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Summary

In large-scale ML, data size becomes a critical variable, especially in the context of
large companies, where models already exist and are hard to change and fine-tune.
Time to market and model quality are essential metrics, thus looking for ways to select,
prune and augment the input data while treating the model as a black box can speed
up the process from raw data to productionized model.

Datasets can have thousands of features and many redundant/duplicate samples,
for various business logic reasons. In some particular ML flows, it might be that only a
subset of them provide most of the input to the final accuracy. Also, looking into ways
to provide insights on what data points are the most meaningful can help engineers
collect more relevant samples, or focus their attention on specific parts of the data
distribution.
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1
Introduction

As the research in AI and data blossomed in the 21st century, by 2023 data is the
new gold and dictates most of our decisions. This can come in many shapes and vari-
ants, from autonomous cars to language models that accurately answer questions
with relevant information [33]. Data collection has a pace like never before [20], and
the need to transform it into predictive models and insightful analyses is more and
more relevant. Big companies like Google, Meta, Microsoft, and Apple produce enor-
mous amounts of data [18] [20], together with a multitude of startups, both in the data
industry, as well as in IoT, Crypto, or Fintech. Most of the companies take data driven
decisions, from what projects to prioritize internally, to what products to recommend
and what ads to show to the end user. The need for data driven product decisions is
so high that the quality of the data is becoming of paramount importance [11].

Data quality is extremely important in today’s data-driven world. It affects every-
thing from business decisions and strategic planning to customer satisfaction and reg-
ulatory compliance. Poor quality data can lead to incorrect conclusions, inefficient
processes, loss of revenue and missed opportunities. On the other hand, high-quality
data is reliable, accurate, and relevant, which enables organizations to make informed
decisions, improve operations, and drive innovation.

Ensuring data quality is a continuous process that involves identifying, correcting,
and preventing errors in data. It requires having proper data governance and man-
agement policies in place, as well as implementing data quality checks and controls.
Organizations need to invest in data quality tools and technologies to automate and
streamline these processes, and they need to train their employees on how to handle
and use data responsibly. By prioritizing data quality, organizations can maximize the
value of their data assets and gain a competitive advantage in their industry. On top of
this, in the context of machine learning, automatic data selection and data engineering
steps need to be put in place so that the systems are able to learn and improve by
themselves, without human intervention, which is time consuming.

On the other hand, continuously collecting data can lead to enormous databases
and overloaded warehouses. An online study shows that in 2021, humans were gen-
erating 1134 Trillion MBs of data on a daily basis, and this quantity is ever-growing
with the advancements in the AI and IoT fields. But this data alone does not provide
much business value, unless analyzed and transformed into useful modeling tools,
such as Machine Learning models, making predictions and serving users worldwide.
With this mention, data quality is also an important metric to quantify. Quantity would
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be nothing without quality, and the more the data grows, the more there is a need to
filter it out and aim to extract the signal from the noise.

In recent years, machine learning has become an increasingly important tool for
analyzing and predicting outcomes based on data. However, the success of machine
learning models depends on the quality and relevance of the data they are trained
on. Therefore, the process of selecting and preparing data for machine learning is
crucial for obtaining accurate and reliable results. Also, in the process of creating a
high-quality machine learning model, there is a lot of experimentation involved, which
translates to a large number of computing hours that often don’t have a direct correla-
tion to the quality of the final result.

In this thesis, our goal is to minimize the experimentation overhead, while maximiz-
ing the quality of the result. The main optimizations we plan to look into are dataset
selection (removing data in a consistent and replicable manner, so useless information
does not slow down the process) and using proxy models to help prune the dataset
(using a fast learner instead of a more robust neural network that takes more time to
train). We use the classification niche since it is a very common scenario (for both
simple datasets, as well as more complex usecases such as image recognition and
speech detection) and it’s also highly structured, both in the shape of the data and in
the expected output of the model. Further, we discuss the importance of data selection
in machine learning and the various factors that need to be considered when choosing
data for training and testing models. We also explore the various techniques and best
practices that can be used to improve the quality and suitability of data for machine
learning purposes. By understanding the importance of data selection and taking a
careful and systematic approach to selecting and preparing data, organizations can
ensure that their machine-learning models are able to deliver the most accurate and
valuable insights.

The thesis is structured as follows: in Chapter 2, we formalize the goals and prob-
lems we have to overcome for each research area. Then, in Chapter 3 we do a lit-
erature survey of related work on the topics we want to handle, summarising papers
and internet publications on the subject at hand. In Chapter 4 we do an in depth and
replicable survey of the recent literature on the data pruning and feature selection fiels.
Then, in Section 5 we advance the state of the art in feature selection by finding trade-
offs between feature selection performance and total runtime. Then, in Chapter 6 we
conclude and summarise the main findings of the thesis.

The work in this thesis presents significant contributions to the field of large-scale
machine learning, particularly in minimizing experimental overhead through innovative
dataset selection, ensemble feature attention, and finding trade-offs between feature
selection algorithm runtime and performance. Key results include the development of
efficient dataset pruning techniques, the effective use of sequential attention, and in-
sights into reducing data redundancy. These findings not only demonstrate significant
advancements in reducing the time and computational resources required for machine
learning iterations but also enhance the quality and interpretability of resulting models.
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The implications of this research are profound, particularly for data-driven companies
like Google, who stand to benefit from these optimized approaches. The methodolo-
gies and insights presented here pave the way for more efficient, data-driven decision-
making processes, marking a notable contribution to the ever-evolving landscape of
artificial intelligence and data analysis. This thesis aims to provide an incremental ap-
proach to finding better feature selection solutions, guided by experiments and state-
of-the-art solutions, offering a comprehensive understanding of the research journey
and its substantial impact on the field.



2
Research Questions and Problems

This chapter introduces the main research questions of our study, along with the po-
tential methods we consider for answering them. Each section focuses on a different
question, from improving dataset pruning to exploring the use of fast proxy models,
and examining the impact of up-weighting underrepresented classes. We also look
into reducing data redundancy and enhancing data collection methods. These ques-
tions are the driving force behind our research, and this chapter lays out the initial
steps we take to address them. Through these sections, you’ll see the challenges we
face and the innovative approaches we’re exploring in machine learning.

2.1. Dataset Pruning
RQ1: What is an efficient way to prune a dataset that minimizes the time it takes to
train the model as a black box, while maximizing the accuracy of the output, in relation
to the same accuracy that would result from training the model with the full dataset?

• Approach 1: Find a way to remove features that would not reduce the quality.
• Approach 2: Find a way to remove/cluster samples that would not reduce the
quality.

2.2. Using fast proxy models
RQ2: Can the use of a fast learning proxymodel help with deciding what data selection
mechanisms to apply? What is the best way tominimize the experimentation overhead
by approximating the full pipeline with a simpler model and a subset of the full dataset?

• Approach 3: Find a model that trains fast and is able to be a proxy for the more
complex model (random forest for example).

2.3. Data redundancy and collection feedback
RQ3: What are the common data redundancy issues in datasets? How can an initial
experiment on the dataset provide insights into what data is the most representative
and what samples should be removed/ what data points should be additionally col-
lected?

• Approach 4: Find what classes to collect data from, that would increase the
quality of the model.

• Approach 5: Find what classes are redundant in the dataset, whose removal
keeps the model quality the same.

4



2.3. Data redundancy and collection feedback 5

Data pruning and dataset selection are important techniques in the field of machine
learning, as they can help improve the performance and efficiency of a model. One
approach to data pruning is to remove irrelevant or redundant data from the dataset.
This can be done by using feature selection algorithms, which identify the most infor-
mative features of the data and remove the rest. This can be useful for reducing the
dimensionality of the data, which can improve the performance of the model and de-
crease the amount of data that needs to be processed, and the training time required
until convergence. However, this approach also has the potential to remove important
features that are necessary for the model to make accurate predictions, leading to a
model that might not have the ability to generalize.

Another approach to data pruning is to remove outliers from the dataset. Outliers
are data points that are significantly different from the rest of the data and can have a
negative impact on the performance of the model. This can be done by using outlier
detection algorithms, which identify data points that are outside of a specified range
or distribution. Removing outliers can improve the performance of the model, but, as
before, can hinder the ability of the model to be flexible and generalize.

A third approach is to just use a subset of the data for training and testing. One
common way of selecting a subset of data is to use a random sampling method, where
data points are chosen at random from the dataset. This approach is quick and easy
to implement, but it has the potential to select a biased subset of data that does not ac-
curately represent the entire dataset. Another approach is to use stratified sampling,
where data points are chosen to ensure that the proportion of different classes in the
subset is similar to the proportion in the entire dataset. This approach can help reduce
the bias of the subset of data, but it also has the potential to remove important data
points that are necessary for the model to make accurate predictions.

This being said, the goal is to reduce the dataset size, both in terms of data points
and number of features, but doing so in a way that still allows the model to generalize
and learn from meaningful samples. We can look into 2 main different types of prun-
ing: depth (drop samples) and width (drop features). For the first one, we can take
K random subsets of the original dataset, keeping the distribution unchanged, and
training a fast AutoML model on each. Given the results, we can decide what classes
can be downsampled to reduce dataset size, and what classes should be upsampled
to increase accuracy. The second type of pruning comes as a result of the analysis
of the first. Looking into the activation of each feature, we can decide which features
provide the most input to the model and what features should be dropped in the learn-
ing process.



3
Background

3.1. Literature Survey
As the general topics of data quality and machine learning have been on the rise in the
last decade, we decided to start our research with a comprehensive literature survey,
to understand the current state of the art when it comes to reducing the size of the
data that has to be modeled while keeping the quality of the model high. We looked
into papers on feature selection, dataset pruning, machine learning experimentation
time minimization, and data collection feedback.

3.1.1. Data Quality and Dataset Selection
Some pieces of recent research on data quality point out more or less the same prob-
lems in data [19]. Those are data incompleteness, inconsistency, inaccuracy, dupli-
cation, and data points that are not up to date. Also, various research papers point
out that data quality issues can come from both data collection (wrongly collected,
inaccurate human input, not calibrated sensors, etc) and from the data domain itself
(representation spaces that are hard to model, lots of redundant variables, etc). Our
work will focus mostly on the second, namely, how can we deal with existing data,
extract the signal from the noise, and reduce the size of the dataset that needs to be
modeled as a consequence.

Also, [19] points out that companies underestimate the problem of data quality,
and this fires back later, the consequences ranging from ”significant to catastrophic”,
with results in failing projects, loss of revenue, and increased customer churn. This
is especially true for businesses where data is a major player in the business model,
where customer products are built on the data acquired. Once more, the issue of
data quality in data-driven businesses is worth looking into. Furthermore, the same
paper points out that the data in a business scenario might be very different than toy
datasets used in research, which might have a common distribution and potentially
known optimizations. This adds on the highly volatile field of data quality, which can
change very frequently due to the rapidly moving AI/Data startup ecosystem.

They also mention using principal component analysis as a feature selection tech-
nique. Principal component analysis (PCA) is a statistical technique used to reduce
the dimensionality of a dataset. It does this by finding a new set of linearly uncorrelated
variables, called principal components, which capture the most important patterns in
the data. These principal components are a linear combination of the original vari-
ables and are ranked in order of importance based on the amount of variation they
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3.1. Literature Survey 7

explain in the data [2]. They also mention Exploratory Factor Analysis (EFA), and
state that it’s equivalent to PCA in terms of the outcome, but they are different in how
they accomplish their functions.

”The 10% You Don’t Need” [9] offers an interesting insight into how to reduce the
depth of the dataset while keeping the same dimension. They use Agglomerative
Clustering, looking at a subsample of a dataset that performs better, rather than a
subsample of the features. They set a predefined target (for example 90% of the ini-
tial dataset) and run the clustering algorithm until the target is reached. They ran an
experiment on ImageNet, and the finding was that by removing 10%of similar samples,
the ability of the model to generalize increased. The base of their research is papers
that look into random dataset sampling, and iterative removal of small batches of the
dataset while looking into the performance gains of the resulting model. While those
approaches might work, the goal is to find a method that also minimizes the experi-
mentation time, while keeping the dataset small and relevant. Looking specifically at
their ImageNet study, they use the last layer of the model trained on the whole dataset
as the embedding for Agglomerative Clustering. Although a good step in the process
of finding the minimal relevant dataset, there is still a need of training the model on the
whole dataset: ”To find redundancies in datasets, we look at the semantic space of
a pre-trained model trained on the full dataset.”. Although a good point for research,
one might ask about how this is relevant in a real, high-volume scenario, where re-
searchers and engineers try to avoid using the whole dataset for training. Removing
the 10% You don’t need is an important improvement to a Machine Learning flow, and
one question worth answering is how can this be achieved by avoiding training on the
whole dataset during the process.

In their paper, Taleb et at. [43] describe a big-data generic framework for con-
tinuous quality management, and look into best practices from the inception of the
system and continuously through development. They define 4 steps in the data col-
lection pipeline: Generation, Acquisition, Storage, and Analysis. While analysis is
something we are planning to touch on through the research questions above, our
thesis aims to add a 5th step to this list: Data Enhancement. This can mean both fea-
ture engineering and data selection. Also, they define the big data 3V characteristics:
Volume, Variety, and Velocity. In our approach, we plan to create a robust method for
enhancing datasets keeping in mind all 3 dimensions. Volume makes the data hard to
analyze at once, Variety makes it hard for a one size fits all solution to cover all edge
cases, and Velocity makes it hard for comprehensive algorithms to keep up with the
changes in the data.

In a study at Meta, Sorscher et al. [41] worked on developing a data pruning al-
gorithm, that is based on a self-supervised metric, and argues that finding new data
pruning metrics might provide a way to better neural scaling laws. They emphasize
that nowadays, in order to change the accuracy metric of huge models even with just
one percentage, the amount of data required is significant, and the higher you want
the metric to go, the more data you need to feed in the model, which only makes the
problem worse, since, as they state, many training examples are highly redundant.
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One of the initial findings of their paper is if the initial data is abundant, only the hard
examples need to be kept, while if the initial data is scarce, only the easy examples
should be kept. One of the studies they refer to, [32], trains small ensembles, and
decides whether a training sample is easy or hard by looking at the error for each data
point in the shallow trained ensembles. Another study, [45], measures how easy (or
hard) a model forgets some samples during the learning flow, and uses the metric in
the data pruning step.

The study keeps emphasizing the link between the best pruning strategy and the
amount of initial data. In this thesis, the main focus is providing an efficient data
pruning strategy at a large scale, especially for enterprise and open source datasets.
They also point out that classical randomly selected data performs poorly, especially
because random data samples provide no additional information to the model, thus
being redundant.

Sorscher et al. [41] also touch upon data pruning in the context of pre-trained mod-
els, mentioning that when it comes to big image/language models, having the model
pretrained on a benchmark dataset (CIFAR-10, ImageNet) allows for more intensive
data pruning in a transfer learning scenario. Also, they mention that ImageNet might
be an isolated case when it comes to the amount of data that can be pruned, since the
images inside have already been highly curated. In the context of the thesis, transfer
learning is a common topic, since big companies don’t train models from scratch on
new data. Thus, a strategy for progressively pruning more and more data with each
model training can be discussed. Given that the new data the model is being adjusted
on is expected to have a similar distribution, using only a small representative subset
can speed up the process.

3.1.2. Approximated Pipeline Execution using Proxy Models
Speed is an important factor in the training of machine learning models. The faster a
model can be trained, the more quickly it can be deployed and put to use in real-world
applications. In addition, faster training times also allow for more iterations and exper-
imentation with different model architectures, which can lead to better performance
and more accurate predictions. This is particularly important for large-scale projects,
where the amount of data being processed can be significant and traditional training
methods may be too slow to be practical.

