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a b s t r a c t

Acoustic emission (AE) is often used for structural health monitoring (SHM) in the wide field of engineer-
ing structures and one of its most beneficial attributes is the ability to localize the damage/crack based on
the AE events. The vast majority of ongoing work on AE monitoring focues on geometrically simple struc-
tures or a confined area, but the AE source location strategies are rather complicated for real engineering
structures. In this paper, an effective method for source localization in realistic structures is presented
based on the application of artificial neural networks (ANN), using finite element (FE) simulation results
of Lamb waves as the modelling basis. Pencil lead break experiments and related FE simulations on a
steel-concrete composite girder are conducted to evaluate the performance of the method. The identifi-
cation of different wave modes is carried by comparing alternative onset time detection methods.
Numerical results are found to be matching closely with the experimental results. To get a reliable
ANN model, the validated FE model is used to create a comprehensive database with five different sensor
arrangements. It is found that the proposed method is superior to the classical Time of Arrival (TOA)
method with the same input data. The results indicate that using trained neural networks based on
numerical data is a viable option for AE source location in the case of the I-shaped girder, increasing
the likelihood of design and optimization of the AE technique in monitoring realistic structures.

� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Many in-service structures suffer the problems of cumulative
damages resulting from overloading and fatigue cracks with
increased age [1]. In order to assess the service life of existing
structures and reduce maintenance costs, a need for a reliable
and rigorous monitoring system for engineering structures is evi-
dent. Acoustic Emission (AE) is a non-destructive testing (NDT)
technique which uses acoustic wave generated by a rapid release
of energy within a material for structural health monitoring
(SHM) [2]. The use of the AE technique provides the potential for
early damage detection and real-time monitoring of the structures

[3,4]. One of the most essential features of the AE technique is the
ability to localize the damage/crack based on the AE events. Iden-
tifying the source location can allow an accurate global investiga-
tion of a structure and a prior understanding of the specific
possible damaged/cracked area [5]. It can also lead to a better
insight into the nature of the source mechanism, as certain AE
sources are only related to a particular load case and geometric
characteristics [6]. For example, AE source location methods can
contribute to effectively eliminate AE signals emitted from
unwanted AE sources. The source mechanism under a certain load
regime can then be defined more accurately.

AE source location determination can be one, two, or three
dimensional according to the structure of interest. Many structures
can be simplified to a plate-like structure since most practical
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structures have one dimension that is considerably smaller than
the other two dimensions. Simple plate wave theory was proposed
and applied to explain AE wave propagation in plate-like struc-
tures. Several researchers demonstrated that Lamb waves are the
dominant mode of disturbance propagation in plate-like structures
[7,8]. In addition, Lamb waves show great potential for structural
health monitoring (SHM) due to their capability of long propaga-
tion distance, low attenuation, and high sensitivity to small imper-
fections [9,10]. Rose [11] summarized the potential damage types
that a Lamb-wave based detection method can provide. A Lamb-
wave based detection method can supply relevant information
for estimation of structural behaviour [12–14], confirmation of
the presence of the damage [15,16], determination of the location
of damage [17], assessment of the size of damage [18,19], and pre-
diction of the remaining service life [20–22].

The standard method for two-dimensional source location,
known as the time of arrival (TOA) method [23], is discussed in
detail in the NDT handbook [24]. It has been widely used to locate
AE source in isotropic structures based on the detected arrival time
of signals at given sensors. The established TOA method relies on
the assumption of isotropic wave velocity in all directions and an
uninterrupted propagation path. This is certainly not the case in
realistic structures where geometric features such as holes, irregu-
lar boundaries, and other structural discontinuities will signifi-
cantly interrupt the propagation path and velocity [25,26].
Besides, the propagation distance, source amplitude, and wave dis-
persion behaviour make it difficult to determine the wave arrival
time with precision. Any errors in the determination of signal arri-
val time will result in a further loss of accuracy in the estimated
source locations. Except for the factors discussed above, the detec-
tion system also has an impact on localization accuracy. As the
exact damage positions could not be known until the impact hap-
pens, a standardized number and arrangement of sensors are not
available for all types of realistic structures [27]. Hence, an
approach for AE source location which can be applied to realistic
structures is still challenging. Several research papers have
reported strategies to improve the AE source location accuracy
for simple geometry structures in the laboratory level, including
the wave velocity-based method [28,29], the none wave velocity-
based method [30–32], the statistical method [33,34], and the
mapping method [35,36].

Artificial intelligent techniques have also been researched and
applied in SHM of complex systems, such as ANN [37,38], Random
Forest Regressor [39], and Generalized Regression [40]. Specifi-
cally, a well-trained ANN could be used to predict outcomes with-
out a good knowledge of explicit analytical functions. During the
training of the network, the characteristics inherent to the system
can be reproduced by a symbolic function relation established
between the input data and output data. Hence, ANN is very
promising to solve the above mentioned AE source location prob-

lems. The application of the artificial neural network (ANN) to AE
source location has been demonstrated to compensate for the
effects of acoustic anisotropy, boundary reflections, and obstacles
in the propagation path [41,42] due to its ability to handle complex
problems [43]. The practicality of combining ANN with the AE
technique for global monitoring of realistic structures is worth
investigating. However, due to limitations such as the lack of phys-
ical interpretation and standardized neural networks, the use of
ANN for SHM of realistic composite structures has not been fully
exploited. The training of the neural network is, to a large extent,
related to the configuration of the monitoring system, and the geo-
metric and physical features of the target structures. A vast major-
ity of the experimental database of AE testing is required to
interpret the signals in the right way and establish a well-trained
ANN neutral network for AE source location. Obtaining such data-
base through experiments is labour-intensive, time and economic
consuming.

