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Simple Summary: Survival of ovarian cancer patients largely relies on the surgical removal of all 
cancer cells. To achieve this, good vision is crucial. In this study, we evaluate the ability of hyper-
spectral imaging to detect ovarian cancer. Images of surgically removed tissue samples of 11 pa-
tients were taken and compared to histopathology in order to train machine learning software. For 
training purposes, only healthy tissues and tissues with high tumor cell content (>50%) were in-
cluded. In total, 26 tissue samples and 26,446 data points of 10 patients were included. Tissue clas-
sification as either tumorous or healthy was evaluated by leave-one-out cross-validation. This re-
sulted in a power of 0.83, a sensitivity of 0.81, a specificity of 0.70 and a Matthew’s correlation coefficient 
of 0.41. To conclude, this study shows that hyperspectral imaging can be used to recognize ovarian can-
cer. In the future, the technique may enable real-time image guidance during surgery. 

Abstract: The most important prognostic factor for the survival of advanced-stage epithelial ovarian 
cancer (EOC) is the completeness of cytoreductive surgery (CRS). Therefore, an intraoperative tech-
nique to detect microscopic tumors would be of great value. The aim of this pilot study is to assess 
the feasibility of near-infrared hyperspectral imaging (HSI) for EOC detection in ex vivo tissue sam-
ples. Images were collected during CRS in 11 patients in the wavelength range of 665–975 nm, and 
processed by calibration, normalization, and noise filtering. A linear support vector machine (SVM) 
was employed to classify healthy and tumorous tissue (defined as >50% tumor cells). Classifier per-
formance was evaluated using leave-one-out cross-validation. Images of 26 tissue samples from 10 
patients were included, containing 26,446 data points that were matched to histopathology. Tumor-
ous tissue could be classified with an area under the curve of 0.83, a sensitivity of 0.81, a specificity 
of 0.70, and Matthew’s correlation coefficient of 0.41. This study paves the way to in vivo and in-
traoperative use of HSI during CRS. Hyperspectral imaging can scan a whole tissue surface in a fast 
and non-contact way. Our pilot study demonstrates that HSI and SVM learning can be used to dis-
criminate EOC from surrounding tissue. 

Keywords: hyperspectral imaging; ovarian epithelial carcinoma; cytoreduction surgical procedure; 
support vector machine; classification 
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1. Introduction 
Ovarian cancer is the number eight cause of cancer-related mortality in women 

around the world, with an incidence of 314,000 and mortality of 207,000 in 2020 [1]. The 
International Federation of Gynecology and Obstetrics (FIGO) staging system defines the 
stages of ovarian cancer according to the extension of the tumor, the spread of the lymph 
nodes and the spread to distant sites [2]. Since early warning signs are often vague or 
missing, ovarian cancer is often detected in late stages (FIGO IIB–IV) [3].  

The standard therapy for advanced-stage ovarian cancer is complete cytoreductive 
surgery (CRS) of all visible tumors and six cycles of chemotherapy [3,4]. Complete resec-
tion of all macroscopic disease is the strongest independent variable in predicting overall 
survival. However, even after complete CRS and removal of all visible and palpable tu-
mors, women with advanced epithelial ovarian cancer can experience recurrence, possi-
bly as a result of microscopic residual tumors. If microscopic, invisible and non-palpable 
tumors could be detected during surgery, progression-free and overall survival could in-
crease [5]. Furthermore, when no microscopic tumor is detected, healthy tissue can be 
spared, thus potentially shortening the duration of surgery and recovery. 

