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Abstract

This thesis is a research into developing a methodology and implementation of
automated gray-box Broken Access Control Scanning (BACS) in web applications.
Broken access controls take first place in the OWASP Top Ten Web Application Se-
curity Risks 2021. The need for this research comes from the observation that testing
for broken access controls in web applications is labor-intensive, time-consuming, and
error-prone. Therefore, security researchers require a modern methodology and toolset
for exhaustively discovering access control vulnerabilities in web applications.

The posited hypothesis is that the contextual awareness required for access con-
trols can be achieved by assuming that users are only authorized to perform actions
accessible via the UI for that particular user. The methodology developed in this re-
search consists of four phases: 1) A crawl phase where an application is crawled as
multiple users. 2) A request selection phase, where potentially vulnerable requests are
selected. 3) A request replay phase, where selected requests are replayed in the session
context of another user. 4) A response comparison phase to identify whether an access
control vulnerability has occurred. An implementation is provided and evaluated dur-
ing web application penetration tests of DongIT. The results show that critical and
structural access control issues can be identified when all four stages are completed.
However, the intricacies of web applications often pose challenges for one or more
of the four stages. From the results, it is concluded that the BACS methodology is a
viable strategy and a valuable tool in the toolbelt of a security tester.
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Preface

Dear reader,
This thesis is a research into tackling one of the most pervasive challenges in offensive

web application security: Testing for access control vulnerabilities. The idea for this re-
search sprang forth from my own work as a penetration tester. A glaring issue with testing
for access controls is that it is time-intensive and challenging to automate. With time being
a scarce resource, the lack of automated tooling leads to security researchers focusing on
the most likely issues, resulting in missing critical access control issues.

From personal knowledge of the industry, I knew that no public automated non-whitebox
tooling existed for testing access controls. Subsequent exploration of published academic
research further confirmed that this remains an unexamined topic. When the Open Web
Application Security Project (OWASP) Top Ten Web Application Security Risks came out
later in 2021, they ranked Broken Access Control as the number one vulnerability. A better
endorsement for the necessity of this research could not be given. I set out to find a more
modern, automated, and standardized methodology for discovering broken access control.

For supporting and mentoring me during this arduous but rewarding process, I wish
to thank three people. I wish to thank Apostolis Zarras, my daily supervisor, for his un-
derstanding and for giving me the time I needed. I wish to thank Wouter van Dongen,
for sparring with me about web application hacking, and allowing me to be flexible in my
work. And lastly, I wish to thank Tessa Slim for all her support and making the thesis-covid-
lockdowns not just bearable, but memorable.

L.D.C. van der Poel
Delft, the Netherlands

September 11, 2022
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Chapter 1

Introduction

Access control vulnerabilities have risen to first place in the Open Web Application Security
Project (OWASP) Top 10 2021, kicking injection-related vulnerabilities from their throne
[41]. Broken access control currently trumps all other web application vulnerability types
in a combined metric of impact and likelihood. However, strikingly, while there is an abun-
dance of research into black-box and gray-box detection of vulnerability types such as SQL
injection [26] and cross-site scripting [20], the academic literature on automated discovery
of broken access controls remains barren [15].

1.1 Problem statement and knowledge gap

People are required to create user accounts on many of the websites they visit. We constantly
trust websites to harbor our personal information, trusting that websites strictly separate the
contexts between different users. Creating this security boundary is a meticulous process.
A single missing or misconfigured line of authorization-related code can be the difference
between a secure environment and users taking over each others’ accounts. A failure in ac-
cess control can have a myriad of disastrous consequences, from application-wide cross-site
scripting via broken access controls in a WordPress plugin [11], to remote code execution
via a Webmin web portal [12], gaining administrative access to a web application of the
U.S. Dept Of Defense [24], exfiltrating repository data from GitLab repositories [23], or
taking over the chess.com account of World Chess Champion Magnus Carlson [10].

The perpetual increase in web application complexity and the number of web applica-
tion vulnerabilities has been cited time and again [19, 39, 18]. Despite web application
frameworks providing built-in methods for enforcing access controls [28, 16], access con-
trol vulnerabilities remain pervasive. This general trend evokes an urgent scientific need
for research into the practical detection of access control vulnerabilities as part of the de-
velopment process. It is from this industry-wide inability to consistently deal with broken
access controls that the motivation of this research springs forth. Why is the problem of
systematically detecting broken access controls so pervasive, and how can we tackle this
problem?

Vulnerabilities can be identified and resolved during three stages of software devel-
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1. INTRODUCTION

opment: Pre-development, development, and post-development. Secure development pro-
cesses should consider security at each of these stages [31]. Each stage is characterized by
a set of advantages and disadvantages. Firstly, before development starts, the initial cre-
ation of vulnerabilities can be prevented. This can be achieved in several ways. Training
developers in secure coding practices can help developers write secure code and recognize
insecure coding behavior [33, 59]. In addition, research has been done into using more
secure frameworks [55, 1] and safer languages [27]. The benefit of this approach is that it
prevents vulnerabilities from occurring in the first place. Furthermore, both the scientific
community and the industry have expressed the importance of integrating security into the
design of software and hardware. However, security-by-design does come with challenges
[21]. Security-by-design requires better-trained developers, more initial time investment,
and more money up-front, and training needs to be routinely reinforced. Moreover, after
investments in employees are made, developers can leave an organization.

A second method to reduce the number of vulnerabilities is via detection during the
development phase. This can include automated static code analysis [37, 39], source code
review [59], dynamically analyzing traffic [63, 13], and mining and creating access control
rules [9, 8, 52]. The main benefit is that vulnerabilities are prevented from being pushed to a
live production environment and exploited in the wild. Additionally, it saves the costly time
of third-party security researchers in the post-development phase. However, it also increases
development time and costs, as developers or another internal party need to configure, run,
and process the results. These tools often require licenses and specialized knowledge to
utilize fully, adding to the wide array of language and tool proficiencies that are already
demanded of web developers.

And thirdly, during the post-development phase, any remaining vulnerabilities can be
discovered through third-party security research. Although there are several different se-
tups, two notable types of security research are penetration tests and coordinated vulnera-
bility disclosure programs. The first type consists of a typical service agreement between a
security company and a development party with an agreed-upon rate [56, 14]. The second
consists of a (semi-)open invitation for ethical hackers to find vulnerabilities in a coordi-
nated vulnerability disclosure agreement, often for a monetary reward, goodies, or publicly
recorded fame [62, 32]. These ethical hackers, or ‘bug bounty hunters’, are paid for the
vulnerabilities they find, depending on the severity of their findings. Third-party security
research is the last line of defense. The main security benefit is that it allows specialized
security researchers to scrutinize an application. The main drawback, however, is the in-
creased cost of third-party services and decreased familiarity with the application compared
to in-house developers.

The setup of third-party security assessments comes in three types: white-box, gray-
box, and black-box. In white-box research, the researching party is provided access to the
source code and potentially to the server itself. In gray-box research, researchers are granted
one or more sets of credentials, and their IP addresses may be specifically allowlisted from
any intrusion detection or protection systems. In black-box research, researchers have no
extra knowledge or privileges compared to an actual attacker.

A large body of research exists on preventing and testing access control vulnerabilities
in white-box settings [37, 39, 59, 63, 9, 8, 52, 13]. However, preliminary analysis of the
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1.2. Research question and hypothesization

available academic research revealed that very little research exists on gray and black-box
access control vulnerability detection. There is, on the other hand, also a plethora of re-
search on detection of other vulnerability types in gray and black-box settings, such as on
SQL injections [26], cross-site scripting [20], prototype pollution [3], and black-box vul-
nerability discovery and vulnerability scanners in general [5, 18, 17]. Research also exists
on the detection of logic flaws, which shares common ground with broken access controls
[42, 30]. A 2016 meta-analysis corroborates these observations on the discovery and miti-
gation of SQL injection, cross-site scripting, and logic vulnerabilities [15]. In their research,
Deepa and Thilagam found that the only research on gray or black-box access control vul-
nerability discovery is a 2010 research on parameter tampering [6]. This research uses a
combination of client-side JavaScript analysis and intelligent parameter fuzzing to discover
logic vulnerabilities. Although this can coincidentally reveal broken access controls, it does
not focus on access control issues specifically. Most importantly, it does not consider dif-
ferent user roles when reasoning about access control issues.

A tentative explanation for the lack of research is that access control testing does not
lend itself easily to automation. Automated vulnerability scanners often rely on specific ap-
plication response behavior for identifying issues. For example, a typical telltale of a SQL
injection vulnerability is a 500 Internal Server Error response code, SQL error messages,
increased response time, or an out-of-bounds connection [25]. For reflected and stored
cross-site scripting, an attacker can watch responses for reflected unencoded user input or
input reflected inside dangerous locations [58]. For access controls, confirming their ex-
istence is relatively easy. Web applications typically respond with 401 Unauthorized, 403
Forbidden, or 404 Not Found status codes or some message inside the response body. How-
ever, determining that access controls are broken is challenging. When access controls fail,
the application responds normally, indiscernible from the situation where the user is autho-
rized. The main challenge for a broken access control scanning methodology is determining
when a successful application response aligns with the intended access control policy. Here
lies the crux of the problem: How can the intended access control policy be determined
without access to the source code?

1.2 Research question and hypothesization

This thesis builds on the observations that access control vulnerabilities have become a more
pressing issue in the last few years, and that insufficient academic exists on automated gray-
box testing of access controls. These observations raise the following research questions,
which are answered throughout this thesis:

• Why is the lack of automated broken access control scanning, if at all, a problem?

• What challenges does automated broken access control scanning pose?

• What is a viable methodology for automating broken access control scanning?

The research questions are answered throughout this thesis as follows: It is argued that
the lack of automated broken access control scanning makes testing complex applications
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1. INTRODUCTION

with multiple user roles impractical. The difficulty of exhaustively testing access controls
results in less total coverage of application functionality, leading to security testers missing
access control vulnerabilities.

The primary challenge of automated broken access control scanning is identified as the
lack of contextual awareness. The context of an application determines what actions users
are authorized for, consciously designed by developers. Human testers can often intuit
the intentions of those developers, but programs cannot. The hypothesis is posited that in
order for automated gray-box access control vulnerability detection to be successful, an
interpretable context must first be established to differentiate authorized from unauthorized
functionality. The suggested method for establishing such a context is to assume that all
functionality a user has access to via the user interface (UI) of a web application is the only
functionality for which a user is authorized.

The aforementioned assumption forms the basis of the proposed broken access control
scanning (BACS) methodology. The BACS methodology consists of four phases. Firstly, a
web application should be crawled for all users that will be examined. Since agnostic web
crawling is a research topic unto itself, the choice was made to allow security researchers
to select their crawler of choice. A Mitmdump[36] HTTP traffic dump of the crawl can be
used as input for the BACS pipeline. The second step is the selection phase, where the
asymmetric difference of the HTTP traffic dumps is taken for each crawl pair. In simpler
terms, only those requests are selected that are encountered via the UI of one user, but not
via the UI of another. This selection effectively filters out only those requests that qualify
as potential access control vulnerabilities. Thirdly, the selected requests are replayed in the
session context of the other user. The responses to these replayed requests are stored along
with the responses to the original requests. And fourthly, the responses of the original re-
quests and the responses of the replayed requests are compared. In the implementation, the
security researcher is presented with an interactive HTML page containing links to side-by-
side views of the responses, as well as the differences in HTTP status codes, the difference
ratio in response body contents, and additional information. The HTML page allows secu-
rity researchers to visually compare request and response pairs, automatically highlighting
differences.

