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Abstract

Coastal structures are often designed to a maximum allowable wave overtop-
ping discharge, hence accurate prediction of the amount of wave overtopping
is an important issue. Both empirical formulae and neural networks are among
the commonly used prediction tools. In this work, a new model for the predic-
tion of mean wave overtopping discharge is presented using the innovative ma-
chine learning technique XGBoost. The selection of features to train the model
on is carefully substantiated, including the redefinition of existing features to
obtain a better model performance. Confidence intervals are derived by tuning
hyperparameters and applying bootstrap resampling. The quality of the model
is tested against four new physical model data sets, and a thorough quantitative
comparison with existing machine learning methods and empirical overtop-
ping formulae is presented. The XGBoost model generally outperforms other
methods for the test data sets with normally incident waves. All data-driven
methods show less accuracy on oblique wave data, presumably because these
conditions are underrepresented in the training data. The performance of the
XGBoost model is significantly improved by adding a randomly selected part of
the new oblique wave cases to the training data. In the end, this new model
is shown to reduce errors on all data used in this work with a factor of up to 5
compared to existing overtopping prediction methods.
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model tests; Gradient boosting decision trees; XGBoost

1. Introduction1

Wave overtopping has the potential to interfere with the function of a coastal2

structure and cause structural damage or physical harm. To reduce these risks,3

coastal structures are often designed to prevent exceeding a maximum allow-4

able wave overtopping discharge. Therefore, estimates of the amount of wave5

overtopping are important for the design of coastal structures.6

Currently, different types of tools are available to predict the expected amount7

of wave overtopping, given a certain configuration of a coastal structure. Firstly,8

many empirical overtopping formulae have been derived from physical model9

data. These form a relatively easy estimate of the mean wave overtopping dis-10

charge, q [m3/s/m]. A selection of those formulae are listed in TAW (2002) and11

in the EurOtop manual (EurOtop, 2018). The so-called CLASH database (Steen-12

dam et al., 2004) with wave overtopping data from measurements has been13

used by Van Gent et al. (2007) as training data for a neural network (NN) to pre-14

dict wave overtopping. Their ensemble of NNs outputs both the expected mean15

wave overtopping discharge and an estimate for the corresponding uncertainty.16

A similar approach was used while extending both the training data set and17

adding predictions of wave transmission and reflection (Zanuttigh et al., 2016).18

Recently, it was shown in Den Bieman et al. (2020) that the machine learning19

method XGBoost (Chen & Guestrin, 2016) can be successfully applied as an al-20

ternative to NN models. XGBoost is a relatively new method, finding success21

in various practical applications from fault detection in wind turbines (Zhang22

et al., 2018) to bridge damage estimation (Lim & Chi, 2019). Applying the method23

to the prediction of wave overtopping significantly reduces the prediction er-24

rors on the CLASH database compared to the NN by Van Gent et al. (2007),25

see Den Bieman et al. (2020). In addition to empirical formulae and machine26

learning methods, numerical models are capable of reproducing physical wave27

overtopping models reasonably well. Hence, numerical modelling could also28

be used to predict mean wave overtopping discharge, on the condition that ex-29

tensive calibration and validation on physical model data has been carried out.30

The exploratory work in Den Bieman et al. (2020) compares the existing NN31

model by Van Gent et al. (2007) to an XGBoost model with a similar setup that32

is trained on the same training data set. The XGBoost method is shown to out-33

perform the NN, reducing errors by a factor of 2.8. In this paper, that work34
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is expanded upon in several ways to get to a state-of-the art XGBoost model35

for the prediction of mean wave overtopping discharges. Firstly, the training36

database is enlarged beyond the original CLASH database and the selection of37

features for model training is carefully substantiated. Secondly, both the hy-38

perparameter tuning and derivation of uncertainties is readdressed, as Den39

Bieman et al. (2020) find surprisingly small confidence intervals. Thirdly, the40

XGBoost model is validated on both the overtopping database and new physi-41

cal model data previously unseen by the model. Finally, the model is compared42

with predictions from two of the available neural network models (Van Gent43

et al., 2007; Zanuttigh et al., 2016) and from two empirical overtopping formu-44

lae (TAW, 2002; EurOtop, 2018).45

This article is structured as follows. Section 2 contains the description of46

the machine learning methods and the training and test data sets that have47

been used. Section 3 expands upon feature engineering, hyperparameter tun-48

ing, and uncertainty estimation. The model performance is quantified in Sec-49

tion 4, using both the overtopping database and the test data sets. In Section 5,50

a discussion of the results is presented. Finally, Section 6 contains conclusions51

and recommendations.52

2. Method description53

In the following, the methods used in this paper are expanded upon: the54

machine learning methods applied (Section 2.1), the data used to train them55

(Section 2.2), the new test data sets (Section 2.3), and the other overtopping56

prediction methods that are used for comparison (Section 2.4).57

2.1. XGBoost and gradient boosting decision trees58

XGBoost (Chen & Guestrin, 2016) is a Python (Van Rossum, 1995) imple-59

mentation of a machine learning method of the type gradient boosting decision60

trees (GBDT). These methods are based on decision trees that can solve either61

classification problems (predicting a label) or regression problems (predicting62

a quantity). These decision trees are therefore often called classification and re-63

gression trees (CART). In this work regression trees are used for the prediction64

of mean wave overtopping discharges at coastal structures.65

Figure 1 shows an ensemble of three decision trees, which each consist of66

decision and leaf nodes. In decision nodes (Di j ), a condition is defined based67

on a feature from the training data. This combination of feature and condition68

is often called a split. Node D11 for example could contain the condition: "Is69
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Figure 1: Schematic depiction of an ensemble of decision trees with desicion (Di j ) and leaf
nodes (Li j ). An example prediction for one combination of input parameters is shown in green.
Source: Den Bieman et al. (2020)