In order to minimize the required experiments, an alternative
way is using finite element (FE) simulation to investigate the
underlying mechanism of AE detection [8,44]. Most of the existing
studies using the FE model for wave propagation simulation are
focused on flat plates and simple geometry. Referring to realistic
structures, FE analysis is mainly used to identify regions of possible
damage locations which can then be regarded as primary areas of
concern for structural monitoring [5]. To the best of the authors’
knowledge, research in using FE analysis to simulate wave propa-
gation within a realistic structure is rather limited [45]. Thus, as
shown in Fig. 1, a surrogate method for the source location of real-
istic structures is proposed in this paper by combing ANN with FE
analysis after experimental verification.

In this paper, acoustic emission source localization using Lamb
wave propagation simulation and ANN is performed on a steel-
concrete composite girder. Laboratory experiments are presented
to extract test signals at distinct positions using pencil break exci-
tation (Hsu-Nielsen source). Numerical modelling is conducted to
simulate Lamb wave propagation in the tested girder. After valida-
tion of the finite element model, modal analysis is performed with
a variety of onset time detection methods to identify different
wave modes from experimental and numerical results. The local-
ization results of the trained neural network are compared to the
classical localization method.

2. Experimental investigation

In order to evaluate the performance of the proposed ANN-
based technique against the classical TOA method, an experiment
using the AE technique for predicting pencil break excitation
(PBE) positions is conducted. The experiment is undertaken on
an I-girder (IPE 400), which is a part of a composite steel–concrete
girder from a real car park building, as shown in Fig. 2. The simply-

Fig. 1. The architecture of ANN structure for damage identification.
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supported 8.3 m long composite steel–concrete girder (Fig. 3) con-
sists of an IPE400 steel beam (h = 400 mm� b = 180mm� tw = 8.6-
mm) and 150 mm thick concrete slab with ComFlor95 profiled
sheeting. Although the wave propagation in the composite steel–
concrete girder will be considerably influenced by structural dis-
continuities and composite materials, they are not considered in
this study, which instead focuses upon the wave propagation
within the steel beam. The damages in the steel beam, including
fatigue, corrosion, and structural deterioration, are likely to occur
due to the heavy vehicle loads and chemical attack [46]. The appli-

cation of the AE technique on the composite girder is interesting to
perform in laboratory conditions to calibrate the response of in-
situ monitoring. During the experiment, it is assumed that the
specimen is free of any pre-stress conditions; hence, any changes
in the characteristics of the wave propagation in the steel beam
are consequently correlated with the Lamb wave excitation.

The classical Hsu-Nielsen source (pencil break excitation) is
used to generate crack-like AE signals on the surface of the steel
beam web [47]. For detecting AE signals, seven AE sensors of
150 kHz resonance frequency (R15a, PAC) are mounted on the sur-

Fig. 3. Dimension of the composite steel–concrete girder (a) Cross-section view and (b) Three-dimensional view.
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Fig. 2. Laboratory AE test of composite girder configuration.
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face of the beam web. The AE sensor and its frequency sensitivity
spectrum are shown in Fig. 4. All signals are detected using an
Express-8, PAC acquisition system with 40 dB pre-amplification,
42 dB threshold level, and 10 MSPS sampling rate (one sample
per 0.1 ms). To provide a suitable acoustic transmission, silicone
grease is used as a couplant. A Band Pass Filter of 20–400 kHz is
set in the AEwin acquisition software control, as the most signals
are expected in that range. The exact positions of the signals source
and sensors are denoted as ‘‘E” and ‘‘s” respectively. The sequence
and arrangement of exciters and sensors are distinguished by a
number. Each pencil break excitation (PBE) is repeated 3 times at
the same location on the beam. To assure the accuracy of the tests,
almost equal lengths of pencil leads (4.0 mm) are broken with the
same angle to the surface of the beam (Fig. 5(c)). Two types of sen-
sor layout are designed as shown in Fig. 5, namely the linear layout
of seven sensors (Fig. 5(a)) and the rectangular array of four sen-
sors (Fig. 5(b)). The aim of the linear array is to get the wave veloc-
ity for the source location in the rectangular array. As shown in

Fig. 5, sensors are placed as far away from each other as possible
in order to maximize the sensor coverage area, which spanned
6 m. The velocity anisotropy caused by propagation distance and
interrupted propagation path could be the main challenge for AE
source location in the steel beam.

