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A B S T R A C T

Sugar-based byproducts such as molasses and bagasse are abundant resources for large-scale biobutanol
commercialization. This study presents a comprehensive kinetic model to analyze ABE (acetone-butanol-ethanol)
fermentation by C. saccharoperbutilacetonicum N1-4, emphasizing diverse carbon sources and furaldehyde co-
utilization. By leveraging sensitivity analysis against models in the literature and the proposed model as well
as parameter optimization using Scilab®, the potential for the simultaneous utilization of sugarcane molasses and
bagasse-derived sugars alongside furfural and HMF for butanol synthesis was assessed. These findings revealed
that despite the microbial preference for hexose sugars, the incorporation of up to 25% pentose sugars did not
significantly hinder butanol production. However, furaldehydes perturbed butyric acid assimilation and acetyl-
CoA consumption while enhancing acetone-butanol-ethanol synthesis. The simulation highlighted the peak
concentrations of furfural and HMF (0.33 mmol L− 1 and 0.03 mmol L− 1, respectively), underscoring their
conversion to less toxic alcohols, thereby augmenting metabolism. Sensitivity analysis underscores the necessity
of enhancing butyric acid assimilation, providing critical insights for optimizing ABE fermentation and
advancing biobutanol production from sugar-based byproducts.

1. Introduction

The transition towards a cost-effective, non-food-based, and reliably
available feedstock on an industrial scale is crucial for considering
biobutanol as a versatile chemical and feedstock for sustainable aviation
fuel production [1]. Despite the projected production rates of 107
million liters of bioalcohols in 2022 and 142 billion liters of biodiesel by
2023 [2], biobutanol production via acetone-butanol-ethanol (ABE)
fermentation has faced several large-scale production and commercial-
ization problems due to the low yield and productivity of the final
product resulting from the toxicity of the fermentation broth to most
Clostridium strains, such as Clostridium acetobutylicum [3], Clostridium
beijerinckii [4], Clostridium saccharobutylicum [5], and Clostridium sac-
charoperbutylicum [6]. Additionally, the utilization of high-cost feed-
stocks, such as starch [7], mono-, di-, and polysaccharides [8,9],

presents significant challenges.
Low-cost and non-food carbon sources such as lignocellulosic ma-

terials are significantly more economical than other available options
[10]. Depolymerization methods applied to lignocellulosic biomass can
produce a mixture of sugars, aromatic monomers, and furaldehydes,
which varies depending on the specific type of biomass used. Under-
standing the cellular physiology during the simultaneous utilization of
mixed substrates as carbon sources is particularly interesting. The
Clostridium strain can utilize various types of hexoses and pentoses as
carbon sources [8]; however, it has limitations and cannot consume
them simultaneously because of its dominant preference for glucose. As
a result, metabolic pathways for less-preferred sugars such as xylose
were identified as being inactivated [6,11]. This hinders efficient utili-
zation of lignocellulosic biomass in the continuous production of bio-
butanol and negatively affects the economics of the fermentation
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process.
Gene regulation enhances the co-utilization of sugars and fur-

aldehydes and increases solvent tolerance [12]. However, this technique
alone is insufficient for commercial ABE fermentation [13]. A
phenomenological model that combines experimental efforts with
characterization of fermentation metabolism can be used in bottleneck
analysis and process optimization, and its development is crucial to
address the challenges of biorefineries based on the use of sugar biomass
and furaldehydes. Such a model would enable the identification of
limitations such as the low growth rate of microorganisms, low solvent
tolerance, low titer and productivity of butanol, and the alternative use
of biorefinery substrates [14,15].

ABE fermentation models can be categorized based on the hypoth-
eses about the metabolic pathways they propose. A collection of 15
structured models, detailed in the Supplementary Material (S-1), ex-
amines the metabolic pathways of various cell types and the impact of
reactions and metabolic intermediates on the process. Specifically, the
structured models reported in Table 1 include those that use individual
sugars, such as glucose [16–18] or xylose [19–21]. Raganati et al. [22]
expanded on the studies by Shinto et al. [16] and Shinto et al. [19] to
include a wide variety of sugars, such as pentoses (xylose and arabi-
nose), hexoses (glucose, fructose, and mannose), and disaccharides
(sucrose and lactose). However, each sugar has been studied separately.
Díaz and Willis [11] were the first to develop a structured model for
mixed sugars (glucose and xylose); however, they still deal with reagents
of analytical purity. Birgen et al. [23], Lim et al. [24], Lim et al. [25] and
Rivas-Astroza et al. [4] presented unstructured models for the fermen-
tation of a mixture of glucose and xylose. Liao et al. [26] pioneered the
simultaneous consideration of the effects of extracellular environment,
metabolism, and genetic regulation on this process.

These models often simplify the complex interactions between
diverse substrates and metabolic pathways, overlooking the competitive
and inhibitory effects observed in mixed-substrate fermentations.
Despite these advancements, existing kinetic models inadequately cap-
ture the dynamics of ABE fermentation when co-utilizing biomass-
derived sugar (such as hexoses and pentoses) and furaldehydes (such as
furfural and 5-hydroxymethyl furfural or HMF), which are typically
formed during hemicellulose hydrolysis, leading to suboptimal process
optimization and scale-up. This work developed a dynamic kinetic
model that encompasses the simultaneous fermentation of multiple
carbon sources: glucose, fructose, sucrose, xylose, and arabinose. It also
evaluates the effects of various compounds on cell growth. Model I ex-
amines the impact of butanol concentration alone, Model II considers
the effects of both butanol and furaldehydes, and Model III includes
butanol, furaldehydes, acetic acid, and butyric acid.

Real data from batch fermentation consisting of molasses and re-
sidual hemicellulosic hydrolysate, described by Zetty-Arenas et al. [6],
were used to estimate the model parameters and extensive sensitivity
analysis was performed using Scilab® to identify the critical parameters
affecting the final butanol concentration. Through dynamic kinetic
modeling and sensitivity analysis, we explored the interactions between
multiple carbon sources and fermentation by-products. Our findings
reveal novel insights into optimizing substrate co-utilization, paving the
way for more efficient biobutanol production processes.

2. Materials and methods

2.1. Microorganism, data, and calculation of specific rates

Fermentation data for the Clostridium saccharoperbutylacetonicum
DSM 14923(N1-4) strain published by Zetty-Arenas et al. [6] containing
time profiles (from 0 to 72 h) of concentration (g.L− 1) of mono-
saccharides (arabinose, xylose, glucose, and fructose), disaccharide
(sucrose), organic acids (acetic acid and butyric acid), ABE (acetone,
butanol, and ethanol) and furan derivatives (furfural and HMF) were
used to model the carbon sources and furaldehydes intake, cellular

growth, and ABE production kinetics. The data for the kinetic modeling
were derived from batch co-utilization of raw sugarcane molasses and
hemicellulosic hydrolysate, which was conducted in DASGIP Model Box
300 mL bioreactors (Eppendorf, Hamburg, Germany) with working
volumes of 240 mL. The reactions were allowed to proceed for 72 h at
30 ◦C, and the pH was adjusted to 7.0 using 25 % (w/w%) NH4OH
aqueous solution. The medium contained approximately 30 g L− 1 of
carbon source supplemented with a modified sterile P2, the original
medium reported by Qureshi and Blaschek [27] and modified by
Zetty-Arenas et al. [28] and Zetty-Arenas et al. [6].

In this study three sugar-fermentation carbon sources, from cane
molasses and biomass-derived sugars, were selected as follows:

• Pure molasses (~30 g L− 1), hereafter referred to as M100, with
experimental data reported by Zetty-Arenas et al. [6].

• Mixture consisting of 75 % sugars from molasses (22.5 g L− 1) and 25
% sugars from crude hemicellulose hydrolysate (7.5 g L− 1), herein
referred to as M75HH25, with experimental data reported in this
work.

• Mixture consisting of 75 % sugars from molasses (22.5 g L− 1) and 25
% sugars from detoxified concentrate hemicellulose hydrolysate (7.5
g L− 1), herein referred to as M75CHH25), with experimental data
reported by Zetty-Arenas et al. [6].

Considering the carbon source (Sur: glucose, fructose, sucrose,
xylose, and arabinose) and solvent (Sol: acetone, butanol, and ethanol)
concentrations (g.L− 1) at one fermentation time (t1) and immediately
following (t2), then the specific rates of carbon source consumption (qs:
g.gdw− 1.h− 1 – where “gdw”means grams of cells in dry weight), growth
rate (μ: h− 1), and ABE production rate (qp: g.gdw− 1.h− 1) were calculated
using Equations (1)–(3).

qs =
(
Surt1 − Surt2

t2 − t1

)
⎡

⎢
⎣

1
(
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2

)

⎤

⎥
⎦ (1)
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)
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qp =
(
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)
⎡
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⎣

1
(

Cellt1+Cellt2
2

)

⎤

⎥
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2.2. Sensitivity, robustness, and identifiability in published kinetics models

The structured models of Shinto et al. [16] and Shinto et al. [19]
were used to analyze the most influential parameters in the fermentation
of individual sugars. The model proposed by Shinto et al. [16] evaluated
only the glucose consumption and presented 19 reactions and 45 pa-
rameters (Table 1). In addition, the dynamic kinetic model reported by
Shtino et al. [19] was used to evaluate xylose consumption using 25
reactions and 57 parameters (Table 1). For the sensitivity analysis of
fructose and sucrose, the Shinto et al. [16] metabolic pathway was
utilized, along with parameter values as documented by Raganati et al.
[22].