the berm width larger than 0 m?". Two tree branches emerge from the node,70

one for each possible answer (Yes or No) to the question. These feed into either71

another decision node or a leaf node. Leaf nodes (Li j ) form the end points of72

the tree and contain the prediction. Leaves of regression trees predict values,73

whereas leaves of classification trees predict classes. The depth of a decision74

tree is defined as the number of subsequent decision nodes from start to leaf75

(i.e. decision trees 1 and 2 depicted in Figure 1 have a depth of 2, while decision76

tree 3 has a depth of 3).77

In practice, many classification or regression problems are far too complex78

to solve with a single decision tree. Hence, GBDT methods use a large amount79

of trees in an ensemble. The basic principle underlying an ensemble of deci-80

sion trees is that a combination of weak predictors can form a strong predictor.81

The prediction of the ensemble is the sum of the predictions of the individual82

trees (see the green leaf nodes in Figure 1 for example), taking the learning rate83

into account (see Section 3.1). Newly added trees seek to correct the prediction84

errors of the existing trees within the ensemble. In this way, the prediction er-85

ror is iteratively reduced. The total amount of trees in the ensemble can either86

be specified beforehand or determined on the fly based on the error reduc-87

tion (often referred to as "early stopping"). The latter is applied in this work88

and is further explained in Section 3.3. When determining the configuration of89

a tree, its splits need to be determined. First an objective function is defined90

that both rewards accurate predictions and penalizes tree complexity. The al-91

gorithm starts at a tree depth of 0 and iteratively adds levels of tree depth. For92
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every level, it finds the optimal condition and leaf values for the split per fea-93

ture. Subsequently, the feature and split that result in the largest improvement94

of the objective function is used in the decision node, growing the tree one level95

deeper. The tree is grown up to the maximum tree depth. A more detailed de-96

scription of the algorithm is given by Chen & Guestrin (2016).97

The use of an ensemble of decision trees results in a flexible resolution, de-98

pending on the local density of training data. This is especially useful given the99

large density differences in overtopping databases. Note that, as a result, GBDT100

methods are generally expected to be less suitable for extrapolation far beyond101

the coverage of the training data.102

2.2. Training data set103

Currently, the available NN models are the model by Van Gent et al. (2007),104

hereafter also referred to as "NN", and the model by Zanuttigh et al. (2016),105

hereafter also referred to as "NNb". In this work, the XGB model performance is106

compared to both NN, NNb, and empirical overtopping formulae (TAW, 2002;107

EurOtop, 2018). The NN model is trained on a selection of entries from the108

original CLASH database (Steendam et al., 2004). The NNb model by Zanuttigh109

et al. (2016) uses an extended version of the CLASH database as training data110

set. The extended database adds additional data on vertical walls (Oumeraci111

et al., 2007), rubble mounds with cobs (Besley et al., 1993), reshaping berm112

breakwaters (Lykke Andersen et al., 2008), smooth steep slopes (Victor & Troch,113

2012), and smooth slopes with walls (Van Doorslaer et al., 2015). This addi-114

tional data has been merged with the CLASH database into the database used115

by Zanuttigh et al. (2016). This will be referred to as the "overtopping database"116

in the rest of this paper. The overtopping database has been randomly split117

80%/20% into two parts: a "training data set" (6943 records) used for training118

the XGB model , and a "test data set" (1736 records) which is kept strictly sep-119

arate and is only used to demonstrate the predictive quality of the final trained120

model. Finally, the new data (from four new data sets described in Section 2.3)121

is referred to as "additional test data sets" or "unseen data".122

Not all available parameters from the overtopping database are used in model123

training. Those parameters that are used to train a model are called features. In124

Table 1 and Figure 2, the features used in the training of one or more models125

(NN, NNb and/or XGB) are respectively listed and illustrated. This includes the126

additions that follow from feature engineering, as described in Section 3.2. The127

target variable used in model training is the log10 of the mean wave overtopping128

discharge q after Froude scaling.129
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As in Van Gent et al. (2007), Froude’s similarity law is used to scale the over-130

topping database features to Hm0,toe = 1 m, which is indicated in the right-most131

column of Table 1. This scaled data is used in the model training detailed in132

Section 3. After being used for scaling, the feature Hm0,toe is no longer used133

in model training. Similarly, the complexity (C F ) and reliability factors (RF )134

are not directly used for model training. They serve strictly for the weight-135

ing of the training data records. Both factors take on integer values of 1 (low136

complexity, high reliability) through 4 (high complexity, low reliability). The137

weight factor (W F ) is determined with the formula from Van Gent et al. (2007):138

W F = (4−RF ) ·(4−C F ). This formula gives the highest W F to the most reliable139

and least complex training data. Very unreliable (RF = 4) or complex (C F = 4)140

are excluded from the training data. In the end this results in a total of 8679141

records in the overtopping database.142

Additionally, Van Gent et al. (2007) state that measurements of very small143

mean wave overtopping discharges can be strongly affected by scale effects,144

and thus are less reliable. The practical application or relevance of discharges145

smaller than 0.001 l/m/s is also quite low. Therefore they suggest applying146

W F = 1 to all entries with q < 10−6 m3/s/m (before Froude scaling) and dis-147

regarding their associated reliability and complexity factors. This suggestion is148

adopted and applies to 1060 of the 8679 records.149

Figure 2: Feature definitions, adapted from Van Gent et al. (2007).

2.3. Additional test data sets150

Next to the training data described in Section 2.2, several additional test151

data sets from recent physical model experiments are used to evaluate the model152

performance. These additional test data sets are as of yet unseen by any of the153

machine learning models, i.e. they are not part of the data the NN, NNb and154
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Table 1: Overview of features used in model training in the NN by Van Gent et al. (2007), the
NNb by Zanuttigh et al. (2016) and the new XGB model.