Another important aspect of speed in machine learning model training is the ability
to quickly adapt to new data and changing conditions. In many real-world applications,
the data being used for training and prediction is constantly evolving, andmodels need
to be able to adapt to these changes in order to remain accurate and effective. Faster
training times make it possible to retrain models more frequently, which can help en-
sure that they are always up-to-date and able to make accurate predictions based on
the latest data. This is crucial in fields such as finance, healthcare, and transportation,
where the ability to quickly respond to changing conditions can have a significant im-
pact on overall performance.
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In their paper where they look into diagnosing network performance issues in client
devices, Widanapathirana et al. [50] look into different machine learning model types,
and use the following image 3.1 to draw conclusions on what model is the most ef-
ficient. Based on it, there is a substantial difference between using neural networks
and using decision trees, especially when it comes to the speed of learning. In our the-
sis, we look into the usage of proxy models like decision trees to create an alternative
machine learning pipeline, that would allow us to experiment with different data selec-
tion/transformation methods, without paying the price of a slow neural network. For
the purpose of the thesis, we can easily conclude that SVMs and Neural Networks are
the best when it comes to prediction quality, while Decision Trees are the best when
it comes to speed of experimentation. Given this, Decision Trees/Random Forests
might be a good alternative as a proxy model for quick experimentations on various
data selection techniques.

Figure 3.1: Comparison of Machine Learning Algorithms

In their paper, Paul et al [32] have the same goal as with the rest of the previous
studies, removing as many redundant data points from the dataset, without observing
drops in accuracy or model quality. They do so by using information from the model
itself, after a brief period of training (enough to have relevant metrics, but not long
enough to be equivalent to training the model on the full dataset). Although this is not
an example of using a proxy model, a similar outcome can be reached by limiting the
training time on a complex model.
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They also stress the fact that more and more in the last decade people have tried
to increase machine learning model accuracies by using overparametrized models
and ever larger datasets. Trying to overcome this and lower experimentation time,
they use the information in gradient norms after a few epochs of training on the same
model as the final one. This metric helps them in ordering the samples by importance
and difficulty and iteratively removing less important samples from the dataset. They
find out that very early in training, redundant data can be identified by partial forgetting
scores (how often a sample is learned and then forgotten). Based on that, samples
that are easily forgotten in a few epochs are labeled as ”hard”, while sample that the
model still classifies correctly as deemed ”simple”.

They run experiments with multiple pruning techniques over multiple datasets. Em-
pirically, looking at the L2 norm of each sample early in the training flow and using
forget scores performs the best on datasets like CIFAR10, CINIC10 and CIFAR100,
showing that even removing 40% of some datasets does not drop final accuracy com-
pared to a model trained on the full set of samples. In the context of the thesis, this
work can be taken one step further, by combining forgetting scores with fast proxy
models. Having this information, one can proceed and use only a subset of the sam-
ples, ordered by importance, in order to decrease the training load.

In their paper, Coleman et al. [14] look exactly into this. They use selection via
proxy, which means using a less complex model for the data selection, and only train
the actual model on the selected dataset. They explore this heuristic in the context of
actively learning a representative dataset, and in core-set selection (like an algebraic
basis but for a large dataset). They achieve up to 7% improvements in runtime by
using a shallower model for ImageNet, and a 41.0% speed-up on the Amazon Review
Polarity dataset. The authors also point out that significant amounts of time are spent
on improving the model with a relatively small percentage.

3.1.3. Data Collection Feedback
Feedback loops are a very important element in machine learning flows. When it
comes to large scale machine learning, using the feedback to improve the product
is essential since in the real world many variables can change fast, from shifting dis-
tributions to changes in consumer behavior. However, as much as improving upon
feedback is necessary, the source of the feedback might turn out to have either pos-
itive and negative outcomes for the machine learning model. In this chapter we’re
looking into common feedback loop approaches for large scale machine learning, un-
derstand the pros and cons, and highlight how the thesis aims to improve the flows
with the goal of outputting qualitative feedback on data collection.

The first type of feedback loop comes from themodel itself. This refers to a process
of continuous improvement in a model based on the output generated from previous
inputs. This process involves using the model to make predictions on data, comparing
the predicted results with actual results, and updating the model based on discrepan-
cies. The cycle of prediction, evaluation, and improvement is repeated until the model
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reaches a satisfactory level of accuracy. Feedback loops in machine learning help
improve the performance of the model and make it more robust by reducing the pre-
diction errors over time. This might sound very familiar to the process of training a
model on a given dataset, and it also extends to fine-tuning a model on new data, with
potentially different distributions. One of the biggest pitfalls in letting the model pro-
vide the feedback is declining quality over time. If the model is not perfectly accurate
(which rarely happens), using the feedback it outputs on new data might lead to wrong
labels. Using this labels to train (in an active learning scenario), will lead to very low
accuracy scores after a few iterations.

The second type of feedback loop, as emphasized by [17] (the helpful feedback
loop), implies bringing an external entity to help assess the model performance on
new data. This can mean a different model, trained to assess the quality of the first,
users giving feedback on the predictions they got (for example whether a book rec-
ommendation was accurate or whether an ad was relevant) and even data analysts
looking at the results and taking decisions based on what they discover. There are
many examples of companies gathering user feedback at scale, especially in busi-
nesses with high revenues, like the ads industry [10].

Feedback is useful in many ways in large scale machine learning systems. In the
research questions of this thesis, we are especially interested in how engineers that
manage such systems can adapt them based on data collection feedback. For ex-
ample, they can get informed that augmenting one specific class of data might bring
X% in accuracy increase. Similarly, they might find out that gathering data for another
class won’t increase the quality of the model. In this way, we aim to boost the produc-
tivity of such people, by using their time towards the action that is likely to bring the
largest benefit, instead of spending time on low/no quality tasks.

The literature on this topic is quite shallow and follows standard procedures in
retraining machine learning modes. Without thinking of ways to optimize the flow,
engineers either (re)train the model on new data, when, there might be a way to sub-
stantially speed the flow by pruning it. Following, we review some of the relevant
papers on this matter.

Given that NLP is quite an active topic at the moment with advancements in Chat-
GPT and similar language models, we decided to start the review on data collection
feedback with a paper on NLU (natural language understanding). In [31], Parrish et al.
look into ways to enhance the quality of the data they collect (and of the subsequent
model) by adding linguists in the loop. Even if the concept of a linguist is highly spe-
cific to this domain, the technique of adding an ‘expert’ on the subject is practiced in
other areas as well. The goal in the paper is to raise the quality of crowdsourced NLP
datasets, reduce the gaps in data and correct any potential biases, by augmenting
the work done by non-expert annotators, and having experts guide them in ways that
would address issues in data.

The reason why they focus on the language task is the inherent subjectivity that
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comeswith the domain; multiple non-expert annotators can have different views over a
sentence, with different thresholds when it comes to deciding whether it is a contradic-
tion, for example. They experiment with 3 scenarios: one with no expert involvement
(data coming directly from the 3rd party source), one with light expert involvement
(the 3rd party source follows some predefined guidelines), and one with more expert
involvement (monitoring and close discussions between the expert and the 3rd party
provider).

They conclude that, for this specific task, using an outside entity to monitor and
course-correct the process helps with the quality of data, which has a direct influence
on higher accuracies of the model it is fed into. An open question that they frame as
future work is how to take the same approach, but with the aim of not only improving
the model accuracy on the dataset at hand but also exploring methodologies to en-
hance generalizability.

Domain experts are invaluable to any data collection process for machine learning,
as their expertise in the domain can identify nuances that non-experts may overlook.
This can help to identify biases in the data and reduce gaps in the data that could
lead to incorrect or incomplete models. The guidance domain experts provide to non-
experts can help to ensure that the task is completed correctly and to the desired
standard, resulting in data of the highest quality. In addition, the presence of domain
experts in the data collection loop can improve the accuracy and performance of ma-
chine learning models, as the quality of the collected data will be improved. This
provides an additional benefit to any organization that is seeking to leverage machine
learning technology, as the quality of the data collected will directly impact the success
of the project.

In this thesis, we are not aiming to introduce a human supervisor in the process,
since that will slow the flow even more. Instead, we plan to create automated tools for
giving feedback on data collection, in relation to the model it is trained on. In doing so,
we aim to achieve smaller datasets, that perform as well as larger ones on models.

3.2. The Enterprise Machine Learning process
For setting the higher level scene on what this thesis aims to accomplish, it is wise
to look at the bigger picture of applying machine learning at scale, and understanding
how important the data component is and how this research can help improve the
overall process.

Machine learning is becoming increasingly popular in the enterprise sector as it
allows companies to gain valuable insights from large amounts of data. This can be
used to optimize business processes, improve customer service, and drive revenue
growth. One common application of machine learning in the enterprise is predictive
modeling, which uses historical data to make predictions about future events. This
can be used to forecast demand for products, identify potential fraud, or detect pat-
terns in customer behavior. Additionally, machine learning can be used for natural
language processing tasks such as sentiment analysis, which can be used to analyze
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customer feedback and improve customer engagement.

The machine learning process at a big scale follows more or less the same se-
quence of steps:

1. Setting the expectation and planning the project: This includes deciding
what is the end goal, together with the metrics for success and potential alterna-
tives in case the result is not as expected.

2. Gathering data or aggregating existing data from various sources: The
company can either have data they want to train a machine learning model on,
or they plan to gather it from other sources. In the first case, the data is possibly
in different formats and stored in various containers (like data lakes, databases,
and unstructured buckets of data). In the second case, they can start the process
of data gathering, either using their own systems or fetching it from a 3rd party
vendor.

3. Cleaning the data, removing redundancies and making sure it is relevant
for the task: This is the part this thesis focuses on, right in the step where data is
available, and right before it is being fed to a machine learning algorithm. Many
steps of data quality and data selection process will be handled extensively in the
thesis, but at a high level, the goal is to minimize the data quantity by removing
redundancies, enhancing the data by offering insights on how it should be better
collected, and selecting the most relevant samples with the goal of making the
next steps more efficient. All this, while maximizing the quality of the model.

4. Pick a model: This step highly depends on the usecase and on the type of
data collected. Popular models include neural networks, SVMs and decision
trees, but the way they are used is highly dependent on the task at hand. With
the rise of Automated Machine Learning [6], this step can be largely automated
nowadays, saving lots of time that could be otherwise spent in previous data
quality steps.

5. Train the model and deploy to production: Once the model is trained on high
quality data, this is the step where it is actually included in the product, usually
as a prediction API, that can be used to serve product features like detecting
fraud, doing better product recommendations to customers and making real time
predictions for autonomous vehicles, for example.

6. Monitoring and retraining on new data: As the product changes and the
data distribution shifts, the model needs to be monitored and periodically trained
against new, more up to date data. This can be seen as a reiteration of steps 3
to 5, with same goals, but an updated dataset.

As a recent study [21] shows, while machine learning can be powerful in many sit-
uations, there are a couple pitfalls that many big companies fall into. A few examples
include picking the wrong usecase, the wrong data and the bias associated with the
dataset they are using. We presume that the quality of data, and picking a represen-
tative sample of it, can make the difference in large scale machine learning.
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A recent article on the MLOps process [37], which discusses the process of putting
machine learning models into production, emphasizes the need to look at a problem
from a system view, not a model view. In the research world specifically, machine
learning scientists/engineers develop a model in isolation, usually within a Jupyter
notebook or a similar environment that allows for quick experimentation. According
to a study from Sculley et al. [37], the model development part is just a small and iso-
lated component into a larger infrastructure. When viewed from a system level, there
are way more variables to think about, from data ingestion, to data quality, monitor-
ing, scalability and alerting, that makes the ML component relatively small. This does
not mean that it is not important. Developing high quality machine learning models is
crucial for making a AI backed systems work, but the model development part has to
be done having in mind the system as a whole, with the challenges or real world data
and having the product used by actual users, that might act in different ways given
different predictions of the machine learning model.

A study from Forbes [13] shows that the work of data scientists is mostly focused
on data quality related tasks, and not on training machine learning models. This can
easily be translated in the implication that high quality data will most likely drive the de-
velopment of good machine learning models, and making sure the data is relevant is
a crucial step in the process. According to [13], “Data preparation accounts for about
80% of the work of data scientists”, and “57% of data scientists regard cleaning and
organizing data as the least enjoyable part of their work”.

This brings more motivation to this thesis, with the goal being to find means to
automate data cleaning and selection, to a point that the data is relevant and ready to
be passed to a machine learning model.



4
Systematic Literature Review

As a base for the practical work to be done in later chapters, we did a systematic
literature review (referred to as SLR), to dive deep into the topic at hand and explore
the literature on it. We aim to understand common patterns, challenges, and areas of
expansion. Starting from an initial pool of 377 papers, we applied specific inclusion
and exclusion criteria and did 2 iterations of snowballing. The goal was to find papers
that aim to reduce the dataset, either through feature selection or data point sampling,
and contribute to both reducing the time of machine learning iterations, as well as
improving the quality and interpretability of the model. Given this goal, we extracted
and analyzed a total of 36 papers, ranging over 8 domains, outlining 3 main data
selection approaches, multiple ways of reducing the size of the dataset, and various
approaches for picking better data sources.

4.1. SLR overview
The SLR conducted in this thesis aims to provide a comprehensive and structured
overview of the existing research on data selection, feature selection, and time reduc-
tion in big machine learning workflows. The SLRmethodology allows for the identifica-
tion, evaluation, and synthesis of relevant literature in a systematic and reproducible
manner, ensuring a transparent and documented review process. By analyzing the
current state of research, this SLR identifies key methodologies, techniques, and chal-
lenges, as well as potential avenues for future research. It offers hints on what have
been the trends of the papers on the topic in the last decade, as well as what domains
benefit the most from a reduced and more insightful dataset.

4.2. Methodology
4.2.1. Search query and search engine
A comprehensive search strategy was developed to identify relevant research arti-
cles from multiple electronic databases, including IEEE Xplore, ACM Digital Library,
Google Scholar, Scopus as Web of Science. The search process was guided by a set
of predetermined keywords and phrases, aiming to highlight recent papers that are
relevant to the machine learning field and are related to data selection, clustering, or
pruning, as those topics align with the main research questions of the thesis.

We did a couple of iterations on the search query with the goal of identifying specific
papers, but also keeping the search generic enough to cover relevant data selection
studies from multiple industries.

15
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Table 4.1: Paper query iterations

Iteration Query
Initial query (”machine learning” OR ”ml” OR ”mlops” OR ”data engineering”

OR ”machine learning pipeline*” OR ”ml pipeline*” OR ”data
centric”) AND (”data* pruning” OR ”data* selection” OR ”feature*
selection” OR ”feature* pruning) AND (”collection feedback” OR
”data feedback”) AND after: 2015

1st iteration (”machine learning” OR ”mlops”) AND (”data” OR ”dataset” OR
”feature”) AND (”selection” OR ”clustering” OR ”pruning”) AND
after:2015

2nd iteration (”machine learning”) AND (”data clustering” OR ”data selection”
OR ”dataset pruning” OR ”feature selection”) AND (”selection”
OR ”clustering” OR ”pruning”) AND after:2015

Final query (”machine learning” OR ”mlops”) AND ”data” AND (”selection”
OR ”clustering” OR ”pruning”) AND after:2015

Because of the large number of variations inside the clauses in the first query
of Table 4.1, the number of papers was often larger than a couple hundred, which
was an unmanageable amount, as well as the papers would have been too generic.
After a couple of iterations, with the goal of shortening the query, while still capturing
relevant papers, we ended up with the final query in the same table. We decided
to focus on papers after 2015 in the first iteration, as the last years have brought
an increase in both data and awareness of the importance of having a quick and
relevant machine learning pipeline. However, in both iterations of snowballing, we
picked papers regardless of year.