According to the test results of the linear array (Fig. 5(a)), the
average wave propagation velocity is determined as 5219 m/s
based on the time difference and the distance between sensors
(1 m). Fig. 6 shows a typical example of the PBE signals generated
at E1 and captured by sensors s1 and s2 of Fig. 5(a). The arrival
time obtained from the AEwin system (tTOA,s1 and tTOA,s2) is defined
when the signal amplitude is firstly larger than the user-defined
threshold 42 dB (0.0125 v), as detailed in the scale-up view
(Fig. 6). After that, the TOA method [48] is applied to identify its
feasibility in the source localization of rectangular array (Fig. 5
(b)). The procedures of this method are described briefly below:
a) Construct a grid on the interesting area within which AE events
will be located. Each node position within the grid is regarded as a

(a)  

(b)

(c) Lead: 2H,  
diameter=0.5mm, 

length=4mm 
angle: 35~40 degree 

Fig. 5. Measurement setup including source location and sensor layout: Schematic view (a) Linear array (seven sensors); (b) Rectangular array (four sensors) and (c) Standard
pencil leads breaking.

Fig. 4. (a) R15a AE sensor; (b) Frequency sensitivity spectrum of the R15a AE sensor.
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‘‘guessed” location; b) the arrival time from any point in the grid to
each sensor is computed from the hypothetical positions and a
user-defined velocity model. It is suggested that the grid can be
made as fine as computationally possible; c) comparison of the
measured (Dti,mea) and calculated (Dti,calc) arrival time difference
is used to determine the point of best agreement, which involves
the lowest value of the objective function v as expressed in Eqs.
(1)–(3) [48]:

v ¼
X

ðDti;mea � Dti;calcÞ2 ð1Þ

Dti;mea ¼ ti � t1 ð2Þ

Dti;calc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi � XsÞ2 þ ðYi � YsÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1 � XsÞ2 þ ðY1 � YsÞ2

q� �
=v

ð3Þ

where: Xk and Yk are the coordinate, if the subscript is ‘‘S”, it denotes
the expected source position; otherwise, it means the location of
the ith sensors; v is the wave propagation speed used in the
calculations.

As each PBE test is repeated 3 times at the same location, the
average coordinate and error in X and Y are shown in Table 1. It
is noted that all errors in X coordinate are less than 1%, which is
satisfied compared to exact PBE positions. On the contrary, the
error in Y coordinate varies significantly from different AE sources.
The relative position of PBE and predicted source location are illus-
trated in Fig. 7. The accurately predicted source positions in the
middle section of the beam can be found in Fig. 7(b). In terms of
the PBE locations near to upper and lower flanges, see Fig. 7(a)
and (c), increasing errors are observed when the location of excita-
tion moves towards the center of the beam. For instance, the PBE
exerted at E7 is predicted at E9 (represented by the upward-

Table 1
The location results based TOA method.

PBE source
location

X coordinate of the source
(mm)

Predicted X coordinate
(mm)

Error
in X (%)

Y coordinate of the source
(mm)

Predicted Y coordinate
(mm)

Error in Y
(%)

E1 1000 984 0.20 0 2.4e-5 0.006
E2 1000 1002 0.02 120 131 2.80
E3 1000 983 0.20 240 235 1.29
E4 2000 1981 0.23 0 14 3.62
E5 2000 1996 0.04 120 127 1.83
E6 2000 1977 0.28 240 192 12.1
E7 3000 3008 0.10 0 240 60
E8 3000 3030 0.36 120 174 13.5
E9 3000 3009 0.10 240 2.4e-5 60
E10 4000 4023 0.27 0 240 60
E11 4000 4003 0.03 120 165 11.3
E12 4000 4005 0.06 240 2.4e-5 60
E13 5000 5049 0.59 0 2.4e-5 0.006
E14 5000 5078 0.94 120 110 2.53
E15 5000 5082 0.99 240 240 0
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Fig. 6. Response signal and threshold line at 42 dB at sensor 1 (red) and sensor 2 (blue), obtained from the PBE exerted at E1 in Fig. 5(a). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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pointing triangle) in Fig. 7(a). It is approved that the accuracy of
every source localization approach is limited by the experimental
uncertainty of the system [41], including the experimental condi-
tions, the acquisition system, and the changes in source position.
However, the unneglectable errors around 60% of calculated source
locations of E7, 9, 10, and 12 in Y coordinate cannot be explained
by the uncertainty analysis of source localization accuracy.

3. Lamb wave propagation simulation

3.1. Numerical modeling

A FE model is created to perform a Lamb wave propagation
within this complex structure using FE software ABAQUS, see
Fig. 3. Generally, there are two effective ways to simulate Lamb

Fig. 7. Calculated source location results (a) near to the upper flange; (b) in the middle section of the beam and (c) near to the lower flange.
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wave propagation using the FE model in plate-like structures,
which have been proven to be consistent with experimental results
based on reported studies. For the first method, both the target
structure and PZT transducers are modelled [14,49]. The disadvan-
tages of this method are computationally expensive and time-
consuming, which make it difficult to analyze complex and huge
three-dimensional geometries. In the second method, no actual
sensors are used to receive the wave signals [15,50]. The coupling
effect between the PZT transducer and the target structure is there-
fore not needed in this method. Mesh nodes in the finite element
model are used to mimic the excitation and sensor locations in cor-
responding experiments to save the computation time. The input
can be equivalently represented by applying the out-of-plane
force/displacement or uniform in-plane radial concentrated force.
In this study, an out-of-plane in tone-burst in direction -X [51]
(see Fig. 9) is used as the excitation, as Eq. (4), with the user-
defined central frequency fc and the number of cycles ncycle.

yðtÞ ¼ sinð2pf ctÞ 1� cos
2pf ct
ncycle

� �� �
ð4Þ

A predominate frequency of 150 kHz can be found after per-
forming Fast Fourier Transform (FFT) of PBE signals obtained dur-
ing experiments. Thus, a central frequency (fc) of the excitation
signal is selected as 150 kHz for the FE analysis of the wave
propagation.