The parameters analyzed using parametric sensitivity are presented
in Fig. 1a and Table 2. In addition, the parameter values varied with
different factors (Fig. 1a) around the base values reported by Shinto
et al. [16] and Shinto et al. [19].

The sensitivity, as proposed by Shinto et al. [16], was determined
according to the deviation in the final concentration of butanol (ED,
Equation (4)) and the deviation between the mean areas of the tem-
poral profiles of the butanol concentration (integral deviation or ID,
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Table 1
Chemical reactions considered (✔) in the metabolic pathways for ABE fermentation by several structured models.

Reaction [a] [b] [c] [d] [e] [f] [g] [h] [i] [j] This work

Glucose → Fructose 6-P ✖ ✔ ✔ ✔ ✔ ✔ ✖ ✖ ✔ ✖ ✔
Xylose → Fructose 6-P ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖
Mannose → Fructose 6-P ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖
Sucrose → 2 Fructose 6-P ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖
Lactose → Fructose 6-P + 2 Glyceraldehyde 3-P ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖
Fructose 6-P → Glyceraldehyde 3-P ✖ ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔
Sucrose → Sucrose 6-P ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔
Sucrose 6-P → Fructose 6-P ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔
Fructose → Fructose 6-P ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔
Glyceraldehyde 3-P → Pyruvate ✖ ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔
Lactate → Pyruvate ✖ ✔ ✔ ✖ ✔ ✔ ✖ ✔ ✔ ✔ ✔
Pyruvate → Lactate ✖ ✔ ✔ ✖ ✔ ✔ ✖ ✔ ✔ ✔ ✔
Pyruvate → Acetyl-CoA+ 2CO2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Acetate → Acetyl-P→ Acetyl-CoA ✖ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔
Acetate + Acetoacetyl-CoA→ Acetoacetate + Acetyl-CoA ✔ ✔ ✔ ✖ ✔ ✔ ✖ ✖ ✖ ✔ ✔
Acetoacetate + Acetyl-CoA→ Acetate + Acetoacetyl-CoA ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖
Acetyl-CoA→ Acetyl-P → Acetate ✖ ✔ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✔ ✔
Acetyl-CoA→ Acetate ✔ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔ ✖ ✖
Acetyl-CoA→ Acetoacetyl-CoA + CoA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Acetyl-CoA→ Acetaldehyde → Ethanol ✖ ✔ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✔ ✔
Acetyl-CoA→ Ethanol ✔ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔ ✖ ✖
Acetyl-CoA→ Cells ✖ ✔ ✔ ✔ ✖ ✔ ✖ ✔ ✔ ✔ ✖
Cells → Inactive Cells ✖ ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✖
Acetoacetyl-CoA→Butyryl-CoA ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Butyrate + Acetoacetyl-CoA→ Acetoacetate + Butyryl-CoA ✖ ✔ ✔ ✖ ✔ ✔ ✖ ✖ ✖ ✔ ✔
Acetoacetate → Acetone + CO2 ✔ ✔ ✔ ✖ ✔ ✔ ✖ ✖ ✖ ✔ ✔
Butyrate →Butyryl-P →Butyryl-CoA ✖ ✔ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✔ ✔
Butyrate →Butyryl-CoA ✔ ✖ ✖ ✔ ✖ ✖ ✔ ✔ ✔ ✖ ✖
Butyryl-CoA →Butyryl-P → Butyrate ✖ ✔ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✔ ✔
Butyryl-CoA →Butyrate ✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔ ✖ ✖
Butyryl-CoA → Butyryladehyde → Butanol ✖ ✔ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✔ ✔
Butyryl-CoA → Butanol ✔ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔ ✖ ✖
Xylose → Xylulose 5-P ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✔
Arabinose → Xylulose 5-P ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖
Arabinose → Ribose 5-P ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔
Xylulose 5-P → Ribose 5-P ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✔
Ribose 5-P → Xylulose 5-P ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✔
Xylulose 5-P + Ribose 5-P → Sedoheptulose 7-P + Glyceraldehyde 3-P ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✔
Sedoheptulose 7-P + Glyceraldehyde 3-P → Erythrose 4-P + Fructose 6-P ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✔
Erythrose 4-P + Xylulose 5-P → Fructose 6-P + Glyceraldehyde 3-P ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✔
Acetate + Acetoacetyl-CoA→ Acetone + Acetyl-CoA + CO2 ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✔ ✔ ✖ ✖
Butyrate + Acetoacetyl-CoA→ Acetone + Butyryl-CoA + CO2 ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✔ ✔ ✖ ✖
Glucose→Pyruvate ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖
Butyryl -CoA → Cells ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✔
Cells → Inactive Cells ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✔
Xylose →Pyruvate ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖
Cells → Inactive Cells ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖
Glucose → Cells ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖
Butyryl-CoA + Acetate → Acetyl-CoA + Butyrate ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖
Acetyl-CoA + Butyrate →Butyryl-CoA + Acetate ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖
Acetoacetyl-CoA→ β-OH-Butyryl-CoA ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖
β-OH-Butyryl-CoA → Cronotyl-CoA ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖
Cronotyl-CoA →Butyryl-CoA ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖
NAD + → NADH ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖
NADH → NAD + ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖
NADP + → NADPH ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖
NADPH → NADP + ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖
NADH + FdOx → NAD+ + FdRed ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖
NADP + + FdRed → NADPH + FdOx ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖
FdRed → FdOX + H2 ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖
HMF → HMF Alcohol ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔
Furfural → Furfural Alcohol ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✔
Total number of chemical reactions 15 19 25 27 17 19 16 23 18 27 31
Total number of chemical compounds 17 21 26 24 16 21 13 19 15 25 29
Total number of parameters 27 45 57 69 35 51 57 69 57 78 85

[a]: Votruba et al. [39].
[b]: Shinto et al. [16].
[c]: Shinto et al. [19].
[d]: Raganati et al. [22].
[e]: Buehler and Mesbah [17].
[f]: Lin and Lee [18].
[g]: Díaz and Willis [11].
[h]: Zhou et al. [20].
[i]: Zhou et al. [30].
[j]: Rivera et al. [21].
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Equation (5)). This approach is schematized in Fig. 1a, and the code in
Scilab® is available in Supplementary Material S-2.

ED (%)=100×
[Butanol]end,change (%) − [Butanol]end,control

[Butanol]end,control
(4)

ID (%)=100×
∑t

t=0

(
ABTt,change (%) − ABTt,control

ABTt,control

)

(5)

Equation (6) determines the mean area of butanol concentration
between time t(h) and t+1(h) (ABTt). ABTt, change (%) represents the
percentage change of ABTt caused by the factors.

ABTt =
[Butanol]t + [Butanol]t+1

2
× Δt (6)

where [Butanol]t indicates the butanol concentration at time t and
[Butanol]t+1 indicates the butanol concentration at time t+1, Δt is the
difference in time but can be considered equal to 1h since this term
cancels out, and [Butanol]end,change(%) is the percentage change in
butanol concentration at the end of the process. The results of the
sensitivity analyses were used to define the kinetic model in this study.

2.3. Co-fermentation modeling framework

A structured mathematical model of the ABE fermentation of sugars
and furaldehydes co-utilization by C. saccharoperbutilacetonicum N1-4
following the metabolic route (Fig. 2) was developed to describe the
rates of consumption of the carbon sources (glucose, fructose, sucrose,
xylose, and arabinose), rates of formation of the products, rates of
consumption and formation of the intermediate compounds, and the

rates of growth and cell death, based on the models developed by Shinto
et al. [16] and Shinto et al. [19] as well as the models of Díaz and Willis
[11] and Rivera et al. [21].

Table 2 shows the kinetic rates of reactions in the metabolic
pathway, as shown in Fig. 2. The metabolic pathway shown in Fig. 2 was
used to model three distinct carbon sources. Under M75HH25, all
metabolic reactions were active. On the other hand, in M100, the con-
centrations of pentoses, furfural, and HMF sugars were all zero, resulting
in deactivation of pentose phosphate (PP) metabolism reactions (R20-
R25 and R29 reactions), as well as the R32 and R33 reactions, which do
not influence metabolism. In M75CHH25, the furfural concentration
was zero, deactivating the R32 reaction (Supplementary Material S-3).
The hypotheses assumed in this study are as follows:

• The volume, temperature, and pH of the reaction medium were
assumed constant, and fermentation was performed using a batch
system.

• Three inhibition/activation proposals were evaluated: noncompeti-
tive inhibition by butanol (Model I), as in the model of Shinto et al.
[16]; non-competitive inhibition/activation achieved using butanol,
furfural, and HMF (Model II); and non-competitive inhib-
ition/activation achieved using butanol, furfural, HMF, butyric acid,
and acetic acid (Model III). Unlike the models proposed by Shinto
et al. [16] and Shinto et al. [19], butyryl-CoA, but not acetyl-CoA, is
the limiting compound for cell growth.

• The rate of cell death followed a first-order kinetics for cell
concentration.

• The consumption rates of the carbon sources are activated and
inhibited by their concentrations and undergo non-competitive in-
hibition by butanol.

Fig. 1. (a) Flowchart illustrating the adopted parameter sensitivity analysis strategy. (b) Flowchart depicting the parameter optimization strategy implemented
in Scilab®.
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Table 2
Kinetic rates for the dynamic ABE fermentation model.

Reaction Model-development-kinetics equations Ref.

