are wider
spread than FPGAs, there also exists more work discussing the integration of GPUs with
Spark. Generally, it seems that there are two main approaches to integrate GPU accelerators
with Spark.

On the one hand, we have the approach of reimplementing highlevel Spark operations,
e.g. from Spark’s machine learning library MLib, without changing the interfaces. This ap
proach requires the implementation of full algorithms on topof Spark’s RDD API and is there
fore not very flexible and requires a separate implementation for every interface function. Het
eroSpark [42] is a framework providing such GPU accelerated machinelearning workloads.
Internally, it uses Java RMI to forward data to the GPU, which requires costly data serial
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ization and deserialization operations. The present work avoids this serialization by using
Apache Arrow. Also, IBM’s approach in 2016 presented by Rajesh Bordawekar in [9, 10] fol
lows this approach and provides mainly alternative implementation for Spark’s MLib. Because
their implementation is based on a prior version of Spark, they are not making use of the new
columnar processing feature and copy the data of a whole partition into the device with the
CUDA framework. This brings the downsides that data conversions from Spark’s rowbased
format are required, and the size of a partition is limited to the device’s memory.

On the other hand, the second approach is similar to the present work and uses Spark
SQL’s internal representation to generate GPU code. This approach is very flexible because
it adapts to all kinds of workflows, but it is also more complicated because many aspects
must be considered during the generation. This approach is, for example, followed by the
framework SparkGPU [65]. They implement their own “GPURDD” which buffers the data
in native memory, to avoid costly transformations. Another project is the Spark RAPIDS Ac
celerator [45, 55], developed by NVIDIA, which integrates Spark with the RAPIDS suite [54],
a bundle of opensource software libraries for running analytic pipelines on GPUs. Robert
Evans, a member of NVIDIA’s team behind this project, has contributed the columnar pro
cessing functionality, introduced in Subsection 2.1.5. Therefore, it is evident that this project
is based on the new feature. Unlike the present work, it is not based on Apache Arrow but
uses a custom ColumnVector implementation optimized to exchange data with RAPIDS.

Also, when accelerating Spark with FPGAs, the same two approaches can be seen. The
Kestrel Runtime from Falcon Computing [13] is an accelerator management tool for heteroge
neous computing clusters. Through its compatibility with Apache Spark, it allows accelerating
big data queries with GPUs and FPGAs. This runtime is based on the opensource Blaze run
time system [35], which allows implementing FPGAaccelerated algorithms on top of Spark’s
RDD. Like before, these algorithms can be designed interchangeably with Spark’s operations
and enable a transparent acceleration. However, a disadvantage is the lack of flexibility, and
users have to choose from a defined set of accelerated algorithms. Also, InAccel’s FPGA or
chestrator comes with a Spark integration. They provide a Machine Learning suite available
on the AWS marketplace, which overloads Spark’s MLib functionality and, therefore, their in
tegration falls into the same category [39].

The only work found which falls into the second category is Bigstream [7]. This integration
uses Spark’s physical plan to evaluate if a bitfile templates (FPGA acceleration) is available to
accelerate the Spark execution. Thereby, they follow a similar approach to the present work,
but due to their closedsource implementation, no further analysis was possible.

During the final phase of the present work, another FPGA integration [11] was presented on
the “Spark+AI Summit 2020” conference. The demonstrated integration was based on Intel’s
“Spark Native SQL Engine” [36] project. The goal of this opensource project is to enable
Spark SQL for vectorized SIMD optimizations. In favor of this, the team has implemented
an Apache Arrowbased version of Spark’s columnar processing and has integrated it with a
Native Parquet Reader, Gandiva, and Columnar Shuffle operations. Although the details of
the FPGA integration are not publicly available, this shows very well that this project follows
a similar idea as the present work. It has already integrated matching accelerators and has
solved similar challenges. Due to the very recent publishing on GitHub, the present work could
not use synergies or compare results with the “Spark Native SQL Engine” project. Due to the
higher development effort, this project is in a more robust and mature state, than the PoC
implementation of the present work. Therefore, Section 6.2 suggests further evaluation of this
project to figure out if synergies can be used.



3
Architecture and general concepts

3.1. General structure
To integrate the previously discussed tools, the architecture of the implementation has to take
into account the different programming languages of the thirdparty libraries used. There
fore, the implementation of this work1 is organized into three different modules (Figure 3.1).
Firstly, the arrowprocessornative module is written in C++ and is responsible for calling re
lated C++ libraries. Furthermore, this module provides an interface, which is called from the
arrowprocessor module by using the Java Native Interface (JNI). The arrowprocessor is a
facade around the lowlevel native interface and provides a higher abstracted Scala interface
based on the abstractions from the Java Arrow library. The third module is the sparkextension
module, which extends Spark SQL and connects it with the custom accelerators implemented
in the arrowprocessor module. Both modules, sparkextension, and arrowprocessor are im
plemented in Scala for easier integration with Spark. However, Scala code is executed on the
JVM and is fully interoperable with Java libraries, such as the Arrow library.

 implementation of this work

:spark-extension
(Scala)

:arrow-processor
(Scala)

:arrow-processor-native
(C++)JNI

Spark

:spark-sql :spark-core

Catalyst
API

Arrow

:gandiva :arrow-java :arrow-cpp :arrow-dataset

Fletcher

:fletcher

:fletcher-platform

Protobuf

:protobuf-java :protobuf-cpp

Figure 3.1: Architecture overview: Structure of the implementation and used thirdparty libraries
(dependencies between the thirdparty libraries are not shown)

The general idea of the implementation is that Spark’s main function stays unchanged.
Spark remains responsible for coordinating the complete execution and for passing the data
1The implementation of this work can be found on https://github.com/fnonnenmacher/sparkarrowaccelerated
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between the different execution steps. However, with the extensions of this work, individual
execution steps are offloaded to Arrowbased hardwareaccelerators of thirdparty libraries.
These execution steps always relate to the processing of data batches. In Spark terminology,
such a data batch is called ColumnarBatch. In Arrow terminology, it is called RecordBatch.
Both terms refer conceptually to a container with columnar data vectors. Section 3.3 describes
how both concepts come together at implementation level.

When offloading work to the accelerators, the Scala code iterates over the batches and
processes every batch individually with the help of thirdparty libraries. As Figure 3.2 shows,
the computations, considered in this work, can be grouped into three categories. Either they
aggregate one batch and return a set of values (Figure 3.2a), or they project a data batch
to a new batch (Figure 3.2b), or finally, they import one data batch from an external source
(Figure 3.2c).
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(a) Aggregating a RecordBatch
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Figure 3.2: Different categories of computation that are executed by thirdparty libraries

Chapter 4 presents the concrete integration of different accelerators, whereas this chap
ter focuses on multiple general, highlevel concepts which build an essential basis for these
integrations.

3.2. Executing custom code within Spark SQL
As described in Subsection 2.1.3, Spark SQL’s Catalyst converts the query into an internal
query representation, the socalled logical plan. Catalyst optimizes this plan and finally trans
forms it into a physical plan, a combination of physical operators. Internally, Spark SQL con
tains many different physical operators, each of them specifying the execution of one com
putation step. Combined in the physical plan, these operators define the complete execution
of the query. The goal of this work is to modify Spark’s execution and, therefore, this work
replaces Spark’s operators with custom implementations.

A physical operator is defined by a class extending SparkPlan. This is Spark’s internal
base class for all physical operators and, as described in Subsection 2.1.5, it defines methods
for columnar processing. Therefore, all custom physical operators implemented in this work,
specify the computation by overriding these methods.