Lamb waves consist of two basic wave modes: symmetric
modes (Sn) and anti-symmetric modes (An) due to its dispersive
and multi-modal properties. Fig. 8 shows the relationship between
group velocity and the product of plate thickness and the central
frequency of Lamb waves [52]. Multiple Lamb wave modes can
exist simultaneously when the frequency-thickness exceeds the
critical value (Point P at Fig. 8). In this study, only the fundamental
symmetric mode (S0) and anti-symmetric mode (A0) appears under
a cut-off product with a value 1.29 MHz-mm (with the central fre-
quency of 150 kHz and the web thickness of 8.6 mm), as the dash-
dot line shown in Fig. 8. The TOA can be determined as the arrival
time of the first received S0/A0 mode without the presence of
higher-order Lamb mode (n > 0). The group velocity of S0 mode
and A0 mode remains constant approximately as 5122 m/s and
3125 m/s, respectively.

The influence of cycle number was demonstrated by Kessler
et al. [54] stating that the narrower band-width and less dispersive
waves would be generated with increasing tone burst cycles. An
excitation with more cycles could produce signals with longer
duration resulting in overlapping between the propagating and
scattering wave packets [55] and increasing difficulties of damage
identification. To achieve an acceptable balance between band-
width and duration, as shown in Fig. 9, a 3.5 cycle tone burst Han-
ning Window with a center frequency fc of 150 kHz and amplitude
value of 1 in terms of a larger ratio between the span and height is
employed in this paper.

Numerical dispersion errors may occur when the FE model is
applied to time-harmonic wave propagation problems due to spa-
tial and time discretization. Previous studies have reported that the
dispersion error could be reduced by using the time increments
close to the stability limit and a finer mesh [56]. In order to ensure
sufficient temporal and spatial resolution, the mesh size is recom-
mended to be 1/10 wavelength [50]. Considering the numerical
accuracy and computational efficiency, the entire geometry is
meshed using different element size as 4 mm and 10 mm for steel
girder and other parts, respectively. In total, the FEM model con-
sisted of 4.3 million linear C3D8R hexahedral elements. The time
increment is defined smaller than the critical values calculated
from Eqs. (5) and (6) [57,58]. In this study, the time increment is
set as 0.1 ms to make FE-generated signals consistent with the
experimental facilities. Signals with a duration of 3000 ms are
recorded during simulations.

Dt < 1=ð20fmaxÞ ¼ 1=ð20� 150kHzÞ ¼ 0:333ls ð5Þ
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Dt < Lmin=c ¼ 4mm=5122m=s ¼ 0:791ls ð6Þ

where fmax is the central frequency of Lamb waves; Lmin is the min-
imum element size; and c is the fastest wave speed, which can be
obtained from the dispersive curves of Lamb wave as shown in
Fig. 8.

3.2. Experimental verification in the linear array

To verify the reliability of the FE model, the numerical results
under E1 to E7 in Fig. 5(a) are firstly compared to the experimental
results. The Lamb waves propagate in a circular-crested pattern
within the girder as shown in Fig. 10. The displacement of sensor
nodes is extracted in the direction along the ray path between exci-
tation and sensor nodes. The sensing voltage received by sensor 3
from both the FE simulation and the experiment is graphically
illustrated in Fig. 11. The results show that extensional wave mode
(S0) propagates faster than flexural wave mode (A0) and the ampli-
tude of S0 mode is lower than A0 mode (a small amplitude precur-
sor to the large flexural wave). When we observe two waveforms
from the view of wave packets, these two waveforms show a rea-
sonably good agreement. It is noted that the first received wave
packet based on the FE simulation is earlier than the experimental
result due to a perfectly smooth surface assumption in FE analysis.
A minor variation in amplitude is observed in some packets. This is
likely to be caused by the imperfections in the actual test speci-
men, such as surface roughness, geometrical imperfection, and
position of PZT sensors. These imperfections could result in higher
energy loss compared to the perfect FE model. Moreover, the dis-
placement of a node is used for the analysis rather than an actual
piezoelectric sensor in numerical modelling.

The arrival time and wave velocity are two key information
required to be extracted from numerical results for source localiza-
tion. Grosse [59] concluded that a typical PZT-sensor transforms
elastic motions of 1 picometer (pm) displacement into electrical
signals of 1 mV voltage. The relationship between voltage–time
curves obtained from AEwin acquisition system and displace-
ment–time curves acquired from the FE model can be established
by normalization regarding the maximum amplitude. Similar to
the threshold of voltage, the displacement threshold dthre can be
obtained acc. to Eq. (7):

dthre ¼ v threðdmax=vmaxÞ ð7Þ
where vthre means the threshold voltage set in AEwin system; dmax

and vmax are the maximum value of displacement from numerical
results and voltage from experimental results, respectively.