Glucose→ Fructose 6-P (F6P)
R1 =

Vmax 1[Glucose][Cells]
{

Km1

(

1+
[Glucose]

Kis1

)

+ [Glucose]
(

1+
[Butanol]

Kii1

)}× F
[b]

Fructose 6-P →
Glyceraldehyde 3-P (G3P) R2 =

Vmax 2[F6P][Cells]
Km2 + [F6P]

× F
[b]

Glyceraldehyde 3-P →
Pyruvate (Pyr)

R3 =
Vmax 3[G3P][Cells]

Km3 + [G3P]
× F [b]

Lactate → Pyruvate
R4 =

Vmax 4[Lactate][Cells]
Km4 + [Lactate]

× F
[b]

Pyruvate → Lactate
R5 =

Vmax 5[Pyr][Cells]
Km5 + [Pyr]

× F
[b]

Pyruvate → Acetyl-CoA
(ACoA) + 2 CO2

R6 =
Vmax 6[Pyr][Cells]

Km6 + [Pyr]
× F

[b]

Acetic Acid → Acetyl-
P→Acetyl-CoA R7 =

Vmax 7[Acetic Acid][Cells]
Km7 + [Acetic Acid]

× F
[b]

Acetic Acid + Acetoacetyl-
CoA (AACoA)
→Acetoacetate + Acetyl-
CoA

R8 = [Vmax 8] ×

(
1

1+ Km8A/[Acetic Acid]

)

×

(
1

1+ Km8B/[AACoA]

)

× [Cells]
[b]

Acetyl-CoA → Acetyl-P →
Acetic Acid R9 =

Vmax 9[ACoA][Cells]
Km9 + [ACoA]

× F
[b]

Acetyl-CoA → Acetoacetyl-
CoA + CoA R10 =

Vmax 10[ACoA][Cells]
Km10 + [ACoA]

[b]

Acetyl-CoA → Acetaldehyde
→ Ethanol R11 =

Vmax 11[ACoA][Cells]
Km11 + [ACoA]

× F
[b]

Acetoacetyl-CoA → Butyryl-
CoA (BCoA)

R14 =
Vmax 14[AACoA][Cells]

Km14 + [AACoA]
× F [b]

Butyric Acid + Acetoacetyl-
CoA →Acetoacetate +
Butyryl-CoA

R15 = [Vmax 15] ×

(
1

1+ Km15A/[Butyric Acid]

)

×

(
1

1+ Km15B/[AACoA]

)

× [Cells]
[b]

Acetoacetate → Acetone +
CO2

R16 =
Vmax 16[Acetoacetate][Cells]

Km16 + [Acetoacetate]
[b]

Butyric Acid → Butyryl-P →
Butyryl-CoA R17 =

Vmax 17[Butyric Acid][Cells]

Km17

(

1+
Ka17

[Butyric Acid]

)

+ [Butyric Acid]
× F

[b]

Butyryl-CoA → Butyryl-P →
Butyric Acid R18 =

Vmax 18[BCoA][Cells]
Km18 + [BCoA]

× F
[b]

Butyryl-CoA →
Butyraldehyde → Butanol R19 =

Vmax 19[BCoA][Cells]
{

Km19

(

1+
Ka19

[Butyric Acid]

)

+ [BCoA]
(

1+
[Butanol]
Kii19

)}× F
[b]

Xylose → Xylulose 5-P (X5P)
R20 =

Vmax 20[Xylose][Cells]
{

Km20

(

1+
[Xylose]
Kis20

)

+ [Xylose]
(

1+
[Butanol]
Kii20

)}× F
[c]

Xylulose 5-P → Ribose 5-P
(R5P)

R21 =
Vmax 21[X5P][Cells]

Km21 + [X5P]
[c]

Ribose 5-P → Xylulose 5-P
R22 =

Vmax 22[R5P][Cells]
Km22 + [R5P]

[c]

Xylulose 5-P + Ribose 5-P
→Sedoheptulose 7-P (S7P)
+ Glyceraldehyde 3-P

R23 = [Vmax 23] ×

(
1

1+ Km23A/[R5P]

)

×

(
1

1+ Km23B/[X5P]

)

× [Cells]
[c]

Sedoheptulose 7-P +

Glyceraldehyde 3-P→
Erythrose 4-P (E4P) +
Fructose 6-P

R24 = [Vmax 24] ×

(
1

1+ Km24A/[S7P]

)

×

(
1

1+ Km24B/[G3P]

)

× [Cells]
[c]

Erythrose 4-P + Xylulose 5-P
→
Fructose 6-P +

Glyceraldehyde 3-P

R25 = [Vmax 25] ×

(
1

1+ Km25A/[X5P]

)

×

(
1

1+ Km25B/[E4P]

)

× [Cells]
[c]

Sucrose → Sucrose 6-P
R26 =

Vmax 26[Sucrose][Cells]
{

Km26

(

1+
[Sucrose]
Kis26

)

+ [Sucrose]
(

1+
[Butanol]
Kii26

)}× F
This
work

Sucrose 6-P → Fructose 6-P
R27 =

Vmax 27[Sucrose 6 − P][Cells]
Km27 + [Sucrose 6 − P]

This
work

Fructose → Fructose 6-P R28 =
Vmax 28 [Fructose][Cells]

{

Km28

(

1+
[Fructose]

Kis28

)

+ [Fructose]
(

1+
[Butanol]
Kii28

)}× F This
work

Arabinose → Ribose 5-P
R29 =

Vmax 29 [Arabinose][Cells]
{

Km29

(

1+
[Arabinose]

Kis29

)

+ [Arabinose]
(

1+
[Butanol]
Kii29

)}× F
This
work

Butyryl-CoA → Cells
Model I

R30 =
Vmax 30 [BCoA][Cells]

{Km30(1+ [Butanol]/Kii30) + [BCoA](1+ [Butanol]/Kii30)}
[b]

Butyryl-CoA → Cells
Model II R30 =

Vmax 30 [BCoA][Cells]
{Km30(1+ [Butanol]/Kii30) + [BCoA](1+ [Butanol]/Kii30 + [Furfural]/Kii30A + [HMF]/Kii30B)}

This
work

(continued on next page)
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Table 2 (continued )

Reaction Model-development-kinetics equations Ref.

Butyryl-CoA → Cells
Model III

R30 =

Vmax 30[BCoA][Cells]
{Km30(1+ [Butanol]/Kii30) + [BCoA](1+ [Butanol]/Kii30 + [Furfural]/Kii30A + [HMF]/Kii30B + [Butyric Acid]/Kii30C + [Acetic Acid]/Kii30D)}

This
work

Cells → Inactives Cells R31 = k31[Cells] [b]
Furfural → Furfural Alcohol

R32 =
Vmax 32[Furfural][Cells]

Km32 + [Furfural]
× F

[j]

HMF → HMF Alcohol
R33 =

Vmax 33[HMF][Cells]
Km33 + [HMF]

× F
This
work

Factor F F = 0.5 × (1.0 + tanh (500 × ([glucose] + [Fructose] + [Sucrose] + [Xylose] + [Arabinose]-1.0))) This
work

Fator ω
ω =

(
[glucose] + [Fructose] + [Sucrose]

[glucose] + [Fructose] + [Sucrose] + [Xylose] + [Arabinose]

)nc6/c5 This
work

[b]: Shinto et al. [16].
[c]: Shinto et al. [19].
[j]: Rivera et al. [21].

Fig. 2. Metabolic pathways for co-utilization of mixed carbon sources and furaldehydes from sugarcane biorefinery residues.
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• Reactions withmultiple carbon sources (R8, R15, R23, R24, and R25;
Fig. 2) follow the "ping-pong" mechanism.

• The butyric acid concentration activates the conversion of butyric
acid to butyryl-CoA.

• Energy is required for these reactions to occur. ATP and NADH
supply this energy. When the sugar concentration falls below a
critical level and microbial metabolism is no longer capable of
generating energy, reactions are halted. To illustrate this phenome-
non, Shinto et al. [16] and Shinto et al. [19] introduced an "on-off"
mechanism (Factor F). This mechanism assumes a value of 1 when
the carbon source concentration is greater than 1 mmol L− 1 (critical
value) and 0 when the carbon source concentration is below the
critical value.

• In this study, the F factor (Table 2) was modified based on the hy-
perbolic tangent to represent smoother energy depletion. The value
of F ranged from 1 to 0 as the total carbon source concentration
decreased during fermentation: it is greater than 0.99995 and less
than 0.00005 for carbon source concentrations equal or greater than
1.01 mmol L− 1 and equal or less than 0.99 mmol L− 1, respectively.

• Hexoses and sucrose are consumed according to the “Embden-
Meyerhof-Parnas” (EMP) metabolism, and pentoses, such as xylose
and arabinose, with the “pentose phosphate” (PP) metabolism.
However, in contrast to the models proposed by Shinto et al. [16]
and Shinto et al. [19], in which routes are evaluated individually, our
model considers all the routes simultaneously.

• Mathematical modeling of the greater preference of hexose sugars for
pentose sugars (preferential use of hexoses over pentose or PUHEPE)
was based on factor ω, first introduced by Díaz and Willis [11] and
modified in this study. The exponent nc6/c5 in ω is a parameter to be
optimized (Table 2). The value of the optimized exponent indicates
the intensity of PUHEPE. A value tending to 1 implies a weak
PUHEPE, whereas a value tending to zero indicates a strong prefer-
ence for hexoses [11].

• This study modified the factor ω (Table 2) to include sugars other
than glucose and xylose. Thus, the glucose concentration was
replaced by the total concentration of hexoses (glucose, fructose, and
the disaccharide sucrose or C6) and the xylose concentration was
replaced by the concentration of pentose sugars (xylose and arabi-
nose or C5).