Firstly, the method, supportsColumnar, has to return true to inform Catalyst that this
operator provides a columnar based computation. Catalyst uses this information to insert
additional operators that convert the data when needed.

Secondly, the method, doExecuteColumnar, must be implemented to describe the ac
tual computation. Following the volcano model (see Subsection 2.1.4), this method has to
call first the doExecuteColumnar method of the child node(s). From this call, it receives a
ColumnarBatch iterator. In Scala, an iterator is a way to access elements of a collection
onebyone [23]. Unlike in a classical list, the elements are evaluated lazily, and the collection
never needs to be loaded entirely into memory. The custom implementation can now apply
the accelerated computation to the batches received from the child node so that the method

https://github.com/apache/spark/blob/v3.0.0/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkPlan.scala
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returns an iterator of the resulting ColumnarBatches itself.
By overriding additional methods, it would be possible to define instructions for the Whole

Stage Code Generation (see Subsection 2.1.4). However, as previously discussed, the code
generation is the most beneficial, when multiple Java operations are called frequently. How
ever, in this work, the computation is forwarded to thirdparty libraries, which cannot be opti
mized by the JIT compiler. Furthermore, by iterating over ColumnarBatches instead of rows,
the computation is executed less frequently, and the compiler optimization would not have a
huge impact. Therefore, this work focuses on other challenges and does not integrate with
the Whole Stage Code Generation. Nevertheless, Spark’s code generation for the other phys
ical operators is not influenced by this. The code is generated anyway and calls the custom
implementations.

The next step is to tell Spark about the custom operator implementations. Therefore, this
work implements a SparkSessionExtension, that allows adding rules to all phases of the
Catalyst optimizer on startup [38]. The first experiments have shown that the least invasive
way of modifying the physical plan is to use the precolumnar transition phase introduced
with the new columnar processing feature. At this point, the physical plan is fully created,
and default operators can be replaced with custom implementations. For doing so, this work
follows the Catalyst tree transformation approach. It iterates through the physical plan and
replaces a subtree that matches a specific pattern with a custom operator.

The implementation of this work follows Spark’s naming convention. All physical operator
classes end with Exec, and the rules injected into the Spark session are defined in a class
ending with Extension.

Figure 3.3 summarizes the procedure of using a custom physical operator. Firstly, the
CustomExtension injects a rule into the pre columnar transition phase. Later on, this rule re
places the FilterExec with a custom implementation CustomFilterExec, extended from
SparkPlan.

SELECT	`name`
FROM	`employees`
WHERE	`age`	<	30

ProjectExec

FilterExec

ScanExec

Catalyst pre columnar transitions

ProjectExec

ScanExec

CustomFilterExec

+ supportColumnar

+ doExecuteColumnar

«abstract»
SparkPlan

Physical Plan Modified Physical Plan

CustomExtension

adds a custom rule to
the pre columnar
transition phase

Figure 3.3: Example of replacing a physical operator with a custom implementation

3.3. Arrowbased columnar processing
The idea of this work is to store all data in the Apache Arrow format through the whole com
putation. In this way, the computation can be accelerated by tools from the Arrow ecosystem,
such as Gandiva and Fletcher, without expensive data conversions. As discussed in Sub
section 2.1.5, Spark’s columnar processing API is currently not based on the Arrow format.
Consequently, this work modifies Spark’s columnarprocessing functionality to use the Arrow
format internally.
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As shown in Figure 3.4, Spark SQL inserts additional physical operators (orange) which
transform the memory between the rowbased and columnarbased format, when the physical
plan contains both, columnarbased and noncolumnarbased operators.

Physical Plan with
arrow transitionsPhysical Plan with transitionsPhysical Plan

ProjectExec

*FilterExec

ScanExec

add columnar transitions

ProjectExec

ScanExec

supports columar
processing

*FilterExec

RowToColumnarExec

ColumnarToRowExec

post columnar transitions

ProjectExec

ScanExec

*FilterExec

RowToArrowExec

ColumnarToRowExec

ArrowColumnarExtension

adds a custom rule to
the post columnar
transition phase

Figure 3.4: Modifying Spark’s columnar processing to be based on Apache Arrow

The ColumnarToRowExec operator takes the ColumnarBatches as input and maps
them to rows. This mapping works independently from the implementation of the underlying
ColumnVectors and is compatible with data in the Arrow format.

The RowToColumnarExec operator works the other way around and transforms rows
into ColumnarBatches. Multiple rows are combined and every column of them is stored in
an OnHeapColumnVector, which is Spark’s default ColumnVector implementation. Nat
urally, this data cannot be easily converted into an Arrow array and would require another
transformation before processing it with Arrowbased accelerators. Hence, this work replaces
this transform operator with a custom implementation (RowToArrowExec) that converts the
data directly into the Arrow format. These arrays are then wrapped with Spark’s internal
ArrowColumnVector class and can be stored in a ColumnarBatch.

Again to modify the physical plan, a custom extension ArrowColumnarExtension is
used to inject rules into Catalyst. As shown in Figure 3.4, this rule replaces the default
RowToColumnarExec with the Arrowbased implementation during the postcolumnar tran
sition phase.

Currently, Spark’s public API hides all details related to the Arrow implementation. There
fore, no public methods are available to access the underlying Arrow arrays when processing
a ColumnarBatch. Consequently, this implementation uses Java’s reflection API to access
hidden private fields. Naturally, there is no guarantee that this approach will work in future ver
sions of Spark. However, it is sufficient for evaluating the technical feasibility, and hopefully,
this “hack” will become obsolete as soon as Spark moves its columnar processing entirely to
the Arrow format, which is the longterm goal.

3.4. Exchanging Arrow arrays between Java and C++
3.4.1. Overview
Many tools from the Arrow ecosystem are not available as Java libraries. Nevertheless, these
tools might provide additional performance improvements and it is worth considering integrat
ing them into Spark. This work illustrates this by integrating Spark with the Arrow Parquet
reader and with Fletcher. Both tools only provide APIs in C++ and Python and cannot be
called easily from the JVM. This work uses the JNI interface to call C++ libraries from Spark.
Thereby, the implementation benefits from the languageagnostic Arrow memory format and
avoids expensive data conversion between the two languages.

As described in Section 3.1, the architecture of this implementation also reflects these two
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languages. On the one hand, there is the arrowprocessornative component, implemented
in C++, which interacts with the thirdparty libraries. On the other hand, there is the arrow
processor component, implemented in Scala, which provides a highlevel API based on the
Java Arrow abstractions. Both components are connected through a JNI based interface and
are internally mapping the Java Arrow abstractions to the C++ Arrow abstractions.

Apache Arrow’s documentation discusses multiple approaches to exchange data between
processes implemented in different languages. This can be done, for example, by using
sharedmemory, such as the Arrow Plasma Store [44], or by exchanging IPC messages [2].
However, by using JNI this becomes easier. The JNI is Java’s standard way to interoperate
with applications and libraries written in other programming languages, such as C, C++, and
assembly. Furthermore, the JNI allows the native languages to access the same memory
region [22]. As a result, there is no need to copy the data between both components of the
implementation. Instead, they can access the same Arrow buffers stored inmemory. When
accessing the same objects from Java and native code, another typical challenge is to make
sure that the garbage collector is not deleting data still required by the native code. Also, this
challenge does not apply to the implementation of this work. The Arrow buffers are already
stored offheap and are not managed by the garbage collector.