An example of the FE signals generated at E1 and obtained by
sensors 5 and 6 is depicted in Fig. 12. Numerical results can record
the complete information about the wave propagation instead of a
limited waveform length from AEwin system. In that case, the
wave velocity can be computed based on the time difference of
arrival (TDOA) and the time of arrival (TOA). The average velocities
using TDOA and TOA are 5240 m/s and 5266 m/s respectively,
which are comparable with the experimental results 5219 m/s. It
can thus be concluded that the simulated model is a suitable rep-
resentation of the experiment.

3.3. Discussion about AE source location in the rectangular array

With the accuracy of the FE model verified in Section 3.2, the
reason for ineffective source location in the rectangular array using
the TOA method can be figured out in conjunction with the Lamb
wave propagation simulation (Fig. 13). Numerical simulation of
Lamb wave propagation is performed under the tone-burst excita-
tion applied at E1 ~ E15 of Fig. 5(b). The Lamb wave packet induced
by the tone burst at the FE model is shown in Fig. 13(a). Taking the
excitation at E9 of the rectangular array (Fig. 13(d)) as an example,
sensor 2 or 4 are supposed to receive the arrived wave at first.
However, the wave arrives at sensor 1 firstly based on the experi-
mental and numerical results, which is different from the results
under the assumption of constant velocity. The accurate TOA and
wave propagation velocity in different directions are calculated
using the threshold displacement (dthre). The velocities from E9
to sensor 1 and sensor 2 are 5106 m/s and 5023 m/s, respectively.
The calculated velocity difference indicates that the sequence of
signals arriving is affected significantly by reflection. The reflection
caused by the lower flange has a stronger influence on the propa-
gation than the top flange because the position of the exciter is clo-

Fig. 10. Illustration of Lamb waves propagation in ABAQUS.
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ser to the bottom flange. In conclusion, the boundary reflection has
a strong influence on the scattering of the wave propagation path
before the signals reach sensors [60]. The geometrical relationship
between source and sensor also needs to be considered. Therefore,
the assumption of constant velocity is certainly not suitable for
source location in the I-girder. It can be concluded that the classical
TOA method could not make a reliable interpretation of the data
about acoustic emission signals.

4. TOA determination

4.1. Onset time detection methods

Accurate determination of the first arrival time of a signal is
important to the accuracy of the source location. As mentioned
before, the precision of onset time detection is easily influenced

by reflections or scattered waves caused by irregular boundaries.
TOA determined by the general user-defined threshold method is
strongly dependent on the choice of the selected threshold value.
Early triggering or missing true arrival time could occur with an
arbitrarily set threshold value. Over the past few decades, various
AE signal processing methods have been proposed for automatic
detection of TOA, such as the Hinkley criterion, cumulative energy,
power curve, and CWT-based binary map method. The following
sections will discuss the TOA determination methods used in this
paper.

4.1.1. Hinkley criterion
Grosse [59] developed a statistical method for onset time detec-

tion of AE signals based on the Hinkley criterion [61], as expressed
in Eq. (8):

S0i ¼ Si � i � d ¼
Xi

k¼0

R2
k � i � d ¼

Xi

k¼0

R2
k � i � SN

a � N ði ¼ 1 toNÞ

where S0 i represents the modified partial energy with the introduc-
tion of a negative trend d, so that the global minimum of S0 i is rep-
resented as the onset time; Si is the partial energy calculated by the
cumulative sum of i samples; Rk is the amplitude of kth sample
within the sample number i; SN is the sum of the total energy of
the signal with length N. The factor a is introduced to reduce a sys-
tematic delay of the global minimum with adding the negative
trend. It is noted that the parameter a influences the results a lot
(Fig. 14). The chosen value of a can be obtained by trial and error
tests.

4.1.2. Cumulative energy
Bennoch and Judd [62] developed an approach which is based

on the use of cumulative energy to determine the TOA of ultra-
high frequency (UHF) signals. The voltage waveform is converted
into a cumulative energy curve. The transit point is representative
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Fig. 13. Simulation of Lamb wave propagation in the girder.
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of the signal onset time (Fig. 15). A negative part was added to
make the changeover point more apparent:

EnegðnÞ ¼ EcðnÞ � n
En

N
¼

Xn

m¼0

s2ðmÞ � n
En

N

� �
ð9Þ

where Ec(n) is the cumulative energy of n samples using the voltage
waveform s(m); En is the total energy of the signal with the length of
N.

4.1.3. Power curve
A simplified method using the power of voltage vk2 was pro-

posed by Yang et. al [63]. Generally, the curve is normalized and
a user-defined threshold is selected to pick the point whose ampli-
tude is above the threshold. The determination of the threshold
value is based on the signal–noise ratio of the detected signals.
The threshold is suggested as 5% in most cases. If the signal is
noisy, it is supposed to be set as 10% or more (Fig. 16).

4.1.4. Continuous wavelet transform-based binary map
Bai et. al [64] utilized Continuous wavelet transform (CWT)

coefficients of a signal’s time–frequency response to obtain a grey-
scale image. A nonlinear digital filtering technique called Median
filter is then applied to minimize the presence of noise in the
image. The onset time detection is performed automatically using
Ostu’s method by transforming the greyscale image to a binary
map. The leading edge of the binary map can be identified as the
onset time (Fig. 17). It should be noted that the leftmost non-

zero pixel of the binary map is less obvious within heterogeneous
materials or complex structures.