• The reduction reaction rate of furfural to furfuryl alcohol was
modeled using Michaelis-Menten kinetics, according to the model of
Rivera et al. [21]. This study adopted the same premise concerning
HMF production rate in the 2,5-bis(hydroxymethyl)furan reaction
(HMF alcohol).

Equations (7)–(35) represent the mass balance of the batch system
and the reaction rates of chemical species at constant volume in the
metabolic pathway described in Fig. 2.

d[Glucose]
dt

= − R1× ω (7)

d[Fructose]
dt

= − R28× ω (8)

d[Sucrose]
dt

= − R26× ω (9)

d[Sucrose 6 − P]
dt

=(R26×ω) − R27 (10)

d[Fructose 6 − P]
dt

=(R1×ω) + R24+ R25+ R27+ (R28×ω) − R2

(11)

d[Glyceraldehyde 3 − P]
dt

=R2+ R23+ R25 − R3 − R24 (12)

d[Pyruvate]
dt

=R3+ R4 − R5 − R6 (13)

d[Lactate]
dt

=R5 − R4 (14)

d[Acetyl − CoA]
dt

=R6+ R7+ R8 − R9 − R10 − R11 (15)

d[Cells]
dt

=R30 − R31 (16)

d[Acetic Acid]
dt

=R9 − R7 − R8 (17)

d[Etanol]
dt

=R11 (18)

d[Acetoacetyl − CoA]
dt

=R10 − R8 − R14 − R15 (19)

d[Acetoacetate]
dt

=R8+ R15 − R16 (20)

d[Butyryl − CoA]
dt

=R14+ R15+ R17 − R18 − R19 − R30 (21)

d[Butyric Acid]
dt

=R18 − R15 − R17 (22)

d[CO2]

dt
=2R6+ R16 (23)

d[Acetone]
dt

=R16 (24)

d[Butanol]
dt

=R19 (25)

d[Xylose]
dt

= − R20× (1 − ω) (26)

d[Arabinose]
dt

= − R29× (1 − ω) (27)

d[Xylulose 5 − P]
dt

=R20× (1 − ω) + R22 − R21 − R23 − R25 (28)

d[Ribose 5 − P]
dt

=R21+ R29× (1 − ω) − R22 − R23 (29)

d[Sedoheptulose 7 − P]
dt

=R23 − R24 (30)

d[Erythrose 4 − P]
dt

=R24 − R25 (31)

d[Furfural]
dt

= − R32 (32)

d[Furfural alcohol]
dt

= + R32 (33)

d[HMF]
dt

= − R33 (34)

d[HMF alcohol]
dt

= + R33 (35)

Computer modeling and simulations were performed using Scilab®
2023.1.0 software on an Intel(R) Core(TM) i7-2600 CPU@ 3.40 GHz. To
solve the system of ordinary differential equations described by
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Equations (7)–(35), the "ODE" function was used, with the "Stiff" option
selected, which is more appropriate for rigid systems.

2.4. Estimation of kinetic parameters

The kinetic rate equations include 85 parameters (Table 2). The
optimization routine employed the Ipopt function available in the Atoms
tool package (usage code developed in this study and available in Sup-
plementary Material S-4). According to the strategy outlined in Fig. 1b,
the parameters were optimized using the experimental data for the
M75HH25 and M75CHH25 conditions reported in this study and [6],
respectively. To increase the amount of available data, the experimental
data for these conditions underwent nonlinear regression using Table-
Curve 2D® v5.01 software. The sets of optimized parameters (θ) for
M75HH25 and M75CHH25 were used to simulate pure molasses
(M100). The simulation of molasses using the parameters of condition
M75HH25 was referred to as M100-1, whereas that using the parameters
of condition M75CHH25 was referred to as M100-2.

2.4.1. Kinetic parameter optimization strategy
The objective function (Fobj) to be minimized by the Ipopt solver

consisted of the squared difference in the concentration (mmol.L− 1) of
the experimental data (yexp) and the values predicted by the model (ysim)
divided by the arithmetic mean of the experimental data (yexp_mean) for
each of the 13 compounds (Ncomp) that were measured during the
fermentation course (glucose, fructose, sucrose, cells, acetic acid,
ethanol, butyric acid, acetone, butanol, xylose, arabinose, furfural, and
HMF). Owing to the high uncertainty of the experimental values during
the stationary stage of the process, the objective function is divided into
two summation terms. The first summation (s1) stores the quadratic
difference during the transient step of fermentation and the second
summation (s2) stores the difference in the stationary step of the
fermentation process. The summation s1 calculates the squared differ-
ence between the experimental and simulated data, starting from the
first dataset point and ending at the last data point in the transient
regime (jci: cutoff point of the transient state for the j-th compound)
(Equation (36)). It is important to note that the jci values vary for each
compound. The summation s2 starts one-time unit above the position jci
(jci+1) and extends to the last point of the experimental set (Nexp)
(Equation (37)).

s1,j =

∑jci

i=1

(

ysim,j(ti ;θ)− yexp,j(i)
yexp (j) mean

)2

jcij
(36)

s2,j =

∑Nexp

i=jci+1

(

ysim,j(ti ;θ)− yexp,j(i)
yexp (j) mean

)2

(
Nexp − jcij

) (37)

The expression for the objective function is given by Equation (38).

Fobj =
∑Ncomp

j=1

[
pri, j× s1,j +(1 − pri, j)× s2,j

]
× pCi(j) (38)

Where pri,j indicates the weight for the data in the transient part and is
equal to 0.8 for all compounds, and pCi(j) indicates the weight for each
compound (Supplementary Material S-3).

2.5. Sensitivity, robustness, and identifiability

A parametric sensitivity analysis of the proposed model was con-
ducted to highlight the critical parameters that affect ABE production
through sugar and furaldehydes co-utilization, and to analyze the
butanol yield. The sensitivity analysis followed the methodology
detailed in Section 2.2. The parameters analyzed in the model were the

maximum velocity rates for the reactions R1-R11 and R14-R33 (Vmax);
the concentrations of the metabolites when the velocity rate is equal to
half of Vmax for the reactions R1-R7, R9-R11, R14, R16-R22 and R26-
R33 (Km); the specific activation constants for the reactions R8, R15
and R23-R25 (KmA and KmB); the carbon source inhibition constants for
the reactions R1, R20, R26, R28 and R29 (Kis); The inhibition constants
by butanol in the reactions R1, R19, R20, R26, R28, R29 and R30 (Kii);
the butyric acid activation constants for the R17 and R19 (Ka) reactions;
the inhibition constants by furfural (KiiA), HMF (KiiB), butyric acid (KiiC)
and acetic acid (KiiD) in the R30 reaction; the cell deactivation constant
in the R31 reaction (k) and finally the exponent of the factor “ω” (nc6/c5).

2.6. Parameter fitting and validation

The parameters of the structured model were fitted using experi-
mental data reported in this study (for M75HH25) and by Zetty-Arenas
et al. [6] (for M100 and M75CHH25). The accuracy of the estimates of
the kinetic parameters and predictions of the deterministic model were
analyzed using Pearson’s correlation coefficient. In addition, a proba-
bility value of p > 0.95 was obtained for all correlations between the
simulation results and experimental data.

3. Results and discussion

3.1. Specific rates in co-fermentation

Data containing the maximum specific rates obtained for each
compound are presented in Table 3, and reveals that a carbon source
comprising a mixture of sugars is, in most cases associated with
increased rates of carbon source consumption, product formation, and
cell growth. Fermentation of a mixture of xylose and glucose results in
increased butanol titers, sugar consumption rates, and cell growth
compared to fermentation of individual sugars [23,25]. This was evi-
denced by the significantly lower consumption rates observed by
Raganati et al. [22] [glucose 0.09735 g.gdw− 1. h− 1; and fructose 0.0727
g.gdw− 1.h− 1, sucrose 0.04212 g.gdw− 1.h− 1, xylose 0.08568 g.gdw− 1.
h− 1 and arabinose 0.06904 g.gdw− 1. h− 1], compared to the rates ach-
ieved in this study with a maximum butanol production rate of 0.34 ±

0.02 g.gdw− 1. h− 1 and maximum cell growth rate of 0.17 ± 0.09 h− 1

(Table 3). Thus, having as carbon source mixed sugars from the bio-
refinery such as hemicellulosic hydrolysate and sugarcane molasses, it is
necessary to highlight the impact of metabolic reactions on solvent
production caused by the presence of butanol-furaldehydes and
butanol-furaldehyde-organic acids, not yet reported in structured
models existing in the literature.

3.2. Multi-input-multi-output sensitivity of published kinetics models

Examination of the accuracy and reliability of the model concerning
the measured variables for sucrose (Fig. 3a and SupplementaryMaterials

Table 3
– Maximum values for the specific rates in different carbon sources.