Name Symbol Unit NN NNb XGB F r scaled

Mean wave overtopping discharge q [m3/s/m] X X X X
Water depth, toe h [m] X X X X
Spectral significant wave height, toe Hm0,toe [m] X X X -
Spectral wave period, toe Tm−1,0,toe [s] X X X X
Angle of wave attack β [◦] X X X -
Roughness factor of the structure γ f [-] X X - -
Roughness factor of the lower slope γ f ,d [-] - - - -
Roughness factor of the upper slope γ f ,u [-] - - X -

Ratio of roughness factors fγ f =
γ f ,d

γ f ,u
[-] - - X -

Cotangent of the lower slope cotαd [-] X X X -
Cotangent of the upper slope cotαu [-] X - X -
Cotangent of the average slope cotαi ncl [-] - X - -
Crest freeboard Rc [m] X X X X
Armour crest freeboard Ac [m] X X - X
Difference between crest
and armour crest freeboard d Ac = Ac −Rc [m] - - X X
Crest width Gc [m] X X X X
Width of the berm B [m] X X X X
Water depth above the berm hb [m] X X X X
Tangent of berm slope tanαB [-] X - X -
Water depth above the toe structure ht [m] X X - X
Thickness of the toe structure tt = h −ht [m] - - X X
Width of the toe structure Bt [m] X X X X
Element size structure D [m] - X - X
Cotangent of foreshore slope m = cotαF [-] - X - -
Tangent of foreshore slope tanαF [-] - - X -
Complexity factor C F [-] X X X -
Reliability factor RF [-] X X X -
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XGB models are trained on. In Table 2, the relevant parameter ranges covered155

by these additional test data sets are listed. The individual data sets are de-156

scribed in more detail below. Part of these data sets contain situations that are157

underrepresented in the overtopping database; i.e. these data sets contain ele-158

ments in regions with little or no coverage, or may be situated in remote corners159

of the database. For such data records it can be difficult for data-driven models160

to obtain accurate and meaningful predictions.161

Table 2: Overview of the relevant parameter ranges covered by the additional test data sets and
the examples shown in Figure 3.

Symbol DS 1a DS 1b DS 2 DS 3 DS 4 Fig. 3

Rc /Hm0,toe 0.9 - 1.8 0.9 - 2.1 0.8 - 2.1 0.8 - 2.2 1.0 - 3.0 1 - 1.5
d Ac /Hm0,toe 0 0 -0.7 - 0 -0.8 - -0.2 0 -0.5 - 0
B/Hm0,toe 0 - 2.2 1.4 - 2.2 0 0 1.1 - 2.5 0.5
hb/Hm0,toe -0.3 - 0.3 -0.5 - 0.5 0 0 -0.42 - 0.42 0
cotαd 3 3 2 2 3 4
cotαu 3 3 2 2 3 2.5
γ f ,u 0.4 - 1.0 0.5 - 1.0 0.4 0.45 0.8 0.5
fγ f 1.0 0.5 - 2.0 1.0 1.0 1.0 1.0
h/Hm0,toe 4.3 - 6.7 4.3 - 6.5 4.1 - 10.2 3.5 - 11.6 2.7 - 6.7 1.5
sm−1,0 [%] 2.7 - 4.9 1.3 - 4.2 1.3 - 4.2 1.4 - 4.8 1.7 - 4.2 2.4
β [◦] 0 0 0 0 - 75 0 - 75 0
tanαF 0 0 0 0 0 0

Data Set 1 (362 records) comes from physical model studies of the influ-162

ence of roughness on wave overtopping at dikes and rock structures (Chen163

et al., 2020a,b). These experiments feature different revetment types, includ-164

ing roughness differences between upper and lower slope. None of the exist-165

ing overtopping prediction methods properly take those roughness differences166

into account, except for the method proposed by Chen et al. (2020b). As a con-167

sequence, the prediction methods applied here are expected to be less accurate168

for the entries with roughness differences than they will be for entries with con-169

stant roughness. Hence, in the following the data set will be split into two parts:170

Data Set 1a (206 records) only contains data with constant roughness, while171

Data Set 1b (156 records) exclusively contains the data records with roughness172

differences between the upper and lower slopes.173
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Data Set 2 (51 records) contains physical model experiment data of a rock174

structure with a crest wall (Jacobsen et al., 2018).175

Data Set 3 (242 records) features physical model experiment data of wave176

overtopping on rubble mound breakwaters with a crest wall under oblique wave177

attack (Van Gent & Van der Werf, 2019).178

Data Set 4 (177 records) consists of data from physical model experiments of179

impermeable slopes with a berm under oblique wave attack (Van Gent, 2020).180

In general, Data Sets 1a and 2 are expected to be within the range of the data181

already present in the training data set. Data Set 1b features roughness differ-182

ences between the lower and upper slope, which is relatively rare in the training183

data (2.8% of all records). Data Sets 3 and 4 feature oblique wave attack which is184

also underrepresented in the training data (10.9% of entries), especially when185

combined with the presence of a crest wall (1.1% of entries) or a berm (1.0%186

of entries). Note that the constructions used in Data Set 1-4 are not complex187

and can be described exactly following the hydraulic structure definitions in188

Figure 2. Hence C F = 1 for all above-mentioned additional test data sets.189

2.4. Other overtopping prediction methods190

The XGB model results and the performance on measurement data are com-191

pared to those of other often used overtopping prediction methods. The meth-192

ods compared to in this work are the empirical formulae from TAW (2002), the193

second edition of the EurOtop manual (EurOtop, 2018), the NN by Van Gent194

et al. (2007), and the NNb by Zanuttigh et al. (2016).195

The TAW and EurOtop manuals contains a selection of empirical formulae196

that predict mean wave overtopping discharge. Two versions of these formulae197

are presented; a mean value approach that represents a best fit with data, and198