4.2. TOA results

The PBE signals received at sensor 1 and sensor 2 under E1 of
the linear array (Fig. 5(a)) is illustrated in the examples. The
Short-time Fourier transform (STFT) is calculated to generate a
time–frequency representation of signals. The parameters corre-
sponding to different methods are shown in Table 2. Figs. 18 and
19 show the distribution of TOA of the signals obtained from
experimental results and FE simulation, respectively. The line in
different colours indicates the detected TOA using various meth-
ods. The symmetric mode (S0) and anti-symmetric mode (A0) are
clearly detected in Figs. 18(c)-(d) and 19(c)-(d). Generally, the S0
and A0 are generated at the same time and separate gradually
due to their velocity difference [65]. As the position of sensor 1 is
in close approximation to the excitation, the separation between
these wave modes is not visible. Then, a noticeable separation
can be observed of the signal at sensor 2 with sufficient source-
to-sensor distance.

The relationship between TOA and source-to-sensor distance
based on the experimental and FE results of the signals excited

Fig. 14. Original signal and partial energy trend with different a.
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at E1 in Fig. 5(a) is depicted in Fig. 20. Wave propagation velocities
related to each onset detection method are calculated by the ratio
of source-to-sensor distance to TOA, as listed in Table 2. According
to the wave dispersion curves of steel [52], the theoretical veloci-
ties of the S0 mode and A0 mode at 150 kHz are around 5000 m/
s and 3000 m/s, respectively. In comparison to the theoretical
velocities of wave modes, these onset detection methods can be
categorized into two groups as shown in Table 3.

The Hinkley criterion is recommended because of its ability to
detect onset times of S0 wave mode [66,67]. Fig. 21 shows exam-
ples of comparison results of TDOA using the Hinkley criterion
between the PBE tests and the simulation of the rectangular array.
This good agreement demonstrates the reliability of the FE model
and this onset time detection method further.

5. ANN-based source localization method

5.1. ANN development and training

The architecture of the network depends mainly on the avail-
able amount of data, which is established by simulation of the ver-

ified FE model to replace the need for a large number of
experiments. A similar rectangular area to the experiments of
Fig. 5(b) is used as the coordinate system of the source location.
Fig. 22 illustrates the position of the tested area relative to the steel
beam. Each acoustic signal is excited at 171 junction points pro-
duced by 9 � 19 grid lines. Additionally, five types of sensor lay-
outs with 14 sensors are designed to find the influence of sensor
arrangement on source location accuracy, as shown in Fig. 22
and Table 4. To ensure consistency and comparability between
the TOA method and ANN-based method, the TDOA determined
by Hinkley criterion method is used as the input database of
ANN. It is noted that not all pair-wise combinations of sensors
are used for source location, e.g. the case of four sensors creates
three sensor pairs 1–2, 1–3, 1–4.

In this study, a multilayer feedforward ANN under supervision
of an error-backpropagation (BP) algorithm is used for training.
As shown in Fig. 23, the network consists of one input layer with
an (n-1) � m matrix of TDOA symbolizing a total of m AE sources
and n sensors, two hidden processing layers and two output layers
with a 2 � m matrix of the X and Y coordinate of m AE sources. In
order to avoid under-fitting and over-fitting, the hidden layers

Table 2
Results of onset time detection methods.

Method Parameter Value Velocity-test (m/s) Velocity-FE (m/s)

Threshold Threshold level 12.6mV (42dB) 5219 5203
Hinkely Criterion a 160 5202 5210
Cumulative Energy – – 3214 2993
Power curve Threshold level 10% 3264 3000
CWT-based binary map Mother wavelet Morse 3202 2996

Fig. 18. Onset time detection of the signals obtained from experimental results: signals at (a) sensor 1 and (b) sensor 2; Amplitude spectrogram of signals at (c) sensor 1 and
(d) sensor 2.
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with 20 (U1) � 10 (U2) neurons are chosen. The input dataset is
usually randomly subdivided into the training set, validation set
and test set with default ratios. A tip to improve the quality of
the neural network and avoid overfitting is using specific indices
to divide the dataset. The basic dataset (171 AE sources) is divided
into 151 training points, 10 validation points and 10 test points.
The performance of the model can be evaluated on the basis of
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Table 3
The classification of onset detection methods.

Methods for detecting S0 modes Methods for detecting A0 modes

Hinkley Criterion Cumulative Energy
Power curve
CWT-based binary map
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the R2 (root-mean-square error (RMSE)) and the average deviation
of the predicted output data to the known targets.

5.2. Comparison between TOA- and ANN-based source localization
method

The source localization is carried out using the TOA method
under Case1 at first. The source location quality using the classical
TOA method along X and Y coordinate is displayed in Fig. 24(a) and
(b) respectively. The spatial deviation between the position of exci-
tation and the predicted position is represented by the color range
in the image. Although only 171 excitations are analyzed, the error

color map is acquired through thin-plate spline interpolation
between the measurement with a smoothing parameter of 0.01.
The color range is set from 0 to 15 cm to denote source localization
error.