As described in Subsection 2.2.4, Gandiva follows a similar structure. It provides a Java
library, which delegates all calls to a library implemented in C++. The source code of Gan
diva [4], released under the Apache License 2.0, was studied during this work and builds the
conceptual basis for this work.

3.4.2. From Java to C++
In this work, Spark coordinates the query execution. It knows about the structure of the data
and just calls individual thirdparty libraries, to compute an Arrow RecordBatch. At the time
of calling, the arrays are already allocated and initialized. The used thirdparty libraries follow
best practices and consider the arrays as immutable. Hence, they are not modifying any Arrow
buffers and just need read access. Typically, the result data of a computation is either a single
value which can be directly returned on the JNI method call, or a new RecordBatch, which
can be transferred back with methods discussed in the following subsections.

As discussed in Subsection 2.2.1, an Arrow RecordBatch is a container, described by a
schema, that holds multiple Arrow arrays.

For transferring the schema, functionality from the Gandiva library is used. On the Java
side, the library provides methods that use Protobuf to serialize the Java schema into a byte
array. After passing this array via JNI, methods from the C++ library are used to deserialize it
into a C++ schema object.

As previously described, an Arrow array consists of two signed 64bit integers and two
or three buffers. The two signed 64bit integers are storing the length of the array and the
number of null elements. They can be passed as a Java long parameter to the JNI method
call. For each buffer, the memory address and the size is transferred. This information is
enough to access the memory in C++ and to create the related C++ Arrow buffer abstractions.
Combining these buffers in the C++ Arrow array abstraction allows accessing the Arrow data
with the regular methods of the Arrow API.

3.4.3. From C++ to Java with preallocated buffers
In some cases, the Java side already knows the number of result elements, before calling
the native computation methods, e.g. when two arrays are added together to form a new
array. The buffers can then be allocated from the Java code and can be sent to C++, following
the same approach as transferring data from Java to C++. In this scenario, the C++ code
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simply writes the resulting data into the already allocated buffers, which are known and can
be accessed from Java.

However, when the resulting array stores values of a variablewidth data type, such as
strings, the size of the value buffer cannot be known before. Gandiva has solved this problem
by adding an own buffer implementation JavaResizableBuffer which resizes by doing a
callback to Java. Because a buffer has to be written in a contiguous memory block, resizing
often requires allocation of a new larger buffer and copying the old buffer into the new one.
Arrow’s Java implementation completely handles this reallocation and returns the memory
address of the new buffer to the C++ code.

This work has evaluated this approach and demonstrates the technical feasibility with test
case implementations. For the implementation, functionality from the Gandiva library was
used. However, this approach was not suitable for the chosen accelerators. Therefore, in all
Spark integrations, the approach described in the next subsection was used.

3.4.4. From C++ to Java by forwarding the allocation to Java.
Some tools, such as the Arrow Parquet reader, are incompatible with preallocated buffers. In
stead, these tools use Arrows default approach and call the MemoryPool class [4] to allocate
memory for buffers, when needed. Unfortunately, the memory allocated in C++ during a JNI
call cannot be easily accessed from Java. Furthermore, managing the allocated buffer’s lifes
pan is not easy, because they must remain accessible after the JNI call terminates, so that the
data is accessible for the next execution steps. As previously discussed, Spark is responsible
for coordinating the whole execution and knows best when the buffers can be freed again.
Therefore, this implementation delegates all allocation calls to the Java Arrow library, so that
the Java code stays responsible for managing the lifecycle of the Arrow data.

arrow-java arrow-processor-nativearrow-processor

forwards calls

JavaMemoryPool

+ allocate(size)

+ reallocate(addr, size)

...

«interface»
BufferAllocator uses

«abstract»
MemoryPool

arrow

JavaMemoryPoolServer

+ allocate(size)

+ reallocate(addr, size)

...

C++Java/Scala JNI

Figure 3.5: Implementation of MemoryPool that forwards the allocation to Java.

As Figure 3.5 shows, this was achieved by implementing JavaMemoryPool, a custom
specialization of the Arrow MemoryPool that forwards all allocation requests to a similar
Java class JavaMemoryPoolServer, by using JNI methods. This Java class then uses
the BufferAllocator from the Java Arrow library to allocate the needed buffers to offheap
memory. Additionally, the JavaMemoryPoolServer stores internally, the allocated Java
buffer abstractions, which are then used to create the Arrow array abstractions after the JNI
computation terminates.

https://github.com/apache/arrow/blob/apache-arrow-0.17.1/cpp/src/gandiva/jni/jni_common.cc#L674
https://github.com/apache/arrow/blob/apache-arrow-0.17.1/cpp/src/arrow/memory_pool.h#L64


4
Integration of different accelerators

4.1. Overview
The previous chapter 3 has discussed essential concepts necessary to integrate different tools
from the Arrow ecosystem with Apache Spark. This chapter applies these concepts now in
practice and gives concrete examples of possible integrations. The integrated tools were
chosen to reach the goal of providing a complete data analytics pipeline based on the Arrow
format. The present work focuses on integrating the main functionality instead of building a
solution that is functionally equivalent to Spark’s internal implementation.

The first step of every data analytics pipeline is importing data. For avoiding unnecessary
data conversion, it is essential to load the data into the Arrow format directly. The present
work has chosen the Parquet file format as input source because it stores the data already in
columnar format and is an ideal candidate to read it in columns into the memory. The present
work discusses the integration with the Arrow C++ Dataset library in Section 4.2. This library
is part of the Arrow project and allows demonstrating the data exchange between Java and
C++. Alternatively, the Java library Parquet MR would have been another option, which also
provides a function to import in the Arrow format [47].

As discussed in Subsection 2.1.4, Spark optimized the CPU and memory usage with
Project Tungsten a lot. Nevertheless, due to the limitations of the JVM and its limited colum
nar processing operators, the SIMD capabilities of modern CPUs cannot be used. Therefore,
Section 4.3 describes the integration with Gandiva to execute SIMDaccelerated filter and
projection operations on Arrow data.

At the end of every computation, Spark copies the result from the internal format into
Java/Scala objects. Because this copying is a costly operation, the Spark documentation
recommends reducing the amount of data and only loading aggregated results. Spark’s ag
gregation implementation does not work well together with the Arrow format. For measuring
whole data processing pipelines, the present work provides, in Section 4.4, a simple aggre
gation that determines the maximum of integer arrays.

Finally, the present work contributes to the vision of the ABS group. Section 4.5 dis
cusses the acceleration with FPGAs by using Fletcher. The implementation of the present
work demonstrates the integration based on a simple use case thus creating a valuable foun
dation for further, deeper integration.

24



4.2. Importing Parquet files into Arrow format 25

4.2. Importing Parquet files into Arrow format
Internally, Spark implements the importing of files by the physical operator FileSourceScan
Exec. As described in Section 3.2, the implementation of the present work replaces this
operator with a custom physical operator, the ArrowParquetSourceScanExec, which uses
the Arrow C++ Dataset library for reading Parquet Files.