a design and assessment approach which includes some conservatism. In this199

work, the best fit with data is of importance, hence only results from the mean200

value approach are considered.201

Van Gent et al. (2007) made use of machine learning methods by applying202

a NN to predict mean wave overtopping discharge. They use an ensemble of203

NNs that gives both the expected discharge and the associated prediction un-204

certainty as an output. Their NN is available through the NN-Overtopping web205

application (Deltares). Zanuttigh et al. (2016) continues on the same concept206

but makes use of a combination of a classifier model coupled to three separate207

neural networks. They used slightly different features to describe the charac-208

teristics of the hydraulic structure (see Table 1).209
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3. Model training and tuning210

Training and tuning a machine learning model comprises of several differ-211

ent steps. Section 3.1 describes the process of tuning the different hyperparam-212

eters of the XGB model. In Section 3.2, several features from the overtopping213

database are redefined to be more suitable for use in machine learning meth-214

ods. Additionally, the process of coming to a final selection of features to train215

the model on is explained. Section 3.3 deals with the derivation of confidence216

intervals using bootstrap resampling.217

3.1. Hyperparameter tuning218

The term hyperparameter refers to the run control parameters of a machine219

learning method. For XGB, these run control parameters govern the complexity220

and architecture of individual decision trees. Without any restriction to com-221

plexity, the model is expected to be overfitted on the training data, losing any222

generic predictive skill.223

The XGB hyperparameters that have been tuned are listed in Table 3 and224

can be explained as follows. The maximum depth of a single decision tree225

(max_depth) restricts the number of subsequent splits in decision nodes. The226

values used in the tuning process are chosen to stay within the total number of227

features in the training data set. Furthermore, when growing the tree each leaf228

node must contain a minimum number of data points (mi n_chi l d_wei g ht ).229

In this case, leaf nodes with a single data point are not allowed and up to twelve230

are required. Leaf node values are multiplied by a learning rate lear ni ng _r ate231

to obtain a slower convergence that reduces overfitting. Learning rates of < 0.1232

are very common in machine learning, to which the chosen values in Table 3233

adhere. Note that both the complexity regularization (r eg _l ambd a) and the234

subsampling (subsampl e) terms are not included in hyperparameter tuning.235

The reason for excluding these parameters is that it leads to more realistic un-236

certainty estimates, as is further described in Section 3.3. Both hyperparame-237

ters are set to their default values, with mild regularization (r eg _l ambd a = 1)238

and no subsampling (subsampl e = 1).239

The optimal hyperparameter values are listed in Table 3 (indicated in blue).240

These optimal values are found with a K-fold cross-validation (with K = 5) com-241

bined with a grid search. In the K-fold cross-validation, the total data set is split242

into K parts (or folds). One of the folds is used for model validation, while the243

rest is used for model training. This is repeated K times, with a different fold244

used for validation each time. Hence, the choice of K = 5 uses 80% of the data245
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for training, the remaining 20% for validation, and is repeated 5 times with a246

different part used for validation. The K-fold cross-validation is performed in a247

grid search, which uses every combination of parameters listed in Table 3. Fi-248

nally, the best performing hyperparameter set is selected. This hyperparameter249

set prescribes rather shallow trees, with a reasonable amount of data points per250

leaf and a rather large learning rate.251

Table 3: XGB parameter combinations used in the K-fold cross-validation, optimal values in
blue.

Name Parameter name Values

Max. tree depth max_depth 6; 7; 8; 10; 12; 14
Min. data points per leaf mi n_chi l d_wei g ht 3; 5; 7; 10; 12
Learning rate l ear ni ng _r ate 0.005; 0.0075; 0.01; 0.02; 0.05

3.2. Feature engineering and feature importance252

Feature engineering is a common step in the process of improving machine253

learning models. The parameters selected from the data to train a model on are254

called features. Feature engineering as a term refers to deriving new features255

that add to or replace existing parameters in the training data set. The intent of256

feature engineering is to derive new features that provide a better description of257

the dependencies and sensitivities of the target variable (log10(q) in this case)258

to the model input. Note that successful feature engineering depends heav-259

ily on the characteristics of the data set in question. Hence, there is no single260

approach that always leads to good results.261

One often used approach in machine learning is to perform a feature im-262

portance analysis. This type of analysis seeks to quantify the influence of in-263

dividual features on the target variable, which is useful information in the de-264

cision to in- or exclude features in model training. A permutation importance265

analysis (Breiman, 2001; Fisher et al., 2018) is performed to gain insight into266

the influence of each feature. In this method, the data is split into a test and a267

training data set, the latter of which is used to train a single model. For one fea-268

ture at a time, the test data set values are randomly scrambled. Subsequently,269

the trained model is used to generate predictions for the test data set. For im-270

portant features, the scrambling should have a large effect on the prediction271

of q compared to the unscrambled test data set, whereas the influence will be272

small for unimportant features. All features are scrambled one-by-one, with the273
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scrambling repeated 5 times to account for the effect of random sampling. The274

ELI5 (ELI5) Python permutation importance implementation has been used in275

this paper. In Table 4, the weight and standard deviation (σ) resulting from the276

permutation analysis are listed for both a selection of features similar to the277