From Fig. 24(a) and (b), the localized Hsu-Nielsen source posi-
tions have an average deviation of 0.03 ± 3.3 cm in X coordinate
and 0.06 ± 13.5 cm in Y coordinate. Considering the length of
8.3 m and height of 0.4 m of the I-shaped girder, the errors in X
coordinate is considered acceptable as the maximum error is
10.8 cm (1.3% of the length of the girder). On the contrary, there
is a larger deviation in the Y coordinate close to the flange at the
center of the beam as shown in Fig. 22(b). The maximum error of
0.24 m is equivalent to 60% of the height of the girder, which is
identical to the experimental results illustrated in Section 2.

For the same input data, the source location results using the
neural network are shown in Fig. 24(c) and (d) with the same con-
figurations under Case1. The range of error colour bar is selected to
be identical. The maximum error in X coordinate decreases signif-
icantly from 10 cm with the TOA method to 2 cm with the ANN-
base method. Additionally, the accuracy of the calculated Y coordi-
nate is improved considerably with the mean source localization
error of 0.06 ± 3.1 cm.

Table 4
The combination of sensors layout.

Case Number of sensors Combination

1 4 s1-s4
2 6 s1-s4 + s13-s14
3 8 s1-s8
4 10 s1-s8 + s9,s12
5 12 s1-s12
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5.3. Sensor arrangement

Considering the acceptable accuracy of source location in X
coordinate, only the predicted source location results in Y coordi-
nate under different cases are discussed. Fig. 25 depicts the com-
parison of error distribution in Y coordinate between the TOA
method and ANN-based method. The error in Y coordinate is calcu-
lated as the ratio of error to the width of the girder. The results
show that the improvement of the accuracy of predicting source
location is achieved with the increasing number of sensors. How-
ever, the efficiency of improvement is small when the number of
sensors is larger than 8 (from Case3 to Case5).

The detailed information of error distribution is shown in
Fig. 26. From Fig. 26(a), even around 70% dataset obtained using
the TOA method has an error of less than 10% in Case5, the largest
error is up to 50%. Among the dataset using ANN-based method,
more than 80% for Case1, 82% for Case2, 90% for Case3, 95% for
Case4 and 99% for Case5 has an error within 10% as seen in
Fig. 26(b), and the largest error is 22%, 14%, 15%, 16% 13% for
Case1-5 respectively. The results show that the TOA method is less
accurate than the ANN-based method under all investigated cases.
ANN-based method offers significant improvements in the range of
21% to 41% on source localization accuracy. The effects including
dispersion and boundary reflection can be effectively improved
in the neural-network-based method.

Fig. 23. Source localization method based on ANN.
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In addition, 12 virtual PBE tests (position is shown in Fig. 27(a))
are performed using FE analysis to obtain the input data for testing
the trained networks. The error of outputs is used to quantify the
reliability of the networks and the predicted results are illustrated
in Fig. 27. In terms of Y coordinate, all trained networks can predict
source location within the error limits of 10% from Fig. 27(b). The
prediction accuracy is also dependent on the layout of the sensors.
Based on the results showed in this paper, TOA method could not
guarantee the prediction accuracy and ANN-based method could
identify the damage (structural change/impact) even with a less
number of sensors for the I-shape steel girder investigated in this
paper.

6. Conclusions

The main objective of this study is to investigate an alternative
and reliable localization method for global monitoring of life-size
complex structures based on Artificial Neural Networks and Lamb
Wave propagation simulation. Therefore, experimental and
numerical analyses of an I-shaped composite steel–concrete girder
are conducted. Based on the identical input data, a quantitative

comparison of the ANN-based method and the TOA method is car-
ried out. From the study, the following conclusions are drawn:

1. The feasibility of the TOA method for Hsu-Nielsen source loca-
tion is identified in the tested I-girder. Although all the errors
along the length direction of the girder are within 1%, the errors
along height direction vary significantly from 0% to 60%. The
possible sources of errors consist of the assumption of the con-
stant velocity, TOA determined by user-defined threshold, and
boundary reflection in the propagation path as shown by FE
simulations.

2. The Lamb wave propagation induced from PBE is correctly sim-
ulated by the Finite Element Method using the excitation signal
modulated as a 3.5 cycle tone burst with center frequency
150 kHz. A good agreement on the received signals, TOA deter-
mination, and the wave speed calculation is observed between
PBE experiments and FE results. The FE model is proven to be a
reliable alternative to the experiment.

3. Four onset time detection methods including the Hinkley crite-
rion, cumulative energy, power curve, and CWT-based binary
map method are discussed to overcome the limitation of the
user-defined threshold method. The results show that different
AE signal onset detection techniques correspond to different
wave propagation modes, which is important to be considered
for adequate damage type identification. Hinkley criterion is
recommended as S0 is more easily distinguishable than A0.

4. The proposed ANN-based method could improve the accuracy
of source localization significantly compared with the classical
TOA method. The improvements of over 20% are seen in all
cases with improvements up to 40% in some cases. All the
trained networks can predict source location within the error
limits of 10%. This proves the capability of using the ANN-
based method to provide improved location prediction in the
composite girder.