The definition of the computation requires the doExecuteColumnar method, which is
summarized in Figure 4.1. The implementation uses the metadata (e.g. the input schema),
which was determined during the Catalyst optimizations. This metadata is used for initializing
the ParquetReader, which is a Java abstraction and calls the Arrow C++ Dataset library
through JNI. Following the modularization concept introduced in Section 3.1, this class pro
vides an interface based on the Arrow Java abstractions. Precisely, the class implements an
operator of VectorSchemaRoot objects and allows thereby reading the Parquet file batchby
batch. Internally, every request to read a new batch is forwarded to the C++ library. The buffers
of the returned Arrow RecordBatch are passed back through the layers of the implementa
tion. They are mapped to the VectorSchemaRoot Java abstraction without transforming or
copying any data.

arrow-processor-nativearrow-processorspark-extension

wrap Iterator<ColumnarBatch> in RDD

loop

wrap vectorSchemaRoot in ColumnarBatch

Spark Executor

Arrow C++ Dataset

:ArrowParquetSourceScanExec

new(filename, outputSchema)
parquetReader:ParquetReader

next()

vectorSchemaRoot

init(filename, outputSchemaAsBytes)

[parquetReader.hasNext()]

:DataSetParquetReader

next()

:DatasetAPI

initialize(...)

Next()

RecordBatch
 length of arrays, buffer addresses, ...

doExecuteColumnar

RDD<ColumnarBatch>

«interface»
Iterator<VectorSchemaRoot>

loop is 
defined as
Iterator and
executed lazily

Figure 4.1: Simplified implementation of the custom Parquet reader operator

Following Spark’s architecture concept, the iterator is not evaluated, directly. Instead, the
implementation applies a transformation to it, which maps the Arrow abstraction to Spark’s
ColumnarBatch container (see Section 3.3). This lazy evaluated iterator approach avoids
loading the whole data into memory and allows instead to process one batch through the
whole pipeline before reading and processing the next one (volcano model [29]). Finally, the
resulting ColumnarBatch iterator is wrapped in Spark’s RDD implementation, which provides
functionality to iterate through the data in distributed setups.

Both Spark’s Parquet reader and Arrows’s C++ Dataset library provide extensive features
to read Parquet files. These features include reading multiple files, reading from network
shares and optimizations such as predicate pushdown. Generally, both implementations are
a good fit and most of Spark’s features have an equivalent fit in the Arrow library. The present
work does not claim to integrate all of these features and focuses on the basic functionality,
which is reading a single file from a local file system. It allows limiting the imported columns
but does not allow filtering on the data values (predicate pushdown). Furthermore, it supports
uncompressed and snappycompressed Parquet files.
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4.3. Gandiva integration
As introduced in Subsection 2.2.4, Gandiva allows running analytical executions on Arrow
data optimized for CPUs with SIMD capabilities. Gandiva takes expressions as input and
compiles them with the LLVM compiler at runtime to optimized assembler code. These ex
pressions can be used for two different operations. Either for filtering or projecting the rows of
a RecordBatch.

Figure 4.2 shows an example of a query containing filter and projection operations. As
shown, both operations are represented by two separate corresponding physical operators.
The operator FilterExec is responsible for filtering rows. Thereby, this physical operator
is parameterized by a tree of expressions representing a binary predicate. During the exe
cution, this operator filters out all rows where the predicate evaluates to false. Whereas,
the projection operator ProjectExec is parameterized with multiple expression trees. When
executing it, the results of these expression trees create a new row [58].

Physical Plan

SELECT
   `name`,
   `price` * 0.9

FROM
   `products.parquet`

WHERE
   `category` == "food" FileSourceScanExec

filter predicate

FilterExec

ProjectExec

child

child

Catalyst

==

Attribute("category") Literal("food")

*

Attribute("price") Literal(0.9)

Attribute("name")projection
expressions

SQL Query

Figure 4.2: Spark SQL Catalyst’s representation of filter and projection operations

This shows that the operators in Spark are structurally similar to the Gandiva operations,
allowing to replace Spark’s physical operators with custom implementations that use Gandiva
for filtering and projection.

For mapping Spark’s filter and projection expression to Gandiva, the implementation of
the present work transforms the tree of Spark expressions into a tree of Gandiva expres
sions. It uses an approach similar to Catalyst’s internal transformations. It iterates topdown
through Spark’s expression tree and uses Scala’s pattern matching functionality to replace ev
ery node with an equivalent Gandiva representation. The work currently supports expressions
containing arithmetic operators, relational operators and data type casts. Nevertheless, the
patternmatching approach is very flexible and can be extended with further functions easily.

Unlike the other accelerators, Gandiva provides a Java library, which internally follows a
similar structure as this project and forwards Arrow data also to an underlying native library.
The Scala code implementing the custom physical operator can directly call Gandiva’s Java
interface and does not need to handle the Arrow transformation.

As shown in Figure 4.3, the custom implementation GandivaProjectExec for projec
tions firstly transforms the projection expressions into Gandiva’s format and uses them to
instantiate Gandiva’s Projector. During the instantiation, Gandiva compiles the tree of ex
pressions to SIMD optimized assembly code. After Gandiva is set up, the operator calls the
doExecuteColumnar method of the child operator, which returns a ColumnarBatch itera
tor. As described previously the iterator is lazy evaluated and not entirely materialized. Also
the custom GandivaProjectExec implementation follows this approach and defines the
processing of every ColumnarBatch without executing it instantly. Instead, the processing
is embedded in an iterator and is lazily evaluated when requested.

Within the individual processing of a ColumnarBatch, firstly, the underlying Arrow data
abstractions are extracted. These abstractions are then passed to Gandiva that executes the
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projection on it and returns a new RecordBatch containing the projected data. Finally, this
Arrow structure is mapped to Spark’s ColumnarBatch.

wrap Iterator<ColumnarBatch> in RDD

spark-extension

wrap resulting RecordBatch in columnar batch

extract Arrow RecordBatch from columnar batch

loop

arrow-gandiva

Spark Executor

spark

:GandivaProjectExec

:Projector

doExecuteColumnar

RDD<ColumnarBatch>

:ExpressionConverter

[for each projection expression]
transform(Spark Expression Tree)

Gandiva Expression Tree

:SparkPlan
(child physical operator)

doExecuteColumnar()
RDD<ColumnarBatch>

loop
[for each columnar batch]

evaluate(RecordBatch)
RecordBatch

make(Gandiva Expression Trees)

loop is 
defined as
Iterator and
executed lazily

Figure 4.3: Internal computation of custom GandivaProjectExec operator

Generally, also the filtering implementation GandivaFilterExec follows the same struc
ture. However, instead of returning a RecordBatch containing only the rows which evaluate
to true, Gandiva returns a SelectionVector. This vector contains all indexes of the rows
not filtered out. When performing a projection directly after filtering, this SelectionVector
can be passed as an additional parameter and to Gandiva’s projection. The projection is then
only created for the rows in the SelectionVector. Unfortunately, Spark’s ColumnarBatch
representation currently does not support anything similar to a SelectionVector. There
fore, this Gandivabased filter implementation is not fully compatible with other columnar
based operators. Nevertheless, the implementation of the present work has added an alter
native for Spark’s ColumnarToRowExec conversion (see Section 3.3), which only transforms
rows listed in the SelectionVector, and allows, thereby, combining the filter operation with
regular Spark operators.

4.4. Simple max aggregation
Using the Parquet reader with the Gandiva implementation allows running of first data pro
cessing use cases entirely based on the Apache Arrow format. However, to continue working
with the result data, it is still necessary to store them in a file or to load them with Spark SQL’s
collect() method into the driver’s memory. Both operations are quite costly because they
are not optimized for Apache Arrow. These operations have a high impact on the execution
time and make it hard to evaluate the accelerators’ improvements. Therefore, the present
work adds an elementary operator that calculates the maximums of an integer Arrow arrays.
Using this operator forces Spark to evaluate the full data but reduces the results loaded back
to one value per column.