The implementation was evaluated during ten web application security assessments for
clients of DongIT. The evaluation methodology is qualitative rather than quantitative. Out
of those web applications, it was only possible to fully complete all four steps of the BACS
methodology in four cases. However, access control vulnerabilities of varying severity
were found for each of those four cases. In some cases, this uncovered vulnerabilities not
found during the initial manual testing of access controls. However, the implementation
also missed vulnerabilities found manually by the security tester. In all cases where the
detection of known vulnerabilities was missed, this resulted from incomplete web crawls or
the inability to replay requests successfully. High-severity issues were found in two cases.

1.3 Scientific contributions

All in all, this paper makes the following scientific contributions:
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1.4. Thesis structure

1. The academic lack of research into automated gray-box discovery of access control
vulnerabilities is addressed. The hypothesis is posited that automated gray-box dis-
covery of access control vulnerabilities is challenging due to the lack of contextual
awareness in most scanners.

2. A solution to the contextual awareness problem is proposed. Contextual awareness
can be created by assuming that users are only authorized to access functionality that
they can access via the UI.

3. The Broken Access Control Scanning (BACS) methodology is introduced to test the
proposed contextual awareness hypothesis. An implementation of a broken access
control scanner found high-severity vulnerabilities during professional security as-
sessments.

4. The full implementation is planned to be published as free and open-source software
(FOSS).

1.4 Thesis structure

Chapter 2 provides background information on authentication, authorization, sessions, ac-
cess controls, and access control vulnerabilities. An overview of access control vulnerability
types is provided. Of these types, a selection is identified that can be tested via the BACS
methodology. Lastly, the reader is informed about how access control vulnerabilities are
tested in practice. In addition, this section serves the purpose of identifying why the current
manual methodology for testing access controls is problematic. In chapter 3, the four-stage
Broken Access Control Scanning (BACS) methodology is posited. The implementations of
each of these four stages – web crawling, request selection, request replay, and response
comparison – are each discussed in separate sections. Chapter 4 presents the evaluation
of the implementation, including the evaluation setup and the results. Chapter 5 provides
a discussion of the evaluation, providing an interpretation of the results, the implication
of the results, discovered limitations, and suggestions for future research. In chapter 6,
an overview of related work is presented, being white-box access control vulnerability de-
tection, black and gray-box vulnerability scanning of vulnerabilities in general, and web
crawling. Chapter 7 concludes with a reiteration of the thesis in general and the most im-
portant findings. A bibliography of mixed scientific and non-scientific resources can be
found at the end.
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Chapter 2

Background

This chapter will provide background information on authentication, authorization, access
control vulnerabilities, and testing for access control vulnerabilities. The first part of the
first section discusses authentication and user sessions. Identifying users is a prerequisite
for enforcing authorization schemes. The second part discusses the relationship between
authorization and access controls. Most importantly, access control vulnerabilities occur
when the theoretical authorization scheme does not match the implemented access controls.
The second section provides a categorization of access control vulnerabilities into six types:
1) Unauthenticated functionality, 2) Identifier-based functionality, 3) Multistage function-
ality, 4) Static files, 5) Platform misconfiguration, and 6) Insecure access control methods.
Section three shows how access control vulnerabilities are discovered. In addition, a de-
marcation is given of which access control vulnerability types are targeted via the Broken
Access Control Scanning methodology. Afterward, an introduction is given on how access
control vulnerabilities are tested for in-practice. Three examples of access control vulner-
ability testing are provided, accompanied by HTTP request-response pairs. The examples
increase in complexity, already introducing some challenges that need to be overcome in the
implementation. This section concludes with a reflection on the issues with manual access
control testing. Due to the combinatorial explosion resulting from increases in number of
functionalities and the number of user roles, exhaustive manual testing is infeasible. For
this reason, we must look toward automated broken access control discovery.

2.1 Authentication, authorization, sessions, and access controls

This section discussed the relation between authentication, authorization, sessions, and ac-
cess controls. Authentication is required to establish the identity of a particular user for the
duration of a session. Determining the identifier of a session and any additional session-
relevant information is required to replay requests in a different user context successfully.
Authorization governs the actions particular identities or identity groups ought to have ac-
cess to. Access controls are the actual implementations of these envisioned rules. When
there is a discrepancy between the envisioned authorizations and the implemented access
controls, an access control vulnerability occurs.

7



2. BACKGROUND

2.1.1 Authentication and user sessions

Authentication is concerned with verifying the identity of a user. In web applications, the
authentication flow often consists of a server requesting users to provide a username (the
identity) and a password (the verification). The authentication may require the user to con-
firm their identity via a second factor, such as via text message, phone call, or time-based
one-time password (TOTP) code. After authentication is completed, the user will receive
a session identifier from the application. Most commonly, the session identifier is a ses-
sion cookie or an Authorization bearer header [38]. However, developers are free to im-
plement custom authentication flows and session management schemes. The quirks of the
authentication flow and session management system can therefore differ from application
to application.

In addition, many session management systems use session-relevant information in each
request. Session-relevant information typically consists of data sent with each request,
where the data is tied to the session in some manner. The most common example is the
cross-site request forgery (CSRF) token [4]. CSRF tokens are generated per session (and
sometimes per page). These tokens are sent along with each (data-changing) request to pre-
vent certain types of malicious cross-site requests. However, many other kinds of session-
relevant data can be sent, such as ASP.NET ViewStates [35]. And again, developers are
free to craft their own session-relevant data flows. These schemes can therefore differ from
application to application.

2.1.2 Authorization, access controls, and broken access controls

Authorization is the specification of the access a user has to functionalities. Access controls
are the implementations that enforce authorization rules. Access controls are often modeled
on either Role-rased access control (RBAC) or attribute-based access control (ABAC), and
sometimes relation-based access control (ReBAC).1. Role-based access controls authorize
users based on their roles, such as ‘Administrator’ or ‘Guest’. Attribute-based access control
authorizes users based on user attributes, functionality or object attributes, or environmental
attributes. In effect, this allows developers to enforce more fine-grained access controls.
Users can be authorized for specific actions instead of requiring the creation of an entirely
new role. Relation-based access controls are paradigmatic for social networks. In this case,
authorization is granted based on their relationships with other users, such as friends or
followers. In practice, developers need not adhere strictly to these access control models
but can choose to adopt a mix of them.

Horizontal access controls limit the actions between different users of the same type.
For example, in most applications, users should be able to change their own passwords but
not those of others. As another example, take an application for a news organization. This
news organization employs ‘writer’ roles. Writers are only able to view, modify and delete
their own draft work, but not those of others.

Context-dependent access controls limit a user’s actions in relation to a specific applica-
tion state. Some actions can only be taken in specific orders or when certain conditions have

1For example, see the OWASP guidelines on access control implementations [40]
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2.2. Access control vulnerabilities

been met. In the case of the news organization, users of the ‘reader’ role are only allowed
to read written submissions that have been published, not before. Similarly, writers may be
prevented from modifying their submissions once published.

Access control vulnerabilities can span multiple access control types. In the news or-
ganization example, suppose an access control vulnerability allows a writer to modify the
published work of not just herself but also of other writers. This constitutes a vulnerability
in both the horizontal and context-dependent access controls. Naturally, not all examples
allow for easy categorization. However, the three coarse categories of horizontal, vertical,
and context-dependent are sufficient for grasping access control vulnerabilities.

2.2 Access control vulnerabilities

Access control vulnerabilities can come in several shapes and forms. The Web Application
Hacker’s Handbook2 identifies six types of access control vulnerabilities: 1) Unauthenti-
cated functionality, 2) Identifier-based functionality, 3) Multistage functionality, 4) Static
files, 5) Platform misconfiguration, and 6) Insecure access control methods [57, 258-266].

2.2.1 Unauthenticated functionality

Access control vulnerabilities can be coarsely split into six types. Firstly, some function-
ality is simply left unprotected. Websites may unknowingly expose sensitive endpoints or
functionalities to unauthenticated users. For example, developers may unknowingly expose
a /phpinfo endpoint [44], an administrative dashboard, or vulnerable development function-
alities inside a /vendor/ directory. In some cases, no references to the functionality are
present in the application. A /phpinfo page could be a remnant of the development phase,
forgotten to be removed for the production phase. In other cases, functionality is present
for authenticated users in the application. However, missing access control checks allow
unauthenticated users to execute this endpoint. Unauthenticated attackers can often find
vulnerable endpoints through brute-forcing application endpoints, parameter names, and
parameter values. In some cases, functionality is leaked through public or leaked source
code or client-side JavaScript code.

2.2.2 Identifier-based functionality

The second class of access control vulnerabilities is the case where access controls rely on
a specific identifier to be sent by the client. For example, an endpoint /download?id=123

↪→ that allows downloading files would likely download the 123th uploaded file. A simple
decrementation would download the 122 previously uploaded files. If these are files that the
current user should not have access to, this constitutes an access control vulnerability.

Sometimes identifiers can be more difficult to guess. A common identifier type is the
universally unique identifier (UUID) [51], such as 7f17f961-143e-4212-b280-6f9a0ae24591.
UUIDs are designed to be generated as identifiers with minimal risk of collision. Although

2A staple work in web application penetration testing
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2. BACKGROUND

UUIDs are practically impossible to guess, they are no substitute for actual access controls.
Firstly, according to the relevant RFC, UUIDs are not promised to be cryptographically
secure [51]. Furthermore, UUIDs do not have the same security standards as session iden-
tifiers. They often do not expire, cannot be refreshed, and are often sent as part of the URL
(and are therefore cached, logged, sent via referrer headers, accessible via cross-site script-
ing, et cetera). In addition, developers can implement functionality that leaks UUIDs, such
as through overly verbose API responses. For these reasons, identifier-based functionality
should employ access controls even when using hard-to-guess identifiers.

2.2.3 Multistage functionality

Thirdly, vulnerabilities can arise when functionality spreads over multiple stages. This
largely coincides with context-dependent access controls. Think, for example, of shopping
carts in webshops. When purchasing an item online, it is crucial to enforce the correct order
of steps. If a user could first pay and add items to their shopping cart afterwards, a webshop
would quickly go out of business. These kinds of vulnerabilities are sometimes referred
to as logic flaws [42]. Due to their abstract nature, they vary greatly from application to
application.

2.2.4 Static files

Fourthly, developers may leave sensitive static files unprotected. This relates partly to unau-
thenticated functionality. However, in this case, a file is requested directly from the filesys-
tem. This often bypasses any routing and web application logic in place. The severity of the
exposed static files varies. In some cases, the impact is relatively mild, such as composer.json
↪→ files disclosing PHP dependencies and versions [7]. In other cases, source code backups
such as /backup.tar.gz can expose the application source code and potentially application
secrets.

