
A Framework for Identifying
Evolution Patterns of Open-
Source Software Projects

Master’s Thesis

Master of Science in Computer Science

Mattia Bonfanti

Delft University of Technology

Delft, The Netherlands

June 2024

Image Credits: ©2024 Willam Morris. All rights reserved.

A Framework for Identifying Evolution
Patterns of Open-Source Software

Projects

Master’s Thesis

Mattia Bonfanti

A Framework for Identifying Evolution
Patterns of Open-Source Software

Projects

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Mattia Bonfanti
born in Vaprio d’Adda, Italy

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

©2024 Mattia Bonfanti. All rights reserved.

A Framework for Identifying Evolution
Patterns of Open-Source Software

Projects

Author: Mattia Bonfanti
Student id: 5002273

Abstract

Research on open-source software evolution gained popularity in the last decade
focusing on the theoretical determining factors. Additional works studied growth pat-
terns modeling using time series techniques on small projects and metrics samples
or non-openly available larger datasets. Limitations in reproducibility and scalability
of these methodologies add to the lack of research on time series methodologies ap-
plied to open-source software evolution. Thus, time series approaches from different
domains are needed to address the multivariate nature of larger and variable samples
of open-source projects and metrics time series data. This thesis aims to provide a
reproducible and scalable framework to support researchers in studying open-source
software evolution using patterns modeling, time series merging, multivariate time se-
ries clustering and multivariate time series forecasting. An openly available dataset of
1328 projects is built using relevant metrics extracted from a systematic literature re-
view. The metrics time series are segmented and clustered to obtain generalized growth
patterns: Steep; Shallow; Plateau. The sequence of patterns and their correlation are
used to create three project clusters, from which prediction models for all metrics are
trained to perform multivariate time series forecasting. Experiment results give confi-
dence over the reproducibility and the scalability of the framework and show how the
pattern shifts can be linked to real events in projects’ histories. The thesis provides an
additional perspective on open-source software evolution and can serve as a starting
point for further studies.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, Software Engineering, TU Delft
University supervisor: Dr. Ing. S. Proksch, Faculty EEMCS, Software Engineering, TU Delft
Committee Member: Dr. JGH Cockx, Faculty EEMCS, Programming Languages, TU Delft

m.bonfanti@student.tudelft.nl

Preface

As this thesis marks the end of my time at TU Delft which started 5 years ago with the Bach-
elor’s in Computer Science and Engineering and continued with the Master’s in Computer
Science, I cannot stop thinking about the events that led to this. As I was graduating High
School in Italy back in 2011, there was great excitement to start University right away at the
Polytechnic School of Milan. However, that desire fell short of unfair circumstances that re-
quired me to start working only after one year of studies. The desire to get back and pursue
a degree at a University was still present, but it could not be a priority anymore. Luckily, I
was able to join a small Software Development company in Italy and started learning more
about the principles of Software Engineering and how to solve problems through coding.
As projects were getting more interesting and challenging in the following 2 years, we had
the chance to relocate the business to the USA, specifically in Redwood City (Silicon Val-
ley). The 7 years that I spent there were incredibly fulfilling and helped me to grow as a
Software Engineer and as an adult. After achieving things that I am very proud of, the feel-
ing of finishing the University journey that needed to stop years back grew stronger. Thus,
I decided to move to TU Delft to make this dream come true. The past 5 years have been
challenging between courses, exams and part-time job, however, I am very happy that all
the hard work paid off.

A lot of people I met along the way deserve my thanks for making these years so mean-
ingful, but I would like to first give my greatest gratitude to my then-partner and now-wife
Emma. She has been incredibly supportive, always stood by my side and reminded me of
what was important when doubts started clouding my mind. Additionally, I also want to
thank my family and friends for always believing in me and having the right words at the
right times.

Many thanks go to my supervisors Sebastian and Shujun, who provided helpful feed-
back and support during the past months. The members of the thesis committee, Arie and
Jesper, are also thanked together with the Delft University of Technology for making this
thesis project possible. Special thanks also go to Maria and her family from Maria’s Home-
made for always providing the most delicious Greek food that fills your heart and soul.

iii

PREFACE

If I had to summarize everything that happened in the past 10-plus years in one sentence,
I would choose the following one from the author Daniel Pennac:

In other words, don’t panic, nothing goes as planned, that’s the only thing the future
teaches us when it becomes the past

Dedicated to the ones who are here, the ones who will be here, the ones who were here
and the ones who should still be here.