Generally, different from the previously discussed operations, an aggregation operation
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does not only operate on exactly one ColumnarBatch. Instead, it combines multiple data
rows and creates new rows. Thereby, an aggregation is a wide Spark transformation and
requires exchanging data (shuffling) between Spark’s executors. All the challenges related
to shuffling make Spark’s aggregation implementation rather complex. Through the different
focus of the present work, no custom implementation with a comparable functionality was
created. Instead, the present work focuses on a particular, but also essential aggregation
used to measure the performance improvements.

As Figure 4.4 shows, Spark SQL creates multiple physical operators to define the max
aggregation. Firstly, the maximum is calculated for every partition. Afterward, all interme
diate results are collected to one executor, and their maximum is calculated. As described
before, not many of Spark’s operator implementations support columnar processing. Also,
the aggregation is no exception and only supports rowbased processing. Therefore, Catalyst
inserts automatically a ColumnarToRowExec operator which converts the batches into rows.
The least invasive way of implementing the max aggregation is to replace this transforma
tion operator in the post columnar transformation phase with a custom implementation, which
maps every ColumnarBatch to one row containing the maximum of this batch. As a result,
the structure of the data between the operators stays unchanged and the aggregation related
operators have not to be changed.
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Figure 4.4: Spark SQL’s physical plan of a max aggregation and its modification

Internally, the SimpleMaxAggExec is simplistic, too. It calls a C++ method that iterates
through the Arrow arrays and returns their maximums. Finally, it creates a new row with these
maximums for every ColumnarBatch. Afterward, Spark’s aggregation operators compute
the maximums of all ColumnarBatch maximums.

4.5. Fletcher
The last accelerator integrated during the present work is a significant step towards the vi
sion of heterogeneous computing. By using Fletcher, a vendoragnostic FPGA accelerator
framework, this integration offloads parts of the computation to FPGAs.

An FPGA is a programmable device that allows configuring the internal circuit. This circuit
can be optimized using different parallelism techniques and can perform specific tasks much
faster than a CPU designed for generic tasks. The execution logic of an FPGA is specified
using a hardware description language (HDL) which describes the digital circuit. Generally, im
plementing such a circuit requires indepth knowledge related to digital electronic designs. In
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layman’s terms, this makes the development of a HAF for an FPGAmuchmore expensive than
the development of equivalent software programs. Additionally, there are different compilers
available that generate the HDL design from programming languages or SQL. However, these
automatically generated designs are often much slower than manually written designs [25].

Nevertheless, even converting the HDL design into the physical circuit layout (Logic Syn
thesis) is a timeconsuming process and can take up to several hours. Therefore, as opposed
to Gandiva, for FPGA accelerators, it is not beneficial to automatically generate the hardware
designs at runtime. Instead, the vision of the ABS group is to store the hardwareaccelerated
functions in a repository and use them to accelerate parts of data analytics queries. The anal
ysis of Spark SQL’s capabilities showed that Spark SQL’s internal representation is generally
detailed enough for querying such a repository. However, checking if Spark’s internal logical
plan can be partly substituted with a HAFs requires nontrivial tree comparison and was not
further elaborated in the present work.

Instead, the present work demonstrates the technical feasibility of such an integration
based on a specific use case. This use case uses the publicly available Chicago Taxi data
set [40], which includes all taxi trips operated in Chicago from 2013 to the present with addi
tional metadata such as the trip length. The use case reads the data from a Parquet file and
calculates the total duration of all trips operated by the company “Blue Ribbon Taxi Association
Inc.”

SQL Query Physical Plan
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Figure 4.5: Spark SQL’s physical plan of the Fletcher use case and its modification

Thus, the execution is accelerated by a Fletcher HAF, which takes a RecordBatch as
input and computes the “Blue Ribbon Taxi Association Inc’s” total trip duration of this batch.
This HAF is based on a regex and allows generally different patterns as well. Therefore, also
the SQL query shown in Figure 4.5 is based on a regex match.

Internally, this query is mapped to a physical plan containing the Parquet file reading, the
memory transformation, the regexbased filtering, the projection to the relevant ‘company‘
field and, finally, the sumbased aggregation including a shuffle phase. The present work
replaces now, a part of this query with a custom implementation FletcherExec, which in
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ternally calls Fletcher’s HAF. Similar to the simple max aggregation, this replacement also
includes the memory transformation. Thereby, the custom implementation is again reducing
every ColumnarBatch to exactly one row containing the intermediate sum. Afterward, these
rows are regularly handled by Spark and added together with Spark’s default aggregation
mechanism.

Figure 4.6 shows the implementation of FletcherExec. As already mentioned, this op
erator also converts ColumnarBatches into rows. Therefore, the doExecute method is
overwritten. When entering the method, firstly, the Fletcher runtime is set up. Afterward, the
child operator is called. For this use case, this is the ArrowParquetSourceScanExec. This
operator returns an iterator of ColumnarBatches. As before, to allow batchbybatch eval
uation, this iterator is not directly processed but mapped to a new iterator. This new iterator
applies a mapping function to every ColumnarBatch. This mapping function passes the un
derlying Arrow buffers, through the different layers, to the Fletcher runtime, which loads them
and executes the previously configured HAF. The intermediate sum returned from Fletcher is
then finally written into a row, so that the final method returns an RDD containing an iterator
of rows.

:FletcherProcessor

Fletcher

:FletcherAPI

sparkarrow-processor arrow-processor-nativespark-extension

new Row(intermediate sum)

extract VectorSchemaRoot from columnar batch

Spark Executor :GandivaProjectExec

doExecute

RDD<Row>

:SparkPlan
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doExecuteColumnar()
RDD<ColumnarBatch>

loop
[for each columnar batch]

process(VectorSchemaRoot)

intermediate sum

loop is 
defined as
Iterator and
executed lazily

new

:FletcherProcessorCpp
new

initialize Plattform, ...

process(buffer adresses, ...)
create context, load RecordBatch, execute kernel, ...

intermediate sum
intermediate sum

Figure 4.6: Implementation of the FletcherExec operator

A particular challenge has arisen related to the recommended Arrow buffer 64byte align
ment. Fletcher requires all buffers to be aligned on 64byte, but the Java implementation only
supports 8byte alignment. Therefore, Arrow data initialized by the Java API cannot be pro
cessed easily with Fletcher. Luckily, in the taxi data use case, the data processed by Fletcher
is initialized by the C++ Dataset Parquet file reader. As described in Section 3.4.4, this im
plementation uses a callback mechanism to allocate buffers in Java. The API used for this
is a thin layer around the Netty Buffer API [53], which can be configured to allocate 64byte
aligned buffers. Unfortunately, this configuration is not sufficient for Arrow arrays created with
the Java API. Therefore, the Fletcher accelerator is, for example, not fully compatible with the
Gandiva accelerator. However, the implemented approach is suitable for the taxi use case
and allows evaluating performance improvements on it.



5
Evaluation

5.1. Setup
When executing code on the JVM, the code is optimized by the JIT compiler during runtime.
Generally, many of these optimizations are based on different code heuristics and, therefore,
the JIT compiler can optimize the code better the more often it executes it [50].

