

Delft University of Technology

Adaptivity for Streaming Dataflow Engines

Siachamis, G.

DOI
10.4233/uuid:7d364f56-d84a-4cb0-84cb-4c317d275373
Publication date
2024
Document Version
Final published version
Citation (APA)
Siachamis, G. (2024). Adaptivity for Streaming Dataflow Engines. [Dissertation (TU Delft), Delft University of
Technology]. https://doi.org/10.4233/uuid:7d364f56-d84a-4cb0-84cb-4c317d275373

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:7d364f56-d84a-4cb0-84cb-4c317d275373
https://doi.org/10.4233/uuid:7d364f56-d84a-4cb0-84cb-4c317d275373

Adaptivity for Streaming Dataflow Engines

Adaptivity for Streaming Dataflow Engines

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates,

to be defended publicly on
Monday 26 November 2024 at 12.30 o’clock

by

Georgios SIACHAMIS

Master of Engineering in Electrical and Computer Engineering,
National Technical University of Athens, Griekenland,

born in Marousi, Greece.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. A. van Deursen, Delft University of Technology, Promotor
Prof. dr. ir. G.J.P.M. Houben, Delft University of Technology, Promotor
Dr. A. Katsifodimos, Delft University of Technology, Copromotor

Independent members:

Prof. dr. M. Garofalakis, Technical University of Crete, Greece
Dr. V. Kalavri, Boston University, USA
Prof. dr. G. Smaragdakis, Delft University of Technology
Prof. dr. Y. Zhou, University of Copenhagen, Denmark
Prof. dr. K.G. Langendoen, Delft University of Technology, reserve member

This research was partially supported by AI for Fintech Research, member of the ICAI
Labs.

SIKS Dissertation Series No. 2024-41
The research reported in this thesis has been carried out under the auspices of SIKS, the
Dutch Research School for Information and Knowledge Systems.

Keywords: stream processing, adaptivity, similarity joins, load balancing, autoscal-
ing, checkpointing, fault tolerance

Style: TU Delft House Style, with modifications by Moritz Beller
https://github.com/Inventitech/phd-thesis-
template

Copyright © 2024 by Georgios Siachamis
ISBN 978-94-6366-953-5

https://github.com/Inventitech/phd-thesis-template
https://github.com/Inventitech/phd-thesis-template

The measure of intelligence is the ability to change.

Albert Einstein

vii

Contents

Summary xi

Samenvatting xiii

Acknowledgments xv

1 Introduction 1
1.1 Stream processing in the Cloud . 3

1.1.1 Adapting to statistical changes 5
1.1.2 Adapting to infrastructure failures 8
1.1.3 Adapting to input rate changes. 9

1.2 Main Research Questions. 12
1.3 Methodology . 13
1.4 Contributions . 14
1.5 Thesis Origins . 15

2 Adaptive Distributed Streaming Similarity Joins 17
2.1 Introduction . 18
2.2 Preliminaries . 19
2.3 Problem Statement . 20
2.4 Related Work. 22
2.5 Approach Overview . 24
2.6 Space Partitioning . 26

2.6.1 Space partitions . 26
2.6.2 Selecting Centroids. 26
2.6.3 Avoiding duplicate comparisons 26

2.7 Workset Formulation. 27
2.7.1 Step 1: Deciding Inner vs. Outer Partition 27
2.7.2 Step 2: Assign to an Inner Set 28
2.7.3 Step 3: Creating New Worksets. 28
2.7.4 Step 4: Labeling Outliers . 28
2.7.5 Step 5: Assign to Outer Sets . 29
2.7.6 Set Boundaries in Metric Space 29
2.7.7 Similarity Computations . 31

2.8 Adaptive Workset Balancing . 31
2.8.1 Migrating Worksets W/O Repartitioning 31
2.8.2 Workset-Balancing vs. Job-Scheduling 32
2.8.3 The Workset Balancing Algorithm 32

viii Contents

2.9 Experiments . 34
2.9.1 Performance Metrics . 34
2.9.2 Datasets . 35
2.9.3 Experimental Setup . 35
2.9.4 Baseline: ClusterJoin . 35
2.9.5 Partitioning Performance. 35
2.9.6 Benefits of Load Balancing . 38
2.9.7 Summary of experiments. 39

2.10 Conclusions . 40

3 Evaluating Checkpointing Protocols for Streaming Dataflows 41
3.1 Introduction . 42
3.2 Preliminaries . 43

3.2.1 Processing Semantics. 44
3.2.2 Consistency of Global State . 46

3.3 Checkpointing Protocols . 47
3.3.1 Coordinated Aligned Checkpointing (COOR). 47
3.3.2 Uncoordinated Checkpointing (UNC) 49
3.3.3 Communication-induced Checkpointing (CIC) 51

3.4 Testbed System. 52
3.5 Metrics . 52
3.6 Streaming Query Workload . 53
3.7 Experimental Evaluation . 55

3.7.1 Evaluation setup . 55
3.7.2 Results . 55

3.8 Related Work. 64
3.9 Conclusions . 64

4 Evaluating Stream Processing Autoscalers 65
4.1 Introduction . 66
4.2 Background . 67

4.2.1 Autoscaling Process . 67
4.2.2 Common notions. 68

4.3 Related Work. 68
4.4 Control-based Autoscalers . 70

4.4.1 Dhalion . 70
4.4.2 DS2 . 71
4.4.3 HPA . 71
4.4.4 HPA-Varga . 72

4.5 Evaluation Components . 73
4.5.1 Performance Evaluation Metrics 73
4.5.2 Queries. 73
4.5.3 Workloads . 74
4.5.4 Discussion . 76

Contents ix

4.6 Experimental Evaluation . 77
4.6.1 Experimental Setup . 77
4.6.2 Workload Comparison . 78
4.6.3 Query Comparison . 82
4.6.4 Convergence comparison . 83
4.6.5 Summary of findings . 85

4.7 Conclusion . 87

5 Conclusion 89
5.1 Main Findings . 90

5.1.1 Adaptivity to statistical changes for streaming similarity joins . . . 90
5.1.2 Recovering from infrastructure failures using checkpoints 91
5.1.3 Adapting to input rate changes using automated solutions 92

5.2 Limitations . 93
5.3 Future Research Directions . 94

5.3.1 Evaluating MapReduce solutions in a streaming environment . . . 94
5.3.2 Learned Partitioning for Streaming Similarity Joins 94
5.3.3 Hybrid Checkpointing for Streaming Dataflows 95
5.3.4 Tackling Adaptivity Problems with One Stone 95
5.3.5 Rethinking Stream Processing Benchmarking 95

Bibliography 97

Curriculum Vitæ 117

List of Publications 119

SIKS Dissertation Series 121

xi

Summary
Data processing has heavily evolved in the last two decades, from single-node processing
to distributed processing and from the MapReduce paradigm to the stream processing
paradigm. At the same time, cloud computing has emerged as the primary means of deploy-
ing and operating a data processing system. In the cloud era, flexible resource allocation
combined with flexible pricing schemes have brought forward new opportunities and
have democratized access to computing resources. However, streaming dataflow or stream
processing engines were originally designed for in-house clusters of fixed resources with
limited needs for adaptivity. Therefore, they lack the mechanisms to adapt to unexpected
changes in the needs of the processing workload. When solutions have been proposed in
the literature, their experimental evaluation is limited hindering the progress of the field.
The same applies to the native fault tolerance mechanisms that virtually every stream
processing engine employs. In this thesis, we study the problem of adaptivity for streaming
dataflow engines, and we focus on three major adaptivity subproblems: adaptivity to 𝑖)

statistical changes, 𝑖𝑖) infrastructure failures, and 𝑖𝑖𝑖) input rate changes.
In Chapter 2, we study adaptivity to statistical changes through the important task of

streaming similarity joins that is heavily affected by imbalanced loads, a by-product of
statistical changes. We propose S3J; the first adaptive distributed streaming similarity joins
method in the general metric space that employs a two-layered adaptive partitioning scheme
to reduce unnecessary similarity computations and distribute the load to the available
workers. Our partitioning scheme is paired with an efficient load balancing scheme that
leverages the existing partitioning in order to rebalance any imbalanced load. Our results
show that S3J outperforms the employed baseline, inspired by a MapReduce method, in
terms of partitioning efficiency. Additionally, our experiments show that the load balancing
scheme can gradually defuse the imbalanced load and involve all the available workers in
the processing.

The majority of the stream processing engines employ a checkpoint-based fault toler-
ance mechanism. In Chapter 3, we look at the adaptivity to infrastructure failures through
the existing checkpointing protocols. We propose CheckMate, a principled experimental
framework for evaluating checkpointing protocols for streaming dataflows. First, we sum-
marize all the essential preliminaries required to study checkpoint-based fault tolerance.
Then, we discuss in detail, implement, and evaluate in different scenarios the three main
checkpointing protocols. Our evaluation shows that when the load is uniformly distributed,
the implemented by most stream processing engines coordinated checkpointing protocol
outperforms the alternatives. However, the uncoordinated prevails in the presence of skew,
while it shows no domino effect when cyclic queries are employed.

Finally, in Chapter 4, we address the problem of adaptivity to input rate changes.
Although multiple solutions have been proposed, their experimental evaluation is shallow
and does not include detailed comparisons with other solutions. We propose a principled
evaluation framework for stream processing autoscalers. We establish important metrics,

xii Summary

queries, and workloads in order to provide guidelines for the evaluation of autoscaling
solutions for stream processing. We discuss the state-of-the-art control-based autoscalers,
and we evaluate them using the proposed framework. Our results show that, for complex
queries, none of the evaluated autoscalers can adapt efficiently, while for simple stateless
queries, a simple generic autoscaler outperforms the solutions tailored to stream processing.

We conclude this thesis by summarizing ourmain findings and discussing the limitations
of our work. Based on the valuable insights we gained while designing and implementing
the research work included in this thesis, we propose a series of interesting and important
future research directions that are not limited to adaptivity problems but address stream
processing in general.

xiii

Samenvatting
Gegevensverwerking is de afgelopen twee decennia sterk geëvolueerd, van verwerking op
een enkele node tot gedistribueerde verwerking en van het MapReduce-paradigma tot het
streamverwerkingsparadigma. Tegelijkertijd is cloud computing naar voren gekomen als
het primaire middel voor het implementeren en opereren van een gegevensverwerkings-
systeem. In het cloudtijdperk hebben flexibele toewijzing van middelen, gecombineerd
met flexibele prijsschema’s, nieuwe kansen gebracht en de toegang tot rekenmiddelen
gedemocratiseerd. Echter, streaming dataflow of streamverwerkingsengines zijn oorspron-
kelijk ontworpen voor interne clusters van vaste middelen met beperkte behoefte aan
adaptiviteit. Daarom missen ze de mechanismen om zich aan te passen aan onverwachte
veranderingen in de behoeften van de verwerkingswerkbelasting. Wanneer oplossingen
zijn voorgesteld in de literatuur, is hun experimentele evaluatie beperkt, wat de vooruit-
gang van het veld belemmert. Hetzelfde geldt voor de native fouttolerantiemechanismen
die vrijwel elke streamverwerkingsengine hanteert. In deze scriptie bestuderen we het
probleem van adaptiviteit voor streaming dataflow-engines, en richten we ons op drie
belangrijke adaptiviteitssubproblemen: adaptiviteit aan 𝑖) statistische veranderingen, 𝑖𝑖)
infrastructuurstoringen en 𝑖𝑖𝑖) veranderingen in de inputrate.

In Hoofdstuk 2 bestuderen we adaptiviteit aan statistische veranderingen door de
belangrijke taak van streaming gelijkenisjoins, die sterk worden beïnvloed door oneven-
wichtige belastingen, een bijproduct van statistische veranderingen. We stellen S3J voor;
de eerste adaptieve gedistribueerde streaming gelijkenisjoins-methode in de algemene
metrische ruimte die een tweeledig adaptief partitioneringsschema toepast om onnodige
gelijkenisberekeningen te verminderen en de belasting te verdelen over de beschikbare
werkers. Ons partitioneringsschema wordt gecombineerd met een efficiënt load-balancing
schema dat gebruik maakt van de bestaande partitionering om elke onevenwichtige be-
lasting opnieuw in evenwicht te brengen. Onze resultaten laten zien dat S3J de gebruikte
baseline, geïnspireerd door een MapReduce-methode, overtreft in termen van partitione-
ringsefficiëntie. Daarnaast tonen onze experimenten aan dat het load-balancing schema
geleidelijk de onevenwichtige belasting kan verminderen en alle beschikbare werkers kan
betrekken bij de verwerking.

De meeste streamverwerkingsengines gebruiken een checkpoint-gebaseerd fouttole-
rantiemechanisme. In Hoofdstuk 3 bekijken we de adaptiviteit aan infrastructuurstoringen
door de bestaande checkpointing-protocollen. We stellen CheckMate voor, een principieel
experimenteel raamwerk voor het evalueren van checkpointing-protocollen voor strea-
ming dataflows. Eerst vatten we alle essentiële basisprincipes samen die nodig zijn om
fouttolerantie op basis van checkpoints te bestuderen. Vervolgens bespreken we gedetail-
leerd, implementeren we, en evalueren we in verschillende scenario’s de drie belangrijkste
checkpointing-protocollen. Onze evaluatie toont aan dat wanneer de belasting gelijkmatig
verdeeld is, het door de meeste streamverwerkingsengines geïmplementeerde gecoördi-
neerde checkpointing-protocol de alternatieven overtreft. Echter, het ongecoördineerde

xiv Samenvatting

protocol blijkt beter te presteren in de aanwezigheid van scheefheid en vertoont geen
domino-effect wanneer cyclische queries worden gebruikt.

Ten slotte behandelen we in Hoofdstuk 4 het probleem van adaptiviteit aan veranderin-
gen in de inputrate. Hoewel er meerdere oplossingen zijn voorgesteld, is hun experimentele
evaluatie oppervlakkig en omvat het geen gedetailleerde vergelijkingen met andere oplos-
singen. We stellen een fundamenteel evaluatiekader voor autoscalers bij streamverwerking
voor. We stellen belangrijke metrics, queries en workloads vast om richtlijnen te bieden
voor de evaluatie van autoscaling-oplossingen voor streamverwerking. We bespreken de
meest geavanceerde op controle gebaseerde autoscalers en evalueren ze met behulp van
het voorgestelde evaluatiekader. Onze resultaten tonen aan dat geen van de geëvalueerde
autoscalers efficiënt kan aanpassen aan complexe queries, terwijl voor eenvoudige stateless
queries een eenvoudige generieke autoscaler beter presteert dan de oplossingen die zijn
toegespitst op streamverwerking.

We sluiten deze scriptie af door onze belangrijkste bevindingen samen te vatten en
de beperkingen van ons werk te bespreken. Op basis van de waardevolle inzichten die
we hebben verkregen tijdens het ontwerpen en implementeren van het onderzoekswerk
dat in deze scriptie is opgenomen, stellen we een reeks interessante en belangrijke toe-
komstige onderzoekrichtingen voor die niet beperkt zijn tot adaptiviteitsproblemen, maar
streamverwerking in het algemeen aanpakken.

xv

Acknowledgments
This dissertation is a collection of the important scientific results and insights gained
during the short four-year period of my Ph.D. trajectory. It results from hard work and
endurance but only represents a fraction of the lessons learned and personal growth during
this academic journey. Becoming an independent researcher and, most importantly, a
better person requires personal effort. Still, it is also owed to those who inspired, enabled,
and supported me throughout this challenging journey. Therefore, I would like to extend
my gratitude to all the people who, in their way, made it possible.

To my family: my parents, my grandparents, and my brother, for all their sacrifices
toward my education and for equipping me with principles that proved invaluable toward
this Ph.D. and helped me become a better person.

To my close friends, who always supported me and believed in my abilities despite my
periodical lack of responsiveness to their calls and messages.

To Gogo, who endured the most and never stopped believing in me, who was al-
ways there in the highs and the lows, eager to listen, discuss my fears and troubles, and
congratulate me on my successes.

To Kyriakos, Christos, and Agathe, who made the last four years memorable and fun. I
learned a lot from all of you and am grateful to have been your friend. This is not the end,
just another beginning.

To George, with whom I had countless discussions about basketball and academia
despite our short overlap, and who I wish I had the chance to work with more extensively.

To Garrett, Lorenzo, Alisa, Ujwal, David, Ziyu, Andra, Mireia, Gaole, Lijun, Jurek, Sara,
Kostas, and Katerina, with whom I share great memories from Delft and who have helped
me feel like home.

To all my old and new colleagues in WIS and AFR, with whom I had countless exciting
conversations and who have helped me broaden my horizons with their research and their
stories.

To my promotors, Arie and Geert-Jan, who did their best to provide everything I needed
in this journey. Our discussions have always been valuable lessons for me.

To Asterios, who was not only a supervisor but also a mentor and a friend and who
has influenced me in ways that I still have not realized.

To Marios, who was always there to help and guide me during this Ph.D.
To my doctoral committee members who have honored me with their presence and

their reviews.
To Katerina, Stamatis, and Manos, who inspired me to pursue a Ph.D. title.
With this dissertation, I am concluding an exciting academic journey toward the Ph.D.

title. A journey that would not have been possible and successful without all of you.

Georgios
Delft, November 2024

1

1

1
Introduction

P rocessing data efficiently has been a major problem since the very beginning of the
digitization of everyday life and the introduction of personal computers. As computing

power increases, digital content and computer applications take over traditional everyday
tasks. For example, traditional newspapers are losing more and more ground to online news
websites and digital newspapers. This increasing digitization has led to ever-increasing
volumes of data, leading to what is known as the era of Big Data [140, 104, 118]. The Big
Data era is characterized by data of high volume, variety and velocity [118, 140]. In simple
terms, volume refers to the massive size of the accumulated data. Modern enterprises create
and collect an abundance of data daily that is hard to process by traditional means. At the
same time, these data can come from various sources and in different formats, resulting in
high variety. Finally, not only are data produced fast, but they also need to be processed
fast to enable fast-paced decision-making to adhere to the needs of modern enterprises.
This requirement for fast-paced processing embodies the velocity aspect of Big Data.

To tackle the rising challenges of Big Data and provide efficient data processing, the
research community and pioneering partners from industry have devised a plethora of
different approaches: new data structures and techniques have been introduced to speed up
data processing. Indices tailored for specific use cases and data profiles [58, 79, 105, 80, 100]
have been employed in order to track the location of data and reduce the time spent in
accessing data and discarding irrelevant data. In addition, different types of synopses [45,
117, 133, 34] have been proposed to improve the efficiency of data processing tasks by
approximating the computations without significantly compromising the quality of the
results.

Another approach to solving the problem of efficient data processing involves rethink-
ing the employed processing paradigms. To leverage the multiprocessing capabilities of
powerful servers, the message passing interface (MPI) was employed to scale up data
processing [153], while distributed data processing was introduced [98] in order to surpass
the computing limitations of single machines. However, the most impactful processing
paradigm that revolutionized data analytics over the last two decades is the MapReduce
paradigm [50, 51]. MapReduce divides processing into three stages: the Map, the Shuffle,
and the Reduce stage. During theMap stage, the data is split into small chunks and shipped

1

2 1 Introduction

Map Shuffle Reduce

{ , 380 }

{ , 450 }

{ , 1230 }

Figure 1.1: An example application using the MapReduce paradigm.

to workers called Mappers, where a mapping function is applied to all data of every chunk.
Then, the intermediate output of the Mappers is sorted, combined, and shuffled based
on the output keys provided by the Mappers so that all items with the same key will be
grouped and shipped to the same downstream worker. In the Reduce stage, the downstream
workers, called Reducers, apply a reduce function on the combined data of the shuffle stage
and output the final result to the durable storage or feed it as input to another MapReduce
pipeline.

A typical MapReduce processing pipeline is illustrated in figure 1.1, which counts the
number of instances of each shape. The shapes are ingested from two sources. The input
is split into small chunks and loaded to the Mappers, which distinguish the instances of
different shapes and assign a unique output key to each shape category. Then, in the shuffle
stage, the shapes are grouped and routed to the Reducer responsible for the specific key.
The reducer counts the instances of each shape and outputs a single tuple containing the
shape and its counter. Although our example employs shapes as input, the applicability of
MapReduce is not limited to a specific input, as MapReduce can handle a variety of input
types.

Despite the huge adoption of the MapReduce processing paradigm in the 2010s, it still
imposed limitations. Although it can effectively deal with the volume and variety of Big
Data, it cannot tackle sufficiently the velocity aspect of Big Data. Modern enterprises rely
on fast, real-time data processing to make executive decisions on the fly. At the same time,
they handle time-sensitive data that need to be processed as soon as they are produced
in order to be able to extract any business value. Although the MapReduce paradigm
can speed up data processing tasks by efficiently parallelizing any task, it cannot provide
real-time results. That is mainly because of its design; subsequent stages can only start
when the previous stage is finished.

The stream processing paradigm has re-emerged in the last decade to tackle the velocity
of Big Data and enable real-time data processing and real-time results. Stream processing

1.1 Stream processing in the Cloud

1

3

Data

Q1

Q2

Qn

…

A1
A2

An

…

(a) The Controlflow model

Logic

D1

D2

Dn

…

A1

A2

An

…

(b) The Dataflow model

Figure 1.2: Prevailing processing models.

is a paradigm that first appeared in the 1960s and historically came in different formaliza-
tions and flavors [154]. However, the Dataflow processing model has been the prevailing
formalization for the stream processing paradigm in the last two decades [66]. In contrast
to traditional processing models, like Controlflow (figure 1.2a), that focus on executing
queries or instructions on top of static data, Dataflow (figure 1.2b) has data as its first-class
citizen, focusing on the movement of the data throughout the processing pipeline and the
transformation of them through the static operations. Most modern engines dedicated to
stream processing [31, 73, 35, 46] implement the Dataflow model.

Figure 1.3 showcases the same example of counting the instances of different shapes,
previously introduced for the MapReduce paradigm, using the stream processing paradigm.
Our stream processing pipeline consists of interconnected operators, the fundamental
unit of processing, that can reside in any available worker and are responsible for a single
specific operation. An operator can have parallel instances that perform the same operation.
For example, the map operator M in figure 1.3 has two parallel instances, M1 and M2,
performing the same mapping operation. In contrast to MapReduce, where the data are
bulk loaded to the workers of each stage, in the stream processing paradigm, data are
ingested one by one and flow through the different operators of the pipeline. Once a map
operator processes an ingested shape, the tuple is forwarded to the responsible parallel
instance of the aggregating operator, which updates the running counter and outputs the
current value of the current for the corresponding shape.

1.1 Stream processing in the Cloud
Regardless of the processing paradigm employed, an abundance of resources is required for
efficient processing in the era of Big Data. Whether the processing requires a single high-end
multi-core machine or is distributed to multiple commodity machines, the overall resources
required are expensive and difficult to manage. Although large high-tech companies
can build and maintain big clusters of high-end machines that can accommodate all their
processing needs, small andmedium-sized businesses (SMBs) struggle to secure andmanage
the required resources and, therefore, compete and prosper.

A solution to this disparity of access to computing resources is cloud computing. Recog-
nizing the difficulty of acquiring andmanaging your own computing resources, the industry
has decided to productize its infrastructure and provide hosting services by providing a va-
riety of service models, such as the Infrastructure-as-a-Service (IaaS), Software-as-a-Service

1

4 1 Introduction

{ , 19}

A3

A2

A1

M1

M2

S1 O1

{
 ,

 2
0}

{ , 30}

{ , 37}

{ , 36}

Figure 1.3: A stream processing pipeline. S1 is the source operator, while O1 is the output operator of the pipeline.
M1 and M2 are parallel instances of the map operator. Similarly, A{1-3} are parallel instances of the aggregate
operator.

(SaaS), or Function-as-a-Service (FaaS) models. Turning themselves to cloud providers, the
field-leading high-tech companies not only have found a new source of profit but have also
helped considerably with democratizing access to computing resources. Cloud computing
offers features that can significantly alleviate the hurdles of managing on-premises infras-
tructure and provide opportunities for significant cost reduction. The different service
models allow small or medium-sized businesses to outsource their infrastructure, reducing
operational costs and optimizing their hardware according to their processing needs. The
flexible pricing schemes the cloud providers introduce allow for more opportunities to save
on operational expenses. The popular pay-as-you-go pricing scheme allows cloud users,
including small and medium-sized businesses, to acquire and release resources according
to their needs dynamically and only pay for their current use.

Although cloud computing provides multiple opportunities for cutting costs, leveraging
these opportunities remains difficult. Without the proper tools for dynamically managing
cloud resources, operational teams comprised of highly skilled experts are needed. However,
forming such a team can be cumbersome and expensive for SMBs that cannot compete
with big firms in acquiring very specialized and experienced staff. Therefore, despite
the easiness and flexibility of resource allocation in the cloud, significant portions of the
cloud processing budgets are wasted due to inefficient resource allocation. The problem is
aggravated when stream processing is considered. Stream processing requires additional
expertise from operations teams, but more importantly, it encompasses dynamic real-time
workloads that can be affected by frequent shifts or variations in the statistical properties of
the input load, such as load distribution and input rate, leading to inadequate performance
and service-level agreement violations.

In theory, the dynamic nature of stream processing makes cloud computing a good fit.
The flexibility of resource allocation that the cloud provides matches the need to adapt to the
frequent changes in the workload of a stream processing pipeline. However, modern stream
processing engines are designed primarily for in-house clusters of fixed resources and lack
native tools and mechanisms to adapt to unexpected changes in workloads and failures
automatically. Therefore, they cannot leverage the opportunities raised by cloud computing.
In this thesis, we focus on three main problems of adaptivity for stream processing. More

1.1 Stream processing in the Cloud

1

5

specifically, we discuss adaptivity to 𝑖) statistical changes, 𝑖𝑖) infrastructure failures, and 𝑖𝑖𝑖)

input rate changes.

1.1.1 Adapting to statistical changes
A major challenge in data processing is distributing the load of a keyed query equally
to available workers to leverage the available resources optimally. The real-time nature
of stream processing does not allow for predefined solutions for handling the data or
pre-processing the data to create an optimized processing plan. Historical data can be
leveraged to decide on an optimized initial configuration. However, they are often not
available or are obsolete in terms of the current input properties. Additionally, historical
data can provide little information on the unpredictable changes that may occur during
execution and, therefore, cannot be leveraged effectively in order to provide adaptivity
during execution. Static distribution strategies relying on fixed load distribution to the
available resources are bound to suffer from statistical changes in the input load. Such
statistical changes include distribution and heavy-hitter shifts. In the former case, the
input pattern shifts completely to a new distribution pattern, for example, from a uniform
distribution to a Zipfian distribution. In the latter case, there is a shift in the keys that are
more frequently appearing in the input, also known as heavy hitters. These types of shifts
are common in real-world applications, such as analyzing the traffic of a webshop before
and during a sales period and especially when dealing with social media data.

Failing to adapt to these statistical changes can be detrimental to the performance of a
stream processing system. The imbalanced load can lead to straggler nodes that cannot
keep up with the input load, resulting in high latency and, therefore, failing to adhere to
the real-time requirements of stream processing applications. The existence of stragglers
leaves the system in an unhealthy state that can, in turn, cause other issues, like hardware
failures or quality issues. Additionally, in the presence of the flexible pricing schemes of
cloud computing, the imbalanced load results in idle nodes that are not efficiently used but
are still paid for. In fact, idle nodes [61, 77, 10, 62] are reported to be a significant factor in
the wasted budget allocated to cloud infrastructure and computations.

Not all data processing tasks are equally influenced by an imbalanced load. Simple,
low computational complexity tasks, such as filtering on exact values or map functions,
are more robust to load imbalances, while tasks with high computational complexity are
severely affected. Due to their computational complexity, similarity-based tasks belong to
the latter, and their performance significantly deteriorated in the presence of skewed input
loads. Therefore, similarity-based tasks are a prime application to study with respect to
adaptivity to statistical changes. We distinguish two main similarity-based tasks: similarity
search and similarity joins.

Similarity search is the task of identifying the top k most similar items to a given item
given a similarity metric. The number of retrieved similar items k is application-related
and user-provided. Usually, the number of retrieved items k is relatively low as users
require only a handful of similar items. Multiple applications require such a similarity
search task [55, 99, 130]. Similarity search comes in many flavors and has been studied
extensively in the literature. For applications that require retrieving the exact top k similar
matches, exact approaches have been proposed [92, 177, 161]. When reduced runtime
is preferred, and accuracy constraints can be relaxed, approximate approaches can be

1

6 1 Introduction

Stream 1

Stream 2

W1 W2

Figure 1.4: An example of a windowed streaming similarity join between two streams.

employed [75, 88, 16]. The scalability of the task has also been investigated, especially
under the MapReduce paradigm [160, 156, 96, 143]. Similarity search has also been studied
in the context of time series [169, 144, 134], and stream processing [157, 145, 26].

A similarity join is the task of identifying all similar pairs between the items of two
datasets given a similarity metric and a similarity threshold. Two items are considered
similar if and only if their similarity is above the user-defined threshold. Similarity joins
constitute a basic and important task in many data processing pipelines, such as entity
resolution pipelines [129, 128], detecting coalition in advertising [122], and data cleaning
[40]. Similarly to similarity search, similarity joins have also been studied for approx-
imate [101, 142] and exact [20, 168] results. Due to the high complexity of the task,
a significant effort has been invested in scaling similarity joins, primarily through the
MapReduce paradigm. Multiple solutions have been proposed for efficient and adaptive
MapReduce-based similarity joins [64, 167, 53, 48]. These solutions reduce the number of
similarity computations performed without affecting the completeness of the join results
by efficiently partitioning the data. Some of these works also consider the problem of
skewed data and perform a repartitioning step after the map stage. Additionally, there
are MapReduce solutions that explicitly target load balancing either specifically for the
similarity join problem [8, 9, 23] or general MapReduce jobs [103]. Limited work has also
targeted the stream processing environment.

Similar to traditional similarity joins, streaming similarity joins (figure 1.4) try to identify
all similar pairs of items between two streams of data given a similarity metric and a
similarity threshold. A streaming similarity join can either be applied to recurring time
windows of specific intervals or to the entirety of the ingested input, in which case we refer
to the join as a full-history join or a global window join. Following the main principles of
stream processing, real-time results are required, and each operator can only process the
same data once. The efficiency and adaptivity to the data shifts of the streaming similarity
join task are crucial in order to facilitate the streaming transformation of important business
tasks and enable real-time decisions.

In this thesis, we are specifically interested in exact streaming similarity joins and how
this task can be optimized for distributed stream processing execution while allowing it to
adapt to unknown input distributions and distribution shifts. Exact streaming similarity
joins are important when the high-level use case cannot tolerate missing pairs. Such use
cases include monitoring crucial infrastructure, online trading, or online health monitoring.
Figure 1.5 illustrates a monitoring application that involves streaming similarity joins.
Within a large organization, different teams are responsible for developing, operating,
and monitoring their own applications. These teams use different monitoring tools that
may represent the same company assets differently. A centralized incident response team

1.1 Stream processing in the Cloud

1

7

Alert 1: <server1234, CPU overload>
Alert 2: <VA@srv1234, Not responding>

Figure 1.5: Streaming similarity joins employed in an infrastructure monitoring application. Within a large
organization, different teams use different monitoring tools to monitor their assets (hardware or software). These
different monitoring tools may represent the same assets differently. However, a major incident response team
wants to match the produced alerts that contain relevant information in order to enrich the information provided
to downstream tasks, such as root cause analysis or incident prediction model training.

collects all the alerts and monitoring messages produced by each team’s monitoring tools
and uses the collected information to respond to major incidents, train incident prediction
machine learning models, and perform root cause analysis. Combining information from
different teams that refer to the same asset directly or indirectly can heavily improve
the performance of the downstream tasks. For example, as we see in figure 1.5, alert 1
contains information about a physical server, while alert 2 contains information about
a video application running on this server. Combining these two alerts can help the
incident team understand better the reasons behind the unexpected performance of the
video application. However, manually retrieving all the related information is difficult and
time-consuming. On the scale of a large organization, thousands of monitoring messages
and alerts are produced every second, and the occurring incidents require immediate
responses. Therefore, the ability to combine in real-time all the relevant information is of
utmost importance. Providing efficient and adaptive streaming similarity joins will enable
such crucial applications.

To this end, several solutions have been proposed to enable streaming similarity joins.
In [49], the authors address the problem of streaming similarity self-joins on a single node
by introducing the notion of a time-dependent similarity and employing time-based indices.
Other works [60, 138, 78] target the load balancing aspect of the general streaming joins
problem. However, they do not optimize for similarity joins, and they do not attempt
to reduce the number of unnecessary computations but rather focus only on the load
balancing aspects. The only solution addressing all the relevant aspects of our problem is
proposed by [174]. The authors propose a distributed streaming set-similarity join method

1

8 1 Introduction

(a) Worker Failure (b) Network Failure (c) Storage Failure

Figure 1.6: Types of failures in distributed stream processing.

tailored for sets of words. To reduce the number of unnecessary computations and scale
up the computation, they propose a length-based filter and a hierarchical structure of
bundles. However, the employed length-based partitioning has several limitations: 𝑖) it
is only suitable for the specific problem of set-similarity, 𝑖𝑖) it has limited scaling and
load balancing capabilities, and 𝑖𝑖𝑖) it cannot be generalized to apply to a broader set of
application settings.

1.1.2 Adapting to infrastructure failures
An imbalanced load not only affects the system’s performance but also has a big impact
on its health. An unhealthy system is more prone to hardware failures. Additionally,
the transition to cloud deployments makes handling failures from stream processing
engines even more important. In order to maximize their profit and the availability of
their services, cloud providers have moved from specialized hardware to commodity
hardware that is more prone to failures but less expensive and of higher availability.
We can distinguish three main types of failures from which cloud clusters may suffer
(figure 1.6). A common failure type relates to malfunctions in the hardware or the software
of a worker (figure 1.6a). Network failures (figure 1.6b) occur when the network connection
between different workers becomes unavailable, disrupting the communication between
the different components of the deployed system or application. Last but not least, despite
the advancements of hard disk technology, storage failures (figure 1.6c) are still frequent
in a public cloud of commodity hardware [132, 97]. However, regardless of its type, a
failure renders parts of the processing pipeline inaccessible and leads to processing state
inconsistencies due to atomicity violations or non-persisted states that are lost. Therefore,
it is crucial for a data processing system to be able to adapt to such failures and quickly
recover and continue processing from a consistent state. We refer to the ability to adapt to
failures as fault tolerance.

Typical cloud computing workloads consist of stateless components that access data
persisted to external storage. Therefore, it is relatively easy to restore execution by restart-
ing the failed component to a different worker and replaying the affected computations. In
contrast, most stream processing engines opt for collocating the state and the computation
execution to ensure low-latency processing. Additionally, unlike typical cloud applications
that involve short-lived functions or queries, stream processing applications usually em-

1.1 Stream processing in the Cloud

1

9

ploy long-running analytical queries that require actively maintaining a consistent state
in memory. The collocation of state and computation execution, as well as the nature of
the stream processing workloads, render fault tolerance challenging for stream processing
engines. Different approaches have been proposed to provide fault tolerance to stream
processing workflows.

Log-based solutions [22, 43], inspired by traditional database systems, propose the use
of write-ahead logging to capture the messages sent by each operator to downstream
operators and, in the case of a failure, recover by replaying these messages. When stateful
operators are employed, the logs cannot be trimmed and must be kept until the operators’
state no longer depends on the contents of the logs. Although windowed operators usually
have short-lived states, that is not the case for all stateful operators. Therefore, logs can
endlessly grow in the presence of stateful operators that require full history. For high
throughput stream processing, log-based solutions can result in maintaining huge write-
ahead logs that are costly and, in the case of a failure, have to be replayed from the start in
order to resume processing.

Due to the inefficiencies and the high maintenance cost of logging, most stream process-
ing engines implement checkpoint-based solutions in order to achieve fault tolerance [30, 73].
Checkpoint-based fault tolerance leverages snapshotting to ensure consistency. A check-
point is a snapshot of an operator’s state, while the global state of a stream processing
application is the set containing a checkpoint of each operator. When a checkpoint is
captured depends on the implemented checkpoint protocol. We can distinguish three main
checkpointing protocols for fault tolerance in stream processing: the coordinated [30], the
uncoordinated [172], and the communication-induced checkpointing protocols. All check-
pointing protocols have the same goal of finding the most recent set of checkpoints that
can reconstruct a consistent global state from where the system can recover and continue
processing. However, each protocol uses different mechanisms to decide when to take a
snapshot and how to find a recent and consistent global state for the system to recover
from. Additionally, it requires different mechanisms to provide exactly-once processing
guarantees, i.e., to ensure that the changes to the state that occur from processing a specific
item are only reflected once to the state.

Other approaches [152, 52] use replicas to ensure fault tolerance and high availability.
Clonos [152] employs passive stand-by operators that replicate the main pipeline’s state.
In case of a failure, Clonos can quickly recover by switching to the replicated pipeline.
Rhino [52] proposes a state migration mechanism that combines checkpointing and replicas.
Rhino leverages the checkpointing mechanism of the underlying stream processing engine
and asynchronously replicates the captured checkpoints to multiple workers. When a
failure occurs, the system can quickly recover from the replicated checkpoints. However,
replication comes with additional costs in storage and computation resources, and thus, it
is avoided when high availability is not a concern.

1.1.3 Adapting to input rate changes
Modern cloud providers allow for flexible resource allocation and pricing schemes. Cloud
users no longer need to reserve their computing resources statically and pay for them while
they are considerably underutilized. Instead, they can dynamically adapt their computing
resources based on the workload they are serving, foresee, or can afford and leverage

1

10 1 Introduction

Time

W
or
kl
oa
d

Over

Under

Optimal

Figure 1.7: Different ways of provisioning resources.

flexible pricing schemes, such as a pay-as-you-go scheme, to only pay for resources that
they are actually using. This flexibility in resource allocation and pricing enables the
digital transformation for small and medium-sized businesses and allows them to remain
competitive and prosper by reducing their infrastructure costs.

At first glance, cloud computing and stream processing seem a good fit. Cloud comput-
ing provides the resource allocation flexibility that can accommodate the dynamic nature
of stream processing workloads. However, stream processing engines cannot currently
leverage effectively the features delivered by the cloud providers. In practice, most stream
processing engines are designed for on-premise clusters of fixed resources. Therefore, they
lack the necessary mechanisms to adapt to changes in the input workload: acquire more
resources in periods of high load, or release idle or underutilized resources when the input
rate is reduced.

Currently, the configuration options for a stream processing engine are limited. Assume
that a company would like to perform online streaming analytics over the traffic of its
webshop in order to dynamically improve the experience of a user visiting the webshop.
Figure 1.7 describes the analytics task’s input rate observed over time. Usually, under
normal operation, the streaming operations team of the company can expect a certain input
rate. However, spikes or periods of uncommon increased input rate can be observed under
certain circumstances, such as during Black Friday or a sales period. The operations team
of the company has virtually two options. It can overprovision resources to the stream
processing engine in order to anticipate spikes and high input rate periods. In this case, the

1.1 Stream processing in the Cloud

1

11

task will retain the desired performance even when the input rate is temporarily increased.
However, the resources will be underutilized under normal operation, where a lower input
rate is observed. Underutilizing the resources for the longer periods of normal operation
renders part of the cloud budget wasted, as it is not actually needed to provide better
performance. The other available approach is to provision the stream processing engine
with the exact resources it requires to meet the service level agreements (SLAs) during
normal operation. Although this strategy will refrain from wasting budget on underutilized
resources, it will also make it impossible for the stream processing engine to handle spikes
and periods of increased traffic, possibly leading to multiple SLA violations.