We used the Publish or Perish tool to search the titles related to our research topic,
and we ended up with a 377 paper list. While we acknowledge that this set might not
be entirely comprehensive or include all the interesting literature studies, it is still a
significant number that we can work with. In addition to this, we employed a 2-step
snowballing technique to capture any papers that may have been missed in our initial
query. This technique allowed us to expand our search beyond the initial set of papers
and discover additional relevant research.

4.2.2. Inclusion/exclusion criteria
As the search query is generic, a large number of irrelevant papers were gathered in
the process. The following are the inclusion criteria:

• I1: Shows potential to reduce the time of an ML model/pipeline.
• I2: Talks about reducing the dataset.
• I3: Offers a mechanism that provides feedback on data collection.

And the following are the exclusion criteria:

• E1: Not in English.
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• E2: Full PDF not available.
• E3: Talks about data, but not in a machine learning context (i.e. only about data
structures, only about databases, etc).

• E4: Not an academic paper.
• E5: Not peer-reviewed.
• E6: A duplicate.

In order to qualify for the selection, each paper had to show potential to reduce the
time of an ML model/pipeline (I1), either talk about reducing the dataset (I2) or offer
a mechanism that provides feedback on data collection (I3) and have no exclusion
criteria checked. This leads to the following formula:

I1 AND (I2 OR I3) AND NOT (E1 OR E2 OR ... E6)

Figure 4.1: Paper count by Inclusion/Exclusion criteria

Out of the initial 377 papers, only 19 were included. The majority of the exclusions
were either irrelevant, didn’t have the PDF available, or were not academic papers
(blog posts, for example). There was no paper to qualify for the 3rd inclusion criteria,
which is not a surprise since the search query does not directly address the notion
of providing a mechanism for data collection feedback. The most generic inclusion
criteria, I2, was most often checked off, while there were only 19 papers that showed
the potential of reducing the time of machine learning flow iterations (I1).

It is interesting to note that, as represented in Figure 4.1, all the papers that comply
with I1 also comply with I2. Based on our observation, when the selected papers
discuss reducing the time ofmachine learning processes, they also talk about reducing
the dataset size.
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4.2.3. Snowballing
The snowballing process involved examining the reference lists of the papers we found
in the initial search, as well as looking at the papers that cited them. This approach
helped us identify a large number of additional papers that were not initially captured
in our search, ultimately resulting in a more comprehensive and robust set of literature
to draw from for our research. We performed both forward snowballing (examining pa-
pers that cite the paper being examined), as well as backward snowballing (examining
papers that are cited by the paper being examined).

Each snowballing iteration was done on a curated list of papers, after applying the
inclusion and exclusion criteria. First, we had the initial set of 377 papers, that we
applied the inclusion and exclusion criteria on. This led to 17 papers, that generated
another 12 after the first iteration of snowballing and applying the criteria. Finally, the
second snowballing iteration generated the rest of 7 papers.

4.3. Paper Attributes and Questions
4.3.1. Attributes
For each paper, we tracked a predefined list of attributes, that would help us later to
gather papers into specific buckets, analyze each group, and draw aggregate con-
clusions across multiple papers that are similar. The following attributes have been
tracked:

• Research type
Refers to the type of study, based on the title and content. Can have one of the
following values:

Table 4.2: Research types

Solution The paper discusses a novel approach, explains the algorithm,
and provides proofs and analysis on the new solution provided.
Those papers usually refer to studies and previous solutions,
and either builds a completely new approach, or improve
existing ones.

Review The paper presents multiple data selection/ML flow time
reduction approaches, and compares them at a theoretical level.
Reviews tend to not go in depth into results or algorithms, but
instead offer a high level view of different approaches.

Analysis The paper presents multiple approaches, with the idea of
having an objective comparison, that involves running the
algorithms and presenting the results side by side. They usually
tend to use benchmark datasets, and present what algorithms
perform best in a setup where multiple hyper parameter
configurations are used.

Other The paper talks about data selection or about reducing the time
of machine learning flows, but does not bring a new solution nor
present existing ones.
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• Domain
Refers to the business domain of the paper. If it’s a solution, it refers to the specific
domain in which it is applied. If it’s a survey, it typically refers to the type of datasets
that various algorithms are tested on. Each paper belongs to one of the following:

Table 4.3: Domains

Agnostic The paper presents a solution that is not specifically linked to a
domain, it’s more versatile and can be applied on a wide range
of tasks.

Manufacturing The paper talks about data reduction in the goods
manufacturing industry.

Movie review The paper presents feature elimination strategies for learning
accurate machine learning models that rank/review movies.

Construction The paper presents approaches for machine learning time
reduction and feature elimination in the construction industry.

Computer
vision

The paper deals with algorithms that run on visual data (images,
videos), and aims to reduce the feature set to speed up learning.

Health The paper presents feature elimination strategies in the health
industry, most common in DNA sequencing.

Networking The paper talks about identifying the most important features in
the networking domains, such as identifying malware, phishing
attempts, and network intrusion detection.

Financial The paper talks about reducing financial datasets.

• Tags
Papers can be split in multiple categories, that don’t have to be necessarily disjoint.
This helps in creating discussion points that employ only a specific subset of the
papers. The tags assigned to papers, split into categories, are:

• Tags that refer to how the data is selected (Table 4.4)

Table 4.4: Tags for Data Selection

Feature Selection The paper reduces the dataset by picking a subset of the
existing features in the dataset.

Data Source
Selection

The paper aims to improve the dataset by picking better
data sources.

Data Point
Selection

The paper aims to reduce the length of the dataset by
picking only the rows/samples that provide the most input.
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• Tags that refer to the category of the paper (Table 4.5)

Table 4.5: Tags for Categories

Overview The paper is an overview of multiple approaches.
SLR The paper offers a systematic literature review.

• Tags that refer to the specific ML algorithm used (Table 4.6)

Table 4.6: Tags for ML algorithm

Regression The model involved predicts a continuous value.
Classification The model classifies the datapoints as belonging to one

class.
Clustering The model splits the datapoints in an unsupervised way,

into different clusters.

• Tags that refer to the industry type (Table 4.7)

Table 4.7: Tags for Industries

Industry specific The paper discusses a solution that can be used only in a
specific industry or setup.

Industry agnostic The paper offers a generic algorithm or overview.

• Tags refer to the specific use cases that span across multiple papers (Table 4.8)

Table 4.8: Tags for Specific Usecases

Intrusion Detection The paper deals with networking data and aims to detect
anomalies such as intrusion detection in networks.

Credit Scoring The paper deals with financial data, aiming to create
models that predict the credit score.

• Feature Elimination approach
One of the most interesting topics for this SLR is the feature elimination (FE) strat-
egy, hence the tag. As also discussed before and as we’ll dive deeper into in later
chapters, there are 3 main FE approaches:

• Time reduction strategy
Another important topic for the SLR is how, each of the 19 papers that talk about
reducing the time in machine learning flows, aim to reduce the size of the dataset.
The initial categories were the following, even if after a first pass, we could not find
papers for some of them.
Given the specific search query, it is of no surprise that most of the papers belong
to the Data centric category.
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Table 4.9: Feature Elimination Approach

Filter A filter approach aims to pick a subset of the features based on
some standalone scores, unrelated to the model the data will be
fed into.

Wrapper As opposed to filter, a wrapper method decides what features
should end up in the final dataset based on information from the
model itself.

Embedded Embedded feature elimination tools imply that the model does
feature elimination itself. One example is the dropout method in
neural networks.

Table 4.10: Time Reduction Strategy

Data centric The paper aims to simplify the dataset as a way to speed up ML
flows.

Model centric The paper fine-tunes the model to speed up ML flows.
Business
centric

The paper looks into business decisions that might influence
how fast ML iterations are.

None The paper does not attempt to reduce the time of ML flows.

• Has code
We were also interested in whether papers have a replication package that we can
try within this SLR.

4.3.2. Questions
We aimed to answer 3 questions on each paper so we get insightful information for
the Research Questions of the thesis. The questions are:

1. How does the paper reduce the overall time of ML pipeline iterations?
Time reduction can occur in many ways, from randomly reducing the dataset, to
model simplification or either early stopping of the flow. Our goal is to zoom in
the data part, as we are specifically interested in how the dataset can be filtered
(vertically or horizontally), to support faster machine learning iterations, keeping
the quality of the resulting model high.

2. How does the paper attempt to reduce the dataset?
As outlined before, there are multiple ways to reduce a dataset, from very trivial
such as random selection, tomore advanced, such as filtering based on information
gain of each sample or feature. This question provides insights on what is the
approach of the paper to reduce the dataset that enters the machine learning flow.

3. Does the paper use/prefer any of the filter, wrapper or embedded FE methods?
While reading the papers in the SLR, 3 main feature selection categories prevail,
and we decided to include this question for all the papers, to get a better sense of
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why papers choose one category over the other. They all come with pros and cons,
as will be outlined later.

4.3.3. Notes format for each paper
Other than the questions above, we filled in additional information for each paper. We
noted down the key points, ideas, and results, as well as notes about the paper quality
itself, such as how clear it is, how can the information in the paper improve this SLR,
and whether the paper falls into a specific category.
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4.4. Final Paper List
Given the initial paper list that came as a result of the search query on Google scholar,
applying the selection criteria, doing 2 rounds of backward and forward snowballing,
and applying the selection criteria on the snowballed papers, we ended up with a list
of 36 papers. All of them show the potential of reducing the time of Machine Learning
pipelines, as well as reducing the overall size of the dataset. None offers a mechanism
that provides feedback on data collection. The study and discussions below are based
on this set of papers.

Below is a visualization of the distribution of papers into types of research, industry,
and the correlation between them. Our discussions below will be based on such cat-
egory splits, discussing insightful groupings and summarizing the findings from each.
For example, it’s clear from the graph (Figure 4.2) that many of the papers provide
Agnostic Solutions.

Figure 4.2: Paper count by research types (left) and domains (right)

4.5. Preliminary Insights
In this section, we summarize the key findings from our initial review of the litera-
ture. It covers the main research types and domains identified, along with the tagging
approach used for categorizing the papers. This overview establishes an early un-
derstanding of the landscape of feature selection and its role in optimizing machine
learning processes.
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1. Research types
After the initial pass through the selected papers in the systematic literature review,
several key insights and common themes have emerged regarding feature selec-
tion and the acceleration of machine learning workflows from a data perspective.
This section presents a summary of these observations, providing a foundation for
further analysis and discussion.
Feature selection plays a pivotal role in streamlining machine learning workflows,
improving model performance and revealing insights from the data. It has become
increasingly essential as the dimensionality of datasets grows in the era of big data.
The primary benefits of effective feature selection include:

1 Reduced computational complexity: By selecting a subset of relevant features,
the dimensionality of the dataset is reduced, resulting in lower computational
demands for model training and inference. Sometimes, data acquisition can
be expensive as well, from both a time, as well as a financial perspective.
For example, [42] outlines the importance of picking the right dataset from the
beginning, as not only the cost of picking can get high, but the cost of changing
it later is even higher.

2 Improved model performance: Removing irrelevant or redundant features can
lead to better generalization, reducing the risk of overfitting and enhancing
the model’s predictive performance. For example, [36] conducts a study that
analyses the impact of iteratively pruning the dataset on the performance of
a model.

3 Enhanced interpretability: A reduced feature set simplifies the model, making
it easier to understand and explain the relationships between input variables
and the target variable. For example, [48] mentions how the real world data
is inherently noisy, with many irrelevant and misleading features. Removing
them helps not only the performance of the model but also the interpretability.

2. Domains
Incorporating domain-specific knowledge in the data selection process can en-
hance the effectiveness of the chosen techniques. Domain experts can provide
valuable insights into feature relevance, data point importance, and data source
reliability, helping to guide the selection process and improve the overall efficiency
and performance of the machine learning workflow. Collaborating with domain
experts and leveraging their expertise can greatly benefit the development and ap-
plication of data selection techniques. However, being domain specific comes at
a cost. One one hand, you are developing and algorithm that is overfitted to one
domain and on the other, domain knowledge can be expensive to acquire. How-
ever, many companies prefer specialization over generalization, since they want
to provide the best services into one specific niche.
In the papers from this SLR, many of the studies have a domain agnostic approach.
However, some of them do specialize in a particular domain, such as health, fi-
nance and networking. For example, some papers talk about network intrusion
detection [35, 8, 7] some talk about microarray DNA data in a health context [26,
15], and one talks about finance [48].
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3. Tags
Tags have been assigned in a semi structured way, with each paper being assigned
multiple tags, based on the content and the approach.
For example, an interesting discussion can be developed across the data selection
tags, namely “Feature Selection”, “Data Source Selection” and “Data Point Selec-
tion”. Similarly, an insightful comparison will be conducted across the type of model
used, using the papers that have the following tags: “Classification”, “Regression”
and “Clustering”.
Also, the co-occurrence of tags reveals patterns about the common topics in the
surveyed papers. We will look into tags that occur together, 2 of them being “Fea-
ture Selection” and “Industry Agnostic”, co-occurring on 13 papers, signaling that
when it comes to removing features, most authors would likely propose a generic
approach, rather than one that is tied to a specific industry.

4.6. Research types
This section is structured to offer an understanding of various research types iden-
tified in the papers, including Solutions, Reviews, Analyses, and Other approaches.
Each category reveals distinct insights into feature and data selection methods within
machine learning, shedding light on their applications, benefits, and limitations across
various domains. From innovative solutions enhancing machine learning workflows
to in-depth reviews and analytical studies of specific methods, this section provides a
detailed exploration of the current state of research in this field.

1. Solutions
The papers in the ”Solution” category primarily focus on novel techniques and
methodologies for data selection, specifically emphasizing the importance of se-
lecting the right dataset, feature selection, and reducing dataset size. A variety of
approaches and applications are discussed across these papers, including Monte
Carlo-generated data for simulating construction stability [44], feature selection in
computer vision [53], dataset distillation [22], and feature correlation and stability-
based methods [38].
Many of the papers present new methods for feature selection, aimed at maximiz-
ing the relevance to the predicted column while minimizing redundancy between
variables [49]. Some of these approaches involve clustering, minimum spanning
trees [40], rough sets, tabu search [48], particle swarm optimization (PSO), and
evolutionary flows that combine both wrapper and filter techniques.
A few papers delve into specific applications, such as feature selection in steganal-
ysis using the Mahalanobis distance and support vector machines (SVMs) [15].
Others provide mathematical proofs for wrapper feature selection methods, high-
lighting their theoretical foundations [23].
Selective sampling and feature interaction are also discussed in the context of mea-
suring feature relevance and analyzing multiple datasets [29], [55]. Additionally,
one paper explores a non-deterministic polynomial (NP) approach to finding the
best feature set using backtracking on small sample sizes [51].
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The Solutions surveyed in the SLR generally agree that feature collection can be
expensive, and doing the selection early in the process comes at a significantly
lower cost. When it comes to picking the right data points to learn from, most of
the papers focus on “hard-negative mining” [22], as expected, since the hard-to-
learn samples are the ones that a model should focus mostly on. However, it is
also agreed that hyperparameters of both selection heuristics and the models they
are fed into can be a huge cause of instability of the result [44]. Also, removing the
noise is a general priority.
Also, given the 3 Feature Elimination methods (Embedded, Filter, and Wrapper),
there are just 8 papers that use 2 in their solution and 3 that mention all of them.
Below is a co-occurrence graph for those methods on the Solutions in the SLR,
showing that Filter & Wrapper (9 papers) go better together than using Embed-
ded & Wrapper or Filter & Embedded (4 papers). The reason why Filter is more
popular, as well as the co-occurrence with the Wrapper method might be due to
computational complexities. Based on what the papers present, the Filter method
is the fastest, followed by theWrapper and the Embedded method. The Embedded
method is the least used one, which might indicate either a gap in research or the
involvement of high computational cost.