This effect can also be seen when executing a Spark query multiple times. Figure 5.1
shows an example of this on the use case of determining the maximum value of 500 million
integers stored in a Parquet file. As shown, especially, the first iterations are slow, and it takes
roughly ten iterations until the execution time stabilizes. Naturally, even then, the execution
times vary, because of effects that cannot be controlled, such as background processes of the
OS.
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Figure 5.1: Changes to execution time when executing a Spark query multiple times. Query was executed on
vanilla Spark and determines the maximum from 500 million integers stored in a Parquet file

Therefore, the measurements executed in the present work always start with a warmup
phase consisting of 20 iterations to give the JIT compiler the time to optimize the execution.
Afterward, another 20 iterations are executed, and their average value is measured. To avoid
defining these iterations manually, Java Microbenchmark Harness (JMH) is used. This Open
JDK project supports setting up environments for performance tests and allows configuring
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the execution with annotations [50].
For determining the execution time, the present work relies on Spark’s internal metrics [17].

Additionally, new metrics have been added to measure the execution of the custom executors.
Unfortunately, this only works for columnarbased operators and not for Spark’s internal row
based operators. Processing a single row does not take much time, and measuring this would
add a high overhead.

Except for the Fletcherrelated use case, all measurements are executed on a Macbook
Pro Early 2015 (Intel Core i5, 2.4 GHz, GB RAM) and the oracle JVM in version 1.8.0_241.
This work is only interested in the performance improvements of a single executor. Therefore,
Spark is started in local mode using 1 core and 4GB memory for the execution. All files loaded
by Spark, are stored on the internal SSD. If not mentioned differently, the evaluation uses a
batch size of 100,000 elements.

5.2. Parquet reading
Firstly, the present work compares the custom Arrowbased Parquet reading implementation
to Spark’s default implementation. For this evaluation, a Parquet file with 500 million rows
containing 3 integers (x1, x2, and x3) is used. To force Spark to process all data but avoid
loading everything into memory, the following query returns the maximum of every row.

1 SELECT MAX(‘x1‘), MAX(‘x2‘), MAX(‘x3‘) FROM parquet.‘500milliontriples.parquet‘

This query has been executed on three differently configured Spark instances that map the
query to different physical plans. The first configuration is the unmodified Vanilla Spark, which
executes the physical plan shown in Figure 5.2a. Secondly, Spark uses the ArrowParquet
Extension implemented in the present work, which creates a physical plan (Figure 5.2b)
containing the custom operator loading the Parquet file into the Arrow format. Finally, the third
executed configuration additionally uses the custom max aggregation thus replacing Spark’s
column into row transformation (see Figure 5.2c).

FileSourceScanExec

ColumnarToRowExec

HashAggregateExec

Shuffle

HashAggregateExec

(a) Vanilla Spark

ArrowParquet...Exec

ColumnarToRowExec

HashAggregateExec

Shuffle

HashAggregateExec

(b) Custom Arrow parquet reading

ArrowParquet...Exec

SimpleMaxAggExec

HashAggregateExec

Shuffle

HashAggregateExec

(c) Custom Arrow parquet reading
with simple max aggregation

Figure 5.2: Parquet reading scenario: Physical plans of the different Spark configurations

The measured execution times are summarized in Figure 5.3. Thanks to Spark’s inter
nal metrics, it is possible to measure the time taken for reading the Parquet file. Evaluating
thesemetrics reveals that Spark’s default implementation is slightly faster (approximately 10%)
then the custom implementation calling Arrow’s C++ Dataset API. Nevertheless, Arrow’s C++
Dataset API was not chosen because it promised to be faster. Instead, it allows the creation
of pipelines entirely based on Arrow, and the current PoC implementation has to live with this
tradeoff.
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Figure 5.3: Comparing the execution of the Arrowbased Parquet reader with Vanilla Spark
(importing 500 million integer triples with a batch size of 100,000 rows)

Furthermore, it is especially noticeable that determining the maximum value from the data
in the Arrow format is a longrunning computation. Consequently, the physical plan using the
custom Arrow Parquet Reader takes three times longer than the Vanilla Spark. This demon
strates that converting the Arrowbased columnar format back to Spark’s rows is a very ex
pensive operation. In contrast, converting the columnar data produced by Spark’s default
Parquet Reader is highly optimized. With the improvement suggested in [37], Spark’s Whole
Stage Code Generation (see Subsection 2.1.4) generates specific code for reading data from
Spark’s internal columnar storage, which enables the JIT compiler to apply optimizations. In
deed, the custom max aggregation improved the performance of aggregating the Arrow data
dramatically. Nevertheless, it was not sufficient to compete with Vanilla Spark’s implementa
tion and is still 1.1 times slower.
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Figure 5.4: Effect of changing the batch size on the Arrowbased Parquet reader (incl. max aggregation)
(importing 500 million integer triples)
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Finally, the present work elaborates on the impact of the ColumnarBatch size. Therefore,
the execution of the third Spark configuration (Arrow Parquet reading, max aggregation) has
been parameterized with the ColumnarBatch size. The results are shown in Figure 5.4. As
expected, the execution is very slow for small batches, requiring calling the accelerator more
often and having a high coordination overhead. With an increasing batch size, which requires
more memory, it becomes faster and converges to the fastest possible execution. The Figure
shows that the execution time of the batch size of 50.000 elements is very close to this limit
and further increases of the batch size barely have a measurable impact on the execution.

5.3. Gandiva
For demonstrating the performance improvements of Gandiva, again, three different Spark
configurations are compared. These are (1) Vanilla Spark, (2) Spark with the Arrow Par quet
reader and the Gandiva accelerator, and finally (3) Spark with the Arrow Parquet reader, the
Gandiva accelerator and the columnar based max aggregation. Additionally to the previous
query, the new query also includes a projection operation. The query reads a file containing
50 million records of ten integers. These ten integers are summed up, and their maximum is
returned. The SQL query is defined as follow:

1 SELECT
2 MAX(‘x1‘ + ‘x2‘ + ‘x3‘ + ‘x4‘ + ‘x5‘ + ‘x6‘ + ‘x7‘ + ‘x8‘ + ‘x9‘ + ‘x10‘)
3 FROM
4 parquet.‘50million10ints.parquet‘

Internally, these three configurations map the query into different physical plans, that are
shown in Figure 5.5.
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Figure 5.5: Gandiva scenario: Physical plans of the different Spark configurations

When evaluating the results shown in Figure 5.6, firstly, the same effects as before can be
seen. The Arrow Parquet reading is significantly slower than Spark’s internal implementation.
Again aggregating the results in configuration (2) requires the transformation from the Arrow
based format into Spark’s rows, which is a very costly operation.

Unfortunately, it is not possible to measure the time taken for calculating the sum of the ten
integers in Vanilla Spark, because it is a rowbased computation and does not allow to mea
sure the execution efficiently. Therefore, it is only possible to compare the whole computation
without the Parquet reading with each other. This does include not only the projection but also
the aggregation. It can be seen that Gandiva and the maximum aggregation are executed
1.27 times faster than the computation of Vanilla Spark (see red arrows on Figure 5.6). This
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Figure 5.6: Comparing the execution of Gandivaaccelerated Spark with Vanilla Spark
(calculating 50 million times the sum of 10 integers with a batch size of 100,000 rows)

experiment demonstrates that Spark’s computation can be accelerated by using SIMD capa
bilities of modern GPUs. This improvement is not sufficient to overcome the slower Parquet
reading. Nevertheless, the results demonstrate how important it is to avoid costly IO opera
tions and the importance of efficient data aggregation. Moreover, it makes clear that queries
with more complex computations also have a higher potential for acceleration.

