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Abstract
Survival analysis is a branch of statistics concerned
with studying and estimating the expected time du-
ration until some event, such as biological death,
occurs. Survival distributions are fitted based on
historical data, where some instances are censored,
meaning that the actual time of the event is not
known precisely. Survival trees extend on the clas-
sical statistical methods developed and can capture
complex non-linear relations between the variables
by recursively splitting the instances by generated
rules and fitting a different survival distribution in
each leaf. Moreover, decision trees are desirable
models due to their interpretable nature. We ex-
tend existing optimal survival tree methods by con-
sidering Cox Proportional Hazard models in each
leaf node, which allows us to find more complex
yet interpretable relationships than existing meth-
ods. The experiments show that our model outper-
forms state-of-the-art methods for creating survival
trees, SurTree, OST, and CTree, especially in de-
termining the relative risks between out-of-sample
observations while generating significantly smaller
trees.

1 Introduction
Survival analysis is a statistical methodology that analyses
the expected time duration until one event occurs. It is tra-
ditionally employed in medicine and clinical research, espe-
cially in studies developed to assess the effectiveness of dif-
ferent treatments or procedures over time. Still, it extends to
other fields such as engineering, economics, or sociology. It
aims to predict the time until an event occurs based on his-
torical data, for which the proper time to event (death) for
some instances is known. However, the difficulty of survival
analysis arises from the fact that, for some other cases, the
proper time to event is unknown. These instances are named
censored, and only some lower or upper bounds on the time
to event are known.

Several statistical techniques for approximating the sur-
vival function (probability that a subject survives longer than
some time) have been developed throughout the years, in-
cluding non-parametric approaches such as the Kaplan-Meier
method [1] and the Nelson-Aalen estimator [2], [3].

While these methods can encapsulate censored data, they
have some limitations, especially in their capacity to adjust
for covariates - characteristics of individuals that may affect
the risk of experiencing the event. These could include age,
sex, or pre-existing conditions.

When adjustments for covariates are needed, other types
of models, such as semi-parametric and parametric models,
are better suited. Parametric survival models assume specific
statistical distributions. They can provide efficient estimates
if the assumed distribution closely resembles the underlying
distribution.

Cox proportional hazards regression is a semi-parametric
model that specifies the effect of covariates without requiring

assumptions about the overall shape of the underlying distri-
butions [4]. However, this technique alone assumes a specific
form of the relationship between the covariates and the sur-
vival probability, which can be overly simplistic sometimes.

Models that are capable of detecting non-linear relations
between covariates have been developed, including decision
trees. They are most commonly trained using heuristics, such
as CART [5] and CTree [6], generating trees that greedily
select features to branch on.

While this usually leads to good results, optimal decision
trees may yield better results. Optimal decision trees are
methods that globally optimise the objective function over the
training data for a given tree size limit. Typically, they also
generalise to better out-of-sample performance than greedy
heuristics [7], [8].

While finding optimal decision trees (for a given size limit)
is an NP-hard problem [9], many mixed-integer programming
(MIP) approaches [7], [10]–[12], MaxSAT approaches [13],
or constraint programming (CP) approaches [14] have been
developed to generate (near-)optimal trees. However, these
techniques do not scale well to large datasets. In contrast,
dynamic programming (DP) approaches outperform the MIP
methods in runtime by several orders of magnitude [8], [15].

Decision trees offer a significant advantage due to their in-
terpretability. Unlike complex black-box models that produce
difficult-to-understand results, (small) decision trees provide
unambiguous and interpretable outcomes [16], [17]. This
clarity is particularly valuable today, as there is increasing
demand for transparency and explainability in models, fre-
quently driven by regulatory requirements, such as the Eu-
ropean Union’s General Data Protection Regulation (GDPR)
and proposals like the Artificial Intelligence Act.

These attributes of decision trees make them an appropri-
ate option for exploration within the context of survival anal-
ysis. In fields like medicine, where survival analysis is exten-
sively applied, the interpretability of machine learning mod-
els is particularly valued.

Survival trees are constructed by recursively splitting in-
stances by some features, then fitting a survival distribution
in their leaves (as shown, for example, in Figure 1). Sev-
eral techniques using decision trees for survival analysis have
been developed [18]–[20]. They generate decision trees (ei-
ther with dynamic programming or a local search approach)
and fit some survival distribution in their leaves. These tech-
niques, in particular, [18] and [19], fit a constant proportional
hazard parameter model, which assumes a joint baseline sur-
vival distribution adjusted in each leaf by some parameter.
Here, neither the baseline survival distribution nor the ad-
justed parameter are influenced by covariates, as they are rel-
evant only for the splits. This motivates the goal of this re-
search, which aims to generate optimal survival trees using
the dynamic programming approach and fit a Cox Propor-
tional Hazards Model in each leaf node. A Cox Proportional
Hazards Model still assumes a common baseline survival dis-
tribution (per leaf), but the particular realization of an in-
stance’s variables adjusts the final distribution. Thus, each
instance has its own individual survival distribution assigned.

Main Contributions: In this work, we show how fitting
a Cox Proportional Hazards Model in the leaves of an opti-
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Figure 1: An example of a survival tree. Each leaf showcases five
distributions, each corresponding to one instance in the respective
leaf.

mal survival tree influences the prediction quality. This re-
search extends on SurTree [18] by fitting a semi-parametric
distribution in the tree leaves. Moreover, a detailed experi-
mental setup and its result are presented to compare the per-
formance of our new model to the state-of-the-art models of
SurTree [18], Optimal Survival Trees (OST) [19], and Condi-
tional Inference Trees (CTree) [6].