Furthermore, even intentionally stored files are not always properly access controlled.
An application that generates and emails PDF invoices may offer those files to the user as
/invoices/49b27d8b3f12e25ad685b992ac4b4546.pdf, where the filename is an MD5 hash of a
UNIX timestamp. Although this may look secure to the naked eye, without proper access
control, it is, in fact, easily enumerable.

2.2.5 Platform misconfigurations

Fifthly, misconfiguration at the web server or application platform layers can lead to access
control bypasses. For example, an .htaccess file can prohibit direct file access from /uploads

↪→ / [2]. But if the rule is not applied recursively, or a more permissive .htaccess file exists
in a lower directory, then files in directories under /uploads may still be directly accessible.

In other cases, platform-level configurations can prohibit users from sending specific
request methods to certain endpoints. For example, an endpoint for setting user roles may
be correctly configured to block POST requests but may allow PUT and DELETE requests,
unbeknownst to the developer. On a network level, a reverse proxy or firewall may only
allow requests from allowlisted IP addresses to sensitive endpoints, such as development
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2.3. Testing for access control vulnerabilities

or administrative functionality. However, in some cases, user-controllable headers, such as
X-Real-Ip: 127.0.0.1, can be used to bypass these restrictions.

2.2.6 Insecure access control methods

Sixthly and lastly, applications may use insecure access control methods. They may enforce
access control based on data that is under control of the attacker. A website may set a cookie
with the value YWRtaW49ZmFsc2U=, which is the base64 encoding of admin=false. An attacker
can modify this value, re-encode the data, and submit it to the server. Similar access controls
based on client-controlled data, such as parameters, cookies, headers, and even location, can
often be controlled by the user.

2.3 Testing for access control vulnerabilities

Different access control vulnerability types require different detection methods. This re-
search focuses on a specific technique for detecting access control issues. Therefore, only a
subsection of the aforementioned vulnerability types can be discovered using this technique.
This section first describes which vulnerabilities can be found using the BACS methodol-
ogy. Secondly, some examples are given of how these access controls are typically manually
tested. This section also introduces some of the more apparent challenges in successfully
replaying requests in another user’s session context. Lastly, an argument is provided for
why manual testing for access controls is problematic, introducing the need for automated
broken access control scanning.

2.3.1 Access control vulnerabilities targeted by the BACS methodology

The primary assumption in the BACS methodology is that functionality can be determined
to be authorized or unauthorized depending on whether a user can reach this functionality
via the user interface (UI). Therefore, vulnerabilities can only be found for endpoints, files,
and parameters that can be accessed through the UI by at least one user. This requirement
entails that certain vulnerability types or subgroups of vulnerability types cannot be found
with the BACS methodology. Most importantly, the BACS methodology will not find access
control issues that can only be found through brute-force attacks. For example, old backup
files such as /backup.tar.gz that can only be found through brute-forcing file paths will not
be detected. The same applies to guessing unprotected functionality, API endpoints, and
action values. As a result, some vulnerabilities within type one (unauthenticated function-
ality) access control vulnerabilities will not be found. Other vulnerabilities within this type
can still be found as long as the functionality missing access controls is present for at least
one user.

Similarly, static files missing access controls can be discovered as long as a reference
to those files exists in the UI. A backup.tar.gz file will likely not be detected. However, a
file such as /uploads/invoice-bob-3.pdf can still be access control tested if referenced in the
UI. The BACS methodology can also find type two (identifier-based) access control vulner-
abilities. If a crawl is performed using two users, and user Bob can download a file with
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/download?id=123, but user Alice can only download a file with /download?id=124, then during
the replay phase, a session authenticated with Alice can try to retrieve the file /download?id

↪→ =123. If the same content is returned, this signifies that Alice can download Bob’s files.
The vulnerability types of platform misconfigurations and insecure access control methods
are vast. This vulnerability type is not tested for explicitly by the BACS methodology, but
may still be detected in some cases. For example, the original request headers are sent dur-
ing the replay phase. If a custom header is sent during the crawl of Bob with X-Auth: Bob,
and this request is replayed in the session of Alice, it may be discovered that the X-Auth

header functions as an insecure access control method.
For all subsequent sections and chapters, ‘access control vulnerabilities’ refer to the

kind of vulnerabilities targeted by the BACS methodology unless specified otherwise.

2.3.2 Manual testing

When testing for access control vulnerabilities, the goal is to reperform an action from one
user context within the context of another user. When a user authenticates to a web appli-
cation, a session is created for that user. In effect, a session is a temporary and particular
instance of a user context. Therefore, access controls can be tested by reperforming an
action from one user session in the user session of another user. Three examples will be
provided to show access control tests are performed in practice, with increasing complexity.
The users Alice and Bob are used to mark the different user sessions.

Case one: simple requests with simple sessions.

First of all, when a session is identified via a static session identifier without any other au-
thorization mechanisms or application states, testing access control issues is very straight-
forward. A security tester can replace the original session identifier with a session identifier
from another user, resend the response, and observe the differences in the response. For
example, in Listing 2.1 the user Alice is an administrator and updates the role of the user
Charlie to admin. This request is met with a 200 OK response in Listing 2.2. In Listing 2.3,
the request is replayed with the session cookie of Bob. This time, the server responds with
a 403 Forbidden response.

1 PUT /management/users/updateRole HTTP/1.1
2 Host: example.com
3 Content-Type: application/x-www-form-urlencoded
4 Cookie: session_id=2U4miTiZK-ALICE; remember_me=true
5

6 username=charlie&role=admin

Listing 2.1: HTTP request to update the role of a user (performed by Alice).

1 HTTP/1.1 200 OK
2 Connection: close

Listing 2.2: Response. Request authorized.
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1 PUT /management/users/updateRole HTTP/1.1
2 Host: example.com
3 Content-Type: application/x-www-form-urlencoded
4 Cookie: session_id=h4Sy8iuV-BOB; remember_me=true
5

6 username=charlie&role=admin

Listing 2.3: HTTP request to update the role of a user (performed by Bob).

1 HTTP/1.1 403 Forbidden
2 Connection: close

Listing 2.4: Response. Request forbidden.

From the responses, it is obvious that Bob is not authorized to send the same request
as Alice. Even in this simple example, two challenges can already be identified. Firstly,
how is the session token identified? Although a human can intuitively guess that cookies
named session_id, JSESSIONID, PHPSESSID and asp.net_sessionid are likely session identifiers,
it is not straightforward to program a computer to do so. Some web frameworks, such as
Laravel, provide a session cookie name that contains the web application’s name, such as
actester_session [29]. Frameworks can, of course, create any kind of cookie parameter
name, including a string of random characters.

A further complicating factor, for both machines and humans, is the case in which mul-
tiple session identifiers or session-relevant values are provided. These may be for different
parts of the application, or they may be non-functional development remnants. Correctly
replaying requests is one of the challenges that will be addressed in the chapter on system
design (section 3.3).

A second challenge is to determine the differences between responses. In the exam-
ples above, the two responses are easily distinguished. However, web applications often
return 200 OK HTTP status codes for both authorized and non-authorized requests, instead
of returning 403 Forbidden explicitly. A message informing the user that the action was
forbidden may be included in the HTML response, or it may not be included at all. Addi-
tionally, responses need not always be static. If Alice sends the same request multiple times,
the content of the responses can differ. Although the contents typically only differ slightly,
such as a different server timestamp or a different CSRF token, the information informing
a user that the request was blocked can also consist of only a few characters. Determining
the difference between authorized and non-authorized responses is not a trivial task. Like
replaying requests, comparing responses is one of the challenges that is addressed in the
chapter on system design (section 3.4).

Case 2: CSRF tokens and other session-relevant parameters.

Session-relevant data, such as cross-site request forgery (CSRF) tokens, complicate the abil-
ity to replay requests correctly. Web applications block requests with incorrect or missing
CSRF tokens if implemented correctly.

CSRF token handling can be implemented in multiple ways. Firstly, the easiest case is
when one CSRF token is generated for all forms per user session. The second and more
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difficult scenario is when a CSRF token is generated for each form. For example, making
a PUT request to /management/users/updateRole first requires making a GET request (List-
ing 2.5) to the page that hosts the original form. Often, this is a request to the same endpoint.
The CSRF token can then be extracted from the response (Listing 2.6). The token can then
be used in added to the request at the correct parameter (Listing 2.7). In this case, Bob
can only test access controls for requests where the original form is on a page that Bob has
access to. If, on the other hand, Bob does not have access to such a page, Bob cannot obtain
a valid CSRF token for the request. As a result, the CSRF token inadvertently blocks access
control issues. CSRF tokens are not designed to protect against access control violations
(except for cross-site request forgery) and should, therefore, not be seen as a proper access
control.

There may be an arbitrary amount of custom parameters, headers, and cookies tied to
the session token. Some of these are known and documented, such as the earlier stated
‘ViewStates‘. Others are entirely custom and sporadic. Testing for broken access controls
requires the tester to be mindful of these values.

1 GET /management/users/updateRole HTTP/1.1
2 Host: example.com
3 Cookie: session_id=2U4miTiZK-ALICE; remember_me=true

Listing 2.5: HTTP request to page where user roles can be updated. (performed by Alice).

1 HTTP/1.1 200 OK
2 Connection: close
3

4 Content-Length: 1234
5

6 <!DOCTYPE html>
7

8 <html lang="en-GB">
9 <head>

10 <meta> name="csrf_token" content="qxBPTHLc-EntdvOsil7oeHeYORLCwwJoqg3k">
11 <title>Update user roles</title>
12 </head>
13 <body>
14 ...REDACTED...
15 </body>
16 </html>

Listing 2.6: Response containing a CSRF token.

1 PUT /management/users/updateRole HTTP/1.1
2 Host: example.com
3 Content-Type: application/x-www-form-urlencoded
4 Cookie: session_id=2U4miTiZK-ALICE; remember_me=true
5

6 username=charlie&role=admin&_csrf_token=qxBPTHLc-EntdvOsil7oeHeYORLCwwJoqg3k

Listing 2.7: HTTP request to update the role of a user but with a CSRF token (performed
by Alice).
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1 HTTP/1.1 200 OK
2 Connection: close

Listing 2.8: Response. Request authorized.

Case 3: State-dependent requests.

Modern web applications are dynamic. Web applications can give different responses to the
same request and the same responses to different requests. Take, for example, a note-taking
application. A note-taking application may only allow the creation of notes with unique
names. For example, if Alice creates a new note called ‘Shopping list’, the first request
(Listing 2.9) may succeed (Listing 2.10), but the second request (Listing 2.11) may fail
(Listing 2.12). Similarly, a request to delete an entity often only succeeds the first time but
not the second.

Some applications give different responses to the same request. For example, the note-
taking application may allow users to browse through their notes via subsequent GET re-
quests to /note/next. Although the endpoint is the same, the response is different each
time.

1 POST /notes/new HTTP/1.1
2 Host: example.com
3 Content-Type: application/x-www-form-urlencoded
4 Cookie: session_id=2U4miTiZK-ALICE; remember_me=true
5

6 name=Shopping+list&content=<p><ul><li>butter</li><li>cheese</li><li>eggs</li></ul></p>

Listing 2.9: HTTP request to add a new note (performed by Alice).

1 HTTP/1.1 201 Created
2 Connection: close

Listing 2.10: Response. Request authorized.