Analyzing the impact of the ColumnarBatch size reveals similar results as before. Es
pecially small batches lead to a much slower execution. Choosing a batch size of 50.000
elements leads to an execution close to the limit, and increasing the size barely affects the
computation.
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(calculating 50 million times the sum of 10 integers)
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5.4. Fletcher
As distinguished from the previous experiments, the Fletcher scenario is not based on random
data sets. As described in Section 4.5, it uses the Chicago taxi data [40] and determines the
total duration of all trips operated by the Blue Ribbon Taxi Association Inc company. The
following query defines this scenario.

1 SELECT
2 SUM(‘trip_seconds‘)
3 FROM
4 parquet.‘chicagotaxi.parquet‘
5 WHERE
6 ‘company‘ rlike ”Blue Ribbon Taxi Association Inc”

Similarly, as before, this experiment compares the execution of Spark’s default physical
plan (Figure 5.8a) with the Fletcheraccelerated one (Figure 5.8b).
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Figure 5.8: Fletcher scenario: Physical plans of the different Spark configurations

The Fletcher experiments were conducted on a POWER9 system with two CPUs (44
cores), 128 GB memory, and an AlphaData ADMPCIE9H7 FPGA accelerator card. In this
Setup, Spark was executed in local mode with 16 GB memory and a ColumnarBatch size
of 1 million records was chosen.

Figure 5.9 shows the results of comparing the Fletcheraccelerated Spark version with
Vanilla Spark on reading data sets of different size. First of all, this use case, which includes
reading string data, reveals the weaknesses of the Arrow Parquet reading implementation
even more clearly than before. While Vanilla Spark was able to import the parquet file con
taining 150 million entries (about 130MB) within 250ms, the Arrow implementation needed 9.6
seconds. This work could not to find a satisfying explanation for this enormous difference.
However, it could show that the problem is not directly related to the Spark integration or the
memory allocation in Java. A separate C++ program just importing the file with the Arrow C++
Dataset API resulted in a similar importing time.

Nevertheless, the FPGAaccelerated Spark configuration could increase the performance
of the other processing operations enormously. For the data set with 150 million record, the
remaining processing steps could be executed more than 13 times faster (see red arrows
on Figure 5.9). This improvement is slightly smaller for the other data sets, but sufficient
to compensate the much slower Parquet file import. In total, the accelerated variant was
more than two times faster than the default implementation for all data set sizes. The FPGA’s
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parallel execution capabilities can clearly explain this improvement compared to the single
threaded Spark CPU executor. Nevertheless, the current implementation of the HAF is also
only using a small part of the FPGA’s capacity. This experiment demonstrates that Spark
can be accelerated with different computing hardware, but it leaves the problem of using the
hardware at full capacity for further work.
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Figure 5.9: Comparing the execution of Fletcheraccelerated Spark to Vanilla Spark
(Chicago taxi data usecase presented in Section 4.5 using a batch size of 1 million rows)



6
Conclusions and future work

6.1. Conclusions
The research question “Can Spark SQL’s internal structural information of the query be used to
accelerate the query execution by offloading work to hardware accelerators based on Apache
Arrow?”, formulated in Section 1.3, has set the primary purpose of the present work to evaluate
the technical feasibility of accelerating Spark SQL transparently. Firstly, the present work
analyzed the involved technologies, such as Apache Spark, Apache Arrow, and Fletcher. It
elaborated recent features supporting heterogeneous computing and used these insights to
create an architecture and concepts for integrating different tools. During the work, several
custom accelerators were implemented to validate the developed concepts and to discover
further challenges. This successful PoC implementation was evaluated with regard to first
performance improvements and to gain further insights on necessary preconditions for strong
acceleration.

The first subquestion, “Does Spark SQL provide sufficient extension points that allow the
provision of different hardware accelerators?” was answered by analyzing Spark SQL deeply
and presenting its concepts. It has been shown that especially the query optimizer Catalyst
plays an important role. Internally, it processes the query defined by the user and creates pre
cise execution instructions. Additionally, it is designed and built very modifiable and provides
an extensive API to manipulate the query optimization process. With the new columnar pro
cessing function, which perfectly integrates into Catalyst’s APIs, Spark took a significant step
towards heterogeneous computing and laid an essential basis for columnar accelerators. The
architecture developed within the present work (Section 3.2) highly relies on Catalyst’s API. It
uses the API to define custom accelerators (physical operators) and uses the rulebased Spark
extensions to replace Spark’s default operators. This demonstrates the extensive possibilities
to modify Spark SQL and shows that Spark SQL’s API fulfills all necessary preconditions for
the present work and allows extending Spark with custom implementations calling hardware
accelerators.

Besides Spark, Apache Arrow is a central component that connects all tools used in the
present work. Its columnar inmemory format and the languagespecific abstraction allow
exchanging data without copying overhead. The idea of the present work is based on using
Apache Arrow for exchanging data efficiently between Spark and tools from the Arrow ecosys
tem, such as Gandiva and Fletcher. Validating this idea led to the second subquestion, “How
mature is Spark’s columnar processing function and is it compatible with the Apache Arrow
memory format?”. The present work discussed that Spark’s columnar processing functionality
does not yet fully integrate with Apache Arrow. Although Spark contains Arrowbased imple
mentations, the underlying Arrow structures are not part of the public API and can only be
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extracted by accessing hidden fields. Moreover, when Spark converts rows into the colum
nar format, it uses an internal format. But, as the concept of the present work (Section 3.3)
discusses, these restrictions can be overcome and enable Spark to manage its data in the Ar
row format. However, the performance evaluations showed a disadvantage, which remained.
Spark’s columnartorow conversion is optimized for the internal format, and using the Arrow
format leads to significantly slower conversions.

Based on the Apache Arrow format, the present work integrated hardwareaccelerators
and libraries from the Arrow ecosystem with Spark. Firstly, this was the Arrow C++ Dataset
component. It allows importing Parquet files directly into the Arrow format and enables the
present work to execute full data analytics pipelines without having to transform the data.
Moreover, this integration demonstrates how Arrow data imported in C++ can be made avail
able to Spark implemented in Scala/Java. Secondly, the present work provides an integra
tion that conceptually allows executing all of Spark’s projection and filter operations on Gan
diva. By converting Spark’s operations into Gandiva’s expression trees, these operations are
compiled into assembly code optimized for CPUs with SIMD capabilities and are accelerat
ing Spark’s internal computation. Finally, the present work provides a Fletcher integration as
a prototype, allowing offload computational work to FPGAs. While implementing these inte
grations, the present work also has revealed differences between the tools. Gandiva’s filter
operation is returning a vector containing all indexes of the selected rows, which does not find
a conceptional equivalent in Spark and is therefore not fully compatible. Furthermore, Fletcher
requires Arrows suggested 64byte alignment. However, Arrow’s Java library only aligns the
buffers on 8 bytes and makes it difficult to send data to Fletcher.