Mattia Bonfanti
Delft, The Netherlands

June 27, 2024

iv

Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

2 Related Work 5
2.1 Open-Source Software Evolution . 5
2.2 The Phases of Open-Source Software Evolution 14
2.3 Time Series Analysis . 19

3 Framework Design and Implementation 27
3.1 Framework Overview . 27
3.2 Metrics Selection and Dataset . 29
3.3 Multivariate Time Series Models . 36

4 Results and Evaluation 47
4.1 RQ1: What Insights can be Derived from the Framework? 47
4.2 RQ2: How Much History is Needed for the Patterns Predictions? 56
4.3 RQ3: How Reliable is the Break Points Detection? 60

5 Results Discussion, Limitations and Future Work 83
5.1 Framework Insights . 83
5.2 Patterns Prediction . 85
5.3 Break Points Detection and Real Events 86
5.4 Threats to Validity . 87

6 Conclusions 89

v

CONTENTS

6.1 Contributions . 89
6.2 Conclusion . 90

Bibliography 93

A Database Schema 105

B Evolution Patterns Evaluation Plots 109

C Glossary 113

vi

List of Figures

3.1 Framework pipeline steps. Source: Thesis author 28
3.2 Time series data of the cumulative stargazers for the saltstack/salt project. Source:

Thesis author . 37
3.3 Stargazers time series segmentation for the saltstack/salt project. Source: The-

sis author . 39
3.4 Time series segmentation and segments clustering process overview. Source:

Guijo-Rubio et al., 2020 [40] . 40
3.5 Time series merging procedure. Source: Keogh et al., 1998[57] 42
3.6 Merged metrics time series for the saltstack/salt project. Source: Thesis author 42

4.1 Generalized time series segments growth patterns. Source: Thesis author 48
4.2 Dendrogram representing the hierarchical clustering of open-source software

projects based on their metrics evolution patterns. Source: Thesis author 50
4.3 Average metrics evolution patterns for cluster 0. Source: Thesis author 50
4.4 Average metrics evolution patterns for cluster 1. Source: Thesis author 51
4.5 Average metrics evolution patterns for cluster 2. Source: Thesis author 52
4.6 Average patterns prediction performance, deviation and model R2 scores over

training months size evaluated on 10 randomly picked open-source projects.
Source: Thesis author . 54

4.7 Patterns prediction performance and deviation over increasing N. Source: The-
sis author . 58

4.8 Patterns prediction performance and deviation over increasing N considering
only patterns changes. Source: Thesis author 59

4.9 Merged metrics curve for the patternfly/patternfly-react project. Source: Thesis
author . 61

4.10 Merged metrics curve for the conan-io/conan project. Source: Thesis author . . 63
4.11 Merged metrics curve for the cockroachdb/cockroach project. Source: Thesis

author . 65
4.12 Merged metrics curve for the pypa/pip project. Source: Thesis author 66
4.13 Merged metrics curve for the woocommerce/woocommerce project. Source:

Thesis author . 68

vii

LIST OF FIGURES

4.14 Merged metrics curve for the nextcloud/server project. Source: Thesis author . 70
4.15 Merged metrics curve for the NixOS/nixpkgs project. Source: Thesis author . . 72
4.16 Merged metrics curve for the WordPress/gutenberg project. Source: Thesis author 74
4.17 Merged metrics curve for the saltstack/salt project. Source: Thesis author . . . 76
4.18 Merged metrics curve for the ansible/awx project. Source: Thesis author 78

A.1 MongoDB collections schema for repositories data and metrics time series data.
Source: Thesis author . 107

B.1 Generalized time series segments growth patterns for N/2 (664 repositories)
input. Source: Thesis author . 109

B.2 Generalized time series segments growth patterns for N/4 (332 repositories)
input. Source: Thesis author . 110

B.3 Generalized time series segments growth patterns for N/8 (166 repositories)
input. Source: Thesis author . 110

B.4 Generalized time series segments growth patterns for N/16 (83 repositories)
input. Source: Thesis author . 111

B.5 Generalized time series segments growth patterns for N/32 (41 repositories)
input. Source: Thesis author . 111

viii

List of Tables

3.1 Keywords and context related synonyms used for the first round of papers search 29
3.2 Questions used to review and summarize a paper with the goal of guiding its

quality-assessment score . 30
3.3 Quality-assessment questions used to score a paper between 0 and 1. Papers

with a score greater than 0.5 were selected . 30
3.4 Grouping of open-source software evolution factors cited by surveyed literature 31
3.5 Summary of the open-source software evolution factors with their number of

citations in the reviewed literature . 32
3.6 Mapping of the open-source software evolution factors to the available metrics

from the GitHub API . 35
3.7 Evolution factors with the corresponding GitHub API metrics and retrieval end-

points . 36

4.1 Generalized patterns curves coefficients for different input size, with full dataset
of 1328 repositories as baseline . 49

4.2 Distribution of metrics evolution patterns over the repositories clusters 49
4.3 Average metrics patterns prediction accuracy measures and model R2 score

evaluated on 10 randomly picked open-source projects 53
4.4 Average features importance for the metrics forecasting models including how

many times they are the most important . 55
4.5 Average metrics patterns prediction accuracy measures and model R2 score

evaluated on 10 randomly picked open-source projects using a decreasing amount
of features. Features=9 and Months=72 are used as baseline 56

4.6 Bi-grams probabilities and frequencies with EOS indicating one of the ends of
a sequence (first or last) . 57

4.7 Patterns prediction performance and deviation over increasing N comparison
between N-grams and baseline models . 57

4.8 Patterns prediction performance and deviation over increasing N comparison
between N-grams and baseline models considering pattern changes only 59