There are several intraoperative visualization techniques in use or development for 
the detection of epithelial ovarian cancer (EOC) metastasis: the most commonly used are 
cryosection and immunofluorescence. Cryosection is a widely used intraoperative diag-
nostic technique in which a small piece of the suspicious tissue is frozen, sliced and mi-
croscopically examined by the pathologist [6]. Disadvantages of this technique are the 
limited section size, the need to excise the tissue and the required processing time during 
surgery. During immunofluorescence, agents such as folate-FITC, 5-aminolevulinic acid, 
indocyanine green, and OTL38 are intravenously injected or taken orally by the patient. 
These fluorescent agents accumulate in malignant tumor cells and can be intraoperatively 
detected by an imaging system. The agents can produce mild adverse effects, such as gas-
trointestinal disorder, nausea, vomiting, effusion, loss of appetite, diarrhea and ab-
dominal pain [7–11]. 

As an alternative, hyperspectral imaging (HSI) is a non-invasive, non-contact, and 
label-free imaging technique with the potential of detecting malignant tissue. HSI cap-
tures multiple images of the underlying tissue in contiguous spectral bands. With this 
data, a 3D hyperspectral (HS) cube can be built, containing spatial information in two 
dimensions and spectral information in one dimension [12]. The reflectance measured is 
related to the absorption and scattering properties of tissue [13]. This spectral signature of 
the underlying tissue can be used for the classification of both tumor and non-tumor tis-
sue. HSI already shows promising results in other oncological fields [14–20]. 

The aim of this study is to evaluate and prove the potential and feasibility of HSI for 
EOC detection. To the best of our knowledge, studies involving HSI for EOC detection are 
limited. Hereby, we employ HSI for EOC and healthy tissue classification using ex vivo 
samples collected after surgery and their corresponding histopathological annotation 
used as ground truth. The ex vivo approach can form a basis for further in vivo studies 
where data is collected and examined intraoperatively. In this context, HSI is a novel aided 
tool to enhance the vision of the surgeon, guiding the tumor resection and reducing re-
currence of cancer and second re-operations. 

2. Materials and Methods 
2.1. Participants 

The recruitment of participants took place at Erasmus University Medical Center, 
Rotterdam. Patients of 18 years and older with known or high clinical suspicion of pri-
mary ovarian cancer, planned for either primary or interval CRS, and who were able and 
willing to comply with the study procedure, were enrolled into the study during May–
October 2020. All participants signed an informed consent before any study-related pro-
cedure was performed. The study was carried out according to the standards outlined in 
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the Declaration of Helsinki. All procedures involving patients have been approved by the 
Medical Ethical Committee of Erasmus Medical Center Rotterdam in the Netherlands 
(trial protocol MEC-2020-0167). 

2.2. Instrumentation 
Images were acquired with a hyperspectral camera containing a snapshot mosaic 5 × 

5 hyperspectral imaging sensor (IMEC, Leuven, Belgium). This camera can capture an 
entire scene containing multi-spectral images at video rate. The CMOS sensor captures 25 
spectral bands with a spectral bandwidth of <15 nm in the near-infrared (NIR) range (665–
975 nm). The spectral bands are arranged in a 5 × 5 mosaic grid and have a spatial resolu-
tion of 409 × 218 for each band and a total resolution of 2050 × 1080. The hyperspectral 
camera is controlled using a desktop PC, using the proprietary camera software. The pa-
rameters were set at a frame rate of 10 HS cubes per second, an exposure time of 10 milli-
seconds and a color gain of 10. The camera and two halogen light sources were mounted 
on a vertical framework. The halogen lights were placed under an angle of ±45° to mini-
mize glare. In order to perform the scans, samples were placed on a black paper under-
neath the camera on the plateau (see Figure 1). 

 
Figure 1. Hyperspectral data acquisition system, showing: 1. Vertical rigid stage; 2. Hyperspectral 
camera; 3. Halogen light source; 4. Plateau. 

2.3. Data Acquisition 
After CRS, the resected specimens of the ovaries, fallopian tubes, uterus, omentum 

and/or part of the intestines were sent to the pathology department. From each organ, one 
tissue slice of maximal 20 × 40 × 3 mm with suspected tumorous and non-tumorous tissues 
was taken and placed on black paper. If the specimen contained no tumor tissue, a slice 
containing only non-tumor tissue was taken and placed on black paper. First, a red-green-
blue (RGB) image was collected with a normal camera. Thereafter a white reference image, 
a dark reference image and HS images of the tissue were collected with the HS camera. 
After the imaging procedure, the tissue samples were placed in a standard macro cassette, 
placed in formaldehyde and processed according to standard pathological protocols. 