Ideally, in order to optimize costs and performance, the provisioned resources should
follow the observed workload. The operations team must adapt the resources to the input
rate changes by providing the minimal resources needed to ensure the desired performance
under the SLAs. However, this is a difficult and laborious task. The operations team has
to constantly monitor the observed input rate, decide on the optimal resources for the
observed rate, and manually adjust the resources of the stream processing engine. At the
same time, the operations team must consist of highly skilled and experienced people who
are difficult to find and expensive.

Employing such a team can be infeasible for small and medium-sized businesses. To
tackle this problem and facilitate businesses to leverage the flexibility of the cloud, several
autoscaling techniques have been proposed that specifically target stream processing
engines. Similar to autoscaling solutions targeting web services [114], stream processing
autoscalers can also be categorized as proactive or reactive, or even more fine-grained as
threshold-based [81, 87], reinforcement learning [112, 54], queue-based [67, 111], control-
based [93, 65] and time series forecasting [113, 21]. Threshold-based solutions employ user-
defined thresholds to decide on scaling actions based on the values of the monitored metrics.
Although these solutions are simple and easily deployed, they require the user to have deep
knowledge of the workload and the underlying system as they require multiple parameters
to express different scenarios. Reinforcement learning techniques employ reinforcement
learning models to learn the optimal configuration for a specific input rate. Although
they require minimal intervention from the user, these techniques require training periods
that might be infeasible for a real-world streaming application, as the models can take
hours to days in order to converge to an acceptable predictive performance. Queue-based
autoscalers employ queuing theory to model the streaming application and estimate the
system’s performance for the observed input rate under a specific configuration. However,
not all streaming topologies can be modeled using queuing theory, and therefore, the
applicability of the solutions is impacted. Control-based autoscalers handle autoscaling as
a control theory problem. Given a metric and a target value for this metric, control-based
autoscalers attempt to maintain the metric to the target value. All scaling decisions are
tailored to this goal. Although control-based autoscalers require one or more user-provided
target values for the monitored metrics, they require less user intervention than threshold-
based solutions. They are versatile and can serve any streaming topology while they are
easily deployed. Finally, time series forecasting approaches attempt to forecast the input
rate in the immediate future and decide on scaling actions based on this prediction. They
are usually complementary and combined with other autoscaling techniques. Regardless
of their type, autoscalers can be crucial for fulfilling the SLAs of an application. Further

1

12 1 Introduction

research on the topic can provide more reliable solutions and allow every company to
harness the full potential of cloud-deployed streaming applications.

1.2 Main Research Questions
In this thesis, we study the adaptivity capabilities of modern stream processing engines and
the solutions proposed in the literature to provide such adaptivity capabilities. We focus on
three important types of adaptivity, namely, adaptivity to statistical changes, infrastructure
failures, and input rate changes.
Statistical changes. Driven by our discussion in section 1.1.1, we recognize that a plethora
of solutions have targeted adaptive and scalable similarity joins on theMapReduce paradigm.
However, these solutions are not directly applicable to a streaming environment, and
adapting them to the stream processing paradigm is not trivial. Limited work addresses the
problem of streaming similarity joins. These works focus on optimizing the task for single
node execution [49], or load balancing without reducing the unnecessary computations [60].
The solution proposed by Yang et al. [174] is the only distributed streaming solution that
reduces unnecessary computationswhile providing adaptivity to statistical changes through
load balancing. However, it is tailored for similarity joins on sets of strings and cannot be
generalized to the broader problem of general streaming similarity joins. In this thesis,
we argue for the necessity of an efficient general solution that can accommodate different
types of data and various similarity metrics while providing an efficient load balancing
mechanism in order to be able to adapt to statistical input changes. We explore such a
solution through the following research question:

M-RQ1: How can we perform streaming similarity joins on multidimensional streams
in a distributed fashion, even when distribution changes, achieving low latency?

Infrastructure failures. Regarding adaptivity to infrastructure failures, which we intro-
duce in section 1.1.2, to the best of our knowledge, most modern stream processing engines
implement a checkpoint-based fault tolerance mechanism. More specifically, most of the
modern stream processing engines [31, 73] opt for a flavor of the coordinated checkpointing
protocol without any clear empirical and experimental evidence supporting this choice. At
the same time, through mailing lists, blogs, and forums, practitioners frequently report
inefficiencies of the employed coordinated checkpointing protocol and suggest ad-hoc
workarounds for better performance. Although the checkpointing protocol is the central
component of a fault tolerance mechanism, to this date, there is not any clear, compre-
hensive, and principled evaluation of the three main checkpointing protocols. Such an
evaluation can shed some light on the reasons behind the preference for the coordinated
approach and provide experimental proof of its prevalence, highlight cases where alter-
natives might perform better, and, first and foremost, provide a comprehensive guide on
checkpoint-based fault tolerance that will inspire further research on the topic and will
introduce practitioners to the specifics of fault tolerance for stream processing engines. To
this end, in this thesis, we consider the following research question:

M-RQ2: How do checkpointing protocols for streaming dataflows perform in different
workloads and input data distributions?

1.3 Methodology

1

13

Input rate changes. As discussed in section 1.1.3, multiple autoscaling solutions that
follow different principles have been proposed in the literature. However, the experimental
evaluation of these solutions is insufficient. Original works perform limited experiments,
including simple workloads and scenarios that do not sufficiently resemble real-world
applications and their workloads. Additionally, most of the original works do not include
comparisons with other autoscaling solutions. When solutions are compared, the evaluation
is narrow and tailored only to specific scenarios and objectives. To the best of our knowledge,
there is no experimental work that establishes specific metrics from the literature and
workloads that should guide a principled experimental evaluation of autoscaling solutions
for stream processing. Therefore, it remains unclear how well existing solutions perform
under heavily dynamic workloads, i.e., the current challenges and the open problems remain
unknown. This lack of principled, detailed experimental evaluation of the autoscaling
techniques hinders valuable future research on the topic. We summarize our concerns in
our third research question:

M-RQ3: How well can existing stream processing autoscalers perform? How can we
effectively evaluate them, and what are their inefficiencies?

We drive our study of adaptivity for stream processing engines on these three main
research questions. In Chapter 2, we address adaptivity to statistical changes through the
important task of similarity joins and attempt to answer M-RQ1. In Chapter 3, we revisit
fault tolerance as a means of adaptivity to infrastructure failures and answer M-RQ2.
Finally, in Chapter 4, we perform an experimental evaluation of control-based autoscalers
in an attempt to addressM-RQ3.

1.3 Methodology
In this section, we discuss some important aspects of the research methodology we used in
this thesis in order to address our main research questions.
Evaluation frameworks. This thesis focuses largely on providing guidelines and frame-
works for evaluating different adaptivity mechanisms for stream processing. Although
works on novel solutions to a problem are usually the primary focus of our research com-
munity, the importance of evaluation frameworks should not be underestimated. In this
thesis, we study the relevant literature in order to establish a set of metrics, queries, and
scenarios that can effectively describe and evaluate the underlying problem. We base our
frameworks on NexMark, the most widely adopted open-source benchmark by the stream
processing community. We use the NexMark queries and data, and we extend NexMark
to include the relevant scenarios and metrics. Doing so, we provide reliable evaluation
frameworks that our research community is currently missing and which can provide
valuable insights into the current state of the studied problems, as well as guidelines on
proper and fair comparison among proposed solutions.
Code & data availability. In this thesis, we embrace the concepts of open science
and ensure that all the tools, software, and datasets employed for our implementations
and experimental evaluations are publicly available and, most of the time, open-source.
Additionally, we strive to use tools and software that are considered state-of-the-art and
are widely adopted in practice. Therefore, we implement the solutions and the frameworks

1

14 1 Introduction

proposed in this thesis using the state-of-the-art open-source stream processing engine
Apache Flink. However, in Chapter 3, we opt for using an in-house stream processing
system that allows for isolated evaluation of the checkpointing protocols without the
interference of other mechanisms in order to ensure the reliability of our results. All
datasets and all of our software artifacts, including our in-house stream processing system,
are publicly available through GitHub. Each chapter contains its own link to a GitHub
repository. We invite all interested readers to visit our repositories for more details on our
implementations.

1.4 Contributions
The main contributions of this thesis are summarized as follows:

• We design and propose an adaptive distributed streaming solution for similarity joins
in the general metric space. Our solution employs a stream partitioning scheme that
provides fine-grained partitions, which ensure the completeness of the results while
reducing the number of unnecessary computations. We pair the stream partitioning
scheme with a load-balancing scheme that exploits existing partitions to alleviate
heavy-loaded nodes with minimum migration costs. (Chapter 2)

• We revisit fault tolerance for streaming dataflows through a comprehensive survey
of the main checkpointing approaches and the conditions under which they can
guarantee exactly-once processing. We discuss in detail the main concepts of each
protocol and recount the theoretical advantages and drawbacks of each approach.
(Chapter 3)

• We provide an open-source streaming dataflow testbed that allows for accurate and
isolated comparison of different checkpointing protocols and can be easily extended
to compare other stream processing mechanisms. (Chapter 3)

• We propose a principled evaluation framework for checkpointing protocols by estab-
lishing relevant metrics, queries, and workloads. We performed the first experimental
evaluation of the three main checkpointing protocols. Our findings partially justify
the clear preference of stream processing engines toward the coordinated approach
while highlighting the competitiveness of the uncoordinated approach and showcas-
ing scenarios where uncoordinated checkpointing greatly outperforms coordinated
checkpointing. (Chapter 3)

• We propose the first principled evaluation framework for stream processing au-
toscalers. We establish the most relevant to the task metrics that are found in the
literature. We extend the evaluations of the state-of-the-art control-based autoscalers
with heavily dynamic workloads. We implement the state-of-the-art control-based au-
toscalers, ensuring per-operator autoscaling, and evaluate them over diverse queries.
Our findings show the inefficiencies of the evaluated solutions and motivate further
research on the topic. (Chapter 4)

1.5 Thesis Origins

1

15

1.5 Thesis Origins
This thesis consists of three main chapters. In Chapter 2, we focus on the complex problem
of similarity joins in a highly dynamic streaming environment, and we present a novel
solution that can naturally adapt partitioning to the distribution and domain shifts, enabling
real-time processing. Chapter 3 revisits fault tolerance in stream processing by focusing on
checkpoint-based recovery, summarizing its core concepts, discussing the main checkpoint-
ing protocols, introducing a principled way of evaluating them, and, finally, comparing
them extensively. Chapter 4 engages the problem of the elastic allocation of computing re-
sources for stream processing engines by performing a principled experimental evaluation
of autoscaling solutions tailored to the specifics of stream processing, extending existing
evaluations with dynamic workloads, and providing an extensible evaluation framework
that enables a thorough evaluation of future work.

Chapter 2 is based on the following paper:

 George Siachamis, Kyriakos Psarakis, Marios Fragkoulis, Odysseas Papapetrou, Arie
van Deursen and Asterios Katsifodimos. 2023. Adaptive Distributed Streaming Similarity
Joins. In DEBS. Association for Computing Machinery, 25–36. [150]

Chapter 3 is based on the following paper:

 George Siachamis, Kyriakos Psarakis, Marios Fragkoulis, Arie van Deursen, Paris Car-
bone, Asterios Katsifodimos. 2024. CheckMate: Evaluating Checkpointing Protocols for
Streaming Dataflows. In ICDE. IEEE, 4030–4043. [151]

Chapter 4 is based on the following papers:

 George Siachamis, Job Kanis, Wybe Koper, Kyriakos Psarakis, Marios Fragkoulis, Arie
van Deursen and Asterios Katsifodimos. 2023. Towards Evaluating Stream Processing
Autoscalers. In SMDB (ICDEW). IEEE, 95-99. [149]

 George Siachamis, George Christodoulou, Kyriakos Psarakis, Marios Fragkoulis, Arie
van Deursen and Asterios Katsifodimos. 2024. Evaluating Stream Processing Autoscalers.
In DEBS. Association for Computing Machinery, 25–36. [148]

2

17

2
Adaptive Distributed Streaming

Similarity Joins
How can we perform similarity joins of multi-dimensional streams in a distributed fashion,
achieving low latency? Can we adaptively repartition those streams in order to retain high
performance under concept drifts? Current approaches to similarity joins are either restricted
to single-node deployments or focus on set-similarity joins, failing to cover the ubiquitous
case of metric-space similarity joins. In this chapter, we propose the first adaptive distributed
streaming similarity join approach that gracefully scales with variable velocity and distribution
of multi-dimensional data streams. Our approach can adaptively rebalance the load of nodes
in the case of concept drifts, allowing for similarity computations in the general metric space.
We implement our approach on top of Apache Flink and evaluate its data partitioning and
load balancing schemes on a set of synthetic datasets in terms of latency, comparisons ratio,
and data duplication ratio.

This chapter is based on the following paper:

 George Siachamis, Kyriakos Psarakis, Marios Fragkoulis, Odysseas Papapetrou, Arie Van Deursen and
Asterios Katsifodimos. 2023. Adaptive Distributed Streaming Similarity Joins. In DEBS. Association for Computing
Machinery, 25–36. [150]

2

18 2 Adaptive Distributed Streaming Similarity Joins

2.1 Introduction
Similarity join is the task of identifying all pairs of similar records that reside in two or
more datasets according to a similarity function. Similarity joins play an important role
in data integration, data cleaning, recommender systems and many other domains. In fact,
nowadays, with data in motion becoming more ubiquitous, many of the use cases requiring
a similarity join have to be performed in a streaming fashion.

Performing similarity joins on data streams is challenging and computationally ex-
pensive. The brute force approach – even for the case of static datasets – has to compare
all records of the first dataset against all records on the second, leading to quadratic time
complexity, (𝑛2) where 𝑛 is the number of records. As the number of records increases,
brute-force solutions become infeasible. At the same time, the unbounded nature of data
streams means that the complete set of records is not available in full prior to their process-
ing. Moreover, since data streams are continuous, their statistical properties may change
over time. Depending on how frequently those changes occur (also known as concept drift
[162, 70]), they can have a significant impact in optimizing the similarity join operation.
To recap, streaming similarity joins entail solutions that are 𝑖) efficient, 𝑖𝑖) scalable, and 𝑖𝑖𝑖)
can adapt to concept drift.

Although equality joins on streams have been studied extensively, scant attention has
been paid to streaming similarity joins. Existing works provide solutions specifically for set-
similarity joins [174], optimizing a self-join operation in a single machine [49], and scaling
out the cross-product comparisons in multiple machines [60]. However, none of these
solutions target the general metric space or support efficient load balancing that can adapt
the load distribution to the concept drift that frequently occurs (Table 2.1). At the same
time, a significant research body targets batch similarity joins targeting the MapReduce
[48, 171, 41] framework. Although these works address scalability and efficiency, their core
techniques do not adhere to the properties of streaming data (unboundedness and concept
drift). Thus, they cannot be applied on streams, and they do not provide load-balancing
capabilities.

Streaming similarity joins can be performed in either exact or approximate fashion.
Approximate similarity join algorithms, such as [90, 89] are interesting for use cases where
applications can sacrifice completeness of results. In this work, we explicitly focus on
exact algorithms, which are necessary for scenarios where complete answers are required.
All available similarity join approaches share a common strategy: they group similar
data to reduce the number of unnecessary comparisons. To this end, they either employ
optimized indices [49] in a centralized setting or data partitioning schemes [174, 48, 171]
in a distributed setting. We have already argued about the necessity of a distributed
approach in order to handle the massive volumes of modern data streams. However, the
distributed batch-based solutions require multiple passes over the data [48, 171], and they
only provide means of splitting huge partitions into smaller ones rather than balancing the
load. Additionally, the only distributed streaming similarity joins approach [174] targets
only the specific sub-problem of set-similarity joins instead of providing an applicable
solution for the general problem. The simple load-balancing scheme which the authors
propose has limited scaling capabilities and can only provide balancing for scenarios where
the input has varying lengths. All in all, existing solutions fail to provide efficient load
balancing that can keep up with concept drift and harness the available processing power.

2.2 Preliminaries

2

19

Table 2.1: Related work comparison.
Method Characteristics Applicability

Work/Feature Candidate Pruning Load Balancing Mode Environment Problem
Morales et al.[49] X Streaming Centralized Similarity self-joins on a vector stream
Yang et al. [174] X X Streaming Distributed Set similarity join on sets of various lengths
ClusterJoin [48] X X Batch Distributed Similarity joins on general metric space
ElSeidy et al. [60] X Streaming Distributed Cross-product joins to multiple machines
Proposed Solution X X Streaming Distributed Similarity joins on general metric space

In this chapter, we propose S3J, an approach for adaptive distributed streaming similarity
joins1 based on a load balancing scheme that leverages the underlying partitioning to
redistribute the load across our group of workers. We pair our balancing scheme with a
partitioning scheme that adheres to the properties required to facilitate it. The employed
partitioning scheme is suitable for the general flavor of the similarity joins problem over a
metric space and extends existing work by leveraging two levels of data partitioning to
prune candidate pairs and scale out the similarity computations to multiple nodes.
Our contributions can be summarized as follows:

• The proposed solution is the first algorithm that solves the distributed streaming
similarity join problem in the general metric space (see Table 2.1). Our algorithm
is also the first to properly address the issue of load imbalance, thereby permitting
better scalability and responsiveness.

• We propose a stream partitioning scheme for similarity joins in the general metric
space, providing tight and fine-grained partitions, ensuring the completeness of
results while reducing the number of computations. Our partitioning scheme has all
required properties to effectively support our load-balancing scheme (Section 2.7).

• We show how to map the load balancing problem to the classic job rescheduling
problem and propose a novel algorithm tailored to a partitioning/work imbalance
measure (Section 2.8) .

• We propose a load balancing scheme to alleviate heavily loaded nodes while minimiz-
ing migration costs. In contrast to existing load-balancing solutions, we refrain from
repartitioning the data, which is prohibitively expensive in streaming scenarios, and
instead, we exploit the existing partitions to perform load balancing (Section 2.8).

• We conduct a detailed experimental evaluation of our solution using synthetic
datasets in order to evaluate the efficiency of our method under various scenar-
ios (Section 3.7).

2.2 Preliminaries
This section provides a discussion of existing concepts and techniques on the foundations
of similarity joins and our partitioning scheme.
1Code available in:
https://github.com/delftdata/s3j-adaptive-similarity-joins
https://zenodo.org/doi/10.5281/zenodo.11652793

https://github.com/delftdata/s3j-adaptive-similarity-joins
https://zenodo.org/doi/10.5281/zenodo.11652793

2

20 2 Adaptive Distributed Streaming Similarity Joins

The Inner-Outer Partitioning Paradigm. The state-of-the-art MapReduce solutions for
the general metric space [48, 171] define the inner-outer partitioning paradigm. Specifically,
for each worker, one centroid is randomly selected, and a pair P of inner and outer partitions
is assigned to it. Inner partitions are disjoint, i.e., they have no common records, while
outer partitions can overlap. We provide these definitions below.

Definition 2.1 (Inner Partition). The inner partition 𝐼𝑖 of centroid 𝑐𝑖 contains all records
for which centroid 𝑐𝑖 is the closest centroid among all available centroids, i.e.,

𝐼𝑖 = {𝑟 ∣ ∀𝑐𝑗 ∈ 𝐶, 𝑑𝑖𝑠𝑡(𝑟 , 𝑐𝑖) ≤ 𝑑𝑖𝑠𝑡(𝑟 , 𝑐𝑗)}, (2.1)

where 𝑑𝑖𝑠𝑡() is the employed distance metric.

To decide whether a record is included in an outer partition, ClusterJoin [48] proposes
the following membership criterion:

Criterion 2.1 (Outer Partition Membership Criterion). Let 𝑟 be an incoming record and 𝑐𝑖
be the closest centroid to 𝑟 . Then 𝑟 belongs to the outer partition of 𝑐𝑗 ,∀𝑐𝑗 ∈ 𝐶,𝑐𝑗 ≠ 𝑐𝑖, if and
only if

𝑑𝑖𝑠𝑡(𝑟 , 𝑐𝑗) ≤ 𝑑𝑖𝑠𝑡(𝑟 , 𝑐𝑖)+2× 𝑡, (2.2)

where dist() is the employed distance metric and 𝑡 is the provided distance threshold.

Based on Criterion 2.1, Definition 2.2 describes an outer partition.

Definition 2.2 (Outer Partition). The outer partition 𝑂𝑖 of centroid 𝑐𝑖 contains all records
that do not belong to the inner partition 𝐼𝑖 and satisfy Criterion 2.1, i.e.,

𝑂𝑖 = {𝑟 ∣ ∀𝑟 ∉ 𝐼𝑖 ∧𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛1(𝑟 , 𝑐𝑖)} (2.3)

Similarity Computations. A solution based on the inner-outer partitioning paradigm
proceeds in performing the similarity comparisons based on the formed pairs of inner and
outer partitions (Figure 2.2(a)). In short, the records of an inner partition are compared
against the records of the same inner partition as well as the records of the corresponding
outer partition, whereas records from an outer partition are compared only against records
from the corresponding inner partition. All records with a similarity higher than a threshold
are returned to the user. It can be easily shown that this algorithm retrieves all results
[48, 171].

In this work, we extend the inner-outer partitioning paradigm to encapsulate fine-
grained sets of data involved in computations as a group. This formulation enables us to
perform load balancing of distributed streaming similarity joins with high adaptation to
variable data velocity and distribution.

2.3 Problem Statement
A streaming similarity join operation identifies all pairs of records that belong to one or
more data streams, arrive in the same time window, and have a similarity that exceeds a
user-defined threshold. Consider a set of streams = {𝑆1, 𝑆2,…}, each containing records.

2.3 Problem Statement

2

21

Let 𝑠𝑖𝑚(𝑟𝑖, 𝑟𝑗) denote the user-defined similarity function between two records 𝑟𝑖 and 𝑟𝑗 ,
which takes values within [0,1]. 2

Definition 2.3 (Matching records within a time window). For a given similarity thresh-
old 𝜃𝑠𝑖𝑚, two records are considered a match when their similarity exceeds 𝜃𝑠𝑖𝑚, and they
both arrive within the same time window. Formally:

(𝑟𝑖, 𝑟𝑗) is a match⇔ 𝑠𝑖𝑚(𝑟𝑖, 𝑟𝑗) ≥ 𝜃𝑠𝑖𝑚 and 𝑡𝑖, 𝑡𝑗 ∈𝑊𝑘 , (2.4)

where 𝑡𝑖, 𝑡𝑗 are the ingestion timestamps of 𝑟𝑖, 𝑟𝑗 and 𝑊𝑘 the 𝑘𝑡ℎ window. 3

The above definition can trivially be rewritten using distances, where:

𝑑𝑖𝑠𝑡(𝑟𝑖, 𝑟𝑗) = 1− 𝑠𝑖𝑚(𝑟𝑖, 𝑟𝑗), and 𝜃𝑑𝑖𝑠𝑡 = 1−𝜃𝑠𝑖𝑚.

Notice that similarity join (even over static data) is often a computationally expensive
operation whose complexity increases with the increase of the dimensionality of the data.
The streaming context further aggravates this issue due to the high velocity of incoming
records in data streams and the need for quick answers. The only way to efficiently sustain
the overall computational burden is by scaling out the processing to a distributed stream
processing system. This practice, however, brings forward a new set of challenges, most
importantly the partitioning of the data and the load balancing across the cluster.

Definition 2.4 (Partitioning for streaming similarity joins). Assume a set of streams
 = {𝑆1, 𝑆2,…} that contain records consisting of a timestamp, an id, and a (potentially
high-dimensional) value, i.e., 𝑟 = (𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑖𝑑, 𝑣𝑎𝑙𝑢𝑒). Consider a set of records 𝑅𝑘 = {𝑟 ∣

𝑟 ∈ 𝑆𝑖, 𝑆𝑖 ∈ }, ingested within a time window 𝑊𝑘 , a set of worker nodes 𝑁 , and a given
threshold 𝜃. Partition the records in 𝑅𝑘 in |𝑁 | partitions, such that i) each pair of matched
records based on the similarity threshold 𝜃 is contained in the same partition and ii) the
computation load across the worker nodes is balanced.

Unfortunately, the partitioning of the records is not guaranteed to be stable in the
lifetime of a streaming workload. Even if we could efficiently decide on an optimal parti-
tioning of the data, this remains unknown since the data is not available when creating
the partitions. Furthermore, statistical changes in the incoming streaming data, i.e., a
possible concept drift, create skews in data partitions. Consequently, these aspects entail
the consideration of computational load and accompanying challenges. We define the load
of a worker node in a set of workers as follows.

Definition 2.5 (Load). Given a partitioning scheme PS, the load 𝐿
𝑝𝑠

𝑛 of a worker 𝑛 in a set
of workers 𝑁 is equivalent to the number of similarity comparisons it needs to perform
based on the partition of records assigned to it.

2To simplify exposition, hereafter, we expect that 𝑠𝑖𝑚(𝑟𝑖, 𝑟𝑗) returns values between 0 (no similarity) and 1 (identical
records). If this is not the case, we can define a metric-specific function 𝑓 (𝑠𝑖𝑚(𝑟𝑖, 𝑟𝑗)) that bounds the similarity
metric within [0,1].

3Hereafter, without loss of generality, we refer to tumbling windows only to simplify the presentation of our
approach with respect to time window semantics. Our work is applicable to any type of time window.

2

22 2 Adaptive Distributed Streaming Similarity Joins

As new data arrive, the existing partitioning of the data in the cluster’s workers may no
longer provide a balanced workload across the cluster, thereby leading to the load balancing
problem.

Definition 2.6 (Load balancing). Assume a set 𝑅𝑘 = {𝑟 |𝑟 ∈ 𝑆𝑖, 𝑆𝑖 ∈ , 𝑎𝑛𝑑 𝑟.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∈𝑊𝑘}

of streaming records ingested within a time window 𝑊𝑘 , a set of the previously defined
partitions 𝑃𝑆 that contain the streaming records 𝑅𝑘 , and a set of workers 𝑁 . Each worker
𝑛 is assigned a partition 𝑃 and has an estimated load 𝐿

𝑝𝑠

𝑛 based on partition 𝑃 . Find a new
optimal partitioning scheme 𝑂𝑃𝑆(𝑅,𝑁) that minimizes how much the load of each worker
differs from the desired average load, i.e.,

𝑂𝑃𝑆(𝑅,𝑁) so that 𝑚𝑖𝑛(∑ ∣ 𝐿
𝑜𝑝𝑠

𝑛
−𝐿

𝑜𝑝𝑠

𝑎𝑣𝑔
∣),∀𝑛 ∈ 𝑁 . (2.5)

2.4 Related Work
In this section, we discuss the works that are most relevant to the problem of adaptive
distributed similarity joins.
Distributed Stream Equi-Joins. Equality joins have been investigated thoroughly in the
literature. Najafi et al. [125] propose SplitJoin, a novel stream join architecture that achieves
high scalability by dividing the join operation into independent storing and processing,
and employing adjustable join output ordering guarantees. Dossinger et al. [56] introduce
MultiStream, a novel multi-way stream join operator that leverages tuple routing and
exploits a materialization vs. network cost to perform stream join optimization. Najafi
et al. [126] propose a circular multi-way join operator that benefits from hardware and a
parallel multi-way join operator that reduces computation time.

None of these works deal with similarity joins.

Single-node Similarity Joins on Streams. Contrary to equality joins, research on simi-
larity joins on data streams is limited. Morales et al. [49] propose a solution to streaming
similarity self-joins. However, this work does not discuss a parallel distributed solution,
and their approach cannot be trivially scaled out. Similarly, [108] introduces an operator to
tackle similarity joins on uncertain data streams, but their solution cannot be trivially scaled
out. In addition, none of these works considers load (re-)balancing, which is necessary to
retain high performance in the case of concept drift.

To the best of our knowledge, no existing work in stream processing can provide a general
solution over the metric space, which can scale out to multiple machines and provide load
balancing capabilities to tackle concept drift.

Distributed Similarity Joins on Streams. Closest to the spirit of our work is the work by
Yang et al. [174]. The authors propose a distributed streaming similarity join framework
that employs a simple length-based filter to distribute the data across the cluster. Such a
filter cannot be used for metric-space similarity computations, which we consider in this
work. Instead, [174] focuses on the set similarity problem.

2.4 Related Work

2

23

In contrast to [174], in this work, we aim for metric-space similarity computations, which
are required in state-of-the-art approaches in similarity joins, like keyless joins [159].

k-Nearest Neighbours on Streams . In contrast to the exact similarity join problem on
streams, streaming kNN queries attempt to identify and retrieve a specific number, k, of
results. Koudas et al. [99] introduce an error-bounded variation of the problem and propose
DISC that can answer error-bounded kNN queries over sliding windows. Sundaram et al.
[158] propose PLSH, a fast distributed variation of LSH, that supports approximate nearest
neighbours queries over high throughput streams. ADS-kNN [145] overlaps communica-
tion and computation stages and leverages an adaptive partitioning that keeps the load
balanced in order to improve performance.

Streaming kNN employs similarity computations and requires efficient real-time results.
However, it does not retrieve all existing pairs, and the results are not threshold bounded.
Therefore, its solutions cannot be applied in our context.

Distributed, Batch Similarity Joins in MapReduce. There are two main approaches
that MapReduce methods usually follow: Filter & Verification and General Metric Space
[64]. The Filter & Verification methods [167, 53, 123] rely on prefixes and signatures, which
they leverage to scale out the similarity computations and filter unnecessary comparisons.
On the other hand, General Metric space methods [171, 48, 41, 173] divide the metric space
into partitions to which similar objects are grouped.

None of the MapReduce solutions is applicable to streaming similarity joins, as they require
multiple passes over the given dataset to gather statistics, as well as additional pre-processing
steps.

Dynamic reconfiguration for stream processing. Load balancing is a native concern
in distributed stream processing environments. Zhou et al. [178] formalize the problem
of operator placement and propose heuristics that provide load balancing with minimum
data movement across nodes that execute multiple queries. Pietzuch et al. [131] propose
an intermediate layer between the physical network and the stream processing engine
that provides load optimizations through operator placement. Madsen et al. [119] propose
ALBIC, a stream processing optimizer, that unifies reconfiguration problems, such as load
balancing and operation placement, and addresses it as a mixed integer linear program
optimization. Finally, Cardellini et al. [32] propose a two-layered hierarchical architecture,
EDF, that enhances a stream processing engine with autoscaling capabilities.

These works address reconfiguration problems over a cluster of nodes where multiple stream-
ing queries run. However, they only focus on cluster level reconfigurations and do not deal
with imbalanced parallel operators of a specific query due to skewed workloads.

Load-balancing for joining streams. A significant mass of work focuses specifically on
join operations. Both [60] and [78] propose new dataflow multi-way join operators. Gu
et al. [78] employs two routing algorithms that achieve load balancing without affecting
the completeness of the results through data replication. On the other hand, ElSeidy et

2

24 2 Adaptive Distributed Streaming Similarity Joins

al. [60] focus on providing minimal state relocation costs while keeping at balance the
trade-off between migration costs and the costs of not having optimal data distribution.
Using a different architecture, [170] describes a ring model of multi-way window-based
join operators that is based on time slicing and record propagation. Qiu et al. [138] intro-
duces a streaming variation of the HyperCube algorithm [8] for static multi-way joins.
BiStream [109] leverages a new model based on managing the computational cluster as a
bipartite graph to scale out or down depending on the current workload.

In summary, these works do not optimize unnecessary comparisons and load balancing for
the special case of similarity joins.

2.5 Approach Overview
In this chapter, we propose S3J, an adaptive method that enables efficient similarity joins
over streams in a distributed share-nothing environment through a novel partition-aware
load balancing paired with a stream partitioning scheme that can tackle the general metric
space streaming similarity join problem. Figure 2.1 presents the workflow of our proposed
approach, assuming two input streams.
The similarity join pipeline employs a workflow of four key operators, executed in a loop
(also depicted in Figure 2.1):
(a) space partitioning (Section 2.6), where the ingested data (the yellow squares and the

green circles, corresponding, in this example, to two streams) is partitioned to two
partitions (the highlighted blue and highlighted orange region), each assigned to one
worker;

(b) workset formulation (Section 2.7), which divides the previously created local par-
titioning of the data at each worker into smaller sub-partitions (the worksets), to
facilitate a more efficient load balancing;

(c) similarity computation (Section 2.7.7), where the workers leverage the formed sub-
partitions to independently compute the results, without further coordination, and,
finally;

(d) load balancing (Section 2.8), which relies on statistics collected from the previous
steps to re-partition the data by reassigning some worksets to different workers, in
order to reduce load imbalance at the workers.

The key statistics driving the load balancing policy include the join output and the
side outputs from the workset formulation operators. Particularly, when load imbalance
exceeds a threshold configured by the application, the load balancing scheme computes a
new distribution of the existing worksets based on the existing distribution and a migration
minimization policy and employs the new distribution to the available workers without
the need to create new partitions or worksets. For example, in Figure 2.1, the distribution
of the load is imbalanced between workers 1 and 2. Thus, the load balancing strategy
exchanges workset W2 from worker 1 with workset W1 from worker 2 to balance their
load. The new distribution of the worksets is communicated to the workset formulation
operators to ensure the correct routing of future records.

2.5 Approach Overview

2

25

St
re
am

	1

St
re
am

	2

a)
	S
pa
ce
	p
ar
tit
io
ni
ng

b)
	W
or
ks
et
fo
rm
ul
at
io
n

W
2

W
1

W
or

ke
r 2

W
2

W
1

W
or

ke
r 1

c)
	S
im
ila
ri
ty
	co
m
pu
ta
tio
ns

W
2

W
1

W
or

ke
r 1

W
2

W
1

W
or

ke
r 2

d)
Lo
ad
	b
al
an
ci
ngW
1

W
1

W
or

ke
r 2

W
2

W
or

ke
r 1

W
2

Si
m

Si
m

Ou
tp
ut
	S
tr
ea
m
	o
f	m

at
ch
es

Fi
gu

re
2.1

:O
ve
rv
ie
w
of

pr
op

os
ed

so
lu
tio

n’
sw

or
kfl

ow

2

26 2 Adaptive Distributed Streaming Similarity Joins

2.6 Space Partitioning
Our partitioning scheme aims to distribute the data among the available workers so that:
(a) the computational load is evenly distributed across the workers, and (b) data duplication
is reduced. In this work, we focus on providing adaptivity to streaming similarity joins
through an efficient load-balancing scheme and a fine-grained partitioning scheme. There-
fore, we adapt and extend the previously-proposed inner-outer partitioning paradigm,
described in Section 2.2. In particular, we introduce two layers of partitioning: (a) partition-
ing the data into coarse partitions, and (b) breaking each partition into smaller worksets,
which can be independently handled by each worker. In this section, we describe shortly
our first partitioning layer, space partitioning.

2.6.1 Space partitions
To create our fine-grained worksets, we need to distribute our incoming records to our
workers. However, we cannot divide the load arbitrarily. We need to ensure that possibly
similar records are co-located to the same worker so that we will not have two workers
creating similar worksets. In such a case, we would risk losing matches or duplicating
every record belonging to these worksets. Therefore, we opt to divide the incoming records
into inner and outer partitions, adapting the inner-outer paradigm, in order to create space
partitions. Formally, the space partition 𝑆𝑃𝑖 of a centroid 𝑐𝑖 is the pair of inner partition 𝐼𝑖

and outer partition 𝑂𝑖 of 𝑐𝑖.

2.6.2 Selecting Centroids
Selecting the right centroids for the space partitions is not a trivial task. A common
approach employs a random sampling of the data under processing to select partition
centroids [48, 171]. However, none of these techniques is applicable in the case of streams,
as they all require an extra pass over the data. In addition, historical streaming data could
serve as a source of candidate centroids, but those would be obsolete in the case of concept
drift. In this work, we opt for a simple approach: we randomly generate our partition
centroids based on the expected space coverage. More specifically, after randomly selecting
a set of partition centroids, we initialize our space partitioning instances by providing each
one a copy of the available centroids. Each centroid is assigned to a downstream worker
of our set of workers. For each incoming record, our partitioner instances calculate the
distances to the centroids. Based on the provided Definitions 2.1 & 2.2, an incoming record
is assigned to the inner partition of the closest centroid and to the outer partitions of the
centroids that satisfy the Criterion 2.1.

2.6.3 Avoiding duplicate comparisons
According to the inner-outer partitioning paradigm, records that belong to neighbour-
ing inner partitions can potentially be members of the corresponding outer partitions.
Depending on how similarity comparisons are resolved, such a case would lead to the
same candidate pair of records being evaluated twice, i.e., potentially by two different
nodes. Figure 2.2(b) shows such an example. Record 𝑟1 belongs to the inner partition 𝐼1

and to the outer partition 𝑂2, while record 𝑟2 belongs to the inner partition 𝐼2 and to the
outer partition 𝑂1. Therefore, the pair (𝑟1, 𝑟2) is evaluated for both pair of partitions 𝑃1 and

2.7 Workset Formulation

2

27

𝑟! ∈ 𝑂"

𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔	𝑟𝑒𝑐𝑜𝑟𝑑	𝑟! ∈ 𝑃"

𝑟! ∈ 𝐼"

∀. 𝑟#	∈ 𝐼" 		𝑠. 𝑡. 	𝑟# ≠ 𝑟! 	
⟹ 𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑟! , 𝑟#)	

∀. 𝑟#	∈ 𝑂" 		𝑠. 𝑡.	 𝑟# ≠ 𝑟! 	
⟹ 𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑟! , 𝑟#)	

𝐼;
𝑂;

𝐼<

𝑂<

𝑟; 𝑟<

(a) (b)

Figure 2.2: (a) Paradigm’s similarity computations workflow. (b) Example with a duplicate evaluation of a
candidate pair.

𝑃2 (𝑃1 ∶ 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑟1 ∈ 𝐼1, 𝑟2 ∈ 𝑂1), 𝑃2 ∶ 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑟1 ∈ 𝑂2, 𝑟2 ∈ 𝐼2)). To avoid these redundant
comparisons and maintain duplicate-free results, we adopt the same routing criterion
employed by ClusterJoin[48] and MR-MAPSS[171] to decide whether a record should be
included in a neighbouring outer partition of a space partition or not.

2.7 Workset Formulation
After dividing the incoming records based on their position in the input space, the workset
formulation operation takes place in each of the responsible workers. In this step, we
attempt to create self-contained, minimal worksets on top of which we will perform all our
similarity comparisons. We define a workset as follows:

Definition 2.7. The 𝑖𝑡ℎ workset 𝑊𝑗 ,𝑖 of a space partition 𝑃𝑗 has a centroid 𝑐𝑗 ,𝑖 assigned to it,
and it consists of an inner set 𝐼𝑆𝑗 ,𝑖, an outer set 𝑂𝑆𝑗 ,𝑖, and a set of outliers 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠𝑗 ,𝑖.