1 POST /notes/new HTTP/1.1
2 Host: example.com
3 Content-Type: application/x-www-form-urlencoded
4 Cookie: session_id=2U4miTiZK-ALICE; remember_me=true
5

6 name=Shopping+list&content=<p><ul><li>butter</li><li>cheese</li><li>eggs</li></ul></p>

Listing 2.11: Repeating the same request to add a new note (performed by Alice).

1 HTTP/1.1 409 Conflict
2 Connection: close

Listing 2.12: Response. Request authorized.
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Figure 2.1: Access control graph ‘Publishing Company’ application, no unauthenticated
user, 4∗(4−1)

2 +4 = 10 vertices.

2.3.3 Issues with manual access control testing

The primary issue with manual access control testing is that it cannot properly scale. As
an application becomes more complex, more functionality and user roles are introduced.
Mature and complex web applications have hundreds or thousands of unique actions. Fur-
thermore, to test vertical access controls, each functionality that each role has access to
(assuming a role-based access control scheme) must be checked against each other role.
In addition, to find horizontal access control issues, each functionality for each role must
be checked between two users of the same role. These relations can be represented as a
undirected complete graph with self-loops, where node1 → node2 represents vertical ac-
cess controls, and node1 → node1 horizontal access controls. For example, see the access
control graph of ‘Publishing Company‘ web application in Figure 2.1. Taking N as the num-
ber of roles (nodes), there are in total N∗(N−1)

2 +N different relations (edges) to check. For
example, if there are only four roles, a total number of 4∗(4−1)

2 + 4 = 10 relations must be
checked. This does not yet include the unauthenticated user, which has a one-way relation-
ship with all other roles. In practice, the total number of testable relations can be reduced
due to the transitive nature of some roles. Most prominently, all actions an unauthenticated
user is authorized for, a regular authenticated user is typically also authorized for. Similarly,
all actions a regular authenticated user is authorized for, an administrator is typically also
authorized for.

The total search space truly explodes when examining attribute-based access control
models. The complexity of the access control model increases exponentially with the num-
ber of attributes. The total number of possible access control combinations is the power set
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of all access control attributes. For example, with access control attributes x, y, and z, users
can have any of the eight subsets in the set {∅,{x},{y},{z},{x,y},{x,z},{y,z},{x,y,z}}
The size of a power set is 2n. Strictly speaking, each subset can be considered a unique role.
Each combination of attributes impacts the functioning of the web application. Therefore,
exhaustively testing the relations between all 2n ‘roles’ becomes impractical, even with au-
tomation. Twenty attribute-based access control rules becomes 220 = 1048576 roles, which
is a staggering total of 1048576∗(1048576−1)

2 +1048576 = 5.50∗1011 relations.
Nevertheless, even in a favorable scenario where effectively only four relations need

to be examined for five users (assuming fully transitive authorizations), performing ex-
haustive access control checks for all functionality endpoints can become laborious and
time-intensive.
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Chapter 3

System design

This chapter discusses the broken access control scanning methodology and its implementa-
tion. The Broken Access Control Scanning (BACS) workflow consists of four parts. First is
the crawling phase. At least two web crawls are performed as different users. The web crawl
can be performed using any third-party web crawler. The traces (‘flow’) of the request-
response pairs (‘exchanges’) are captured and stored. The second phase is the request se-
lection phase. The requests of two flows are compared, and the asymmetric difference is
taken. During the third phase, the selected requests are replayed in the session context of
the other user. The new AC-tested exchanges are stored jointly with the original exchanges.
Lastly, during the fourth phase, the responses of the original and AC-tested exchanges are
compared. The tester is informed about potential access control vulnerabilities. She is pro-
vided with an HTML interface to inspect the results interactively. The following sections
discuss the implementation details of each of these four steps in more detail.

3.1 Web crawling

In order to capture exchange flows, the security tester is required to configure their desired
web crawler to be able to authenticate with credentials. Arguably, the crawling phase is
the most critical step. Only requests that can be reached during the crawl can actually be
tested. Ultimately, any crawl-based vulnerability scanner is limited by the code coverage
the web crawler can achieve [17]. However, due to the variety and complexity of web
applications, crawling arbitrary web applications is challenging [34, 43]. There are three
primary considerations when choosing or developing a web application crawler. Firstly,
which authentication methods are supported by the crawler? Secondly, how well does the
crawler handle various HTML elements and JavaScript? Thirdly, how does the crawler
handle edge cases, such as volatile data? During this research, the choice was made to
use Burp Suite Professional [46], which is designed explicitly in an application-agnostic
manner. Regardless, even such a state-of-the-art crawler encounters limitations.

Ideally, a web crawler automatically performs the authentication process when given a
set of credentials. However, authentication mechanisms of web applications come in many
different forms. Most web applications provide simple username-password authentication,
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but other authentication schemes exist. A modern and widely used authentication scheme
is Single Sign-On (SSO). SSO has different implementations, such as Security Assertion
Markup Language (SAML), Auth0, or OpenID. In addition, authentication features such
as CAPTCHA and multi-factor authentication may be in place. These again can come
in various forms, such as TOTP (Time-based, One-Time Password), text-based, or email-
based.

Furthermore, sessions can be tracked in multiple ways, most commonly via session
cookies or Authorization bearer headers. However, even these come in different forms, as
was also shown in chapter 2. Some applications send cookies back with each request, which
are expected to be returned with subsequent requests. Authorization bearers can be retrieved
from the browser’s local storage through JavaScript. Besides the wide variety of standard
authentication and session implementation, one can encounter non-standard methods. For
example, a website may require a custom header to be sent. To allow security testers to deal
with unforeseen situations, a web crawler ought to support extensive user configuration and
user-created plugins. A more coarse solution would be to place a proxy (such as mitmproxy)
in-between the site and the crawler to allow for on-the-fly request modification.

Secondly, modern web applications make heavy use of JavaScript. Modern websites
have a thousand ways to perform various actions. These websites are not designed to be
interacted with in an automated manner. For this reason, modern crawlers have shifted to
using browser engines, such as Selenium, for navigating websites [54]. Selenium-based
crawlers are no panacea. For example, single-page applications (SPAs) heavily use asyn-
chronous JavaScript requests. Properly crawling such applications has proven to be difficult
[45]. One known limitation for the Burp Crawler, for example, is that the Recorded Login
Sequences of the Burp Scanner can not handle <iframe>’s [48]. With continuously emerging
technologies, crawlers need to be continuously improved.

Thirdly, common edge cases, such as volatile data or huge amounts of highly simi-
lar pages, can pose challenges for crawlers. Taking the Burp Crawler as an example, a
maximum crawl depth can be set.1 This can be based on the literal path depth, such as
/media/cinematography/drama/pulpfiction. It can also be based on the number of sequential
actions a crawler can take from its starting point, such as /book/page?=1, /book/page?=2, et
cetera. Similarly, the breadth of a crawl can be configured. If an online readable book
contains a thousand pages, it may not be necessary to visit every page.

Ideally, a crawler can cover the entire application with one or multiple crawls. How-
ever, the amount of content available can pose time limitations. Fine-tuning allows a se-
curity tester to cover as many actual functionalities as possible within a limited amount of
time. Volatile or dynamic behavior is challenging to handle correctly. Web applications
can give different responses to the same request and the same responses to different re-
quests, as shown in chapter 2.2 However, it is not always feasible to verify whether a crawl
successfully dealt with all these edge cases.

Even with most challenges above somewhat dealt with, inherent issues remain. Careful
crawling is inherently slow. It can hardly be parallelized. The order of the users with whom

1For an overview of the Burp Scanner configuration options, see [47].
2The Burp Crawler makes some attempts to deal with volatile data. See [46].
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a web application is crawled can influence the results. However, if two crawls were to be
started at once, they are likely to influence each other or lead to infinite loops. Therefore,
crawls are best performed linearly. Another issue is the potentially dangerous nature of web
crawls. On production systems, web crawlers may accidentally interact with sensitive or
administrative functionality. This can have dire consequences, such as accidentally deleting
all users or making personally identifiable information publicly accessible. One should,
therefore, preferably test on testing (or ‘acceptance’) environments. Even then, deleting
critical application data can make the acceptance environment unusable. Running a crawl
therefore always requires prior knowledge prior knowledge of the application at hand.

Regardless, when a crawler is chosen, the generated exchanges must be extracted. Al-
though crawlers often have some ways of exporting results, there is no standardized format
for exchange flows. In order to remain crawler-independent, it is proposed to use Mitm-
proxy3 for capturing network traffic. Mitmproxy is a well-known Python-based free and
open-source proxy software that allows the dumping and manipulation of requests and re-
sponses. Specifically, mitmdump can be used as a forward proxy for the crawler, thereby
automatically dumping the request-response flows. For example, the following command
can be used: $ mitmdump --proxy-port 8090 --write crawl_1.dump. The crawler then needs
to be configured to use this port as its proxy.

Proxy configuration is often straightforward. Many Linux-based applications work with
the HTTP_PROXY and HTTPS_PROXY environment variables, including Python programs. For ex-
ample, the following Bash commands allow a security tester to proxy their crawler to a
listening mitmdump instance:

$ export HTTP_PROXY="http://localhost:8090"
$ export HTTPS_PROXY="http://localhost:8090"
$ python crawler.py

Regarding proxy configurations for web application crawlers, the Python crawling mod-
ule ‘Scrapy’ provides dedicated Proxy options via middleware [53]. Within Burp Suite,
upstream proxies can be configured per project [50].

3.2 Request selection

In order to test for access control issues, candidate requests need to be selected. A hu-
man tester would know from experience, context, and observation which web application
functionalities may be of particular interest. Again taking the example application for the
news organization, a tester can rationalize what actions the ‘writer’, ‘reader’, and ‘editor’
roles should be allowed to perform. She can verify whether access controls are enforced
by crafting an appropriate request. The limitation of manual tests, however, is that they do
not scale well. Ideally, a tester exhaustively covers the entire application flow. Just like a
SQL injection vulnerability can occur in every input location (arguments, parameter names,
paths, body, cookies, headers, et cetera.), access control vulnerabilities can occur in every

3Man-in-the-Middle Proxy [36].
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unique code path. In order to test as much functionality as possible, a vulnerability scanner
should maximize its total path coverage. However, without a preliminary selection phase,
the number of actions that need to be investigated quickly becomes unwieldy.

The selection handler class RequestSelector (3.2) can be used to select promising re-
quests from two Mitmproxy flow dumps. The class takes in a tuple of two Crawl (List-
ing 3.1) objects. Optionally, it can take in a set of regexes for domain allowlisting, domain
denylisting, path blocklisting, volatile parameter blocklisting, and status code denylisting.
Additionally, an option can be passed to ignore any cached selection results. When run-
ning an instantiated RequestSelector object with the method run, a check is performed for
a cached selection object. If the cached selection does not exist or caching is disabled, the
two mitmproxy dumps from the Crawl objects are read normally.

1 @dataclass(kw_only=True, slots=True)
2 class Crawl:
3 """A Crawl dataclass
4 Should be initialized with a username, password, link to a login page, and
5 a filepath to a Mitmproxy dump. A flow object can be attached at a later point.
6 """
7

8 mitm_dump: str
9 username: str

10 login_page: str = field(repr=False)
11 password: str = field(default_factory=str, repr=False)
12 flow: list[Exchange] = field(init=False, default_factory=list, repr=False)

Listing 3.1: Crawl dataclass.