NNb model (using Froude scaled features and replacing both Ac and ht with278

d Ac and tt respectively) and the candidate features for the XGB model.279

Using uncorrelated features is imperative to obtain an accurate representa-280

tion of the importance of each feature. An accurate overview of which features281

are (un)important to predict the mean wave overtopping discharge enables a282

well-argued choice for the selection of features used in a machine learning283

method. Simply using all features unnecessarily increases the computational284

demand of model training, can promote overfitting, and can reduce the generic285

applicability of the model. The results of the permutation importance analysis286

listed in Table 4 support redefinition or removal of certain highly correlated fea-287

tures, which is explained below.288

Added information in the overtopping database allows for distinguishing289

differences between the roughness of the upper (γ f ,u) and lower slope (γ f ,d )290

of the structure. Since there are many entries in the database with the same291

roughness on both slopes, γ f ,u and γ f ,d will be highly correlated in practice.292

Since uncorrelated features are preferred, the XGB model uses the ratio be-293

tween lower and upper slope roughness fγ f =
γ f ,d

γ f ,u
instead of γ f ,d . Similarly, two294

additional features are made uncorrelated. Firstly, the armour crest freeboard295

(Ac ) is made uncorrelated from the crest freeboard (Rc ) by using the difference296

between both as a feature: d Ac = Ac −Rc . Secondly, the water depth above the297

toe structure (ht ) is replaced by the thickness of the toe structure (tt = h −ht )298

to remove the correlation with the water depth (h).299

In contrast to the NN, the NNb also uses the element size of the structure300

(D) as a feature. Zanuttigh et al. (2016) indicate that a weighted average of the301

element size in the wave run-up and run-down area is taken as the represen-302

tative element size. Next to the mean wave overtopping discharge, the NNb is303

also used to predict wave reflection and wave transmission coefficients for the304

given structure, for which the element size is of significant importance. In the305

context of wave overtopping however, D relates in large part to the roughness306

of the profile, which is already represented by γ f ,u and either γ f ,d or fγ f . Ta-307

ble 4 also illustrates that the importance of γ f (left-hand side) is significantly308

smaller than that of γ f ,u (right-hand side), since the roughness in the NNb is309

represented by both γ f and D . Thus, since the main effects of the element310
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size are already present in the parameter(s) accounting for the roughness, there311

seems to be no benefit to including D as a feature in wave overtopping predic-312

tion models. Analogously, the importance of the berm width (B) is also dimin-313

ished (left-hand side) when it is already implicitly included in the average slope314

(cotαi ncl ). Replacing the average slope with the upper slope (cotαu) resolves315

the problem.316

In addition to reducing the amount of highly correlated features, the cotan-317

gent of the foreshore slope m is replaced with the tangent of the foreshore slope,318

tanαF . In this way, tanαF will be 0 for cases without a foreshore.319

Table 4: Overview of permutation importance of XGB models with NNb-like feature set and
overview of candidates. Features selected in the XGB model are indicated by (X).

NNb features Overview of candidates
Rank Feature Weight ± σ Feature (selected) Weight ± σ

1 Rc 0.9178 ± 0.0405 Rc (X) 0.8899 ± 0.0279
2 γ f 0.3093 ± 0.0124 γ f ,u (X) 0.4610 ± 0.0197
3 Tm−1,0,toe 0.1702 ± 0.0041 Gc (X) 0.1922 ± 0.0081
4 Gc 0.1632 ± 0.0106 Tm−1,0,toe (X) 0.1530 ± 0.0066
5 cotαi ncl 0.0824 ± 0.0047 B (X) 0.0799 ± 0.0030
6 D 0.0810 ± 0.0045 cotαu (X) 0.0641 ± 0.0025
7 β 0.0460 ± 0.0021 β (X) 0.0433 ± 0.0021
8 h 0.0411 ± 0.0037 h (X) 0.0417 ± 0.0030
9 B 0.0378 ± 0.0025 tanαF (X) 0.0405 ± 0.0017
10 m 0.0364 ± 0.0024 cotαd (X) 0.0236 ± 0.0028
11 cotαd 0.0194 ± 0.0019 d Ac (X) 0.0234 ± 0.0020
12 d Ac 0.0150 ± 0.0011 tt (X) 0.0200 ± 0.0024
13 tt 0.0150 ± 0.0027 hb (X) 0.0154 ± 0.0016
14 hb 0.0143 ± 0.0006 Bt (X) 0.0093 ± 0.0012
15 Bt 0.0063 ± 0.0019 fγ f (X) 0.0002 ± 0.0001
16 - - tanαB (-) 0.0000 ± 0.0001

The selection of features for the XGB model is indicated with check marks in320

Table 4. The berm slope (tanαB ) is not used to train the model, since it ranks as321

the least important feature and its importance in absolute terms is very small.322

Surprisingly, the newly introduced feature fγ f also ranks low on importance,323

while Chen et al. (2020b) show the importance of taking into account rough-324

ness differences. One of the likely causes for this discrepancy is that only 2.8%325
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of the entries in the overtopping database has a difference between the rough-326

ness on the upper and lower slopes, and conversely fγ f = 1.0 for 97.2% of the327

data. This means that scrambling the feature in the permutation importance328

analysis will give the same value for fγ f in many cases, and thus a seemingly329

small importance is attributed to the feature. Hence, fγ f is still included as a330

feature in model training.331

3.3. Bootstrap resampling and confidence intervals332

For the sake of consistency and comparability of the results, the bootstrap333

resampling method (Efron & Tibshirani, 1993) - proposed by Van Gent et al.334

(2007) and also used by Zanuttigh et al. (2016) - is similarly applied to the XGB335

model to obtain estimates of prediction errors. Note that there might be other336

suitable methods for the estimation of predictions errors, but these are not ex-337

plored in this work. The bootstrap resampling method can be summarized as338

follows. Firstly, 500 bootstrap resamples are generated from all data available339

for model training. A resample is a randomized selection from the overtopping340

database, where individual entries can be selected more than once. When that341

is the case, the weight factor for that entry is adjusted accordingly within the342

resample. Subsequently, a model is trained for each resample. The resample343

is used as a training data set. The training makes use of an "early stopping"344

algorithm. This algorithm keeps adding new trees to the model, until either345

the maximum number of trees (set to 100.000) is reached or if the last 1000346

consecutively added trees do not improve the model prediction for the entries347

not selected in the bootstrap resample. In the latter case, the model training348

is stopped and the best model is selected as the training result. In this way,349