The following sections introduce the preliminaries for this
work, including a discussion of SurTree [18]. We then present
the method used to produce the optimal decision tree and its
performance on both real and synthetic data.

2 Preliminaries
This section presents an overview of the preliminaries re-
quired for a thorough and clear understanding of the research.
Section 2.1 lists definitions and notations used throughout the
paper. A more detailed background on survival analysis is
explained in Section 2.2. Lastly, we present commonly used
survival metrics, which we also use to assess the performance
of the models.

2.1 Terminology
In order to train the model, we are using a set of historical
data D. In the case of survival analysis, the instances that
compose the data set are of two kinds:

• uncensored instances, for which we know they experi-
enced the event of interest. For these, we also know the
exact time when the event occurred.

• censored instances, for which we cannot tell whether
they experienced the event of interest. For these, we can-
not precisely tell when the event occurred, but we have
some information about it.

For this study, we are only concerned with dealing with right-
censored-data. That is, for the censored instances, we cannot
tell exactly the time of the event, but we know some lower
bounds of the actual value. This may happen, for example,

when a patient left a clinical trial before the event happened.
In this case, we know that the event was not observed before
they left.

Each instance i belonging to the data set D is represented
by a tuple (ti, δi, fvi, bvi). The instance is characterised by
its feature vector fvi, which is composed of zero or more con-
tinuous features and zero or more categorical features and is
a realisation of the feature space F . We also need to consider
(create) bvi, the binarised adaption of fvi. This means that for
each feature j and each instance i it holds that bvij ∈ {0, 1}.
The binarisation step is required as the framework of opti-
mal decision trees is designed to work on binary predicates.
Moreover, each feature is described by a censoring indicator
δi ∈ {0, 1}, representing whether the event of interest was
observed (δi = 1 if the event occurred, otherwise δi = 0).
Additionally, the observed time ti > 0 denotes the exact time
to event for uncensored data (δi = 1) and a lower bound for
the time to event for censored data (δi = 0).

We define the following notations to describe the splits
made in each decision node of a tree. A data set D can be
split on one feature fj . To represent this, we write D(fj)
to describe the subset of instances i for which bvij = 1

and analogously we write D(fj) to denote the subset of in-
stances i for which bvij = 0. Additionally, a dataset can be
split by more than one feature. For instance, D(fa, fb, fc)
represent the subset consisting of the instances i for which
bvia = 1 ∧ bvib = 0 ∧ bvic = 1.

2.2 Survival analysis
Survival analysis aims to fit a survival function S(t) =
P (T ≥ t), showing the probability of survival after a time t,
with time T being the true time to event. Examples of sur-
vival functions are the distributions fit in the leaves of Fig-
ure 1. Complementary, the lifetime distribution function, usu-
ally denoted by F (t) = P (T ≤ t) = 1 − S(T ), is defined
as the probability of experiencing the event before time t. If
F is differentiable, the event density function is defined as
f(t) = F ′(t) = d

dtF (t).
The hazard function quantifies the rate of the event hap-

pening at time t, given that it did not before and is denoted
by λ(t) = limdt→0

Pr(t≤T<t+dt)
dt·S(t) = f(t)

S(t) =
d
dtF (t)

S(t) =
d
dt (1−S(t))

S(t) = −S′(t)
S(t) = − d

dt logS(t). The cumulative haz-
ard function, defined as the accumulation of the hazard func-
tion, can be written as Λ(t) =

∫ t

0
λ(x) dx. Integrating over

the expression λ(t) = − d
dt logS(t) presented above yields

the following relation between the survival function and the
cumulative hazard function:

S(t) = e−Λ(t) (1)

A non-parametric method devised for computing the cu-
mulative hazard function is the Nelson-Aalen estimator [2],
[3] and is defined as:

Λ̂(t) =
∑
t′≤t

d(t′)

n(t′)
(2)

Where d(t) represents the number of deaths at time t and
n(t) represents the number of individuals still at risk at time t.
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d(t) =

|D|∑
i=1

1{ti=t∧δi=1} (3)

n(t) =

|D|∑
i=1

1{ti≥t} (4)

Equations (1) and (2) can be used together to provide an
estimation for the survival function Ŝ(t).

2.3 Survival metrics
Two commonly used metrics for assessing the performance
of survival analysis models are Harrell’s C-Index [21] and
the integrated Brier score [22].
Harrell’s C-Index, also commonly known as the concor-
dance statistic, measures the proportion of correctly ordered
comparable pairs of observations. We say that two observa-
tions i and j are comparable if one instance experienced the
event of interest before the other (ti < tj∧δi = 1). The rel-
ative order is determined by the risk score η associated with
each instance. The two instances are concordant if the one
experiencing the event first has a higher risk, disconcordant
if the one experiencing the event first has a lower risk, and
tied-risk if they have the same risk. The number of such pairs
can be computed as follows:

CC =
∑
i,j

1(ti < tj ∧ δi = 1)1(ηi > ηj) (5)

DC =
∑
i,j

1(ti < tj ∧ δi = 1)1(ηi < ηj) (6)

TR =
∑
i,j

1(ti < tj ∧ δi = 1)1(ηi = ηj) (7)

The C-Index can then be obtained as:

HC =
CC + 0.5 · TR
CC + TR+DC

(8)

The advantage of this metric is that it does not make any
parametric assumptions about the data. Note that a random
predictor has an expected HC of 0.5.
The integrated Brier score is another metric used for evalu-
ating survival models. The Brier score [23] measures the ac-
curacy of the probabilistic forecasts by evaluating the survival
distribution at specific points. The integrated Brier score [22]
was developed to measure the whole distribution and can be
computed as:

IB =

∑
i

∫ ti
tmin

(1−Ŝi(t))
2

Ĝ(t)
dt+ δi

∫ tmax

ti

(Ŝi(t))
2

Ĝ(ti)
dt

|D|(tmax − tmin)
(9)

The integrated Brier score computes the Brier score over
a time interval [tmin, tmax] and is weighted by the Kaplan-
Meier estimator of the censoring distribution Ĝ(t). Impor-
tantly, this metric does not rely on any parametric assump-
tions about the underlying data.