Similarly to the inner and outer partitions of the previous stage, inner sets are disjoint
while outer sets can overlap with outer sets of other worksets, and they can contain records
from inner sets or outliers’ sets of multiple other worksets. The outliers’ sets are also
disjoint. In the following, we discuss the workflow of the workset formulation operator.
We present how an incoming record is handled, and we provide all necessary definitions.
We explain how we select new centroids and the concept of outliers.

2.7.1 Step 1: Deciding Inner vs. Outer Partition
For each incoming record received from workset formulation operator, we first compute
the distances from all existing workset centroids in order to use them in the following
steps. Then we need to specify if the record belongs to the inner or the outer partition of
the space partition worker is responsible for. Records that belong to the outer partition
can only participate in the outer sets of our worksets, while inner records must also be
assigned to an inner set of a workset. If the received record is an outer record, we can
move directly to step 5 (Section 2.7.5).

2

28 2 Adaptive Distributed Streaming Similarity Joins

2.7.2 Step 2: Assign to an Inner Set
For each incoming record that belongs to the inner partition, we first need to identify the
workset whose inner set will contain it. Each record is assigned to at most one inner set.
We decide whether a record should be assigned to the inner set of a workset based on the
following definition of inner sets.

Definition 2.8 (Inner Set). The inner set 𝐼𝑆𝑗 ,𝑖 of the workset centroid 𝑐𝑗 ,𝑖 contains all
records which are in a distance less than half the provided threshold from 𝑐𝑗 ,𝑖, i.e.,

𝐼𝑆𝑗 ,𝑖 = {𝑥 |𝑑𝑖𝑠𝑡(𝑥, 𝑐𝑗 ,𝑖) ≤ 𝑡/2}, (2.6)

where 𝑑𝑖𝑠𝑡() is the employed distance metric, and 𝑡 is the provided threshold.

If we manage to assign the incoming record to an existing workset, we can move to
step 5. Otherwise, if the incoming record cannot be assigned to the inner set of any of the
existing worksets, we check in step 3 if we can create a new workset to assign it to.

2.7.3 Step 3: Creating NewWorksets
In order to create a new workset, we first need to select an appropriate centroid for it.
Selecting workset centroids. To select the workset centroids, our strategy differs signifi-
cantly from the random selection of a fixed number of centroids employed in the space
partitioning stage. Without knowing the exact distribution of incoming records in the fu-
ture, it is very difficult to cover all input space with a fixed number of centroids. Therefore,
we opt to select centroids on the fly as we process the data. In this way, we can naturally
adapt to occurring concept drifts.

In more details, only records that belong to the inner partition of each space partition
can be selected as workset centroids. If an incoming record 𝑠 cannot be assigned to the
inner set of any of the existing worksets, we check if we can create a new workset with 𝑠

as its centroid. Since the inner sets of all worksets must be disjoint, 𝑠 must be at a greater
distance than the provided threshold from any other centroid. Otherwise, there would be
at least two worksets whose inner sets would have some overlap. Therefore, to select an
incoming record 𝑠 as a new centroid, it must satisfy the following criterion:

Criterion 2.2 (Workset Centroid Selection). An incoming record 𝑠 is selected as a workset
centroid if and only if it is in distance greater than the provided threshold from all existing
centroids, i.e., 𝑠 is a centroid ⟺ 𝑑𝑖𝑠𝑡(𝑠, 𝑐𝑖) > 𝑡,∀𝑐𝑖 ∈ 𝐶, where 𝑑𝑖𝑠𝑡() is the employed distance
metric, 𝑡 is the provided threshold, and 𝐶 is the set of existing workset centroids.

2.7.4 Step 4: Labeling Outliers
If an incoming record 𝑠 neither belongs to an existing group nor can be selected as a
centroid itself, it is labeled as an outlier.

Definition 2.9 (Outliers). We define as outliers 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 the set of incoming records that
are within greater than half the provided threshold but less than a threshold distance from
all existing centroids, i.e.,

𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 = {𝑜 | 𝑡/2 < 𝑑𝑖𝑠𝑡(𝑜, 𝑐𝑖) ≤ 𝑡, ∀𝑐𝑖 ∈ 𝐶}, (2.7)

2.7 Workset Formulation

2

29

where 𝑑𝑖𝑠𝑡() is the employed distance metric, 𝑡 is the provided threshold, and 𝐶 is the set
of existing group centroids.

We assign each outlier to an existing workset based on a proximity criterion, i.e., each
outlier is assigned to the outlier set of the workset whose centroid is the closest to it.

2.7.5 Step 5: Assign to Outer Sets
All incoming records are assigned to none, one or more outer sets of existing worksets
based on the provided similarity threshold. More specifically, we decide if an existing
record should be included to an outer set based on the following definition.

Definition 2.10 (Outer Set). The outer set 𝑂𝑆𝑖,𝑗 of centroid 𝑐𝑖,𝑗 contains all records which
are within a distance greater than half the provided threshold and less than twice the
provided threshold, i.e.,

𝑂𝑆𝑗 ,𝑖 = {𝑥 |𝑡/2 < 𝑑𝑖𝑠𝑡(𝑥, 𝑐𝑗 ,𝑖) ≤ 2× 𝑡} (2.8)
where 𝑑𝑖𝑠𝑡() is the employed distance metric, and 𝑡 is the provided threshold.

To ensure the completeness of our final output, all outer partition records are stored to
be compared to new occurring centroids when a new workset is created.
Routing criterion. Similarly to the space partitioning stage, in workset formulation we
also employ a routing criterion to decide on routing records to the outer sets of worksets.
The reasoning behind this decision is again to avoid considering the same pairs of records
in two different worksets. However, due to the dynamic way of creating our worksets
we cannot employ the same criterion as in the space partitioning stage. That is because
the aforementioned criterion considers all worksets known a priori. Therefore we opt for
the simplest solution of routing records to the outer sets of a workset only if the id of
the workset is smaller than the id of the workset whose inner set contains the record. Of
course, as also discussed in [171], this routing scheme results in a skewed distribution of
the computation load to the worksets with the smaller ids. We try to compensate for our
decision through our load balancing scheme discussed later on.

Although the worksets are created within a space partition that is assigned to a specific
worker, they can be distributed to any of the available workers for the downstream operation
of the similarity computations. As a policy, we assign every newly created workset to
the same worker that it was created, in order to avoid shuffling overhead. However, the
ability to later re-assign a workset to any available worker is crucial for our load balancing
scheme discussed later.

2.7.6 Set Boundaries in Metric Space
Based on the metric space properties, the bounds for the inner and outer sets of a workset
are carefully chosen to ensure the correctness of the final output and, at the same time,
avoid as much as possible unnecessary similarity comparisons. For our inner sets, a bound
of half the provided threshold is the maximum bound which can ensure that all records
participating in an inner set are at a distance of at most the desired threshold. Thus it
allows us to avoid performing the actual comparisons to determine those matches. On
the other hand, the selected bounds for outer sets consider the existence of outliers and

2

30 2 Adaptive Distributed Streaming Similarity Joins

𝐼𝑛𝑐𝑜𝑚
𝑖𝑛𝑔	𝑟𝑒𝑐𝑜𝑟𝑑

										𝑟!
∈
𝑃"

𝐷
𝑜𝑒𝑠	𝑟! 	𝑏𝑒𝑙𝑜𝑛𝑔	𝑡𝑜	
𝑖𝑛𝑛𝑒𝑟	𝑜𝑟	𝑜𝑢𝑡𝑒𝑟	
𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛	𝑜𝑓	𝑃" ?

Calculate	all	distances	
from

	existing	w
orkset	

centroids	in	𝑃" .

Step	1
Outer

Include		𝑟!	 	to	the	𝐼𝑆",%
of	the	w

orkset
𝑊
",% 	w

ith	centroid	𝑐",%
.

Step	2

𝑦𝑒𝑠 D
oes

a w
orksetcentroid

exist in a distance from

𝑟!
less than half

the threshold?
𝑛𝑜

Create	a	new
	w
orkset

𝑊
",&'

(w
ith	centroid	𝑟!

and	include	𝑟!
to	its	

inner	set	𝐼𝑆",&'
(.		

𝑦𝑒𝑠

𝑛𝑜

Step	3
Step	4

Include	𝑟!	 to	the	
outer	sets	of	all	other	
w
orksetsthat	are	

w
ithin	a	distance	

tw
ice	the	threshold.	

Are	
all	w

orkset
centroids	in	distance	
greater	than	the
threshold?

Include		𝑟!	 	to	the	
closest	w

orkset
𝑊
",% 	as	outlier.

𝐼𝑛𝑛𝑒𝑟

Figure
2.3:W

orksetForm
ulation

W
orkflow

2.8 Adaptive Workset Balancing

2

31

ensure the desired completeness of the final output while attempting to keep the number
of computations as low as possible. Both bounds can be trivially proven using the metric
space’s triangle inequality property.

2.7.7 Similarity Computations
By creating worksets inside each space partition, we confine our comparisons and mini-
mize the number of similarity computations performed. We can decide which similarity
computations to perform by considering the type of the incoming records, e.g., an inner,
outer, or outlier record.

When the incoming records belong to the inner set, we can immediately emit as matches
all possible pairs of our incoming records and the other records of this inner set in our
state. Yet, we still need to perform the comparisons with the records in the outer set of
the workset as well as with the outliers assigned to workset. In the case of an incoming
record that belongs to the outer set of a workset, this record needs to be compared against
all records in the inner set of the workset and the outliers’ set assigned to it. The case of
an incoming outlier record is the most expensive since it needs to be compared against all
other records of the workset.

2.8 Adaptive Workset Balancing
In the streaming context, it is important that the algorithm adapts to the incoming streams
such that it continuously maintains good load-balancing properties. In this section, we
discuss our approach to adaptively load-balance the worksets at runtime. Four main factors
make the load balancing for similarity joins challenging: 𝑖) the quadratic complexity of
the similarity join problem, 𝑖𝑖) low latency requirements, 𝑖𝑖𝑖) the zero knowledge of data
distributions before execution, and 𝑖𝑣) the volatile nature of streams that can lead to concept
drift.
Similarity Joins are CPU-bound. Our early experiments showed that the similarity
computation is the heaviest task of our pipeline, i.e., similarity joins are CPU-bound. In the
rest of this section, we propose an approach that takes into account the existing partitioning
scheme and reduces the load imbalance by reassigning worksets to similarity computation
operators. More specifically, the goal of the balancing of worksets is to load balance the
similarity computations across a set of workers.

2.8.1 Migrating Worksets W/O Repartitioning
The workset formulation algorithm (Section 2.7) aims at forming self-contained worksets
in each partition, i.e., the worksets are the unit of computation, and any given workset
is sufficient to produce the similar pairs of the records assigned to those worksets. We
opted for creating self-contained worksets in order to be able to move them across workers
without very complex state migration procedures: intuitively, a given workset that incurs
very high computation cost can be moved to a worker that is less loaded.

As a result, the worksets can be easily redistributed to the available workers to reduce
load imbalance without influencing the completeness and correctness of the join results. At
the same time, balancing through reassigning only specific worksets ensures that we have
to migrate only specific parts of an operator’s state. In short, by minimizing load imbalance,
we minimize state migration and network costs. This allows us to achieve low response

2

32 2 Adaptive Distributed Streaming Similarity Joins

latency while adapting to streaming load spikes and stream concept drifts. In what follows,
we define the problem of load balancing by redistributing worksets on the fly across the
available workers.
Definition 2.11 (Load balancing based onworksets). Assume the set𝑅𝑡1

= {𝑟 |𝑟 ∈𝐴 or 𝑟 ∈

𝐵, 𝑎𝑛𝑑 𝑟 = (𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑟𝑒𝑐𝑜𝑟𝑑)} of streaming records received until the timestamp 𝑡1, a set of
worksets 𝑊𝑆𝑡1

that contain the streaming records 𝑅𝑡1
and a set of workers 𝑁 . Each worker

is assigned a subset of 𝑊𝑆𝑡1
, e.g. the worker 𝑛 is assigned the subset 𝑊𝑆

𝑛

𝑡1
. Let 𝐿𝑛

𝑡1
(𝑊𝑆

𝑛

𝑡1
)

be the workload of worker 𝑛 at timestamp 𝑡1 based on its currently assigned subset of
worksets 𝑊𝑆

𝑛

𝑡1
. Let 𝐷𝐼𝑡1 =∑ ∣ 𝐿

𝑛

𝑡1
(𝑊𝑆

𝑛

𝑡1
)−𝐿

𝑎𝑣𝑔

𝑡1
∣ be the degree of imbalance regarding the

distribution of workload on our set of workers 𝑁 . Find a new optimal distribution of
worksets to workers that minimizes the degree of imbalance 𝐷𝐼 and the migration cost to
reach this optimal distribution from the current distribution.

2.8.2 Workset-Balancing vs. Job-Scheduling
Recall that our worksets compose our most fine-grained data partitions and, at the same
time, self-contained computational units. Therefore, it is possible to think of a workset
as a computation job over a certain period of time. This observation allows us to link our
load-balancing problem to the classic job-scheduling problem across multiple processors.
However, the classic definition of job scheduling cannot be directly applied to a streaming
setting.

There is a multitude of work on job scheduling for computational grids and multi-
processor settings [71, 74, 175, 146, 39]. Specifically, the job rescheduling flavor of the
problem [42, 11] could be adapted to our workset load balancing problem. This can be
achieved as follows: each workset 𝑊𝑗 ,𝑖 can be seen as a job 𝐽𝑗 ,𝑖 with specific load 𝐿𝑊𝑗 ,𝑖

and
migration cost based on its size in bytes 𝑀𝑊𝑗 ,𝑖

, i.e., 𝑊𝑗 ,𝑖 ≡ 𝐽𝑖(𝐿𝑊𝑗 ,𝑖
,𝑀𝑊𝑗 ,𝑖

). Every similarity
computation operator can be seen as a processor, with the primary objective becoming
the minimization of the degree of imbalance. Note that the job rescheduling problem, and
thus our load balancing problem as well, is NP-hard [11, 42]. Due to its NP-hardness, all
existing algorithms for the job-rescheduling problem are approximations. Similarly, in the
following, we devise a greedy workset balancing algorithm.

2.8.3 The Workset Balancing Algorithm
Our workset balancing algorithm (listed in Algorithm 1) optimizes for the desired load
imbalance measure. The algorithm takes as input a set of overloaded workers, a set of
underloaded workers, and the average load, i.e., the target load across all workers. The
algorithm starts by going over all overloaded workers. For each of them, if it contains one
or more worksets with a load higher than the average worker load, we flag the workset
with the highest load as irremovable (line 5). Since these worksets have a greater load than
the average load of workers, moving them will not alleviate the load imbalance.

For all worksets in overloaded workers that are not flagged as irremovable, we calculate
the benefit of removing the workset from the worker it currently resides in. If the benefit
is positive, we add the workset to a priority queue, sorted descending on benefit. After
processing all worksets, we pick the workset with the maximum benefit from the priority
queue that is not yet included in the ignore list (a list initialized as empty and populated
during the algorithm) and flag it as the best workset (Lines 8-17). The next step is to find an
underloaded worker that can accept this workset. Therefore, for each underloaded worker,

2.8 Adaptive Workset Balancing

2

33

Algorithm 1 Workset Balancing Algorithm
Require: set of overloaded workers 𝑂, set of underloaded workers 𝑈 , average load 𝐿𝑎𝑣𝑔

Ensure: load balanced distribution 𝐷𝑛𝑒𝑤 of worksets to workers
1: ignore_list← []

2: best← 𝑛𝑢𝑙𝑙

3: over_benefits← priorityQueue(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ∶ benefit)
4: under_benefits← priorityQueue(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ∶ benefit)
5: irremovables← find_irremovables(𝑂,𝐿𝑎𝑣𝑔)
6: repeat
7: for 𝑜 ∈ 𝑂 do
8: for workset 𝑤 ∈𝑊𝑜 do
9: benefit← calculate_removal_benefit(𝑤,𝑊𝑜)

10: if benefit > 0 and 𝑤 ∉ irremovables then
11: over_benefits.put({benefit,𝑤})
12: end if
13: end for
14: end for
15: repeat
16: best← over_benefits.pop()
17: until best ∉ ignore_list or best is 𝑛𝑢𝑙𝑙
18: if best is not 𝑛𝑢𝑙𝑙 then
19: for 𝑢 ∈ 𝑈 do
20: benefit← calculate_addition_benefit(𝑤,𝑊𝑢)

21: under_benefits.put({benefit, 𝑢})
22: end for
23: repeat
24: optimal← under_benefits.pop()
25: until compute_load(optimal, 𝑢) < 𝐿𝑎𝑣𝑔

or optimal is 𝑛𝑢𝑙𝑙
26: if optimal is not 𝑛𝑢𝑙𝑙 then
27: assign_workset(best,optimal)
28: else
29: ignore_list.append(best)
30: end if
31: end if
32: until best is 𝑛𝑢𝑙𝑙

we calculate the benefit of adding the chosen workset to that worker and assign it to the
worker that brings the maximum benefit. If there is no worker that has a positive benefit,
we append the chosen workset in an ignore list (Lines 18-30). This procedure is repeated
until there is no candidate workset left to be removed from the overloaded workers (Line
32).
MigrationCosts. There have been efforts to formulate a concretemigration costmodel [131,
178]. In the context of streaming similarity joins, several factors affect the migration cost: a)

2

34 2 Adaptive Distributed Streaming Similarity Joins

stopping and restarting the streaming job, b) calculating the new partitioning, c) updating
the existing state, and d) moving the repartitioned data to the workers based on the new
partitioning. In this work, we only consider c) and d) and leave a) and b) for future work.
Since our workers share the same resources, only the size of the worksets we move affects
the migration cost. The benefit function calculates the benefit as the difference in the degree
of imbalance (DI), defined in Definition 2.11, between the current workset distribution
and the one occurring after a workset move. In order to include migration cost in our
algorithm’s model, we subtract from the calculated benefit the workset size multiplied by
a user-provided factor to negatively affect the calculated benefit that will be taken into
account.
Gathering Statistics. Notice that our workset balancing algorithm requires as input a
collection of statistics. By monitoring the main pipeline, we measure the load and the
latency for each worker, and the size and the load of the worksets assigned to each worker.
All statistics are collected over an application-specified monitoring window. The algorithm
requires an extra step of categorizing the workers as underloaded or overloaded based
on the desired average load of a worker, which, however, takes negligible time, even for
networks involving tens of thousands of workers.

2.9 Experiments
2.9.1 Performance Metrics
Previous works [174, 49, 108] in streaming similarity joins try to adapt existing metrics to
stream processing use cases. However, to accurately evaluate the performance of stream-
ing solutions, we need to employ performance metrics that adhere to the requirements
of streaming workloads. For example, using the total runtime duration of a streaming
similarity join operation as in [174, 49], is not suitable for a practical application involving
unbounded data streams. While [108] provides a more interesting per-timestamp runtime
measurement of the actual similarity join computation, this does not include an end-to-end
performance measurement of the pipeline.

We argue that tuple latency is a more suitable metric since it is strongly connected to the
natural requirement of stream processing for real-time results. We employ as tuple latency
the processing-time latency in windowed join operators from [94]. The processing-time
latency of a joined pair of tuples in a streaming similarity join is defined as the interval
between the maximum ingestion time of the involved tuples and its emission time from
the output sink.

A common metric in the existing literature is the duplication ratio of data partitioning.
The duplication ratio is defined as the average number of times a tuple is duplicated across
the available partitions. The duplication ratio shows the impact that the partitioning scheme
has on the input size. Therefore it also provides valuable insights into the additional memory
and storage resources needed to apply our partitioning. The higher the duplication ratio is,
the more redundant information is transmitted and stored.

Since the goal of this line of work is to reduce the number of computations performed,
we also employ a comparisons ratio. We define the comparisons ratio as the total number of
performed similarity computations over the number of joined pairs. This metric allows for
efficiency comparisons between the solutions.

2.9 Experiments

2

35

2.9.2 Datasets
In order to evaluate our proposed solution thoroughly and to understand its limitations,
we perform an experimental evaluation over synthetic datasets of various configurations.
Synthetic stream generators. We employ synthetic data to investigate in depth the
performance of both our partitioning and load balancing scheme under fully-controlled
conditions. In particular, we implemented a set of configurable stream generators to provide
streams of different velocities with records of varying dimensionality that follow different
probability distributions.

2.9.3 Experimental Setup
The experiments are conducted on a 3-node Kubernetes cluster with AMD EPYC 7H12
2.60GHz CPUs. We configure an Apache Flink cluster with a single job manager and a
dynamic set of task managers based on the parallelism of the running job. The job manager
and the task managers are deployed with 2 CPUs and 16GB of memory each. Apache
Kafka is used as the source and the sink of the Flink job. All generators feed the similarity
join job through Kafka. Minio is used as a state backend for Flink and as file storage
for complementary data. We employ vectors as input values and angular distance as our
metric for all experiments. We evaluate our load balancing and partitioning scheme based
on the aforementioned metrics. Since Flink does not provide any online mechanism for
state migration, to perform our load balancing, we stop the job with a savepoint, alter the
savepoint based on the new workset distribution using the state processor API, and restart
the job with the new savepoint.

2.9.4 Baseline: ClusterJoin
There is no native stream processing solution that performs similarity joins. Therefore, we
opt to adapt ClusterJoin to a streaming environment, and we include it in our experiments
as a baseline. ClusterJoin follows the inner-outer-paradigms and resembles our space
partitioning layer. However, it partitions the data into multiple virtual partitions, which
it later assigns to workers, in contrast to our one space partition per worker design. For
our experiments, we configure ClusterJoin to use 500 virtual partitions as suggested in the
original work [48]. For these virtual partitions, we select centroids like we select centroids
for our space partitioning layer.

2.9.5 Partitioning Performance
In what follows, we present S3J’s performance over synthetic data streams with various
properties. We first investigate how our stream partitioning performs against join queries
of different selectivities. Then, we experiment with different levels of parallelism. For both
experiments, we use synthetic data streams whose records follow a uniform distribution.
In this set of experiments, we do not impose any load balancing.
Varying selectivities. In this first series of experiments, we focus on the correlation
between the performance of our stream partitioning and the imposed query’s selectivity.
Although most of the existing literature targets various similarity thresholds, we opt for
join selectivity since it better describes the properties of the join query.

2

36 2 Adaptive Distributed Streaming Similarity Joins

All records
processed

All records
processed

Figure 2.4: 99% latency percentile per worker for varying selectivities. Each line represents a single worker (in
this case, 5 workers total). Incoming ratio 4000 records per second, Parallelism: 5, Uniform distribution.

We vary the selectivity through the similarity threshold while keeping the rest of the
parameters the same. For the experiment depicted in Figure 2.4, we consider two streams of
records of 2D values that follow the uniform distribution. Both streams have a rate of 2000
incoming records per second, which results in 4000 records per second total input rate, and
a duration of five minutes. A tumbling window of 1 minute of processing time is employed,
and the similarity job has a parallelism of 5. In this low parallelism setting, the partitioning
scheme struggles to partition the data evenly across the nodes for high-selectivity queries,
while for low-selectivity queries, it provides real-time latency results.

In comparison to our baseline, ClusterJoin, we observe a significant performance
improvement both in high and low selectivities. In the case of the 1% selectivity experiment,
the input rate is not sustainable for either approach. However, S3J outperforms ClusterJoin
significantly. First of all, we manage to retain a higher processing throughput of 6000
records per second on average, while ClusterJoin is throttled to only 4000 records per
second on average. As a result, we finish processing all records 200 seconds earlier than
ClusterJoin. S3J reaches max latency after more than 40 seconds while ClusterJoin maxes
out at 15 seconds. Notice, however, that this is a side effect of using the ingestion time
in order to measure latency and Flink’s backpressure mechanism. Although the load is
unsustainable, backpressure does not reach the source operators for S3J, and the ingestion
rate matches the input rate. As a result, records remain in S3J’s pipeline longer. On the other
hand, the backpressure is much higher in ClusterJoin and reaches the source operators,
resulting in a drop in the ingestion rate. The same also holds for the 0.5% selectivity
experiment. In the experiment of low selectivity of 0.1%, in contrast to ClusterJoin, S3J
manages to retain a sub-second latency and provide real-time results.

For these experiments, we also measure the duplication ratio. Table 2.2 summarises
our findings. S3J manages to keep the duplication ratio around 2x for all experiments and
selectivities. On the other hand, ClusterJoin’s duplication ratio grows fast as the selectivity
is increased. S3J’s fine-grained worksets manage to partition the data more efficiently
than the random virtual partitions of the adapted ClusterJoin. The lower duplication ratio

2.9 Experiments

2

37

Table 2.2: Effects of selectivity on duplication ratio and comparisons reduction.

Duplication Ratio Comparisons ratio
Selectivity S3J ClusterJoin S3J ClusterJoin

10% 1,96 Timeout 1,58 Timeout
5% 1,96 Timeout 1,65 Timeout
1% 1,94 6,17 1,77 9,70
0.5% 1,97 3,53 1,95 11,16
0.1% 1,92 1,49 5,82 24,51

results in less network traffic and fewer comparisons to be performed.
The comparisons ratio showcases the efficiency of S3J. As Table 2.2 shows, S3J for high

to medium selectivities manages to keep the numbers of performed similarity computations
below 2x the number of joined pairs. Compared to ClusterJoin, for all selectivities S3J has
a better comparisons ratio by 4x to 5x.

Varying parallelism. The parallelism of the job, i.e., the number of available workers,
is another important parameter. We consider again a pair of 2D streams whose values
follow the uniform distribution. However, we choose a low selectivity query and a higher
incoming ratio of 4000 records per stream per second (8000 records per second in total).
The streams have a duration of 5 minutes, and the processing happens in windows of 5
minutes. Figure 2.5 presents the effect of parallelism on the performance of our partitioning
solution. The results show that our partitioning can leverage higher parallelism effectively
and provide real-time latency results.

Compared to ClusterJoin, S3J manages to scale much more efficiently. Even with the
lowest parallelism, it manages to keep relatively low latencies and handle the entire load
without a trailing lag. On the other hand, ClusterJoin needs almost double the time to
process the entire load and has significantly worse latency performance. As we increase
parallelism, in contrast to ClusterJoin, S3J manages to harness the additional resources to
achieve low latency near real-time results.

The measurement of the duplication ratio suggests that higher parallelism leads to
higher record duplication for S3J. Based on Table 2.3, the duplication ratio of S3J grows
slowly as we add more workers. This growth is mainly attributed to the increase in space
partitions as more workers are added. Actually, our second layer of partitioning, i.e., the
workset formulation, manages to even reduce some of the duplicate records produced from
the space partitioning layer. On the other hand, ClusterJoin’s duplication ratio is unaffected
by the increase in parallelism. This is due to the fact that ClusterJoin partitions the incoming
records based on its virtual partitions and not the number of available workers.

The comparisons ratio showcases that S3J also benefits from parallelism in terms
of comparisons performed. As Table 2.3 shows, S3J effectively reduces the number of
performed comparisons as the parallelism increases. This behaviour is related to the
number of the workset centroids assigned to each space partition. As parallelism increases,
more space partitions are employed, resulting in fewer worksets per space partition and,
thus, fewer unnecessary comparisons per incoming record.

2

38 2 Adaptive Distributed Streaming Similarity Joins

All records
processed

All records
processed

All records
processed

Figure 2.5: 99% latency percentile per worker for varying parallelism. Each line represents a single worker (in
this case, 5, 10, and 15 workers accordingly). Incoming ratio 8000 records per second, Selectivity: 0.1%, Uniform
distribution.

Table 2.3: Effects of parallelism to duplication ratio and comparisons reduction.

Duplication Ratio Comparisons ratio
Parallelism S3J ClusterJoin S3J ClusterJoin

5 1,96 1,49 4,48 20,36
10 2,12 1,49 3,16 20,36
15 2,37 1,49 2,93 20,36
20 2,62 1,49 2,65 20,36

2.9.6 Benefits of Load Balancing
Our experiments on the effectiveness of our partitioning scheme (Figures 2.4 & 2.5) show-
cased that the performance of S3J can be improved by effectively balancing the load. In
Section 2.8, we propose a novel approach that addresses the balancing problem as a workset
balancing problem. In Figure 2.6, we show how this load balancing approach, on top of
our partitioning scheme, can benefit the performance of the similarity join task. The
experiment involves two streams following a uniform distribution with a total input rate
of 8000 records per second. The selectivity is set to 0.1%, and for the simplicity of the
presentation, a parallelism of 5 is selected. The processing is happening in windows of 1
minute. This configuration is similar to the experiment (top left) with a parallelism of 5
from Figure 2.5. We perform load balancing at the beginning of each window.

Our load balancing scheme positively affects the performance of the similarity join
job. First of all, the load balancing scheme progressively manages to reduce the maximum
latency within each window. Within 3 windows of processing, the load balancing scheme
reduces the maximum latency from 3 seconds in the first window (0-60s) and 3.5 seconds
in the second window (60-120s) to roughly 2 seconds in the last window (180-240s). At the
same time, the load balancing scheme successfully involves all available workers in the
processing. In Figure 2.5 (top left), where no load balancing is employed, there is a worker
(green line) that roughly receives any load throughout the experiment. We can identify the

2.9 Experiments

2

39

0 60 120 180 240
Time(s)

0.5

1.0

1.5

2.0

2.5

3.0

La
te
nc
y(
s)

S3J

Figure 2.6: 99% latency percentile per worker. Each line represents a single worker (in this case, 5 workers in
total). Uniform distribution, Incoming ratio 8000 records per sec, Selectivity: 0.1%, Parallelism: 5.

same behavior during the first window (0-60s) of the load balancing as well. However, after
the first balancing action, the worker receives worksets that have an evidently high load
and participates actively in the processing. Of course, we can also identify some limitations
of our approach. Although the load balancing scheme manages to bring 4 out of 5 workers
to similar loads, a worker still has a higher load than the rest (blue line). Responsible for
this behavior is a big, heavily loaded workset. As we describe in section 2.8, we flag big
worksets with a load higher than the average load of the workers as irremovable, and we
do not consider them for the load balancing. In future work, we plan to divide these big
worksets into smaller ones which we can then consider for load balancing.

2.9.7 Summary of experiments

Our experiments show that the partitioning scheme of S3J can retain sub-second latency for
low selectivities even with low parallelism. S3J’s partitioning can handle high selectivities
significantly more efficiently than the baseline and retain a higher processing throughput
for unsustainable input rates. It can scale efficiently with increasing parallelism and
leverages better than the baseline the available resources. In terms of duplication, S3J
retains an almost constant ratio of 2x as the selectivity increases, in contrast to the baseline.
As parallelism increases, the duplication ratio of S3J increases, but at a slower rate. As far
as comparisons reduction is concerned, S3J manages to drastically reduce the performed
comparisons, primarily thanks to its workset concept (Section 2.7) that allows S3J to emit
pairs of records belonging to the same inner set without actually performing the similarity
computation. The load balancing scheme manages to redistribute well the worksets and
their load to the workers. This results in gradually reducing the maximum latency as well
as equally involving all workers in the processing of the load, increasing their utilization.

2

40 2 Adaptive Distributed Streaming Similarity Joins

2.10 Conclusions
Current approaches for distributed streaming similarity joins are tailored solutions to
specific problems and are unable to adapt to concept drift or load imbalance. We presented
S3J, a generic approach for distributed streaming similarity joins that tackles the problem
in the general metric space and applies load balancing to adapt to load imbalances while
reducing the number of computations through smart partitioning that enables the load
balancing technique. Our empirical evaluation suggests that S3J can adapt efficiently to
load imbalances, scales effectively as the parallelism increases without enforcing high
duplication overhead, reduces the unnecessary similarity computations, and enables low
latency similarity join results for low selectivity queries.

3

41

3
Evaluating Checkpointing Protocols

for Streaming Dataflows
Stream processing in the last decade has seen broad adoption in both commercial and research
settings. One key element for this success is the ability of modern stream processors to handle
failures while ensuring exactly-once processing guarantees. At the moment of writing, virtually
all stream processors that guarantee exactly-once processing implement a variant of Apache
Flink’s coordinated checkpoints – an extension of the original Chandy-Lamport checkpoints
from 1985. However, the reasons behind this prevalence of the coordinated approach remain
anecdotal, as reported by practitioners of the stream processing community. At the same time,
common checkpointing approaches, such as the uncoordinated and the communication-induced
ones, remain largely unexplored.

This chapter addresses this gap by 𝑖) shedding light on why practitioners have favored the
coordinated approach and 𝑖𝑖) investigating whether there are viable alternatives. To this end, we
implement three checkpointing approaches that we surveyed and adapted for the distinct needs
of streaming dataflows. Our analysis shows that the coordinated approach outperforms the
uncoordinated and communication-induced protocols under uniformly distributed workloads.
To our surprise, however, the uncoordinated approach is not only competitive to the coordinated
one in uniformly distributed workloads, but it also outperforms the coordinated approach in
skewed workloads. We conclude that rather than blindly employing coordinated checkpointing,
research should focus on optimizing the very promising uncoordinated approach, as it can
address issues with skew and support prevalent cyclic queries. We believe that our findings
can trigger further research into checkpointing mechanisms.

This chapter is based on the following paper:

 George Siachamis, Kyriakos Psarakis, Marios Fragkoulis, Arie van Deursen, Paris Carbone, Asterios Kat-
sifodimos. 2024. CheckMate: Evaluating Checkpointing Protocols for Streaming Dataflows. In ICDE. IEEE. [151]

3

42 3 Evaluating Checkpointing Protocols for Streaming Dataflows

3.1 Introduction
Streaming queries constitute a crucial component of cloud applications, such as online
advertising, fraud detection, real-time analytics, and Internet of Things (IoT) use cases.
Streaming queries are commonly executed within multi-tenant distributed environments,
subject to varying service level agreements (SLAs) regarding fault-tolerance, processing
guarantees (e.g., at-least/exactly-once processing), and uptime.

The first generations of streaming engines delegated the responsibility of correctness
mechanisms to the application programmers [7, 17, 37]. With the advent of cloud computing,
modern streaming engines, such as Apache Flink [31], Google Millwheel [12], SEEP [63],
IBM Streams [46], Hazelcast Jet [73], and Microsoft Trill [35] have adopted more advanced
fault tolerance mechanisms, that achieve exactly-once processing guarantees [30, 152],
without the need for programmers to change the business logic to cater for failures.

At the moment of writing, there is consensus in the use of the classic coordinated
checkpointing protocol [38] and its variants for rollback recovery across production-
grade stream processing engines, following its initial undertaking in Apache Flink [30].
Coordinated checkpointing protocols leverage special messages, known as markers, to
capture a consistent checkpoint of the distributed global state in a coordinated fashion.
Once a failure occurs, a streaming pipeline can recover by rolling all operators back to
their latest checkpoint and resuming processing from an offset of the streaming input.

Despite its wide adoption, the coordinated approach has been criticized for two main
drawbacks. The first is that, in large deployments, the coordination can block operators
with a large number of inputs (e.g., joins or aggregates) during the marker alignment phase
[6, 2]. The second issue is that in case of backpressure [1, 5], the markers cannot travel
through the dataflow graph, and the checkpointing mechanism stalls, eventually halting
the processing of new messages.

At the same time, multiple approaches have been proposed in the past, stemming from
the original uncoordinated [24, 172] and communication-induced [15, 28, 83] checkpoints
(CIC). Uncoordinated protocols allow processes to take checkpoints independently, without
coordination via markers, but 𝑖) they require storing logs of in-flight messages, 𝑖𝑖) they need
to execute a recovery-line algorithm before recovery, and 𝑖𝑖) the number of messages that
need to be replayed upon recovery can be substantially large (depending on the recovery
line found). To alleviate these issues, the communication-induced family of protocols can
limit the rollback propagation during recovery by breaking the patterns that lead to invalid
checkpoints with forced checkpoints during normal execution.

Despite this convergence of the stream processing engines to the coordinated check-
pointing protocol, no substantial experimental evidence currently supports this system
design decision against other options (e.g., uncoordinated and communication-induced
checkpoints). This lack of experimental evidence can lead future streaming engines to
adopt the predominant coordinated protocol along with its drawbacks, while alternative
options that could behave better are ignored. Therefore, further investigation is crucial
to facilitate both research and practice toward classifying checkpointing protocols and
reasoning about the protocol choices that meet the needs of different workloads.

In addressing these gaps, this work is the first to revisit checkpointing for stream
processing from its first principles. First, we present and analyze the theoretical cost of
existing approaches. We then experimentally evaluate the three prominent checkpointing

3.2 Preliminaries

3

43

protocol families by implementing them in a testbed system built for the needs of this
evaluation. We push the protocols to their limits on diverse workloads, resulting in
various topologies and processing needs, including a cyclic query. Finally, we measure
the performance and the impact of the protocols both on failure-free execution as well as
under failure in both uniform and skewed workloads.
In summary, this chapter makes the following contributions:

• A comprehensive survey of three families of checkpointing approaches and the
conditions under which they can guarantee exactly-once processing.

• A theoretical account of the advantages and drawbacks of those three checkpointing
approaches in streaming dataflows.

• An open-source streaming dataflow testbed system that enables accurate and isolated
comparison of different checkpointing protocols.

• The first experimental evaluation of three checkpointing approaches on different
workloads using NexMark queries [163] and a custom query that causes cycles in
the dataflow graph.

• The first experimental evidence showing that:

– Under uniformly distributed workloads, the coordinated approach outperforms
all other approaches;

– Under skewed workloads, the uncoordinated approach outperforms the coordi-
nated one despite its expensive in-flight message logging;

– The uncoordinated approach in practice does not suffer from the (theoretical)
domino effect [59] in any of our experiments.

– The communication-induced approach is not competitive in any scenario due
to its large message overhead that it requires to avoid the (improbable, in our
experiments) domino effect.

The rest of the chapter is structured as follows. In Section 3.2, we summarise all the
necessary background knowledge required to understand checkpointing. Then, we discuss
in detail the benchmarked protocols (Section 3.3) and the system used for the benchmarking
(Section 3.4). In Section 3.7, we describe the experimental setup and present and comment
on our results. In Section 3.8, we discuss related existing works. Section 3.9 concludes this
chapter.
The code of CheckMate can be found online:
https://github.com/delftdata/checkmate
https://zenodo.org/doi/10.5281/zenodo.11652522

3.2 Preliminaries
In what follows, we discuss all the necessary concepts to understand better and evaluate
the checkpointing protocols, particularly processing semantics and consistency, in the face
of failures.

https://github.com/delftdata/checkmate
https://zenodo.org/doi/10.5281/zenodo.11652522

3

44 3 Evaluating Checkpointing Protocols for Streaming Dataflows

O1
O2

m1

O3
m2

RL1 RL2 RL3

Figure 3.1: Examples of valid recovery lines when in-flight messages are included in the global state.

3.2.1 Processing Semantics
Different applications have different processing needs. Stream processing engines and
their fault tolerance mechanisms provide specific processing semantics to accommodate
these needs even when a failure occurs. A recent survey [66] identifies three predominant
semantics with regard to processing: at-most-once, at-least-once, and exactly-once.

For data analytics, monitoring, or other applications that can tolerate incomplete data,
a stream processing engine that provides at-most-once semantics is sufficient. We define
at-most-once semantics as follows:

Definition 3.1 (At-most-once). A stream processing engine provides at-most-once pro-
cessing semantics when it ensures that each streaming operator will process each ingested
record once or not at all.