1 class SelectionHandler:
2 """Selects requests to test for access control vulnerabilities"""
3

4 def __init__(
5 self,
6 crawls: tuple[Crawl, Crawl],
7 allowlist: Optional[set[str]] = None, # Regexes
8 denylist: Optional[set[str]] = None, # Regexes
9 path_denylist: Optional[set[str]] = None, # Regexes

10 volatile_params: Optional[set[str]] = None, # Non regex
11 status_code_denylist: Optional[set[int]] = None, # Non-regex
12 forbidden_extensions: Optional[set[str]] = None,
13 ignore_cache: bool = False,
14 ):
15 if len(crawls) != 2:
16 raise ValueError("Expected exactly two Crawl objects.")
17

18 self.config = {
19 "allowlist": allowlist if allowlist else set(), # Set of Regexes
20 "denylist": denylist if denylist else set(), # Set of Regexes
21 "path_denylist": path_denylist if path_denylist else set(),
22 "status_code_denylist": status_code_denylist
23 if status_code_denylist
24 else set(),
25 "forbidden_extensions": forbidden_extensions
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26 else set({
27 ".js",
28 "min.js",
29 ".css",
30 ".min.css",
31 ".ttf",
32 ".woff",
33 ".woff2",
34 ".jpeg",
35 ".jpg",
36 ".gif",
37 ".png",
38 ".svg",
39 }), # Default forbidden extensions.
40 "volatile_params": volatile_params
41 if volatile_params
42 else set(), # Set of non-regexes.
43 }
44 self.crawls = crawls
45 filenames = [crawl.mitm_dump for crawl in self.crawls]
46 self.checksum = self.checksum_files(filenames)
47 self.cache_file = CACHE_PATH + self.checksum + ".pickle"
48 self.ignore_cache = ignore_cache

Listing 3.2: RequestSelector initialization method.

For each Exchange object (Listing 3.3) several checks are performed to verify that the
requests are in scope. Not all domains that are encountered during a crawl are of impor-
tance. For example, a website may load JavaScript assets from third parties. Allowlisting
and denylisting regexes can be supplied for this purpose. Not all filetypes are of interest
either. For example, .css or .woff files are typically publicly accessible files. In addition,
some paths are known to be benign beforehand, such as a public /documentation/ directory.
Similarly, some status codes are not of interest. Especially 404 codes are likely not of any
relevance. Filtering these kinds of requests helps to reduce the number of requests to be
retested. Lastly, a security tester may have identified volatile parameters already. For exam-
ple, some applications send a request identifier for logging purposes with each request, such
as _=1234. By providing these volatile parameters, requests with the paths /book?action=read

↪→ &_=1234 and /book?action=read&_=1235 will be correctly identified as identical requests.

1 class Exchange(dict):
2 """ Request-Response exchange. """
3

4 def __init__(
5 self,
6 request: Request,
7 response: Response,
8 volatile_params: dict = {},
9 ):

10 self.request: Request = request
11 self.response: Response = response
12 self.ac_request = None
13 self.ac_response = None
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14 self.category: Category = Category.UNCATEGORIZED
15 self.volatile_params = volatile_params
16 ...

Listing 3.3: Exchange initialization method.

After all in-scope exchanges are loaded for the two crawls, the selection process begins.
The ‘left crawl’ is the user we want to test access control vulnerabilities for. For example, if
we have a crawl for an administrative user and an unauthorized user, the ‘left crawl’ would
be for the administrative user. We then find the relative complement of the ‘right flow in
the left flow’. The relative complement is synonymous with the set-theoretic difference
of the ‘left crawl’ and the ‘right flow’. In other words, we find all requests that exist in
the ‘left flow’ (administrator) but not in the ‘right flow’ (unauthenticated). (Listing 3.4)
The resulting exchanges are interesting endpoints to check for access control vulnerabilities
because the user from the ‘right flow’ did not have access to these endpoints through the
user interface. Therefore, it is hypothesized that only those requests that occurred in one
crawl, but not in the other, are at risk of access control issues.

1 @staticmethod
2 def _relative_complement(
3 flow_left: list[Exchange],
4 flow_right: list[Exchange],
5 volatile_params: set[str],
6 ):
7 """
8 Takes two flows. Returns the relative complement of ’flow_right’ in ’flow_left’.

↪→ In other
9 words, returns all requests that occur in the left flow (crawl),

10 but not in the right flow (crawl).
11 """
12

13 selection = []
14

15 for exchange in flow_left:
16 exchange.category = SelectionHandler._categorize(
17 exchange.request, flow_right, volatile_params
18 )
19

20 if exchange.category in [
21 Category.DIFFERENT,
22 Category.DIFF_KEYS,
23 Category.DIFF_PARAMS,
24 ]: # If somewhat unique, add request
25 selection.append(exchange)
26

27 return selection

Listing 3.4: Method retrieving the relative complement of two flows.

In order to find functionalities that were reached in the ‘left crawl’ but not in the ‘right
crawl’, each request in the ‘left crawl’ is compared to each request in the ‘right crawl’.
During the comparison, each request from the ‘left crawl’ is categorized according to four
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degrees of ‘uniqueness’ (3.5). Comparing the combinations of the hosts, methods, and paths
of a request is the most obvious and easiest way to differentiate between requests. Clearly,
the following requests are unique:

• GET https://ac-publishing/books/1

• DELETE https://ac-publishing/books/1

• GET https://ac-publishing/books/2

• GET https://competitor-publishing/books/1

We would not expect identical functionality from any of these requests. This initial
differentiation will be called ‘category 1 uniqueness’. Category 1 uniqueness is too coarse,
however. According to this categorization, the following requests are identical, which they
they likely are not:

• GET https://ac-publishing/books?preview=1

• GET https://ac-publishing/books?loan=1

On the other hand, the following requests are likely identical, despite having different
queries:

• GET https://ac-publishing/books?trackingId=9

• GET https://ac-publishing/books

We cannot know beforehand whether a parameter name contributes to unique functionality
for every request. Therefore, we should keep track separately of this second type, called
‘category 2 uniqueness’. Knowing what type of uniqueness a category is allows both the
tester and the implementation to interpret the results more accurately.

Lastly, some requests only vary in their parameter values, but are clearly different func-
tionalities:

• GET https://ac-publishing/books?action=buy

• GET https://ac-publishing/books?action=return

On the other hand, some requests vary in parameter values but do probably follow the same
code path:

• GET https://ac-publishing/books?cacheBuster=2

• GET https://ac-publishing/books?cacheBuster=3

This category is referred to ‘category 3 uniqueness’. Requests which fall not in any of
these categories have a host, method, path, and query combination that is already seen in
another request. This category is marked as ‘category 0’ and is discarded.
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1 @staticmethod
2 def _categorize(
3 target_request: Request, flow: list[Exchange], volatile_params: set[str]
4 ) -> Category:
5 """
6 Category 0: Exactly the same.
7 Category 1: A request that has a unique host, method, and path combination.
8 Category 2: A request that has a non-unique host, method, and path combination,
9 but unique keys

10 Category 3: A request that has a non-unique host, method, and path combination,
↪→ with

11 non-unique keys, but with unique values.
12

13 """
14

15 for exchange in flow:
16 if SelectionHandler._id_equal(target_request, exchange.request):
17 if SelectionHandler._params_equal(
18 target_request, exchange.request, volatile_params
19 ):
20 return Category.EQUAL # Category 0, Seen before
21 elif SelectionHandler._keys_equal(
22 target_request, exchange.request, volatile_params
23 ):
24 return Category.DIFF_PARAMS # Category 3, different parameter values
25 else:
26 return Category.DIFF_KEYS # Category 2, Same endpoint, but different

↪→ keys
27 return Category.DIFFERENT # Category 1, Completely different

Listing 3.5: Method for determining the uniqueness category of a request within a flow.

Of course, this method is not without issues. Some requests are mistakenly placed in
this category. Requesting the page GET https://ac-publishing/book/1/read?action=nextPage

may lead to a new action every time the request is sent. This edge case is currently not dealt
with.

Lastly, the selected exchanges of the three interesting categories (DIFFERENT, DIFF_PARAMS
↪→ , and DIFF_KEYS are added to the Selection object. Listing 3.6 is a Selection object is
pickled and cached for future use. A number of details about the Selection object can be
printed in CSV format. This is useful for verifying the results of the selection process. For
example, see Listing 3.7.

1 class Selection:
2 """The selection of requests: A relative complement of right_crawl in left_crawl.
3 The categories are the requests that exist in the left crawl, but not
4 in the right crawl.
5 An access control check will reperform the requests from categories using
6 authentication from the right crawl.
7 """
8

9 def __init__(
10 self, left_crawl: Crawl, right_crawl: Crawl, exchanges: list[Exchange]
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11 ):
12

13 self.left_crawl = left_crawl
14 self.right_crawl = right_crawl
15 self.exchanges = exchanges
16 self.id = self._generate_id(self.left_crawl.login_page)
17 ...

Listing 3.6: Selection class initialization.

1 category,method,host,path,status_code,reason,query,urlencoded_form,multipart_form
2 1,GET,example1.nl,/dashboard.html,302,Moved Permanently,[],[],[]
3 1,GET,example1.nl,/profile.html,200,OK,"[(’id’,’123’)]",[],[]
4 3,GET,example1.nl,/profile.html,200,OK,"[(’id’,’124’)]",[],[]
5 1,POST,example1.nl,/changeProfile.html,302,Moved Permanently,[],[],"[(’username’, ’

↪→ admin’), (’profile_pic’,’<base64>’) ]"
6 1,GET,example1.nl,/changeProfile.html,200,OK,[],[],[]
7 1,POST,example1.nl,/newLogin.html,302,Moved Permanently,[],"[(’username’, ’admin’),(’

↪→ password’,’hunter2’)] ",[]

Listing 3.7: Selection CSV output.

3.3 Request replay

In order to test for access control issues, the request needs to be replayed in another user
context. To this end, the ReplayHandler class can be used (Listing 3.8). Several parameters
can be passed. Most importantly, the Selection object created by SelectionHandler needs to
be passed. In addition, several authentication modes are provided (Listing 3.9). Depending
on the application, authentication can either be performed once (XDRIVER_REAUTH), before
every request (XDRIVER_REAUTH), or not at all (NONE). The XDriver option uses the Selenium-
based XDriver module created for the research ’The Cookie Hunter: Automated Black-box
Auditing for Web Authentication and Authorization Flaws’ [19].

The XDriver module is used for authentication because it has proven successful in iden-
tifying arbitrary login forms and submitting credentials correctly. This allows the program
to simply use the credentials specified in the Crawl (Listing 3.1) object without requiring
complex authentication schemes.

Some situations require the authentication process to be performed each time. For ex-
ample, some endpoints may deauthenticate users when unexpected input is received. One
downside to this, however, is that it is far slower due to the startup time of the XDriver
instances and the extra network requests made as part of the authentication process. If
the XDriver module is not able to authenticate correctly, the security tester can config-
ure alternative methods. They can set hardcoded cookies and headers via the add_header

and add_cookie methods. Alternatively, they can set the set_proxy header to proxy requests
through another program, such as Burp or Mitmproxy, where more advanced session han-
dling rules can be configured. 4. In any case, setting the authentication mode to None allows
for other authentication methods to take over.