2.4. Data Pre-Processing 
All hyperspectral data were pre-processed by performing image calibration, normal-

ization by feature scaling and noise filtering, respectively. 
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2.4.1. Image Calibration 
During image calibration, the relative reflectance was calculated to correct for the 

signal variation between images due to non-uniform illumination and the focal plane ar-
ray of the camera (pattern noise). The raw data were calibrated by using a white reference 
image and a dark reference image. The dark reference image was acquired by the HS sys-
tem by keeping the shutter of the camera closed and was used to account for the internal 
noise, caused by the dark current. The white reference image was acquired by taking a 
picture of a white paper and was used to account for the light distribution [18,21,22]. The 
relative reflectance image 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥, 𝑦𝑦, 𝜆𝜆) was calculated by: 

𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥, 𝑦𝑦, 𝜆𝜆) = 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦,𝜆𝜆)−𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦,𝜆𝜆)
𝐼𝐼𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦,𝜆𝜆)−𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦,𝜆𝜆)

, (1) 

where 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥, 𝑦𝑦, 𝜆𝜆) is the raw spectral image, 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦, 𝜆𝜆) is the dark reference image, 
and 𝐼𝐼𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑦𝑦, 𝜆𝜆) is the white reference image at the sample pixel location (𝑥𝑥,𝑦𝑦) and 
wavelength band 𝜆𝜆 [18]. 

2.4.2. Normalization 
The range of all features was normalized by re-scaling the range of the data to the 

interval [𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛),𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛)] = [0,1] and corrected for disproportional feature contri-
butions due to tissue morphology effects. This ensured that the classification algorithm 
performed a classification based on the shape of the spectral signature and not the ampli-
tude [21]. The normalized image 𝑥𝑥𝚤𝚤�  was calculated by: 

𝑥𝑥𝚤𝚤� = 𝑥𝑥𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖) 
𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖) −𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥𝑖𝑖)

∗ �𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛)  −𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛)� + 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛), (2) 

where  𝑥𝑥𝑖𝑖  is the relative reflectance image, 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖) the minimum value of 𝑥𝑥𝑖𝑖 , 
𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖) the maximum value of 𝑥𝑥𝑖𝑖 , 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛) the new minimum value of 𝑥𝑥𝑖𝑖  and 
𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛) the new maximum value of 𝑥𝑥𝑖𝑖 [23]. 

2.4.3. Image Data Selection 
HS images can contain pixels that do not contain useful spectral information for tis-

sue classification and reduce the performance of the system, such as background pixels 
and glare pixels. Several images of the same sample were taken under different configu-
rations with the hyperspectral camera. The images with the least glare were selected and 
included in the data set. The remaining glare pixels and background pixels were removed 
from the hypercube by intensity thresholding. Tissue edges of approximately 20 pixels 
were removed, because they were more likely to contain mixed spectra [16]. Furthermore, 
each hypercube was divided into a grid of 20 × 20 pixels. Within each block, the spectra 
were averaged to increase the robustness to registration errors and improve the classifi-
cation performance [24,25]. 

2.5. Pathological Annotation 
The pathological diagnosis was used as ground truth to label spectral images. A few 

days after the surgery, the tissue slices were processed in the standard manner for diag-
nostic histopathology, embedded in paraffin blocks and sectioned. The slides were stained 
with hematoxylin and eosin (H&E) and were then digitized. The digitized histological 
images of all specimens were annotated to outline tumor tissue, connective tissue, ovarian 
stromal tissue, fat tissue, lymphoid tissue, necrotic tissue, epithelial tissue of the intestines 
and muscle tissue by an experienced pathologist (P.C.E-G. or L.R.). Tissue was character-
ized as tumor tissue when there was >50% of tumor tissue in comparison to connective 
tissue. Areas which contained between 1% and 50% of tumor tissue in comparison to con-
nective tissue were left out of the dataset. 
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2.6. Classification of Hyperspectral Data 
2.6.1. Image Classification 