At-most-once semantics are the weakest guarantees a stream processing engine can
provide. This processing guarantee has been termed gap recovery in the past [91]. In case
of a failure, in-flight records can be lost and never be processed by downstream operators.

To accommodate applications that are intolerant of losing messages, streaming engines
support at-least-once semantics.

Definition 3.2 (At-least-once). At-least-once processing semantics are provided when
each ingested message is processed one or more times by each streaming operator.

By providing at-least-once semantics, a streaming engine can avoid data loss, but at the
same time, it is amenable to accounting for the same message more than once. For sensitive
applications, such as bank transaction handling or aggregations, duplicate processing can
cause serious anomalies. In such cases, exactly-once semantics are necessary.

Definition 3.3 (Exactly-once). Exactly-once semantics guarantee that each ingested mes-
sage is processed exactly once in each operator, i.e., any state changes that occur from
processing a message are reflected exactly-once on the checkpointed state.

Exactly-once semantics define strict guarantees, and they can ensure that processing
under failures is identical to failure-free processing. Note that there is a distinction [66]
between exactly-once processing and exactly-once output [47]. In exactly-once processing,
an external system consuming the output can still observe duplicates. For instance, in case
of fault recovery, the streaming system will resume processing after the latest checkpoint

3.2 Preliminaries

3

45

and produce some output that it had already produced (but not yet checkpointed the
corresponding state) prior to the failure.

In the rest of the chapter, we only consider exactly-once processing guarantees.

O1

O2
m1

O3
m2

RL

(a) Consistent state after recovery

O1

O2
m1

O3
m2

RL

(b) Inconsistent state after recovery

O1

O2
m1

O3
m2

RL

(c) Inconsistent state without capturing in-flight messages

O1

O2
m1

O3
m2

RL

(d) Consistent state by capturing in-flight messages

Figure 3.2: Cases of inconsistent and consistent state after recovery for stateful operators 𝑂1,𝑂2 and 𝑂3.

3

46 3 Evaluating Checkpointing Protocols for Streaming Dataflows

3.2.2 Consistency of Global State
Data stream execution is data-driven, where processing is orchestrated by messages being
sent and received between tasks, triggering local computation. Without loss of gener-
ality, a distributed stream execution consists solely of send and receive operations
corresponding to each message.

Modern distributed stream processing engines refer to the global state as the collection
of the states of all operators of a streaming pipeline. We refer to an operation (send
or receive) being part of the global state if it occurred before the respective state
acquisition. Furthermore, the state of the communication channels can also be included in
the global state. These messages are also known as in-flight messages or channel state. The
consistency [38] of the global state is of major importance here. In order to define what a
consistent state entails, we first define the concept of orphan messages:

Definition 3.4 (Orphan message). Given a global state checkpoint G, an orphan message
has been received prior to the receiver’s local checkpoint S in G, but it was not sent prior
to the sender’s checkpoint S’ in G.

The global state of a streaming pipeline becomes inconsistent in the presence of a
dropped or an orphan message [155, 29, 59]. Following the seminal processing model of
Chandy-Lamport [38], we define consistent global state as follows:

Definition 3.5 (Consistent global state). The global state 𝐺 of a streaming pipeline is
consistent if for each message 𝑚 :

• No Orphans: if receive(m) happened before the checkpoint acquisition, the
corresponding send(m) operation should also happen before the checkpoint.

• No Dropping: if send(m) happened before the checkpoint acquisition then either
receive(m) happens before the checkpoint or 𝑚 is added in the checkpoint as
an in-flight message.

In principle, consistency is straightforward to maintain and reason about under the
normal operation of a streaming system. In the face of failures, however, a streaming
system ought to roll back to a previously consistent global state in order to resume its
operation and regain consistency. At that point, the recovery mechanism attempts to
recover such a global state from the collection of existing operator checkpoints.
Recovery line. A recovery line consists of a collection of operator checkpoints that can
be used to recover the global state (Figure 3.1). Since not all candidate recovery lines
lead to a consistent state, the recovery mechanism must find the most recent recovery
line corresponding to a consistent state. Checkpoints that cannot belong to a consistent
recovery line are considered invalid.

In Figure 3.2, we provide example cases that illustrate when a recovery line and its
corresponding global state are consistent. Figure 3.2a showcases a consistent global state
since all messages are sent and received before the checkpoints that compose the recovery
line. In Figure 3.2b, message 𝑚2 is an orphan message since its side-effects are reflected in
the checkpoint of 𝑂3 but not in the checkpoint of the sender operator 𝑂2. Therefore, the
global state corresponding to this recovery line is inconsistent, and the recovery line is
unsuitable for recovering from a failure.

3.3 Checkpointing Protocols

3

47

Table 3.1: Summary of the features of the checkpointing protocols explored in Section 3.3

Blocking
(markers)

In-flight
Logging

Deduplication
Required

Message
Overhead

Independent
Checkpoints

Straggler
Stalls

Unused
Checkpoints

Forced
Checkpoints

Coordinated – – – – – –
Uncoordinated – – – –
Communication-induced – –

If in-flight messages (i.e., channel state) are not captured, then a different type of
global state inconsistency appears. In Figure 3.2c, operation send(𝑚2) occurs before 𝑂2

acquires its checkpoint, whereas, receive(𝑚2) occurs after 𝑂3 takes its checkpoint.
Using this recovery line without a captured channel state will result in never processing
𝑚2 at operator 𝑂3 and, therefore, dropping messages. In this case, to achieve a consistent
global state, capturing the channel state and replaying in-flight messages is necessary
(Figure 3.2d). To ensure exactly-once semantics when in-flight messages are replayed, some
form of message deduplication must be employed.

3.3 Checkpointing Protocols
In what follows, we describe the three main checkpointing protocols and discuss their core
ideas and some possible drawbacks. In table 3.1, we summarise the necessary mechanisms
employed for each protocol to ensure exactly-once processing and the main side effects
and features of each protocol.

3.3.1 Coordinated Aligned Checkpointing (COOR)
To the best of our knowledge, virtually every stream processing engine in production that
guarantees exactly-once processing, implements a variation of the coordinated checkpoint-
ing protocol [30, 73, 35, 46]. Typically, in stream processing engines that implement a
coordinated checkpointing protocol, the operators will block processing to allow the align-
ment of a checkpoint across the system. The checkpoint can be used to create a recovery
line in case of a failure. The most adopted version of such a protocol is the Chandy-Lamport
marker-based algorithm [38] and its adaptation for acyclic dataflow graphs [30]. In what
follows, we describe the core ideas of the protocol, and we illustrate its core functionality
with an example.

At its core, the coordinated aligned checkpointing protocol works as follows:

• A checkpoint round initiates at source operators by taking a checkpoint. After taking
its checkpoint, each source operator forwards a marker to all its outgoing channels
and continues processing.

• When an operator (excluding source operators) receives a marker from an incoming
channel, it blocks that channel and buffers the channel’s traffic.

• When an operator receives a marker from all its incoming channels, it takes a
checkpoint, unblocks processing in all incoming channels, and forwards a marker to
all its outgoing channels.

• When the markers reach the end of the pipeline, and the checkpoints are stored in
durable storage, the coordinated checkpoint round finishes.

3

48 3 Evaluating Checkpointing Protocols for Streaming Dataflows

S1

S2

J1

S3

J2
A1

S1

S2

J1

S3

J2
A1

S1

S2

J1

S3

J2
A1

S1

S2

J1

S3

J2
A1

(a) Initiate checkpoint round (b) 𝐽! takes a checkpoint while 𝐽"
blocks one channel waiting for
the other marker.

(c) 𝐽! forwards the marker, while
𝐽" takes a checkpoint.

(d) Join operator 𝐽" forwards the
marker and unlocks processing in
both channels.

: blocked channel : blocked channel

Figure 3.3: Example execution of the coordinated aligned checkpointing protocol. Messages are represented as
circles, and markers are squares. Different colors denote different coordinated rounds.

By blocking processing until all markers are received from the upstream operators,
we achieve the alignment of the checkpoints. This alignment guarantees exactly-once
processing without the need to capture in-flight messages and the channel state, as it
creates a frontier of processed messages through the use of markers.

Figure 3.3 illustrates an example protocol execution. The execution graph presented
consists of only the first couple operators of the pipeline. Operators 𝑆

{1−3}
are parallel

source operators, operators 𝐽1 and 𝐽2 are parallel stateful join operators, and operator 𝐴1 is
a stateful aggregation operator. A coordinated checkpoint round is initiated at the source
operators by taking a checkpoint. When a parallel source operator finishes with its own
checkpoint, it sends a checkpointing marker to all its outgoing channels (figure 3.3(a)) and
continues processing. In figure 3.3(b), operator 𝐽1 has received the marker from its sole
incoming channel and takes a checkpoint. On the other hand, operator 𝐽2 has received
a marker from source operator 𝑆3 and blocks processing in that channel while it waits
for the marker from 𝑆2. 𝐽2 takes a checkpoint when it has received all markers, while 𝐽1,
after taking the checkpoint, forwards a marker to its downstream operator and unblocks
processing in all the incoming channels (figure 3.3(c)). Finally, 𝐽2 also forwards a marker
and continues processing after taking a checkpoint (figure 3.3(d)). The markers will then
be received by 𝐴1, and the checkpointing process will continue in the same way until it
reaches the end of the pipeline.
Strengths. Compared to the in-flight message logging required in uncoordinated ap-
proaches (Section 3.3.2), the markers used by the coordinated protocol are lightweight and
are not affected by the message size. Additionally, since aligned checkpoints compose a
consistent global state, an algorithm that identifies the recovery line is not required.
Drawbacks. One important downside of marker circulation surfaces in cases of stragglers,
e.g., due to skewed workloads and/or backpressure. For example, if most of the load falls on
a single operator, its downstream operators would have to block the other channels, wait for
the straggler to finish processing, and then forward a checkpoint marker. Additionally, in
case of shuffling, the protocol needs to transfer as many markers as the parallel instances of
the receiving operators (one to each parallel instance). In essence, coordinated checkpoints
could take a substantial amount of time in complex topologies due to the markers having
to pass through the entire dataflow graph to be completed.

Another drawback of the coordinated protocol is that it does not support cyclic stream-
ing workloads out of the box. Cycles are an integral aspect of iterative computations such
as fixpoint calculations, which are common in graph queries [124]. Accounting for cycles

3.3 Checkpointing Protocols

3

49

Algorithm 2 Rollback propagation algorithm [172]
Require: all available checkpoints 𝐶𝑃 ordered by freshness for each operator, a check-

points graph
Ensure: a consistent recovery line
1: include in 𝑟𝑜𝑜𝑡_𝑠𝑒𝑡 the latest 𝐶𝑃 of each operator;
2: mark all 𝐶𝑃𝑠 in the 𝑟𝑜𝑜𝑡_𝑠𝑒𝑡 that are strictly reachable from any other 𝐶𝑃 in the 𝑟𝑜𝑜𝑡_𝑠𝑒𝑡;

3: while ∃𝐶𝑃.𝑚𝑎𝑟𝑘𝑒𝑑 ∈ 𝑟𝑜𝑜𝑡_𝑠𝑒𝑡 do
4: ∀𝐶𝑃.𝑚𝑎𝑟𝑘𝑒𝑑 ∈ 𝑟𝑜𝑜𝑡_𝑠𝑒𝑡 replace by the next unmarked 𝐶𝑃 from the same operator;
5: mark all 𝐶𝑃𝑠 in the 𝑟𝑜𝑜𝑡_𝑠𝑒𝑡 that are strictly reachable from any other 𝐶𝑃 in the

𝑟𝑜𝑜𝑡_𝑠𝑒𝑡;
6: end while
7: return 𝑟𝑜𝑜𝑡_𝑠𝑒𝑡

in the coordinated checkpointing protocol entails a) special handling of markers in order
to avoid deadlocks owed to the blocking of the cyclic input channel by a marker and b)
additional progress tracking mechanisms.

3.3.2 Uncoordinated Checkpointing (UNC)
The uncoordinated checkpointing (UNC) [172] protocol allows each operator to decide
individually when to take a checkpoint. In contrast to the coordinated approach, there are
no markers since there is no need for coordination, and the protocol can only provide at-
most-once processing semantics since the checkpoints only contain the operator state. Thus,
capturing the channel state between operators is necessary to provide stronger guarantees.
To do so, log-based recovery and upstream backup [22, 43] need to be implemented. Pairing
uncoordinated checkpointing with a log for keeping track of the channel state allows the
replay of messages after recovery, achieving at-least-once semantics. For the protocol to
achieve exactly-once semantics, message deduplication must be employed when replaying
messages from the message log.
Finding Recovery Lines. The freedom of taking checkpoints independently per operator
comes with a cost when recovering after a failure. Since the checkpoints are not coordinated,
we cannot simply use the most recent operator checkpoints as a recovery line, as it might
not correspond to a consistent global state. Therefore, we need to employ a recovery line
algorithm to find a suitable recovery line, i.e., one that provides a consistent global state
and has the minimum rollback distance. The algorithm for finding such a recovery line is
the rollback propagation algorithm [172], which requires a checkpoint dependency graph.
There are two approaches to creating such a graph, the rollback dependency graph [25] and
the checkpoint graph [172]. Both of these approaches result in the same recovery line, and
in this work, we opt for the checkpoint-graph [172] since it is more intuitive.

The checkpoint graph has checkpoints as nodes and directed edges between two
checkpoints 𝑐𝑖,𝑥 and 𝑐𝑗 ,𝑦 if:

• 𝑖 ≠ 𝑗 , i.e., the checkpoints belong to different operators, and there is at least one
orphan message that was sent from operator 𝑖 after checkpoint 𝑐𝑖,𝑥 was captured and

3

50 3 Evaluating Checkpointing Protocols for Streaming Dataflows

O1

O2

C⟨1,1⟩

m1

C⟨1,2⟩

m2

C⟨1,3⟩

m3 m4

⟨1,1⟩

C⟨2,1⟩ C⟨2,3⟩ C⟨2,4⟩C⟨2,2⟩

⟨1,2⟩ ⟨1,3⟩

⟨2,1⟩ ⟨2,2⟩ ⟨2,3⟩ ⟨2,4⟩

⟨1,1⟩ ⟨1,2⟩ ⟨1,3⟩

⟨2,1⟩ ⟨2,2⟩ ⟨2,3⟩ ⟨2,4⟩

⟨1,1⟩ ⟨1,2⟩ ⟨1,3⟩

⟨2,1⟩ ⟨2,2⟩ ⟨2,3⟩ ⟨2,4⟩

(a) Execution timeline and recovery line (b) Checkpoint Graph (execution example of Algorithm 1)

(step 2) (step 3)(step 1)

: Local Checkpoint : Recovery Line : Failure root set∈ reachable∈ invalid∈: orphan message indication

Figure 3.4: Example overview of Rollback propagation algorithm on a given execution timeline

was processed from operator 𝑗 before checkpoint 𝑐𝑗 ,𝑦 was taken.

• 𝑖 = 𝑗 and 𝑦 = 𝑥 +1, i.e., 𝑐𝑖,𝑥 and 𝑐𝑗 ,𝑦 are consecutive checkpoints of the same operator.

In Figure 3.4, we provide an example of a checkpoint graph and showcase step by
step how the rollback propagation algorithm uses the checkpoint graph to find a suitable
recovery line. To create the checkpoint graph, we include the IDs from channel state logs for
the last received and last sent messages alongside the checkpoints. We can identify orphan
messages using these IDs and add directed edges in the checkpoint graph (Figure 3.4(a)).
The rollback propagation algorithm uses this graph to find the recovery line. First, the
algorithm will include the last checkpoints of all operators in a set called the root set
(Figure 3.4(b) - step 1). The next step is to identify the nodes in the root set that are strictly
reachable from other nodes in the root set and mark them (Figure 3.4(b) - step 2). Then,
each marked checkpoint in the root set is replaced by the next most fresh checkpoint for
the same operator, and the newly added checkpoints are checked and marked if applicable
(Figure 3.4(b) - step 3). When the algorithm reaches a root set that does not include any
marked checkpoint, it returns this root set as the desired recovery line.
Strengths. The primary strength of any coordination-free protocol is that it does not block
waiting for markers from a coordinator node or its upstream operators, leading to lower
latency in the event of a skewed workload. Another benefit yet to be explored by literature
is the configurability of such an approach. For instance, the stateless, non-source operators
in the uncoordinated approach do not need to participate in the checkpointing pipeline,
which is not the case in the coordinated approach because they still would have to propagate
the markers. Furthermore, different operators can have different checkpoint intervals,
making them adaptive to the current system’s needs (e.g., a windowed aggregation operator
can checkpoint right after the aggregate is calculated in order to avoid storing the large
window’s contents).
Drawbacks. To provide exactly-once semantics, message logging is required. However,
message logging is costly and can considerably impact the system’s performance. Moreover,
since checkpoints are not aligned, some captured checkpoints may be rendered invalid
when looking for the appropriate recovery line (an invalid checkpoint cannot take part in
any recovery line). As seen in Figure 3.5, this problem could be aggravated when dealing
with cyclic queries, leading to a phenomenon known in the literature as the unbounded
domino effect [59], where during recovery, one checkpoint after the other is rendered invalid
leading to a considerable rollback distance or even starting from scratch. In Figure 3.5,

3.3 Checkpointing Protocols

3

51

Figure 3.5: Domino effect of invalid checkpoints on a cyclic query.

the first option would be a recovery line consisting of the checkpoints 𝐶<1,3>, 𝐶<2,3>, and
𝐶<3,2>; however, this is invalid due to the orphan message 𝑚6. The next option is the
recovery line consisting of 𝐶<1,2>, 𝐶<2,3>, and 𝐶<3,2> with again 𝑚4 making this invalid. 𝑚5

makes the 𝐶<1,2>, 𝐶<2,2>, and 𝐶<3,2> invalid. The domino effect continues with the rest of
𝑚3,2,1 leading to 𝐶<1,1>, 𝐶<2,1>, and 𝐶<3,1> being the only available recovery line option.

3.3.3 Communication-induced Checkpointing (CIC)
The communication-induced checkpointing (CIC) protocol is built on top of UNC and pro-
vides a loose coordination of the checkpoints in order to tackle the problem of the unbounded
domino effect. This loose coordination happens through encapsulating information related
to the protocol in the messages containing records across the pipeline. This protocol recog-
nizes two different types of checkpoints: a) local checkpoints (equivalent to uncoordinated
checkpoints), and b) forced checkpoints, which are inserted by the protocol to prevent the
domino effect.

Communication-induced protocols are tightly connected to Z-paths and Z-cycles [59]
based on the fact that a given checkpoint is invalid if and only if it is part of a Z-cycle. A CIC
protocol tries to detect Z-cycles and break them by forcing checkpoints before processing
messages that will lead to a cycle. Alvisi et al. [15] have shown that a CIC protocol can
handle cyclic communication patterns without the risk of a domino effect, but they may
introduce significant overhead.

The most complete and well-documented CIC protocols are BCS [28] and HMNR [83].
Initial tests indicate that the HMNR has better performance than BCS. Therefore, in this
work, we adopt HMNR as our CIC protocol. In short, in HMNR each operator keeps a
Lamport clock and a vector clock plus three boolean vectors with a length equal to the
number of operators participating in the pipeline. Every operator updates his Lamport
clock by increasing its value when it takes a new checkpoint. The vector clock ckpt stores
how many checkpoints have been taken by each operator from the perspective of the
current operator. A boolean vector sent_to keeps information about messages sent to other
operators since the last checkpoint of the current operator. Another boolean vector taken
stores the existence of Z-paths since the last known checkpoint. The last boolean vector
greater stores the information whether the operator’s clock is greater or not from each other
operator’s clock. The operator’s Lamport clock, the vector clock ckpt, the boolean vector
taken, and the boolean vector greater are piggybacked to every message. The protocol

3

52 3 Evaluating Checkpointing Protocols for Streaming Dataflows

uses all these structures to detect cycles and decide when to force a checkpoint. When an
operator receives a message, it checks if there is a message previously sent from it to the
sender and the sender’s clock is larger than its own or if there is a Z-path detected in the
current checkpoint interval of the sender operator. More details on the cycle detection and
the forced checkpoints can be found in the original paper [83].
Strengths. The primary strength of the CIC protocol is the forced checkpoints mechanism,
leading to a smaller rollback distance and, most importantly, eliminating the domino effect.
Drawbacks. The main drawback of a CIC protocol is the overhead it introduces. For big
and complex pipelines, the vector clocks and the boolean vectors can be rather large and
greatly impact the size of the messages flowing throughout the system.

3.4 Testbed System
We compared the checkpointing protocols in Styx [135], the backend of Stateflow [136].
For the requirements of our experiments, we developed all necessary protocol mechanisms
(e.g., message logging and coordination) and streaming operators (i.e., map, filter, window,
join, aggregates).

The Stateflow cluster consists of the typical architecture. A coordinator node is respon-
sible for scheduling/deploying the dataflow graph to workers and running the coordination
logic of the checkpointing protocols. Worker nodes execute the dataflow logic and take
checkpoints asynchronously based on the checkpointing algorithm. Finally, Stateflow uses
Apache Kafka as a replayable fault-tolerant source and Minio as a persistent state store for
the operator state checkpoints.

We choose Stateflow for the following reasons: i) unlike other streaming dataflow
systems such as ApacheFlink, Stateflow allows for cycles in the dataflow graph; ii) Stateflow
provides a sandboxed environment, where we can evaluate the different protocols in
isolation, without additional overhead; iii) Other systems (e.g., Apache Flink) base their
entire design on coordinated checkpoints – when implementing uncoordinated protocols
on Apache Flink, we realized that we needed to virtually rewrite the complete system itself.

3.5 Metrics
Although there is a significant body of work in benchmarking and evaluating stream
processing systems and fault tolerance (Section 3.8), no metrics are established to measure
the performance of a checkpointing protocol meaningfully. In this work, we argue that the
following metrics should be used to evaluate the performance of such a protocol.
End-to-end Latency. A standard metric to evaluate the performance of stream processing
systems is the end-to-end latency, i.e., the time it takes for a record to result into output in
the sink from the moment it is available in the input queue. Although latency is mainly
related to the deployed query and the underlying system rather than the checkpointing
protocol itself, it allows us to measure the impact of each protocol on normal execution,
as the overhead it introduces in terms of latency. We opt to measure the 50th and 99th
percentiles.
Sustainable Throughput. Another common metric in stream processing literature is
the maximum sustainable throughput [95]. The maximum sustainable throughput indicates

3.6 Streaming Query Workload

3

53

the maximum throughput that the system can handle for a long period of time without
provoking backpressure. Backpressure leads to constantly increasing latencies and an
average processing throughput that is lower than the rate of incoming messages. Similarly
to end-to-end latency, it allows us to assess the impact of the checkpointing protocol on
the overall performance.
Average Checkpointing Time. In this work, we measure the average checkpointing time,
i.e., the average time it takes for each protocol to take a checkpoint. The fundamental
differences between the protocols lie in checkpoint triggering and the additional informa-
tion that needs to be captured apart from the internal state. Therefore, measuring how
these differences affect the time it takes to capture a checkpoint is crucial. Also, as the
checkpointing time rises, a significant impact on the processing performance is expected.
Restart & Recovery Time. Restart time consists of all the time the system spends to
reload all the needed states and be ready to process data. The recovery time, on the other
hand, informs us how long it takes to recover from a failure. The measurement starts when
the failure is detected and finishes when the system has managed to return to normal
execution. The higher the recovery time, the bigger the impact of a failure. Recovery time
also encompasses restart time.
Invalid Checkpoints. Depending on the checkpointing protocol, invalid checkpoints may
exist, i.e., checkpoints that cannot be part of a consistent recovery line and, thus, cannot be
used for recovering after failure. The existence of invalid checkpoints can be problematic
as the state grows since a lot of expensive storage space is occupied by information that
will never be used. Moreover, invalid checkpoints can lead to significant rollback distance,
which will result in replaying and reprocessing a significant number of messages. Therefore,
the number of invalid checkpoints is a good indicator of the performance of a checkpointing
protocol. The fewer invalid checkpoints exist, the better a protocol is performing.
Message Overhead. Each protocol introduces messages and requires specific information
to be exchanged between workers or sent to the coordinator. Measuring the size of protocol-
related information that circulates the system during execution allows us to capture the
overhead that the protocol introduces in network usage. A higher percentage of protocol-
related information means that a significant portion of our network is used, and additional
serialization/deserialization CPU time is spent on information unrelated to processing.

3.6 Streaming Query Workload
To evaluate the checkpointing protocols, we employ four distinct queries from Nex-
Mark [163] and our adaptation of the cyclic query introduced in [36].
NexMark Queries. NexMark benchmark [163] simulates an e-commerce application
and provides streaming queries with different properties and needs. We selected the
following four queries, which allow us to measure the performance and the impact of the
checkpointing protocols in different conditions:

• Query 1 is a stateless map query that transforms the bid values. There is no shuffling.

• Query 3 implements an incremental stateful join, which joins persons with auctions.
It involves a complex topology and shuffling between operators.

3

54 3 Evaluating Checkpointing Protocols for Streaming Dataflows

Links
Source

Sources
Source

Join
⋈

Select
𝝈

Project
𝝅 Sink

Shuffle

1-1 1-1 1-1

Shuffle + Feedback loop

Figure 3.6: Execution graph of the reachability query.

• Query 8 employs a windowed join between users and auctions. We opt for a process-
ing time tumbling window; however, the type of the time window does not affect
the checkpointing protocol’s performance. It employs a complex topology, shuffling,
and the complexity of the windowing. To meaningfully measure the impact of the
protocols on the latency during execution, we implement a running window, i.e., the
processing is triggered on record arrival, and the window is cleaned when it expires.

• Query 12 employs a windowed count over bids. Similarly to query 8, we choose
the running version of a processing time tumbling window. The query performs
aggregation over time windows and includes minor shuffling.

Fundamental processing operators in modern stream processing engines [73, 31, 13]
include maps, joins, windows, and aggregates. The queries we choose represent those
fundamental operations and sufficiently cover the operations appearing in the NexMark
suite.

Cyclic Query. Most stream processing engines do not support cyclic queries. However,
there is existing research on cyclic or recursive queries in stream processing [36, 127, 124].
To further enable research on cyclic streaming queries and to encourage stream processing
engines to support such queries, it is essential to evaluate existing checkpointing protocols
with cyclic queries. For our evaluation, we adapt the reachability query employed by
FFP [36]. Given a static set of nodes, the goal of the query is to identify all reachable
nodes from the available source nodes based on the available directed links between the
nodes and provide the corresponding paths. The available source nodes and the directed
links between the nodes are not known a priori, but they are processed on the fly and are
temporal. Figure 3.6 illustrates the execution graph of the query. The query ingests two
streams, the directed links between the nodes and the source nodes. Directed links are
joined with sources that contain the starting node of the link as a reachable node. In the
select operator, we check if the end node of the directed link of a joined pair is contained
in the path of the source of the pair, and we discard such pairs. In the project operator, we
discard unnecessary information and create a new source with the same source node, the
end node of the link as a reachable node, and the path augmented by the pair’s link. The
new source is provided as output and recursively as input to the join operator. Finally, the
join operator can receive direct messages when a specific link or source node is unavailable.
In that case, it will remove every link or source affected from its state.

3.7 Experimental Evaluation

3

55

3.7 Experimental Evaluation

3.7.1 Evaluation setup
The experiments are conducted on a local cluster with AMD EPYC 7H12 2.60GHz CPUs
and 512GBs of memory. We deploy our benchmarking system using docker and docker-
compose. Each worker uses 1 CPU for processing and handles a single parallel instance
of each of the operators of the deployed pipeline. We do not use any limits on memory
usage. Apache Kafka is used as the source and the sink of our system. Minio is used as a
persistent storage for the checkpoints. We extend the NexMark generator from [93, 149]
to provide the input in the required format of the system, and we provide a generator that
creates source nodes and corresponding links for our cyclic query. We evaluate the three
checkpointing protocols using the NexMark queries and our cyclic query. We implement
and compare the vanilla versions of the protocols as described in Section 3.3 in order to
ensure a fair comparison of their core concepts that is not affected by optimizations tailored
to specific system properties.

3.7.2 Results
In what follows, we present the results of our experimental evaluation of the three check-
pointing protocols concerning the metrics for benchmarking checkpointing protocols that
we previously discussed in Section 3.5. For the NexMark queries, we distinguish two
settings: a balanced setting where the distribution of our input follows the uniform distri-
bution and a skewed setting where we leverage NexMark’s generator to provide different
percentages of hot items.
NexMark Queries. In practice, streaming systems are overprovisioned, ensuring a stable
execution that does not cause backpressure in case of input rate fluctuations or transient
system issues (e.g., garbage collection). In our experiments, we run all queries at 80%
of the maximum sustainable throughput that each protocol achieves for each query and
parallelism. We found 80% to be the most stable configuration. Each run lasts for 60 seconds
with 30 seconds of warmup. We introduce a failure on the 18th second of a 60-second run.
– Maximum Sustainable Throughput (MST). In Figure 3.7, we present the maximum sustain-
able throughput (MST) each protocol achieved normalized by the MST of the checkpoint-
free execution for each query. For Q1, Q8, and Q12, the coordinated approach outperforms
the rest and reaches the same MST as the checkpoint-free execution until we reach 70
workers. For 70 and 100 workers, we observe a slight decrease in MST for Q1 and Q12,
which results in approximately 90% of the checkpoint-free MST. The impact of the increase
in parallelism is more significant for Q8, which employs a join. The uncoordinated protocol
follows closely, achieving an MST around 10% lower than the coordinated approach in all
cases. On the other hand, the communication-induced protocol fails to keep up and, in
higher parallelism, can reach an MST lower than 50% of the checkpoint-free MST. None
of the protocols can keep up with the checkpoint-free execution for Q3. However, the
coordinated and uncoordinated protocols achieve an MST higher than 70% of the optimal
for Q3 in most cases while maintaining an MST of 50% of the optimal for the edge case of
100 workers. On the contrary, the communication-induced protocol fails to achieve an MST
higher than 50% for Q3 primarily due to the high message overhead it introduces. In terms

3

56 3 Evaluating Checkpointing Protocols for Streaming Dataflows

Q1 Q3 Q8 Q120.0

0.5

1.0
Th

ro
ug

hp
ut

5 workers

Q1 Q3 Q8 Q120.0

0.5

1.0
10 workers

Q1 Q3 Q8 Q120.0

0.5

1.0
30 workers

Q1 Q3 Q8 Q120.0

0.5

1.0

Th
ro

ug
hp

ut

50 workers

Q1 Q3 Q8 Q120.0

0.5

1.0
70 workers

Q1 Q3 Q8 Q120.0

0.5

1.0
100 workers

No checkpoints COOR UNC CIC

Figure 3.7: Normalized maximum sustainable throughput per query achieved by each protocol for different
parallelism.

Table 3.2: Ratio of message overhead with respect to an execution without checkpoints.

10 workers 50 workers
Protocol Q1 Q3 Q8 Q12 Q1 Q3 Q8 Q12
COOR 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x
UNC 1.00x 1.00x 1.00x 1.00x 1.00x 1.01x 1.01x 1.00
CIC 2.10x 1.82x 1.74x 1.79x 2.53x 2.58x 2.49x 2.58x

of MST, the coordinated approach outperforms the others, while only the uncoordinated
can remain competitive.
– Message Overhead. The overhead of the protocol-related information transferred through-
out the system can either be in the form of additional protocol messages and/or piggy-
backed information to process messages. The only protocol-related overhead for the
coordinated approach is the messages between workers and the coordinator when starting
and concluding a coordinated round, and the markers forwarded from the sources to the
pipeline sinks. The uncoordinated protocol requires the operators to send the metadata of
every checkpoint they take to the coordinator. Table 3.2 shows that the overhead that the
coordinated and the uncoordinated introduce is insignificant in all cases. On the contrary,
as explained in Section 3.3, additionally to the information required by the uncoordinated
protocol, the communication-induced protocol piggybacks to the process messages all
the information required to decide on forcing a checkpoint. The size of this information
depends on the number of total instances of the operators employed. As Table 3.2 indicates,
even for a parallelism of 10, the overhead can double the size of the messages that are
communicated between the workers and the coordinator, while for 50 workers, the message
size can reach up to 2.58x the size of messages of a checkpoint-free execution. Increased
message size does not only result in the need for higher network bandwidth but also
cripples the processing power of our system as it has to serialize and deserialize much
larger messages. Therefore, it significantly affects the maximum sustainable throughput
we can achieve using the communication-induced protocol, as shown in Figure 3.7.

3.7 Experimental Evaluation

3

57

Q1 Q3 Q8 Q12
100

101

102

Ch
ec

k.
 T

im
e

 (
m

s)
5 workers

Q1 Q3 Q8 Q12
100

101

102
10 workers

Q1 Q3 Q8 Q12
100
101
102

30 workers

Q1 Q3 Q8 Q12
100

101

102

Ch
ec

k.
 T

im
e

 (
m

s)

50 workers

Q1 Q3 Q8 Q12

101

102
70 workers

Q1 Q3 Q8 Q12

101

102
100 workers

Coordinated Uncoordinated Communication-induced

Figure 3.8: Average checkpointing time on different parallelisms.

– Average Checkpointing Time. We showcase the average checkpointing time for each
protocol for all settings in Figure 3.8. The uncoordinated and communication-induced
protocols have an average checkpointing time of a few milliseconds for all settings. The
coordinated approach requires a full checkpointing round to be completed to consider its
checkpoints as valid. Therefore, in contrast to the other protocols, it incurs an average
checkpointing time of up to two magnitudes higher for Q3, Q8, and Q12, which involve
shuffling. This is especially the case for Q3, which employs a complex topology and has a
high computational complexity, as well as for the higher parallelisms that result in a higher
degree of shuffling. The latency overhead caused by the increased checkpointing time in
Q3 is also visible in Figure 3.9 for 10 workers.
– Impact on the 50th and 99th percentile of latency. In Figure 3.9 and Figure 3.10, we
present the 50th and 99th percentiles per second for each protocol and query for different
parallelisms. Due to space limitations, we include 10, 30, and 50 workers in our discussion.
However, the other settings follow a similar trend. The 50th percentile latency allows us to
evaluate the mean performance of the protocols, while the 99th percentile highlights the
stragglers and the outliers. For the settings of 10 and 30 workers, the 50th percentile for
all protocols for the simpler queries Q1, Q8, and Q12 is similar before the failure occurred
and after the system recovered to a stable execution. However, for the 50-worker case, the
communication-induced protocol requires piggybacking additional protocol information
of significant size at every message. This results in a slight increase observed in the 50th
percentile, which is considerably higher in Q8 because it employs a costly join. As for Q3,
the coordinated approach suffers from latency spikes every time a checkpoint is taken,
which is more evident as the state grows and for the 10-worker case. The 99th percentile
follows the same patterns as the 50th percentile for the execution period prior to the
failure. Q3 employs an incremental join; the spikes and the increasing instability in latency
that we observe are expected and attributed to a combination of the query’s nature and
checkpointing.
– Recovery & Restart Time. Recovery time is the time passed from detecting the failure
until the system returns to normal and stable execution. Looking at the 50th percentile
(Figure 3.9), all protocols require around 10 seconds to recover to normal execution for

3

58 3 Evaluating Checkpointing Protocols for Streaming Dataflows

No checkpoints
Uncoordinated

Coordinated
Com

m
unication-induced

10
20

30
40

50
60

Tim
e (s)

10
2

10
3

Latency (ms)

NexM
ark Q1

10
20

30
40

50
60

Tim
e (s)

10
2

10
3

10
4

Latency (ms)

NexM
ark Q3

10
20

30
40

50
60

Tim
e (s)

10
2

10
3

Latency (ms)

NexM
ark Q8

10
20

30
40

50
60

Tim
e (s)

10
2

10
3

Latency (ms)

NexM
ark Q12

10 workers

10
20

30
40

50
60

Tim
e (s)

10
2

10
3

Latency (ms)

10
20

30
40

50
60

Tim
e (s)

10
2

10
3

10
4

Latency (ms)

10
20

30
40

50
60

Tim
e (s)

10
2

10
3

10
4

Latency (ms)

10
20

30
40

50
60

Tim
e (s)

10
2

10
3

10
4

Latency (ms)

30 workers

10
20

30
40

50
60

Tim
e (s)

10
2

10
3

Latency (ms)

10
20

30
40

50
60

Tim
e (s)

10
2

10
3

10
4

Latency (ms)

10
20

30
40

50
60

Tim
e (s)

10
2

10
3

10
4

Latency (ms)

10
20

30
40

50
60

Tim
e (s)

10
2

10
3

10
4

Latency (ms)

50 workers

Figure
3.9:50th

percentile
latency.The

black
dashed

verticalline
indicatesthe

m
om

entoffailure.

3.7 Experimental Evaluation

3

59

No
 c

he
ck

po
in

ts
Un

co
or

di
na

te
d

Co
or

di
na

te
d

Co
m

m
un

ica
tio

n-
in

du
ce

d

10
20

30
40

50
60

Ti
m

e
(s

)

10
2

10
3

Latency (ms)

Ne
xM

ar
k

Q1

10
20

30
40

50
60

Ti
m

e
(s

)

10
2

10
3

10
4

Latency (ms)

Ne
xM

ar
k

Q3

10
20

30
40

50
60

Ti
m

e
(s

)

10
2

10
3

10
4

Latency (ms)

Ne
xM

ar
k

Q8

10
20

30
40

50
60

Ti
m

e
(s

)

10
2

10
3

10
4

Latency (ms)

Ne
xM

ar
k

Q1
2

10
 w

or
ke

rs

10
20

30
40

50
60

Ti
m

e
(s

)

10
2

10
3

Latency (ms)

10
20

30
40

50
60

Ti
m

e
(s

)

10
2

10
3

10
4

Latency (ms)

10
20

30
40

50
60

Ti
m

e
(s

)

10
2

10
3

10
4

Latency (ms)

10
20

30
40

50
60

Ti
m

e
(s

)

10
2

10
3

10
4

Latency (ms)

30
 w

or
ke

rs

10
20

30
40

50
60

Ti
m

e
(s

)

10
2

10
3

Latency (ms)

10
20

30
40

50
60

Ti
m

e
(s

)

10
2

10
3

10
4

Latency (ms)

10
20

30
40

50
60

Ti
m

e
(s

)

10
2

10
3

10
4

Latency (ms)

10
20

30
40

50
60

Ti
m

e
(s

)

10
2

10
3

10
4

Latency (ms)

50
 w

or
ke

rs

Fi
gu

re
3.1

0:
99
th

pe
rc
en
til
e
la
te
nc
y.
Th

e
bl
ac
k
da
sh
ed

ve
rti
ca
ll
in
e
in
di
ca
te
st
he

m
om

en
to

ff
ai
lu
re
.