4For example, see the Burp documentation on its session handler [49]
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Other parameters that can be supplied are the number of threads to run the replayer with.
For cases with a considerable number of requests, multiple threads can be run concurrently
to divide the workload. However, as with the crawl, this reduces the determinism of a test.
Timing differences between threads can lead to different results. For debugging options, it
is possible to set the headless option to false. This runs the XDriver authenticator in headed
mode, allowing the security tester to inspect the authentication process visually.

1 class ReplayHandler:
2 """ Handles the replaying of requests."""
3

4 def __init__(
5 self,
6 selection: Selection,
7 auth_mode: AuthMode = AuthMode.XDRIVER,
8 threads: int = 1,
9 headless: bool = True,

10 ):
11 if auth_mode not in AuthMode:
12 raise ValueError("Invalid authentication mode.")
13

14 self.auth_mode = auth_mode
15 self.proxy = None
16 self.n_threads: int = threads
17 self.selection: Selection = selection
18 self.preflight: Optional[Preflight] = None
19 self.start_regex = None
20 self.end_regex = None
21 self.headers = dict()
22 self.cookies = dict()
23 self.params = list()
24 self.authenticator = None
25 if headless:
26 XDriver.enable_headless()

Listing 3.8: ReplayHandler class initialization.

1 class AuthMode(Enum):
2 """Authentication modes"""
3 NONE = auto()
4 XDRIVER = auto()
5 XDRIVER_REAUTH = auto()

Listing 3.9: AuthMode options.

As relayed in chapter 2, and also in section section 3.1, one of the biggest challenges in
automated interaction with web applications is session-relevant data, such as CSRF tokens
and ASP.NET ViewStates. Especially troublesome are ViewStates, which contain informa-
tion about previously made requests, among other things. Although these can be forged,
with effort, secure implementations encrypt the ViewStates. If an invalid ViewState is sent,
such as when performing a replay request, the server may decide to not further process the
request.
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In order to accommodate the various methods of session tracking, several authentication
methods are provided as options. As stated before, automated authentication is provided
via the XDriver, and hardcoded cookie and header values can be set. For handling CSRF
tokens, a preflight request can be sent prior to every replayed request. The preflight request
can be enabled using set_preflight (Listing 3.10), creating a Preflight object (Listing 3.11).
The URL, method, query parameters, and body parameters can be supplied. If no URL is
supplied, the preflight request is performed to the same endpoint as the replay request.

1 def set_preflight(
2 self,
3 url: Optional[str] = None,
4 method: str = "GET",
5 params: dict = {},
6 data: dict = {},
7 ):
8 """
9 If ‘url‘ is set to ‘None‘, preflight goes to the same endpoint.

10 Example: replayer.set_preflight(’http://localhost/endpoint’)
11 """
12 self.preflight = Preflight(method, params, data, url)

Listing 3.10: Enable preflight requests.

1 class Preflight:
2 def __init__(
3 self, method: str,
4 params: dict,
5 data: dict, url:
6 Optional[str] = None
7 ):
8 self.method = method
9 self.url = url

10 self.params = params
11 self.data = data
12 self.regexp = None
13 self.last_response = None
14 self.last_selection = None
15 self.mode = None
16 self.param_name: Optional[str] = None
17

18 def set_regex(self, regex: str):
19 regexp = re.compile(regex)
20 if regexp.groups != 1:
21 raise ValueError("Exactly 1 regex capture group expected.")
22 self.regexp = regexp
23

24 def set_mode(self, mode: PreflightParamTypes):
25 if PreflightParamTypes.has_member_key(mode):
26 raise ValueError("Unknown mode option.")

Listing 3.11: Preflight class.
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The preflight request can be configured to extract a value from the response using regular
expressions (Listing 3.12). CSRF tokens are typically sent in a meta tag in the HTML
response. (Listing 3.13). Using a regular expression with a capture group, such as <meta

↪→ name="csrf-token" content="(.*)">, the CSRF value can be extracted. The value can then
be added as either a cookie, header, or parameter value by setting the appropriate mode and
providing a parameter name.

1 def configure_preflight_value(
2 self,
3 regex: str,
4 mode: PreflightParamTypes,
5 param_name: str
6 ):
7 """Use Regex to select the value returned by the preflight response.
8 Example: replayer.configure_preflight_value(
9 ’<meta name="csrf-token" content="(.*)">’,

10 "header",
11 "X-Csrf-Token",
12 )
13 Limitation: Only selects first value.
14 """
15 if not self.preflight:
16 raise TypeError("Preflight not configured.")
17 self.preflight.set_regex(regex)
18 self.preflight.set_mode(mode)
19 self.preflight.param_name = param_name

Listing 3.12: Configure the preflight capture group.

1 <meta name="csrf-token" content="CSOib4uk-D7bANLQEygByTrYTnPa2gP2-R3U"/>

Listing 3.13: Example CSRF token.

Once the authentication, preflight, cookie, header, and parameter configurations are in
place, the request handler can be run. After the necessary authentication steps are taken,
each request in each exchange in the passed Selection object is replayed using request_replay

↪→ . (Listing 3.14) The implementation at the time of writing handles URL-encoded and
multipart content types. Other content types can be added, such as JSON, XML, and
streams. The request is configured to use headers, cookies, query parameters, multipart
parameters, URL-encoded parameters where appropriate. The new request-response pair is
added to the Exchange object (Listing 3.3) as the ac_request and ac_response.

1 def request_replay(self, request: Request):
2 """Replays a request."""
3 query = deepcopy(request.query)
4 urlencoded_form = deepcopy(request.urlencoded_form)
5 headers = deepcopy(request.headers)
6 cookies = deepcopy(request.cookies)
7 multipart_form = deepcopy(request.multipart_form)
8

9 self.process_params(query, multipart_form, urlencoded_form)
10 self.process_headers(headers)
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11 self.process_cookies(cookies)
12 self.remove_cookies_from_headers(headers)
13

14 # Handle content type.
15 if request.content_type and request.content_type.startswith(
16 "multipart/form-data"
17 ):
18 body = None
19 self.remove_multipart_boundary(request, headers)
20 elif request.content_type and request.content_type.startswith(
21 "application/x-www-form-urlencoded"
22 ):
23 body = urlencoded_form
24 multipart_form = None
25 else:
26 body = request.content
27 multipart_form = None
28

29 if self.preflight:
30 self.do_preflight(request.url)
31

32 return requests.request(
33 method=request.method,
34 url=request.url,
35 params=query,
36 data=body,
37 files=multipart_form,
38 cookies=cookies,
39 headers=headers,
40 proxies=self.proxy,
41 verify=False,
42 allow_redirects=False,
43 )

Listing 3.14: Request replay method.

After all replayed requests and responses are collected, the responses can be compared
in order to detect access control vulnerabilities.

3.4 Response comparison

Each Exchange object in the selected requests now contains two request-response pairs,
one for the original request and one for the AC-tested request. Using the ComparisonHandler

class, the responses of each Exchange object can be compared (Listing 3.15). The class only
takes the populated Selection object as input. Using the Run method, response comparison
is started.

Three features are compared: the status codes, the content lengths, and the response
body difference ratio. Different status codes are the most reliable way of differentiating dif-
ferent application behavior. In the case of functioning access controls, the original request
often returns a 200 OK status code, whereas the AC-tested returns a 401 Unauthorized or 403
↪→ Forbidden status code. Alternatively, servers respond with a 301 Found redirecting to the
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login page, or even return a 500 Internal Server Error code. However, many applications
return a 200 OK when an unauthorized request is made, instead informing the user in the
body of the response.

1 class ComparisonHandler:
2 def __init__(self, selection: Selection):
3 """Compares the responses of the original and AC-tested requests."""
4 self.selection = selection
5 self.directory = self._generate_directory(selection)
6 self.findings = []
7 self.column_width = 80
8

9 self.results = DataFrame(
10 columns=[
11 "uuid",
12 "method",
13 "request",
14 "diff_ratio",
15 "status_code_same",
16 "status_code_original",
17 "status_code_ac",
18 ],
19 index=range(len(self.selection.exchanges)),
20 )
21 self.results["uuid"] = [str(uuid4()) for _ in range(len(self.results.index))]
22 ...

Listing 3.15: ComparisonHandler class initialization.

Especially the inconsistent HTTP status code behavior makes detecting access control
vulnerabilities more difficult. Response bodies must, therefore, also be compared. Response
bodies are seldom identical due to volatile data, such as timestamps, CSRF tokens, and state
and user-specific data. Nevertheless, responses with high similarity are helpful indicators
of broken access controls. This difference ratio is tied to the difference in content length.
Regardless, the difference in content length can sometimes provide some extra context. For
example, if a request to /nonexistent returns 200 for both responses, with identical response
bodies, but with a very short content length, then this observation indicates may indicate
missing or broken functionality instead of an access control issue. But again, this depends
on context. Many asynchronous data-changing requests, such as a POST request for updating
profile information, can return a response with an empty body.

An HTML table is created, with each row containing information about an exchange
(Figure 3.1). The columns contain links to the response difference HTML pages (Fig-
ure 3.2), links to the request difference HTML pages, a summary of the request, such as the
method and the endpoint, the original selection category, the difference ratio, whether the
status codes are equal, and the status codes. The table is sorted firstly by whether the status
codes are then same, and secondly descending by the difference ratio.

For each response pair, an HTML page is generated with a visual indication of differ-
ences in responses (Figure 3.2). This allows for easy and immediate inspection of response
differences. For good measure, the same is done for the request pairs. This allows verifica-
tion of the original requests, debugging, and manual request replay.
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Figure 3.1: Comparison HTML table.
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Figure 3.2: Highlighted comparison between responses. Cut between line 22 and 1499.
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Chapter 4

Evaluation

4.1 Setup

Over the course of several months, the BACS implementation was evaluated on testing
environments of web applications during web application security assessments by DongIT.
The testing environments are near-identical to production environments, but contain testing
data instead of production data. For each assessment, the vulnerability scan was performed
after the original security tester(s) performed the security assessment.

Due to the sensitive nature of client application information and especially vulnerabil-
ities, the actual data cannot be publicized. However, anonymized examples are provided.
The described vulnerabilities are real, but the paths and parameters have been changed.
Clients or client applications are not referred to by name.

Due to the custom configurations presently required for each of the four BACS phases,
it was not feasible to run the application on a large number of web applications. Instead,
the web application vulnerability scanner was run on ten different web applications. As a
result, the analysis of this evaluation setup is qualitative instead of quantitative.

Out of the ten applications examined, it was only possible to fully complete the entire
BACS pipeline for four applications. Access control vulnerabilities of varying severity were
found for each of those four applications. In some cases, this uncovered vulnerabilities that
were not found during testing. In other cases, the BACS implementation missed vulnera-
bilities that the security tester found, although always due to the limitations of crawling and
correct request replaying.