The annotated images and RGB image were overlaid via a non-rigid registration al-
gorithm in MATLAB (Mathworks Inc., Natick, MA, USA, R2020b) with approximately 20 
control points. This was also done with the HSI. In this way, the HSI and masks had the 
same configuration. The area of the tumor tissue and the area of non-tumor tissue were 
selected via hue, saturation and value (HSV) color thresholding to make a tumor tissue 
and non-tumor tissue mask. To obtain the labelled tumor and non-tumor image regions 
for training, the HS images were multiplied with the tumor mask and non-tumor mask, 
respectively. Thereafter, the HS images were patched and features were extracted (see 
Figure 2). 

 
Figure 2. Workflow: (a) The hyperspectral (HS) images from the mosaic 5 × 5 hyperspectral camera 
were acquired after cytoreduction. (b) HS images were pre-processed by calibration, min-max nor-
malization and noise filtering and transformed. (c) The digitized pathological images were anno-
tated. (d) The annotated images were transformed. Tumor tissue was filled with the color bordeaux 
and the non-tumor tissue was filled with the color blue. (e) Tumor tissue and non-tumor tissue were 
selected via hue, saturation and value (HSV) color thresholding to make masks. (f) Selection of the 
tumor tissue and non-tumor tissue was made with the mask. (g) The HS images were multiplied by 
the mask to obtain tumor tissue and non-tumor tissue. (h) The HS images were patched into a grid 
of 20 × 20 pixels and features were extracted. 

2.6.2. Feature Extraction 
The HS camera captures 25 images in adjacent spectral bands of 15 nm. The intensi-

ties, derivatives and intensity ratios were extracted and formed the feature set. 

2.6.3. Support Vector Machine Classifier 
The support vector machine (SVM) classifier with linear kernel function (linear SVM) 

was used for our classification, as it is one of the most effective machine learning methods 
to classify HS data [26]. The SVM classifier finds the best hyperplane that separates the 
data points of tumor tissue (positive) from the non-tumor (negative) class with the largest 
margin between the hyperplane and any data point. For inseparable classes, the objective 
is the same, but the algorithm imposes a penalty on the length of the margin for every 
observation that is on the wrong side of its class boundary. The dataset contained signifi-
cantly more non-tumor data points than tumor data points. For this reason, weights were 
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implemented to prevent bias towards predicting the majority class and balance the da-
taset. The weights were assigned inversely proportionally to their frequencies. 

2.7. Classifier Performance Evaluation 
The algorithm performance was validated using leave-one-out cross-validation. In 

order to evaluate the classification results, sensitivity, specificity, positive predictive value 
(PPV) and negative predictive value (NPV) based on the confusion matrix of the optimal 
threshold point of the receiver operating characteristic (ROC) curve were calculated. The 
optimal threshold point of the ROC curve was calculated using the Youden index. Since 
the sensitivity, specificity, PPV and NPV are dependent on the threshold value of the ROC 
curve, the area under the ROC curve (AUC) and the Matthews correlation coefficient 
(MCC) have been calculated to represent the scalar measurement for the quality of the 
classification [18]. The whole method is depicted in Figure 3. 

 
Figure 3. Method for training and classifying the tumor and non-tumor tissue. 

3. Results 
3.1. Participants and Pathologies 

In total, 11 patients were enrolled in the study. Patient 5 was left out because the 
primary location of the tumor was uncertain. In total, 10 patients were therefore included 
in the study. The mean age was 58 years (range 30–78). Eight patients received three 
courses of chemotherapy prior to surgery (interval CRS), three patients were chemo-naive 
(primary CRS). The patient characteristics are provided in Table 1. 