4.9 Metrics patterns for the patternfly/patternfly-react project 62
4.10 Metrics patterns for the conan-io/conan project 64

ix

LIST OF TABLES

4.11 Metrics patterns for the cockroachdb/cockroach project 66
4.12 Metrics patterns for the pypa/pip project . 67
4.13 Metrics patterns for the woocommerce/woocommerce project 69
4.14 Metrics patterns for the nextcloud/server project 71
4.15 Metrics patterns for the NixOS/nixpkgs project 73
4.16 Metrics patterns for the WordPress/gutenberg project 75
4.17 Metrics patterns for the saltstack/salt project 77
4.18 Metrics patterns for the ansible/awx project 79
4.19 Complexity metrics patterns for the patternfly/patternfly-react project 81
4.20 Complexity metrics patterns for the pypa/pip project 81
4.21 Complexity metrics patterns for the cockroachdb/cockroach project 81

x

Chapter 1

Introduction

Research on open-source software gained popularity over the last decade as the commercial
use of open-source components continued to increase [84][73][27][97][102][22][81]. With
the emergence of numerous open-source projects, historical resources became available to
offer valuable insights into the development of these projects, which made it possible to
examine their evolution [34][76][45]. Previous works focused on the aspects that determine
the evolution of open-source software by arguing the collection of experiences and building
theories of open-source software adoption in terms of planning, process improvement, com-
munity involvement and software maintenance [92][86]. These studies relied on qualitative
analysis to extract the factors that influence software evolution but lacked the empirical per-
spective that could give an understanding of the effects of such factors on the evolution of
open-source software. Additional studies followed an empirical approach focusing on sin-
gle large open-source projects and inspected the progress over time of several code-related
metrics with the aim of categorizing their growth rate [7][42]. However, the focus of these
studies on specific metrics and small amounts of projects raises issues on the scalability of
the applied methodologies and derived insights. Although some other studies [61][5] used
a larger sample of projects and metrics as input data, the adopted datasets have not been
made publicly available, making the results hard to reproduce and expand upon.

Past surveys [56][23] about software evolution studies also pointed out how research on
time series analysis generally lacks application to this domain. This prevents time series
analysis techniques from being widely applied to the study of software historical data. In
previous works on open-source software evolution [61][37][7][5], time series analysis has
been used to inspect the independent growth rate of the selected metrics. Additionally, other
works focused on time series forecasting by applying the ARMA (Autoregressive moving
average model) and ARIMA (Autoregressive integrated moving average) models from the
economics domain [38][87][88] to predict future metrics values. Although these works
contributed to filling the gap of using time series techniques in the study of open-source
software evolution, they limited themselves to analyzing metrics separately and focusing
mostly on a single project or a single characteristic (e.g. Java programs). Thus, additional
methodologies from other domains where time series research is more prominent must be
adopted to obtain reproducible and scalable results in terms of analyzed projects, historical

1

1. INTRODUCTION

data and metrics.

This thesis proposes a reproducible and scalable framework of methodologies that sup-
ports the analysis of open-source software evolution using time series techniques. The
results obtained from exploring the evolutionary behavior of open-source systems serve as
a point of reference. This allows the assessment of differences in evolution patterns, the
determination of which metrics have an impact on evolutionary behavior and the analysis of
the events that might have triggered the growth changes. In addition, modeling the growth
rate in open-source projects is used to train models to cluster similar ones and predict fu-
ture evolution patterns. Given the increasing relevance of research on open-source software
evolution, such results would be of high interest to researchers. Additionally, open-source
repositories provide a large amount of publicly available data for software engineering stud-
ies. The proposed framework is built on more than 1300 project data, which makes it fully
replicable and extendable. The historical data of open-source projects is represented by the
time series data of the metrics listed below. The metrics are chosen through an extensive
literature review of previous work over the past 20 years and the related data is collected
using the GitHub API.

• Commits: Number of commits over time to the main branch of a project [61][14][7].

• Releases: Number of release versions over time [14].

• Issues: Number of open issues over time [14].

• Pull Requests: Number of open pull requests over time [76][86][13][48].

• Contributors: Number of distinct contributors over time [61].

• Stargazers: Number of subscribers of a project over time [61].

• Forks: Number of created forks over time [35][53][106].

• Changes Size: The number of additions and deletions (files, code lines) over time
[61].

• CI/CD Runs: Adoption of best practices identified by the number of successful
CI/CD (Continuous Integration/Deployment) workflows and deployments over time
[80][59][74].

The gathered metrics provide the data to perform multivariate time series analysis by
applying techniques from different domains (finance and healthcare) to the field of open-
source software evolution. In particular, such techniques include growth patterns modeling
[40], multivariate time series clustering [9][20] and multivariate time series forecasting [51].
To evaluate the results of the models derived from these methodologies, the following re-
search questions will be answered:

2

• RQ1: What Insights can be Derived from the Framework?