Specific rate Carbon source

qs (g.gdw− 1.h− 1) M100 M75HH25 M75CHH25
Glucose 1.23 ± 0.04 3.58 ± 0.56 2.19 ± 1.05
Fructose 0.37 ± 0.06 1.75 ± 0.31 0.85 ± 0.61
Sucrose 0.73 ± 0.01 1.31 ± 0.22 0.62 ± 0.09
Xylose – 0.61 ± 0.23 0.41 ± 0.71
Arabinose – 0.13 ± 0.05 0.16 ± 0.04
qp (g.gdw¡1.h¡1) M100 M75HH25 M75CHH25

Butanol 0.22 ± 0.01 0.34 ± 0.02 0.27 ± 0.04
Acetone 0.03 ± 0.00 0.31 ± 0.07 0.06 ± 0.00
Ethanol 0.04 ± 0.08 0.12 ± 0.00 0.23 ± 0.23
μ (h¡1) M100 M75HH25 M75CHH25

Cells 0.12 ± 0.06 0.17 ± 0.09 0.10 ± 0.02
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S-5 to S-7) showed that the consumption of this carbon source (R1 re-
action, sucrose → fructose 6-P) played a pivotal role in the negative
fluctuations observed in the final concentration (ED) and yield (ID) of
butanol. These findings suggest that a slower rate of carbon source
consumption is advantageous for the process, as a moderate decrease
(factor of 0.95) in the Vmax values of the R1 reaction is associated with an

increase in both the butanol concentration (ED) and productivity (ID).
However, an excessive decrease (factor of 0.001) was linked to a
reduction in both the butanol concentration and productivity. Addi-
tionally, the rapid consumption of the carbon source is closely related to
a sudden increase in solvent concentration and cell growth, resulting in a
phenomenon known as substrate inhibition.

Fig. 3. Parameter sensitivity analysis of the metabolic pathways in the Shinto et al. [16] and Shinto et al. [19] models for (a) sucrose and (b) xylose.
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Fig. 4. Experimental time-course data and simulated results for co-utilization of carbon sources, organic acids, and ABE in (a) M100-1 and (b) M100-2 models.
Experimental data (Exp) were reported by Zetty-Arenas et al. [6].
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The production of butanol (R19, butyryl-CoA → butanol), which is
involved in Vmax19, positively affects the butanol yield. For the reverse
reaction (R18, butyryl-CoA → butyric acid), the butanol yield is nega-
tively affected by Vmax18. For sucrose, the variation in Vmax19 ranged
between − 97.82 % and +19.47 % when analyzed by the ED factor and
between − 88.93 % and +21.73 % when analyzed by ID factors. The
Vmax18 parameters ranged from +22.60 % to − 57.06 % when analyzed
by ED factors and from +14.17 % to − 52.07 % when analyzed by ID
factors. Similar results were obtained for fructose and glucose (Supple-
mentary Materials S-5 to S-7). Furthermore, the processes associated
with the formation and consumption of CoA derivatives and the con-
sumption of butyric acid and acetic acid are related to the increase in
butanol titers, as it is believed that the pH of the fermentation medium,
together with the concentration of ATP and NADH/NAD + ratio, are
crucial elements that trigger the shift from the acidogenic phase to the
solventogenic phase [16,29,30]. Therefore, reactions R17 (butyric acid
→ butyryl-CoA), R14 (acetoacetyl-CoA → butyryl-CoA), R7 (acetic acid
→ acetyl-CoA), and R10 (acetyl-CoA → acetoacetyl-CoA) are the main
reactions associated to the increase in butanol yield.

Sensitivity analysis of xylose (Fig. 3b and Supplementary Materials
S-8) revealed significant variations in all parameters when the factor
levels were set at 0.95 and 1.05. These results suggested that the
metabolic pathway for xylose consumption is highly sensitive to minor
parameter variations (±5 %). The sensitivity values of all the reactions
showed a strong correlation, indicating their equal importance for
butanol concentration and productivity, with factors of 0.95 and 1.05.
Similarly, the sensitivity analysis for xylose using factors 0.25 and 4
(Fig. 3b and Supplementary Material S-8) revealed, in most cases, a
behavior similar to that of hexoses for most of the reactions, particularly
in the shared mechanism portion (reactions R2 to R19). However, re-
actions R18 (butyryl-CoA to Butyric Acid) and R20 (xylose to xylulose 5-
P) were the exceptions. These reactions influenced the process differ-
ently depending on the experimental conditions: low initial xylose
concentration (65.7 mmol L− 1, reported in Supplementary Material S-8)
and high initial xylose concentration (292 mmol L− 1, reported in Sup-
plementary Material S-8). In the low xylose concentration condition,
both R18 and R20 had negative impacts. Under conditions of high xylose
concentrations (Exp. 2), R18 had a positive impact, while R20 had a
positive influence with factor 0.25 and a negative influence with factor
4. In contrast, reactions R19 (butyryl-CoA→ butanol), R14 (acetoacetyl-
CoA → butyryl-CoA), and R7 (acetic acid → acetyl-CoA) were shown to
be related to increased butanol yield.

When considering the behavior of xylose in comparison to that of
hexoses, it is evident that there is a notable difference in their initial
consumption mechanisms. Hexoses are metabolized through the EMP
pathway and directly converted into fructose 6-P and glyceraldehyde 3-
P, generating ATP and NADH. However, xylose had a distinct initiation
of consumption. Initially, xylose is transformed into xylulose 5-P via the
R20 reaction. Subsequently, the PP mechanism is split into two path-
ways to form fructose 6-P and glyceraldehyde 3-P. One pathway in-
volves an equilibrium reaction between xylulose 5-P and ribose 5-P,
which converts these compounds into sedoheptulose 7-P and glyceral-
dehyde 3-P, respectively, via reaction R23. The other pathway involves
the reaction of xylulose 5-P with erythrose 4-P to form fructose 6-P and
glyceraldehyde 3-P, respectively. Sensitivity analysis revealed that the
first pathway (reactions R21, R22, and R23) had a more significant
impact, with reactions R20 (except for factor 0.25 and higher initial
xylose concentration) and R22 negatively influencing the final butanol
concentration. Conversely, reactions R21 and R23 had a positive impact.

The implications of the findings are closely related to the subsequent
discussion of the various local optima encountered by the optimization
algorithm. This suggests that, while a model can be efficiently fine-tuned
for practical applications, further mathematical research within the
scope of this study is necessary to determine the optimal quantity of
model parameters and their corresponding values.

3.3. Reaction kinetics-based modeling

The three deterministic models proposed in this study were devel-
oped through extensive optimization and simulation studies to deter-
mine the kinetic parameters of the mechanistic model.

3.3.1. Comprehensive mechanistic kinetic modeling
The optimized parameters of the model using the experimental

dataset provided in this study and by Zetty-Arenas et al. [6] for the
carbon sources M75HH25 andM75CHH25, respectively, are shownwith
two decimal places in Table 4 and with full decimal places in Supple-
mentary Material S-9. The analysis of the three distinct
inhibition-derived models was made possible through the results of the
fitting models. Model I only considered the effect of butanol, thus
capturing the stress caused solely by the solvent. Model II included the
influence of furaldehydes generated during the hydrolysis of sugarcane
bagasse [6], thereby considering both solvent stress and furaldehydes.
Model III supplemented Model II with the influence of organic acids and
provided a more comprehensive evaluation of the stress caused by the
solvents, furaldehydes, and intermediate metabolites.

The parameters of the models exhibited variations, indicating that
the activation or inhibition of the genetic circuit in the microorganism,
which plays a crucial role in regulating metabolism and fermentation
progression, can be influenced by factors such as carbohydrates,
molasses, hemicellulosic hydrolysate, or a combination of these. The
presence of these compounds, which are typically produced during
pretreatment and biomass hydrolysis, as well as the intermediate me-
tabolites (acetic acid and butyric acid) and final products (butanol,
acetone, and ethanol), subjects the microorganism to conditions such as
inappropriate pH, oxygen dissolution, osmotic pressure resulting from
an uneven fermentationmedium, overproduction of exogenous proteins,
and enzyme suppression, which can alter cell activity and solvent titer
[8,15]. ABE fermentation is highly sensitive to environmental factors, as
evidenced by the significant variation in M75HH25 condition parame-
ters among the different models. Model I had a mean relative change of
2102 % compared to Model II, whereas the variation from Model II to
Model III was more moderate, with a mean relative change of 13 %.
M75HH25 had a higher initial concentration of furfural (0.326 mmol
L− 1) and HMF (0.026 mmol L− 1) than the other model conditions.

The parameters that exhibited the most remarkable relative variation
between Models I and II were Vmax11, Vmax18, and Vmax15. Similarly, the
parameters that demonstrated the most remarkable relative variation
between Models II and III were KmB8, Kis26, Km5, and KmA8. These find-
ings imply that the stress caused by furfural and HMF influences the
production and assimilation of butyric acid and the consumption of
acetyl-CoA. Butyric acid can be assimilated through various pathways,
including the balance between acid and butyryl-CoA (reactions R18 and
R17), the consumption of ATP and ADP, and the direct conversion of
butyric acid into butyryl-CoA and acetoacetate using acetoacetyl-CoA as
a CoA donor (R15 reaction). Therefore, furaldehydes can stimulate both
the consumption and assimilation of butyric acid as well as the synthesis
of acetone, ethanol, and butanol. The R11 reaction is related to the
transformation of acetyl-CoA into ethanol, depends on the reduction of
NADH/NAD+, and is mediated by acetaldehyde/alcohol hydrogenases
(AdhE). However, these enzymes are not exclusive to ethanol synthesis,
and can be used for butanol synthesis (R19 reaction) [31]. Acetic and
butyric acids can stimulate the production of lactic acid (R5 reaction)
and affect pH regulation in the intracellular medium, which can posi-
tively affect butanol synthesis by stimulating acetic acid consumption to
form acetyl-CoA and acetoacetate (R8 reaction) and the production of
lactic acid (R5 reaction). The presence of these acids is related to pH
regulation in the intracellular medium. Zhou et al. [30] reported that
lactic acid and acetic acid consumption positively affect butanol
synthesis.

The carbon source M75CHH25 contained a purified hydrolysate with
a lower concentration of furaldehydes than M75HH25. This reduces the
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Table 4
Optimized parameter sets with two decimal places for the M75HH25 and M75HH25 conditions following the metabolic pathway shown in Fig. 2.