3

60 3 Evaluating Checkpointing Protocols for Streaming Dataflows

Q1 Q3 Q8 Q12

102

103
Re

st
ar

t
Ti

m
e

 (
m

s)
5 workers

Q1 Q3 Q8 Q12

102

103 10 workers

Q1 Q3 Q8 Q12

102

103
30 workers

Q1 Q3 Q8 Q12
102

103

Re
st

ar
t

Ti
m

e
 (

m
s)

50 workers

Q1 Q3 Q8 Q12
103

104 70 workers

Q1 Q3 Q8 Q12
103

104
100 workers

Coordinated Uncoordinated Communication-induced

Figure 3.11: Restart time after failure per query for each protocol on different levels of parallelism.

Q1 for a parallelism of 10, while very small differences are also observed for Q1 for 30
workers. For 50 workers, the communication-induced protocol requires around 10 more
seconds to recover due to the significant message overhead it introduces. For Q8 and Q12,
the communication-induced protocol performs marginally better than the uncoordinated
protocol for 10 workers, but it falls behind when the parallelism increases as it requires
around 10 more additional seconds to recover. In Q3, the communication-induced protocol
has a smaller recovery time than uncoordinated by up to 20 seconds for 10 and 30 workers,
resulting from replaying fewer messages due to forced checkpoints closer to the failure.
On the other hand, it requires 10 additional seconds for 50 workers. On average, the
coordinated protocol greatly outperforms the other protocols regarding recovery time,
mostly because the uncoordinated and communication-induced protocols have to replay
many messages.

The restart time (Figure 3.11) is part of the recovery time and reflects the time passed
from detecting the failure until the system is ready to restart processing. On average, the
coordinated protocol restarts faster than the other two protocols. This is especially evident
for a larger number of workers. For example, the restart process for the uncoordinated and
communication-induced protocols can take up to 10 times longer than the coordinated for
100 workers. The UNC and CIC protocols need to fetch and prepare the messages to replay
and, therefore, take more time to restart. On the other hand, finding the recovery line has
an insignificant cost.

– Invalid checkpoints. The percentage of invalid checkpoints over the total checkpoints
indicates how much the system rolled back. Low percentages show no domino effect and
better utilization of the checkpointed state. The coordinated approach does not introduce
any invalid checkpoints. Table 3.3 shows that for all the acyclic queries, the uncoordinated
and communication-induced protocols introduce very few invalid checkpoints and result
in similar total checkpoints. Overall, the uncoordinated and communication-induced
protocols result in more checkpoints than the coordinated protocol since every operator
independently decides when to take a checkpoint based on its worker’s clock.

3.7 Experimental Evaluation

3

61

Table 3.3: Total checkpoints and percentage of invalid checkpoints.

10 workers 50 workers
Total(Invalid) Total(Invalid)

Query UNC CIC COOR UNC CIC COOR
Q1 303(0%) 285(0%) 240(0%) 1437(0%) 1428(0%) 1200(0%)
Q3 455(4%) 471(3%) 400(0%) 2399(3%) 2517(4%) 2000(0%)
Q8 384(2%) 386(3%) 360(0%) 1924(2%) 1920(3%) 1800(0%)
Q12 282(3%) 282(4%) 240(0%) 1446(3%) 1451(3%) 1200(0%)

Skewed NexMark. Operating under a skewed workload usually results in workers strag-
gling to process the excessive load they are responsible for. Although operating under such
conditions is not preferable, avoiding it is not always feasible. Therefore, it is important to
investigate how the different protocols perform under skew. To measure the impact of skew
on the protocols’ performance, we employ Q3, Q8, and Q12 under different hot item ratios
provided by the NexMark generator. Q1 is not affected by skew as it involves non-keyed
operations. Therefore, we omit it. We run Q3, Q8, and Q12 on 10 workers at 50% and 80%
of the maximum sustainable throughput of the non-skewed execution of every protocol
without introducing any failure. Both throughputs result in straggling workers. However,
the latter stresses significantly more the system, resulting in fewer checkpoints taken
and higher sensitivity to skew. We consider these settings representative of a real-world
deployment, where overprovisioning is employed to handle spikes and unexpected skews.
We employed three different hot item ratios to increase the skew gradually, from 10% to
30%. The straggling workers heavily affect the 99th percentile of latency, so we focus on
the 50th percentile. We also report the average checkpointing time, as it is also heavily
affected by the skew and can significantly affect the latency.

Unlike the non-skewed experiments, as illustrated in Figure 3.12, the coordinated pro-
tocol performs the worst regarding 50th percentile latency and average checkpointing time
in both throughputs. With every increase in the hot items ratio, latency and checkpoint-
ing time increase by at least an order of magnitude for the lower throughput, while for
the higher throughput, even the lowest skew ratio has a significant impact on Q3. The
coordinated protocol is so heavily impacted by skew because not only are the straggling
operators slow to take their checkpoints, but they also delay propagating their markers
to downstream operators that block processing in other channels to wait for the delayed
markers. Meanwhile, both UNC and CIC keep both metrics relatively low. In summary, the
uncoordinated and communication-induced protocols can handle skew more effectively in
every case.

Similar to the non-skewed experiments, we perform another run using the 50% MST,
introducing a failure. Figure 3.13 shows the time needed to restart processing. Unlike
the non-skewed experiments, where the coordinated outperformed the other approaches,
the differences are mitigated under skew, and all protocols perform similarly. This is an
immediate result of the coordination under skew with the stragglers. Invalid checkpoints
remain the same under skewed and non-skewed conditions. We do not report recovery
time since none of the protocols managed to recover within the time frame for 20% and

3

62 3 Evaluating Checkpointing Protocols for Streaming Dataflows

10% 20% 30%
102
103
104

50
p

La
t.

 (
m

s) Q3

10% 20% 30%
102
103
104

Q8

10% 20% 30%
102

103

104 Q12

10% 20% 30%
Hot Items Ratio

100
101
102
103

CT
 (

m
s)

10% 20% 30%
Hot Items Ratio

100
101
102
103

10% 20% 30%
Hot Items Ratio

100
101
102
103

COOR UNC CIC No checkpoints

(a) 50% of the MST of the non-skewed execution.

10% 20% 30%
102
103
104

50
p

La
t.

 (
m

s) Q3

10% 20% 30%
102
103
104

Q8

10% 20% 30%
102
103
104

Q12

10% 20% 30%
Hot Items Ratio

100
101
102
103
104

CT
 (

m
s)

10% 20% 30%
Hot Items Ratio

100
101
102
103
104

10% 20% 30%
Hot Items Ratio

100
101
102
103
104

COOR UNC CIC No checkpoints

(b) 80% of the MST of the non-skewed execution.

Figure 3.12: 50th percentile latency & average checkpointing time under different hot items percentages.

30% skew, while for 10% skew, the performance is similar to the non-skewed experiments.
Cyclic query. For the cyclic query, we only evaluate the uncoordinated and communication-
induced checkpointing protocols. The aligned version of the coordinated protocol cannot
handle cyclic queries. That is because at least one operator would be waiting for a marker
that originates from itself, thus leading to a deadlock.

We evaluate the protocols with two parallelisms, 5 and 10 workers. We refrain from
using higher parallelisms since CIC is greatly affected by complex topologies and higher
parallelism, as shown in Figure 3.7. For both deployments, we use the same configuration
for our generator. It creates events with the following probabilities: 60% chance of creating
a new link, 15% of creating a source node, 20% chance of deleting an existing link, and 5%
of deleting an existing source node. The generator also assumes a static set of 1M nodes.
We evaluate the two protocols with an input rate of 75% - 80% of their MST for the query.
We run the experiments for 60 seconds and introduce a failure at the 48th second.

Regarding latency and maximum sustainable throughput, both protocols perform
similarly to a checkpoint-free execution; therefore, we omit these metrics. We present the
average checkpointing time, the recovery time, and the number of invalid checkpoints

3.7 Experimental Evaluation

3

63

10% 20% 30%
Hot Items Ratio

103

104

Re
st

ar
t

Ti
m

e
 (

m
s)

Q3

10% 20% 30%
Hot Items Ratio

102

103

104
Q8

10% 20% 30%
Hot Items Ratio

102

103

104 Q12

COOR UNC CIC

Figure 3.13: Restart time after failure per query in the presence of skew.

Table 3.4: Average checkpointing time (CT), restart time (RT), and invalid checkpoints (IC) for the cyclic query.

Uncoordinated Communication-induced
#Workers CT RT IC CT RT IC

5 0.01 ms 620 ms 1.4% 2.73 ms 347 ms 1.7%
10 1.38 ms 344 ms 1.4% 8.39 ms 399 ms 1.6%

in table 3.4. Regarding average checkpointing time, the uncoordinated protocol is faster
than the communication-induced protocol since the communication-induced protocol
requires checkpointing additional protocol-related information apart from an operator’s
state. However, the difference between the two measurements is practically insignificant.
The communication-induced protocol required less time to restart after a failure for a
parallelism of 5 workers, as it forced checkpoints that led to fewer messages being prepared
to be replayed. For 10 parallel workers, the uncoordinated protocol restarts slightly faster
than the communication-induced protocol, although the difference is insignificant. Based
on the literature and the core characteristics of both protocols, the uncoordinated protocol
was expected to introduce many invalid checkpoints and lead to a domino effect. Although
this might still hold in some extreme cases, our experiments show that both protocols
unexpectedly share very similar percentages of invalid checkpoints for both parallelisms.
Neither protocol outperforms the other when employed on top of cyclic queries in any
meaningful aspect, and the uncoordinated protocol does not introduce a domino effect.

Summary. In our experiments, we explore three different cases: the NexMark queries
with a uniformly distributed workload, the three more complex NexMark queries, i.e.,
Q3, Q8, and Q12 for a skewed input, and a cyclic query. In the first case, the coordinated
approach outperforms the rest regarding latency, recovery time, and maximum sustainable
throughput but has a significantly higher checkpointing time. Surprisingly, in contrast to
the theoretical analysis, although parallelism and shuffling impact the checkpointing time
of the coordinated protocol, they hardly affect the overall performance and only result in
mild spikes in latency when a checkpoint is taken. Additionally, the uncoordinated protocol
remains competitive in all queries and parallelisms. However, under skewed inputs, the
uncoordinated greatly outperforms the coordinated one, which suffers both in terms of
latency and checkpointing time. For the cyclic query, surprisingly, the uncoordinated
does not showcase an increased number of invalid checkpoints (e.g., a domino effect) and
performs slightly better than the communication-induced.

3

64 3 Evaluating Checkpointing Protocols for Streaming Dataflows

3.8 Related Work
This section presents the related work regarding benchmarking for stream processing
systems and experimental evaluation of fault tolerance in stream processing.
Benchmarking for stream processing. Linear Road [18] is one of the first benchmarks
proposed for stream processing that simulates a trafficmonitoring application and evaluates
the benchmarked solution in terms of latency, throughput, and accuracy. CityBench [14]
and RioTBench [147] are real-time analytics benchmarks that employ real-world Internet
of Things (IoT) data and extend the evaluation using metrics such as memory and CPU
utilization and completeness of query results. SparkBench [106] is tailored to Apache Spark
and targets CPU and memory utilization, network and disk I/O, job execution time, and
throughput. NEXMark [163] is a widely adopted benchmark, also extended by Apache
Beam [4], represents an e-commerce application, and provides streaming queries that cover
all the fundamental processing workloads.
Experimental evaluation of fault tolerance. StreamBench [115] employs seven work-
loads on Spark and Storm and performs an evaluation focusing on throughput and latency.
Qian et al. [137] evaluate fault tolerance, including additionally Samza and Kafka. However,
their evaluation lacks representative workloads as they only consider a simple workload
that consumes input and performs no operations.

3.9 Conclusions
In this chapter, we surveyed the three checkpoint protocol families for fault-tolerance in
stream processing and discussed the theoretical advantages and drawbacks of each one of
them. We developed an open-source testbed system that allows for isolated comparison
of the approaches and performed a thorough experimental evaluation. While our experi-
ments empirically confirmed the reasons behind the universal adoption of the coordinated
approach, they also highlighted cases (e.g., skewed input) where the uncoordinated ap-
proach shows more robustness and better performance. Based on these results, we urge the
research community to research the uncoordinated approach further since even a "vanilla"
implementation of it was proven to perform well in uniformly distributed workloads, and
it is the only viable solution for skewed workloads.

4

65

4
Evaluating Stream Processing

Autoscalers
While the concept of large-scale stream processing is very popular nowadays, efficient dynamic
allocation of resources is still an open issue in the area. The database research community has
yet to evaluate different autoscaling techniques for stream processing engines under a robust
benchmarking setting and evaluation framework. As a result, no conclusions can be made
about the current solutions and problems that remain unsolved. Therefore, we address this
issue with a principled evaluation approach.

This chapter evaluates the state-of-the-art control-based solutions in the autoscaling area
with diverse, dynamic workloads, applying specific metrics. We investigate different aspects
of the autoscaling problem as performance and convergence. Our experiments reveal that
current control-based autoscaling techniques fail to account for generated lag cost by rescaling
or underprovisioning and cannot efficiently handle practical scenarios of intensely dynamic
workloads. Unexpectedly, we discovered that an autoscaling method not tailored for streaming
can outperform others in certain scenarios.

This chapter is based on the following papers:

 George Siachamis, Job Kanis, Wybe Koper, Kyriakos Psarakis, Marios Fragkoulis, Arie Van Deursen and
Asterios Katsifodimos. 2023. Towards Evaluating Stream Processing Autoscalers. In SMDB (ICDEW). IEEE,
95-99. [149]

 George Siachamis, George Christodoulou, Kyriakos Psarakis, Marios Fragkoulis, Arie Van Deursen and
Asterios Katsifodimos. 2024. Evaluating Stream Processing Autoscalers. In DEBS. Association for Computing
Machinery, 25–36. [148]

4

66 4 Evaluating Stream Processing Autoscalers

4.1 Introduction
A plethora of applications utilize services provided by cloud computing vendors with a
variable demand for resources over time. Thus, the vendors have to prepare their platforms
for a highly dynamic allocation of resources, depending on the configurations set by users.
Furthermore, cloud platforms offer pay-per-use pricing models so that applications only
pay for the resources they actually consume. To tackle this multi-conditional problem, the
resources should be able to upscale and downscale elastically, adapting to the dynamic
demand of the applications.

Most of the widely adopted stream processing engines (SPEs) were originally developed
for deployment on clusters of fixed resources. These SPEs provide limited autoscaling
capabilities and require substantial operational effort to adapt to changes in needs and
workloads. An operations team has to always monitor the performance of the deployed
system or application, estimate the required resources, decide whether to scale, and perform
a manual rescaling. This process is time-consuming and offers slow reactions to workload
changes with serious performance implications.

To provide automated solutions, specialized autoscalers have been developed to equip
SPEs with the missing self-managing capabilities. However, it remains unclear how these
autoscalers perform in different practical scenarios due to the absence of a proper com-
parison framework. We argue that without a principled and configurable experimental
analysis, it is doubtful that these autoscalers will have the desired impact on modern stream
processing engines.

Identifying the difference in resource demand is a critical point of this problem. The
shift in demand can be identified by monitoring the underlying infrastructure. Autoscaling
methods can vary in terms of problem modeling, heuristics, parameters, provisioning
metrics, granularity, and performance [139, 114]. Furthermore, the more fine-grained
the rescaling actions can be, based on the operators employed in the pipeline, the better
an autoscaler will adjust the resources to the workload patterns. The most prevalent
categories of autoscalers include reactive, such as threshold-based [81, 87], reinforcement
learning [112, 54], queue-based [67, 111], control-based [93, 65] and proactive solutions, like
time series forecasting [113, 21].
Contributions. In this work, we thoroughly investigate the existing control-based au-
toscaling solutions for SPEs and provide a concrete set of metrics, queries, and workloads
to evaluate them principally. We focus on control-based solutions due to their versatility,
their simplicity and the lack of training requirements. In short, the contributions presented
in this chapter are the following:

• We stress the importance of extensive experimental evaluation of autoscalers for
stream processing.

• We reproduce state-of-the-art autoscalers for stream processing under a common
framework.

• We extend the autoscaling solutions operating on the deployment level to rescale
on an operator level to ensure that the resource allocation will harmonize with the
demand.

4.2 Background

4

67

• We extend the experimental evaluation of the state-of-the-art control-based autoscal-
ing solutions with heavily dynamic workloads, and we establish important metrics
for evaluating autoscaling. We present our experimental results over diverse queries.

• We reach a series of interesting conclusions which, in our opinion, will spark addi-
tional research in the area:

– The design choices of each operator heavily influence their performance and
their ability to adhere to different objectives.

– General-purpose autoscalers can perform better for stateless queries than the
evaluated solutions specifically tailored to stream processing.

– The evaluated autoscalers struggle with complex stateful queries under dynamic
workloads.

– The stop-and-restart state migration process of current SPEs hinders the per-
formance of autoscalers that do not account for the lag generated during the
rescaling action.

All the resources are publicly available:
https://github.com/delftdata/espa-autoscaling.git
https://zenodo.org/doi/10.5281/zenodo.11652756
Outline. In Section 4.2 we present preliminaries and necessary notation. Section 4.3
reviews autoscaling techniques and benchmarks relevant to our work. In Section 4.4, we
present in detail autoscaling solutions, which we evaluate in this work. In Section 4.5, we
describe the metrics, workloads, and queries used for this evaluation. Section 4.6 includes
our experimental evaluation. In Sections 4.6.5 and 4.7, we discuss our key findings and
limitations, highlight open challenges, and share the lessons we learned, concluding the
chapter.

4.2 Background
In this section, we dive into the autoscaling process and discuss the necessary concepts to
discuss the selected autoscalers.

4.2.1 Autoscaling Process
The process of autoscaling resembles the MAPE loop from control theory. As depicted in
Figure 4.1, the first step includesmonitoring of a stream processing job and acquiring all the
metrics needed both for the evaluation of its performance and for the decision to perform
rescaling actions. Then, the analysis step takes place, where we evaluate the job’s current
state and calculate the job’s needs to adhere to the enforced agreements. The analysis
outcome is then used from the planning step to decide on the proper rescaling actions.
The goal is to satisfy the calculated needs while minimizing the resources employed. The
last step is executing the devised plan. The monitoring API of the SPE or any applicable
monitoring tool is usually responsible for retrieving the metrics, while execution usually
falls on the SPE and its rescaling mechanism. The analysis and planning steps are handled
from the autoscaler.

https://github.com/delftdata/espa-autoscaling.git
https://zenodo.org/doi/10.5281/zenodo.11652756

4

68 4 Evaluating Stream Processing Autoscalers

Autoscaler

SPE's
Monitoring API

SPE's rescaling
mechanism

Analyze

Monitor

Plan

Execute

Figure 4.1: MAPE loop for stream processing autoscaling

4.2.2 Common notions
Workers & Operators. In this work, we use Apache Flink as our SPE. We choose Flink
among other SPEs since it is the current state-of-the-art and the most widely adopted
system in production while providing all the mechanisms expected by the autoscalers.
Apache Flink refers to workers as task managers. By default, a task manager runs multiple
operators that share its resources. However, we have configured Flink to isolate operators
and assign a single operator to each task manager.
Back pressure. Back pressure is a rate control mechanism employed by many SPEs. When
an operator cannot handle the input rate, the system uses the back pressure mechanism to
regulate the output rate of the upstream operator. The backpressure can be propagated up
to the source operator and the input queue.
Lag. Lag is defined as the number of unprocessed records waiting in the input queue or
the operator buffers.
Elasticity. Elasticity in cloud computing is the system’s ability to dynamically adjust the
resource allocation to evolving workloads transparently. The system’s cost is optimized by
aligning resource allocation with actual demand.

4.3 Related Work
In this section, we discuss the related work on autoscalers specifically designed for stream
processing and the available stream processing benchmarks.
Threshold-based. In [81], threshold-based rules are shown to boost performance when
applied on individual hosts but not on the entire system. The distributed stream processing
engine in [87] supports system scaling at run-time. The proposed autoscaler uses threshold-
based rules to test the scaling capabilities of the system.
Reinforcement Learning. Heinze et al. [81] also propose a reinforcement learning
approach that can result in high performance while minimizing the initial configuration
costs. This problem is further addressed in [82], where an online parameter optimization

4.3 Related Work

4

69

technique is proposed, which detects changes in the workload pattern and adapts the scaling
policy accordingly. Lombardi et al. [112] propose ELYSIUM, an autoscaler that optimizes
resource consumption considering the trade-off between horizontal and vertical scaling. In
another work, Lombardi et al. [113] propose PASCAL, a general-purpose autoscaler based
on reinforcement learning. A proactive approach forecasts incoming workloads, while
a profiling system estimates the optimal provisioning. Doan et al. [54] propose a fuzzy
deep reinforcement learning method for autoscaling streaming architectures. Although
effective, the parameter tuning of the method is a non-trivial task. Cardellini et al. [33]
propose an autoscaler for stream processing in a decentralized environment. It consists of
two reinforcement-based learning approaches on a two-layered hierarchical structure for
handling each operator in the system individually.

Queue-based. Lohrmann et al. [111] propose a generalized Jackson network, allowing for
more precise performance estimations. The scaling decision is determined by comparing
various resource allocations. Similarly, Fu et al. [67],[68] propose DRS to capture the
impact of provisioned resources using a queuing-theory-based autoscaler. [21] propose
an autoscaling method for distributed stream processing in geo-distributed environments.
A performance model decides which geo-distributed servers need additional resources to
optimize the maximal sustainable throughput of the system.

Control-based. Gedik et al. [72] proposed one of the first autoscalers specifically designed
for distributed stream processing engines (SPEs) with stateful operations support. Floratou
et al. [65] propose a framework to create self-regulating streaming systems using scaling
policies based on the back-pressure status of the system. A self-adaptive processing graph
was introduced in [85], which divides the workload of overloaded operators over multiple
replicas. Using a control algorithm, the topology can be reactively and proactively scaled,
improving the performance and resource efficiency of the system. Kalavri et al. [93]
propose DS2, a control-based autoscaler for distributed stream processing. The authors
introduce true processing and output rate notions and estimate the optimal parallelism for
every operator in a single iteration. Mencagli et al. [121] propose a two-fold autoscaling
method based on adaptive scheduling techniques for the short-term spikiness, while a
fuzzy logic controller handles the long-term rate variability. Liu et al. [110] develop a
profiling model to capture the impact of provisioned resources on the performance and
scale the application accordingly. Varga et al. [165] propose two custom metrics combined
with Kubernetes’ out-of-the-box autoscaler HPA [3] for scaling SPEs.

Benchmarking. NEXMark [163], later extended by Beam [4], is a streaming benchmark
that includes a set of analytical queries on streaming data from an online auction platform.
Linear Road benchmark [19] simulates a toll system for a fictional urban area. The system
monitors traffic and supports operations on live and historical data. Another benchmark on
traffic sensor analytics is OSPbench [164]. SmartBench [116] focuses on querying IoT data
derived from a smart building monitoring system. The benchmark performs a diverse set
of temporal and spatial queries. SparkBench [107], a benchmark focused on Apache Spark,
emphasizes on popular Spark applications, including machine learning, graph computation,
SQL query and streaming. Analogously, ESPBench [84], use multiple types of data to test
workloads of varying complexity (e.g. filtering, machine learning). DSPBench [27] covers
multiple streaming scenarios with 15 different benchmark workloads. Yahoo Streaming

4

70 4 Evaluating Stream Processing Autoscalers

Benchmark (YSB) [44] uses an advertisement campaign simulation focusing on relational
algebra operations, including filtering, projections and joins. StreamBench [116] generated
streams from real-time web log processing and network traffic monitoring seeds. The
operational workload varies in complexity and scenarios (e.g. performance, fault-tolerance).

4.4 Control-based Autoscalers
In this section, we delve into the core concepts of the selected autoscalers and how we
extended some of them. For our evaluation, we select the state-of-the-art DS2[93] and
Dhalion[65]; these solutions are easily deployed and widely accepted by the community.
We also consider Horizontal Pod Autoscaler [3], a solution applied to a commercial product.
Finally, we employ the metrics suggested by Varga et al. [165] to extend HPA towards a
solution more tailored to stream processing.

4.4.1 Dhalion
Dhalion [65] is a framework that provides self-regulating capabilities to underlying stream
processing systems that employ a backpressure mechanism to perform rate control. It
utilizes user-defined policies to handle performance issues related to different underlying
causes, such as load skew, slow instances, and provisioning. In this work, we are only
interested in its proposed policy for autoscaling. The policy distinguishes two cases: an
overprovisioning and an underprovisioning case.
Overprovisioning. For an operator of a running job to be considered overprovisioned,
two conditions must hold: (a) there is no backpressure anywhere in the pipeline, and (b)
the input queue of the operator has a length of almost zero. For each operator considered
overprovisioned, new parallelism is calculated using a provided scale down factor.
Underprovisioning. If there is any backpressure along the pipeline, the job is considered
to be in an unhealthy state and underprovisioned. To resolve the issue, the first step is
to identify the operator which is the root of the backpressure. Then, a scale up factor is
calculated for this operator based on the amount of time the job used to process the input
normally and the amount of time backpressure occurred over the monitoring window. The
current monitoring window is denoted as 𝑤𝑖. More precisely, the scale up factor is provided
by the following formula:

𝑠𝑐𝑎𝑙𝑒𝑈𝑝𝐹𝑎𝑐𝑡𝑜𝑟 =

𝑏𝑎𝑐𝑘𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑑𝑇 𝑖𝑚𝑒𝑤𝑖

𝑛𝑜𝑟𝑚𝑎𝑙𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇 𝑖𝑚𝑒𝑤𝑖

(4.1)

As we consider Kafka as our source, we need to scale up/down Flink’s KafkaSource
operators. Since there is no backpressure information available for these operators, we
decided to use the increase of lag noticed in Kafka as an indicator of backpressure caused by
the KafkaSource operators. We denote as pendingRecordsRate, the average lag increase per
second, and the average number of records consumed per second as consumedRecordsRate.
Finally, the scale up factor is calculated as:

𝑠𝑐𝑎𝑙𝑒𝑈𝑝𝐹𝑎𝑐𝑡𝑜𝑟𝐾𝑆 =

𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝑅𝑎𝑡𝑒𝑤𝑖

𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝑅𝑎𝑡𝑒𝑤𝑖

(4.2)

4.4 Control-based Autoscalers

4

71

We gather the needed metrics using the monitoring API of Flink and Prometheus.
Since Flink does not report the input queue size of each individual operator, we use the
percentage of input buffers used to decide on the lag in the input queues.

4.4.2 DS2
In contrast to Dhalion, which scales each operator independently, DS2 [93] attempts to
combine the scaling of all operators in a single step by leveraging the topology of the
streaming query. To do so, it introduces the notions of useful time, true processing rate,
and true output rate. Useful Time is the time spent by an operator in (de)serializing and
processing records. True processing rate is the number of records an operator processes per
unit of useful time, while true output rate is the number of records an operator outputs
per unit of useful time. Based on these notions, DS2 calculates progressively the optimal
parallelism of each operator 𝑜𝑖 as follows:

𝑂𝑃𝑜𝑖
=

∑ true output rate of upstream operators
𝑎𝑣𝑔(true processing rate) of 𝑜𝑖

(4.3)

In this work, to calculate the optimal parallelism for the KafkaSource operators, we
use the rate at which records are written to Kafka as the true output rate of the upstream
operators. In addition, we extend DS2 with a user-provided overprovisioning factor to help
DS2 to handle noisy spikes and the lag accumulated due to scaling actions. This is the only
tunable parameter of DS2.

4.4.3 HPA
The Horizontal Pod Autoscaler (HPA) [3] is the default autoscaling solution shipped with
Kubernetes. HPA scales horizontally a deployment by adding or removing pods in order to
match user-provided target values based on an observed metric. The observed metric can
be either the standard average CPU/memory utilization or any custom user-defined metric,
applied as shown in Equation (4.4).

𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑃𝑜𝑑𝑠 = ⌈𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑑𝑠 ×

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑒𝑡𝑟𝑖𝑐𝑉 𝑎𝑙𝑢𝑒

𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝑒𝑡𝑟𝑖𝑐𝑉 𝑎𝑙𝑢𝑒

⌉ (4.4)

When scaling down, HPA opts for a conservative approach. It records the scaling
recommendations over a stabilization window and picks the highest recommendation as
the desired amount of resources. Thus, it ensures a gradual scaledown that is not affected
by fluctuations in the metric values.
HPA as a Streaming Topology Autoscaler. Since a given worker in the streaming
topology runs on an individual pod, HPA can be used as a basis for building a streaming
topology autoscaler that will add or remove workers when required. Although, HPA works
over the workers’ deployment of Flink and is agnostic of the underlying operators. Our
version of HPA monitors the actual operators within a pod instead of the deployment of
the workers. We employ the average CPU utilization as a metric. From now on, we will
refer to this custom version of HPA as HPA-CPU. HPA-CPU has two tunable parameters:
the CPU utilization target value and the length of the stabilization window.

4

72 4 Evaluating Stream Processing Autoscalers

4.4.4 HPA-Varga
Varga et al. [166] extend the HPA autoscaler to use metrics tailored for stream processing;
relative lag change and utilization can be used in an ad-hoc fashion for HPA.
Utilization. Utilization provides additional system performance insights. It separates
over-provisioning from optimal provisioning by analyzing the percentage of the available
resources currently employed for stream processing tasks. To do so, utilization employs
the idle-time-per-second metric that most modern stream processing engines provide out
of the box. The utilization of the system is calculated using the following formula:

𝑈 𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 1−𝑎𝑣𝑔(idle time per second) (4.5)

Utilization can take values between 0 and 1. A value close to 1 means that the system
is using the provided resources to their limits. Otherwise, the resources are underutilized.
If the targeted value is close to 1, the autoscaler suggests intensive resource utilization,
resulting to fewer scale-up and more aggressive scale-down actions. Although such a
strategy might lower resource costs, it might also result in underprovisioning. When
lowering the target value, the autoscaler issues scale-up actions more frequently. Such a
setting has a higher chance of leading to overprovisioning.
Relative lag change rate. To mitigate the effects of a possible utilization’s misconfigura-
tion, Varga et al. [165] pair utilization with another metric. Relative lag change estimates
the portion of the workload the system cannot handle. It uses the derivative of the system’s
lag and the application’s input throughput recorded at the input queue. The following
formula calculates the relative lag change rate:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐿𝑎𝑔𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒 = 1+

𝑑𝑒𝑟𝑖𝑣(total lag)
input throughput (4.6)

The relative-lag-change rate denotes the rate at which the lag in the input queue is
increasing (> 1) or decreasing (< 1). When equal to 1, the lag is not changing, and the
current resources are sufficient to handle the workload. Therefore, the relative lag change
rate’s target value is usually 1.0. When HPA is provided with two monitored metrics,
it decides on a scaling actions based on the metrics resulting to the highest parallelism.
To allow the autoscaler to scale down in cases of overprovisioning, the authors propose
ignoring the relative lag change rate when the lag is below a user-provided threshold. As a
result, the HPA will only consider utilization when the lag is below the threshold, allowing
for scale-down actions when overprovisioning

As discussed, in Section 4.4.3, the original HPA autoscaler targets deployment-level
autoscaling, which is insufficient for a stream processing engine. The extensions suggested
by Varga et al. [165] operate similarly. To achieve operator-level autoscaling, we use the
same procedure with HPA-CPU, monitoring the operators. While measuring the utilization
is straightforward, measuring the relative lag change rate per operator is not trivial. We
measure it at the input queue and propagate the result to the operator responsible based
on the utilization metric and the backpressure mechanism.

4.5 Evaluation Components

4

73

4.5 Evaluation Components
We now focus on establishing a principled evaluation framework for stream processing
autoscaling. First, we establish the metrics that can provide feedback on the effectiveness
of the autoscaling solutions. Then, we discuss the most interesting NEXMark queries, and
finally, we propose a set of dynamic workloads that enable a meaningful evaluation of the
autoscalers. We conclude this section with a discussion about the evaluation contributions
in contrast to the original papers of the methods we cover.

4.5.1 Performance Evaluation Metrics
Latency. Stream processing usually targets processing data and acquiring results in real-
time. Therefore, the most important metric characterizing the performance of an SPE is
latency [94]. Since the goal of every autoscaler is to provision just the optimal resources for
an SPE to perform efficiently, the SPE’s latency can also be used to evaluate the performance
of an autoscaler [69, 110]. Typically, the latency is measured as the time it takes for a
record to be processed and produce results from the moment it becomes available in the
input queue [94]. However, this definition of latency is difficult to measure and depends
significantly on the underlying query. Instead, we measure latency as the time a record
stays in the input queue until the SPE processes it. We focus on the 50th and the 95th
percentile of this latency.
Throughput. Throughput is also one of the primary and most important metrics used to
evaluate the performance of an SPE under the current deployment condition and, therefore,
the performance of an autoscaler. We define throughput as the number of records the SPE
ingests and processes over a second. By comparing the SPE’s throughput with the input
rate of our source, we can see whether the system can keep up with the input rate and
evaluate whether an autoscaler has provided enough resources to the SPE.
Resource efficiency. To estimate the autoscalers’ efficiency regarding resource consump-
tion, we consider the number of workers deployed at any time during execution. This is
equal to the sum of the operators’ parallelism.
Number of scaling actions. We also consider the total number of scaling actions. Depend-
ing on the system’s topology, scaling the application can induce a significant overhead. This
is especially the case with stateful operators and stop and restart migration mechanisms
such as the one of Apache Flink, where the state needs to be persistently stored, then
migrated offline and reloaded according to the new topology when the system restarts.
Convergence time & steps. Finally, we also investigate the convergence time of the
autoscaler, i.e., the total amount of time it takes for the autoscaler to converge to a specific
deployment for a new throughput. We also measure the total number of scaling actions
required before converging to a new configuration.

4.5.2 Queries
For the evaluation of the autoscalers, we employ queries from the original NEXMark
benchmark [163] and the extended version provided by the Apache Beam project [4].
NEXMark simulates an e-commerce application, mainly featuring three types of records:
people, auctions, and bids. NEXMark provides a set of different streaming queries with

4

74 4 Evaluating Stream Processing Autoscalers

different properties and complexities. From these queries, we select the following subset
that covers the most common types of streaming queries.
Map (Map). We first evaluate the autoscalers using an implementation of Q1 of the original
NEXMark benchmark [163]. We will refer to Q1 as the Map query. The Map query
transforms the values of auctions’ bids between different currencies, for example, converting
U.S. dollars to Euros. Thus, it performs a map over the stream of data. We choose Q1 as a
representative stateless query with a low-complexity topology and a low computational
load.
Filter (FQ). FQ filters out bids that do not belong to a number of selected auctions. Similarly
to Q1, Q2 is also a stateless query with low computational complexity that employs a
flatmap as a filter.
Incremental Join (IJ). IJ focuses on profiling user lifecycles within an online marketplace
or an auction platform. It creates insights about user behavior and engagement inside the
platforms. The query performs operations involving filtering and grouping. It is a stateful
query with a constantly growing state and a non-linear to the input computational cost
and, therefore, a complex and heavy workload-wise query. IJ has the highest number of
operators among the selected NEXMark queries. We apply a time-to-live setting for the
state’s records, as a continuously expanding state is an unrealistic streaming scenario and
will eventually strain our limited resources.
Sliding Window Aggregate (SA). SA targets items in the auction platform based on their
popularity over a certain time period measured by the volume of bids. SA operates a sliding
window aggregation query, i.e., it computes the total number of bids received for each
auction over a sliding time window. The query needs filtering and grouping steps before
performing the aggregation step. SA is also a computationally expensive query with a large
state; however, in contrast to IJ, the computational cost is linear to the input rate.
Session Window Aggregate Query (SWA). SWA focuses on calculating the number of bids
a user makes in each active session. To do so, it performs a windowed aggregate (count)
over a session window. Therefore, it also comprises a stateful complex computation task,
like the other windowed queries.

4.5.3 Workloads
We use a scalable generator that utilizes the NEXMark’s entity generators to create dynamic
workloads following specified patterns. We employ five different workload patterns.
Increasing. The increasing workload pattern (figure 4.2a) starts from zero input rate and
constantly increases over time. The underlying system starts from the minimum parallelism
and must scale up following the increase of the input rate. The increasing workload allows
for focusing only on scaling up actions and investigating how each autoscaler handles
them.
Decreasing. The decreasing workload (figure 4.2b) provides a symmetrically different
scenario than the increasingworkload. It starts at amaximum input rate and then constantly
decreases towards zero input rate. The system starts from an appropriate for the high
throughput configuration and scales down following the decrease in the input rate. Contrary

4.5 Evaluation Components

4

75

0 20 40 60 80 100 120 140
Minutes

0

1

2

1e6 Input rate (rec/s)

(a) Increasing

0 20 40 60 80 100 120 140
Minutes

0

1

2

1e6 Input rate (rec/s)

(b) Decreasing

0 20 40 60 80 100 120 140
Minutes

0

1

2

1e6 Input rate (rec/s)

(c) Cosine

0 20 40 60 80 100 120 140
Minutes

0

1

2

1e6 Input rate (rec/s)

(d) Random

0 10 20 30 40 50 60 70 80 90
Minutes

0

1

2
1e6 Input rate (rec/s)

(e) Steps

Figure 4.2: Workloads

4

76 4 Evaluating Stream Processing Autoscalers

to the increasing workload, the decreasing workload allows us to focus only on scaling
down actions.

Cosine. The cosine workload (figure 4.2c) combines the increasing and decreasing work-
loads following a cosine pattern. The cosine workload allows for evaluating both the
scaling up and scaling down capabilities of an autoscaler, a more complex scaling scenario.
It imitates a significant subset of real-world scenarios of dynamic workloads that show
some periodical or seasonal behavior.

Random. Another workload that mimics a real-world scenario is the random workload
(figure 4.2d). The random workload starts at a specific input rate, which is randomly
increased or decreased over time. Not following a predefined pattern makes it more
difficult for the autoscalers to anticipate changes in the input rate, potentially uncovering
unwanted behavior programmed into the autoscalers.

Steps. Finally, the steps workload (figure 4.2e) simulates a workload that consists of
fixed pulses of input rates. This workload allows for investigating the performance of
autoscalers when the objective is to handle specific changes in the input rate efficiently. It
resembles a real-world scenario of changes in the throughput SLAs between a provider
and a client. It also enables us to investigate the time autoscalers take to converge to the
optimal parallelism configuration after a change in the targeted input throughput.

4.5.4 Discussion

To the best of our knowledge, this work is the first to compare multiple autoscalers under a
common framework and establish specific workloads and metrics for this evaluation. The
original works presenting the evaluated autoscaling methods are limited, using metrics
tailored to a specific goal, and do not include extensive comparisons with competitors under
a variety of scenarios. Dhalion’s evaluation includes a single wordcount query for through-
put performance measurement, a convergence experiment measuring the provisioned
resources, and an experiment with two input rate changes while omitting experiments
with competitors. Varga HPA focuses on snapshot capturing duration and operator loading
during rescaling without including experiments with competitors. DS2 performs the most
comprehensive evaluation across three systems, employing six NEXMark queries and
a wordcount query. However, it only compares against Dhalion, while the evaluation
includes experiments with only two input rate changes and convergence experiments.
DS2’s primary focus lies in outlining the convergence steps required to reach a requested
throughput. Finally, HPA has not been evaluated in a stream processing setting.