– RQ1.1: What are the Generalized Patterns and Clusters of Open-Source Soft-
ware Evolution? This question has the goal of discussing the patterns and clus-
ters generated from the framework methodologies.

– RQ1.2: How Well Do the Forecasting Models Fit the Historical Data? This
research question aims to assess the quality of the multivariate forecasting mod-
els predictions both in terms of future metrics values and future growth patterns
derived from the forecast time series.

– RQ1.3: How do the Metrics Influence Each Other in Project Evolution? This
question aims to provide insights on the correlation of the metrics evolution and
how they influence each other.

• RQ2: How Much History is Needed for the Patterns Predictions? The goal of this re-
search question is to provide insights into how many previous patterns must be known
to predict future ones. Predictions of a simple baseline model are compared with the
predicitons of a more refined N-grams based model over an increasing amount of
known history.

• RQ3: How Reliable is the Break Points Detection?

– RQ3.1: How Well Do the Detected Break Points Align With Real Events? This
research question has the goal of confirming the validity of the modeling of the
metrics data into a series of evolution patterns by ensuring that a shift in the
growth trend is also reflected by a real event around the time of the detected
break points.

– RQ3.2: Does the Metrics Selection Need to be Extended? This research ques-
tion aims to inspect if the addition of more metrics can result in the detection of
more break points that can be linked to real events.

The answering of the research questions provides insights about the evolution patterns
that the projects in the dataset follow (Steep, Shallow, Plateau), how the repositories are
clustered and how well future patterns can be predicted. The experiment results give con-
fidence over the reproducibility and the scalability of the framework methodologies, which
are tested over different sizes of input data in terms of the number of projects, the amount
of historical data and the number of metrics. Additional inspections also suggest that the
shifts in the metrics evolution patterns can be related to real events in a project’s history.

Chapter 2 discusses related work on the topic of open-source software evolution and
time series analysis. In chapter 3 the methodology is explained in detail by covering the
metrics selection, the creation of the dataset, the patterns modeling, the time series merging,
the multivariate time series clustering and the multivariate time series forecasting. The
results from the experiments are discussed in chapter 4 where the answers to the research
questions are provided. Chapter 5 expands on the results by discussing insights, limitations
and threats to validity as well as providing recommendations for future work. Finally, an
overview of the contributions and a summary of the presented work are given in chapter 6.

3

Chapter 2

Related Work

This chapter discusses previous research related to the analysis of open-source software
evolution. Section 2.1 argues the factors and the related tangible metrics that influence the
evolution of open-source software. In section 2.2 the phases of the open-source software
evolution are listed and explained. Finally, section 2.3 illustrates previous work about time
series modeling, clustering and forecasting.

2.1 Open-Source Software Evolution

The work by Godfrey et al. from 2000 [34] analyzes software evolution through a case
study of the open-source Linux operating system kernel by focusing on both its system and
major subsystem levels. Among the factors that contribute to the continuous strong growth
of this open-source project, the authors point out how the openness of the licensing impacts
the ability of contributors and users to examine the system or change it for their purposes.
Additionally, as the nature of open-source software is highly collaborative, the amount of
contributors working on a project has a great influence on its progress. This is because a
collaborative approach can lead to faster development and innovation, as well as increased
community engagement and support. Another relevant factor that the authors discuss is the
importance of the user base of open-source software. Since the open-source development
model allows for greater freedom and flexibility in terms of personal use and modification
of the system, a more user-driven approach to software development is recommended to
take into account the preferences of the community.

Another work from Godfrey et al. from 2002 [35] continues the exploration of the
open-source Linux operating system kernel evolution through a combination of statistical
techniques, case studies, and the development of a specialized tool. The analysis involves
examining the growth patterns of open-source software systems using statistical models
to understand their sustained super-linear growth. Additionally, the research delves into
specific subsystems within the Linux kernel to explore their effects beyond open-source
software. Furthermore, the development of the Beagle tool aims to aid in the study of open-
source software evolution by integrating various metrics to understand how large systems
have changed over time. In discussing this multifaceted approach, the paper highlights

5

2. RELATED WORK

several key factors and metrics that contribute to the evolution of open-source software
systems. The number of contributors is a key element that influences the sustained growth,
reliability and popularity of open-source software. On top of this, the open-source project
footprint, which is seen as its parallel development, also has an impact on its evolution as
the offspring might uncover new applications and hidden issues within the base source code.

In their work from 2002, Nakakoji et al. [76] provide insights into the evolution patterns
of open-source software systems and communities. The authors propose a classification sys-
tem for different types of open-source software projects based on their collaboration models
and evolution patterns. The paper takes a broader perspective compared to previous studies
since, together with the evolution of the open-source software itself, it performs a study
on the evolution of the community behind a project as well. Through the case study of
several open-source projects, the authors have found that while collaborative development
within a community is the essential characteristic of open-source software, different collab-
oration models exist and have different impacts on the system and its community. From the
case studies, the authors highlight different factors and metrics that contribute to the evo-
lution of open-source software projects: number of contributors; number of contributions
to the source code (commits); number of users. Overall, these findings provide a better
understanding of the role of open-source software communities in driving the evolution of
open-source software systems.