Finally, to answer the third subquestion, “Which performance improvements can be identi
fied and what are potential bottlenecks?”, the present work conducted experiments on different
use cases. These experiments have shown that transforming the data between the Arrow for
mat, and Spark’s rowbased format are costly operations. Therefore, the best results can be
achieved when these transformations are avoided and the whole data analytics pipeline man
ages the data in the Arrow format. It became clear that aggregations are common operations
and an Arrowbased implementation is required to avoid transferring the data to Spark’s format
first. Furthermore, the performance evaluations have revealed that the Parquet reading imple
mentation is significantly slower than Spark’s implementation, making it hard for Arrowbased
computations to compete with Vanilla Spark. Nevertheless, the performance experiments
have demonstrated that Spark can be significantly accelerated by using hardware accelera
tors. Not considering the Parquet reading operations, the Gandivaaccelerated computation
was up to 1.27 times faster and the Fletcheraccelerated version could compute the data of
the Chicago taxi use case more than 13 times faster.

6.2. Further work
The present work has focused on elaborating on the technical feasibility of integrating Spark
with the Apache Arrow ecosystem and, in particular, with Fletcher. This feasibility has been
demonstrated, being an important step towards the presented vision of heterogeneous com
puting based on Apache Arrow. During the evaluations and implementations done in the
present work, many new questions and challenges arose, which could not be answered in fa
vor of focusing on the main purpose of the present work. Therefore, the present work creates a
basis for further implementations and additional integrations with other work of the community.

As the evaluation has shown, the Arrowbased Parquet reading function, developed in the
present work, is significantly slower than Spark’s default implementation and has a significant
impact on the overall execution. To overcome this limitation, it is necessary to analyze this
issue further and evaluate other implementations such as Parquet Mr [47], which provides
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a Javabased implementation to import Parquet files into the Arrow format. Moreover, the
implementation of the present work focuses on the basic functionality. To reach feature parity
with Spark’s implementation, it is necessary to integrate additional features of the Arrow C++
Dataset library such as predicate pushdown and to read from network shares.

An essential result of the present work is that the conversion between Apache Arrow and
Spark’s internal row format should be avoided. For being able to accelerate a wide variety of
use cases, it is necessary to provide Arrowbased implementations for most of Spark’s physi
cal operators. To be pointed out is the aggregation operator, which is an essential operation for
many data analytics pipelines and also enables the execution of the TPCH benchmarks [52].
The TPCH benchmark is a standardized database benchmark consisting of business oriented
adhoc queries and concurrent data modifications. This benchmark has been defined to have
broad industrywide relevance and allows a better evaluation of the performance improve
ments and a comparison with other available data analytics systems.

However, implementing columnarbased versions for all operators is an enormous task due
to Spark’s extensive features. Therefore, it is essential to exploit potential synergies with other
publicly available work. Particularly Intel’s “Spark Native SQL Engine” project [36], introduced
in Section 2.4, is an interesting candidate. At the time of writing, this project was still in an early
stage, but similarly, as the present work, it uses Spark’s columnar processing feature and has
integrated an Arrow Parquet reader, Gandiva and further columnar processing operators. To
follow the vision of heterogeneous computing and making Fletcher accessible for broader data
analytics, this project is an interesting candidate and should be evaluated further.

The present work has focused on accelerating a single executor node and does not discuss
challenges related to distributed Setups. Therefore, challenges such as using the available re
sources efficiently, choosing a physical plan based on the available resources and distributing
the work in a heterogeneous cluster are not addressed and remain open for further work.

This work forms the basis for the ABS group’s vision, presented in Section 4.5, to accelerate
Spark queries with Fletcherbased HAFs without losing the usability of Spark’s powerful API.
The key idea is to choose a matching HAF automatically from a repository and integrate it into
the execution to accelerate the execution as much as possible. This approach requires a tree
comparison between Spark’s logical plan and the HAFs. These additional steps necessary to
achieve this vision have not been considered in the present work and remain open for further
work.

With version 3.0.0, Spark has announced the Adaptive Query Execution feature [62], which
gathers statistics at runtime and uses them to adapt the execution dynamically. Integrating with
this function might be a valuable addition to the greater vision of the presented work. Using
this feature might allow switching dynamically to a different accelerator based on the insights
gathered from the first executions.



A
Measurement Results

This appendix lists the exact measured values from the experiments conducted in Chapter 5.
The implementations of the experiments can be found in the repository1 containing the imple
mentation of the present work.

A.1. Parquet Reading
The experiments conducted in Section 5.2 compare the Arrowbased Parquet reader, imple
mented in the present work, with Vanilla Spark. They were executed on Spark started in local
mode using 4 GB running on a Macbook Pro Early 2015 (Intel Core i5, 2.4 GHz, GB RAM). The
following tables show the average value of 20 executions after another 20 warmup executions

Vanilla Spark Arrow Parquet
Reader

Arrow Parquet &
Max Aggregation

Parquet reading 7.5 s 8.4 s 8.2 s
Total 10.8 s 31.8 s 12.1 s

Table A.1: Comparing the execution of the Arrowbased Parquet reader with Vanilla Spark
(importing 500 million int triples with a batch size of 100,000 rows)

batch size 500 1K 5K 10K 50K 100K 500K
Parquet reading 45.8 s 26.7 s 11.5 s 10.5 s 7.7 s 7.7 s 7.6 s
Total 77.7 s 44.5 s 18.1 s 15.6 s 11.8 s 11.7 s 11.6 s

Table A.2: Effect of changing the batch size on the Arrowbased Parquet reader (incl. max aggregation)
(importing 500 million integer triples)

A.2. Gandiva
Section 5.3 shows the experiments to evaluate the performance of the Gandiva accelerator.
The experiments were conducted on the same setup as the parquet reading and the following
tables show the measured values for the comparison with Vanilla Spark and the effect of the
batch size:

1https://github.com/fnonnenmacher/sparkarrowaccelerated#performancetests
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Vanilla Spark Gandiva Gandiva & Max
Aggregation

Parquet reading 1.27 s 1.61 s 1.62 s
Gandiva (sum)  0.31 s 0.32 s
Total 2.05 s 2.87 s 2.23 s

Table A.3: Comparing the execution of Gandivaaccelerated Spark with Vanilla Spark
(calculating 50 million times the sum of 10 integers with a batch size of 100,000 rows)

batch size 500 1K 5K 10K 50K 100K 500K
Parquet reading 10.54 s 6.15 s 2.41 s 1.92 s 1.67 s 1.64 s 1.76 s
Gandiva (sum) 3.85 s 2.08 s 0.62 s 0.44 s 0.33 s 0.33 s 0.29 s
Total 16.43 s 9.50 s 3.48 s 2.72 s 2.29 s 2.26 s 2.32 s

Table A.4: Effect of changing the batch size on Gandivaaccelerated Spark (incl. max aggregation)
(calculating 50 million times the sum of 10 integers)

A.3. Fletcher
The Fletcher related experiments of Section 5.4 were conducted on a POWER9 system with
two CPUs (44 cores), 128 GB memory, and an AlphaData ADMPCIE9H7 FPGA accelerator
card. In this Setup, Spark was executed in local mode with 16 GB memory and a configured
batch size of 1 million records.

10M 50M 100M 150M
[Vanilla] Parquet reading 0.02 s 0.04 s 0.11 s 0.25 s
[Vanilla] Total 2.22 s 9.31 s 17.59 s 27.06 s
[Fletcher] Parquet reading 0.69 s 3.36 s 6.64 s 9.65 s
[Fletcher] FPGA execution 0.15 s 0.68 s 1.21 s 1.77 s
[Fletcher] Total 0.98 s 4.20 s 8.03 s 11.62 s

Table A.5: Comparing the execution of Fletcheraccelerated Spark to Vanilla Spark
(Chicago taxi data usecase using a batch size of 1 million rows with different data set sizes)
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