4.2 Failures in crawling and request replay

Completing the BACS pipeline failed for six out of ten of the tested web applications. In
each case, this was related to either the ability to crawl the application, or to successfully re-
play requests. In one case, the crawl only returned a minimal amount of endpoints, missing
most functionality due to the substantial use of dynamic JavaScript. In another case, web
sockets were extensively used, which could not be correctly proxied through Mitmproxy.
In two cases, a large number of destructive functionalities were present. Any authenticated
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user was able to delete objects from the web application. Running the web crawler on these
applications could have led to an unusable web application. For the last two failed web
applications, the crawl did succeed, but correctly replaying requests was not feasible. These
two examples are further expanded upon below.

In one case, the application added a Hash-based Message Authentication Code (HMAC)
to a custom header in each request. The key of the HMAC was provided after authentica-
tion and stored in the local browser storage. The HMAC was performed over a timestamp
and a nonce returned by the server. Since all these values are user-controlled, this request
signature can be recreated by the client. However, the broken access control scanner was
not equipped to deal with this level of granularity and custom session-relevant data.

Another application made use of Cross-Site Request Forgery tokens with dynamic pa-
rameter names. If a POST request was sent to an endpoint, the CSRF token parameter name
was derived from the name of that endpoint. For example, in Listing 4.1, the CSRF token
parameter name csrf_edit_user matches the path edit_user.

These challenges could not be overcome within the remaining research time set for the
penetration test.

1 POST /edit_user HTTP/2
2 Host: website.nl
3 Content-Type: application/x-www-form-urlencoded
4

5 id=1&name=Alice&csrf_edit_user=WfF1szMUHhiokx9AHFply5L2xAOfjRkE

Listing 4.1: POST request with dynamic CSRF token parameter name.

All in all, the replay failure cases can typically be overcome by implementing extra fea-
tures. However, this quickly increases the complexity of the codebase for what is probably
rare behavior. Tackling these issues is possible, but this is rather part of longterm goals
instead of an initial research. Regarding the failures due to crawling, these are simply the
limitations of web crawlers. Better coverage can typically by achieved, but requires increas-
ingly more application-understanding and custom configuration.

4.3 Successfully discovered broken access controls

The access control vulnerability scanner found access control issues in four web appli-
cations. In two cases, this only concerned low-impact endpoints. These were generic
endpoints that did not reveal any user-specific data. For example, in one case, an unau-
thenticated request to the endpoint /user/profile/2 returned the template of the user profile
page, but without any actual user data. Nevertheless, this provides unauthenticated attackers
insight into the inner workings of the web application.

More importantly, what these results did reveal was that the applications did not system-
ically handle unauthorized access cases. Typically web applications ought to restrict access
by default, only granting access after privileges are checked explicitly. Observing multiple
low-impact endpoints without access control can indicate ad-hoc access control rules. Even
if more severe access control vulnerabilities are not present at the moment, they are likely
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to occur throughout development. In any case, this application behavior warrants additional
manual investigation by either the security tester or the developer.

Two applications were found that had high-impact access control vulnerabilities. These
applications, referred to as Alpha and Beta, are investigated more in-depth below.

4.3.1 Vulnerable application Alpha

Several access control vulnerabilities were found in web application ‘Alpha’. Three kinds of
access control vulnerabilities were found. Firstly, low-privileged authenticated users could
edit the permissions of other users. This could be achieved with a POST request to /modules

↪→ /configuration/users/permissions_addedit.php?user_id=<ID>, where a user role could be
supplied. The vulnerability allows authenticated users to escalate their privileges to admin-
istrative users.

Secondly, uploaded files to /documents/ were not access-controlled. A low-privileged
authenticated user had no access to the /documents/ page. However, she was able to down-
load files using /documents/download.php?file_id=<ID>. This includes documents uploaded
by administrative users and documents containing personally identifiable information and
business secrets. Similarly, unauthorized users were able to upload files to the documents
page. Due to the missing antivirus, it was possible to upload malware to the server, which
can be downloaded and executed by other users.

Thirdly, several less-sensitive endpoints were not appropriately access-controlled. For
example, a low-privileged user was able to create helpdesk tickets in the web applica-
tion’s ticketing system. This functionality should have been restricted to support users.
Although this by itself cannot be used directly for data extraction or privilege escalation,
data-changing functionality can often be abused with sufficient ingenuity. In this case, an
attacker could create a support ticket for an administrative user, requesting an email change
or password reset. A request could also be issued for access to a sensitive service, such as
FTP, or the company’s intranet.

Multiple other instances of broken access control were discovered. These vulnerabilities
mostly concerned functionalities of lower impact, such as the retrieval of data graphs, and
created checklist entries in the checklist functionality.

4.3.2 Vulnerable application Beta

For web application Beta, access control was structurally missing on the /ajax/ endpoint. As
a low-privileged authenticated user, it was possible to execute various AJAX (Asynchronous
JavaScript And XML) requests. For example, it was possible to retrieve user data via a
GET request to /ajax/getUserInfo/<ID>. This endpoint was intended as an administrative
functionality. By itself, being able to enumerate user information such as usernames, email
addresses, and phone numbers is already immensely useful for an attacker. However, in
this case, the AJAX endpoint also returned password hashes, session identifiers, and the
multi-factor authentication TOTP seed (Time-based One-Time Password). In other words,
all authenticated users could take over the sessions of all other users. In addition, attackers

37



4. EVALUATION

could gather and crack the password hashes of user, which can then be used for credentials
stuffing attacks.

Many administrative functionalities were accessible via the AJAX endpoints, such as
extracting invoices containing personally identifiable data, business details, and financial
details from other users. This one instance of broken access control had dire consequences.
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Chapter 5

Discussion

In this chapter, the results of the evaluation are discussed. Firstly, the results are interpreted.
It is argued that the Broken Access Control Scanning methodology is a viable method for
detecting broken access control, but only when the entire pipeline can be completed for
a particular web application. Secondly, the implications of these results are stated. The
BACS methodology provides several benefits over manual testing: 1) Automated scanning
can cover more functionality, 2) Automated scanning can better deal with the complexity
of multiple users, and 3) The exhaustiveness of scanning enables security testers to iden-
tify structural issues better. At the same time, manual testing remains necessary for both
verification and divergent application behavior. Thirdly, the limitations of this research
are discussed. The limitations are divided into feature, gradual, and inherent limitations.
Fourthly and lastly, three avenues for future research are suggested: 1) Research into addi-
tional ways of establishing context awareness, 2) Broad internet-wide research, and 3) Deep
qualitative research into the usage of BACS by security testers.

5.1 Interpretation

The hypothesis posited in this research is that deriving interpretable context is required to
differentiate authorized from unauthorized functionality when testing for access control vul-
nerabilities in a gray-box setting. The suggested method for deriving contextual awareness
is to assume that all functionality a user has access to via a web application’s user interface
(UI) is all functionality that a user should be authorized for. From the results, it appears to
be possible to use the contextual awareness derived programmatically from the functionality
accessible via the UI.

There are still challenges to be overcome, but these results provide ample proof that the
BACS methodology is a viable method for at least certain applications. The independence
of a specific crawling technology, and the modularity of the three other components (request
selection, request replay, and response comparison), allow for this methodology to be easily
adoptable, extensible and improvable.
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5.2 Implications

Three primary benefits of the access control vulnerability scanner were identified. Firstly,
although each of the vulnerabilities above can be found through manual inspection, using
automated crawls for different users allows security tester to cover far more ground than
they can test manually.

Secondly, comparing all permutations becomes increasingly difficult when an applica-
tion has many roles. For example, one of the tested applications allows multiple companies
to authenticate to the same application. Company 1 would authenticate to https://www.

↪→ website.com/company1/login, and company 2 to https://www.website.com/company2/login.
Each company has one regular user, and one administrative user role. We would want to
test at least the following access control boundaries:

• Unauthenticated access control, within one company

– company1_regular_user1 vs. unauthenticated_user

– company1_admin_user1 vs. unauthenticated_user

• Horizontal access control, within one company

– company1_regular_user1, company1_regular_user2

– company1_admin_user1, company1_admin_user2

• Vertical access controls, within one company

– company1_regular_user1, company1_admin_user1

• Access controls, between companies

– company1_regular_user1, company2_regular_user1

– company1_admin_user1, company2_admin_user1

These combinations are the bare minimum to check. An exhaustive assessment would
require all combinations to be tested. For example, this provides no guarantee that the access
control boundary between company1_regular_user1 and company2_admin_user1 is secure. It
is unlikely that if an administrative user of company 1 cannot access functionalities from
company 2, a regular user from company 1 can access administrative functionalities from
company 2. However, this is not an impossibility and can easily be an oversight during
testing. In addition, this only assumes a low number of roles. Being able to test many
combinations easily can, therefore, significantly reduce the research time.

Thirdly, the broadness of the vulnerability scan allows security testers to identify struc-
tural issues. This provides justification for security testers to spend time investigating the
access control configurations more thoroughly. If a number of low-impact access control
inconsistencies are found, chances are that high-impact issues can also be found. In ad-
dition, it provides client developers with an overview of vulnerable endpoints, which they
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themselves can use as a basis to identify inconsistent access control implementations. Be-
ing able to argue that a structural problem exists helps with rooting out the underlying issue
instead of applying ad-hoc patches.

5.3 Limitations

There are still many limitations that prevent the BACS implementation from being a ‘click-
and-point’ broken access control solution. These limitations can be separated into roughly
three categories: 1. Feature limitations, 2. Gradual limitations, and 3. Inherent limitations.

5.3.1 Feature limitations

Web applications can use many different technologies and protocols, but not all technolo-
gies or protocols are supported by the BACS implementation. For example, many web
applications use websockets for full-duplex communication between the client and server.
However, neither the Burp crawler nor any other parts of the BACS pipeline is equipped to
handle websocket requests. Re-establishing a websocket connection and replaying a web-
socket request likely would require an entire new pipeline. Nevertheless, access control
vulnerabilities can occur just as well in websocket connections as in HTTP connections.

5.3.2 Gradual limitations

Much improvement can still be made by improving the functionality in any of the four
pipeline phases. However, based on the evaluation results, most improvements can be found
in the crawling phase and the replay phase. In either of the stages, a primary challenge is cre-
ating a program that can interface with any web application with minimal prior knowledge.
As with other research on black-box vulnerability discovery [17], improving the crawler is
directly tied to the total application surface that can be covered. This was also observed
during the evaluation phase, where known endpoints were not reached via the crawler.

Improving the request replayer mainly entails the better handling of non-standard or
less-common authentication and session mechanisms. This could be seen in the custom
HMAC function and the dynamic CSRF parameter name. Instead of developing ad-hoc
features for each edge-case as its encountered, it may be best to allow security testers to
configure a generic callback request per request.

5.3.3 Inherent limitations

Lastly, some issues appear to be inherent to the automation web application interfacing.
Actions that change the application state can be complicated to test. Especially with regard
to destructive functionality, we see from the evaluation results that this can obstruct auto-
mated crawling. Although it is possible to configure denylists and allowlists for crawlers,
configuration becomes increasingly meticulous if an application is sufficiently complex.

Web applications are too various to create a fully autonomous catch-all system. Prior
knowledge of the authentication and session flows, potentially dangerous features, and ap-

41



5. DISCUSSION

plication quirks are required to appropriately configure the crawler and the request replayer
to full effectiveness. For now, human oversight is imperative for ensuring good coverage
and accurate results.