Figure 4.3: Co-occurrence of FE
approaches

Figure 4.4: Count by Feature elimination strategy

One common pattern in this category is the use of heuristics to determine an optimal
feature set. This is typically achieved through a correlation metric or a statistical
measure that ranks the features. Although one paper [51] attempts to solve the NP
problem of feature selection by backtracking on smaller batches of features, it still
acknowledges that feature selection can easily become an NP-hard problem.
The computational cost of finding the globally optimum solution may be the reason
why many papers settle for something close to perfect, acknowledging that reach-
ing perfection comes at a too high cost. For instance, papers often state that the
filter method is preferred due to its computational efficiency when compared to the
wrapper or embedded methods [15, 29].
It is surprising that few papers discuss the feature selection problem in the context
of an evolutionary flow or a population-based method. As [54] emphasizes, ”PSO
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was not applied extensively in feature selection”. This may represent a gap in
research that could be explored in the future. With computational power growing
and simulations becoming easier to perform, this could lead to interesting future
work.
With that said, the solutions presented in this systematic literature review (SLR) aid
in answering the research questions of the thesis by highlighting opportunities for
future research. However, the paper set of this SLR has gaps when it comes to
combining techniques or attempting solutions that converge to better global optima.
In summary, the ”Solution” category encompasses a diverse range of papers that
contribute innovative techniques and methodologies for data selection in various
contexts, emphasizing the importance of selecting the right dataset and employing
effective feature selection methods to improve machine learning workflows.

2. Reviews
The papers in the ”Review” category primarily focus on feature selection methods
and their applications in various contexts. Their approach is to mainly survey exist-
ing solutions and provide an overview of them, without getting in-depth to measure
the performance of the respective algorithms. Most of the reviews are industry ag-
nostic, while one of them is concerned with measuring physical activity data in the
health industry.
One study delves into specific applications of feature selection, such as clustering
physical activity data and real-time systems [24]. They highlight the crucial role
of feature selection in reducing prediction times and improving model robustness.
PCA and correlation feature selection emerge as popular choices in these applica-
tions.
Another paper discusses broader aspects of feature selection, such as its role as
a feature understanding and knowledge discovery tool [25]. They emphasize the
need for understanding data to make informed decisions about which features to
keep and discard. The stability of feature selection algorithms, which refers to
their resilience when new data points are added, is also discussed. They claim
that ”A feature selection algorithm is stable only when it produces similar features
under the training data variation. Ignoring the stability issue of the feature selection
algorithm may draw a wrong conclusion”.
In the context of big data, no single algorithm is universally applicable for data
selection, classification, and clustering. Instead, hybrid algorithms are preferred,
and trial and error remains the primary method for adapting to diverse datasets.
Data preprocessing and the extraction of relevant information are emphasized as
essential steps in the process. Neeraj et al. [30] splits features into “high weight”
(most relevant and non-redundant), “medium weight” (somehow relevant but non-
redundant), “less-weight” (redundant), and “zero-weight” (completely irrelevant or
noisy).
Subset selection for regression (SSR) techniques is also discussed by [27], with
a focus on creating sparse models, overcoming overfitting, and improving model
interpretability. Convex optimizations, greedy algorithms, Lasso, and recursive fea-
ture elimination are mentioned as methods for achieving SSR.
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Comparing reviews to solutions, they offer a broader view of the industry, cover-
ing a wider range of topics and approaches. To reinforce the points made by the
previous category, reviews highlight that feature selection is both a performance-
increasing method and a knowledge discovery tool for the relevant domain. While
examining the papers, there appears to be a research gap in comprehending the
potential business impacts of data pruning and how it fits into large-scale products
and ML pipelines. This might be linked to the confidentiality issue of making com-
pany proprietary information public, or it might indeed signal a need for researching
the relation between feature selection and dataset engineering in relation to bigger
flows, especially encountered in large corporations, with complex products. How-
ever, this does not detract from the significant advantages of using feature selection
methods in data analysis.
In conclusion, the ”Review” research type offers valuable insights into various fea-
ture selection methods and their applications, highlighting the importance of remov-
ing noisy data, ensuring algorithm stability, and understanding the data in order to
improve machine learning workflows.

3. Analyses
This chapter discusses the analysis of various feature and data selection methods
used in machine learning, with a focus on medical data, neuroimaging datasets,
network intrusion detection, and other specific domains. We will explore the impor-
tance of these methods in reducing computational time, improving model accuracy,
and addressing challenges posed by high-dimensional and imbalanced datasets.
It is important to note that analyses, as opposed to reviews, provide a deeper un-
derstanding of the quality of each method, including benchmark data and a more
detailed analysis of the results and tradeoffs of each method. Additionally, indus-
tries are more evenly distributed in this category, with a larger share amongmedical
and networking domains.
According to a couple of analyses, feature selection aims to reduce the number
of irrelevant and redundant features, resulting in benefits such as improved data
visualization, data understanding, reduced training time, and enhanced model per-
formance, as outlined by Song et al. [39]. Data selection differs from data cleaning
in that it focuses on choosing the most representative features to capture the entire
distribution, while data cleaning addresses issues like missing values and duplicate
rows. Dataset selection is crucial for maintaining diversity and balancing the size
and computational demands of the learning process [7].
A significant challenge in feature and data selection is the ”no free lunch” theorem
[47], which states that no single method can achieve maximum accuracy across
all datasets. Furthermore, the optimal subset of features may not be unique [12],
and the optimal set of hyperparameters for feature selection algorithms is difficult
to determine in practice.
In medical and neuroimaging datasets, having prior knowledge of the disease mor-
phology can be beneficial [47], but feature selection remains essential due to the
high dimensionality and potential for overfitting. Similarly, network intrusion detec-
tion faces challenges with highly imbalanced datasets, necessitating the use of
oversampling and undersampling techniques [7].
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It is important to note that existing research on feature and data selection methods
often lacks a deeper understanding of the impact of various techniques on the busi-
ness they are applied to. While benchmark datasets can provide a good picture, it
is fair to say that as far as this thesis is concerned, conducting an analysis on a few
large-scale datasets and real-world machine learning flows may prove to be highly
advantageous.
Moreover, the choice of performance metrics, such as classification accuracy and
training time, may not always reflect the true impact of feature and data selection
methods on model performance. Some other metrics such as the impact on end
users, ease of use, and real-world relevance, even though less quantifiable, would
provide valuable input to research. Finally, the sensitivity of different algorithms
to iterative data pruning remains an open question, with some studies reporting
minimal impact on performance while others observe significant changes.
It is important to note that feature selection requires iterative steps and multi-part
approaches for efficient flows. The process involves removing absolute noise first,
then delving deeper into what is increasingly important. It is worth mentioning that
few papers [12] have noted a potential gap in the use of ensemble methods. While
standalone methods may work well, combining complementary feature selection
approaches can yield superior results. As discussed in the previous chapter on
reviews, a future direction for research may include population-based methods.
Currently, only one paper in the analyses section talks about such methods [34].
In summary, feature and data selection methods play a critical role in improving
the efficiency and effectiveness of machine learning models, particularly in com-
plex and high-dimensional problem domains. While there is no one-size-fits-all
solution, analyzing the specific challenges and limitations of various methods can
guide researchers in choosing appropriate techniques for their datasets and prob-
lem domains. Further research is needed to address gaps in the current literature
and develop more robust and generalizable approaches for feature and data se-
lection in machine learning.

4. Other
While most of the papers were a good fit for solutions, reviews, and analyses, one
paper, mostly focused on big data and largemachine learning flows, did not have as
many common denominators as the others, thus it was placed in its own category.
[1] discusses large machine learning workflows in the context of big data. While it is
a good study regarding the challenges of big data, it does not offer a mechanism for
reducing the dataset or time in corporate-level machine learning processes. How-
ever, it is included in the study for its discussion on the importance of data-driven
optimization and notes on learning from uncertain and incomplete data.
As real-world data can be very unstructured, a potential research gap to bridge is
how to perform feature selection on unstructured data and efficiently learn from it
to build meaningful machine-learning algorithms that provide value to consumers.
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4.7. Time Reduction Strategy
This section discusses the findings from the systematic literature review, specifically
focusing on how the selected papers address the acceleration of machine learning
workflows through feature selection, data point selection, and data source selection.

1. Feature selection
Feature selection is a critical and essential technique for machine learning work-
flows. This is because it effectively reduces the number of input variables while
retaining the most relevant information, thus speeding up the workflow process.
In the reviewed papers, different feature selection techniques were described, in-
cluding filtering, wrapper, and embedded methods. Filtering methods aim to elim-
inate irrelevant or redundant features based on statistical measures or other cri-
teria. Wrapper methods, on the other hand, use a supervised learning algorithm
to evaluate subsets of features based on their predictive power, in combination
with the model. Embedded methods incorporate feature selection as part of the
model-building process, resulting in a more efficient and optimized model.

1 Filter methods: These techniques evaluate the relevance of each feature
independently, using statistical measures such as mutual information, infor-
mation gain and correlation. Examples include the work of [40], that proposes
a minimum spanning tree approach, and [24], that attempts to cluster physical
activity data.

2 Wrappermethods: In contrast to filter methods, wrapper methods assess the
predictive power of feature subsets by employing a specific machine learning
algorithm. One noteworthy examples include the use of genetic algorithms,
in comparison to PSO and information gain [34]. In addition to what we dis-
cussed so far, both the scarcity and potential of population based methods is
yet again visible here as well.

3 Embedded methods: These techniques incorporate feature selection as an
integral part of the learning algorithm, enabling simultaneous feature selec-
tion and model training. It is of no surprise that not many papers mention
or use them, due to their computational inefficiency. For example, [25] high-
lights that the reason why embedded methods are not efficient is because the
model is trained with the whole dataset to start with, and this can easily lead
to bottlenecks in the process, especially on datasets with many features.

Discussing feature selection is important, not only from an optimisation point of
view, but also to understand what are the patterns and directions of the industry.
For example, the filter method is by far the most used with the goal of improv-
ing machine learning flows. This opens the discussion on whether the embedded
method can be improved, or on whether filter & embedded can be used together,
with the goal of analysing both the dataset in a standalone manner, as well as tak-
ing into account the interaction it has with the model. Moreover, future research
might not necessarily classify new methods as filter, wrapper and embedded. New
categories might arise, especially with a quick advancement in generative models,
that might even suggest what features to acquire based on the weaknesses of the
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model. We might see a new category of “feedback driven” or “generative” feature
selection/acquisition methods, that make sense of the domain being tackled and
generate the need of new feature by themselves.

2. Datapoint selection
Data point selection, also called instance or sample selection, is a critical process
in machine learning that involves choosing a subset of the dataset that represents
the population. This can help reduce computational complexity and training time
for the model. There are several techniques available in the literature for data point
selection. The business domain of the machine learning flow is an important point
to make when choosing a strategy, as only 1 in 5 papers of this category is industry
agnostic. Distribution shifts, outliers, compliance concerns and peculiar patterns
in data make it more challenging for datapoint selection to act as a one-size-fits-
all approach. The following are some of the commonly used data point selection
techniques:

1 Random sampling: This method involves selecting a random subset of data
points from the original dataset. While [22] provides a comparison of their
method with random selection, [44] points out that neural networks trained
using randomly distributed data are unstable, especially at the tails of the
distribution. As the research in the field is quite advanced, we were not ex-
pecting random sampling to be effective standalone, but it’s worth mentioning
because it might be able to lay the foundation of population based methods.

2 Dataset distillation: [22] aim to reduce the overall time of ML pipeline it-
erations by constructing a representative set of data points, called the core
set, consisting of high-contribution and informative samples. This is achieved
through dataset distillation, which creates a representative sample for each
class, and bymeasuring the learning contribution of each sample. The dataset
is then selected based on learning contribution, followed by model training
and evaluation. The paper uses a combination of filter and wrapper methods,
leaning more towards filter methods, to achieve these goals. The approach
is tested using the MNIST and USPS image datasets, with promising results
when compared to random selection.

3 Under/oversampling: Under-sampling and over-sampling are techniques used
to address class imbalance in datasets, which can negatively impact the per-
formance of machine learning algorithms. Under-sampling involves reducing
the number of instances in the majority class to balance the class distribution,
often by random selection. However, this technique may discard potentially
valuable information. On the other hand, over-sampling involves increasing
the number of instances in the minority class to create a balanced distribu-
tion. This is typically achieved by duplicating existing instances or generating
synthetic ones, such as with the Synthetic Minority Over-sampling Technique
(SMOTE). Although over-sampling can help address the class imbalance, it
may also introduce noise and increase computational complexity due to the
larger dataset size, as Bagui et al. [7] points out.

When it comes to selecting a relevant subset to learn from, a potential research
area that has yet to be explored is the use of datapoint selection in real-world
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data which can often be unstructured and highly imbalanced. The challenge lies in
being able to take in data of any format and assess its relevance in comparison to
a fixed end goal. This will enable multi-modal datapoint selection and represent a
significant advancement in the field.

3. Data source selection
When it comes to selecting the right data source for a machine learning task, there
are several factors to consider. One of the most important is data quality, which
ensures that the data is accurate, complete, and consistent. Another key factor
is reliability, which is what separates trustworthy sources from unreliable ones. Fi-
nally, relevance is also an essential element to bear in mind, as it allows us to focus
on the data that is most pertinent to our task.
Although the pool of papers in this category is small, they all mention the importance
of domain specific knowledge. When it comes to data acquisition, there aremultiple
aspects to consider, and not only the relevance of the data. For example, a good
first question is “Relevant to what?”, followed by the cost of acquiring the data [42],
the time it takes to gather it (an API is fast vs having 1M people fill out a survey),
as well as the reliability of the acquisition method.
While more on the business side, data source selection is still relevant for the thesis,
as in big companies, the data streams are numerous, and focusing on the right
ones can yield superior results. An open research area can be represented by the
multi-modality of the data sources, and the goal of creating a unified format, such
that a learning algorithm can find meaningful patterns. Figuring out not only how to
handle multi-modal data, but also how to find the relevant subset of features inside
is for sure a challenge. The advancements in multi modal generative models and,
in general, LLMs, can prove valuable here, as a ‘data selector’ model might not only
learn from the features, but also from the business decisions that lead to acquiring
the features in the first place, being able, thus, to have a meaningful opinion on
what to include in a Machine Learning flow.

4.8. Feature Selection Approaches
Feature selection/elimination is a critical step in machine learning pipelines. Its pur-
pose is to reduce the number of irrelevant and redundant features in a dataset. This
process can lead to many benefits, including improved data visualizations, better data
understanding, reduced training time, and enhanced model performance.

In this chapter, we provide an overview of the three primary categories of feature
selection methods: filter, wrapper, and embedded. We will discuss the strengths and
weaknesses of each approach, as well as specific techniques within each category
that illustrate their characteristics.

It is already clear from previous sections that there is an imbalance in the num-
ber of papers that use each method. Since each method has its own strengths and
weaknesses, we will focus on understanding how these methods have evolved over
time and what the preference was among papers written in different periods. The
graph below shows the tendency of using the three methods in the last 30 years. Of
course, this is subject to selection bias, since more papers have been written on the
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topic in the last 10 years compared to before. However, the absolute numbers are not
necessarily relevant; it is the relative percentages that matter.

Figure 4.5: Paper count by feature selection approach, in batches of 5 years

Figure 4.5 above shows a clear pattern of growing popularity for Filter methods
over the years, particularly as more statistical measures are explored that enable en-
gineers to assess the quality of each feature. The rise in popularity of feature selection,
in general, is correlated with the increase in popularity of machine learning and data
science as a whole. As more data becomes available, there is more interest in making
the most out of it. It can be observed, however, that Embedded methods have only
recently been attempted and have already declined in popularity. The graph high-
lights once again that Filter methods are the most widely used, while Wrapper and
Embedded methods follow.