3 Related Work
This section discusses previously done work related to the re-
search presented. SurTree [18] is presented in Section 3.1.
Section 3.2 details the Cox Proportional Hazards Model ap-
proach to estimate the survival distribution. Lastly, Sec-
tion 3.3 presents the approach proposed in [24] that fits a Cox
regression model.

3.1 SurTree
SurTree [18], an adaptation of MurTree [8] to survival analy-
sis, fits optimal survival trees using a dynamic programming
approach. This technique is guaranteed to produce the opti-
mal tree for a given data set and tree size. It starts with the
whole data set D in the root, splits it into two disjoint sub-
sets D1 and D2, and recursively proceeds to split the subsets.
A survival function is fitted in the leaves, and a loss metric
is computed. Each split is done by selecting a feature j and
then computing D(fj) and D(fj). The feature is chosen to
minimise the sum of losses over the two resulting sub-trees.

The main idea at the basis of SurTree is to fit a baseline haz-
ard function Λ̂(t), described in equation (2), which is shared
by all the leaves, then fit different distribution in each leaf i by
adjusting the common hazard function by some parameter θi:

Ŝi(t) = e−θiΛ̂(t) (10)

The effect of θ on the survival distribution is illustrated in
Figure 2.
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Figure 2: A visualization of how θ affects a survival distribution
Ŝ(t). Every plot share the same Λ̂(t), but use θ = 0.3, θ = 1 and
θ = 3 respectively.

Then, as similarly done in Optimal Survival Trees [19], the
optimal value for a given data set D is proved in [25] to be:

θ̂ =

∑
(ti,δi,fvi)∈D δi∑

(ti,δi,fvi)∈D Λ̂(ti)
(11)

The optimal saturated value for a single instance i is then
given by:

θ̂sati =
δi

Λ̂(ti)
(12)

The loss for a single instance is defined as the difference
between the log-likelihood of the instance when setting θ to
be the one of the leaf and the log-likelihood of the instance
when setting θ to be the saturated one.

This allows to formulate the loss function for a given data
set D and a fixed value θ as:
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L(D, θ̂) =
∑

(ti,δi,fvi)∈D

(
Λ̂(ti)θ̂ − δi log Λ̂(ti)− δi log θ̂ − δi

)
(13)

Having all of the information presented, it is now possi-
ble to formulate the dynamic programming approach [8] that
allows for the construction of the SurTree [18]:

T (D,d, n) =

minθ̂ L(D, θ̂) if n = 0

T (D, d, 2d − 1) if n > 2d − 1

T (D, n, n) if d > n

min
{
T (D(f), d− 1, n− i− 1)+

T (D(f), d− 1, i) :

f ∈ F, i ∈ [0, n− 1]
}

otherwise
(14)

In the presented formula, D accounts for the data set of
instances to fit, d is the maximum depth of the tree, and n
denotes the node budget, the number of decision nodes to in-
clude in the tree. The first case, n = 0, is concerned with
fitting the model in a leaf where no more splits occur. It finds
an optimal estimate for θ̂ that minimises the loss function de-
scribed in equation (13). The following two cases, n > 2d−1
and d > n, re-adjust the depth or node limits accordingly, as
the two impose bounds on each other. The last case tries to
find the optimal split by trying all features and all combina-
tions of node budgets and selecting the one that minimises the
sum of the two sub-components. The solutions T (D, d, n) are
also cached to improve the scalability of the algorithm.

3.2 Cox Proportional Hazards Model
In contrast to the constant proportional model used in
SurTree [18], a Cox model is adjusted to account for the co-
variates when fitting the hazard function. In a proportional
hazards model, each one-unit increase in a covariate multi-
plies the hazard rate by a constant factor. For example, ac-
counting for patients’ age or blood pressure levels may be
relevant when estimating a more accurate survival distribu-
tion.

The Cox model consists of two parts: an underlying base-
line hazard function, denoted by λ0(t), shared by all the in-
stances, and the effect parameters, denoted by β, describing
the influence of the covariates on the hazard function. Thus,
each instance is going to have distinct hazard and survival
functions, depending on the realisations of the covariates.
The hazard function of an instance i, introduced in the Cox
model, is given by:

λi(t) = λ0(t) ∗ e
∑p

j=1 βj∗Xi,j (15)
Here, Xi = (Xi,1, Xi,2, ..., Xi,p) represent the realisation

for the features of instance i. Thus, the hazard function for
each individual is the baseline hazard function scaled by the
exponential of the linear combination of the fitted coefficients
β and the covariates. Integrating equation (15) results in the
cumulative hazard function:

Λi(t) =

∫ t

0

λi(x) dx =

∫ t

0

λ0(x) ∗ e
∑p

j=1 βj∗Xi,j dx

= e
∑p

j=1 βj∗Xi,j ∗
∫ t

0

λ0(x) dx

= Λ0(t) ∗ e
∑p

j=1 βj∗Xi,j

(16)

For a given dataset of instances D = {X1, X2, ..., Xn},
n = |D|, Breslow [26] suggested an estimator of the baseline
cumulative hazard function in a discussion on Cox’s paper as:

Λ̂0(t) =
∑
t′≤t

d(t′)∑n
i=1 1{ti≥t′} ∗ eβTXi

(17)