5.4 Future research

For future research, at least three promising topics can be investigated. Firstly, further
research can explore different ways in which contextual awareness can be determined. For
this research, the choice was made to use the UI to infer authorized behavior. However,
this may not be the only method of establishing context. The methodology could be further
augmented for cases where white-box access is provided, such as through application logs,
source code analysis, or debug code injection.

Secondly, this research setup could be expanded to internet-wide research. The current
implementation is designed to allow security testers to configure the scanner to achieve
maximal code coverage on a particular application. However, the strategy could be adapted
to allow access control scanning on a large number of applications with minimal required
configurations, akin to the research setup of Drakonis et al. [19]. Drakonis et al. created
a crawler that can automatically register and authenticate to applications. Combining these
researches can lead to large-scale access control vulnerability research.

Thirdly, instead of expanding this thesis setup for broad research, future researchers can
opt for deeper research into how testers work with automated access control tooling. In this
research, the scanner was only used by the author. Further research into how security testers
prefer to use such tools and what blindspots they may have in practice could drastically
increase the efficacy of the broken access control scanner.
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Related work

6.1 White-box access control vulnerability detection

Little has been written on automated discovery access control vulnerabilities in web appli-
cations in a gray box setting. On the contrary, much has been written on various white-box
access control vulnerability prevention and testing techniques. Monshizadeh et al. have
used automated static code analysis to establish a baseline of "authorization context
consistency". Deviations from this baseline could be used to detect access control vul-
nerabilities [37]. The Nemesis methodology was introduced in a research by Dalton and
Zeldovich, which combines a predefined access control policy with dynamic traffic in-
spection to detect access control anomalies [13]. Similarly, Muthukumaran et al. present
FlowWatcher, which also uses a predefined access control (‘user-data-access (UDA)’) pol-
icy with dynamic traffic and application state analysis [39]. A research of Wang et al.
focused on authentication and access control vulnerabilities in Software Development Kits
(SDKs), discovering authentication and authorization issues by comparing semantic models
with dynamic state assertions and HTTP traffic observations [61]. Felmetsger et al. pub-
lished a related research on logic flaws, again combining dynamic analysis of application
traffic with code verification-based methods [22]. One popular and recent development
is research into mining various data sources, such as access logs, to create access control
rules. The research of Cotrini et al. is mostly focused on non-web application access con-
trol policies [9, 8]. However, [52] shows how access control policy mining can be used for
establishing attribute-based access control (ABAC) schemes for web applications, in this
case Amazon Web Services.

6.2 Black and gray-box vulnerability scanning

Several studies on automated black and gray-box vulnerability discovery have been pub-
lished throughout the years. Some of this research focuses on vulnerability scanning (and
its issues) as a whole. Specifically, about a decade ago, Doupé et al. researched black box
vulnerability scanners, comparing several black-box vulnerability scanners and black-box
vulnerability scanning methodologies [18, 17]. This research was especially insightful with
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regard to the limitations of black-box scanning, such as the reliance on code coverage. Bau
et al. published a similar research, where several web application vulnerability scanners
were compared [5]. Other research concerned the development of general web applica-
tion vulnerability scanners, such as the Web Application Vulnerability and Error Scanner
(WAVES) framework developed by Huang et al. [26].

Other research focuses on detecting specific vulnerability types. Many vulnerability
types have dedicated research published, including cross-site scripting [20, 58], SQL in-
jection [25], cross-site request forgery (CSRF) [4], parameter tampering [6], and prototype
pollution [3]. One especially relevant vulnerability type is logic flaws. Logic flaws are vul-
nerabilities where the intended flow of an application can be circumvented. Pellegrino et
al. create parameter mutations, similar to parameter tampering, to test the program flows
of E-commerce web applications [42]. A research by Li and Xue proposes the black-box
BLOCK methodology for detecting state violations [30]. Wang et al. performed manual
research into Cashier as a service (CaaS) applications, showing the difficulties of formal
verification for complex logic models [60].

Logic vulnerabilities share similarities with state-dependent access control issues. State-
dependent access control issues are currently not considered in this research, but it is a nat-
ural extension for future research. Logic flaws are, therefore, an interesting area of research
to explore further.

Lastly, the research of Zuo et al. introduced AuthScope, a black-box tool that uses
differential traffic analysis of mobile application API requests to find authentication and
authorization issues. However, as opposed to this thesis, the AuthScope research focuses
primarily on the authentication flow, and not on an exhaustive coverage of the target appli-
cation functionality [63].

6.3 Crawling

For crawling-based vulnerability discoverers, better code coverage via web application
crawling is directly linked to a better testing coverage of the application code [18, 17, 5].
Research on web application crawling is therefore of great importance for vulnerability dis-
covery. One primary challenge is the treatment of dynamic functionality via JavaScript. The
research of Mesbah et al. finds and triggers all elements in the DOM tree that are capable
of changing state, thereby creating new application paths [34]. The research of Bos et al.
hooks into the JavaScript APIs to detect various kinds of dynamic JavaScript behavior, using
this information for establishing new paths [43]. Furthermore, combining automated user
registration and authentication with automated crawling is of vital importance for scaling
access control vulnerability research. Automated user registration and logins via Single-
Sign On providers is used in AuthScope for testing mobile applications [63]. Drakonis et
al. apply a similar methodology for web application research, but also introduce the auto-
mated detection and processing of registration and login forms for web applications [19].
In addition, Drakonis et al. implement an application-agnostic web crawler. However, code
review of [19] revealed that only links are followed, not application forms.

Web application crawling appears to be a topic for which research has been performed
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for specific challenges, such as [43], but recent research into integrating these specific chal-
lenges into one web application-agnostic crawler is lacking. Additionally, software de-
veloped during research is often, understandably, not maintained for years after publication,
such as the research of Mesbah et al. [34]. This is an issue for the rapid development of web
application technologies. An opportunity exists here for scientific research on open-source
full-feature crawling methodologies and implementations.
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Chapter 7

Conclusion

This thesis proposed a methodology and implementation for Broken Access Control Scan-
ning, or BACS. A gap in the academic literature on gray and black-box automated access
control testing was identified. The recent denomination of access control vulnerabilities
as the first among the OWAPS 2021 Top 10 drives the urgency for research on this topic.
The combinatorial explosion that comes with access control testing makes the predominant
method of manual testing impractical and error-prone, leading to critical vulnerabilities be-
ing overlooked.

Establishing contextual awareness was identified as the primary challenge in automated
access control vulnerability scanning. The proposed hypothesis is that all functionality a
user can reach via the user interface is the only functionality a user is authorized for. Based
on this hypothesis, the BACS methodology was proposed. The BACS methodology con-
sists of four phases: Crawling, request selection, request replay, and response comparison.
An accompanying Python implementation was developed and evaluated on ten web appli-
cations during web application penetration tests for DongIT. Only four out of ten web appli-
cations could be fully processed by all four phases of the BACS pipeline. However, access
control vulnerabilities were found in each of those four cases. In two cases, high-impact
vulnerabilities were discovered.

Overall, these results lead to the conclusion that the BACS methodology is a viable
strategy for automating broken access control scanning. By extension, this lends support to
the hypothesis that contextual awareness of the authorization scheme can be inferred via the
user interface of a web application.

Several limitations and challenges remain. The diversity in web applications is espe-
cially an obstacle for crawling and request replaying. Some of these limitations are inherent
to the challenge of automated web application interaction. Nevertheless, some of the ob-
served limitations can be resolved by further improving upon the core functionality of the
broken access control scanner.

All in all, the methodology and implementation presented in this thesis were found to
be directly applicable to the security testing of access control. These results may form the
basis for novel research into gray and black-box access control vulnerability discovery.
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[17] Adam Doupé, Marco Cova, and Giovanni Vigna. Why Johnny Can’t Pentest: An
Analysis of Black-Box Web Vulnerability Scanners. In Christian Kreibich and Marko
Jahnke, editors, Detection of Intrusions and Malware, and Vulnerability Assess-
ment, Lecture Notes in Computer Science, pages 111–131, Berlin, Heidelberg, 2010.
Springer. ISBN 978-3-642-14215-4. doi: 10.1007/978-3-642-14215-4 7.
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and Giovanni Vigna. cross site scripting prevention with dynamic data tainting and
static analysis. January 2007.

[59] Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy Hu, and Michelle Mazurek.
Hackers vs. Testers: A Comparison of Software Vulnerability Discovery Processes. In
2018 IEEE Symposium on Security and Privacy (SP), pages 374–391, May 2018. doi:
10.1109/SP.2018.00003.

54

https://portswigger.net/support/configuring-burp-suites-session-handling-rules
https://portswigger.net/support/configuring-burp-suites-session-handling-rules
https://portswigger.net/support/burp-suite-upstream-proxy-servers
https://portswigger.net/support/burp-suite-upstream-proxy-servers
https://www.rfc-editor.org/rfc/rfc4122
http://doi.org/10.1145/3359789.3359805
https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
https://www.selenium.dev/
https://www.usenix.org/conference/usenixsecurity20/presentation/shafagh
https://www.usenix.org/conference/usenixsecurity20/presentation/shafagh


Bibliography

[60] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz Qadeer. How to Shop for Free
Online – Security Analysis of Cashier-as-a-Service Based Web Stores. In 2011 IEEE
Symposium on Security and Privacy, pages 465–480, Oakland, CA, USA, May 2011.
IEEE. ISBN 978-1-4577-0147-4. doi: 10.1109/SP.2011.26. URL http://ieeexplo
re.ieee.org/document/5958046/.

[61] Rui Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer, David Evans, and Yuri Gurevich.
Explicating sdks: uncovering assumptions underlying secure authentication and au-
thorization. pages 399–414, August 2013.

[62] M. Weulen Kranenbarg, T.J. Holt, and J. Van der Ham. Don’t shoot the messenger! a
criminological and computer science perspective on coordinated vulnerability disclo-
sure. Crime Science, 7, 2018. doi: https://doi.org/10.1186/s40163-018-0090-8.

[63] Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. AUTHSCOPE: Towards Auto-
matic Discovery of Vulnerable Authorizations in Online Services. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages
799–813. Association for Computing Machinery, New York, NY, USA, October 2017.
ISBN 978-1-4503-4946-8. URL http://doi.org/10.1145/3133956.3134089.

55

http://ieeexplore.ieee.org/document/5958046/
http://ieeexplore.ieee.org/document/5958046/
http://doi.org/10.1145/3133956.3134089

	Preface
	Contents
	Introduction
	Problem statement and knowledge gap
	Research question and hypothesization
	Scientific contributions
	Thesis structure

	Background
	Authentication, authorization, sessions, and access controls
	Access control vulnerabilities
	Testing for access control vulnerabilities

	System design
	Web crawling
	Request selection
	Request replay
	Response comparison

	Evaluation
	Setup
	Failures in crawling and request replay
	Successfully discovered broken access controls

	Discussion
	Interpretation
	Implications
	Limitations
	Future research

	Related work
	White-box access control vulnerability detection
	Black and gray-box vulnerability scanning
	Crawling

	Conclusion
	Bibliography