Reaction Parameter M75HH25 M75CHH25

Model I Model II Model III Model I Model II Model III

R1 Vmax1 74.70 464.20 410.55 441.45 438.48 446.93
R1 Km1 239.68 2455.85 2122.31 653.75 655.23 648.41
R1 Kis1 95.80 5286.80 6052.67 6135.54 6135.43 6135.38
R1 Kii1 114.20 5538.77 6471.26 7065.09 7065.05 7065.08
R2 Vmax2 95.63 5285.69 4857.77 4786.00 4788.13 4786.64
R2 Km2 133.87 944.29 987.40 645.76 631.84 640.48
R3 Vmax3 149.76 6682.24 8551.35 12270.75 12271.86 12271.16
R3 Km3 105.66 2394.73 2713.60 1841.71 1834.90 1839.94
R4 Vmax4 130.29 758.32 749.55 747.22 747.31 747.65
R4 Km4 198.26 5156.85 7419.15 8671.44 8671.77 8671.71
R5 Vmax5 126.00 960.80 959.61 978.27 977.27 978.24
R5 Km5 507.82 5174.21 7804.70 8612.24 8612.62 8612.71
R6 Vmax6 200.85 6067.86 8013.81 10613.28 10613.73 10613.57
R6 Km6 137.08 146.42 150.29 143.76 132.32 143.60
R7 Vmax7 1.67 12.75 12.77 19.59 18.52 19.01
R7 Km7 138.94 7458.59 7547.98 7521.71 7520.81 7520.95
R8 Vmax8 78.06 2061.61 1926.25 1799.90 1800.11 1799.97
R8 KmA8 112.72 2599.68 3782.49 3986.44 3986.60 3986.51
R8 KmB8 127.03 2674.05 4911.48 5358.29 5358.58 5358.57
R9 Vmax9 118.24 3496.92 3161.26 2979.44 2980.66 2980.62
R9 Km9 106.64 3022.97 4038.72 3563.05 3562.31 3562.33
R10 Vmax10 203.77 1732.26 1684.88 1917.98 1918.35 1918.63
R10 Km10 138.31 116.23 109.23 98.80 99.81 89.53
R11 Vmax11 1.74 774.35 719.34 684.12 685.33 680.74
R11 Km11 191.04 3532.43 3325.15 2957.98 2958.00 2959.19
R14 Vmax14 230.79 706.32 798.28 1181.98 1187.19 1181.24
R14 Km14 99.93 637.95 599.39 363.09 345.46 365.67
R15 Vmax15 114.51 7836.03 10495.72 11626.38 11627.26 11626.68
R15 KmA15 137.80 716.52 846.88 361.23 326.26 343.89
R15 KmB15 117.41 1542.50 1237.73 774.55 756.21 766.57
R16 Vmax16 119.91 1193.40 1169.53 1191.17 1191.76 1191.45
R16 Km16 122.91 988.74 976.79 995.87 995.52 995.97
R17 Vmax17 194.68 1631.93 1895.84 3233.42 3231.55 3234.01
R17 Km17 221.55 557.58 603.69 617.70 625.38 612.04
R17 Ka17 203.50 267.29 282.51 279.00 297.16 278.29
R18 Vmax18 135.94 9312.72 10394.22 11090.54 11091.12 11090.44
R18 Km18 105.00 644.40 617.07 669.06 655.81 668.03
R19 Vmax19 184.18 424.29 426.37 411.52 407.17 414.97
R19 Km19 92.09 50.28 61.93 49.26 40.11 48.66
R19 Kii19 112.16 5059.50 6428.81 6980.71 6980.71 6980.69
R19 Ka19 171.41 119.30 93.84 96.22 117.27 103.50
R20 Vmax20 59.72 99.48 106.74 107.62 138.56 122.70
R20 Km20 3.16 2.58 2.36 2.48 1.35 1.00
R20 Kis20 11.71 12.46 12.15 13.41 12.12 11.41
R20 Kii20 0.76 1.30 1.37 0.95 1.29 1.06
R21 Vmax21 120.26 82.39 82.43 83.58 98.87 76.02
R21 Km21 2.52 2.61 2.62 2.52 2.28 1.76
R22 Vmax22 105.08 4597.42 5068.35 4921.22 4920.70 4921.72
R22 Km22 2.66 2.61 2.58 2.69 3.13 2.86
R23 Vmax23 105.87 4743.70 5153.46 5180.60 5180.52 5179.61
R23 KmA23 5.09 4.94 4.57 4.80 4.52 4.26
R23 KmB23 0.25 0.25 0.24 0.24 0.22 0.23
R24 Vmax24 104.81 4668.00 5158.02 5050.22 5050.10 5049.94
R24 KmA24 4.89 5.08 5.09 5.22 5.21 5.01
R24 KmB24 0.25 0.25 0.24 0.25 0.26 0.26
R25 Vmax25 113.25 5421.16 6356.75 7001.24 7001.15 7001.15
R25 KmA25 5.04 4.95 4.78 5.03 4.24 4.52
R25 KmB25 0.25 0.25 0.24 0.25 0.24 0.25
R26 Vmax26 11.23 190.88 233.96 283.95 283.51 316.48
R26 Km26 241.06 6149.53 6585.60 5115.89 5115.81 5113.83
R26 Kis26 65.44 3764.12 5887.17 5796.79 5796.88 5796.66
R26 Kii26 113.26 5280.70 6466.80 6958.68 6958.67 6958.49
R27 Vmax27 82.48 304.42 288.92 285.24 294.61 296.49
R27 Km27 119.63 4573.88 5310.57 5372.82 5372.05 5372.09
R28 Vmax28 24.42 169.16 135.48 153.75 136.97 138.89
R28 Km28 200.59 1807.91 1338.42 774.68 779.05 775.56
R28 Kis28 102.35 4822.12 5894.69 6415.23 6414.95 6414.93
R28 Kii28 113.04 5221.02 6429.09 7003.13 7003.21 7003.11
R29 Vmax29 7.17 31.94 37.79 29.46 32.04 20.85
R29 Km29 2.92 2.65 2.78 2.70 2.78 2.37
R29 Kis29 12.71 12.37 11.95 12.38 14.01 13.27
R29 Kii29 1.93 0.93 0.83 0.79 1.33 1.60
R30 Vmax30 20.80 63.45 70.54 73.68 82.30 76.25

(continued on next page)
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influence of the carbon source characteristics. The results showed a
moderate relative variation in the parameters for this condition, with a
maximum mean relative variation of 5.78 % from Models I to II. The
significant disparity in the optimization of parameters between the three
models for the M75HH25 condition, in contrast to the uniformity of the
parameters for the M75CHH25 condition, suggests the complex impact
of external environmental factors. Analyzing the effects of acids, sol-
vents, and furaldehydes using these kinetic models can provide better
strategies for optimizing fermentation conditions and deepen our un-
derstanding of Clostridium metabolic processes.

Another essential issue in disrupting the metabolic pathway involved
in butanol synthesis is the different processes involved in the carbon
source transport and metabolism. Strains of the genus Clostridium use a
combination of mechanisms known as phosphoenolpyruvate (PEP)-
dependent and-non-dependent (PTSs) for glucose assimilation during
ABE fermentation, with the predominance of the PTS-dependent system
in the solventogenic phase. PTS systems play a fundamental role in the
metabolic regulation of microorganisms and facilitate the transport of
sugars such as glucose, fructose, mannose, and sucrose. In contrast,
pentose sugars, such as xylose and arabinose, employ non-PTS-
dependent routes for transport to the intracellular medium [8].

3.3.2. Describing sugars co-utilization
The results in Figs. 4–5, and Supplementary Material S-10 demon-

strate that combiningmolasses and sugarcane biorefinery hemicellulosic
hydrolysate to co-utilize sugar could mitigate the effects of catabolic
carbon regulation (PUHEPE) in fermentation media with moderate
levels of hydrolyzed pentose sugars. However, this is insufficient in
highly concentrated media, and alternative strategies, such as using
strains with higher pentose sugar affinity, genetic modification, or

adding more nutrients, should be explored. Table 4 indicates that the
exponent nc6/c5 of the factor ω for condition M75HH25 is 0.054, 0.021,
and 0.018 for Models I, II, and III, respectively. Additionally, for
M75CHH25, the optimized values of the exponent are 0.055, 0.028, and
0.038, respectively. The factor ω measures the level of competition be-
tween the distinct types of sugars in the fermentation medium. As all
models exhibited nc6/c5 values approaching zero (so ω tends to 1.0), this
suggests a strong preference for microorganisms to consume hexose
sugars over pentoses.

The optimized nc6/c5 values and specific carbon source consumption
rates (Table 3) suggest that the reduced use of xylose and arabinose by
microorganisms does not always result in reduced butanol titers. In fact,
sugars and their co-utilizationmay result in higher butanol titers [32], as
reinforced by the specific rates (Table 3), where theM75HH25 condition
presented butanol production rates higher than those of pure molasses.
Minerals present within the hydrolysate medium are essential for
maintaining microorganisms by regulating pH, facilitating electron
transport, influencing enzyme expression, and affecting the NAD(P)
H/NAD(P) + ratio [8,32]. In a study conducted by Zetty-Arenas et al.
[6], it was observed that increasing the concentration of purified hy-
drolysate in the fermentation medium had a limiting effect in compen-
sating for the decrease in glucose concentration in the reaction medium.
Specifically, the maximum concentrations of butanol in the media
composed of 50 % and 75 % hydrolysate were 4.07 g L− 1 and 0.54 g L− 1,
respectively, compared to 7.79 g L− 1 for the medium with 25 % purified
hydrolysate and 6.33 g L− 1 for pure molasses.