500 models are trained with 500 different but overlapping data sets and no in-350

dividual model is trained on all available data from the overtopping database.351

Finally, for each prediction all 500 models are used, from which the median352

value serves as model prediction and the associated error can be estimated.353

The use of specific anti-overfitting parameters in XGB tends to generalize354

the model fits to such degree that the variation in the model predictions - and355

thus the estimated confidence intervals - is greatly reduced. Hence, in the hy-356

perparameter tuning for this work (Section 3.1), subsampling is not applied and357

a milder tree complexity regularization is used. In Figure 3, predictions of the358

current XGB model and their associated 90% confidence interval are compared359

to the NN model for singular variations along both crest and armour crest free-360

board, with constant values for other features. The parameter ranges for these361

laboratory scale examples are listed in Table 2. As can be seen in Figure 3a and362
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Figure 3b, the updated newly tuned hyperparameter settings lead to seemingly363

realistic uncertainty bands. The prediction uncertainty bands are expected to364

be smaller that those of the NN model, since the XGB model performance is365

generally better (see Section 4). Note that the NN model generally leads to a366

smoother trend than the XGB model. This is an inherent feature of the decision367

tree based machine learning method applied here. The many splits in an en-368

semble of decision trees inadvertently introduce some amount of discontinuity369

to the predicted overtopping discharge over a given parameter range. Hence,370

it is not related to the approach used to derive uncertainty estimates. Addi-371

tionally, further analysis with 1000 resamples shows no significant differences,372

which suggests that the 90% interval can be adequately determined from 500373

resamples.374

(a) Model responses to a variation in Rc ,
with a constant Ac /Hm0,toe = 1.0.

(b) Model responses to a variation in Ac ,
with a constant Rc /Hm0,toe = 1.5.

Figure 3: Examples of predictions and 90% uncertainty bands for NN (blue) and XGB (orange)
models for a changing crest and armour crest freeboard (parameter ranges listed in Table 2).

4. Model validation375

Validation of the XGB model is performed in several steps. Firstly, in Sec-376

tion 4.1 its performance is analyzed on the overtopping database and its pre-377

dictive skill is demonstrated using the test data set. Subsequently, in Section 4.2378

the generic applicability of the model is analyzed by applying the model to the379

challenging conditions of the additional test data, which was not used in any380

way in the model training. Finally, the model validation after retraining with the381

expanded training data set (indicated by "XGBr") is considered in Section 4.3.382
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4.1. Validation on the overtopping database383

The performance of the XGB model is evaluated on the test data set (see384

Section 2.2). Additionally, the prediction errors are compared to those of the385

other existing tools to predict overtopping discharges. This primarily concerns386

the original NN model (Van Gent et al., 2007), but also includes the NNb model387

(Zanuttigh et al., 2016) and the empirical overtopping formulae (TAW, 2002;388

EurOtop, 2018) for wave overtopping prediction. The weighted root-mean-389

square-error (RMSE) is used as an error criterion. It is defined by Equation 1390

and listed for all methods in Table 5.391

RMSE =
√

1∑N
n=1(W Fn)

1

N

∑N
n=1(W Fn · (log10(qpr edi cted ,n)− log10(qmeasur ed ,n)

)2)

(1)

(a) NN and XGB. (b) NNb and XGB.

Figure 4: Predictions by the NN (blue) and NNb (green) models for the overtopping database,
and by the XGB model for the training data set (orange) and the test data set (black).

The predictions of the different machine learning methods for the overtop-392

ping database are shown in the scatter plots of Figure 4. The larger RMSEs of393

the NN and NNb models translate into a large scatter around the diagonal, with394

prediction errors of up to a factor 100. The scatter in the XGB model predic-395

tions is visibly much smaller, with differences largely within a factor 10. This is396

reflected in Table 5, where a significantly smaller test data set RMSE is listed for397
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XGB (0.284) than for NN (0.478) and NNb (0.580). The same holds for the train-398

ing data set and the entire overtopping database. Note that the entire overtop-399

ping database was used as a training data set for the NNb model, while a smaller400

subset thereof was available to train the NN model.401

4.2. Validation on additional test data sets402

In Section 4.1 the capability of the XGB model to predict the contents of403

the test data set is shown. The good performance on the test data set shows404

that the XGB model has predictive capabilities on previously unseen data that405

is fairly similar to the training data. It does not, however, show the predictive406

capability of the model for conditions that are meaningfully different from the407

training data set (in this case the overtopping database). As mentioned in Sec-408

tion 2.3, conditions that are not in the overtopping database but are very similar409

to it, should be predicted reasonably well. The real challenge lies in conditions410

that are not well represented in or covered by the overtopping database. For411

instance, conditions with oblique wave attack are relatively sparse in the over-412

topping database. Hence, there is relatively little data available for the model413

to correctly learn and predict wave overtopping discharges under oblique wave414

attack.415

Table 5: RMSE for all overtopping prediction tools on the different data sets. "Unseen Data"
includes both the Test data set and the (unseen parts of) Data Set 1-4.