Table 1. Patient characteristics. 

Patient 
Number 

Primary 
Location 

Histology Grade FIGO 
Stage 

Procedure Tissue Type 

1 Ovarian 
Serous 

adenocarcinoma 3 IIIC PDS a. 

A: Ovarian 
B: Ovarian 
C: Ovarian 

D: Omentum 

2 Ovarian Serous 
carcinoma 

3 IV IDS b. A: Mesenterium 

3 Ovarian 
Serous 

adenocarcinoma 1/3 IV IDS b. 
A: Omentum 

B: Ovarian 

4 Ovarian 
Serous 

adenocarcinoma 3 IV IDS b. 

A: Omentum 
B: Omentum 
C: Intestines 

5  
Mucinous 

adenocarcinoma 3 IV PDS a. A: Omentum 

6 Ovarian 
Serous 

adenocarcinoma 3 IIIC IDS b. 

A: Ovarian 
B: Ovarian 

C: Intestines 
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D: Omentum 
E: Omentum 

7 Ovarian 
Serous 

adenocarcinoma 3 IV IDS b. 

A: Omentum 
B: Ovarian 
C: Ovarian 

8 Ovarian 
Serous 

adenocarcinoma 3 IIIC IDS b. A: Omentum 
B: Ovarian 

9 Ovarian 
Serous 

adenocarcinoma 
3 IV IDS b. A: Ovarian 

B: Ovarian 

10 Ovarian 
Serous 

adenocarcinoma 
3 IV IDS b. 

A: Ovarian 
B: Omentum 
C: Ovarian 

11 Ovarian 
Serous 

adenocarcinoma 
1 IV PDS a. A: Omentum 

a—PDS: Primary debulking surgery (chemo-naïve); b—IDS: Interval debulking surgery (received 
prior to chemotherapy). 

3.2. Spectral Signatures 
In this study, 26 tissue samples were imaged in total, containing a total of 26,446 hy-

perspectral data points that were matched to histopathology, including tissue from the 
ovarian (13 samples), omentum (10 samples), mesenterium (1 sample) and intestines (2 
samples). The amount of tumor and non-tumor data per patient are given in Table 2. The 
samples contained different tissue types, such as connective tissue, necrotic tissue, ovarian 
stromal tissue, adipose tissue, lymphoid tissue, muscle tissue, and epithelial tissue of the 
intestines. Figure 4 and Figure 5 present the spectral signature of the different tissue types. 
It should be noted that the spectral signature of tumor and non-tumor tissue show large 
within-class variations, which may primarily be attributed to the heterogeneity of the in-
cluded tissue types.  

Table 2. Amount of tumor and non-tumor data points per patient. 

Patient 1 2 3 4 6 7 8 9 10 11 
Total 7819 123 1678 3134 7102 1236 1663 1564 1382 745 

Tumor 5065 0 0 0 1012 440 0 31 80 688 
Non-tumor 2754 123 1678 3134 6090 796 1663 1533 1302 57 

 
Figure 4. Intensity values (median and interquartile range (IQR)) as a function of wavelength for 
tumorous and non-tumorous tissues. 
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Figure 5. Intensity values (median) as a function of wavelength for various non-tumorous tissues. 

3.3. Tissue Classification 
3.3.1. Feature Selection 

From the spectra visualized in Figure 4, a set of 19 prognostic features was extracted 
for which tumorous and non-tumorous tissues showed the largest difference. This set was 
composed by comparing distributions (t-tests) in observed mean intensities, intensity ra-
tios, and intensity derivatives, and their influence on the AUC. The boxplots of the first 
six principal components of prognostic spectrum features are shown in Figure 6. The se-
lected features include the spectral intensities at 697 nm, 775 nm, 799 nm, 823 nm, 863 nm, 
872 nm, 901 nm, 910 nm, 923 nm, the intensity differences (derivatives) at 684–697 nm, 
882–892 nm, 923–930 nm, 943–954 nm and the intensity ratios 676/910 nm, 697/910 nm, 
762/910 nm, 872/910 nm, 923/910 nm, and 930/910 nm. Although the spectral signatures of 
the same tissue type vary in intensity, they run mostly in parallel. In correspondence, the 
interquartile range (IQR) lines in Figures 4 and 5 also run parallel to the median lines. 
Therefore, the derivatives and in particular the fractions between intensities resulted in 
useful features. 