In this work, we establish the metrics that are relevant to autoscaling and should always
be used for evaluating autoscaling solutions. Additionally, we propose four heavily dynamic
workloads that constantly change their input following specific patterns. In this specific
evaluation, we focus on latency performance, which none of the evaluated solutions have
previously considered. Finally, we stress-test all methods in real-world conditions where
data sources continuously produce items during rescaling, leading to potential lag. Notably,
none of the evaluated solutions has been previously tested in this setting.

4.6 Experimental Evaluation

4

77

0

2
1e6 Input rate (rec/s)

25
50

Dhalion - #Workers

25
50

DS2 - #Workers

25
50

HPA-CPU - #Workers

0 20 40 60 80 100 120 140
Minutes

25
50

HPA-Varga - #Workers

(a) Workers deployed for Map.

0

2
1e6 Input rate (rec/s)

250
500

Dhalion - Latency (seconds)

250
500

DS2 - Latency (seconds)

250
500

HPA-CPU - Latency (seconds)

0 20 40 60 80 100 120 140
Minutes

250
500

HPA-Varga - Latency (seconds)

(b) Latency of Map.

0

2
1e6 Input rate (rec/s)

25
50

Dhalion - #Workers

25
50

DS2 - #Workers

25
50

HPA-CPU - #Workers

0 20 40 60 80 100 120 140
Minutes

25
50

HPA-Varga - #Workers

(c) Workers deployed for SWA.

0

2
1e6 Input rate (rec/s)

250
500

Dhalion - Latency (seconds)

250
500

DS2 - Latency (seconds)

250
500

HPA-CPU - Latency (seconds)

0 20 40 60 80 100 120 140
Minutes

250
500

HPA-Varga - Latency (seconds)

(d) Latency of the SWA.

Figure 4.3: Increasing pattern

4.6 Experimental Evaluation
We now present our detailed experimental analysis. First, we evaluate the performance of
the autoscalers with queries from the NEXMark benchmark on different workloads. Then,
we demonstrate the performance of the autoscaling solutions on additional queries. Next,
we compare the convergence ability of each autoscaler. Finally, we discuss the results of
our experimental evaluation.

4.6.1 Experimental Setup
The experiments are conducted on a 3-node Kubernetes cluster with AMD EPYC 7H12
2.60GHz CPUs. On top of this Kubernetes cluster, we have configured an Apache Flink
cluster in application mode. The JobManager (Flink’s coordinator) instance is provided
with 1 CPU and 8GB of memory, while each employed TaskManager (Flink’s worker)
consists of 1CPU and 4GB of memory. An NFS server is deployed as a persistence layer,
Prometheus1 is used for scraping and gathering all the metrics, and an Apache Kafka2
deployment is used as a source for the experiments. We cap the available resources to 70
task managers, resulting in a maximum of 70 CPUs and 280GB of memory available for
processing.

In our experiments, we set Dhalion’s scale-down factor to 0.2, a value suggested in
the original work. We use an overprovisioning factor of 0.2 for DS2, which we consider
to be sufficient as the intention of DS2 is to avoid any overshooting of resources. We use
the default stabilization window of 5 minutes for HPA-CPU, and we choose a target CPU
utilization of 70% as the best performing among the values tested. For HPA-Varga, we also
consider a CPU utilization target of 70%, the same with HPA-CPU. In addition, we employ
1https://prometheus.io/
2https://kafka.apache.org/

https://prometheus.io/
https://kafka.apache.org/

4

78 4 Evaluating Stream Processing Autoscalers

0.0

2.5 1e6 Input rate (rec/s)

25
50

Dhalion - #Workers

25
50

DS2 - #Workers

25
50

HPA-CPU - #Workers

0 20 40 60 80 100 120 140
Minutes

25
50

HPA-Varga - #Workers

(a) Workers deployed for Map.

0.0

2.5 1e6 Input rate (rec/s)

25
50

Dhalion - #Workers

25
50

DS2 - #Workers

25
50

HPA-CPU - #Workers

0 20 40 60 80 100 120 140
Minutes

25
50

HPA-Varga - #Workers

(b) Workers deployed for SWA.

0.0

2.5 1e6 Input rate (rec/s)

250
500

Dhalion - Latency (seconds)

250
500

DS2 - Latency (seconds)

250
500

HPA-CPU - Latency (seconds)

0 20 40 60 80 100 120 140
Minutes

250
500

HPA-Varga - Latency (seconds)

(c) Latency of Map.

0.0

2.5 1e6 Input rate (rec/s)

250
500

Dhalion - Latency (seconds)

250
500

DS2 - Latency (seconds)

250
500

HPA-CPU - Latency (seconds)

0 20 40 60 80 100 120 140
Minutes

250
500

HPA-Varga - Latency (seconds)

(d) Latency of SWA.

Figure 4.4: Decreasing pattern

a cooldown window of 5 minutes after every scaling action to allow time for the system
to reach a stable state and avoid back-to-back scaling actions due to a slow restart of the
system or the lag produced by the scaling action.

4.6.2 Workload Comparison
Our first set of experiments involves four workloads from Section 4.5.3: increasing, de-
creasing, cosine, and random pattern workloads. The selected workloads represent heavily
dynamic workload patterns whose input rate changes constantly. Due to space constraints,
we limit our evaluation of the autoscalers across different workloads to two queries, the
Map and the Session Window Aggregate. We choose the Map query as a reference query
because of its simplicity and lack of state, allowing us to investigate the performance of the
autoscalers on a query with low computational complexity. For such a query, performance
is mostly influenced by the ability of the system to ingest and circulate the input to its
operators rather than the actual computation. Alternatively, the Session Window Aggregate
query represents a common operation in real-time analytics. Calculating time intervals for
session windows makes the Session Window Aggregate one of the most computationally
complex queries available. In contrast to the Map query, the Session Window Aggregate
query employs a heavy computational task that dominates the impact on the performance
of the underlying system and, thus, the employed autoscaler.
Increasing pattern. As discussed in Section 4.5.3, the increasing workload pattern allows
us to study the scaling-up behavior of the autoscalers in isolation. Figure 4.3 showcases
the performance of the autoscalers on this workload in terms of the number of deployed
workers and the resulting latency throughout the execution of the two deployed queries.
– Performance on Map. Figure 4.3a present the number of deployed workers per minute
during the Map query execution. We observe that the number of workers Dhalion recom-

4.6 Experimental Evaluation

4

79

0

2
1e6 Input rate (rec/s)

25
50

Dhalion - #Workers

25
50

DS2 - #Workers

25
50

HPA-CPU - #Workers

0 20 40 60 80 100 120 140
Minutes

25
50

HPA-Varga - #Workers

(a) Workers deployed for Map.

0

2
1e6 Input rate (rec/s)

25
50

Dhalion - #Workers

25
50

DS2 - #Workers

25
50

HPA-CPU - #Workers

0 20 40 60 80 100 120 140
Minutes

25
50

HPA-Varga - #Workers

(b) Workers deployed for SWA.

0

2
1e6 Input rate (rec/s)

250
500

Dhalion - Latency (seconds)

250
500

DS2 - Latency (seconds)

250
500

HPA-CPU - Latency (seconds)

0 20 40 60 80 100 120 140
Minutes

250
500

HPA-Varga - Latency (seconds)

(c) Latency of Map.

0

2
1e6 Input rate (rec/s)

250
500

Dhalion - Latency (seconds)

250
500

DS2 - Latency (seconds)

250
500

HPA-CPU - Latency (seconds)

0 20 40 60 80 100 120 140
Minutes

250
500

HPA-Varga - Latency (seconds)

(d) Latency of SWA.

Figure 4.5: Cosine pattern

mends does not follow the input pattern. Although the input rate constantly increases,
Dhalion has large intervals of decreasing resources. At first, Dhalion reacts slowly to
the increasing rate; the backpressure keeps increasing, translating to increasing latency
(Figure 4.3b), which triggers an aggressive scale-up. Evidently, Dhalion fails to suggest the
right resources leading to overprovisioning and a large scale-down interval that does not
match the expected behavior. DS2 avoids unnecessary rescaling actions while providing
the minimum required resources for low latency when the input remains relatively low.
When the input increases significantly, every scaling action generates progressively more
lag, and DS2 rescales more frequently. This causes a constant increase in latency due to
DS2 failing to accommodate the generated lag. The HPA-based solutions assign workers to
follow the input pattern smoothly. Both autoscalers keep latency low and perform more
frequent rescaling actions than DS2. However, HPA-Varga constantly suggests a lower
number of workers without compromising performance. Overall, HPA-based autoscalers
match the input pattern and perform better in latency. However, they assign a slightly
higher number of resources than DS2.

– Performance on SWA. We observe in Figure 4.3c that the methods follow a similar trend.
Dhalion shows the same behavior as in the Map query; it fails to react on time to the input
increase, then aggressively overprovisions resources, leading to large scale-down intervals.
Contrary to the Map query, DS2 performs frequent rescaling actions even while the input
remains low. The latency (figure 4.3d) starts to increase early on, and DS2 never manages to
recover. However, DS2 assigns the lowest number of workers throughout the experiment.
HPA-Varga follows the input pattern but aggressively issues scale-up actions, reaching
the maximum available resources early. Despite the many resources, it fails to ensure low
latency. HPA-CPU matches the input pattern, steadily providing more resources. However,
it still fails to retain low latency.

4

80 4 Evaluating Stream Processing Autoscalers

0.0

2.5
1e6 Input rate (rec/s)

25
50

Dhalion - #Workers

25
50

DS2 - #Workers

25
50

HPA-CPU - #Workers

0 20 40 60 80 100 120 140
Minutes

25
50

HPA-Varga - #Workers

(a) Workers deployed for Map.

0.0

2.5 1e6 Input rate (rec/s)

25
50

Dhalion - #Workers

25
50

DS2 - #Workers

25
50

HPA-CPU - #Workers

0 20 40 60 80 100 120 140
Minutes

25
50

HPA-Varga - #Workers

(b) Workers deployed for SWA.

0.0

2.5
1e6 Input rate (rec/s)

250
500

Dhalion - Latency (seconds)

250
500

DS2 - Latency (seconds)

250
500

HPA-CPU - Latency (seconds)

0 20 40 60 80 100 120 140
Minutes

250
500

HPA-Varga - Latency (seconds)

(c) Latency of Map.

0.0

2.5 1e6 Input rate (rec/s)

250
500

Dhalion - Latency (seconds)

250
500

DS2 - Latency (seconds)

250
500

HPA-CPU - Latency (seconds)

0 20 40 60 80 100 120 140
Minutes

250
500

HPA-Varga - Latency (seconds)

(d) Latency of SWA.

Figure 4.6: Random pattern

Decreasing pattern. In contrast to the increasing pattern, the decreasing workload
employs a constantly decreasing input rate. This experiment demonstrates the scale-down
performance of the autoscalers in isolation. Figure 4.4 illustrates the behavior of the
autoscalers in terms of workers deployed and latency.
– Performance on Map. Similar to the increasing workload, Dhalion does not react to
input on time, resulting in fluctuating behavior. DS2 again keeps the resources low but
fails to reduce the latency before the input decreases sufficiently. HPA-CPU follows the
decreasing pattern and retains low latency throughout the execution while issuing slightly
fewer rescaling actions than the rest. HPA-Varga also keeps latency relatively low while
recommending fewer resources than HPA-CPU.
– Performance on SWA. The SWA query presents a challenge to all methods in the decreasing
pattern. Dhalion immediately considers the initial parallelism inadequate and quickly scales
the system to the maximum available resources. Despite utilizing all the available workers,
Dhalion fails to handle the high latency early on. It only manages to reduce the latency
after the input rate has been decreased significantly, although it issues an unexpected
upscale. HPA-CPU achieves the same performance in terms of latency. However, it assigns
significantly fewer resources throughout the execution. DS2 and HPA-Varga cannot retain
low latency throughout the entire run. DS2’s provisioning adheres to the input pattern,
while HPA-Varga quickly maximizes the resources, remaining at the highest parallelism
for the entire run.
Cosine pattern. The cosine pattern combines increasing and decreasing input behavior
and composes a representative real-world workload that requires varied scaling actions. It
is an interesting experiment that allows us to evaluate the autoscalers on an explainable,
highly dynamic workload. We illustrate the performance of the autoscalers in Figure 4.5.

4.6 Experimental Evaluation

4

81

0

2
1e6 Input rate (rec/s)

25
50

Dhalion - #Workers

25
50

DS2 - #Workers

25
50

HPA-CPU - #Workers

0 20 40 60 80 100 120 140
Minutes

25
50

HPA-Varga - #Workers

(a) Workers deployed

0

2
1e6 Input rate (rec/s)

0

250
Dhalion - Latency (seconds)

0

250
DS2 - Latency (seconds)

0

250
HPA-CPU - Latency (seconds)

0 20 40 60 80 100 120 140
Minutes

0

250
HPA-Varga - Latency (seconds)

(b) Latency

Figure 4.7: Filter.

– Performance on Map. Contrary to its behavior on the increasing and decreasing patterns,
Dhalion’s resource allocation follows the input with a small delay. This delay causes a
latency increase during periods of high input rate. Dhalion manages to recover during
periods of lower input rate. Similarly, DS2 suffers from a small latency increase only
during periods of high throughput. DS2 keeps providing fewer resources throughout the
experiment while following the input pattern. This is a consequence of failing to handle the
generated lag arising from rescaling. The same latency behavior is observed for HPA-Varga,
resulting from a slow scale-up of workers. In contrast, HPA-CPU maintains low latency
while adjusting resources on time to keep up with the input.

– Performance on SWA. Similar to Map query, Dhalion does not react in time to the input
changes, resulting in a latency increase. DS2 follows the input accurately. However, it
suffers from high latency since it doesn’t recover even during low input periods. Both
HPA-based autoscalers have high latency for high input periods as they react late to the

4

82 4 Evaluating Stream Processing Autoscalers

input changes. However, HPA-CPU achieves the same performance with fewer deployed
workers.
Random pattern. The random workload pattern is the most complex and another repre-
sentative real-world challenging pattern. It resembles real-world traffic with sudden spikes
and irregular input changes, making the scaling actions varying and less obvious.
– Performance on Map. Unsurprisingly, Dhalion fails to match resources with the input
pattern. It reacts slowly to the random pattern’s sudden input changes, leading to large
periods of high latency. Despite the randomness of the pattern, DS2 manages to assign
resources according to the input pattern. However, in terms of latency, it fails to adapt
during prolonged periods of high input rates. HPA-Varga and HPA-CPU adapt to the input
pattern for the majority of the time. However, HPA-Varga suffers from sudden increases in
input rate, leading to temporary higher latency. HPA-CPU maintains low latency for most
of the experiment, except for a high latency period at a sudden increase in input rate.
– Performance on SWA. Only DS2 manages to follow the progression of the input pattern
for the SWA query. However, latency remains high for all periods of medium to high input
rates. Both HPA-based autoscalers fail to match the input at any moment, and after a
while, they constantly scale up, trying to deal with the lag accumulated in the input queue.
Although Dhalion does not keep up with the changes in the input rate, it has the best
overall performance in terms of latency and the longest periods of low latency.

4.6.3 Query Comparison
Although the Map and the Session Window Aggregate queries are representative processing
tasks, we evaluate the autoscalers on additional queries for completeness. Due to space
limitations, we only present the performance of additional queries deployed on the cosine
workload. Figures 4.7, 4.8 & 4.9 illustrate the performance of the autoscalers on the
additional queries.

Performance on Filter. The Filter query belongs to the same class of stateless low-
complexity computation tasks as the Map query. As so, we expect similar behavior from
the autoscalers. Indeed, DS2 and HPA-CPU show the same behavior as inMap. During peak
periods of activity, Dhalion follows the input with a slight delay, resulting in high latency;
similar to Dhalion’s behavior in Map. HPA-Varga has a similar resource provisioning as in
Map but performs slightly better in terms of latency because of better resource allocation.

Performance on Incremental Join. Incremental Join is the most complex query employed.
This gives us an opportunity to evaluate the autoscalers on a system under stress, even
during low input rates. Dhalion is the only autoscaler that matches the input rate and
achieves low latency for the whole experiment duration. However, it employs twice as
many resources as DS2 or HPA-CPU. DS2 and HPA-CPU minimize the scaling actions and
the deployed resources but also see latency increases. HPA-Varga reacts slowly to the input
increases, reflecting high latency during periods of high input rate.

Performance on Sliding Windowed Aggregate. The Sliding Windowed Aggregate (SA)
differentiates from SWA in the type of window employed. While a session window produces
a constant flow of records throughout the system, a sliding window produces output only

4.6 Experimental Evaluation

4

83

0

1 1e5 Input rate (rec/s)

25
50

Dhalion - #Workers

25
50

DS2 - #Workers

25
50

HPA-CPU - #Workers

0 20 40 60 80 100 120 140
Minutes

25
50

HPA-Varga - #Workers

(a) Workers deployed

0

1 1e5 Input rate (rec/s)

250
500

Dhalion - Latency (seconds)

250
500

DS2 - Latency (seconds)

250
500

HPA-CPU - Latency (seconds)

0 20 40 60 80 100 120 140
Minutes

250
500

HPA-Varga - Latency (seconds)

(b) Latency

Figure 4.8: Incremental Join

when a time interval ends.
For SA, HPA-CPU performs the best as it follows the input pattern and keeps latency

low while provisioning a minimal number of workers for the entire run. DS2 cannot align
with the input pattern as it perceives dead periods as underprovisioning. Thus, it decides
that the system underperforms and falsely raises the resources. Dhalion has competitive
performance with delayed scale-up decisions that lead to small latency spikes when the
input rate increases. At the same time, on average, it deploys more workers than HPA-CPU.
HPA-Varga provisions resources similarly to HPA-CPU but fails to allocate them correctly,
impacting the latency.

4.6.4 Convergence comparison
We perform a convergence experiment to evaluate the ability of the autoscalers to converge
to an optimal configuration, given a specific input rate. We use the steps workload discussed

4

84 4 Evaluating Stream Processing Autoscalers

0

1

1e5 Input rate (rec/s)

25
50

Dhalion - #Workers

25
50

DS2 - #Workers

25
50

HPA-CPU - #Workers

0 20 40 60 80 100 120 140
Minutes

25
50

HPA-Varga - #Workers

(a) Workers deployed

0
1

1e5 Input rate (rec/s)

0

250
Dhalion - Latency (seconds)

0

250
DS2 - Latency (seconds)

0

250
HPA-CPU - Latency (seconds)

0 20 40 60 80 100 120 140
Minutes

0

250
HPA-Varga - Latency (seconds)

(b) Latency

Figure 4.9: Sliding Windowed Aggregate.

in Section 4.5.3 and theMap and SWA queries. The experiment assesses the time and scaling
actions required to converge to an optimal configuration.

Figures 4.10a and 4.10b show the deployment of workers over time. Dhalion shows a
slow reaction to input changes. As a result, it fails to converge within the provided time
frame to any of the two input rates. HPA-Varga reacts slowly to the increased input rate
and does not converge regardless of the input rate and the query. Surprisingly HPA-CPU is
also slow to react to the high input change for both queries. However, it converges for the
medium input rate within two scaling actions for the Map query. We deploy DS2 with and
without overprovisioning. Both versions react quickly to input changes but only manage to
converge for the medium input rate of the Map query within two and three scaling actions,
respectively. Although DS2, without overprovisioning, temporarily decides on a stable
configuration, it continues oscillating after a while.

4.6 Experimental Evaluation

4

85

0

2 1e6 Input rate (rec/s)

25
50

Dhalion - #Workers

25
50

DS2 - 1.0 - #Workers

25
50

DS2 - 1.2 - #Workers

25
50

HPA-CPU - #Workers

0 10 20 30 40 50 60 70 80 90
Minutes

25
50

HPA-Varga - #Workers

(a) Map

0

2 1e6 Input rate (rec/s)

25
50

Dhalion - #Workers

25
50

DS2 - 1.0 - #Workers

25
50

DS2 - 1.2 - #Workers

25
50

HPA-CPU - #Workers

0 10 20 30 40 50 60 70 80 90
Minutes

25
50

HPA-Varga - #Workers

(b) Session Window Aggregate

Figure 4.10: Convergence

4.6.5 Summary of findings
In our experiments with different workloads, we observed varying behavior among au-
toscalers. DS2 consistently follows the input pattern but may encounter occasional high
latency. Dhalion struggles to adapt to less complex patterns, reacts slowly to more complex
patterns, and allows for high latency. HPA-Varga generally aligns with the input patterns
but may react slowly to input rate increase. HPA-CPU outperforms all autoscalers for
less complex queries in terms of latency, adjustment, and resource utilization. However,
HPA-CPU fails to sustain low latency when facing high-input periods for more demanding
queries.

Experiments with additional queries support our earlier observations. HPA-based
autoscalers perform well for stateless queries. HPA-CPU matches the input pattern while
maintaining low latency. HPA-CPU also performs adequately for the sliding windowed
aggregate query but fails to provide enough resources in the case of the Incremental

4

86 4 Evaluating Stream Processing Autoscalers

Join query. HPA-Varga performs worse on complex queries, both in terms of latency
and deployed workers. Dhalion reacts slowly to input changes and allocates resources
inefficiently, leading to high latency. DS2 allocates fewer resources and avoids unnecessary
scaling actions. However, it struggles to maintain low latency in high throughput periods,
especially for complex queries. Finally, our convergence experiments show that none of the
evaluated autoscalers can converge within the time limits of our experiments for complex
queries. Only HPA-CPU and DS2 converge when scaling down from a higher load to a
medium input rate.

The design choices of each autoscaler reflect on its performance. DS2 adjusts to the
input rate accurately and fast due to effective metrics and efficient scaling of multiple
operators at once, by propagating changes to downstream operators. However, DS2
does not consider the lag generated when it issues scaling actions, leading to high latency.
Dhalion relies on backpressure and input buffer usage to decide on scaling actions. However,
when backpressure can be detected, the system has already entered an unhealthy state.
Additionally, Dhalion only scales a single operator in each scaling action, reacting slowly
to changes. Dhalion fails to distribute efficiently resources to the operators resulting to
unstable performance and slow convergence. HPA-CPU solely depends on CPU load,
which may not accurately reflect the performance impact of complex stateful queries that
involve accessing large datasets from memory or disk. Despite our best efforts, we could
not overcome that HPA-Varga is designed to work on a deployment level rather than on
an operator level. Its utilization metric can be directly measured per operator, while the
relative lag can be calculated only indirectly.

As seen in our experiments, the evaluated autoscalers are affected by the lag generated
during the rescaling actions, and none can currently consider it when deciding on the
optimal configuration. This generated lag is partially a side effect of current systems’
inability to migrate their state without a stop-and-restart process. Although the problem
of state migration is orthogonal to autoscaling, it plays a crucial role in the performance.
Despite prior work introducing proposals for on-the-fly state migration techniques with
low overhead, stream processing systems have yet to adopt it.
Previous evaluations. The original evaluation of Dhalion shows a necessity for numerous
rescaling actions and considerable time to achieve desired throughput convergence. Our
experiments validate this observation, as the time frame are insufficient for Dhalion to
reach convergence. In our work, we observe that Dhalion deploys more resources than the
other autoscalers. The findings from the DS2 evaluation show lower resource deployments
and faster convergence with fewer actions than Dhalion. Unlike the original evaluation,
DS2 does not always converge within the time frame set in our experiments. HPA-Varga
and HPA-CPU do not conduct an evaluation using the same metrics or offer similar insights.
Limitations. In this work, we propose a principled evaluation framework for evaluating
control-based autoscalers. Evaluating additional autoscalers under this framework can
provide rich insights, as we showcase with our experiments, and might lead to different
conclusions. Furthermore, we evaluate the performance of the autoscalers on top of Apache
Flink. Our evaluation framework assumes durable input and output queues and a stream
processing engine that allows for per-operator scaling. The evaluated autoscalers are
agnostic to the specifics of the underlying rescaling mechanisms of an SPE and only require
specific metrics provided by the engine as well as a rate control mechanism in the case of

4.7 Conclusion

4

87

Dhalion. However, extending the current evaluation to other stream processing engines,
such as Storm3 and Heron [102], can provide valuable insights regarding the autoscalers’
applicability and the configurations’ performance based on the rescaling mechanisms.

4.7 Conclusion
In this work, we highlighted the lack of significant comparison between existing autoscaling
solutions in stream processing. We provided a principled experimental framework to
evaluate performance and identify unsolved challenges. We extensively evaluated four
control-based autoscalers on dynamic workloads and queries. Surprisingly, a method
utilizing CPU usage outperforms state-of-the-art solutions for minimal queries in all
workloads. We showcased that none of the evaluated autoscalers can perform well for
complex queries over highly dynamic workloads. We discuss the impact of the autoscalers’
design choices on their performance, and we argue that the poor performance of the
evaluated autoscalers is a result of their inability to account for the lag generated during an
autoscaling action or due to slow reactions to the input changes. Finally, we urge stream
processing engines to adopt online state migration techniques as it would significantly
improve the performance of autoscaling.

3https://storm.apache.org

5

89

5
Conclusion

In this thesis, we studied the ability of streaming dataflow engines to adapt to unforeseen
events related to their processing workload or the underlying infrastructure. In the era
of cloud computing, where flexible resource allocation and flexible pricing schemes are
provided, stream processing engines must be able to automatically adapt to occurring
changes in the workload or the underlying infrastructure in order to leverage the provided
capabilities and facilitate the prosperity of small and medium-sized businesses. We focused
on three main adaptivity problems for streaming dataflow engines: adaptivity to statistical
workload changes (Chapter 2), infrastructure failures (Chapter 3), and input rate changes
(Chapter 4). We investigated adaptivity to statistical workload changes through streaming
similarity joins, an important data processing task heavily influenced by statistical changes
and imbalanced workloads.

Several solutions have been proposed to enhance the stream processing engines with
the desired adaptive capabilities. With respect to streaming similarity joins, existing so-
lutions targeted single-node executions, load balancing without reducing the number of
unnecessary computations, or specific subproblems, such as similarity joins on sets of
words. No efficient solution was proposed that is generalizable to different types of data
and similarity metrics. In this thesis, we proposed a novel adaptive distributed streaming
similarity joins method that targets the general metrics space (Chapter 2). In terms of
adaptivity to infrastructure failures, most modern stream processing engines have adopted a
coordinated checkpoint-based fault tolerance mechanism. However, there was no empirical
or experimental evidence that supports the superiority of the preferred coordinated check-
pointing protocol. Therefore, it remained unclear how the preferred coordinated approach
performs under executions of different scales or input distributions and if the existing alter-
natives are better options under certain conditions. This lack of experimental evaluation
hindered further research on the important topic of fault tolerance for stream processing.
In this thesis, we tackled this issue with Checkmate, a principled evaluation framework for
checkpointing protocols for streaming Dataflows (Chapter 3). Finally, regarding adaptivity
to input rate changes, many autoscaling solutions that target stream processing have been
proposed. However, the experimental evaluation of these solutions is shallow and usually
does not include detailed comparisons with other autoscalers. Therefore, it was unclear

5

90 5 Conclusion

what the state of the field is, if the existing solutions could cover the needs of stream process-
ing effectively, and how a stream processing autoscaler should be evaluated. In Chapter 4,
we proposed a principled evaluation framework for stream processing autoscaling and
compared the state-of-the-art control-based autoscalers extensively.

In this chapter, we conclude the thesis and summarize our findings and insights from
our quest to answer our main research questions and tackle the discussed research gaps.
We then discuss the limitations of our work and present possible future research directions
based on our insights.

5.1 Main Findings
In this section, we discuss our findings and our insights when addressing each of the
targeted adaptivity problems.

5.1.1 Adaptivity to statistical changes for streaming similarity joins
Statistical changes are very frequent when dealing with high-velocity data streams. Their
impact can be detrimental to the performance of certain tasks. In Chapter 2, we investigated
the adaptivity of streaming similarity joins, a task that is heavily affected by load imbalance
due to statistical changes in the input load. We drove our research based on the following
main research question:

M-RQ1: How can we perform streaming similarity joins on multidimensional streams
in a distributed fashion, even when distribution changes, achieving low latency?

In order to address M-RQ1, we studied the problem of distributed streaming similarity
joins in the general metric space. We conducted a thorough investigation of existing
related work, including not only streaming solutions but also all relevant solutions from
the MapReduce paradigm. We revisited the Inner-Outer partitioning paradigm (section 2.2)
and discussed its main concepts. Driven by the research gaps identified in the related work,
we proposed S3J; the first adaptive distributed streaming similarity joins solution in the
general metric space that employs an adaptive partitioning scheme influenced by the Inner-
Outer partitioning paradigm and a load balancing scheme that leverages the partitioning
scheme to provide low-cost online adaptivity to distribution changes. More specifically,
the partitioning scheme consists of two operations. First, the input records are divided
among the available workers into space partitions following the Inner-Outer paradigm with
random partition centroids. Then, within each space partition, records are partitioned into
fine-grained partitions, called worksets, that allow for reducing unnecessary computations.
Each workset consists of an inner, an outer, and an outlier subset. Similarity computations
are performed only between records that belong to the same workset. The load balancing
scheme uses the existing worksets to adapt to occurring load imbalances due to distribution
changes by redistributing the existing worksets to workers by using a workset balancing
algorithm and without reconstructing the costly fine-grained partitions.

We evaluated S3J against the ClusterJoin-based baseline under queries of varying selec-
tivities and varying operator parallelism [48]. Our experimental evaluation shows that S3J’s
adaptive partitioning scheme outperforms the baseline in all scenarios. More specifically,
S3J maintains sub-second latency for low selectivities, even when the parallelism of the task

5.1 Main Findings

5

91

is low. For high selectivities, S3J’s partitioning scheme results in higher processing through-
put than the baseline, even for unsustainable input rates. Our experiments with varying
parallelism show that S3J can scale efficiently by leveraging the additional resources better
than the baseline. Regarding record duplication, S3J outperforms the baseline under both
scenarios. Finally, S3J’s adaptive partitioning manages to reduce effectively the unnecessary
computations performed by leveraging its worksets. Finally, our load balancing experiment
shows that the load balancing scheme can gradually reduce the latency observed and
redistribute the load to the workers adequately.

As our results show, S3J is an efficient adaptive streaming similarity joins solution that
can handle distribution changes while maintaining low latency. S3J’s adaptive partitioning
can follow the distribution changes efficiently and does not require any prior knowledge of
the workload. Its load balancing scheme allows for fast reconfigurations that can gradually
reduce the observed latency and balance the load among the workers. We argue that an
effective solution to M-RQ1 must provide, first and foremost, an adaptive partitioning
scheme alongside an efficient load balancing mechanism.

5.1.2 Recovering from infrastructure failures using checkpoints
Infrastructure failures are common in distributed systems. Reacting effectively to such a
failure is crucial for long running streaming analytics. Most modern streaming dataflow
engines employ a checkpoint-based fault tolerance mechanism. However, there was no
empirical or experimental evidence on the performance of the different checkpointing
protocols. In Chapter 3, we addressed this research gap by focusing on the following main
research question:

M-RQ2: How do checkpointing protocols for streaming dataflows perform in different
workloads and input data distributions?

We investigated M-RQ2 by proposing CheckMate. CheckMate is an open-source prin-
cipled evaluation framework for checkpointing protocols. In CheckMate, we summarized
all the necessary preliminaries a researcher or a practitioner needs to explore checkpoint-
based fault tolerance. We discussed in detail the three main protocol families and performed
a theoretical account of the advantages and drawbacks of each protocol. As a principled
evaluation framework, CheckMate establishes the most important and relevant metrics,
queries, and distribution scenarios needed to measure effectively the performance of a
checkpointing protocol. It provides a common open-source testbed system that allows for
an isolated and comparable evaluation of the checkpointing protocols. Finally, CheckMate
implements the vanilla versions of each checkpoint protocol and evaluates them under the
proposed scenarios, leading to interesting and insightful experimental results.

CheckMate’s experimental evaluation sheds much-needed light on the performance
of the different checkpointing protocols. First of all, it attests to the strong preference of
most modern streaming dataflow engines towards coordinated checkpoints. As our results
indicate, coordinated checkpoints are indeed the best-performing choice for uniformly
distributed workloads in the absence of straggling nodes. However, the uncoordinated
checkpointing protocol is a competitive choice for uniform workloads as it results in
slightly worse performance despite the expensive message logging that it employs. In the
presence of skew in the input data, CheckMate shows that uncoordinated checkpoints

5

92 5 Conclusion

are more robust and outperform the alternatives. Coordinated checkpoints suffer from
high checkpointing time as the percentage of skew increases. Straggling nodes slow
down processing due to coordination, resulting in high observed latency. Finally, the
uncoordinated and communication-induced approaches are further evaluated on a cyclic
graph reachability query. In theory, the uncoordinated checkpointing protocol can lead to
a domino effect when employed on cyclic queries. However, no domino effect is observed
in our experiments. Therefore, the uncoordinated protocol is the better choice for cyclic
queries as it slightly outperforms the communication-induced approach.

In summary, CheckMate answers M-RQ2 effectively. It provides the theoretical back-
ground of checkpoint-based fault tolerance and a principled evaluation framework, ac-
companied by an open-source testbed system. Its experimental evaluation provides a
detailed comparison of the checkpointing protocols that will inspire further research on
checkpoint-based fault tolerance.

5.1.3 Adapting to input rate changes using automated solutions
To fully leverage the features offered by cloud providers, stream processing engines rely
on autoscaling techniques that leverage the metrics provided by the engine to adapt the
deployed resources to the observed input rate. Although multiple solutions have been
proposed, it remained unclear how these solutions perform and what open problems still
exist. In Chapter 4, we acknowledged this research gap that we summarise in the following
main research question:

M-RQ3: How well can existing stream processing autoscalers perform? How can we
effectively evaluate them, and what are their inefficiencies?

In Chapter 4, we addressed M-RQ3 through a detailed experimental evaluation of
stream processing autoscalers. We first explored the landscape of autoscaling solutions that
target stream processing applications. We then focused on control-based autoscalers due
to their simplicity and applicability to many different topologies. We discussed in detail the
state-of-the-art control-based autoscalers, DS2 [93] and Dhalion [65], a commercial generic
autoscaler from Kubernetes called HPA [3] and an extension of HPA with metrics tailored
for stream processing which we call HPA-Varga. Since HPA operates on a deployment level,
we adapt HPA and HPA-Varga to achieve per-operator scaling instead. Then, we established
the relevant metrics from the literature that are important for evaluating the performance
of stream processing autoscalers. We employed different representative queries from
NexMark [163, 4], and we proposed five heavily dynamic workload patterns that allow
for a thorough evaluation. Finally, we implemented the discussed autoscalers on top of
Apache Flink and performed an extensive evaluation based on the proposed framework.

Our experimental evaluation validates some of the results of the original works. DS2
maintains a better performance than Dhalion in most evaluated scenarios, both in terms of
latency and deployed resources. However, our evaluation also leads to surprising results.
Unexpectedly, none of the autoscalers can adjust the resource efficiently under heavily
dynamic workload patterns when a complex query is employed. At the same time, although
HPA is a generic autoscaler not tailored for stream processing, it outperforms the state-of-
the-art control-based autoscalers when dealing with simple stateless queries. Our results
show that the design choices and the employed metrics of each autoscaler play a crucial

5.2 Limitations

5

93

role in the performance. Dhalion depends on the backpressure mechanism of the stream
processing engine to decide on scaling actions. As a result, Dhalion is slow to react to
workload changes since the system is already in an unhealthy state when backpressure
is observed. HPA and HPA-Varga decide on scaling actions based on CPU utilization,
which fails to capture the complex non-linear queries. DS2 can accurately calculate the
required resources for the input rate observed at the time. However, it does not take into
account the lag generated due to a scaling action. Generally, the performance of all the
evaluated autoscalers is heavily affected by the underlying stop-and-restart state migration
mechanism and the lag it generates after rescaling actions.

Our experimental framework provides concrete guidelines and establishes the required
resources to evaluate effectively the performance of autoscaling. It answers adequately
M-RQ3, providing thorough details on the performance of the existing control-based
autoscaling solutions.

5.2 Limitations
Despite our best efforts and the thorough design of the research conducted in this thesis,
some limitations remain that are worth mentioning.

In Chapter 2, most of our experiments employed synthetic datasets of only two di-
mensions created by a custom generator following a specified distribution. The proposed
solution can handle any kind of data, including data of higher dimensionality. Therefore,
our evaluation may be limited with respect to the capabilities of the solution. At the same
time, the lack of high-quality, real-world datasets does not allow us to evaluate our solution
under real-world conditions. Moreover, we limited our evaluation to a single baseline. Al-
though no other solutions can handle streaming similarity joins in the general metric space,
our evaluation could benefit from comparing our solution to available solutions on specific
sub-problems. Such an evaluation would reveal the trade-off between a generalizable
solution and a solution tailored to a specific subproblem.

In Chapter 3, CheckMate proposes a principled framework for evaluating checkpointing
protocols for streaming dataflows. However, it still largely performs its evaluation on
synthetic data produced by the NexMark benchmark, which was designed and developed
more than a decade ago. Although the results and the insights of CheckMate are reliable
and insightful, including representative real-world workloads in the evaluation would
provide useful insights into the performance of the protocols on modern, real-world use
cases. Additionally, CheckMate implements the vanilla versions of the three main protocol
families. It is, therefore, intentionally limited to evaluating the effectiveness of their main
concepts. We did not consider any optimization tailored to the specifics of any commercial
system.

In Chapter 4, we proposed a principled evaluation framework, and we compared the
state-of-the-art control-based stream processing autoscalers. However, we limited our
scope to control-based autoscalers, and we omitted the existing literature proposing other
types of solutions. Although our results on the performance of the control-based autoscalers
are reliable and insightful, they only provide insights for a specific subset of the existing
autoscaling landscape. Moreover, for our evaluation, we employed an official Apache Flink
distribution that did not provide any online state migration mechanism. Therefore, in
order to perform a scaling action, we used the stop-and-restart mechanism, which stops

5

94 5 Conclusion

the execution temporarily, takes a savepoint, and restarts Flink with the new operator
parallelism. However, this rescaling mechanism introduces lad that significantly affects
the performance of the autoscalers.

5.3 Future Research Directions
In this section we identify open problems and discuss future research directions in the field
of stream processing that derive from our insights during the design of our research work
and the implementation of the frameworks and the methods included.

5.3.1 Evaluating MapReduce solutions in a streaming environment
As we mention in Chapter 2, there are currently very few works that target similarity
joins in the stream processing paradigm. To the best of our knowledge, our proposed
solution is the first to address the problem in the general metric space, while the solution
proposed in [174] is the only other solution that combines load balancing with the reduction
of unnecessary similarity computations in a distributed stream processing environment.
However, there is a significant body of work that deals with similarity joins on aMapReduce
environment [48, 171, 167, 123]. Although these works are not directly applicable to
the stream processing paradigm, they can be of great inspiration and a good starting
point moving forward in the topic of streaming similarity joins. These solutions have
been extensively evaluated and compared in the MapReduce environment [64], but their
concepts have never been applied and evaluated in a streaming environment. Thus, it
remains unclear which of these solutions can be adapted for streaming applications, how
well they would perform in such a scenario, and what could be the optimization that would
enhance their performance in the new setting. Therefore, we argue that a detailed and
extensive evaluation of these solutions in the stream processing paradigm, which also
discusses the hurdles of adapting these solutions to the new environment, is necessary,
and it will certainly inspire more research on the topic of streaming similarity joins.