1. Filter
Filter methods are a class of feature selection techniques that rely on ranking fea-
tures based on their individual importance, usually using a statistical measure. This
approach is independent of the learning algorithm, making it computationally ef-
ficient and straightforward to implement. However, filter methods may overlook
feature interactions, as they evaluate each feature independently.
These methods are particularly appealing due to their computational efficiency and
independence from classifiers. However, some potential gaps and future research
directions specifically related to filter methods can be identified:

1 Feature Interaction: It is evident that certain features may possess little in-
dividual correlation with the target concept, but when combined with other
features, they exhibit strong correlations. Investigating and addressing fea-
ture interactions in filter methods could potentially improve their performance.
Developing novel algorithms that focus on feature interaction, such as the
INTERACT algorithm, may be a promising direction [55].
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2 Handling Imbalanced Datasets: Filter methods may struggle with imbal-
anced datasets, where rare events such as network attacks are underrep-
resented. Future research could focus on improving the performance of fil-
ter methods for imbalanced datasets, ensuring that they can accurately learn
from the available data [8].

3 Redundancy Detection: Some filter methods are effective at eliminating irrel-
evant features but may not be as successful at detecting redundant features.
Developing algorithms that effectively handle both irrelevant and redundant
features could improve the quality of feature selection and enhance overall
model performance [30, 8, 48], as well as reduce the quantity of the data.

4 High-Dimensional Data: As datasets grow in size and complexity, the scal-
ability of filter methods becomes increasingly important. Investigating ap-
proaches suitable for high-dimensional data, such as the ranker method, may
provide valuable insights into handling large datasets efficiently [40, 5].

5 Stability and Cost Considerations: Developing filter methods that consider
feature stability, relevance, and collection costs could help optimize the fea-
ture selection process. The RABFS (redundancy analysis-based feature se-
lection) [49] and the ScC (hybrid) [38] model are examples of methods that
aim to address these issues.

Although filter methods have proven effective in various domains, there are still
gaps and areas that could benefit from further research. By addressing these chal-
lenges, researchers can develop improved filter methods that better handle diverse
datasets and achieve optimal feature selection.

2. Wrapper
Although wrapper methods may be less popular and efficient than filter methods,
they have one large selling point: they leverage both the dataset and the model. In
certain scenarios, a dataset may be so domain-specific that only specific models
can find the correlations in the data.
Wrapper methods assess the performance of each feature, taking into account
the quality of the model trained on a specific feature set. In comparison to filter
methods, they are more powerful as they can identify what features interact and
which are redundant. By creating multiple overlapping feature sets and measuring
the quality of the model on each, one can determine the intersection of features
and optimize the feature selection process.
However, wrapper methods tend to be more computationally expensive than filter
methods, as they involve training the learning algorithm multiple times. Future
research could explore ways to optimize wrapper methods for large datasets and
high-dimensional problems without sacrificing performance. The following are a
few future research directions, on notions that concern Wrapper methods:

1 Scalability and Computational Efficiency: Wrapper methods tend to be
more computationally expensive than filter methods, as they involve training
the learning algorithm multiple times. Future research could explore ways to
optimize wrapper methods for large datasets and high-dimensional problems
without sacrificing performance. For example, using proxy models might be
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a good trade-off between the speed but lack of context of Filter methods and
the inefficiency but increase of performance of Wrapper methods. Having a
lighter model that behaves similar to the main one might reduce the time of
finding optimal features, while still retaining some of the context on feature
interaction that the model provides.

2 Stability andRobustness: Wrappermethodsmay be sensitive to small changes
in the training data, leading to inconsistent feature selections. Moreover, they
are directly influenced by the biases and instabilities of the model used. Devel-
oping techniques that ensure the stability and robustness of wrapper methods
could improve the overall effectiveness of feature selection, such as the reg-
ularization feature for preventing neural networks to overfit.

3 Algorithm-specific Wrapper Methods: Wrapper methods often use a spe-
cific learning algorithm for feature selection, such as neural networks, SVMs,
or random forests. Investigating algorithm-specific wrapper methods could
lead to better integration and improved performance of the learning algorithm
and the feature selection process.

4 Greedy Algorithms: The papers discuss the performance of greedy algo-
rithms, such as forward selection and backward elimination, in the context
of wrapper methods. Future research could explore ways to optimize these
greedy algorithms or develop novel approaches to further improve the effec-
tiveness of wrapper-based feature selection using heuristics.

3. Embedded
The papers shed light on the significance of embedded methods in feature selec-
tion, particularly in the context of model stability, neuroimaging datasets, and com-
puter vision tasks. Embedded methods offer the advantage of integrating feature
selection directly into the learning algorithm, allowing for the discovery of relevant
features during the model training process. However, there are still some potential
gaps and future research directions related to embedded methods:

1 Interplay between Feature Selection and Regularization: Regularization
techniques are often used in embedded methods to control the importance
and influence of different features. Further investigation could explore the
interplay between feature selection and regularization, and how different reg-
ularization strategies affect the feature selection process and overall model
performance.

2 Unsupervised Feature Selection: The papersmention unsupervised feature
selection, particularly in the context of clustering. Future research could delve
deeper into unsupervised methods for feature selection, investigating their
effectiveness in revealing hidden data structures and enhancing clustering
performance.

While a less popular approach, with not so many papers mentioning or using em-
bedded methods, they can play a big part in machine learning pipelines, especially
if they are optimized to work well for specific scenarios, such as the dropout method
in neural networks.
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4. Mixes of methods
Integrating multiple methods might yield better performances, without compromis-
ing much on performance. For example, [49] uses both filter and wrapper methods,
in the context of Binary Particle Swarm optimization. They aim to leverage the ben-
efits of using filter methods by reducing the size of the datasets first and then taking
into account the output of the model to further optimize the data selection mecha-
nism.

4.9. Datapoint Selection Approaches
As opposed to feature selection, where the dataset is reduced in width, datapoint selec-
tion aims to reduce the length of the dataset, while keeping the feature set unchanged.
In large scale machine learning, the quantity of data can become huge, while the rele-
vance might not be a metric that scales with size. The goal is to only keep informative
samples in the learning pool, reduce the number of redundant features and preserve
hard to learn samples.

1. Dataset distillation
Jeong et al. [22] addresses the issue of datapoint selection in image datasets,
specifically MNIST and USPS. The objective is to reduce the size of the training
data without compromising the quality of the model. Each dataset contains fea-
tures that significantly contribute to the predictor’s accuracy, as well as features
that are less important, following the 80/20 rule. The former category is referred to
as ”hard negatives” — samples that represent the boundaries of one class in a clas-
sification scenario. They’re critical in shaping the model’s data splitting ability. [22]
terms them the ”core set” in their paper, and aims to include only high-contribution
and informative samples, as using a large set only slows down the training process.
They suggest that ”uncertainty sampling” is an effective query strategy that selects
the samples with the greatest degree of uncertainty, allowing for more information
to be leveraged during training. We can extend this by stating that dataset distilla-
tion is a ”wrapper” datapoint selection method, as it relies on the model’s predicted
uncertainty.
It is important to note from their paper that, in a learning task, selecting the samples
that are hardest to learn first is crucial to maximize the quality of the model while
minimizing convergence time. As future research, it would be interesting to explore
a split for data point selection into ”Filter”, ”Wrapper”, and ”Embedded” categories,
similar to feature selection.

2. Monte Carlo simulations
Toneva et al. [44] highlights again the negative impact of redundant data in the
speed of the learning process. Moreover, they add that redundant data can over-
flow outlier samples that can predict edge cases, and keeping only the important
datapoints helps neural networks generalise better.
The authors’ approach involves collecting data through physical simulations, which
is an expensive method for data acquisition. To mitigate this, they run Monte Carlo
simulations to extract the same number of samples for each bin. While neural
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networks trained with random data are unstable, particularly around the tail of the
distribution, the authors conclude that the hyperparameters of the model are still a
major cause of instability, even with well-balanced data distributions.

3. Dealing with imbalanced data
Bagui et al. [7] deals with the issue of imbalanced class sizes in network intrusion
detection. The presence of an intruder in a network is an anomaly, and as a result,
accurately training a model using this highly imbalanced data poses a challenge.
There are twomain techniques to address this issue: either resampling the minority
class or downsampling the majority one. The problemwith the first approach is how
to correctly generate new samples, as well as the increased training time for the
model. The second approach faces the issue of potentially removing informative
and important samples.
In their paper, they discuss Synthetic Minority Oversampling Technique (SMOTE),
a resampling method designed to address the issue of imbalanced datasets in ma-
chine learning. SMOTE works by synthesizing new minority class samples based
on the existing minority samples. It randomly selects a minority class instance and
identifies its nearest neighbors. It then creates synthetic samples by interpolating
between the selected instance and its neighbors. This approach helps to alleviate
the class imbalance problem by increasing the representation of the minority class
in the dataset. By generating synthetic samples, SMOTE effectively augments the
training data and provides more balanced class distributions, which can improve
the performance of machine learning models.

In the paper pool of this SLR, there is a notable disparity between the number of pa-
pers that address datapoint selection and those that address feature selection. While
both topics are important for machine learning workflows, it seems that the latter has
received more attention in recent years. This may be due to the fact that understand-
ing features and studying feature interactions is crucial for building effective models
with large datasets. In contrast, simply reducing training time by sampling the data
vertically may not always lead to optimal results and may overlook important patterns
in the data. Therefore, it is important for researchers to carefully consider both data-
point and feature selection when designing their machine learning pipelines, as future
research.

4.10. Domains
The field of feature selection and dataset reduction encompasses a wide range of
domains, each with its unique challenges, requirements, and applications. In this
chapter, we delve into the distribution of research papers across some of the most
interesting domains to gain insights into the landscape of feature selection within
different fields. We explore domains such as health, cinematography, finance, and
domain-agnostic approaches, to understand how feature selection techniques have
been applied and adapted to cater to the specific needs and characteristics of each do-
main. By examining the distribution of papers across these domains, we aim to identify
trends, commonalities, and domain-specific considerations that influence the choice
and effectiveness of feature selection methods. This analysis will provide a compre-
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hensive overview of the diverse applications of feature selection and shed light on the
domain-specific challenges and advancements in this field.

1. Data selection in the health field
In the health domain, feature selection plays a critical role in various applications,
such as physical activity analysis, cancer detection, neuroimaging datasets, and
medical data processing. A systematic review of feature selection in physical ac-
tivity analysis revealed that most studies shortlist features based on previous re-
search, often focusing on statistical features [24]. They also point out that fea-
ture selection is about trading-off speed for robustness: with too much data, one
spends too much time; with too little, the resulting model is not robust enough.
Principal Component Analysis (PCA) and correlation feature selection emerged as
commonly used techniques.
In the context of cancer detection, feature selection methods like Genetic Algo-
rithms, Particle Swarm Optimization, and Information Gain were compared, with
Particle Swarm Optimization (PSO) showing superior performance [34].
Neuroimaging datasets demonstrated varying impacts of feature selection meth-
ods, with some cases showing substantial effects while others exhibited minimal
changes. The choices of feature selection algorithms in medical data analysis,
such as regularized random forest and lasso, was evaluated. The domain-specific
knowledge, particularly in disease morphometry, significantly contributed to the ef-
fectiveness of feature selection [47].
Furthermore, the selection of appropriate training data attributes, such as language,
writing style, and content, was emphasized in specific use cases like braille based
applications [3]. They also point out that data diversity is key in a successful ma-
chine learning pipeline.
Overall, the health domain highlights the importance of feature selection in optimiz-
ingmodels, managing high-dimensional data, and improving the interpretability and
efficiency of healthcare applications. Moreover, we see a bigger importance of fo-
cusing on individual problems when it comes to health data, as the use cases can
get very specific, thus the quality of the predictive model must be very high. Com-
pared to previous chapters, we see more focus on population based models and
simulation approaches, as well a deeper consideration on impact and compliance
with regulations.

2. Data selection in networking
In the networking domain, a paper titled ”Resampling imbalanced data for network
intrusion detection datasets” by [7] focuses on the challenge of network intrusion
detection and the issue of imbalanced data. The paper aims to reduce the overall
time of the ML pipeline iterations by addressing the imbalance in the network data
related to intruder detection. To achieve this, the paper primarily emphasizes the
sampling of correct data from a highly imbalanced dataset. They employ a combi-
nation of Synthetic Minority Oversampling Technique (SMOTE) and random under
sampling to create a more balanced dataset for network intrusion detection.
The paper analyzes five different forms of resampling techniques across six datasets.
While the paper focuses more on resampling methods rather than specific filter,
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wrapper, or embedded feature selection techniques, it offers valuable insights into
handling imbalanced data in network intrusion detection tasks.

3. Data selection in finance
In the financial domain, a notable paper introduces a novel approach called FSRT
(Feature Selection based on Rough Sets and Tabu Search) to reduce the overall
time of machine learning pipeline iterations. The FSRT algorithm combines tabu
search with rough sets, using conditional entropy as a search heuristic. [48] high-
light the challenges of real-world financial data, which is often noisy, abundant, and
contains numerous irrelevant and misleading features.
The rough set theory is employed to identify subsets of features that can effectively
classify or model the dataset without information loss, aiming to remove redundant
or irrelevant attributes. The proposed FSRT algorithm operates as a filter method
for feature selection, leveraging tabu search and rough set principles. While the
paper delves into mathematical frameworks and theorems, it provides limited intu-
itive explanations of the algorithms. Nonetheless, the FSRT approach contributes
to feature selection in credit scoring for the financial domain, showcasing the po-
tential of combining tabu search and rough sets for efficient data reduction and
improved model performance.
Similar to health, the financial domain can get heavily regulated by authorities when
using AI techniques to predict user information such as credit score or anomalies
in credit card usage. Having only one paper focusing on this domain signals that
there is still a gap in research about data reduction approaches in this domain, that
can be further explored.

4. Data selection in movie reviews
In the domain of movie reviews, two papers shed light on the impact of data prun-
ing on machine learning algorithm performance. [36] investigate the sensitivity of
different algorithms to iterative data pruning, aiming to reduce the overall time of
the ML pipeline iterations. By iteratively removing samples based on a predefined
metric, such as starting with reviews from movies with the lowest reviewer count,
they gradually prune the dataset. Surprisingly, the paper reveals that pruning the
dataset does not significantly influence the performance of the models, and algo-
rithms that perform well on the unpruned dataset also exhibit good performance on
the pruned dataset.
[36] highlight the difference between dataset selection and dataset cleaning, em-
phasizing the uneven distribution of classes (imbalance) as a limitation. While the
paper lacks depth and primarily focuses on comparing the impact of data pruning
on model accuracy using the IMDB movie rating dataset, it provides insights into
the importance of dataset pruning for improved ML pipeline efficiency. These pa-
pers primarily employ data pruning techniques rather than specific filter, wrapper,
or embedded feature selection methods.
There is a pattern in machine learning where new algorithms and approaches are
tested on toy datasets from the movie review domain. However, having only 2
shallow papers that investigate this might signal either a lack of interest in improving
the quality of such datasets or a gap in research in this particular domain.
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5. Domain agnostic approaches
The agnostic approaches chapter covers domain-independent feature selection.
The goal is to build a set of high-contribution and informative data points, although
using more data improves performance but increases training time and costs.
Various methods are proposed, including core data construction, uncertainty sam-
pling, and hard negative mining, measuring the importance of learning samples,
as well as the contribution of each feature. In those studies, the stability of feature
selection algorithms is highlighted while the impact of feature selection on time re-
duction, percentage of selected features, and classification accuracy is examined.
The domain-agnostic papers generally agree that no single feature selection algo-
rithm is optimal for all datasets and suggests the use of hybrid algorithms and trial
and error.
All papers have the goal of building better datasets and improving existing ones.
However, the complexity of feature selection is an acknowledged NP-hard problem,
and the impact of sample size on the complexity of feature selection algorithms is
considered.
Overall, the domain agnostic approaches chapter provides insights into feature
selection methods that can be applied across domains, emphasizing the need for
trade-offs between accuracy, efficiency, and interpretability in selecting relevant
features for machine learning tasks. It is true that building algorithms that behave
as one-size-fits-all are challenging and that there exists a trade-off between having
specific methods that solve niche problems and generic approaches that are built
once and have a good enough performance on a wider variety of use cases.