Combining the results (16) and (17), by applying a ratio-
nale similar to the one in equation (1), we can obtain the fol-
lowing estimation for the survival function of instance i:

Ŝi(t) = e−Λ̂0(t)∗eβ
T Xi (18)

The Cox partial likelihood is obtained by plugging the
Breslow estimator in the full likelihood function and is given
by:

L(β) =
∏

i∈[1,n]:δi=1

eβ
TXi∑n

j=1 1{tj≥ti} ∗ eβ
TXj

(19)

The goal of the Cox Proportional Hazards model is to fit the
coefficients β̂ that maximise the partial likelihood, or equiva-
lently, that minimise the negative partial log-likelihood:

β̂ = argmin
β

(−
∑

i∈[1,n]:δi=1

(βTXi−log
n∑

j=1

1{tj≥ti}∗e
βTXj ))

(20)

3.3 Regularisation Paths for Cox’s Proportional
Hazards Model via Coordinate Descent

The goal for the Cox model is to fit the set of coefficients
β that maximise (minimise) the (negative log-)likelihood,
shown in (19) and (20). In order to do so, for this research, we
have opted to base the implementation on the technique pre-
sented in [24], which generates a path of regularised Cox’s
Proportional Hazards Model solutions. An elastic net penali-
sation is applied to the objective function, and the coefficients
are optimised via a coordinate descent approach. Thus, the
new goal is to find the coefficients β = (β1, β2, ..., βp) min-
imising the adjusted negative log-likelihood:

β̂ = argmin
β

(−ℓ(β) + λ ∗ Pα(β)) (21)

where:
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ℓ(β) =
∑

i∈[1,n]:δi=1

(βT ∗Xi − log

n∑
j=1

1{tj≥ti} ∗ e
βT ∗Xj )

(22)

λ ∗ Pα(β) = λ ∗ (α ∗
p∑

i=1

|βi|+ (1− α) ∗
p∑

i=1

β2
i ) (23)

In [24], the equation is also scaled for convenience. The
coefficient λ scales the regularization term, while α and 1−α
account for the Lasso (l1) and Ridge (l2) penalties. In con-
trast to the standard Cox model, with no regularisation, this
method can find good solutions for cases where the number of
features is comparable or larger than the number of instances.

This algorithm fits a path of solutions: it does not gen-
erate only one solution, but several of them for different
values of λ. Precisely, it produces a path of solutions:
(λ1, β̂1), (λ2, β̂2), ..., (λk, β̂k), where λ1 > λ2 > ... > λk. A
warm starts technique is employed, where an initial solution
β̂1 for λ1 = λmax is generated. Then, the previously found
solution is optimised sequentially for the new value of λ.

In [24], a two-term Taylor series expansion is used to ap-
proximate l(β). For X = (X1, X2, ..., Xn) the design matrix
and η = Xβ, the following approximation can be computed
around β̃:

ℓ(β) ≈ ℓ(β̃) + (β − β̃)T ℓ′(β̃) +
1

2
(β − β̃)T ℓ′′(β̃)(β − β̃)

(24)
where ℓ′ and ℓ′′ denote the gradient and the Hessian matrix
(here, with respect to β̃). Moreover, in [24] is shown that by
letting η̃ = Xβ̃, ℓ(β) can be approximated as:

ℓ(β) ≈ 1

2
(z(η̃)−Xβ)T ℓ′′(η̃)(z(η̃)−Xβ) + C(η̃, β̃)

(25)
where z(η̃) = η̃−ℓ′′(η̃)−1ℓ′(η̃) and C(η̃, β̃) does not depend
on β. To speed up the computation of ℓ′′(η̃), a matrix with
O(n2) entries, only its diagonal values are being kept, while
zeros replace the rest of the matrix. Further, ℓ′′(η̃)i,i will be
noted as w(η̃)i. Having all the notations and equations into
consideration, the algorithm for finding a solution for a fixed
λ can be summarised as:

We initialise β̃ by the solution computed in the pre-
vious iteration of λ. A coordinate descent approach is
adopted to find the value β that minimises the objective func-
tion. That is, we cyclically iterate over each coordinate
β1, β2, ..., βp, β1, β2, ... and at each step, all of the other co-
efficients are kept constants while we only change the current
coordinate. The value to assign to the coefficient is deter-
mined by taking the derivative of the objective function with
respect to it, and by setting it to zero, we obtain the following
optimal value:

βk =
S
(

1
n

∑n
i=1 w(η̃i)xi,k

[
z(η̃i)−

∑
j ̸=k xijβj

]
, λα

)
1
n

∑p
i=1 w(η̃i)x

2
ik + λ(1− α)

(26)

Algorithm 1 Regularization Paths for Cox’s Proportional
Hazards Model via Coordinate Descent

for λ← λ1, ..., λk do
initialize β̃
while β̃ has not converged do

η̃ ← Xβ̃
compute z(η̃)
compute w(η̃)

β̃ ← argminβ(
1
n

∑n
i=1 w(η̃)i(z(η̃)i − XT

i β)
2 +

λPα(β))
end while

end for

where:
S(x, λ) = sgn(x)(|x| − λ)+ (27)

We set β̃ to (0, 0, ..., 0) for the first iteration, where no pre-
vious solutions were computed. To be able to do this, we need
to set λ1 sufficiently large such that (0, 0, ..., 0) is indeed the
solution for the fixed value of λ1. It is shown in [24] that the
value that the value that matches the condition is:

λ1 = max
j

1

nα

n∑
i=1

wi(0)xijz(0)i (28)

In our implementation, the other values λi are generated as
the geometric sequence λi = λ1 ∗ ri−1, where the ratio r is
smaller than 1.