3.3.3. Kinetic analysis of reaction progress curves
From Figs. 4–5 and Tables 5, it is possible to evaluate how the in-

clusion of the inhibition terms butanol (Model I), butanol and

Table 4 (continued )

Reaction Parameter M75HH25 M75CHH25

Model I Model II Model III Model I Model II Model III

R30 Km30 187.70 138.63 147.07 141.79 136.93 141.96
R30 Kii30 131.17 2610.18 2314.56 2161.90 2161.72 2161.93
R30 KiiA30  2569.11 2440.70  2162.11 2162.12
R30 KiiB30  2577.47 2439.45  2162.27 2162.17
R30 KiiC30   2455.49   2161.96
R30 KiiD30   2430.71   2162.01
R30 nC6/C5 0.054 0.021 0.018 0.055 0.028 0.038
R31 k31 0.06 0.05 0.05 0.074 0.076 0.075
R32 Vmax32 169.56 450.17 429.21 450.83 450.87 450.87
R32 Km32 113.21 357.52 351.81 337.18 337.16 337.16
R33 Vmax33 100.00 161.91 150.67 248.98 241.28 249.78
R33 Km33 227.20 441.47 441.35 430.14 434.41 428.31

Units: Vmax = [h− 1]; Km = [mmol.L− 1]; Kis = [mmol.L− 1]; Kii = [mmol.L− 1]; Ka = [mmol.L− 1]; KmA/B = [mmol.L− 1]; KiiA/B/C/D = [mmol.L− 1] e k31 = [h− 1].

Table 5
Pearson correlation coefficients (r2) between the experimental and simulated data.

Compound M100-1 M100-2 M75HH25 M75CHH25

a c a c a b c a b c

Cells 0.521 0.393 0.822 0.814 0.927 0.937 0.933 0.934 0.934 0.934
Glucose 0.992 0.984 0.984 0.776 0.989 0.990 0.991 0.987 0.985 0.985
Fructuse 0.970 0.977 0.974 0.983 0.991 0.992 0.993 0.985 0.982 0.982
Sucrose 0.702 0.861 0.987 0.982 0.995 0.992 0.991 0.984 0.982 0.979
Xylose     0.951 0.962 0.961 0.975 0.968 0.961
Arabinose     0.907 0.917 0.916 0.928 0.920 0.911
Acetic Acid 0.264 0.786 0.832 0.803 0.793 0.855 0.836 0.781 0.785 0.793
Butyric Acid 0.639 0.702 0.805 0.801 0.460 0.875 0.856 0.789 0.765 0.776
Butanol 0.364 0.347 0.467 0.466 0.870 0.942 0.926 0.806 0.807 0.812
Acetone 0.474 0.841 0.986 0.986 0.850 0.919 0.911 0.984 0.986 0.987
Ethanol 0.678 0.797 0.832 0.836 0.802 0.809 0.809 0.985 0.984 0.985
Furfural     0.999 0.997 0.997   
HMF     0.928 0.942 0.941 0.330 0.327 0.33
Average 0.623 0.743 0.855 0.827 0.882 0.933 0.928 0.872 0.869 0.870

a = Model I; b = Model II; c = Model III.
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furaldehydes (Model II), and butanol, furaldehydes, and organic acids
(Model III) affects the concentration versus time profiles and Pearson’s
coefficient (r2) for the 13 compounds under different experimental
conditions. Significant variations in r2 values were observed between
Models I and II, particularly for cells (0.927–0.937), xylose
(0.951–0.962), arabinose (0.907–0.917), butyric acid (0.460–0.875),
acetic acid (0.793–0.855), butanol (0.870–0.942), and acetone
(0.850–0.919), under M75HH25 conditions. The transition from Model
II to Model III showed less marked variation with a slight decrease in r2

for acetic and butyric acids. For M75CHH25, with a lower concentration
of furaldehydes, slight variation was observed between the different
models, which was also reflected in the M100-2 model. These results
suggest that including terms for activation/inhibition by furaldehydes
and organic acids had little impact on carbon source consumption, cell
growth, and butanol production but affected the assimilation of organic
acids in the process.

3.4. Kinetic analysis of activation and inhibition actions during sugars
and furaldehydes co-utilization

The solvents generated in the ABE fermentation process, such as
butanol, ethanol, and acetone, may have detrimental effects on micro-
organisms because of their lipophilicity, which can lead to rupture of the
lipid bilayer in the cell membrane [15]. Among these solvents, butanol is
the only one that can reach concentrations high enough to exert toxic
effects [17]. As shown in Fig. 5, the structure of the model proposed in
this study showed a maximum butanol concentration of ~70 mmol L− 1,
which is well below the toxic limit. This suggests that the inhibitory
effect of butanol in the current situation was not significant when
compared to the levels reported ~176 mmol L− 1 [14] or 108 mmol L− 1

to 135 mmol L− 1 [17].
Furfural and HMF are compounds formed during the hydrolysis steps

of hemicellulose, and their concentrations vary between 0.8 mmol L− 1

and 115 mmol L− 1, depending on the raw material and method used
[33] The simulated data in this study report maximum concentrations of
furfural and HMF at 0.33 mmol L− 1 and 0.03 mmol L− 1 (Fig. 5),
respectively, and the effect on metabolism is considered stimulants for
the process [33] associated with their reduction to less toxic alcohols
using cofactors such as NADH and NADPH. These cofactors are also
involved in butanol synthesis and NADH consumption stimulates NAD+
regeneration, thereby favoring glycolysis. However, at excessive con-
centrations, NADH consumption can exceed its regeneration rate, dis-
turbing the NADH/NAD+ balance and interrupting glycolysis. The
furfural and HMF concentrations obtained in this study were signifi-
cantly lower than those reported previously [34].

The utilization of organic acids (Fig. 5) such as acetic acid and
butyric acid to produce solvents is a complex and essential process. The
pH of the intracellular environment has been proposed to play a crucial
role in the production of organic acids and solvents. Cells are stimulated
to produce acids at high pH levels, whereas at low pH levels, the stim-
ulus is redirected towards the production of solvents. The addition of
external acetic and butyric acids results in increased solvent produc-
tivity. However, excessively high acid concentrations can lead to acid-
ification of the cytoplasm and the accumulation of anions, which can
significantly reduce cell growth and butanol production. This phenom-
enon is called “acid crash” [15,35]. In this study, the maximum con-
centrations of acetic and butyric acids were approximately 77 mmol L− 1

and 27 mmol L− 1, respectively. These concentrations were in the range
considered activators for the process, similar to furfural and HMF.

All analyzed compounds had concentrations below the limits re-
ported as toxic to microorganisms, which was reflected in the values of
the inhibition findings for each of these compounds (KiiA/B/C/D, Table 4),
which ranged between 2160 and 2455 mmol L− 1, indicating a negligible
inhibitory effect of these compounds on the process. Thus, the presence
of these compounds disturbs the process, but their effects are not
inhibitory but activating. The activating effect of furfural, HMF, and

acids can be seen through the fact that the specific productivity rate of
butanol and cell growth (Table 3) occurred under the experimental
conditions M75HH25, which presented the highest concentration of
these compounds. As discussed in Section 3.5, the sensitivity analysis of
the parameters Ka17 and Ka19 (Figs. 6–7 and Supplementary Material S-
11), which evaluate the affinity of the enzymes of the R17 and R19 re-
actions with butyric acid, indicated that an increase in the affinity of
these enzymes for the acid has a positive impact on the process.

3.5. Sensitivity analysis for the kinetic model

The disturbances caused by sugars and aromatic co-utilization of
multiple carbon sources motivated an in-depth analysis. This analysis
also aims to compare the similarities and divergences in the impacted
reaction steps with respect to the sensitivity of the literature models for
individual and high-purity carbon sources.

Based on the observations derived from Figs. 6–7 using Model III and
Supplementary Material S-11, the results show that the parameter
Vmax30, which involved in cell growth, has different impacts depending
on the factors and the analysis method (ED or ID). For factors 1.05 and 5,
the ED analysis shows that Vmax30 negatively influences the process,
while the ID analysis shows a positive impact suggesting higher yield
values for butanol concentration during most of the fermentation pro-
cess. With factor 0.95, ED analysis shows a positive impact and ID
analysis shows a negative impact, indicating the opposite effect
compared to factors 1.05 and 5. With factor 0.001, both ED and ID an-
alyses show a negative influence. Therefore, a strong reduction in cell
growth rate (factor 0.001) has a negative effect, a slight reduction
(factor 0.95) selectively favors butanol production, and an increase in
cell growth rate (factors 1.05 and 5) has a positive impact on the process
overall, but not selectively for butanol.

The consumption of acetic acid, acetoacetate, and butyryl-CoA to
produce acetyl-CoA (R7 reaction), butyryl-CoA (R14 reaction), and
butanol (R19 reaction), respectively, is directly correlated with
increased productivity and the final concentration of butanol. However,
butyryl-CoA consumption to produce butyric acid (R18 reaction) and
cell death (R31 reaction) are associated with decreased productivity and
the final concentration of butanol. The assimilation of butyric acid
significantly influences the final yield of butanol, which can occur
through the equilibrium between the R17 and R18 reactions and the R15
reaction. These results suggest that reducing the affinity for enzymes
that promote the R18 reaction over the R17 reaction (Buk and Ptb)
positively affects the process. In contrast, the R15 reaction has a nega-
tive effect, indicating that the assimilation of butyric acid by the R17
reaction is more influential. The increased affinity of the enzymes for
butyric acid (Ka17 in R17 and Ka19 in R19) also strongly affects this
process. The enhancement of enzymes that regulate the acetic acid/
acetyl-CoA balance, particularly the R7 reaction (Ack and Pta) and en-
zymes involved in the R14 reaction (Hbd, Crt, and Bcd), significantly
impacted the process. Furthermore, the contribution of AdhE was sig-
nificant, as it could be utilized by the reactions responsible for producing
butanol (R19 reaction) and ethanol (R11 reaction). Its performance is
favorable for the R19 reaction and unfavorable for the R11 reaction.