4.11. Secondary publications
The goal of this study is to systematically survey a list of papers on the topic and pro-
vide a discussion around patterns, commonalities, as well as research gaps through
the field. With the aim of providing more context to this SLR and have some back-
ground studies analyzed, this section provides a summary of the key points in those
reviews identified.

1. Importance of Feature Selection:
Feature selection is crucial for reducing the dimensionality of data and improving
the efficiency of machine learning pipelines. It helps in identifying the most relevant
and non-redundant features, reducing noise, and enhancing model interpretability
[27]. Also, feature selection contributes to knowledge discovery by providing infor-
mative insights to researchers.

2. Available Feature Selection Methods:
The reviews discuss various feature selection techniques, including filter, wrapper,
and embedded methods. Filter methods involve ranking or statistical measures
to select relevant features. Wrapper methods treat the model as a black box and
use searching heuristics. Embedded methods integrate feature selection with the
learning algorithm itself.
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3. Impact on ML Pipeline Time:
Feature selection can reduce the overall time of ML pipeline iterations by providing
an optimal subset of features for training. Many referenced papers stress out that
selecting a small yet representative subset is important for real-time ML systems
[24].

4. Dataset Reduction:
Feature selection attempts to reduce the dataset by filtering out irrelevant or re-
dundant features. Techniques like PCA, correlation feature selection, and L1 norm
constraints are commonly used to reduce the dimensionality of data.

5. Preferred Methods:
Filter methods, such as PCA, correlation feature selection, and statistical mea-
sures, are widely employed in the reviewed studies. Wrapper and embedded meth-
ods are also mentioned but are less commonly used [27, 24].

6. Stability and Robustness:
The stability of feature selection algorithms, i.e., their ability to produce similar fea-
tures under varying training data, is highlighted. Stable algorithms are important
to ensure consistent feature selection results and avoid wrong conclusions. Regu-
larization techniques are suggested to address issues of small input data changes
leading to significant output changes [25, 24].

7. Hybrid Approaches and Trial-and-Error:
Hybrid algorithms are often preferred due to the lack of a single algorithm that
suits all datasets. Trial-and-error is emphasized as an essential approach to adapt
feature selection to diverse datasets [30].

8. Performance Evaluation and Metrics:
The reviews consider metrics such as classification accuracy, training time, and
model interpretability to evaluate the quality of feature selection algorithms. They
compare and analyze the performance of different techniques, including stability
measures and subset selection for regression (SSR) methods [27].

Overall, the literature reviews highlight the significance of feature selection in dif-
ferent domains and provide insights into the available methods, their impact on ML
pipeline time, and dataset reduction. They underscore the importance of selecting rel-
evant features, reducing noise, and ensuring stability and robustness of feature selec-
tion algorithms. Hybrid approaches and trial-and-error are recommended to address
the diversity of datasets, and various metrics are employed to evaluate the perfor-
mance of feature selection techniques.

4.12. Common Patterns in Data Selection
As a summary of the SLR and as a build up of the work we are presenting in the
next chapter, this section will include commonalities, patterns and future research
directions when it comes to reducing datasets, collect better data, and, in general,
build better and more efficient machine learning pipelines.
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1. Common Approaches
Across the paper pool of the SLR, we have seen many times heuristics and sta-
tistical approaches that assess the importance of each feature without taking into
account the model. Those are mostly correlation and statistical-based methods.
While efficient, having the system as a whole providing input to the optimization flow
is valuable, especially when designing domain-specific machine learning products.
Some papers discuss wrapper methods that take into account the results of train-
ing the model, that make the most out of the feedback received from it. However,
those are less computationally efficient. Some of the papers are also considering
less easy to quantify factors such as cost of acquisition, relevance, and reliability.

2. Common Issues
Most papers agree that data selection is an optimization challenge, with the time
complexity growing the more one tries to aim for global optimums. Some also
mention that this can become an NP-hard problem. Also, it is agreed that good
features are being overlooked using more shallow Filter models.
Some papers are using surrogate models that act as a faster main model to speed
up wrapper feature selection methods. This might compromise the quality of the
wrapper methods that use the full model, but still bring an advantage over full-filter
approaches, that discard what the models have to say completely.

3. Common best practices
After reviewing the papers on the SLR, it is clear that using a simple approach like
random sampling or basic statistical measures does not compete with other more
advanced methods. It is becoming more and more clear that incorporating domain
knowledge and business understanding in the data selection flow is of more signif-
icance to improving more complex flows. Also, some papers are already consider-
ing the implications of picking arbitrary subsets of data when it comes to potentially
biasing a model that is trained on them.

4. Common Challenges
Multi-modality in feature selection and data source selection is becoming of more
and more interest, as people have more complex datasets and want a model to
reason given all the available data. One potential question would be how could
one algorithm that has a pool of input data streams pick the best and convert the
multiple modalities into a single learning flow.
Another common challenge is incorporating business and product knowledge in
the algorithm that selects the best data. While statistical measures boil down to
numbers, having business and domain knowledge into a generic algorithm might
come down to themultimodality discussion. After all, those answers are yet another
modality fed into the model.
As also pointed out previously, simulation and population based methods that allow
for the trial and error of multiple configurations aiming to the global optimumwithout
making the problem NP might be a good direction to look into. Having computers
simulate and aim for the global optimum could be an interesting way of finding good
datasets, even in a multi-modal setting.



5
Advancing feature selection

performance at corporate scale

This section covers the practical work done for the thesis, within Google. In the first
part of the thesis, we explored the current landscape related to feature selection and
machine learning pipeline optimization. Given the learnings and the research gaps
that we have identified in the literature review, we decided to apply them in a real
world scenario, working with Google, a company at the forefront of technological inno-
vation and a leading contributor in the field of machine learning and big data analytics.
Given their scalable applications of Machine Learning, we think that the insights that
we will draw upon applying various techniques in such a case are relevant to the end
goal of the thesis, that of reducing the time of experiment iterations. Also, small and
incremental improvements are more impactful at large scales, compared to measur-
ing the impact in small, isolated scenarios. In the following sections we explain the
methodology applied in the project with Google, the new approaches we came up with,
and the results we got after applying this new approaches to research datasets.

5.1. Objective
To align with the goals of the thesis and to link the broad SLR, we have decided to
look into feature selection further, with the aim of making machine learning flows faster.
The question we originally had and that helped us drive the research was how can we
improve the start of the art, build a tool with the solution we come up with, integrate
and serve it at scale to Google products? A recent paper on feature selection by
Yasuda et al. [52] titled ”Sequential Attention for Feature Selection”, written by people
at Google pushed the SOTA in feature selection by applying an attention layer between
the selection module and the actual model. We have decided to replicate and improve
the SOTA set by this paper, with the aim to further reduce the number of required
features and the time to find optimal feature masks while keeping the model quality at
the same standards. Usually, the quality of the model is assessed by looking over the
accuracy/error on the test set. While we do this, we take into account other factors,
such as train time, size of optimal feature set and the size of the reduced model. We
aim to look into trade-offs between accuracy and training time.

5.1.1. Sequential Attention
Yasuda et al. [52] present a method for feature selection that relies on an attention
mechanism to find an optimal K dimensional boolean mask, where they start with an
empty set and sequentially add the next best feature, as outlined in Figure 5.1. At
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Figure 5.1: Sequential Attention Steps from an empty mask to a mask of desired size, picking the
next best feature sequentially.

each iteration, a new set of features is chosen based on the highest attention logit
values. The Sequential Attention module precedes the model and is actively trained
using the gradients of it.

Sequential Attention holds the current SOTA on selecting a low number of fea-
tures that result in a high model quality, in comparison to other approaches. Given
the details in the paper, we propose two directions of improvement: having more ef-
ficient feature selection (ensembling and parallelization for the same results) and
increasing the quality of their results, using similar feature subset sizes (same or
lower runtime, with higher performance on the test set). For efficiency, we explored
feature selection further (extending the work in the paper by looking into ways to find
the same subsets faster or with fewer resources), as well as dataset and feature ef-
ficiency together, researching the impact of reducing the feature set, while randomly
subsampling the dataset, to further reduce the end-to-end time, aiming for the same
model performance as with the full dataset.

In [52], Yasuda et al. use a predefined size of 50 (consistent with the papers they
compare their results to) for their feature subset. Our goal is to understand how much
this number can be dropped in relation to the total number of features of the dataset, as
well as find ways to reach a subset of a given size faster. As preliminary results show
in Figure 5.2, the number of features can be significantly dropped from the predefined
number of 50, while maintaining the same predictive quality on the test set of the final
model. As not all datasets are built equally, the degree of redundancy can vary from
one to another, and with it, the size of the optimal subset of features.

Looking into ways to reduce the time for finding such a mask, a recent paper on en-
sembling [16] shows that using multiple weak predictors to vote for the final prediction
improves their quality. Those predictors, having different random initializations, learn
different patterns that might not be predictive enough independently. However, as re-
sults will show later, ensembling the predictions yields stability and results comparable
to or exceeding the results of a single learner. Given this, we focus on understanding
how a multi-expert approach can improve the SOTA set by Yasuda et al. [52].

5.1.2. Improving Machine Learning Iterations
As we have seen in the SLR, relevant literature focuses on picking the features that
have the best correlation with the target variable. Usually, the goal is to maximize the
accuracy of the model or to draw insights on the dataset. This is important, however,
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Figure 5.2: Accuracy with K selected features: SA Selection (Mice Protein). Average across 5 runs.

looking into how machine learning flows can be optimized looking into memory, speed,
and resource usage is also important. In this work we focus on both maximizing the
quality of the final model (e.g. accuracy), but also looking into ways to reduce training
and inference time, as well as model size.

Prior literature focuses on optimizing for performance (e.g. test set accuracy).
There is a gap in understanding the tradeoff between model simplicity, training/infer-
ence time, and model performance, that we aim to address in the following sections.
We run experiments to understand whether there are situations where it is reasonable
to make a compromise between model quality for a drastic reduction in a number of
features and lower runtime. Also, we look into ways to find the optimal number of
features instead of predefining it and test whether the value used by the Sequential
Attention paper can be further dropped on certain datasets. After the experiments, we
describe a tool that looks for optimal feature masks and provides insights on how a
model performs on certain feature sizes.

5.2. Methodology
Having the Sequential Attention paper as the baseline, we plan to build on top of their
open source code, to understand how we can leverage ensembling to achieve the
same quality and reduce the time, as well as understanding how many of the features
can be dropped, without much performance loss. Also, we aim to understand how
feature selection interacts with datapoint selection, and whether finding the optimal
mask can be achieved with a considerably lower amount of data.

Most of the times it is complicated to optimize all objectives at once. Usually, there
is a priority of one objective over the other. Thus, we split the research directions into
2 categories, based on the improvement target:

1. Quality Improvements (QI): focusing on improving the quality of the model given
a fixed feature set size.
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2. Efficiency improvements (EI): focusing on reducing the end-to-end time and the
feature set size.

Below, we outline the main directions initially considered, together with the intu-
ition and the goal for each. Later in the thesis, we expand on the relevant directions
presenting the findings and insights.

5.2.1. Research directions considered
• [QI + EI] Ensemble sequential attention
The first direction we started looking into is how we can leverage the knowledge of
multiple experts and come up with better results consistently. Other than benefiting
from the multi-expert approach, we believe that running them in parallel would keep
the same end-to-end time, while increasing the quality of the results. There are
multiple ways one can use an ensemble to vote for the best output. We decided to
run Sequential Attention with an ensemble of size K (usually in the order of tens),
where each member would produce a mask of size M. We would then run majority
voting and select the top M highest voted. Having the mask, we would use it to train
a sparse model until convergence and compare the results to the benchmark.
Themain reason for using an ensemble on top of Sequential Attention is the inherent
randomness of the algorithm, which can miss important features if a single runner is
used. With voting, there is an increased chance that the algorithmwill produce better
results despite the random initialization (Figure 5.3 shows the reduced variance of
the Ensemble/Intermediate Sequential Attention, highlighting that in comparison to
Simple Sequential Attention, it is more stable). Having a multi-expert approach can
also validate the importance of some specific features. One can identify the highly
predictive features by analyzing the voting heatmap. The more a feature is selected
by the pool of models, the higher the likelihood it is an important one.
Improvement goals:

• QI: increase quality, stability and achieve consistent better results.
• EI: run workers in parallel and reduce the end-to-end time.

• [QI + EQ] Sequential attention with feature batches
Similar to the previous plan on simple ensembling, we aim to select the optimal D
features out of N, with the feature set split into K equal parts, one for each worker.
Each worker is expected to select approximately D/K features from their subset.
Once the ensembling is done, the algorithmwill come up with the final set of features.
Instead of voting, the final step would be to put together the feature subsets of every
batch. The goal is to increase parallelization on the previous ensemble method, as
all the ensemble members can, in parallel, process their subset.
Improvement goals:

• QI: have workers specialize in a feature batch instead of focusing on the complete
set.

• EI: run each batch in parallel and gather results.
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Figure 5.3: Simple SA VS Intermediate SA. When using an ensemble of multiple workers voting for
the final mask, the accuracy is more stable. Average across 5 runs.

• [QI] Multi-headed attention embedding
The Sequential Attention paper uses a simple Hadamard product to select features,
turning them on/off based on the value of the attention logit. However, this does not
consider feature interactions. In the Attention is All You Need paper [46], the authors
propose the transformer, a seq-to-seq specific architecture, with an attention mech-
anism that takes into account the relations between different tokens in a sequence.
Despite the fact that the use case detailed here does not imply a sequential data
model, the same logic can be applied to reduce the dimensionality of the dataset,
while taking into account the interactions between features.
Instead of using the Hadamard product to switch features on/off, we attempt to use a
multi-headed self attention layer. In this case, the output of the attention layer would
not be a mask (a boolean vector), but an embedding representing the feature set.
Based on the size of the embedding « |featureset|, this can behave both like a fea-
ture selection and feature engineering step, creating a smaller and more interaction
aware embedding.
Improvement goals:

• QI: learn from the feature-to-feature interaction and produce better representa-
tions.

• [QI + EI] Intermediate sequential attention
As an expansion to the initial ensemble approach that can already be parallelized,
we looked into modifying the sequential attention flow to use K workers. Instead of
having a pool of K models, each working independently and producing a final mask,
the intermediate algorithm would synchronize the models periodically, have them
vote for the next best few features, and maintain a common prior. The goal is to
enhance diversity while also capturing the most important features in the data.
As the experiments will show, having an ensemble of models doing Sequential At-
tention independently leads to picking features that are redundant together. Having
a single Sequential Attention flow with K workers that sync on the selected features
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periodically reduces the chance of redundancy in the final mask, while allowing work-
ers to still work in parallel.
Improvement goals:

• QI: reduce the influence of random initialization of ensembling individual workers.
• EI: run each worker in parallel, and gather the results at each intermediate step.

5.3. Methods and Experiments
Based on the ideas outlined in the previous chapter, we expand the current imple-
mentation of Yasuda et al. [52] and we ran extensive experiments to validate our as-
sumptions and understand future directions and opportunities to optimize the methods
used. The goal was to understand how the whole machine learning flow can be sped
up while either keeping the same quality of the final models or having an acceptable
tradeoff between time-saving and the metric we are optimizing for (e.g. accuracy).