This algorithm is implemented in the leaves of an optimal
decision tree, and the approach is discussed in the next sec-
tion.

4 Methodology
We present Cox SurTree, a method that implements the Cox
proportional hazards model proposed in [24] in the leaves of
an optimal survival tree to create a model that can detect non-
linear relations between covariates while also accounting for
the effect of the covariates on the time-to-event. The same dy-
namic programming approach (14) is maintained, with only
the loss function (first case, n = 0) being adapted. In Sec-
tion 4.1, we present the methods used to select one of the
models generated by the algorithm discussed in Section 3.3.
Then, in Section 4.2, we showcase the details of incorporat-
ing the Cox model into the dynamic programming approach
of SurTree [18] and how predictions are made.

4.1 Model selection
In this subsection, we illustrate how we use the approach in
Section 3.3 to select a set of coefficients given a dataset D,
which we use as a terminal solver in the leaves of an optimal
survival tree.

Because the algorithm presented in Section 3.3 generates
several models, we must define a method to select only one.
For this, we randomly split the dataset D into two disjoint
subsets, Dtrain and Dvalidation. We allocate 80% of the
original instances to the former to ensure that the model has
access to a large enough volume of data to effectively learn
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while reserving the rest 20% to the latter to provide a signifi-
cant sample of unseen data to evaluate the performance of the
models generated during training. We useDtrain for creating
solutions and Dvalidation for selecting one of the generated
models.

Moreover, the algorithm requires tuning a set of param-
eters. While the size of generated solutions is set to at
most 15, and for each solution, we allow for at most 100
optimisation iterations, the value of the l1-ratio (α) is fixed
per leaf using an exhaustive search strategy due to its thor-
oughness, simplicity and reliability. For every value of l1 in
{0.2, 0.4, 0.6, 0.8}, we fit a path of solutions for the dataset
Dtrain. Then, we use the validation set to select one of the
models. For this, two approaches were implemented:

• Likelihood optimisation: the chosen model is the one
minimising the negative log-likelihood described in
equation (20) (on the validation set).

• C-Index [21] optimisation: the chosen model is the one
maximising Harrell’s C-index described in equation (8)
(on the validation set).

Given the increased complexity of the model, we limited
our validation functions to the two previously mentioned. We
chose not to validate for the integrated Brier score [22], as
it would have significantly increased the complexity of the
model.

4.2 Cox SurTree
This subsection presents how the previously described
method for selecting a Cox model is integrated to generate op-
timal survival trees using a dynamic programming approach.

First, one of the two validation techniques must be selected
and used. In order to adapt equation (14), let us denote by
Cox(D) = (β1, β2, ..., βp) the solution selected by the al-
gorithm described in Section 4.1 for a given dataset of in-
stances D and the chosen validation scheme. We use the
negative log-likelihood function as the loss function for the
dynamic programming setup. Thus, we can formulate the fol-
lowing recurrence:

T (D,d, n) =

∞ if n = 0 ∧
|U(D)| < 10 ∗ |F|

−ℓ(Cox(D)) if n = 0

T (D, d, 2d − 1) if n > 2d − 1

T (D, n, n) if d > n

min
{
T (D(f), d− 1, n− i− 1)+

T (D(f), d− 1, i) :

f ∈ F, i ∈ [0, n− 1]
}

otherwise
(29)

In the first case, U(D) denotes the number of uncensored
instances in dataset D and the condition was added to avoid
overfitting and biases. We adhere to the one in ten rule, which
states that the number of uncensored instances we fit should
be at least ten times bigger than the number of features (orig-
inal features, continuous and categorical, not binarised) [27].

Having the tree generated with the coefficients fitted in
each leaf, we generate a distinct baseline hazard function for
each leaf. The baseline cumulative hazard function is com-
puted using the Breslow estimator (17). The survival function
is generated based on the baseline cumulative hazard func-
tion, as shown in equation (18).

For the C-Index validation approach, we improve the time
complexity by using a binary indexed tree [28]. Denoting
by m the number of instances for which we compute the met-
ric, a naive approach which pair-wise measures the observa-
tions has a time complexity of O(m2). The binary indexed
tree can be used to compute prefix or suffix sums, and we
use it to store the risk scores η and calculate the number of
concordant, discordant, and tied-risk pairs. We sort the ob-
servations based on their time to event ti, then iterate over the
instances in ascending order. For each instance j, we perform
two actions. First, we query the binary indexed tree to count
how many previously (uncensored) traversed instances i are
concordant, discordant, and tied-risk with instance j. Second,
if the instance is uncensored, we update its risk score ηj into
the binary indexed tree. This approach has a time complexity
of O(m × log(m)), which arises from sorting and perform-
ingO(m) updates and queries to the binary indexed tree, each
one taking O(log(m)) time.

An approach to predict the time-to-event for an instance
given its survival distribution Ŝi(t), as also mentioned in [22],
is to give the median of the estimated survival curve. Thus,
the prediction is the time that splits the survival function
into two equal areas regions and is computed by finding the
value T̂ that satisfies the relation:∫ T̂

0

Ŝi(t) dt =

∫ ∞

T̂

Ŝi(t) dt (30)

The estimated survival distribution is a step function, and
its area can be computed by adding up the individual areas of
the rectangles that compose it. The estimate for the time T̂ is
the value that splits this area into half.

5 Experimental Setup and Results
This section describes the experimental setup implemented
as part of this research and discusses the results of the exper-
iments.

5.1 Experiment Setup
The algorithm presented in this research was integrated into
the STreeD framework [15].1 The core is implemented in
C++, with a Python interface encapsulating the code. The
experiment setup2 extends the one used for SurTree, which
implements a comparison between the STreeD interface of
SurTree [18], the Julia implementation of OST [19], and the
R implementation of CTree [6].