 
Figure 6. Boxplots of the first 6 principal components of prognostic spectrum features. 

3.3.2. Classifier Performance  
The prognostic features were used for training the SVM model. Classification results 

of tumor tissue and non-tumor tissue with the use of the linear SVM classifier are given 
in Table 3. The linear SVM had an overall sensitivity of 0.81, specificity of 0.75, PPV of 
0.53, NPV of 0.82, AUC of 0.83 and MCC of 0.41. The ROC curves are given in Figure 7. 
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The data set of patients 2, 3, 4, and 8 consisted only of non-tumor tissue. Without tumor 
tissue, several classification power metrics (sensitivity, PPV, NPV, AUC) could not be de-
termined.  

Table 3. Classification result of leave-one-out cross-validation. 

Patient Sensitivity Specificity PPV a. NPV b. AUC c. MCC d. 

1 0.91 0.55 0.79 0.77 0.76 0.51 
2 - 0.00 0 * - - - 
3 - 0.55 0 * 1.00 * - - 
4 - 0.99 0 * 1.00 * - - 
6 0.55 0.87 0.42 0.92 0.79 0.38 
7 0.66 0.79 0.64 0.81 0.78 0.45 
8 - 1.00 0 * 1.00 *   
9 0.95 0.67 0.05 1.00 0.84 0.18 
10 0.85 0.88 0.30 0.99 0.89 0.46 
11 0.91 0.72 0.98 0.40 0.89 0.49 

Mean 0.81 0.70 0.53 0.82 0.83 0.41 
a—PPV: Positive predictive value; b—NPV: Negative predictive value; c—AUC: Area under the 
curve; d—MCC: Matthew’s correlation coefficient; * Samples without tumor tissue. PPV and NPV 
were not included in calculation of the mean. 

 
Figure 7. Receiver operating characteristic (ROC) curves of the six patients for whom samples con-
tained both tumorous and non-tumorous tissues. 

4. Discussion 
The most important prognostic factor for the survival of advanced-stage ovarian can-

cer is the completeness of CRS [5]. An intraoperative visualization technique is useful for 
detecting microscopic residual tumor and minimizing recurrence. In this pilot study, the 
feasibility of NIR HSI for the detection of malignant ovarian cancer metastases was tested 
ex vivo. In the current work, we looked at the difference between tumorous and healthy 
tissues. The linear SVM classifier had a sensitivity of 0.81, a specificity of 0.70, AUC of 0.83 
and MCC of 0.41 for the detection of tumor tissue. The variations of the classification 
power could be explained by the non-homogeneous distribution of the tumor tissue and 
the types of healthy tissue across the patients, which influenced the training dataset for 
the SVM classifier. Furthermore, the included tissue of patient 2 was relatively small (bi-
opsy) in comparison to the other patients (see Table 2). In future work, we aim to extend 
the sample size to stratify healthy tissue types and perform classification per tissue sam-
ple.  

In comparison, cryosection is used for intraoperative resection margin assessment. 
Cryosection has a higher classification power, but can only be applied on a small resected 
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tissue surface outside the operating room and is time consuming [6,19,20]. Alternatively, 
several studies have been done using fluorescent imaging for the detection of ovarian can-
cer [7–11,27–29]. Promising results were achieved for EOC detection with 5-ALA (sensi-
tivity: 0.93 specificity: 1.00 [8], sensitivity: 0.89 specificity: 1.00 [9]) and OTL38 (sensitivity: 
0.84–0.98 PPV: 0.85–0.95 [11]), however fluorophore injection can lead to mild adverse side 
effects [8–11]. The specificity of indocyanine green is currently low (0.41–0.57) [27–29]. 