The paper from 2003 by Scacchi et al. [86] analyzes open-source software evolution by
critically examining Lehman’s laws of software evolution [65][66] by evaluating whether
they still adapt to contemporary trends and research. As the paper uncovers breakdowns
and inconsistencies of the existing laws in the context of open-source software, it advocates
the need for potential revisions or alternative ontologies for software evolution to provide a
more adequate account that can link theory, practice, and empirical study. The analysis also
highlights the need for further study to understand the influence of various variables on the
evolution of open-source software systems. Among these factors, the number of involved
contributors, their contributions and the number of users are considered the most relevant
ones.

In their work from 2004, Paulson et al. [80] analyze software evolution by compar-
ing the evolutionary and static characteristics of open-source and closed-source software
systems. The authors quantitatively investigate common perceptions about open-source
projects, such as the belief that open-source software grows more quickly, is more modu-
lar, fosters more creativity, and has fewer defects. They also examine the hypothesis that
external global factors and feedback mechanisms have a greater impact on the evolution of
software than the development method. The authors collect and analyze data from three
closed-source and three open-source software systems to validate their claims. The main
identified factors that influence the growth of open-source software evolution are the size of
the community (number of contributors and users) and the development practices.

The paper by Aberdour from 2007 [1] studies the evolution of open-source software
from the perspective of software quality. By reviewing existing research on the topic, the
author identifies gaps and provides suggestions for further improvements, such as compar-
ing software quality in open-source versus commercial products and studying the impact of

6

2.1. Open-Source Software Evolution

different testing techniques on open-source software quality. The paper highlights several
key factors that contribute to the evolution of open-source software systems and commu-
nities. The growing number of contributors reflects a sustainable community that fosters
rapid code development, effective debugging, and the introduction of new features. On top
of this, the adoption of best practices (code quality checks and documentation) facilitates
the maintenance and evolution of the software system.

In their work by 2007, Capiluppi et al. [12] expands and refines the empirical hypothesis
presented in the staged model of software evolution [83] so that it can be applied to open-
source software projects. They analyze each of the phases of the staged model for software
evolution and observe when and how differences and commonalities arise in open-source
software systems. The main factors that contribute to the evolution of open-source software
are identified as the number of releases, number of users, number of contributors and the
type of licensing. In particular, new releases tend to be available more often in open-source
software, which is seen as a sign of the vitality of the community. This is related to the fact
that the users of open-source software can themselves implement fixes that can be delivered
in further releases.

The work by Wang et al. from 2007 [101] analyzes software evolution by introducing
a new evolution metrics model specifically designed for open-source software and taking
into consideration the specific properties of open-source communities. The authors provide
a set of metrics for quantitative measuring the evolution of open-source software and con-
duct a case study on the Ubuntu project using this metrics set. Through this analysis, they
aim to provide quantitative evidence of the significance of the open-source communities’
evolution. The key factors and metrics that affect open-source software evolution are listed
as follows: number of contributors; number of users; number of contributions; number of
existing bugs; number of modules in the source code.

A relevant analysis of open-source software evolution is made by Koch in his work from
2007 [61], where he explores the evolutionary behavior of a large sample of open-source
software systems. The paper highlights the relationship between the size of a project, the
number of participants, and the inequality in the distribution of work within the development
team with the presence of super-linear growth patterns. Several key factors that contribute
to the evolution of open-source software systems and communities are listed: size of the
project; number of users; number of contributions; number of contributions. The paper
shows that, while in the mean the growth rate is linear or decreasing over time according to
the laws of software evolution, a significant percentage of projects can sustain super-linear
growth. These findings can be used to inform the development of open-source software
systems and to improve the understanding of the factors that contribute to their evolution.

The work from 2008 by Nakagawa et al. [75] analyzes software evolution by investigat-
ing the relationship between software architecture and the quality of open-source software
systems. The study focuses on the development of an open-source software web system
called Memória Virtual and proposes architecture refactoring activities to improve the main-
tainability, functionality, and usability of the system. The paper highlights the importance
of considering software architecture knowledge and experience in open-source software
projects and discusses the occurrence of architecture degradation in open-source software

7

2. RELATED WORK

projects. By analyzing the impact of software architecture on open-source software quality,
the paper contributes to the understanding of software evolution in the context of open-
source software development. Based on the discussion in the paper, the main factors that
contribute to the evolution of open-source software systems and communities are the size
and diversity of the community (number of contributors) as well as the adoption of best
practices for code quality and architectural choices.

In their work from 2009, Xie et al. [104] investigate software evolution by conducting an
empirical study on open-source software. The study focuses on the evolution of seven open-
source applications written in C, covering over 69 years of development. The researchers
analyze both the development and maintenance branches for each application and find that
the growth rate is super-linear on the main development branches and at most linear on the
maintenance branches. They also analyze program changes at a fine-grained level and find
that the distribution of changes largely follows power laws, with the majority of changes
concentrated in a small percentage of code. The study finds that interface changes are much
less frequent than implementation changes, and tend to occur towards the initial phases of
program evolution. The authors list several key factors that contribute to the evolution of
open-source software systems and communities: size of the developer community (number
of contributors); adherence to best development practices; ability to respond to users’ needs
and feedback; ability to evolve and adapt to changing requirements and technologies.