The experiments compare the method implemented in this
research against SurTree, OST, and CTree on the metrics in-
troduced in Section 2.3, namely Harrell’s C-Index and the
integrated Brier score. For these methods, we maintain the

1https://github.com/MateiMirica/STreeDCoxSA
2https://github.com/MateiMirica/STreeDCoxSA Pipeline
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Data set characteristics Harrell’s C-Index Integrated Brier Score
Dataset |D| Censoring (%) |Fnum| |F| CTree OST SurTree Cox SurTree LL Cox SurTree CI CTree OST SurTree Cox SurTree LL Cox SurTree CI
Aids2 2839 38.0% 4 22 0.54 0.52 0.53 0.54 0.54 0.01 0.00 0.01 0.01 0.00
Dialysis 6805 76.4% 4 35 0.64 0.67 0.66 0.66 0.66 0.07 0.12 0.10 -0.03 -0.05
Framingham 4658 68.5% 7 60 0.68 0.67 0.67 0.71 0.71 0.11 0.10 0.10 0.14 0.14
Unempdur 3241 38.7% 6 45 0.69 0.69 0.69 0.69 0.70 0.08 0.08 0.07 0.03 0.03
Acath 2258 34.0% 3 21 0.59 0.59 0.59 0.59 0.60 0.03 0.03 0.03 0.03 0.01
Csl 2481 89.1% 6 42 0.78 0.76 0.77 0.78 0.78 0.12 0.14 0.13 0.15 0.14
Datadivat1 5943 83.6% 5 21 0.63 0.63 0.63 0.64 0.64 0.05 0.05 0.06 0.09 0.07
Datadivat3 4267 94.4% 7 30 0.66 0.65 0.66 0.71 0.71 -0.00 0.03 0.03 0.03 0.03
Divorce 3371 69.4% 3 5 0.53 0.53 0.53 0.53 0.53 0.02 0.02 0.02 0.02 0.02
Flchain 6524 69.9% 10 60 0.92 0.92 0.92 0.93 0.93 0.64 0.64 0.64 0.56 0.56
Hdfail 52422 94.5% 6 27 0.82 0.86 0.84 0.86 0.80 0.33 0.42 0.38 0.47 0.50
Nwtco 4028 85.8% 7 17 0.70 0.69 0.70 0.72 0.71 0.13 0.13 0.13 0.07 0.07
Oldmort 6495 69.7% 7 33 0.64 0.64 0.64 0.66 0.66 0.07 0.05 0.05 0.05 0.05
Prostatesurvival 14294 94.4% 3 8 0.76 0.76 0.76 0.76 0.76 0.11 0.11 0.11 -0.06 -0.05
Rott2 2982 57.3% 11 50 0.68 0.68 0.68 0.71 0.70 0.12 0.15 0.14 0.16 0.15

Wins per metric 4 4 2 12 11 8 8 7 8 4
Average rank 3.47 3.73 3.63 2.07 2.10 3.10 2.77 2.93 2.83 3.37

Table 1: Out-of-sample Harrell’s C-Index and integrated Brier score for data sets from SurvSet [29]. CTree, OST, and SurTree were tested
on a maximum depth d = 4. CoxSurTree LL and Cox SurTree CI were tested on a fixed depth of d = 2. |Fnum| is the number of original
features. |F| is the resulting number of binarised features.

same hyper-tuning strategies as in [18]: for SurTree, the depth
and node budget are tuned; for OST, the depth and cost-
complexity parameter are tuned; and for CTree, the confi-
dence criterion is tuned. All the methods are tuned with a
ten-fold cross-validation. For Cox SurTree, we generate two
trees: Cox SurTree LL, which uses the log-likelihood vali-
dation scheme and the Cox SurTree CI, which uses the C-
Index validation scheme. Due to the increased complexity
and time overhead required by the leaf solvers, we did not
use any cross-validation and kept the depth of the trees fixed
to two and the node budget set to either two or three.

The experiments were run on both real and synthetic data,
which are discussed in the following sections. The real
datasets were split into five train-test split sub-datasets, while
for the synthetic data, five datasets per setting were generated.
The metrics, presented in Section 2.3, were computed as the
average of the five obtained results per dataset.

When computing Harrell’s C-Index, note that for the Cox
SurTree models, a lower estimation T̂ , computed as in (30),
means a higher risk, while for the other models, a lower esti-
mation θ̂ means a lower risk.

The integrated Brier score is assessed on the test data and
the interval of time accounting for the 10% and 90% quan-
tiles of the times in the test data, denoted by tmin and tmax

in (9). We report a normalised score 1−IB/IB0, where IB0

represents the score derived from the Kaplan-Meier estimator
for the entire dataset.

5.2 Data
The real datasets, which are publicly available, are imported
from the SurvSet [29] repository. We only keep those datasets
with at least 2000 instances, as the methods’ differences are
clearer for large datasets [18]. The datasets are split into five
train-test subsets, and the out-of-sample performance for a
dataset is computed as the mean of the metric of the five gen-
erated test subsets.

As mentioned, since the model operates on binary predi-
cates, we had to preprocess the data. First, the non-numeric
data, such as strings or lists, were converted into numbers.
One-hot encoding was used to binarise the categorical vari-

ables. If more than ten categories are present, we group the
least frequent ones into a separate category. The continuous
variables are also split into at most ten categories. Moreover,
redundant features are removed. These include identical fea-
tures and binary features that are present in less than 1% of
the data.

We evaluate CTree and OST on the numeric data, SurTree
on the binarised data, and Cox SurTrees on both. The binary
data is used to split the instances and generate the tree, while
the numeric data fits the Cox model in the leaves. Addition-
ally, for Cox SurTree, we take a further step and normalise
the data before fitting the Cox model.