Although the presented method is validated by the specific
steel–concrete composite girder, using the ANN-based method
and numerical simulation for source location is expected to be reli-
able for source location in any real (composite) structures. The pro-
posed method could also be used in the future for the design and
optimization of the AE monitoring in realistic structures. Future
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study is planned to focus on more quantitative AE analysis and in-
depth investigations into three-dimensional source location of
structures with complex geometry and actual damages.

CRediT authorship contribution statement

Lu Cheng: Formal analysis, Methodology, Investigation, Data
curation, Writing - original draft. Haohui Xin: Conceptualization,
Investigation, Writing - review & editing. Roger M. Groves: Writ-
ing - review & editing.Milan Veljkovic:Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The first author wishes to express her gratitude for the financial
support of the CSC Scholarship Council under grant number
201806060122.

References

[1] F. Ellyin, H. El-Kadi, A fatigue failure criterion for fiber reinforced composite
laminae, Compos. Struct. 15 (1) (1990) 61–74.

[2] A.T. Green, C.S. Lockman, R.K. Steele, Acoustic verification of structural
integrity of polaris chambers, Mod. Plast. 41 (11) (1964) 137–139.

[3] Q. Feng, Q. Kong, L. Huo, G. Song, Crack detection and leakage monitoring on
reinforced concrete pipe, Smart Mater. Struct. 24 (11) (2015) 115020.

[4] H. Xin, L. Cheng, R. Diender, M. Veljkovic, Fracture acoustic emission signals
identification of stay cables in bridge engineering application using deep
transfer learning and wavelet analysis, Adv. Bridg. Eng. 1 (1) (2020) 1–16.

[5] K.M. Holford, A.W. Davies, R. Pullin, D.C. Carter, Damage location in steel
bridges by acoustic emission, J. Intell. Mater. Syst. Struct. 12 (8) (2001) 567–
576.

[6] M.G. Baxter, R. Pullin, K.M. Holford, S.L. Evans, Delta T source location for
acoustic emission, Mech. Syst. Sig. Process. 21 (3) (2007) 1512–1520.

[7] I. Park, Y. Jun, U. Lee, Lamb wave mode decomposition for structural health
monitoring, Wave Motion 51 (2) (2014) 335–347.

[8] Z. Wang, P. Qiao, B. Shi, Application of soft-thresholding on the decomposed
Lamb wave signals for damage detection of plate-like structures, Measurement
88 (2016) 417–427.

[9] P. Kudela, M. Radzienski, W. Ostachowicz, Z. Yang, Structural Health
Monitoring system based on a concept of Lamb wave focusing by the
piezoelectric array, Mech. Syst. Sig. Process. 108 (2018) 21–32.

[10] M. Abbas, M. Shafiee, Structural health monitoring (SHM) and determination
of surface defects in large metallic structures using ultrasonic guided waves,
Sensors. 18 (11) (2018) 3958.

[11] J.L. Rose, A baseline and vision of ultrasonic guided wave inspection potential,
J. Press. Vessel Technol. Trans. ASME. 124 (3) (2002) 273–282.

[12] M.A.A. Aldahdooh, N.M. Bunnori, M.A. Megat Johari, Damage evaluation of
reinforced concrete beams with varying thickness using the acoustic emission
technique, Constr. Build. Mater. 44 (2013) 812–821.

[13] C. Lee, S. Park, J.E. Bolander, S. Pyo, Monitoring the hardening process of ultra
high performance concrete using decomposed modes of guided waves, Constr.
Build. Mater. 163 (2018) 267–276.

[14] Z.S. Tang, Y.Y. Lim, S.T. Smith, I. Izadgoshasb, Development of analytical and
numerical models for predicting the mechanical properties of structural
adhesives under curing using the PZT-based wave propagation technique,
Mech. Syst. Sig. Process. 128 (2019) 172–190.

[15] V. Ewald, R.M. Groves, R. Benedictus, Transducer Placement Option of Lamb
Wave SHM System for Hotspot Damage Monitoring, Aerospace. 5 (2) (2018)
39.

[16] C.-T. Ng, H. Mohseni, H.-F. Lam, Debonding detection in CFRP-retrofitted
reinforced concrete structures using nonlinear Rayleigh wave, Mech. Syst. Sig.
Process. 125 (2019) 245–256.

[17] O. Yapar, P.K. Basu, P. Volgyesi, A. Ledeczi, Structural health monitoring of
bridges with piezoelectric AE sensors, Eng. Fail. Anal. 56 (2015) 150–169.

[18] D. Li, K.S.C. Kuang, C.G. Koh, Fatigue crack sizing in rail steel using crack
closure-induced acoustic emission waves, Meas. Sci. Technol. 28 (6) (2017)
065601.

0 1 2 3 4 5 6
0.3

0.2

0.1

0.0

-0.1

Case1      Case2      Case3       Case4      Case5      Exact position

Y
-c

oo
rd

in
at

e 
of

 so
ur

ce
 (m

)

X-coordinate of source (m)

Case1 Case2 Case3 Case4 Case5
-20

-15

-10

-5

0

5

10

15

20

Er
ro

r i
n 

Y
 (%

)

 10%~90%
 Range within 1.5IQR
 Median Line

(a) 

(b)
Fig. 27. Testing results of trained networks under all cases.
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