The paper by Hotta et al. from 2010 [46] analyzes software evolution by comparing
the modification frequency of duplicate code and non-duplicate code in open-source soft-
ware systems. The authors use a version control system to obtain the historical data of the
source code and identify revisions where one or more source files are modified, added, or
deleted. The number of modifications on duplicate code and non-duplicate code are counted
to then calculate the modification frequency for both. The authors conduct experiments on
15 open-source software systems and use four duplicate code detection tools to reduce bias.
the findings suggest that the presence of duplicate code does not have a seriously negative
impact on open-source software evolution. The size of the community, the licensing, the
amount of contributions and the adherence to best practices are listed as the main contribut-
ing factors to open-source software evolution.

The work from 2010 by Breivold et al.[10] provides a systematic review of published
literature on open-source software evolution, with a focus on understanding how software
evolvability is addressed during open-source software development. The paper also aims
to identify the main research themes and metrics used for measuring open-source software
evolution and to discuss the limitations of these metrics. Therefore, the highlighted factors
that contribute to the evolution of open-source software systems and communities include
the size of the project, the project complexity, the number of contributions and the number
of existing issues.

Karus et al., in their work from 2011 [53], analyze software evolution by studying the
revision data of 22 open-source software projects over 12 years. The analysis is conducted
at two levels: the developer level and the commit level. The developer level investigates the
language experience of developers in the projects, examining the commonly used languages
and artifact types in open-source software development. On the other hand, the commit level

8

2.1. Open-Source Software Evolution

examines the co-changing files appearing together in commits, identifying co-evolution pat-
terns between different programming languages and artifact types in open-source software
projects. It explores the dependencies between file types used in the projects and how these
dependencies have changed during the observation period. Among the factors that influence
the evolution of open-source software, the number of contributions and the project footprint
emerge as the most notable ones.

In their work from 2012, Khan et al. [59] study the evolution of open-source software
by reviewing its historical development and impact. The paper discusses the concept of
sharing computer programs, the emergence of proprietary software, and the contributions
of the GNU Project and the Open-Source Initiative to the evolution of open-source soft-
ware. Additionally, the paper highlights the growth and widespread usage of open-source
software, citing examples such as the number of projects and developers on SourceForge1

and the download statistics of open-source software applications. This analysis provides
insights into the significant transformation and increasing adoption of open-source software
over time. The paper identifies several key factors that contribute to the evolution of open-
source software systems, such as the number of contributors, the number of users and the
adherence to best practices.

Another work by Capiluppi et al. from 2012 [13] performs a comparative study of three
different types of open-source software projects to study their evolution: a commercial sys-
tem (Eclipse), a traditional system (jEdit), and a community project (Moodle). The analysis
focuses on the evolution and maintenance activities within these projects to understand the
impact of commercial stakeholder involvement. The analysis involves the study of public
releases and configuration management systems (CMS) of each system. By examining the
type of activities performed by commercial stakeholders and comparing the results achieved
by similar open-source software projects with different stakeholder involvement, the paper
explores the differences in evolution patterns, maintenance cycles, and complexity manage-
ment. Additionally, the study utilizes metrics to quantitatively assess the evolution of the
studied projects. This quantitative analysis provides insights into the differences in main-
tenance and evolution activities based on the type of stakeholder involvement, allowing for
a comprehensive understanding of software evolution in the context of commercial stake-
holder influence. The key factors that contribute to the evolution of open-source software
systems and communities include: size and diversity of the stakeholders; project complex-
ity; number of contributions and adoption of best practices.

In their work from 2012, Crowston et al. [23] discuss the evolution of open-source
software under two aspects, the software itself and the community that supports the project.
Regarding the evolution of the software, the paper cites research that confirms that the evo-
lution of open-source software over time seems to contradict the laws of software evolution
[65][66] proposed for commercial software. Regarding the evolution of the community,
the paper discusses the dynamic roles of developers and users over time. The contribu-
tion made by members is the source of system evolution, and the system evolution, in turn,
affects the contribution distribution among the developers. On this note, code and com-
munity co-evolve and have an impact on each other. The identified factors that contribute

1https://sourceforge.net/

9

https://sourceforge.net/

2. RELATED WORK

to the evolution of open-source software systems and communities include the number of
contributions made by members, the number of contributors and the number of users.

The work by Syeed et al. from 2013 [92] inspects the open-source software evolution
through a systematic literature review. The paper identifies and categorizes the dimensions
of open-source software projects explored under each study facet, such as software evolu-
tion, community evolution, and co-evolution. The analysis also includes the examination
of research approaches followed in the studies, such as empirical study, case study, com-
parative study, and tool implementation. This review of previous studies highlights several
factors that contribute to the evolution of open-source software: size of the community;
adoption of bets practices; project footprint (parallel developments).