The results in the literature are, in general, in agreement with those
found in this study. Cooksley et al. [36] found that Clostridium aceto-
butylicum bacteria deficient in the Buk and Ptb enzymes and with over-
expression of the Ack enzyme are associated with an increase in the final
concentration of butanol. Similarly, Hou et al. [37] observed that the
overexpression of the enzymes Hbd, Thl, Crt, and Bcd (reactions R10 and
R14) is also related to the increase in butanol titer.

Lee et al. [38] demonstrated that the enzyme CtfB (in reaction R15)
positively contributes to increasing butanol concentration. However, in
the model proposed here, the influence of this enzyme is negative.
Additionally, the positive effect of CtfB on butanol yield, as observed by
Lee et al. [38] is less significant compared to the stronger impact of
enzyme suppression in reaction R18, which shifts the balance away from
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Fig. 5. Experimental time-course data and simulated results for the co-utilization of carbon sources, organic acids, furaldehydes, and ABE in the M75HH25 model.
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reaction R17 (involving Buk and Ptb enzymes), as suggested in our
model.

The reactions responsible for carbon source consumption (R1, R20,
R26, R28, and R29) had the most significant negative impact on the
butanol yield in the analysis of individual sugars. However, when sugars
and aromatics were co-utilized, these reactions had a less significant
effect on the process, losing their importance in reactions R18, R9, R11,

R31, and R15, which became more significant regarding the negative
impacts. Additionally, the cell growth reaction (R30 reaction for mul-
tiple carbon sources or R12 reaction for a single carbon source) had a
less significant effect on the analysis of the individual sugars.

The findings of the sensitivity analysis provide recommendations to
optimize early-stage process design to improve the butanol production
efficiency. The parameters related to reactions R7, R14, R17, and R19

Fig. 6. Parameter sensitivity analysis for co-utilization of molasses in (a) M100-1 and (b) M100-2 models (Model III).
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consistently demonstrated positive effects across various models, indi-
cating their potential to enhance the butanol yield. In contrast, param-
eters for reactions R9, R11, R18, and R31 consistently showed adverse
effects. Finally, the reactions associated with carbon source consump-
tion and cell growth exhibited ambiguous sensitivity behavior, which
was influenced by mixed/individual sugar fermentation, ED or ID
analysis, and other relevant variables. Elucidating the variations in the
kinetic parameters of sugar and furaldehyde co-utilization and individ-
ual sugar fermentation offers valuable insights into the obstacles faced

in mixed-carbon-source environments. These findings may inform po-
tential approaches to optimize kinetics and fine-tune metabolic path-
ways, thereby driving progress in butanol production.

4. Conclusion

The current study introduces three kinetic models of
C. saccharoperbutilacetonicum N1-4’s ABE fermentation, integrating
multiple carbon source fermentation and furaldehydes consumption to

Fig. 7. Parameter sensitivity analysis for the co-fermentation of multiple carbon sources in (a) M75HH25 and (b) M75CHH25 models (Model III).
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highlight critical insights. The stress induced by furfural and HMF,
particularly under M75HH25 conditions, influences butyric acid pro-
duction, assimilation, and the synthesis of acetone, ethanol, and
butanol. The involvement of multiple pathways in butyric acid assimi-
lation highlights the complexity of the metabolic regulation. Enzyme
enhancements targeting the acetic acid/acetyl-CoA balance and re-
actions, such as R7 (aceticacid → acetyl-CoA) and R14 (acetoacetyl-
CoA→ butyryl-CoA), significantly affect the fermentation process.
Furthermore, the significant contribution of AdhE to butanol and
ethanol synthesis highlights its versatile role in various metabolic
pathways. This study revealed the critical kinetic parameters influ-
encing biobutanol production and offers valuable insights into over-
coming obstacles hindering its large-scale commercialization and early-
stage project design.
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Kinetic study of butanol production from various sugars by Clostridium
acetobutylicum using a dynamic model, Biochem. Eng. J. 99 (2015) 156–166,
https://doi.org/10.1016/j.bej.2015.03.001.

[23] C. Birgen, O.T. Berglihn, H.A. Preisig, A. Wentzel, Kinetic study of butanol
production from mixtures of glucose and xylose and investigation of different pre-
growth strategies, Biochem. Eng. J. 147 (2019) 110–117, https://doi.org/10.1016/
j.bej.2019.04.002.

[24] J. Lim, H.E. Byun, B. Kim, H. Park, J.H. Lee, Modeling and dynamic optimization of
semi-batch acetone–butanol–ethanol fermentation with in-situ pervaporation
membrane separations, Energy Fuel. 33 (2019) 8620–8631, https://doi.org/
10.1021/acs.energyfuels.9b01007.

[25] J. Lim, H.E. Byun, B. Kim, J.H. Lee, Dynamic modeling of acetone-butanol-ethanol
fermentation with ex situ butanol recovery using glucose/xylose mixtures, Ind.
Eng. Chem. Res. 59 (2020) 2581–2592, https://doi.org/10.1021/acs.iecr.9b03016.

[26] C. Liao, S.O. Seo, V. Celik, H. Liu, W. Kong, Y. Wang, H. Blaschek, Y.S. Jin, T. Lu,
Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by
Clostridium acetobutylicum, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 8505–8510,
https://doi.org/10.1073/pnas.1423143112.

[27] N. Qureshi, H.P. Blaschek, Butanol recovery from model solution/fermentation
broth by pervaporation: evaluation of membrane performance, Biomass Bioenergy
17 (1999) 175–184, https://doi.org/10.1016/S0961-9534(99)00030-6.

R. Assis de Oliveira et al. Biomass and Bioenergy 191 (2024) 107435 

18 

https://doi.org/10.1016/j.biombioe.2024.107435
https://doi.org/10.1016/j.biombioe.2024.107435
https://domusdados.unifesp.br/dataverse/ikmofabe
https://doi.org/10.1016/j.cep.2024.109769
https://doi.org/10.1016/j.cep.2024.109769
https://doi.org/10.1016/j.jece.2024.111996
http://refhub.elsevier.com/S0961-9534(24)00388-X/sref3
http://refhub.elsevier.com/S0961-9534(24)00388-X/sref3
https://doi.org/10.1016/j.jbiotec.2021.09.021
https://doi.org/10.1016/j.biortech.2012.11.142
https://doi.org/10.1016/j.indcrop.2021.113512
https://doi.org/10.1016/j.indcrop.2021.113512
https://doi.org/10.1016/j.greenca.2024.02.004
https://doi.org/10.1039/d1ra09396g
https://doi.org/10.1177/1934578x1701201227
https://doi.org/10.1177/1934578x1701201227
https://doi.org/10.1016/j.biortech.2013.05.052
https://doi.org/10.1016/j.biortech.2013.05.052
https://doi.org/10.1016/j.bej.2018.05.011
https://doi.org/10.1093/femsle/fnw001
https://doi.org/10.1093/femsle/fnw001
https://doi.org/10.1016/j.fuel.2020.119052
https://doi.org/10.1016/j.fuel.2020.119052
https://doi.org/10.1007/s00253-014-6106-8
https://doi.org/10.1186/s13068-020-01674-3
https://doi.org/10.1186/s13068-020-01674-3
https://doi.org/10.1016/j.jbiotec.2007.05.005
https://doi.org/10.1016/j.jbiotec.2007.05.005
https://doi.org/10.1371/journal.pone.0158243
https://doi.org/10.1371/journal.pone.0158243
https://doi.org/10.1080/23080477.2017.1390435
https://doi.org/10.1080/23080477.2017.1390435
https://doi.org/10.1016/j.procbio.2008.06.003
https://doi.org/10.15376/BIORES.13.4.7270-7280
https://doi.org/10.15376/BIORES.13.4.7270-7280
https://doi.org/10.1016/j.bej.2022.108738
https://doi.org/10.1016/j.bej.2015.03.001
https://doi.org/10.1016/j.bej.2019.04.002
https://doi.org/10.1016/j.bej.2019.04.002
https://doi.org/10.1021/acs.energyfuels.9b01007
https://doi.org/10.1021/acs.energyfuels.9b01007
https://doi.org/10.1021/acs.iecr.9b03016
https://doi.org/10.1073/pnas.1423143112
https://doi.org/10.1016/S0961-9534(99)00030-6


[28] A.M. Zetty-Arenas, R.F. Alves, C.A.F. Portela, A.P. Mariano, T.O. Basso, L.P. Tovar,
R. Maciel Filho, S. Freitas, Towards enhanced n-butanol production from sugarcane
bagasse hemicellulosic hydrolysate: strain screening, and the effects of sugar
concentration and butanol tolerance, Biomass Bioenergy 126 (2019) 190–198,
https://doi.org/10.1016/j.biombioe.2019.05.011.

[29] H.I. Velázquez-Sánchez, R. Aguilar-López, Novel kinetic model for the simulation
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