Data Set (size) TAW EurOtop NN NNb XGB XGBr

Training data set (6943) 1.089 1.313 0.490 0.566 0.098 0.097
Test data set (1736) 0.995 1.207 0.478 0.580 0.284 0.285
Overtopping db (8679) 1.071 1.292 0.488 0.569 0.154 0.154

Data Set 1a (206) 0.631 0.696 0.958 0.394 0.349 0.403
Data Set 1b (156) 1.069 1.203 0.860 0.594 0.408 0.419
Data Set 2 (51) 1.047 1.266 0.714 0.575 0.448 0.356
Data Set 3 (242) 1.033 1.097 1.112 0.921 1.127 0.622*
Data Set 4 (177) 1.791 1.792 1.472 1.732 1.743 0.972*

Unseen data 1.170 1.232 1.104 1.005 0.723 0.411
All data 1.086 1.283 0.602 0.636 0.409 0.248

*Data points used in model training have been excluded from RMSE de-
termination.
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(a) DS1a Constant slope roughness. (b) DS1b Composite slope roughness.

(c) DS2 Crest walls. (d) DS3 Oblique waves and crest
walls.

(e) DS4 Oblique waves and berms.

Figure 5: Predictions by the NN (blue), NNb (green), XGB (orange) and XGBr (red) models for
all additional test data sets.
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In Figure 5, the predictions by different machine learning models for the416

additional test data sets mentioned in Section 2.3 are shown. The RMSEs for all417

test data sets are listed in Table 5. The table lists the errors of both the different418

machine learning models and the TAW (2002) and EurOtop (2018) empirical419

formulae. Note that Data Sets 1-4 use RF = 1 and C F = 1 for the purpose of420

weighting in the RMSE calculation. Additionally, the RMSEs are based on all421

data with q > 0 [m3/s/m], including very small discharges.422

The predictions of the different machine learning models are shown in Fig-423

ure 5a for Data Set 1a and Figure 5b for Data Set 1b. For the constant roughness424

cases in Data Set 1a, the predictions of the NN (blue) are in general significantly425

underestimating the overtopping discharge. In fact, the errors of the NN show426

a systematic behaviour in the sense that the predictions are rather constantly a427

factor of about 100 smaller than the measurements. Both the NNb (green) and428

XGB (orange) models also have a slight tendency towards underestimation, but429

less severe. This is reflected by the RMSE values in Table 5. The NNb (0.394)430

and XGB (0.349) models are fairly accurate, where the NN shows a much larger431

RMSE (0.958) for Data Set 1a due to the systematic differences.432

Data Set 1b, featuring slopes with roughness differences, shows distinct clus-433

ters of points grouped in lines for both NN and NNb models. These distinct434

lines are formed by the different revetment types. This pattern suggests that435

the influence of roughness and roughness differences on the measured trends436

is not completely captured by the models. The XGB results exhibit a more ran-437

dom scatter along the diagonal, with a slight tendency towards overestima-438

tion. These observations are supported by the RMSE values, which compared439

to those for Data Set 1a, show some improvement of the NN model (0.860), a440

significantly worse performance for the NNb model (0.594), and a comparable441

performance for the XGB model (0.408). Presumably, the ability to recognize442

roughness differences through the fγ f parameter explains the relatively high443

accuracy of the XGB model for Data Set 1b.444

Figure 5c shows the predictions for Data Set 2. The NN predictions are sys-445

tematically underestimating the q . Conversely, the NNb and - to a lesser extent446

- the XGB model tend to slightly overestimate overtopping. This is mirrored in447

the RMSE values, where the XGB model is the most accurate (see Table 5).448

All three models show a large amount of scatter for Data Set 3 (see Fig-449

ure 5d), with errors of up to three orders of magnitude towards overestimat-450

ing q . Notably, errors are significantly larger for small measured overtopping451

discharges (q < 10−6m3/s/m). Further analysis shows that the errors also in-452

crease with increasing angle of wave attack, β. The lower accuracy shown by453
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all models (see Table 5) is likely the result of the small amount of training data454

containing β> 0◦.455

In Figure 5e, a pattern similar to Data Set 3 emerges for Data Set 4. All456

predictive models give very poor predictions, with a tendency towards overes-457

timation of q up to four orders of magnitude. Again, the RMSE increases with458

both increasing β and decreasing q .459

4.3. Retrained XGB model460

The combination of the lower accuracy on the additional test data sets con-461

taining oblique wave attack - Data Set 3 and 4 - and the fact that entries with462

β > 0◦ are underrepresented in the training data suggests that expanding the463

training data with oblique wave data could improve the performance of data-464

driven models. To that end, the training data set for the XGB model is ex-465

panded by adding a random selection of half of Data Set 3 and 4. Subsequently,466

the model is retrained, again following the bootstrap resampling approach de-467

tailed in Section 3.3. The predictions of the retrained XGB model, indicated by468

"XGBr", are shown in red in Figure 5 and the associated errors are again listed469

in Table 5. Note that the predictions and RMSE shown are only based on the470

parts of Data Set 3 and 4 not used for model training.471

By changing the training data set and retraining a data-driven model, its472

predictions change. The XGBr model shows significantly decreased errors for473

(the unseen parts of) Data Set 3 and 4, as expected. Additionally, the RMSE for474

Data Set 2 decreases as well, potentially because a part of the data added to475

the training data set also includes crest walls. The errors for Data Sets 1a and476

1b slightly increase however. The reason will be that adding data to the train-477

ing data set causes data similar to Data Set 1a and 1b to become relatively less478

important in model training. In general, the fact that the XGB models perform479

well on unseen data (both the test data set and Data Set 1-4) strongly suggests480

that the models are not overfitted and can be generically applied.481

Comparison between the different machine learning methods shows that482

the XGB errors are generally smaller than NN and NNb for both the test and483

training data sets and the parts of the unseen data that are well represented in484

the training data (Data Set 1a, 1b and 2). Unseen data in data sparse regions485

of the training data set (Data Set 3 and 4 containing oblique waves) results in486

significantly larger errors. Expanding the training data set with oblique wave487

data and retraining the model (XGBr) results in significantly smaller errors for488