5.3.2 Learned Partitioning for Streaming Similarity Joins
In Chapter 2, we proposed a solution for streaming similarity joins in the general metric
space that leverages an adaptive partitioning scheme to reduce the number of unnecessary
similarity computations without losing any potential joins. From our experience, designing
and implementing such a generic partitioning scheme is difficult and may be outperformed
by alternative approaches tailored to the specific subproblem. In the last decade, machine
learning approaches have revolutionized the way of thinking and addressing particular
data management tasks [100, 57, 120]. Lately, machine learning approaches have also
been proposed for partitioning cloud databases [86], but also for adaptively partitioning
stream processing tasks [176]. Dalton [176] uses reinforcement learning to learn the
optimal partitioning for a specific data stream and a specific query and quickly adapt
this partitioning scheme on the fly. Dalton is oblivious to the specifics of the streaming
similarity joins task, and therefore, it does not optimize for reducing the unnecessary
similarity computations, and it cannot ensure the completeness of the result. However, it
has shown great results and inspires further research. We argue that an interesting future
direction involves investigating different types of learning, such as reinforcement or active

5.3 Future Research Directions

5

95

learning, to learn an optimal partition that minimizes unnecessary computations and can
adapt on the fly to retain a balanced load. Indeed, we believe that a reinforcement learning
model could be combined with S3J’s partitioning scheme to provide efficient load balancing
by learning the most efficient distribution of the worksets to the workers.

5.3.3 Hybrid Checkpointing for Streaming Dataflows
In Chapter 3, we revisit checkpoint-based fault tolerance, we establish a principled eval-
uation framework, and we perform a detailed evaluation and comparison of three main
checkpointing protocol families. Our experimental evaluation provides rich insights into
the performance of each protocol and showcases the scenarios in which each of them
prevails. Our experiments show that the coordinated approach outperforms the unco-
ordinated approach when the load is uniformly distributed across the parallel operators.
However, in the presence of stragglers, for example, in the case of a skewed input load, the
uncoordinated approach is a better option since it does not block the processing of other
operators due to the straggling ones. At the same time, uncoordinated checkpoints can
efficiently support cyclic queries that the aligned coordinated checkpoints do not. All in all,
our experiments indicate that there is no protocol that can efficiently cover all use cases.
Thus, we believe that hybrid checkpoint-based fault tolerance is an interesting research
direction. Similar to [76], which proposes adopting different checkpointing intervals for
different parts of a pipeline, a hybrid approach may use different checkpointing protocols
for different parts of a pipeline based on the needs and the observed workload of each
operator.

5.3.4 Tackling Adaptivity Problems with One Stone
Both autoscaling and load balancing, which are studied in this thesis, are important adap-
tivity problems that the research community has studied extensively, each one on its own
accord. Although these problems are related to different workload properties, systems that
are in an unhealthy system often require to tackle both in order to recover. Additionally, it
is not always trivial to decide which of the adaptivity mechanisms should be employed to
treat the system, and the benefits of each mechanism may affected by the reconfigurations
applied by other adaptivity mechanisms. Therefore, it is important to not only study each
problem independently but also integrate these problems into a common solution. An
approach that was also proposed in [119]. From the autoscaling solutions that we discuss
in detail in Chapter 4, only Dhalion can address multiple adaptivity problems, but still,
it only considers them independently, one at a time. At the same time, none of the load
balancing techniques, also discussed in Chapter 2, consider other adaptivity or reconfigu-
ration problems that are relevant and may jointly affect the performance of the system. As
shown in [119], tackling multiple problems with one stone is difficult. However, we argue
that looking at adaptivity holistically can have a huge impact on the performance of the
proposed tools.

5.3.5 Rethinking Stream Processing Benchmarking
In Chapters 3 & 4, we proposed two principled evaluation frameworks concerning two
different problems of adaptivity. Although the insights we gather from applying these
frameworks to evaluate state-of-the-art solutions to the problems are rich and valuable,

5

96 5 Conclusion

they can be further improved. Both of these frameworks rely on the most complete, to
this date, benchmark for stream processing, the NexMark benchmark [163, 4]. However, it
has been almost two decades since NexMark was first proposed. Since then, the stream
processing landscape has changed significantly. New engines have been proposed, and
new applications have risen. Therefore, NexMark does not fully capture the current state
of stream processing. Although it includes the main processing tasks that are part of the
modern pipelines, it does not describe the modern use cases and workloads.

Consequently, we argue for the need to revamp benchmarking for stream processing.
To build such a modern benchmark, we need to consider all the current needs of a stream
processing engine, such as autoscaling, fault tolerance, or load balancing. We believe
that the first step towards a new benchmark is investigating the current state of stream
processing from the practitioners’ point of view. Inspired by previous work in the graph
processing field [141], questionnaires, interviews, and a survey of industrial applications
can be employed to unveil the current needs, the challenges, and the open problems of
stream processing, but more importantly, the applications, the workloads and the policies
that are currently relevant in the industry. Based on these insights, a new benchmark
can be designed and implemented in order to better represent modern stream processing,
allowing experimental evaluation to provide richer and more valuable insights that are
also very useful in practice.

97

Bibliography

References
[1] From Aligned to Unaligned Checkpoints - Part 1: Checkpoints, Alignment,

and Backpressure. https://flink.apache.org/2020/10/15/from-
aligned-to-unaligned-checkpoints-part-1-checkpoints-
alignment-and-backpressure/. Archived at web.archive.org on
2024-06-13.

[2] Improving Speed and Stability of Checkpointing [...]. https://
www.alibabacloud.com/blog/599048. Archived at web.archive.org on
2024-06-13.

[3] Kubernetes horizontal pod autoscaling. https://kubernetes.io/
docs/tasks/run-application/horizontal-pod-autoscale/.
Archived at web.archive.org on 2024-2-20.

[4] Nexmark benchmark suite. https://beam.apache.org/
documentation/sdks/java/testing/nexmark/. Archived at
web.archive.org on 2024-06-13.

[5] Optimize checkpointing in your Amazon Managed Service for Apache Flink
applications. https://aws.amazon.com/blogs/big-data/part-
1-optimize-checkpointing-in-your-amazon-managed-
service-for-apache-flink-applications-with-buffer-
debloating-and-unaligned-checkpoints/. Archived at
web.archive.org on 2024-06-13.

[6] Stateful Stream Processing. https://nightlies.apache.org/
flink/flink-docs-release-1.13/docs/concepts/stateful-
stream-processing/}exactly-once-vs-at-least-once.
Archived at web.archive.org on 2024-06-13.

[7] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J. Hwang, W. Lind-
ner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The design
of the borealis stream processing engine. volume 5, pages 277–289, 01 2005.

[8] F. N. Afrati and J. D. Ullman. Optimizing joins in a map-reduce environment. In
Proceedings of the 13th International Conference on Extending Database Technology,
EDBT ’10, page 99–110, New York, NY, USA, 2010. Association for Computing
Machinery.

[9] F. N. Afrati and J. D. Ullman. Optimizingmultiway joins in amap-reduce environment.
IEEE Transactions on Knowledge and Data Engineering, 23(9):1282–1298, 2011.

https://flink.apache.org/2020/10/15/from-aligned-to-unaligned-checkpoints-part-1-checkpoints-alignment-and-backpressure/
https://flink.apache.org/2020/10/15/from-aligned-to-unaligned-checkpoints-part-1-checkpoints-alignment-and-backpressure/
https://flink.apache.org/2020/10/15/from-aligned-to-unaligned-checkpoints-part-1-checkpoints-alignment-and-backpressure/
https://www.alibabacloud.com/blog/599048
https://www.alibabacloud.com/blog/599048
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://aws.amazon.com/blogs/big-data/part-1-optimize-checkpointing-in-your-amazon-managed-service-for-apache-flink-applications-with-buffer-debloating-and-unaligned-checkpoints/
https://aws.amazon.com/blogs/big-data/part-1-optimize-checkpointing-in-your-amazon-managed-service-for-apache-flink-applications-with-buffer-debloating-and-unaligned-checkpoints/
https://aws.amazon.com/blogs/big-data/part-1-optimize-checkpointing-in-your-amazon-managed-service-for-apache-flink-applications-with-buffer-debloating-and-unaligned-checkpoints/
https://aws.amazon.com/blogs/big-data/part-1-optimize-checkpointing-in-your-amazon-managed-service-for-apache-flink-applications-with-buffer-debloating-and-unaligned-checkpoints/
https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/concepts/stateful-stream-processing/#exactly-once-vs-at-least-once
https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/concepts/stateful-stream-processing/#exactly-once-vs-at-least-once
https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/concepts/stateful-stream-processing/#exactly-once-vs-at-least-once

98 Bibliography

[10] A. Aggarwal. Does your 2024 it budget account for cloud waste?
https://www.financialexpress.com/business/digital-transformation-does-your-
2024-it-budget-account-for-cloud-waste-3397257/. Financial Express, 2023. Archived
at web.archive.org on 2024-06-13.

[11] G. Aggarwal, R. Motwani, and A. Zhu. The load rebalancing problem. In Proceedings
of the Fifteenth Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’03, page 258–265, New York, NY, USA, 2003. Association for Computing
Machinery.

[12] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety,
D. Mills, P. Nordstrom, and S. Whittle. MillWheel: Fault-Tolerant Stream Processing
at Internet Scale. Proceedings of the VLDB Endowment, 6(11):1033–1044, 2013.

[13] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Fernández-Moctezuma, R. Lax,
S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle. The dataflow model:
A practical approach to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. Proc. VLDB Endow., 8(12):1792–1803, 2015.

[14] M. I. Ali, F. Gao, and A. Mileo. Citybench: A configurable benchmark to evaluate rsp
engines using smart city datasets. In M. Arenas, O. Corcho, E. Simperl, M. Strohmaier,
M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan, and
S. Staab, editors, The Semantic Web - ISWC 2015, pages 374–389, Cham, 2015. Springer
International Publishing.

[15] L. Alvisi, E. Elnozahy, S. Rao, S. Husain, and A. de Mel. An analysis of communication
induced checkpointing. In Digest of Papers. Twenty-Ninth Annual International
Symposium on Fault-Tolerant Computing (Cat. No.99CB36352), pages 242–249, 1999.

[16] K. Aoyama, K. Saito, H. Sawada, and N. Ueda. Fast approximate similarity search
based on degree-reduced neighborhood graphs. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11,
page 1055–1063, New York, NY, USA, 2011. Association for Computing Machinery.

[17] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa, U. Srivastava,
D. Thomas, R. Varma, and J. Widom. STREAM: the stanford stream data manager.
IEEE Data Eng. Bull., 26(1):19–26, 2003.

[18] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina, M. Stonebraker,
and R. Tibbetts. Linear road: A stream data management benchmark. In Proceedings
of the Thirtieth International Conference on Very Large Data Bases - Volume 30, VLDB
’04, page 480–491. VLDB Endowment, 2004.

[19] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey, E. Ryvkina, M. Stonebraker,
and R. Tibbetts. Linear road: A stream data management benchmark. In M. A.
Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer,
editors, (e)Proceedings of the Thirtieth International Conference on Very Large Data
Bases, VLDB 2004, Toronto, Canada, August 31 - September 3 2004, pages 480–491.
Morgan Kaufmann, 2004.

References 99

[20] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In Proceedings
of the 32nd international conference on Very large data bases, pages 918–929, 2006.

[21] H. Arkian, G. Pierre, J. Tordsson, and E. Elmroth. Model-based stream processing
auto-scaling in geo-distributed environments. In 30th International Conference on
Computer Communications and Networks, ICCCN 2021, Athens, Greece, July 19-22,
2021, pages 1–10. IEEE, 2021.

[22] M. Balazinska, J. Hwang, and M. Shah. Fault Tolerance and High Availability in Data
Stream Management Systems, pages 1–8. 01 2017.

[23] P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing. In R. Hull and
M. Grohe, editors, Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS’14, Snowbird, UT, USA, June 22-27, 2014,
pages 212–223. ACM, 2014.

[24] B. Bhargava and S.-R. Lian. Independent checkpointing and concurrent rollback for
recovery in distributed system—an optimistic approach. 1987.

[25] B. Bhargava and S.-R. Lian. Independent checkpointing and concurrent rollback
for recovery in distributed systems-an optimistic approach. In Proceedings [1988]
Seventh Symposium on Reliable Distributed Systems, pages 3–12, 1988.

[26] C. Bohm, B. C. Ooi, C. Plant, and Y. Yan. Efficiently processing continuous k-
nn queries on data streams. In 2007 IEEE 23rd International Conference on Data
Engineering, pages 156–165, 2007.

[27] M. V. Bordin, D. Griebler, G. Mencagli, C. F. R. Geyer, and L. G. L. Fernandes. Dsp-
bench: A suite of benchmark applications for distributed data stream processing
systems. IEEE Access, 8:222900–222917, 2020.

[28] D. Briatico, A. Ciuffoletti, and L. Simoncini. A distributed domino-effect free recovery
algorithm. In Fourth Symposium on Reliability in Distributed Software and Database
Systems, SRDS 1984, Silver Spring, Maryland, USA, October 15-17, 1984, Proceedings,
pages 207–215. IEEE Computer Society, 1984.

[29] G. Cao and M. Singhal. On coordinated checkpointing in distributed systems. IEEE
Transactions on Parallel and Distributed Systems, 9(12):1213–1225, 1998.

[30] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, and K. Tzoumas. State management
in apache flink®: Consistent stateful distributed stream processing. Proc. VLDB
Endow., 10(12):1718–1729, aug 2017.

[31] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache
flink™: Stream and batch processing in a single engine. IEEE Data Eng. Bull., 38(4):28–
38, 2015.

[32] V. Cardellini, F. Lo Presti, M. Nardelli, and G. Russo Russo. Decentralized self-
adaptation for elastic data stream processing. Future Generation Computer Systems,
87:171–185, 2018.

100 Bibliography

[33] V. Cardellini, F. L. Presti, M. Nardelli, and G. R. Russo. Decentralized self-adaptation
for elastic data stream processing. Future Gener. Comput. Syst., 87:171–185, 2018.

[34] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim. Approximate query
processing using wavelets. VLDB J., 10(2-3):199–223, 2001.

[35] B. Chandramouli, J. Goldstein, M. Barnett, and J. F. Terwilliger. Trill: Engineering a
library for diverse analytics. IEEE Data Eng. Bull., 38(4):51–60, 2015.

[36] B. Chandramouli, J. Goldstein, and D.Maier. On-the-fly progress detection in iterative
stream queries. Proc. VLDB Endow., 2(1):241–252, aug 2009.

[37] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. A. Shah. Tele-
graphcq: Continuous dataflow processing for an uncertain world. In First Biennial
Conference on Innovative Data Systems Research, CIDR 2003, Asilomar, CA, USA,
January 5-8, 2003, Online Proceedings. www.cidrdb.org, 2003.

[38] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, feb 1985.

[39] R.-S. Chang, J.-S. Chang, and P.-S. Lin. An ant algorithm for balanced job scheduling
in grids. Future Generation Computer Systems, 25(1):20–27, 2009.

[40] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins in
data cleaning. In 22nd International Conference on Data Engineering (ICDE’06), pages
5–5, 2006.

[41] G. Chen, K. Yang, L. Chen, Y. Gao, B. Zheng, and C. Chen. Metric similarity joins
using mapreduce. 29(3):656–669, Mar. 2017.

[42] L. Chen, C.-L. Wang, and F. C. Lau. Process reassignment with reduced migration
cost in grid load rebalancing. In 2008 IEEE International Symposium on Parallel and
Distributed Processing, pages 1–13, 2008.

[43] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing,
and S. Zdonik. Scalable distributed stream processing. 01 2003.

[44] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu,
K. Nusbaum, K. Patil, B. Peng, and P. Poulosky. Benchmarking streaming computation
engines: Storm, flink and spark streaming. In 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops, IPDPS Workshops 2016, Chicago, IL,
USA, May 23-27, 2016, pages 1789–1792. IEEE Computer Society, 2016.

[45] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for massive
data: Samples, histograms, wavelets, sketches. Found. Trends Databases, 4(1-3):1–294,
2012.

[46] G. J. da Silva, F. Zheng, D. Debrunner, K. Wu, V. Dogaru, E. Johnson, M. Spicer, and
A. E. Sariyüce. Consistent regions: Guaranteed tuple processing in IBM streams.
Proc. VLDB Endow., 9(13):1341–1352, 2016.

References 101

[47] O. P. Damani and V. K. Garg. How to recover efficiently and asynchronously when op-
timism fails. In Proceedings of 16th International Conference on Distributed Computing
Systems, pages 108–115. IEEE, 1996.

[48] A. Das Sarma, Y. He, and S. Chaudhuri. Clusterjoin: A similarity joins framework
using map-reduce. Proc. VLDB Endow., 7(12):1059–1070, Aug. 2014.

[49] G. De Francisci Morales and A. Gionis. Streaming similarity self-join. Proc. VLDB
Endow., 9(10):792–803, June 2016.

[50] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
In E. A. Brewer and P. Chen, editors, 6th Symposium on Operating System Design
and Implementation (OSDI 2004), San Francisco, California, USA, December 6-8, 2004,
pages 137–150. USENIX Association, 2004.

[51] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, 2008.

[52] B. Del Monte, S. Zeuch, T. Rabl, and V. Markl. Rhino: Efficient management of very
large distributed state for stream processing engines. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, SIGMOD ’20, page
2471–2486, New York, NY, USA, 2020. Association for Computing Machinery.

[53] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng. Massjoin: A mapreduce-based method
for scalable string similarity joins. In 2014 IEEE 30th International Conference on Data
Engineering, pages 340–351, 2014.

[54] D. N. Doan, D. Zaharie, and D. Petcu. Auto-scaling for a streaming architecture with
fuzzy deep reinforcement learning. In U. Schwardmann, C. Boehme, D. B. Heras,
V. Cardellini, E. Jeannot, A. Salis, C. Schifanella, R. R. Manumachu, D. Schwamborn,
L. Ricci, O. Sangyoon, T. Gruber, L. Antonelli, and S. L. Scott, editors, Euro-Par 2019:
Parallel Processing Workshops - Euro-Par 2019 International Workshops, Göttingen,
Germany, August 26-30, 2019, Revised Selected Papers, volume 11997 of Lecture Notes
in Computer Science, pages 476–488. Springer, 2019.

[55] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity search for web
services. In VLDB, volume 4, pages 372–383, 2004.

[56] M. Dossinger and S. Michel. Scaling out multi-way stream joins using optimized,
iterative probing. In 2019 IEEE International Conference on Big Data (Big Data), Los
Angeles, CA, USA, December 9-12, 2019, pages 449–456. IEEE, 2019.

[57] M. Ebraheem, S. Thirumuruganathan, S. R. Joty, M. Ouzzani, and N. Tang. Distributed
representations of tuples for entity resolution. Proc. VLDB Endow., 11(11):1454–1467,
2018.

[58] H. Edelsbrunner. Dynamic rectangle intersection searching. Technical Report 47,
Institute for Information Processing, Technical University of Graz, Austria, 1980.

102 Bibliography

[59] E. Elnozahy, L. Alvisi, Y.-m. Wang, and D. Johnson. A survey of rollback-recovery
protocols in message-passing systems. ACM Computing Surveys, 34, 06 2002.

[60] M. ElSeidy, A. Elguindy, A. Vitorovic, and C. Koch. Scalable and adaptive online
joins. page 16, 2014.

[61] P. S. Eric Lam. Cloud finops: The secret to unlocking the economic potential of public
cloud. https://www.forbes.com/sites/googlecloud/2022/04/04/cloud-finops-the-
secret-to-unlocking-the-economic-potential-of-public-cloud/?sh=5b392ab222a5,
2022. Forbes, 2022. Archived at web.archive.org on 2024-05-21.

[62] B. Everman, M. Gao, and Z. Zong. Evaluating and reducing cloud waste and cost—a
data-driven case study from azure workloads. Sustainable Computing: Informatics
and Systems, 35:100708, 2022.

[63] R. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch. Integrating scale out
and fault tolerance in stream processing using operator state management. pages
725–736, 06 2013.

[64] F. Fier, N. Augsten, P. Bouros, U. Leser, and J.-C. Freytag. Set similarity joins on
mapreduce: An experimental survey. Proc. VLDB Endow., 11(10):1110–1122, June
2018.

[65] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy. Dhalion: Self-
regulating stream processing in heron. PVLDB, 2017.

[66] M. Fragkoulis, P. Carbone, V. Kalavri, and A. Katsifodimos. A survey on the evolution
of stream processing systems. VLDB Journal, 2023.

[67] T. Z. J. Fu, J. Ding, R. T. B. Ma, M. Winslett, Y. Yang, and Z. Zhang. DRS: dynamic
resource scheduling for real-time analytics over fast streams. In 35th IEEE Inter-
national Conference on Distributed Computing Systems, ICDCS 2015, Columbus, OH,
USA, June 29 - July 2, 2015, pages 411–420. IEEE Computer Society, 2015.

[68] T. Z. J. Fu, J. Ding, R. T. B. Ma, M. Winslett, Y. Yang, and Z. Zhang. DRS: auto-scaling
for real-time stream analytics. IEEE/ACM Trans. Netw., 25(6):3338–3352, 2017.

[69] T. Z. J. Fu, J. Ding, R. T. B. Ma, M. Winslett, Y. Yang, and Z. Zhang. Drs: Auto-scaling
for real-time stream analytics. IEEE/ACM Trans. Netw., 25(6):3338–3352, 2017.

[70] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey on
concept drift adaptation. ACM computing surveys (CSUR), 46(4):1–37, 2014.

[71] Y. Gao, H. Rong, and J. Z. Huang. Adaptive grid job scheduling with genetic algo-
rithms. Future Generation Computer Systems, 21(1):151–161, 2005.

[72] B. Gedik, S. Schneider, M. Hirzel, and K.Wu. Elastic scaling for data stream processing.
IEEE Trans. Parallel Distributed Syst., 25(6):1447–1463, 2014.

References 103

[73] C. Gencer, M. Topolnik, V. Ďurina, E. Demirci, E. B. Kahveci, A. Gürbüz, O. Lukáš,
J. Bartók, G. Gierlach, F. Hartman, U. Yılmaz, M. Doğan, M. Mandouh, M. Fragkoulis,
and A. Katsifodimos. Hazelcast jet: Low-latency stream processing at the 99.99th
percentile. Proc. VLDB Endow., 14(12):3110–3121, jul 2021.

[74] S. Ghanbari and M. Othman. A priority based job scheduling algorithm in cloud
computing. Procedia Engineering, 50(0):778–785, 2012.

[75] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high dimensions via
hashing. In Vldb, volume 99, pages 518–529, 1999.

[76] I. Gog, M. Isard, and M. Abadi. Falkirk wheel: Rollback recovery for dataflow systems.
In Proceedings of the ACM Symposium on Cloud Computing, SoCC ’21, page 373–387,
New York, NY, USA, 2021. Association for Computing Machinery.

[77] T. Greene. The hidden costs of cloud and where to find overspend-
ing. https://www.forbes.com/sites/forbestechcouncil/2023/01/19/the-hidden-
costs-of-cloud-and-where-to-find-overspending/. Forbes, 2023. Archived at
web.archive.org on 2024-06-13.

[78] X. Gu, P. S. Yu, and H. Wang. Adaptive load diffusion for multiway windowed stream
joins. In 2007 IEEE 23rd International Conference on Data Engineering, pages 146–155,
2007.

[79] A. Guttman. R-trees: A dynamic index structure for spatial searching. In B. Yormark,
editor, SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, USA, June
18-21, 1984, pages 47–57. ACM Press, 1984.

[80] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap. Stochastic database cracking: To-
wards robust adaptive indexing in main-memory column-stores. Proc. VLDB Endow.,
5(6):502–513, 2012.

[81] T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer. Auto-scaling techniques for elastic
data stream processing. InWorkshops Proceedings of the 30th International Conference
on Data Engineering Workshops, ICDE 2014, Chicago, IL, USA, March 31 - April 4, 2014,
pages 296–302. IEEE Computer Society, 2014.

[82] T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer. Auto-scaling techniques for elastic
data stream processing. In U. Bellur and R. Kothari, editors, The 8th ACM International
Conference on Distributed Event-Based Systems, DEBS ’14, Mumbai, India, May 26-29,
2014, pages 318–321. ACM, 2014.

[83] J. Hélary, A. Mostéfaoui, R. H. B. Netzer, and M. Raynal. Communication-based
prevention of useless checkpoints in distributed computations. Distributed Comput.,
13(1):29–43, 2000.

[84] G. Hesse, C. Matthies, M. Perscheid, M. Uflacker, and H. Plattner. Espbench: The
enterprise stream processing benchmark. In J. Bourcier, Z. M. J. Jiang, C. Bezemer,
V. Cortellessa, D. D. Pompeo, and A. L. Varbanescu, editors, ICPE ’21: ACM/SPEC

104 Bibliography

International Conference on Performance Engineering, Virtual Event, France, April
19-21, 2021, pages 201–212. ACM, 2021.

[85] N. Hidalgo, D. Wladdimiro, and E. Rosas. Self-adaptive processing graph with
operator fission for elastic stream processing. J. Syst. Softw., 127:205–216, 2017.

[86] B. Hilprecht, C. Binnig, and U. Röhm. Learning a partitioning advisor for cloud
databases. In Proceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’20, page 143–157, New York, NY, USA, 2020. Association
for Computing Machinery.

[87] C. Hochreiner, M. Vögler, S. Schulte, and S. Dustdar. Elastic stream processing for
the internet of things. In 9th IEEE International Conference on Cloud Computing,
CLOUD 2016, San Francisco, CA, USA, June 27 - July 2, 2016, pages 100–107. IEEE
Computer Society, 2016.

[88] M. E. Houle and J. Sakuma. Fast approximate similarity search in extremely high-
dimensional data sets. In 21st International Conference on Data Engineering (ICDE’05),
pages 619–630. IEEE, 2005.

[89] X. Hu, Y. Tao, and K. Yi. Output-optimal parallel algorithms for similarity joins.
In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages 79–90. ACM,
2017.

[90] X. Hu, K. Yi, and Y. Tao. Output-optimal massively parallel algorithms for similarity
joins. ACM Trans. Database Syst., 44(2):6:1–6:36, 2019.

[91] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and S. Zdonik.
High-availability algorithms for distributed stream processing. In 21st International
Conference on Data Engineering (ICDE’05), pages 779–790, 2005.

[92] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

[93] V. Kalavri, J. Liagouris, M. Hoffmann, D. Dimitrova, M. Forshaw, and T. Roscoe.
Three steps is all you need: fast, accurate, automatic scaling decisions for distributed
streaming dataflows. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 783–798, Carlsbad, CA, Oct. 2018. USENIX
Association.

[94] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and V. Markl. Bench-
marking distributed stream data processing systems. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE), pages 1507–1518, 2018.

[95] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and V. Markl. Bench-
marking distributed stream data processing systems. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE), pages 1507–1518, 2018.

References 105

[96] Y. Kim and K. Shim. Parallel top-k similarity join algorithms using mapreduce. In
2012 IEEE 28th International Conference on Data Engineering, pages 510–521. IEEE,
2012.

[97] A. Klein. Backblaze drive stats for 2022. https://www.backblaze.com/blog/backblaze-
drive-stats-for-2022/. Archive at web.archive.org on 2024-05-21.

[98] D. Kossmann. The state of the art in distributed query processing. ACM Comput.
Surv., 32(4):422–469, dec 2000.

[99] N. Koudas, B. C. Ooi, K.-L. Tan, and R. Zhang. - approximate nn queries on streams
with guaranteed error/performance bounds. In Proceedings 2004 VLDB Conference,
pages 804–815. Morgan Kaufmann, St Louis, 2004.

[100] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned index
structures. In G. Das, C. M. Jermaine, and P. A. Bernstein, editors, Proceedings of
the 2018 International Conference on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018, pages 489–504. ACM, 2018.

[101] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Probabilistic similarity join on
uncertain data. In Database Systems for Advanced Applications: 11th International
Conference, DASFAA 2006, Singapore, April 12-15, 2006. Proceedings 11, pages 295–309.
Springer, 2006.

[102] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel,
K. Ramasamy, and S. Taneja. Twitter heron: Stream processing at scale. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data, page
239–250, New York, NY, USA, 2015.

[103] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune: mitigating skew in
mapreduce applications. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12, page 25–36, New York, NY, USA,
2012. Association for Computing Machinery.

[104] A. Labrinidis and H. V. Jagadish. Challenges and opportunities with big data. Proc.
VLDB Endow., 5(12):2032–2033, aug 2012.

[105] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: Artful indexing for
main-memory databases. In C. S. Jensen, C. M. Jermaine, and X. Zhou, editors, 29th
IEEE International Conference on Data Engineering, ICDE 2013, Brisbane, Australia,
April 8-12, 2013, pages 38–49. IEEE Computer Society, 2013.

[106] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura. Sparkbench: A comprehensive
benchmarking suite for in memory data analytic platform spark. In Proceedings of
the 12th ACM International Conference on Computing Frontiers, CF ’15, New York, NY,
USA, 2015. Association for Computing Machinery.

[107] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura. Sparkbench: a comprehensive
benchmarking suite for in memory data analytic platform spark. In C. D. Napoli,

106 Bibliography

V. Salapura, H. Franke, and R. Hou, editors, Proceedings of the 12th ACM International
Conference on Computing Frontiers, CF’15, Ischia, Italy, May 18-21, 2015, pages 53:1–
53:8. ACM, 2015.

[108] X. Lian and L. Chen. Similarity join processing on uncertain data streams. IEEE
Transactions on Knowledge and Data Engineering, 23(11):1718–1734, 2011.

[109] Q. Lin, B. C. Ooi, Z. Wang, and C. Yu. Scalable distributed stream join processing.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’15, page 811–825, New York, NY, USA, 2015. Association for
Computing Machinery.

[110] X. Liu, A. V. Dastjerdi, R. N. Calheiros, C. Qu, and R. Buyya. A stepwise auto-profiling
method for performance optimization of streaming applications. ACM Trans. Auton.
Adapt. Syst., 12(4):24:1–24:33, 2018.

[111] B. Lohrmann, P. Janacik, and O. Kao. Elastic stream processing with latency guaran-
tees. In 35th IEEE International Conference on Distributed Computing Systems, ICDCS
2015, Columbus, OH, USA, June 29 - July 2, 2015, pages 399–410. IEEE Computer
Society, 2015.

[112] F. Lombardi, L. Aniello, S. Bonomi, and L. Querzoni. Elastic symbiotic scaling of
operators and resources in stream processing systems. IEEE Trans. Parallel Distributed
Syst., 29(3):572–585, 2018.

[113] F. Lombardi, A. Muti, L. Aniello, R. Baldoni, S. Bonomi, and L. Querzoni. PASCAL: an
architecture for proactive auto-scaling of distributed services. Future Gener. Comput.
Syst., 98:342–361, 2019.

[114] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano. A review of auto-scaling
techniques for elastic applications in cloud environments. Journal of grid computing,
12(4):559–592, 2014.

[115] R. Lu, G. Wu, B. Xie, and J. Hu. Stream bench: Towards benchmarking modern
distributed stream computing frameworks. In Proceedings of the 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing, UCC ’14, page 69–78, USA,
2014. IEEE Computer Society.

[116] R. Lu, G. Wu, B. Xie, and J. Hu. Stream bench: Towards benchmarking modern
distributed stream computing frameworks. In Proceedings of the 7th IEEE/ACM
International Conference on Utility and Cloud Computing, UCC 2014, London, United
Kingdom, December 8-11, 2014, pages 69–78. IEEE Computer Society, 2014.

[117] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe LSH: efficient
indexing for high-dimensional similarity search. In C. Koch, J. Gehrke, M. N. Garo-
falakis, D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan, V. Ganti,
C. Kanne, W. Klas, and E. J. Neuhold, editors, Proceedings of the 33rd International
Conference on Very Large Data Bases, University of Vienna, Austria, September 23-27,
2007, pages 950–961. ACM, 2007.

References 107

[118] S. Madden. From databases to big data. IEEE Internet Computing, 16(3):4–6, 2012.

[119] K. G. S. Madsen, Y. Zhou, and J. Cao. Integrative dynamic reconfiguration in a
parallel stream processing engine. In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), pages 227–230, 2017.

[120] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making
learned query optimization practical. In Proceedings of the 2021 International Con-
ference on Management of Data, SIGMOD ’21, page 1275–1288, New York, NY, USA,
2021. Association for Computing Machinery.

[121] G. Mencagli, M. Torquati, and M. Danelutto. Elastic-ppq: A two-level autonomic
system for spatial preference query processing over dynamic data streams. Future
Gener. Comput. Syst., 79:862–877, 2018.

[122] A. Metwally, D. Agrawal, and A. E. Abbadi. Detectives: detecting coalition hit
inflation attacks in advertising networks streams. In C. L. Williamson, M. E. Zurko,
P. F. Patel-Schneider, and P. J. Shenoy, editors, Proceedings of the 16th International
Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007,
pages 241–250. ACM, 2007.

[123] A. Metwally and C. Faloutsos. V-smart-join: A scalable mapreduce framework for
all-pair similarity joins of multisets and vectors. Proc. VLDB Endow., 5(8):704–715,
Apr. 2012.

[124] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: A
timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, page 439–455, New York, NY, USA, 2013.
Association for Computing Machinery.

[125] M. Najafi, M. Sadoghi, and H.-A. Jacobsen. SplitJoin: A scalable, low-latency stream
join architecture with adjustable ordering precision. In 2016 USENIX Annual Tech-
nical Conference (USENIX ATC 16), pages 493–505, Denver, CO, June 2016. USENIX
Association.

[126] M. Najafi, M. Sadoghi, and H.-A. Jacobsen. Scalable multiway stream joins in
hardware. IEEE Transactions on Knowledge and Data Engineering, 32(12):2438–2452,
2020.

[127] A. Pacaci, A. Bonifati, and M. T. Özsu. Regular path query evaluation on streaming
graphs. In Proceedings of the 2020 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’20, page 1415–1430, New York, NY, USA, 2020. Association
for Computing Machinery.

[128] G. Papadakis, G. M. Mandilaras, L. Gagliardelli, G. Simonini, E. Thanos, G. Gian-
nakopoulos, S. Bergamaschi, T. Palpanas, and M. Koubarakis. Three-dimensional
entity resolution with jedai. Inf. Syst., 93:101565, 2020.

108 Bibliography

[129] G. Papadakis, L. Tsekouras, E. Thanos, N. Pittaras, G. Simonini, D. Skoutas, P. Isaris,
G. Giannakopoulos, T. Palpanas, and M. Koubarakis. Jedai3 : beyond batch, blocking-
based entity resolution. In A. Bonifati, Y. Zhou, M. A. V. Salles, A. Böhm, D. Olteanu,
G. H. L. Fletcher, A. Khan, and B. Yang, editors, Proceedings of the 23rd International
Conference on Extending Database Technology, EDBT 2020, Copenhagen, Denmark,
March 30 - April 02, 2020, pages 603–606. OpenProceedings.org, 2020.

[130] N. Pelekis, I. Kopanakis, G. Marketos, I. Ntoutsi, G. Andrienko, and Y. Theodor-
idis. Similarity search in trajectory databases. In 14th International Symposium on
Temporal Representation and Reasoning (TIME’07), pages 129–140. IEEE, 2007.

[131] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer.
Network-aware operator placement for stream-processing systems. In 22nd Interna-
tional Conference on Data Engineering (ICDE’06), pages 49–49, 2006.

[132] E. Pinheiro, W. Weber, and L. A. Barroso. Failure trends in a large disk drive
population. In A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau, editors, 5th USENIX
Conference on File and Storage Technologies, FAST 2007, February 13-16, 2007, San Jose,
CA, USA, pages 17–28. USENIX, 2007.

[133] V. Poosala, V. Ganti, and Y. E. Ioannidis. Approximate query answering using
histograms. IEEE Data Eng. Bull., 22(4):5–14, 1999.

[134] I. Popivanov and R. J. Miller. Similarity search over time-series data using wavelets.
In Proceedings 18th international conference on data engineering, pages 212–221. IEEE,
2002.

[135] K. Psarakis, G. Siachamis, G. Christodoulou, M. Fragkoulis, and A. Katsifodimos.
Styx: Transactional stateful functions on streaming dataflows, 2024.

[136] K. Psarakis, W. Zorgdrager, M. Fragkoulis, G. Salvaneschi, and A. Katsifodimos.
Stateful entities: Object-oriented cloud applications as distributed dataflows. In
EDBT, 2024.

[137] S. Qian, G. Wu, J. Huang, and T. Das. Benchmarking modern distributed streaming
platforms. In 2016 IEEE International Conference on Industrial Technology (ICIT),
pages 592–598, 2016.

[138] Y. Qiu, S. Papadias, and K. Yi. Streaming hypercube: A massively parallel stream
join algorithm. In Advances in Database Technology - 22nd International Conference
on Extending Database Technology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019,
pages 642–645. OpenProceedings.org, 2019.

[139] H. Röger and R. Mayer. A comprehensive survey on parallelization and elasticity in
stream processing. ACM Comput. Surv., 52(2), 2019.

[140] S. Sagiroglu and D. Sinanc. Big data: A review. In 2013 International Conference on
Collaboration Technologies and Systems (CTS), pages 42–47, 2013.

References 109

[141] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu. The ubiquity of large graphs
and surprising challenges of graph processing. Proc. VLDB Endow., 11(4):420–431,
dec 2017.

[142] A. Santos, A. Bessa, F. Chirigati, C. Musco, and J. Freire. Correlation sketches
for approximate join-correlation queries. In Proceedings of the 2021 International
Conference on Management of Data, SIGMOD ’21, page 1531–1544, New York, NY,
USA, 2021. Association for Computing Machinery.

[143] S. Schelter, C. Boden, and V. Markl. Scalable similarity-based neighborhood methods
with mapreduce. In Proceedings of the sixth ACM conference on Recommender systems,
pages 163–170, 2012.

[144] T. Schlegl, S. Schlegl, D. Tomaselli, N. West, and J. Deuse. Adaptive similarity search
for the retrieval of rare events from large time series databases. Advanced Engineering
Informatics, 52:101629, 2022.

[145] A. Shahvarani and H.-A. Jacobsen. Distributed stream knn join. In Proceedings of the
2021 International Conference on Management of Data, SIGMOD ’21, page 1597–1609,
New York, NY, USA, 2021. Association for Computing Machinery.

[146] M. Sheikhalishahi, R. M. Wallace, L. Grandinetti, J. L. Vazquez-Poletti, and F. Guer-
riero. A multi-dimensional job scheduling. Future Generation Computer Systems,
54:123–131, 2016.

[147] A. Shukla, S. Chaturvedi, and Y. Simmhan. Riotbench: An iot benchmark for dis-
tributed stream processing systems. Concurrency and Computation: Practice and
Experience, 29(21):e4257, 2017. e4257 cpe.4257.

[148] G. Siachamis, G. Christodoulou, K. Psarakis, M. Fragkoulis, A. van Deursen, and
A. Katsifodimos. Evaluating stream processing autoscalers. In Proceedings of the
18th ACM International Conference on Distributed and Event-Based Systems, DEBS
’24, page 110–122, New York, NY, USA, 2024. Association for Computing Machinery.