The HSI camera used has a wavelength range from 665 nm to 975 nm. In this region, 
several chromophores such as blood, water, melanin, fat, bilirubin, and beta-carotene con-
tribute to the absorption of light and the spectral signatures of tissue [13]. An advantage 
of the NIR wavelength range of the camera is that it can measure up to several millimeters 
and is scattering dominant for biological tissue, which leads to more detectable differences 
between tissue types [14,19]. The visual wavelength range for the detection of tumor tissue 
is also evaluated in the study of Baltussen et al. [30] and Kho et al. [16]. Both studies found 
that an increased spectral range (visual and NIR) had the best result. However, for in vivo 
studies, the visual wavelength range (400–700 nm) is scattering dominant for hemoglobin, 
resulting mostly in the visualization of blood and not tumor tissue [13,30]. Beaulieu et al. 
[31] also looked at SWIR wavelengths (900–2500 nm) and found that there may be tumor-
specific signals in this range. According to Halicek et al. [32], the SWIR wavelength has 
scattering dominants for water and adipose tissue. This can be of added value for the de-
tection of tumor tissue in adipose regions such as the omentum. 

Several studies have tried to compare different machine learning classifiers such as 
artificial neural networks and LDA for the detection of cancer [13,15–21,31,32]. Artificial 
neural network algorithms show promising results [21,32]. However, they can be prone 
to overfitting if there is insufficient data, and the results can be more difficult to interpret 
[12]. For the classification of ovarian cancer, the determination of an optimal classifier will 
be valuable in future work.  

The tissue annotated as tumor also included small amounts of connective tissue, cal-
cification and other types of non-tumor tissue. This decreases the performance of the clas-
sifier. In this study, tumorous tissue was defined as regions where the cellular content 
contains more than 50% of tumor cells. In the future, studies should be extended to include 
areas of tissue with less than 50% of tumor cells. Furthermore, there was a discrepancy 
between the measured depth of the HS camera and the pathological ground truth. The HS 
camera can evaluate up to a few millimeters deep, but the H&E section only provides 
information on the superficial cell layers of the slice [14,16,20]. In addition, for the first 
four patients, the bottom of the tissue slide instead of the top of the tissue slide was in-
spected (sample thickness: 3 mm), due to the wrong configuration of the tissue in the 
pathological tray. 

Finally, registration errors could occur when the histopathological slide and HS im-
age do not have an exact match in shape, e.g., due to deformations during the tissue han-
dling. Furthermore, other parts of the image and spectral data processing may still be im-
proved, e.g., improving image registration to cope with elastic deformation of the tissue. 
The feature extraction step may be improved using a principal component analysis (PCA) 
or other feature selection methods [33]. This method will result in a minimal and inde-
pendent set of features to describe the data. 

This study shows the feasibility of detecting tumor tissue with HSI and several steps 
to optimize the current methodology. To bring HSI into clinical practice and reduce the 
recurrence of EOC, additional research is needed. Future improvements could consist of 
the optimization of the classification algorithm, stratification of tissue types and in vivo 
studies to assess the tumor margin intraoperatively. 

5. Conclusions 
Although in vivo studies are needed, we exploited HSI for ovarian cancer detection, 

paving the way for improving surgical outcome and patient prognosis. Our pilot study 
shows that HSI is a promising technique for detecting tumors. In this study, a sensitivity 



Cancers 2022, 14, 1422 11 of 12 
 

 

of 0.81, a specificity of 0.70, AUC of 0.83 and MCC of 0.41 was achieved for the detection 
of tumor tissue ex vivo. Although cryosection still performs more accurately, HSI can scan 
larger areas, is faster, non-contact and non-invasive and can be used inside the operating 
room. Compared to fluorescent imaging, HSI does not require the intake of fluorophores 
and does not result in the related adverse side effects. 
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