The paper from 2015 by Alenezi et al. [2] studies the evolution of open-source software
systems complexity. The authors used metrics such as Source Lines of Code (SLOC) and
Cyclomatic Complexity (CC) to measure the complexity of the software systems. They then
analyzed the growth of ten releases of five well-known open-source projects from different
domains to demonstrate how complexity evolves. The study also shows how these systems
conform to the second Lehman’s law of software evolution, which states that as software
evolves, its complexity increases unless proactive measures are taken to reduce or stabilize
the complexity [65]. The analyzed factors are the following: lines of code; project size;
community size; adoption of best practices.

In their work from 2020, Kumar et al. [63] emphasize the importance of the integration
of DevOps practices in open-source software development to enhance security controls and
automate processes. The authors argue that the evolution of open-source software is a key
component of innovation and continuous improvement of technologies. As open-source
software provides source code and community support for innovation and optimization,
factors like the number of contributors, number of users, licensing, number of contributions
and best practices are highly important in open-source software evolution.

Tandon et al., in their work from 2020 [93], developed mathematical models that predict
the number of issues fixed and leftover issues in multi-release open-source software projects
to assess their evolution. These models are based on the rates at which different issues are
fixed and the rate at which bugs are generated during the fixing of these issues. The anal-
ysis demonstrates that the proposed models exhibit promising performance by providing
valuable insights into the growth pattern of open-source software and by assisting release
managers in making informed decisions based on the number of issues fixed. Based on this
study, the main factors that impact open-source software evolution include the size of the
community, the level of contributions, the number of releases and the amount of ongoing
issues.

The work from 2020 by Baabad et al. [3] presents open-source software evolution from
the perspective of software architecture design. In particular, by conducting a systematic
study and synthesizing information from previous papers, the authors provide a comprehen-
sive analysis of open-source software evolution and its impact on architectural degradation
within the open-source software community. The paper identifies several key factors that
contribute to the evolution of open-source software systems and communities. Firstly, the
availability of the source code to the public allows for greater collaboration and participa-

10

2.1. Open-Source Software Evolution

tion in the development process. Secondly, the price associated with the value of the system
is often lower than that of closed-source software, making it more accessible to a wider
range of users. Thirdly, the ability to modify the software to individual needs allows for
greater customization and flexibility. Fourthly, the success of open-source software projects
has resulted in the stabilization of many researchers and experts that open-source software
may extremely contribute to resolving software crises. Finally, the open-source software
community has developed a unique methodology for establishing projects that differ from
the used method in commercial systems, which has contributed to the success and evolution
of open-source software.

In their work from 2020, Dawood et al. [24] addresses software evolution by recog-
nizing the need for a consolidated model for usability evaluation with consistent criteria.
The paper emphasizes the importance of integrating all viewpoints into one model to cope
with software evolution, indicating that the proposed unified usability evaluation model is
designed to adapt to the evolving nature of open-source software. Furthermore, the study’s
findings and the development of a reliable and validated usability evaluation model con-
tribute to the understanding and assessment of the evolving landscape of open-source soft-
ware. This approach ensures that the model remains relevant and applicable as software
systems continue to evolve. The paper mentions several factors that are relevant to the
study’s context, including: size of the community; community contributions; best practices
adoption.

Bogart et al., in their work from 2021 [8], examine the coordination of breaking changes
within open-source software ecosystems. The analysis involves understanding how differ-
ent ecosystems manage breaking changes, the values that guide their decision-making, and
the implications for stakeholders involved in software development. The study employs a
mixed-methods approach, combining qualitative and quantitative research methods to ana-
lyze software evolution in the context of breaking changes. This includes qualitative coding
of survey responses, visualization of survey data, and the identification of patterns and re-
lationships between values and practices across ecosystems. By examining the prevalence
of values and practices related to breaking changes across various open-source software
ecosystems, the paper provides insights into the evolution of open-source software prac-
tices and the aspects that influence decision-making in software development. Furthermore,
the paper contributes to the understanding of open-source software evolution by: providing
a taxonomy of values and practices related to breaking changes; mapping these values and
practices across multiple ecosystems; identifying universal values for software engineers
with little variance among ecosystems. In light of the findings, the factors that mostly influ-
ence the evolution of open-source software projects are the adoption of best practices, the
size of the community and the volume of contributions.

The work from 2021 by Molnar et al. [74] examines the development history of three
widely used open-source applications. The study employs several quantitative models to
determine patterns in the evolution of open-source software and to understand the rationale
behind important changes to the source code. The paper also includes a manual examination
of the source code to complement the results from the quantitative models. By analyzing
the evolution of open-source software in this way, the paper provides valuable insights into

11

2. RELATED WORK

the maintainability of evolving open-source software and highlights relevant factors that
contribute to the evolution itself. The identified factors are related to the size and activity
of the community, the number of releases, the adoption of best practices and the amount of
ongoing issues.