5.3 Results
We ran the real datasets on all the mentioned algorithms and
computed Harrell’s C-Index and the integrated Brier score.
No time limits were imposed on any of the algorithms. For
CTree, OST, and SurTree, we have fixed a maximum depth of
four and a maximum number of nodes of 15. For Cox SurTree
LL and Cox SurTree CI, we fixed the depth to half, namely to
two. The number of nodes was chosen between two or three.

We can see in Table 1 that our implemented models per-
form significantly better on the C-Index. They can capture the
relative risks better than the state-of-the-art models for trees
that are four times less in size. Note that the log-likelihood
validation approach performs slightly better than the C-Index
one. Even though the latter is specifically designed to choose
the model that optimises Harrell’s C-Index, this only happens
at a leaf level, and there are no guarantees that aggregating
the results for several leaves still performs better.

The increased performance can be attributed to the fact that
all the instances are assigned different distributions, which
leads to different predictions for the instances. In contrast,
the other models assign a unique common distribution to all
the instances within a leaf. The number of distinct predictions
is, at most, equal to the number of leaves of the tree, which
is relatively small. Moreover, within a leaf, the C-Index is
always 0.5 as all the observations are tied-risk.

However, our models do not perform as well on the inte-
grated Brier score compared to the other models. The log-
likelihood validation method produces results comparable to
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the other methods, while the C-Index validation approach per-
forms the worst. Moreover, our models perform even worse
than the basic Kaplan-Meier estimator on some datasets.

Figure 3: Example of distri-
butions within a leaf. The
bold red line represents the
Kaplan-Meier estimator of the
instances. The transparent
lines represent the estimated
survival functions of all the in-
stances within the leaf.

Figure 4: Example of distri-
butions within a leaf. The
bold red line represents the
Kaplan-Meier estimator of the
instances. The transparent
lines represent the estimated
survival functions for some
of the instances within the
leaf. Circles denote the pre-
dicted value; triangles denote
the event time.

We investigated the results and came up with some con-
clusions. The integrated Brier score measures the deviation
from the actual distributions. More precisely, good survival
functions should have high values before the time-to-event,
reflecting a significant probability of surviving before expe-
riencing the event, and low values after the actual time-to-
event, reflecting a small probability of surviving after expe-
riencing the event. In Figure 3, we can see that the distribu-
tions follow the Kaplan-Meier estimate, with a high variance
and deviance from it. Since the distributions have the same
shape, it is not always possible to demonstrate the proper-
ties previously specified, especially when the time-to-event
highly varies, as this would require the survival functions to
have different shapes, and only scaling them does not suffice.

Moreover, in Figure 4, we can see that the mean (predic-
tion) of the fitted distributions is quite far from the actual true
time-to-event. For many of the instances illustrated, the sur-
vival probabilities are still high even after experiencing the
event. These all indicate that the fitted distributions do not
always resemble the actual ones.

We also compared all of the models on the same depth limit
d = 2 to ensure that the other methods do not somehow per-
form better on lower depth limits. In Table 2 (Appendix A.1),
we see that the Cox SurTrees perform even better than the rest

when we set the same depth limit for all the methods.
We have also tested the implemented models on synthetic

data, similarly generated as described in [19] and [18]. This
data does not follow the Cox model’s assumptions, namely
the proportional scaling of the hazard by the change in co-
variates. We can see in Figure 5 (Appendix A.2) that our
models perform worse on the C-Index in this case, even when
we decrease the depth limit of the other models.

6 Responsible Research
In this section, we reflect on the ethical aspects of the re-
search, address its possible societal impact, and discuss the
reproducibility of our methods. We emphasise the need to be
transparent about our processes and findings to build trust and
support further research.

6.1 Ethical Considerations
The research meets ethical standards in both data usage and
experimental setup. The real data used is publicly available
and can be directly downloaded, as we did within our experi-
ment pipeline. We provide the code that downloads the data,
but we did not publish the datasets to ensure no personal data
is exposed.

We note, however, that the algorithm may contain particu-
lar biases towards some of the features. The algorithm aims
to generate optimal survival trees optimised on specific ob-
jective functions that do not consider the meaning of the fea-
tures they use. It is at anyone’s discretion to investigate the
generated trees and assess any harms or biases induced by the
model. This is also possible due to the interpretable nature of
the model.

6.2 Societal Impact
This research is designed with the potential to improve sur-
vival predictions in different contexts, such as clinical or me-
chanical settings, by trying to provide a more accurate model.
However, the results generated by the algorithm should not be
taken by any means as a ground truth, especially when deal-
ing with humans and, more specifically, patients. The pre-
sented model has limitations, and overgeneralisation of the
results should not apply. The model was tested only on some
datasets with specific characteristics that do not apply to ev-
ery data.

6.3 Transparency and Reproducibility
We commit to transparency by making both the source code
and the experimental setup available and ready to use. The
synthetically generated datasets used are explicitly reported.
For the real data, we provide the code used to download the
datasets. To completely ensure the reproducibility of the re-
sults, we provide, for each train-test split, the indices from
the original data that were used. Doing so allows fully repro-
ducible results while ensuring no data ownership violation.

7 Conclusions and Future Work
We present Cox SurTree and its two possible adaptations,
a model that fits survival trees with Cox Proportional Haz-
ards models in its leaves. The dynamic programming ap-
proach of the model ensures global optimality on the train
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data for fixed-size trees for the implemented objective and
validation schemes. The technique manages to capture the
relative risk better than the state-of-the-art methods that fit a
constant proportional hazard parameter model, including the
greedy heuristic approach of CTree [6], the local search ap-
proach of OST [19], and the dynamic programming approach
of SurTree [18]. The improved performance is highlighted
by the C-Index metric. Moreover, Cox SurTree manages to
do so for significantly smaller trees, thus improving the inter-
pretability and explainability of the model.