Data Set 3 and 4, at the cost of a small increase of the errors for Data Set 1a and489

1b.490
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The results of the TAW (2002) and EurOtop (2018) empirical overtopping491

formulae are also included in Table 5. Note that here all data has been used,492

also data points that are not strictly within the validity range of the empirical493

expressions. This is done both to compare their performance on the same data494

set as the machine learning methods and because these empirical expressions495

are often applied outside their range of validity. TAW (2002) results in an RMSE496

of around 1 for most tests, with a higher accuracy for Data Set 1a and a lower ac-497

curacy for Data Set 4. A similar trend emerges from the EurOtop (2018) results,498

although the errors are slightly higher than for TAW. In general, the machine499

learning methods (both NN and XGB variants) perform better than the empiri-500

cal overtopping formulae.501

Finally, in the scatter plots of Figure 6 predictions by the different prediction502

methods are shown for the combination of the test data set and the additional503

test data sets (i.e. all data that has not been used to train the machine learning504

methods). Both the TAW (Figure 6a) and EurOtop (Figure 6b) empirical formu-505

lae show a large amount of scatter, with many outliers severely underestimating506

the amount of overtopping. Note that these outliers are a mix of both very re-507

liable (RF = 1) and reasonably reliable (RF = 2 or 3) data. The NN (Figure 6c)508

and NNb (Figure 6d) models show less scatter, more or less symmetrically dis-509

tributed around the diagonal. The XGB (Figure 6e) and XGBr (Figure 6f) models510

exhibit a very limited amount of scatter. These observations are reflected in511

the RMSE values in Table 5. In general, the XGB methods result in the small-512

est RMSE on all data. They are followed by both the NN and NNb models, that513

perform reasonably similar to each other. Lastly, the empirical formulae result514

in the largest errors, with TAW (2002) having a higher accuracy than EurOtop515

(2018).516
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(a) TAW (2002). (b) EurOtop (2018).

(c) NN. (d) NNb.

(e) XGB. (f) XGBr.

Figure 6: Overview of predictions for the test data set and additional test data sets using differ-
ent prediction methods. For XGBr, only Data Set 3 and 4 data points not used in model training
are shown.
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5. Discussion517

Section 4.3 shows that expanding the training data set with new data can518

greatly improve the overall performance of data-driven methods. This is espe-519

cially true when newly added data covers parameter combinations that are cur-520

rently not covered by, or underrepresented in the training data. Here this is the521

case for oblique wave attack combined with either a berm or a crest wall. Con-522

tinuous expansion of training data and retraining and revalidation of models523

is recommended for data-driven methods. Another advantage of adding data524

from recent physical models is the relatively high reliability of recent data, e.g.525

due to more advanced reflection compensation techniques and second-order526

wave generation that are often lacking in older data.527

In Section 2.2, a strict split was imposed between training and test data sets528

to convincingly demonstrate the predictive quality of the trained model. The529

NN by Van Gent et al. (2007), however, does not use a separate test data set.530

Instead, all data is used in the model training process. Due to the application of531

bootstrap resampling (as described in Section 3.3) the overall model is based on532

500 individual models where no single model is trained on the entire training533

data set. For the sake of completeness, an XGB model is trained using the same534

method (see Figure 7). As a consequence of its construction, this model shows535

small RMSEs for both the overtopping database (0.100) and all data (0.092).536

Figure 7: Overview of predictions for both the overtopping database and the additional test
data sets by the XGB model trained on a bootstrap resampling of all data, following the same
method as used in Van Gent et al. (2007).

In the model validation effort presented in this work, multiple data-driven537

overtopping prediction methods - including the new XGB model - are com-538
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pared to empirical overtopping formulae. Overall, the data-driven methods539

(especially the XGB models) perform better than the empirical formulae on540

both the overtopping database and the additional test data sets (unseen data)541

examined in this paper. This suggests that data-driven methods should become542

increasingly important as a tool for engineering and design of coastal struc-543

tures, at least alongside, if not instead of, the existing empirical formulae. If, for544

design purposes, some conservatism is desirable, this could be derived from545

the confidence intervals that are given together with the predictions.546

6. Conclusions and recommendations547

In this work, the application of XGBoost to the prediction of mean wave548

overtopping is further refined and compared to other available prediction meth-549

ods. The selection of features on which to train the model is expanded upon in550

detail, with significant improvements compared to existing literature. A com-551

bination of bootstrap resampling of the overtopping database and suitable se-552

lection of model hyperparameters results in realistic confidence intervals. All553

considered prediction methods are extensively validated on the training and554

test data sets. The XGBoost model outperforms other prediction methods on555

both test and training data sets from the overtopping database. All data-driven556

methods show less accuracy on the oblique wave data present in the addi-557

tional test data sets, presumably because these cases are underrepresented in558

the overtopping database. Adding a randomly selected part of the new oblique559

wave data to the training data greatly improves the quality of the XGBoost model.560

Similar to the lack of oblique wave data, the overtopping database contains561

many more white spots. For further research, it is recommended to identify562

these white spots and add data that falls within them. Hence, the white spots563

in the overtopping database can also be used to identify which data is useful to564

generate in new physical model experiments. At the same time, or as an alter-565

native to physical model data, it is recommended to explore the possibility of566

adding numerical model data to the training data set. Numerical models prove567

to be a relatively efficient way of generating large amounts of data to address568

white spots in the training data set. Note however that this requires numerical569

models that are extensively validated and calibrated on physical model data, in570

order to obtain reliable numerical data.571
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