5.3.1. Datasets setup
Since the Sequential Attention for Feature Selection is our baseline, we largely used
the datasets they provided results for, and the same open-source code for the Se-
quential Attention module, together with the same hyperparameters to find a mask
and train the final model.

Table 5.1, and table 5.2 present the datasets and hyperparameters used for run-
ning the experiments.

Table 5.1: Data hyperparameters

Dataset name Data Type ML task Batch
size

Validation
Ratio

Mnist Image Classification 349 12.5%
Mnist Fashion Image Classification 391 12.5%
Activity Tabular Classification 183 12.5%
Mice protein Tabular Classification 16 12.5%

Table 5.2: Model hyperparameters

Dataset name Learning rate Decay Rate
Mnist 6e− 3 0.37

Mnist Fashion 0.4 0.84

Activity 1e− 5 1.00

Mice protein 1.0 0.63
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5.3.2. Improving the Sequential attention subset size
The first step in building on top of the Sequential Attention paper was to replicate it
and study its stability, as well as the ability to decrease the number of features lower
than 50 without a considerable drop in performance. We ran experiments where Se-
quential Attention would find the best feature mask for each size in [1 .. 50]. As we’ve
previously seen in Figure 5.2, in the case of the Mice protein dataset, not only is Se-
quential Attention stable across different random runs, but the same test set accuracy
can be achieved with as low as 18 features, a 64% decrease from the benchmark 50
features and a 77% decrease from the initial 77 features. The results were interesting
as the number of features for optimal performance can be drastically reduced from 50.
Here are the experiments. This signals that even if Yasuda et al. [52] used 50 features
in their paper, there is still redundancy in some of the datasets used that allow for a
much smaller feature mask, without affecting quality.

Figure 5.4: Loss and Accuracy given a feature map size (MNIST). Continuously adding features
increases the accuracy of the model. Average over 5 runs.

For visual datasets, however, the redundancy exists but it’s less emphasized. For
MNIST, continuously adding features, always increases the accuracy of the model,
as can be concluded from the accuracy plot in Figure 5.4. However, even with this
information, one can still find a tradeoff between runtime/memory usage and quality.
With 50 features the accuracy of the model on the test set is around 95.5%. Further
reducing the number of features by 50% implies a drop in performance of only 4%,
which might be acceptable in certain situations where speed and dataset reduction
are more important.

In Figure 5.5, we ran Sequential Attention for a target mask size ranging from 1 to
50. As the number of target features increases, there is a tendency for the Sequential
Attention module to pick features that are closer to the center of the image rather
than toward the borders. This is the expected behavior since the MNIST images are
centered, usually with a significant black border.

Figure 5.6 highlights a similar pattern, but for a tabular dataset. Since tabular
datasets don’t have a second dimension, and there is no ’center’ for them, we’ll refer to
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Figure 5.5: Pixel map for increasing feature set size (MNIST). Each plot represents the optimal
feature mask for a specific number of features, ranging from 1 to 50.

the features as being cells on a single grid. While in Figure 5.5 the significant features
of the MNIST dataset are towards the center of the image, in Figure 5.6 there is a
tendency to pick features from the right part of the grid, highlighting that there might
be significant redundancy in the features on the left side relative to this prediction task.

For the Activity dataset, the same situation occurs, where picking a smaller feature
set size yields good results. In that case, one can take more advantage of the trade
off between a drastically smaller mask for a small drop in performance. As can be
seen in Figure 5.7, one could reduce the features by 60% from the benchmark, while
dropping the performance by less than 2%.

For the Activity dataset as well, Sequential Attention based feature selection out-
performs random selection for masks of at least 4 features (Figure 5.8).
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Figure 5.6: Feature map for increasing feature set size (Activity). Each plot represents the optimal
feature mask for a specific number of features ranging from 1 to 50.

Figure 5.7: Loss and Accuracy given a feature map size (Activity). The difference in accuracy
between 50 and 30 features is less than 2%. Average across 5 runs.
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Figure 5.8: Accuracy with K selected features (Activity), single Sequential Attention run VS average
across 5 random selection runs.

5.3.3. Ensemble sequential attention
To start with this approach, we ran multiple ensemble sequential attention models
and compared the results to the ones of single sequential attention models, on the
MNIST and fashion MNIST datasets. As a first approach, we used multiple workers
that would individually come up with a mask of size K, gather their results and pick
the most popular global K features as the final mask. In Figure 5.9, we can see the
commonly used features that maximize accuracy (The Common mask), a heatmap
with feature popularity in the case of voting methods, and a few data samples for
reference.

Figure 5.9: Mnist heatmap and example images.
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A common issue in feature selection by multiple experts without coordination is the
likelihood of choosing redundant features. For example, in a dataset with features [A,
B, C, D, Y], A and B are both strong predictors for the independent variable Y, signif-
icantly affecting accuracy, while C and D are more marginal, capturing key outliers.
When an ensemble aims for a feature pair, the high ranking of A and B often leads
to their inclusion in the final set. However, this may not be optimal; models trained
on combinations like [A, C], [A, D], [B, C], or [B, D] might outperform those trained
on [A, B] due to A’s and B’s redundancy when they are considered together. This
phenomenon is particularly noticeable in datasets like MNIST, where visual analysis
shows that an ensemble method tends to favor too many similar central features, as
seen in the comparison between simple SA and ensemble-generated masks in Figure
5.10. On the left side is the mask generated by just one sequential attention runner,
and is evenly distributed, without many clusters of features, enhancing diversity. On
the right side, there is the output of an ensemble of 10 sequential attention runners,
voting for the final mask. It is noticeable that there are clusters formed in the center of
the image (the redundant together features), while there is not much diversity towards
the borders.

Figure 5.10: Redundancy and lack of diversity in ensemble voting. On the left is the mask resulted
from a single Sequential Attention layer, while on the right there is the mask agreed on by an

ensemble of Sequential Attention workers. In the later it is clear that many features are redundantly
picked together (towards the center of the image), hindering the diversity towards the borders.

The accuracy difference between the 2 masks in Figure 5.10 can be as high as 2%
on the test set, due to the redundancy problem. To mitigate this, we used the same
ensemble and voting method, but instead of all the models having selection access
to all the features, we randomly masked a large number. The masking factor ranges
from 0 to 1, with 0 meaning that the model sees all the features and 1 meaning that
the model sees no feature.

The more features (pixels in the case of MNIST) are randomly masked out, the
more the ensemble tends to pick a more diverse set, lowering the chance of picking
features that are redundant together, as it happens when all the models have access
to all the features. In Figure 5.11, 70% (left) and 85% (right) of the features aremasked.
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It is visible how the vote heatmap covers a more diverse range of pixels. However,
none of them is able to create feature masks that come close to the accuracy of the
feature mask generated using Sequential Attention only. This also enables us to make
the statement that randomly masking out features might not yield better results.

Figure 5.11: Diversity in masked ensembling. For those feature vote heatmaps, a random number
(70% left, 85% right) of features was masked out for each member of the ensemble, with the goal of

enhancing diversity.

5.3.4. Sequential attention with feature batches
As outlined before, we attempted to run Sequential Attention on disjoint batches of
the feature space, and concatenate the results that are then used to train a sparse
model. However, this implies that every batch is weighted equally, both in terms of the
importance of features as well as the number of features that should be picked from
it (Figure 5.12). As results indicate (especially the plots on feature selection for every
iteration from 1 to 50), this is not necessarily the case.

With a mask generated by putting together the best features from every grid the
model achieves 90% accuracy on the test set for MNIST, far from the SOTA (with
reduced feature count) of 96%. One potential future direction can be looking into how
the weight of each region (and the number of features to be selected from it) can be
learned through gradient descent, so themodel can learn what regions to pick features
from. However, with this approach, we expect the model will quickly “forget” about
the concept of regions, and converge to the result of Sequential Attention on the full
featureset, where no regions are defined. When running on tabular data, the results
are slightly better, possibly due to the non-localized nature of the tabular dataset. In
this case, even a shuffled version of the feature space would resemble the same data,
while for images it would not hold true. For Mice protein, the grid based approach
equals the SOTA at 100% test accuracy, while in the Activity dataset it reaches 92.4%
(SOTA 93%). However those are isolated cases where even if one picks an equal
number of features from each equally sized grid, the most globally important features
are also likely to be picked.
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Figure 5.12: Final feature subset with feature batches.

5.3.5. Intermediate Sequential Attention
Previously, we have looked into training multiple Sequential Attention models individ-
ually that vote on the top K features once all of them end the training. The mask that
all the models agree on performs worse than using a single Sequential Model. In
fact, in some cases it performs worse than the average performance of the models
in the ensemble, leading to wasted resources training all the K models. One of the
problems we identified is the agreement on features thats are redundant together, at
the expense of not picking the features that would capture more variance in the data.
This is caused by the lack of synchronization in the ensemble process combined with
random initialization of each model, that leads to generating, at each step, a next best
feature with different priors.

To mitigate this issue, we introduce Intermediate Sequential Attention, a flow that
aims to combine the quality of simple Sequential Attention with the value added by
the multi-expert approach of ensembling. The algorithm is as follows:

• Having a dataset with N features,
• and a budget of M runs, each with a specified target feature count:
[m1,m2,…m3], with mi < mi+1

• compute the best mask for each of those targets,
• using an ensemble of K models that vote for a common mask at each mi.

The sequence of steps from above is formalized in Algorithm 1.
You might notice in the training of each individual model that the number of epochs

is scaled to the size of the ensemble. The hypothesis here is that we want to keep
the same total compute time, but parallelize it. If a normal, single Sequential Attention
model would achieve performance X in E epochs, we want the ensemble to achieve
the same quality, in parallel, in a total end-to-end time of approximately E / ensem-
ble_size epochs. The quality of each individual model will be poor compared to the
quality of the individual runner, but through the voting mechanism the overall perfor-
mance of the ensemble is comparable, in a fraction of the time. To draw a parallel
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to multiheaded attention, each ensemble member can be seen as one attention head.
Given different random initializations, eachmember picks a set of features, in a shorter
timeframe, based on the prior that they hold from the initial weights. Each member
might pick a subset of the features that might not be entirely relevant to the final use
case, but having multiple models vote for the set of features improves the quality of
the ensemble.

Algorithm 1 Get Masks Algorithm
1: function GetMasks(target_counts, ensemble_size)
2: mask← [] ▷ The prior for all the models
3: for t = 0 to |target_counts| do
4: target_count← target_counts[t]
5: features_needed← target_count− |mask|
6: model_pool← []
7: for m = 0 to ensemble_size do
8: model← Model(prior: mask, select_feature_count: features_needed)
9: model.train(epochs: epochs_select/ensemble_size)
10: model_pool← model_pool+model
11: end for
12: feature_votes← get_votes(model_pool)
13: new_features← select_top_k(feature_votes, k: features_needed)
14: mask← mask+ new_features
15: end for
16: output← []
17: for t = 0 to |target_counts| do
18: target_count← target_counts[t]
19: output← mask[: target_count]
20: end for
21: return output
22: end function

The more fine grained the target counts are, the less redundant-together features
will the ensemble members pick. If the targets are in increments of 1, the models will
vote on the next best single feature and the chance of getting a low performing final
mask is lower. On the other hand, picking a too large gap between the target counts
(e.g. [1, 50]), would transform this flow in the simple voting algorithms from Section
5.3.3, where the models vote for the entire mask, leading to a mask that yields poor
performance in the end, due to the redundancy issue.

We have also looked into generating the feature set in increments of 1, but this
results in more computational resources required, since the lifespan of each ensemble
worker is lower, and given that generating the worker jobs and synchronizing their
results takes a non-trivial time, we have decided to focus on experiments with larger
steps, since they offer a better time to accuracy ratio. Also, when each worker is
tasked with picking a larger number of features (larger than 1), there is a higher chance
that the voting algorithm will have a clear maximum to add to the feature set, rather
than dealing with ties and randomly picking a feature in the case where each model
only looks into the next single best feature.
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Figure 5.13: Simple VS Intermediate SA (MNIST). Average across 5 runs.

In Figure 5.13, there is a comparison between accuracy achieved with normal Se-
quential Attention for K features and the accuracy achieved with Intermediate SA. The
first observation is that Intermediate SA is more stable than simple SA. The intuition
is that Simple SA does not have any prior, and starts from a random configuration for
every feature count, while Intermediate SA always builds upon the previously selected
feature, hence the monotonically increasing trajectory. This also explains the lower
accuracy compared to Simple SA until 16 features. Once the ensemble picks a set of
initial features, the prior is the same for the whole run, while Simple SA re-evaluates
the feature set every time, such that:

• |SimpleSA[i] ∩ SimpleSA[i− 1]| ∈ [0, |SimpleSA[i− 1]|], while
• |IntermediateSA[i] ∩ IntermediateSA[i− 1]| = |IntermediateSA[i− 1]|

, restricting Intermediate SA from fixing a poorly chosen prior. However, after a certain
number of features, Intermediate SA is consistently better than Simple SA.

The fact that Intermediate Sequential Attention is more stable over time makes
sense given the information outlined previously. However, one interesting observa-
tion is the difference for a low number of features. Given the random initialization of
both simple and intermediate sequential attention, one could expect gaps in quality,
especially in a low feature regime. To better understand the impact of random ini-
tialization to intermediate sequential attention, we have built a graph to measure the
variance over 5 random runs (Figure 5.14). Visually, the more features are added to
the model (and the more advanced we are in the search), the more stable the voting
mechanism becomes.

5.3.6. Sequential attention on reduced data
Given the positive results on further reduced feature counts, we attempted to look into
both reducing the feature set size and the dataset size. To our knowledge, there is
no study that looks into both directions simultaneously. Both directions are important
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Figure 5.14: Stability of Intermediate Sequential Attention. Average across 5 runs.

individually for the purpose of time savings, thus compounding them might yield even
better results.

From a time performance perspective, we aim to optimize the time it takes to find a
good mask given a feature count budget. Having the mask, we will train the full model
end-to-end with the whole masked dataset. Given this considerations, the following
complexities hold true:

• Training a full model end-to-end: O(N(dataset size) ∗ F (feature set size))

• Finding the mask with a fraction X ∈ (0, 1) of the data and training the model end-
to-end: O(N ’ ∗ F ) +O(N ∗ F ’), with F ’ << F and N ’ = X ∗N .

Preliminary experiments on the same datasets indicate good tradeoffs in terms of
final accuracy working with both low data and feature regimes (Figure 5.15).

Zooming in (Figure 5.16), we can see that having the model train on 20% of the
dataset achieves performances very similar to training it on the full dataset, even with
lower feature counts. This is good from 2 perspectives:

1. Running experiments faster, if the goal is to see the trend of the model, and not the
peak accuracy.

2. For use cases where time is crucial and accuracy can be traded for model speed,
having such plots can help decision makers pick optimal values for their data share
and optimal feature set.

A similar situation occurs for image datasets as well (MNIST), as can be seen in
Figure 5.17 and Figure 5.18 for a zoomed-in version.

As a next step for looking into reducing the dataset as well as the feature set, active
learning can be applied for the model to decide what part of the distribution to pick data
from, such that it can start with as low as 10% of the dataset, and only request more
data if required. This way, the required data quantity is learned actively while also
learning the best mask for a given feature set size.
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Figure 5.15: Training a sparse model on the full dataset, with the feature mask computer on small
subsets (Activity). This graph depicts the relationship between feature count and model accuracy,

demonstrating that models trained on subsets of data (20% to 100%) can nearly match the
performance of models trained on the full dataset. It underscores the efficacy of feature selection in

enhancing computational efficiency without significantly compromising accuracy.

Figure 5.16: Training a sparse model on the full dataset, with the feature mask computed on small
subsets (Activity). This zoomed-in graph demonstrates the precision of feature selection in machine
learning, showing how models with reduced feature sets closely approach the accuracy of those

trained on the entire dataset, thus reinforcing the value of efficient feature selection.
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Figure 5.17: Training a sparse model on the full dataset, with the feature mask computer on small
subsets (MNIST).