While the findings of this research are promising, they are
subject to several limitations. First, sometimes, the model
performs worse in fitting distributions as a whole, as re-
marked by the integrated Brier score tests. Moreover, we
showed on the synthetic data that if the data does not fol-
low the proportional hazards condition, it performs worse
than the other models, even in terms of the concordance in-
dex. Also, the leaf solvers are more complex as they fit sev-
eral models and require additional validation and normalisa-
tion. Fitting a path of solutions (per leaf) as described in Sec-
tion 3.3 on a dataset D for fixed values for the l1-ratio, for nλ

(the number of solutions to fit), and for niter (the maximum
number of iterations per solution), has a time complexity of
O(|D| × nλ × niter). Moreover, we run the algorithm for
four values of the l1-ratio. In comparison, the leaf solver in
SurTree has a time complexity of O(|D|). The overhead can
be reflected by the increased run times of the approach.

Future work could explore in more depth the root cause for
the high deviance of the fitted distributions from the absolute
distributions. Additionally, changing the leaf solvers to fit a
non-regularised Cox model could be analysed. This approach
can be further explored with the possibility of adapting the
depth two scalability improvement, as was similarly done for
regression in [30].
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Demirović, “Piecewise Constant and Linear Regres-
sion Trees: An Optimal Dynamic Programming Ap-
proach,” in Proceedings of ICML-24, 2024.

10

https://arxiv.org/abs/2203.03094


A Appendix
A.1 Real data
Table 2 shows the results obtained from running all the models on the real data for a depth d = 2. Both Cox SurTrees perform
better on the C-Index than the other models. Cox SurTree LL produces comparable, even slightly better results than the existing
models for the integrated Brier score. Cox SurTree CI performs the worst out of all the tested models on the integrated Brier
score. As discussed in Section 5.3, both Cox SurTrees produce results worse than the Kaplan-Meier estimator over the whole
instances for some datasets.

Data set characteristics Harrell’s C-Index Integrated Brier Score
Dataset |D| Censoring (%) |Fnum| |F| CTree OST SurTree Cox SurTree LL Cox SurTree CI CTree OST SurTree Cox SurTree LL Cox SurTree CI
Aids2 2839 38.0% 4 22 0.54 0.52 0.52 0.54 0.54 0.01 0.00 0.01 0.01 0.00
Dialysis 6805 76.4% 4 35 0.63 0.63 0.63 0.66 0.66 0.06 0.07 0.07 -0.03 -0.05
Framingham 4658 68.5% 7 60 0.64 0.64 0.64 0.71 0.71 0.07 0.07 0.08 0.14 0.14
Unempdur 3241 38.7% 6 45 0.70 0.69 0.69 0.69 0.70 0.08 0.08 0.08 0.03 0.03
Acath 2258 34.0% 3 21 0.59 0.59 0.59 0.59 0.60 0.03 0.02 0.03 0.03 0.01
Csl 2481 89.1% 6 42 0.73 0.74 0.76 0.78 0.78 0.10 0.12 0.11 0.15 0.14
Datadivat1 5943 83.6% 5 21 0.62 0.63 0.63 0.64 0.64 0.05 0.04 0.04 0.09 0.07
Datadivat3 4267 94.4% 7 30 0.67 0.65 0.66 0.71 0.71 0.02 0.03 0.03 0.03 0.03
Divorce 3371 69.4% 3 5 0.53 0.53 0.53 0.53 0.53 0.02 0.02 0.02 0.02 0.02
Flchain 6524 69.9% 10 60 0.92 0.91 0.91 0.93 0.93 0.63 0.63 0.63 0.56 0.56
Hdfail 52422 94.5% 6 27 0.79 0.81 0.79 0.86 0.80 0.22 0.30 0.23 0.47 0.50
Nwtco 4028 85.8% 7 17 0.67 0.69 0.69 0.72 0.71 0.12 0.12 0.11 0.07 0.07
Oldmort 6495 69.7% 7 33 0.63 0.63 0.63 0.66 0.66 0.06 0.04 0.05 0.05 0.05
Prostatesurvival 14294 94.4% 3 8 0.74 0.74 0.74 0.76 0.76 0.09 0.09 0.09 -0.06 -0.05
Rott2 2982 57.3% 11 50 0.67 0.68 0.68 0.71 0.70 0.12 0.14 0.14 0.16 0.15

Wins per metric 3 1 1 13 12 8 7 8 8 4
Average rank 3.77 3.80 3.83 1.83 1.77 3.07 3.10 2.80 2.77 3.27

Table 2: Out-of-sample Harrell’s C-Index and integrated Brier score for data sets from SurvSet [29]. CTree, OST, and SurTree were tested
on a maximum depth d = 2. CoxSurTree LL and Cox SurTree CI were tested on a fixed depth of d = 2. |Fnum| is the number of original
features. |F| is the resulting number of binarised features.

A.2 Synthetic data
Figure 5 compares Harrell’s C-Index for SurTree and both Cox SurTrees on synthetic data similarly generated as described
in [19] and [18] on an increasing number of instances and different censoring levels: 10%, 50%, 80%. When the data does not
follow the Cox model’s assumptions, namely the proportional scaling of the hazard by the change in covariates, our models
perform worse than SurTree.
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Figure 5: Harrell’s C-Index on the synthetic data sets. Both CoxSurTrees were tested on depth d = 2. SurTree was tested on a maximum
depth d = 3.
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