[149] G. Siachamis, J. Kanis, W. Koper, K. Psarakis, M. Fragkoulis, A. van Deursen, and
A. Katsifodimos. Towards evaluating stream processing autoscalers. In 2023 IEEE
39th International Conference on Data Engineering Workshops (ICDEW), pages 95–99,
Los Alamitos, CA, USA, apr 2023. IEEE Computer Society.

[150] G. Siachamis, K. Psarakis, M. Fragkoulis, O. Papapetrou, A. van Deursen, and A. Kat-
sifodimos. Adaptive distributed streaming similarity joins. In Proceedings of the
17th ACM International Conference on Distributed and Event-Based Systems, DEBS
’23, page 25–36, New York, NY, USA, 2023. Association for Computing Machinery.

[151] G. Siachamis, K. Psarakis, M. Fragkoulis, A. van Deursen, P. Carbone, and A. Katsi-
fodimos. Checkmate: Evaluating checkpointing protocols for streaming dataflows. In
2024 IEEE 40th International Conference on Data Engineering (ICDE), pages 4030–4043,
2024.

110 Bibliography

[152] P. F. Silvestre, M. Fragkoulis, D. Spinellis, and A. Katsifodimos. Clonos: Consistent
causal recovery for highly-available streaming dataflows. In Proceedings of the 2021
International Conference on Management of Data, SIGMOD ’21, page 1637–1650, New
York, NY, USA, 2021. Association for Computing Machinery.

[153] J. Smith, P. Watson, A. Gounaris, N. W. Paton, A. A. A. Fernandes, and R. Sakellar-
iou. Distributed query processing on the grid. Int. J. High Perform. Comput. Appl.,
17(4):353–367, 2003.

[154] R. Stephens. A survey of stream processing. Acta Informatica, 34(7):491–541, 1997.

[155] R. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM Trans.
Comput. Syst., 3(3):204–226, aug 1985.

[156] A. Stupar, S. Michel, and R. Schenkel. Rankreduce–processing k-nearest neighbor
queries on top of mapreduce. Large-Scale Distributed Systems for Information Retrieval,
15:3, 2010.

[157] N. Sundaram, A. Turmukhametova, N. Satish, T. Mostak, P. Indyk, S. Madden, and
P. Dubey. Streaming similarity search over one billion tweets using parallel locality-
sensitive hashing. Proceedings of the VLDB Endowment, 6(14):1930–1941, 2013.

[158] N. Sundaram, A. Turmukhametova, N. Satish, T. Mostak, P. Indyk, S. Madden, and
P. Dubey. Streaming similarity search over one billion tweets using parallel locality-
sensitive hashing. Proc. VLDB Endow., 6(14):1930–1941, sep 2013.

[159] S. Suri, I. F. Ilyas, C. Ré, and T. Rekatsinas. Ember: No-code context enrichment via
similarity-based keyless joins. Proc. VLDB Endow., 15(3):699–712, nov 2021.

[160] M. Tang, Y. Yu, W. G. Aref, Q. M. Malluhi, and M. Ouzzani. Efficient processing of
hamming-distance-based similarity-search queries over mapreduce. In EDBT, pages
361–372, 2015.

[161] Y. Tian, T. Yan, X. Zhao, K. Huang, and X. Zhou. A learned index for exact similarity
search in metric spaces. IEEE Transactions on Knowledge and Data Engineering,
35(8):7624–7638, 2023.

[162] A. Tsymbal. The problem of concept drift: definitions and related work. 2004.

[163] P. Tucker, K. Tufte, V. Papadimos, and D. Maier. Nexmark–a benchmark for queries
over data streams (draft). Technical report, 2008.

[164] G. van Dongen and D. V. den Poel. Evaluation of stream processing frameworks.
IEEE Trans. Parallel Distributed Syst., 31(8):1845–1858, 2020.

[165] B. Varga, M. Balassi, and A. Kiss. Towards autoscaling of apache flink jobs. Acta
Universitatis Sapientiae, Informatica, 13:1–21, 04 2021.

[166] B. Varga, M. Balassi, and A. Kiss. Towards autoscaling of apache flink jobs. Acta
Universitatis Sapientiae, Informatica, 13(1):39–59, 2021.

References 111

[167] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins using mapre-
duce. SIGMOD ’10, page 495–506, New York, NY, USA, 2010. Association for Com-
puting Machinery.

[168] J. Wang, J. Feng, and G. Li. Trie-join: efficient trie-based string similarity joins with
edit-distance constraints. Proc. VLDB Endow., 3(1–2):1219–1230, sep 2010.

[169] Q. Wang and T. Palpanas. Deep learning embeddings for data series similarity search.
In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data
mining, pages 1708–1716, 2021.

[170] S. Wang and E. Rundensteiner. Scalable stream join processing with expensive
predicates: Workload distribution and adaptation by time-slicing. In Proceedings
of the 12th International Conference on Extending Database Technology: Advances in
Database Technology, EDBT ’09, page 299–310, New York, NY, USA, 2009. Association
for Computing Machinery.

[171] Y. Wang, A. Metwally, and S. Parthasarathy. Scalable all-pairs similarity search in
metric spaces. KDD ’13, page 829–837, New York, NY, USA, 2013. Association for
Computing Machinery.

[172] Y.-M. Wang, P.-Y. Chung, I.-J. Lin, and W. Fuchs. Checkpoint space reclamation for
uncoordinated checkpointing in message-passing systems. IEEE Transactions on
Parallel and Distributed Systems, 6(5):546–554, 1995.

[173] J. Wu, Y. Zhang, J. Wang, C. Lin, Y. Fu, and C. Xing. Scalable metric similarity join
using mapreduce. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pages 1662–1665, 2019.

[174] J. Yang, W. Zhang, X.Wang, Y. Zhang, and X. Lin. Distributed streaming set similarity
join. In 2020 IEEE 36th International Conference on Data Engineering (ICDE), pages
565–576. IEEE, 2020.

[175] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Job
scheduling for multi-user mapreduce clusters. Technical report, UCB/EECS-2009-55,
EECS Department, University of California, 2009.

[176] E. Zapridou, I. Mytilinis, and A. Ailamaki. Dalton: Learned partitioning for dis-
tributed data streams. Proc. VLDB Endow., 16(3):491–504, 2022.

[177] Y. Zhang, X. Li, J. Wang, Y. Zhang, C. Xing, and X. Yuan. An efficient framework for
exact set similarity search using tree structure indexes. In 2017 IEEE 33rd International
Conference on Data Engineering (ICDE), pages 759–770, 2017.

[178] Y. Zhou, B. C. Ooi, K.-L. Tan, and J. Wu. Efficient dynamic operator placement in a
locally distributed continuous query system. In On the Move to Meaningful Internet
Systems 2006: CoopIS, DOA, GADA, and ODBASE, pages 54–71, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

113

List of Figures

1.1 An example application using the MapReduce paradigm. 2
1.2 Prevailing processing models. 3
1.3 A stream processing pipeline. S1 is the source operator, while O1 is the

output operator of the pipeline. M1 andM2 are parallel instances of the map
operator. Similarly, A{1-3} are parallel instances of the aggregate operator. 4

1.4 An example of a windowed streaming similarity join between two streams. 6
1.5 Streaming similarity joins employed in an infrastructure monitoring appli-

cation. Within a large organization, different teams use different monitor-
ing tools to monitor their assets (hardware or software). These different
monitoring tools may represent the same assets differently. However, a
major incident response team wants to match the produced alerts that
contain relevant information in order to enrich the information provided
to downstream tasks, such as root cause analysis or incident prediction
model training. 7

1.6 Types of failures in distributed stream processing. 8
1.7 Different ways of provisioning resources. 10

2.1 Overview of proposed solution’s workflow 25
2.2 (a) Paradigm’s similarity computations workflow. (b) Example with a du-

plicate evaluation of a candidate pair. 27
2.3 Workset Formulation Workflow . 30
2.4 99% latency percentile per worker for varying selectivities. Each line repre-

sents a single worker (in this case, 5 workers total). Incoming ratio 4000
records per second, Parallelism: 5, Uniform distribution. 36

2.5 99% latency percentile per worker for varying parallelism. Each line rep-
resents a single worker (in this case, 5, 10, and 15 workers accordingly).
Incoming ratio 8000 records per second, Selectivity: 0.1%, Uniform distri-
bution. 38

2.6 99% latency percentile per worker. Each line represents a single worker (in
this case, 5 workers in total). Uniform distribution, Incoming ratio 8000
records per sec, Selectivity: 0.1%, Parallelism: 5. 39

3.1 Examples of valid recovery lines when in-flight messages are included in
the global state. 44

3.2 Cases of inconsistent and consistent state after recovery for stateful opera-
tors 𝑂1,𝑂2 and 𝑂3. 45

114 List of Figures

3.3 Example execution of the coordinated aligned checkpointing protocol.
Messages are represented as circles, and markers are squares. Different
colors denote different coordinated rounds. 48

3.4 Example overview of Rollback propagation algorithm on a given execution
timeline . 50

3.5 Domino effect of invalid checkpoints on a cyclic query. 51
3.6 Execution graph of the reachability query. 54
3.7 Normalized maximum sustainable throughput per query achieved by each

protocol for different parallelism. 56
3.8 Average checkpointing time on different parallelisms. 57
3.9 50th percentile latency. The black dashed vertical line indicates the moment

of failure. 58
3.10 99th percentile latency. The black dashed vertical line indicates the moment

of failure. 59
3.11 Restart time after failure per query for each protocol on different levels of

parallelism. 60
3.12 50th percentile latency & average checkpointing time under different hot

items percentages. 62
3.13 Restart time after failure per query in the presence of skew. 63

4.1 MAPE loop for stream processing autoscaling 68
4.2 Workloads . 75
4.3 Increasing pattern . 77
4.4 Decreasing pattern . 78
4.5 Cosine pattern . 79
4.6 Random pattern . 80
4.7 Filter. 81
4.8 Incremental Join . 834.9 Sliding Windowed Aggregate. 84
4.10 Convergence . 85

115

List of Tables

2.1 Related work comparison. 19
2.2 Effects of selectivity on duplication ratio and comparisons reduction. . . . 37
2.3 Effects of parallelism to duplication ratio and comparisons reduction. . . . 38

3.1 Summary of the features of the checkpointing protocols explored in Section 3.3 47
3.2 Ratio of message overhead with respect to an execution without checkpoints. 56
3.3 Total checkpoints and percentage of invalid checkpoints. 61
3.4 Average checkpointing time (CT), restart time (RT), and invalid checkpoints

(IC) for the cyclic query. 63

117

Curriculum Vitæ

Georgios Siachamis

1994/05/28 Born in Athens, Greece

Professional Experience

2020-2024 Academic Consultant, ING, Netherlands

2019 Research Intern, Université de Cergy-Paris, France

2015-2016 Software Engineer, FOCUS ON DIGITAL LTD., Greece

Education

2019-2024 Doctor of Philosophy (PhD), Computer Science
Delft University of Technology, Netherlands

20014-2019 Diploma (M.Eng), Electrical and Computer Engineering
National Technical University of Athens, Greece

119

List of Publications
 1. George Siachamis, George Christodoulou, Kyriakos Psarakis, Marios Fragkoulis, Arie van

Deursen, Asterios Katsifodimos. Evaluating Stream Processing Autoscalers, in ACM Confer-
ence on Distributed and Event-Based Systems (DEBS), 2024.

 2. George Siachamis, Kyriakos Psarakis, Marios Fragkoulis, Arie van Deursen, Paris Car-
bone, Asterios Katsifodimos. CheckMate: Evaluating Checkpointing Protocols for Streaming
Dataflows, in IEEE International Conference on Data Engineering (ICDE), 2024.

3. Kyriakos Psarakis, George Siachamis, George Christodoulou, Marios Fragkoulis, Asterios
Katsifodimos. Styx: Transactional Stateful Functions on Streaming Dataflows, in arXiv, 2024.

 4. George Siachamis, Kyriakos Psarakis, Marios Fragkoulis, Odysseas Papapetrou, Arie van
Deursen, Asterios Katsifodimos. CheckMate: Evaluating Checkpointing Protocols for Stream-
ing Dataflows, in ACM Conference on Distributed and Event-Based Systems (DEBS), 2023.

 5. George Siachamis, Job Kanis, Wybe Koper, Kyriakos Psarakis, Marios Fragkoulis, Arie
van Deursen, Asterios Katsifodimos. Towards Evaluating Stream Processing Autoscalers, in
International Workshop on Self-managing Database Systems (SMDB), co-located with ICDE,
2023.

6. Christos Koutras, Kyriakos Psarakis, George Siachamis, Andra Ionescu, Marios Fragkoulis,
Angela Bonifati and Asterios Katsifodimos. Valentine in Action: Matching Tabular Data at
Scale, in Very Large Data Bases (VLDB), 2021.

7. Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Marios Fragkoulis,
Jery Brons, Christoph Lofi, Angela Bonifati and Asterios Katsifodimos. Valentine: Evaluating
Matching Techniques for Dataset Discovery, in International Conference on Data Engineering
(ICDE), 2021.

8. George Siachamis. Integrating Massive Data Streams, in Very Large Data Bases (VLDB),
PhD Workshop, 2021.

 Included in this thesis.

121

SIKS Dissertation Series
Since 1998, all dissertations written by PhD students who have conducted their research
under auspices of a senior research fellow of the SIKS research school are published in the
SIKS Dissertation Series.

2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines
02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews through

decision support: prescribing a better pill to swallow
03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowledge

Worker Support
04 Laurens Rietveld (VUA), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UvA), Expanded Acyclic Queries: Containment and an

Application in Explaining Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain environment
07 Jeroen de Man (VUA), Measuring and modeling negative emotions for virtual

training
08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social

Networks from Unstructured Data
09 ArchanaNottamkandath (VUA), Trusting Crowdsourced Information onCultural

Artefacts
10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms
11 Anne Schuth (UvA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-Agent

Systems
13 Nana Baah Gyan (VUA), The Web, Speech Technologies and Rural Development

in West Africa - An ICT4D Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization
15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects, Algo-

rithms and Experiments
16 Guangliang Li (UvA), Socially Intelligent Autonomous Agents that Learn from

Human Reward
17 Berend Weel (VUA), Towards Embodied Evolution of Robot Organisms
18 Albert Meroño Peñuela (VUA), Refining Statistical Data on the Web
19 Julia Efremova (TU/e), Mining Social Structures from Genealogical Data
20 Daan Odijk (UvA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces:

Automatic Analysis of Player Behavior in the Interactive Tag Playground
22 Grace Lewis (VUA), Software Architecture Strategies for Cyber-Foraging Sys-

tems
23 Fei Cai (UvA), Query Auto Completion in Information Retrieval

24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An
Iterative and data model independent approach

25 Julia Kiseleva (TU/e), Using Contextual Information to Understand Searching
and Browsing Behavior

26 Dilhan Thilakarathne (VUA), In or Out of Control: Exploring Computational
Models to Study the Role of Human Awareness and Control in Behavioural
Choices, with Applications in Aviation and Energy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media
28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A study on

epidemic prediction and control
29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems -

Markets and prices for flexible planning
30 Ruud Mattheij (TiU), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability Risks

for Crisis Organisations
33 Peter Bloem (UvA), Single Sample Statistics, exercises in learning from just one

example
34 Dennis Schunselaar (TU/e), Configurable Process Trees: Elicitation, Analysis,

and Enactment
35 Zhaochun Ren (UvA), Monitoring Social Media: Summarization, Classification

and Recommendation
36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction

behavior optimized for robot-specific morphologies
37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and computa-

tional inquiry
38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art & Inter-

action Design
39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interpersonal

Style Selection for an Artificial Suspect
40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Framework for

Analysing Institutional Design and Enactment Governance
42 Spyros Martzoukos (UvA), Combinatorial and Compositional Aspects of Bilin-

gual Aligned Corpora
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management: From

Theory to Practice
44 Thibault Sellam (UvA), Automatic Assistants for Database Exploration
45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control
46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 ChristinaWeber (UL), Real-time foresight - Preparedness for dynamic innovation

networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-Theoretic

Analysis

50 Yan Wang (TiU), The Bridge of Dreams: Towards a Method for Operational
Performance Alignment in IT-enabled Service Supply Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Networks

using Argumentation
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach

with Autonomous Products and Reconfigurable Manufacturing Machines
04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UvA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web Product Search
07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly
08 Rob Konijn (VUA), Detecting Interesting Differences:Data Mining in Health

Insurance Data using Outlier Detection and Subgroup Discovery
09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational Perspec-

tive on Variation in Text
10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter

#anticipointment
12 Sander Leemans (TU/e), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of social

touch through haptic technology
14 Shoshannah Tekofsky (TiU), You Are Who You Play You Are: Modelling Player

Traits from Video Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UvA), Understanding and Modeling Users of Modern Search

Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UvA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in Infor-

mation Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge Sharing:

The Role of Perceived Benefits, Costs and Visibility
21 Jeroen Linssen (UT), MetaMatters in Interactive Storytelling and Serious Gaming

(A Play on Worlds)
22 Sara Magliacane (VUA), Logics for causal inference under uncertainty
23 David Graus (UvA), Entities of Interest — Discovery in Digital Traces
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning
25 Veruska Zamborlini (VUA), Knowledge Representation for Clinical Guidelines,

with applications to Multimorbidity Analysis and Literature Search
26 Merel Jung (UT), Socially intelligent robots that understand and respond to

human touch
27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social

Robots: People’s Preferences, Perceptions and Behaviors
28 John Klein (VUA), Architecture Practices for Complex Contexts

29 Adel Alhuraibi (TiU), From IT-BusinessStrategic Alignment to Performance: A
Moderated Mediation Model of Social Innovation, and Enterprise Governance
of IT"

30 Wilma Latuny (TiU), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT calculations
32 Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software Documenta-

tion: A Model of Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics
35 Martine de Vos (VUA), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from High-

throughput Imaging
37 Alejandro Montes Garcia (TU/e), WiBAF: A Within Browser Adaptation Frame-

work that Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system and

compressive sensing methods to increase noise robustness in ASR
40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration of Hu-

man Control in Relation to Emotions, Desires and Social Support For applications
in human-aware support systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of Mental
Processes and a Smart Environment to Provide Support for a Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing data with
applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computational Linguistics

in Agile Requirements Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Representations
02 Felix Mannhardt (TU/e), Multi-perspective Process Mining
03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling,

Model-Driven Development of Context-Aware Applications, and Behavior Pre-
diction

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in
Data-Centric Engineering Tasks

05 Hugo Huurdeman (UvA), Supporting the Complex Dynamics of the Information
Seeking Process

06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of Socio-
Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems
08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems
09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations

10 Julienka Mollee (VUA), Moving forward: supporting physical activity behavior
change through intelligent technology

11 Mahdi Sargolzaei (UvA), Enabling Framework for Service-oriented Collaborative
Networks

12 Xixi Lu (TU/e), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (TiU), Detecting Social Signals with Spatiotemporal Gabor Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in a group

of children
17 Jianpeng Zhang (TU/e), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OU), EMERGO: a generic platform for authoring and playing

scenario-based serious games
22 Eric Fernandes de Mello Araújo (VUA), Contagious: Modeling the Spread of

Behaviours, Perceptions and Emotions in Social Networks
23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis
24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-

Autonomous Telepresence Robots
25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Motivational

Messages for Behavior Change Technology
27 Maikel Leemans (TU/e), Hierarchical Process Mining for Scalable Software

Analysis
28 Christian Willemse (UT), Social Touch Technologies: How they feel and how

they make you feel
29 Yu Gu (TiU), Emotion Recognition from Mandarin Speech
30 Wouter Beek (VUA), The "K" in "semantic web" stands for "knowledge": scaling

semantics to the web
2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bidding systems. A

graph-based approach to RTB system classification
02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations for As-

sessing Class Size Uncertainty
03 Eduardo Gonzalez Lopez de Murillas (TU/e), Process Mining on Databases:

Extracting Event Data from Real Life Data Sources
04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data
05 Sebastiaan van Zelst (TU/e), Process Mining with Streaming Data
06 Chris Dijkshoorn (VUA), Nichesourcing for Improving Access to Linked Cultural

Heritage Datasets
07 Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms
08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision Pro-

cesses

09 Fahimeh Alizadeh Moghaddam (UvA), Self-adaptation for energy efficiency in
software systems

10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Allocation and
Prediction

11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner Behav-
ioral Engagement in MOOCs

12 Jacqueline Heinerman (VUA), Better Together
13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content Gen-

eration
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner Behavior

& Improving Learning Outcomes in Massive Open Online Courses
15 ErwinWalraven (TUD), Planning under Uncertainty in Constrained and Partially

Observable Environments
16 Guangming Li (TU/e), Process Mining based on Object-Centric Behavioral Con-

straint (OCBC) Models
17 Ali Hurriyetoglu (RUN),Extracting actionable information from microtexts
18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication
19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
20 Chide Groenouwe (UU), Fostering technically augmented human collective

intelligence
21 Cong Liu (TU/e), Software Data Analytics: Architectural Model Discovery and

Design Pattern Detection
22 Martin van den Berg (VUA),Improving IT Decisions with Enterprise Architecture
23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting, Verification
24 Anca Dumitrache (VUA), Truth in Disagreement - Crowdsourcing Labeled Data

for Natural Language Processing
25 Emiel van Miltenburg (VUA), Pragmatic factors in (automatic) image description
26 Prince Singh (UT), An Integration Platform for Synchromodal Transport
27 Alessandra Antonaci (OU), The Gamification Design Process applied to (Massive)

Open Online Courses
28 Esther Kuindersma (UL), Cleared for take-off: Game-based learning to prepare

airline pilots for critical situations
29 Daniel Formolo (VUA), Using virtual agents for simulation and training of social

skills in safety-critical circumstances
30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems
31 Milan Jelisavcic (VUA), Alive and Kicking: Baby Steps in Robotics
32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General Intelligence

in Games
33 Anil Yaman (TU/e), Evolution of Biologically Inspired Learning in Artificial

Neural Networks
34 Negar Ahmadi (TU/e), EEG Microstate and Functional Brain Network Features

for Classification of Epilepsy and PNES
35 Lisa Facey-Shaw (OU), Gamificationwith digital badges in learning programming
36 Kevin Ackermans (OU), Designing Video-Enhanced Rubrics to Master Complex

Skills

37 Jian Fang (TUD), Database Acceleration on FPGAs
38 Akos Kadar (OU), Learning visually grounded and multilingual representations

2020 01 Armon Toubman (UL), Calculated Moves: Generating Air Combat Behaviour
02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes using Probabilistic

Graphical Models
03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for Language

Understanding
04 Maarten van Gompel (RUN), Context as Linguistic Bridges
05 Yulong Pei (TU/e), On local and global structure mining
06 Preethu Rose Anish (UT), Stimulation Architectural Thinking during Require-

ments Elicitation - An Approach and Tool Support
07 Wim van der Vegt (OU), Towards a software architecture for reusable game

components
08 Ali Mirsoleimani (UL),Structured Parallel Programming for Monte Carlo Tree

Search
09 Myriam Traub (UU), Measuring Tool Bias and Improving Data Quality for Digital

Humanities Research
10 Alifah Syamsiyah (TU/e), In-database Preprocessing for Process Mining
11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data AugmentationMeth-

ods for Long-Tail Entity Recognition Models
12 Ward van Breda (VUA), Predictive Modeling in E-Mental Health: Exploring

Applicability in Personalised Depression Treatment
13 Marco Virgolin (CWI), Design and Application of Gene-pool Optimal Mixing

Evolutionary Algorithms for Genetic Programming
14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational Databases
15 Konstantinos Georgiadis (OU), Smart CAT: Machine Learning for Configurable

Assessments in Serious Games
16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling
17 Daniele Di Mitri (OU), The Multimodal Tutor: Adaptive Feedback from Multi-

modal Experiences
18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms in Markets with

Uncertainties: Electricity Markets in Renewable Energy Systems
19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender Systems
20 Albert Hankel (VUA), Embedding Green ICT Maturity in Organisations
21 Karine da Silva Miras de Araujo (VUA), Where is the robot?: Life as it could be
22 Maryam Masoud Khamis (RUN), Understanding complex systems implementa-

tion through a modeling approach: the case of e-government in Zanzibar
23 Rianne Conijn (UT), The Keys to Writing: A writing analytics approach to

studying writing processes using keystroke logging
24 Lenin da Nóbrega Medeiros (VUA/RUN), How are you feeling, human? Towards

emotionally supportive chatbots
25 Xin Du (TU/e), The Uncertainty in Exceptional Model Mining
26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for Model-Based

mixed-Integer opTimization

27 Ekaterina Muravyeva (TUD), Personal data and informed consent in an educa-
tional context

28 Bibeg Limbu (TUD), Multimodal interaction for deliberate practice: Training
complex skills with augmented reality

29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference
30 Bob Zadok Blok (UL), Creatief, Creatiever, Creatiefst
31 Gongjin Lan (VUA), Learning better – From Baby to Better
32 Jason Rhuggenaath (TU/e), Revenue management in online markets: pricing

and online advertising
33 Rick Gilsing (TU/e), Supporting service-dominant business model evaluation in

the context of business model innovation
34 Anna Bon (UM), Intervention or Collaboration? Redesigning Information and

Communication Technologies for Development
35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Software Production

2021 01 Francisco Xavier Dos Santos Fonseca (TUD),Location-based Games for Social
Interaction in Public Space

02 Rijk Mercuur (TUD), Simulating Human Routines: Integrating Social Practice
Theory in Agent-Based Models

03 Seyyed Hadi Hashemi (UvA), Modeling Users Interacting with Smart Devices
04 Ioana Jivet (OU), The Dashboard That Loved Me: Designing adaptive learning

analytics for self-regulated learning
05 Davide Dell’Anna (UU), Data-Driven Supervision of Autonomous Systems
06 Daniel Davison (UT), "Hey robot, what do you think?" How children learn with

a social robot
07 Armel Lefebvre (UU), Research data management for open science
08 Nardie Fanchamps (OU), The Influence of Sense-Reason-Act Programming on

Computational Thinking
09 Cristina Zaga (UT), The Design of Robothings. Non-Anthropomorphic and

Non-Verbal Robots to Promote Children’s Collaboration Through Play
10 Quinten Meertens (UvA), Misclassification Bias in Statistical Learning
11 Anne van Rossum (UL), Nonparametric Bayesian Methods in Robotic Vision
12 Lei Pi (UL), External Knowledge Absorption in Chinese SMEs
13 Bob R. Schadenberg (UT), Robots for Autistic Children: Understanding and

Facilitating Predictability for Engagement in Learning
14 Negin Samaeemofrad (UL), Business Incubators: The Impact of Their Support
15 Onat Ege Adali (TU/e), Transformation of Value Propositions into Resource

Re-Configurations through the Business Services Paradigm
16 Esam A. H. Ghaleb (UM), Bimodal emotion recognition from audio-visual cues
17 Dario Dotti (UM), Human Behavior Understanding from motion and bodily cues

using deep neural networks
18 Remi Wieten (UU), Bridging the Gap Between Informal Sense-Making Tools

and Formal Systems - Facilitating the Construction of Bayesian Networks and
Argumentation Frameworks

19 Roberto Verdecchia (VUA), Architectural Technical Debt: Identification and
Management

20 Masoud Mansoury (TU/e), Understanding and Mitigating Multi-Sided Exposure
Bias in Recommender Systems

21 Pedro Thiago Timbó Holanda (CWI), Progressive Indexes
22 Sihang Qiu (TUD), Conversational Crowdsourcing
23 Hugo Manuel Proença (UL), Robust rules for prediction and description
24 Kaijie Zhu (TU/e), On Efficient Temporal Subgraph Query Processing
25 Eoin Martino Grua (VUA), The Future of E-Health is Mobile: Combining AI and

Self-Adaptation to Create Adaptive E-Health Mobile Applications
26 Benno Kruit (CWI/VUA), Reading the Grid: Extending Knowledge Bases from

Human-readable Tables
27 Jelte vanWaterschoot (UT), Personalized and Personal Conversations: Designing

Agents Who Want to Connect With You
28 Christoph Selig (UL), Understanding the Heterogeneity of Corporate En-

trepreneurship Programs
2022 01 Judith van Stegeren (UT), Flavor text generation for role-playing video games

02 Paulo da Costa (TU/e), Data-driven Prognostics and Logistics Optimisation: A
Deep Learning Journey

03 Ali el Hassouni (VUA), A Model A Day Keeps The Doctor Away: Reinforcement
Learning For Personalized Healthcare

04 Ünal Aksu (UU), A Cross-Organizational Process Mining Framework
05 Shiwei Liu (TU/e), Sparse Neural Network Training with In-Time Over-

Parameterization
06 Reza Refaei Afshar (TU/e), Machine Learning for Ad Publishers in Real Time

Bidding
07 Sambit Praharaj (OU), Measuring the Unmeasurable? Towards Automatic Co-

located Collaboration Analytics
08 Maikel L. van Eck (TU/e), Process Mining for Smart Product Design
09 Oana Andreea Inel (VUA), Understanding Events: A Diversity-driven Human-

Machine Approach
10 Felipe Moraes Gomes (TUD), Examining the Effectiveness of Collaborative

Search Engines
11 Mirjam de Haas (UT), Staying engaged in child-robot interaction, a quantitative

approach to studying preschoolers’ engagement with robots and tasks during
second-language tutoring

12 Guanyi Chen (UU), Computational Generation of Chinese Noun Phrases
13 XanderWilcke (VUA), Machine Learning onMultimodal Knowledge Graphs: Op-

portunities, Challenges, andMethods for Learning on Real-World Heterogeneous
and Spatially-Oriented Knowledge

14 Michiel Overeem (UU), Evolution of Low-Code Platforms
15 Jelmer Jan Koorn (UU), Work in Process: Unearthing Meaning using Process

Mining
16 Pieter Gijsbers (TU/e), Systems for AutoML Research
17 Laura van der Lubbe (VUA), Empowering vulnerable people with serious games

and gamification

18 Paris Mavromoustakos Blom (TiU), Player Affect Modelling and Video Game
Personalisation

19 Bilge Yigit Ozkan (UU), Cybersecurity Maturity Assessment and Standardisation
20 Fakhra Jabeen (VUA), Dark Side of the Digital Media - Computational Analysis

of Negative Human Behaviors on Social Media
21 Seethu Mariyam Christopher (UM), Intelligent Toys for Physical and Cognitive

Assessments
22 Alexandra Sierra Rativa (TiU), Virtual Character Design and its potential to

foster Empathy, Immersion, and Collaboration Skills in Video Games and Virtual
Reality Simulations

23 Ilir Kola (TUD), Enabling Social Situation Awareness in Support Agents
24 Samaneh Heidari (UU), Agents with Social Norms and Values - A framework for

agent based social simulations with social norms and personal values
25 Anna L.D. Latour (UL), Optimal decision-making under constraints and uncer-

tainty
26 Anne Dirkson (UL), Knowledge Discovery from Patient Forums: Gaining novel

medical insights from patient experiences
27 Christos Athanasiadis (UM), Emotion-aware cross-modal domain adaptation in

video sequences
28 Onuralp Ulusoy (UU), Privacy in Collaborative Systems
29 Jan Kolkmeier (UT), From Head Transform to Mind Transplant: Social Interac-

tions in Mixed Reality
30 Dean De Leo (CWI), Analysis of Dynamic Graphs on Sparse Arrays
31 Konstantinos Traganos (TU/e), Tackling Complexity in Smart Manufacturing

with Advanced Manufacturing Process Management
32 Cezara Pastrav (UU), Social simulation for socio-ecological systems
33 Brinn Hekkelman (CWI/TUD), Fair Mechanisms for Smart Grid Congestion

Management
34 Nimat Ullah (VUA), Mind Your Behaviour: Computational Modelling of Emotion

& Desire Regulation for Behaviour Change
35 Mike E.U. Ligthart (VUA), Shaping the Child-Robot Relationship: Interaction

Design Patterns for a Sustainable Interaction
2023 01 Bojan Simoski (VUA), Untangling the Puzzle of Digital Health Interventions

02 Mariana Rachel Dias da Silva (TiU), Grounded or in flight? What our bodies can
tell us about the whereabouts of our thoughts

03 Shabnam Najafian (TUD), User Modeling for Privacy-preserving Explanations
in Group Recommendations

04 Gineke Wiggers (UL), The Relevance of Impact: bibliometric-enhanced legal
information retrieval

05 Anton Bouter (CWI), Optimal Mixing Evolutionary Algorithms for Large-Scale
Real-Valued Optimization, Including Real-World Medical Applications

06 António Pereira Barata (UL), Reliable and Fair Machine Learning for Risk As-
sessment

07 Tianjin Huang (TU/e), The Roles of Adversarial Examples on Trustworthiness
of Deep Learning

08 Lu Yin (TU/e), Knowledge Elicitation using Psychometric Learning
09 Xu Wang (VUA), Scientific Dataset Recommendation with Semantic Techniques
10 Dennis J.N.J. Soemers (UM), Learning State-Action Features for General Game

Playing
11 Fawad Taj (VUA), Towards Motivating Machines: Computational Modeling

of the Mechanism of Actions for Effective Digital Health Behavior Change
Applications

12 Tessel Bogaard (VUA), Using Metadata to Understand Search Behavior in Digital
Libraries

13 Injy Sarhan (UU), Open Information Extraction for Knowledge Representation
14 Selma Čaušević (TUD), Energy resilience through self-organization
15 Alvaro Henrique Chaim Correia (TU/e), Insights on Learning Tractable Proba-

bilistic Graphical Models
16 Peter Blomsma (TiU), Building Embodied Conversational Agents: Observations

on human nonverbal behaviour as a resource for the development of artificial
characters

17 Meike Nauta (UT), Explainable AI and Interpretable Computer Vision – From
Oversight to Insight

18 Gustavo Penha (TUD), Designing and Diagnosing Models for Conversational
Search and Recommendation

19 George Aalbers (TiU), Digital Traces of the Mind: Using Smartphones to Capture
Signals of Well-Being in Individuals

20 Arkadiy Dushatskiy (TUD), Expensive Optimization with Model-Based Evolu-
tionary Algorithms applied to Medical Image Segmentation using Deep Learning

21 Gerrit Jan de Bruin (UL), Network Analysis Methods for Smart Inspection in the
Transport Domain

22 Alireza Shojaifar (UU), Volitional Cybersecurity
23 Theo Theunissen (UU), Documentation in Continuous Software Development
24 Agathe Balayn (TUD), Practices Towards Hazardous Failure Diagnosis in Ma-

chine Learning
25 Jurian Baas (UU), Entity Resolution on Historical Knowledge Graphs
26 Loek Tonnaer (TU/e), Linearly Symmetry-Based Disentangled Representations

and their Out-of-Distribution Behaviour
27 Ghada Sokar (TU/e), Learning Continually Under Changing Data Distributions
28 Floris den Hengst (VUA), Learning to Behave: Reinforcement Learning in Human

Contexts
29 Tim Draws (TUD), Understanding Viewpoint Biases in Web Search Results

2024 01 Daphne Miedema (TU/e), On Learning SQL: Disentangling concepts in data
systems education

02 Emile van Krieken (VUA), Optimisation in Neurosymbolic Learning Systems
03 Feri Wijayanto (RUN), Automated Model Selection for Rasch and Mediation

Analysis
04 Mike Huisman (UL), Understanding Deep Meta-Learning
05 Yiyong Gou (UM), Aerial Robotic Operations: Multi-environment Cooperative

Inspection & Construction Crack Autonomous Repair

06 Azqa Nadeem (TUD), Understanding Adversary Behavior via XAI: Leveraging
Sequence Clustering to Extract Threat Intelligence

07 Parisa Shayan (TiU), Modeling User Behavior in Learning Management Systems
08 Xin Zhou (UvA), From Empowering to Motivating: Enhancing Policy Enforce-

ment through Process Design and Incentive Implementation
09 Giso Dal (UT), Probabilistic Inference Using Partitioned Bayesian Networks
10 Cristina-Iulia Bucur (VUA), Linkflows: Towards Genuine Semantic Publishing

in Science
11 withdrawn
12 Peide Zhu (TUD), Towards Robust Automatic Question Generation For Learning
13 Enrico Liscio (TUD), Context-Specific Value Inference via Hybrid Intelligence
14 Larissa Capobianco Shimomura (TU/e), On Graph Generating Dependencies

and their Applications in Data Profiling
15 Ting Liu (VUA), A Gut Feeling: Biomedical Knowledge Graphs for Interrelating

the Gut Microbiome and Mental Health
16 Arthur Barbosa Câmara (TUD), Designing Search-as-Learning Systems
17 Razieh Alidoosti (VUA), Ethics-aware Software Architecture Design
18 Laurens Stoop (UU), Data Driven Understanding of Energy-Meteorological Vari-

ability and its Impact on Energy System Operations
19 Azadeh Mozafari Mehr (TU/e), Multi-perspective Conformance Checking: Iden-

tifying and Understanding Patterns of Anomalous Behavior
20 Ritsart Anne Plantenga (UL), Omgang met Regels
21 Federica Vinella (UU), Crowdsourcing User-Centered Teams
22 Zeynep Ozturk Yurt (TU/e), Beyond Routine: Extending BPM for Knowledge-

Intensive Processes with Controllable Dynamic Contexts
23 Jie Luo (VUA), Lamarck’s Revenge: Inheritance of Learned Traits Improves Robot

Evolution
24 Nirmal Roy (TUD), Exploring the effects of interactive interfaces on user search

behaviour
25 Alisa Rieger (TUD), Striving for Responsible Opinion Formation in Web Search

on Debated Topics
26 Tim Gubner (CWI), Adaptively Generating Heterogeneous Execution Strategies

using the VOILA Framework
27 Lincen Yang (UL), Information-theoretic Partition-basedModels for Interpretable

Machine Learning
28 Leon Helwerda (UL), Grip on Software: Understanding development progress of

Scrum sprints and backlogs
29 David Wilson Romero Guzman (VUA), The Good, the Efficient and the Inductive

Biases: Exploring Efficiency in Deep Learning Through the Use of Inductive
Biases

30 Vijanti Ramautar (UU), Model-Driven Sustainability Accounting
31 Ziyu Li (TUD), On the Utility of Metadata to Optimize Machine Learning Work-

flows
32 Vinicius Stein Dani (UU), The Alpha and Omega of Process Mining

33 Siddharth Mehrotra (TUD), Designing for Appropriate Trust in Human-AI inter-
action

34 Robert Deckers (VUA), From Smallest Software Particle to System Specification
- MuDForM: Multi-Domain Formalization Method

35 Sicui Zhang (TU/e), Methods of Detecting Clinical Deviations with Process
Mining: a fuzzy set approach

36 Thomas Mulder (TU/e), Optimization of Recursive Queries on Graphs
37 James Graham Nevin (UvA), The Ramifications of Data Handling for Computa-

tional Models
38 Christos Koutras (TUD), Tabular Schema Matching for Modern Settings
39 Paola Lara Machado (TU/e), The Nexus between Business Models and Operating

Models: From Conceptual Understanding to Actionable Guidance
40 Montijn van de Ven (TU/e), Guiding the Definition of Key Performance Indicators

for Business Models