Figure 5.18: Training a sparse model on the full dataset, with the feature mask computer on small
subsets (MNIST).



5.3. Methods and Experiments 61

5.3.7. Computing mask size upper bound with SVD
All the previous experiments require the user specify the target number of features in
the smaller set, introducing possible bias and potentially resulting in a mask that is ei-
ther too small, thus making the model underperform, or too large, creating redundancy
in the reduced feature set.

Figure 5.19: Singular values (Mice protein). Figure 5.20: Singular values (MNIST).

Singular Value Decomposition (SVD) plays an important role in identifying an op-
timal feature set for various data-driven applications. It is a matrix factorization tech-
nique that decomposes a matrix into three separate entities. SVD reveals the inherent
structure of the dataset and can help in choosing the optimal set of features that bal-
ances between minimality and preserving accuracy. This is achieved by selecting the
size of the feature set to be the number of non-trivial singular values in the decomposi-
tion. To validate this point, we ran experiments on both MNIST and Mice protein, and
as Figure 5.19 and Figure 5.20 show, the numbers are representative of the results
of Sequential Attention earlier in the chapter.

For Mice protein, the number of non-trivial singular values is 36 (out of 77). How-
ever, even if not all of them might be correlated to the target column, this provides an
upper bound to the size of the feature subset. In the accuracy graph, it is clear that
100% test set accuracy is achieved by picking only 20 features, thus it would be a
waste of resources to compute the accuracy for 40 and 50, for example. By having
the 36 upper bound provided by SVD, one could only search a subset of size lower
than this, potentially saving wasted compute time.

We had a similar result for MNIST, where the upper bound for the feature subset
size was 600. Still higher than the number of features that already yield a good model
quality (∼50), however, it offers an upper bound preventing unnecessary compute in
the 600–784 features count region.

It is worth noting how the singular values are inversely correlated to the accuracy
given a range for the feature count, highlighting that the first 50 features increase the
quality significantly, with the rest of the features only improving the quality marginally.

A next step for Singular Value Decomposition is understanding how it can be ap-
plied to large datasets that do not fit into memory. One initial heuristic is to run SVD
on small batches, retrieve the number of non-trivial singular values for each, and use
the median value as the support bound for the mask finding algorithm.
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5.3.8. End-to-end time comparisons
We have also run end-to-end experiments to compare the approaches discussed so
far to the benchmarks in the Sequential Attention paper. Given a training budget of
potential feature subset sizes, we have measured the time to get the optimal masks
for all the sizes, as well as the accuracy with each mask size (Figure 5.21), for all the
following methods:

• Simple SA: one Sequential Attention model, responsible for generating a mask of a
given size.

• Simple SA 20: Simple SA, but on a uniform 20% sample of the dataset.
• Simple SA 40: Simple SA, but on a uniform 40% sample of the dataset.
• Simple SA 60: Simple SA, but on a uniform 60% sample of the dataset.
• Intermediate SA: Intermediate Sequential Attention, as detailed in the section above.
• LLYMask: the algorithm from [28]
• GL: Group lasso according to [4]

Figure 5.21: Time measurements across various methods and datasets (MNIST). Average across 5
runs.

As it is clear from the Figure 5.21, Sequential Attention and Intermediate Sequen-
tial Attention are consistently better than other approaches. Once again, the Interme-
diate SA has the lowest variance across all 3 feature sizes, proving the stability of
ensemble methods.

Having the accuracy and time to get the mask for each of the models above, we
have computed the accuracy/time ratio as a first measure of understanding the trade-
off between how fast a model is and the quality of the results (Figure 5.22). However,
the results in the trade-off table have to be analyzed together with the accuracy results
to be conclusive on what model to use in a production scenario.

Even if Simple Sequential attention provides slightly higher accuracies than the In-
termediate version, the latter has the best quality/time tradeoff, due to its parallelization
abilities. Even though the total compute time is comparable to Sequential Attention,
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Figure 5.22: Time to compute mask for all different sizes (MNIST). Average across 5 runs.

the end-to-end time is reduced (the reduction scales with the numbers of members in
the ensemble). At each epoch, K models compute the best next features in a short
amount of time, then vote for the actual features that make it in the mask. At that
point, the quality of each model is suboptimal, however the mask decided for after
voting performs consistently well.

Figure 5.23: Time measurements across various methods and datasets (Activity). Average across 5
runs.

We have also run similar experiments on tabular data (Activity dataset), (Figure
5.23). For this dataset, the masks delivered by the Intermediate Sequential Attention
were comparable or better than the ones from Intermediate Attention for 40 and 50
features.

In terms of time, however, the same ratio as with the experiments on mnist holds
true. Due to the Intermediate Sequential Attention being parallelized, the total time to
accuracy is lower for sequential attention, providing the best tradeoff (Figure 5.24).
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Figure 5.24: Time to compute mask for all different sizes (Activity). Average across 5 runs.

Figure 5.25: Final accuracy / Time to find the mask ratio (50 features, Activity). Average across 5
runs.
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However, the time for the LLY Mask approach is very short compared to any of
the other methods, and so is the accuracy. That is the reason why in Figure 5.25
on the accuracy/time ratio, it ranks very high compared to every other method. That
is why those charts should be analyzed together, since sequential attention is the
best method given the tradeoff between accuracy loss and time saved to compute the
mask.

5.4. Feature Masking Tool
As we have seen in previous chapters exploring various methods to select optimal
features, datasets tend to have a relatively high number of redundant features, in-
creasing both the training and inference time, as well as increasing the space needed
to store the model, both in runtime memory and on disk. In the case of Mice protein for
example, the number of features can be further reduced from 50/77 to 20/77, without
compromising the quality of the final model as in Figure 5.26.

Figure 5.26: Performances of feature masking.

Building upon the results explored in this practical section of the thesis, we built
an internal tool to get insights on how much the feature set can be reduced on any
dataset, especially at large scale. The methodology is formalized in Algorithm 2. The
goal is to help client teams understand the level of redundancy in their feature set,
reduce it and speed up their machine learning flows, ideally at the same quality as the
model trained with the full dataset.

5.4.1. Input
At a high level, the tool would need a dataset, a number of feature set sizes (“find
best masks for 10%, 20%, … , 50% of the data”), and, optionally, a model to run
experiments on. In case the model is absent, we will use a generic fully connected
MLP to learn the optimal masks. The goal is to compute the best feature mask for
each of the sizes in the budget and report on the quality of the model.

5.4.2. Output
For each size in the budget, the pipeline returns the following:

• Best mask: given the available sizes, this field contains the features that achieve
the highest quality after training the model on them.
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Algorithm 2 Feature Masking Algorithm
1: function FeatureMasking(dataset,model, feature_set_sizes)
2: feature_set_quality← []
3: best_feature_set← None
4: best_feature_set_quality← None
5: for i = 0 to |feature_set_sizes| do
6: size← feature_set_sizes[i]
7: feature_set← get_optimal_feature_set(dataset, model, size)
8: quality← model.evaluate(dataset.subset(feature_set))
9: feature_set_quality← feature_set_quality+ quality
10: if best_feature_set_quality < quality then
11: best_feature_set_quality← quality
12: best_feature_set← feature_set
13: end if
14: end for
15: optimal_mask← get_optimal_mask(feature_set_sizes, feature_set_quality)
16: output← (best_feature_set, optimal_mask, feature_set_quality)
17: return output
18: end function

• Optimal mask: instead of returning the feature set that maximizes the quality, this
field contains the mask that optimizes the tradeoff between the number of features
and the quality of the mode.

• Mask qualities: the quality for the optimal feature subset for each of the sizes in the
budget. The end user can use this to decide what is a reasonable tradeoff for their
use case.

5.4.3. Architecture
The pipeline is modeled as a directed graph of jobs, each having a specified input,
output and task. The main job receives the list with number of features and a dataset,
then it creates K workers (K = | budget size |), each tasked to return the best mask
with their Ki number of features. Once all the workers are done with their computation,
another job is started, that collects their answers and computes the best and optimal
masks. Once this part is done, the results are returned to the caller of the pipeline, as
in Figure 5.27.

5.4.4. Usage
Having such a tool, internal clients can identify potential ways to make their machine
learning flows more efficient, from both a training, inference and model storage per-
spective. The tool is meant to provide insights on how many features can be further
reduced while keeping the same quality.

For the first iteration, the pipeline will run Sequential Attention to compute the
masks, however, in the future, more complex approaches can be used, such as using
intermediate Sequential Attention, or active learning with small subsets of the data, to
speed up the pipeline and return results to users as quickly as possible.
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Figure 5.27: Feature masking tool.

5.5. Results and Impact
Looping back to the beginning of the thesis, the initial goal was to find ways to run
machine learning experiments faster, reduce the time for a whole ML pipeline and
reduce the feature set as much as possible.

With the Sequential Attention being the state of the art, we built on top of it to
explore potential areas for improvement, such as ensembling, further feature set re-
duction and running in low data regimes.

Not only did we show that running simple Sequential Attention with less features
is feasible and returns comparable results to the benchmark set by the paper, but
we also explored other research directions, aimed to minimize the training time and
provide insights on how little data is in fact needed to train a high quality ML model.

5.5.1. Training time saving
Having a good feature mask can dramatically reduce the training time. Since the
number of features linearly impacts the time it takes to train a deep neural network,
reducing the number of features by a non-trivial amount of X% would also reduce the
training time by a similar percentage. This assumption holds true only if the architec-
ture of the model is reduced to reflect the reduced size of the dataset. This has a
direct implication on the model size as well.

For starters, one could zero-out the features not included in the reduced feature set,
however this would create a very sparse model, with redundant connection. Rearchi-
tecting the model to reflect the new reduced feature results in a lower model size,
when saved after training and served for inference.

In Table 5.3, the tradeoff between quality and reduced model size is clear. Having
a low but relevant number of parameters drops the accuracy with single digit points,
while the size of the model drops with more than 90%, and so does the training and
inference speed.
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Table 5.3: Results

Model Architecture Params Size KB) Size
relative to
full model

Accuracy

Full-feature
MLP on
mnist

[784, 67, 10] 53275 208.11 100.0% 99.87%

50 feature
MLP on
mnist

[50, 32, 10] 1962 7.66 3.6% 95.11%

30 feature
MLP on
mnist

[30, 20, 10] 830 3.24 1.5% 93.58%

5.5.2. Reduced datasets
Having Sequential Attention or any of the aforementioned algorithms compute a mask
that yields good performances might determine teams to deprecate features that do
not have a direct contribution to training or inference tasks. Moreover, combined with
the cost of feature acquisition, this approach might provide reductions in both storage
and costs. Also, a future research direction could be looking into the explainability
of models trained on reduced datasets. Having less redundancy might also lead to
better visualizations.

5.5.3. Reduced inference time
Not only the training time is reduced having a smaller model and dataset, but also
the inference time will drop, improving the user experience of the products that use
those models. There might be a good tradeoff between a slightly expensive process
of finding the mask and the reduction in time perceived by the end user.

5.5.4. New research directions
1. Parallelizing ensemble sequential attention.
2. Model explainability given reduced feature sets.
3. Active learning for using the least possible amount of data, while keeping the quality

of the model high.
4. Finding an optimal tradeoff between the quality drop and the reduced time to train

the full model.

5.5.5. Code
Given the surprising finding that no paper in the SLR had the code published to make
it easier to replicate, we decided to publish the code behind this research. Together
with the open source code published by Yasuda et al. [52], we think this will be a good
replication package for follow-up work. The code can be found on GitHub (google-
research /sequential_attention /ensembled_sequential_attention).

https://github.com/google-research/google-research/tree/master/sequential_attention/ensembled_sequential_attention


6
Conclusion

At the beginning of the thesis, we set the goal of making machine learning more effi-
cient, by zooming into the data component of a machine learning system. Throughout
this thesis, we went from understanding the current state of feature selection in the
context of big infrastructures. Moreover, as previous studies look mostly into optimiz-
ing accuracy/loss for the test set, we look into more complex improvements, from the
perspective of both minimizing a loss metric, but also lowering the time for training an
optimal model, as well as lowering the memory footprint of a model training.

We started by looking into the background literature, finding some interesting stud-
ies that look into data redundancy, as well as into common problems when it comes to
designing corporate scale data backed systems. The main problems with huge data
volumes are Volume, Variety, and Velocity. With Volume, there is a challenge in train-
ing quickly models and finding redundancy in such an amount of data. With Variety,
there is a challenge in training a model without bias, that is flexible enough to consider
all the outliers. With Velocity, the main question that comes up is the speed one is
able to train new models as the data distribution changes or keep existing models up
to date.

The SLR offered a more in depth look over the research conducted in the last years
on the topic of feature selection and data redundancy, in general. Apart from coming
up with a list of reproducible steps for future research to use this as an anchor in the
machine learning literature, some interesting insights came out of it. First and fore-
most, we saw that most of the studies we discovered were domain agnostic, the fact
that helps advance the existing research. A domain agnostic approach can be applied
in a multitude of scenarios, can be extended without losing its agnostic character, and
can serve as the base for overly optimized domain specific applications. Speaking of
domain specificity, some industries do prefer such approaches, since optimizing the
accuracy of models is more important than finding trade-offs between accuracy and
speed, for example. Such domains are healthcare and fintech, where, understand-
ably the quality of the data and models they use can be crucial in impacting humans
and conducting business.

From the solutions we surveyed, we’ve seen that most data and feature reduction
approaches rely on heuristic methods, with filter feature selection algorithms being
the most popular, due to their time efficiency and model interoperability. The main
takeaway from the analyses we surveyed is that there is no free lunch when it comes
to feature reduction, meaning that in order to optimize ametric there is a high chance of
another metric being compromised, while they agree that in many business scenarios,
having prior domain knowledge is a key factor in deciding what is data redundancy
and what features are indeed valuable for training a highly predictive model. Along the

69



70

same lines, reviews that we included in our SLR conclude that a lack of focus in the
business part of Machine Learning can impact decisions taken by both practitioners,
as well as the ones made by the algorithms.

Having done the SLR, we shifted focus towards a more applied setting, where we
aimed to change the way feature selection is done at a corporate scale. We partnered
with Google to advance the state-of-the-art set by Google researchers in early 2023,
through the Sequential Attention for Feature Selection paper. While Yasuda et al.
[52] did advance the SOTA when it comes to model accuracy with reduced feature
count, we considered other metrics as important in this optimization. Thus, we started
looking into ways of finding a good equilibrium between model quality and the time it
takes to reach it. We thus looked into ensemble models, that could collectively reach
a consensus that is better in both time and quality than the previous state of the art.
Seeing that redundancy problems start to show up, we came up with the Intermediate
Sequential Attention algorithm, that would ensemble multiple workers with periodic
syncs, so that the benefit of ensembling is still present, while redundancy is minimized
through communication between models. We also showed that this flow achieves
similar quality to the state of the art while minimizing the time it takes to reach it. To
complement this vertical of research, we explored ways of coming up with an optimal
feature subset size faster, looking into the usage of Singular Value Decomposition for
this purpose. Lastly, we put all this work together in a scalable tool used internally by
teams at Google, so that the research we conducted can start impacting products and
consumers as soon as possible.

In essence, this thesis emphasizes the relationship between academic research
and industry application, with the shared goal of improving machine learning systems,
and working with data as efficiently as possible, without compromising quality. While
academic studies lay the groundwork by providing insights, theories, and methodolo-
gies, it is the real-world application, as experienced at Google, that tests, refines, and
applies them in a real-world setting the research findings. This iterative process of
learning and applying is what propels the machine learning field forward, ensuring
its relevance and impact in both the world of academia and the ever-evolving tech
industry.
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