The research by Michelon et al. from 2022 [72] analyzes open-source software evolu-
tion by addressing the challenges of maintaining software variants that evolve in both space
and time. The authors introduce a new approach that focuses on locating feature revisions
and composing variants with different feature revisions. The analysis involves evaluating
the correctness, precision, and recall of the approach in locating feature revisions and com-
posing new configurations. Additionally, the paper computes new metrics for the hints
retrieved when composing new products, indicating conflicts and interactions when com-
posing product variants with different combinations of feature revisions. The approach also
includes the computation of runtime performance for composing variants with feature revi-
sions, providing insights into the efficiency of the approach in handling software evolution.
The main factors that influence the maintainability of an evolving open-source software
include the project complexity, the licensing, the size of the community, the amount of
contributions and best practices.

Kaur et al., in their work from 2022 [55], study the evolution of open-source software
systems and communities over time, identifying patterns and trends in their development.
The paper uses a case study approach to examine the evolution of three open-source soft-
ware projects and their associated communities. The findings of this study provide insights
into the factors that influence the evolution of open-source software systems and commu-
nities, including the role of community participation and engagement. The key factors that
contribute to the evolution of open-source software systems and communities include the
size and participation of the community and the best practices adoption.

The work by Zhang et al. from 2022 [106] introduces MyCommunity, a web-based on-
line application system that automatically extracts communication-based community struc-
tures from social coding platforms such as GitHub. The system then analyzes and visualizes
the community evolution history of an open-source project with semantic-rich events and
quantifies the strength of community evolution concerning different events. Additionally,
the paper mentions the use of machine learning techniques for predicting project success
or failure based on the quantified community evolution events, demonstrating the applica-
tion’s ability to provide valuable insights into the status and future of open-source software
projects. The identified factors that influence the evolution of open-source communities
include the size of the community itself, the amount of contributions made to the software
and the project network.

In their work from 2023, Chakroborti et al. [14] explore the relationship between de-
velopment and management activities and their impact on the evolution of open-source
software. The analysis involves examining the Software Heritage Graph Dataset2 to extract
release information and development records for various open-source software projects.
Additionally, the study utilizes GitHub project boards and API3 to access project manage-

2https://docs.softwareheritage.org/devel/swh-dataset/graph/
3https://docs.github.com/en/rest?apiVersion=2022-11-28

12

https://docs.softwareheritage.org/devel/swh-dataset/graph/
https://docs.github.com/en/rest?apiVersion=2022-11-28

2.1. Open-Source Software Evolution

ment data, including information on issues, pull requests, and customized tasks. By collect-
ing and analyzing data on revisions, releases, and project management activities, the paper
aims to understand the patterns of software evolution and the influence of management de-
cisions on the frequency and nature of software releases. Furthermore, the study employs
multiple regression analysis to predict the number of monthly releases based on develop-
ment and management activities, providing a quantitative approach to analyzing software
evolution in the context of open-source software development. During the study, the listed
key factors that influence the open-source software evolution are the development activi-
ties, the best practices adoption, the number of releases, the size of the community and its
contributions.

The work by Jain et al. from 2023 [47] illustrates software evolution by employing a
historical case narrative of the emergence of the Linux operating system as an alternative
to the dominant proprietary software regime. It emphasizes the key role that individuals
play in shaping the contours of a technological niche, particularly its identity. The analysis
demonstrates how actors amplify a niche through activities such as coalescing and estab-
lishing new interaction architectures and practices. Additionally, it specifies how actors
are involved in mainstreaming a niche to make it more understandable and acceptable to
members of the regime. The sustained coexistence of a niche and regime is highlighted as
a distinct form of technology transition, and the impact of the ideology associated with a
niche on the larger landscape is explored. By tracing the emergence and development of
niche technologies as a social movement, the paper provides a grounded explanation of the
processes unfolding as part of technological migration. Community size and involvement
are listed as the most important factors that influence open-source software evolution.

Jallow et al., in their work from 2024 [48], analyze software evolution by comparing
the change history of code snippets on Stack Overflow4 with the latest version of code on
GitHub. The authors retrieved the set of code snippets that evolved on Stack Overflow since
appearing in developer code bases, and that is hence outdated in the GitHub projects. They
also applied clone detection to the entire change history of the GitHub code bases and that
of Stack Overflow posts to detect whether developers updated their code to a newer version
of the Stack Overflow snippet. Finally, for identifying security-relevant edits that have
not been transferred to the code bases on GitHub, the authors used a combined method of
natural language processing of commit messages and comments and manual confirmation.
The study lists the community participation and size, the adoption of best practices and the
licensing as the main factors that influence open-source software evolution.

Overall, the extended literature review performed in this section provided significant in-
sights into the factors and metrics that affect open-source software evolution. These metrics
serve as a starting point in the building of the open-source projects time series dataset, which
is discussed in chapter 3.

4https://stackoverflow.com/

13

https://stackoverflow.com/

2. RELATED WORK

2.2 The Phases of Open-Source Software Evolution

In their work from 2000, Bennet et al. [6] study software evolution phases in several ways.
The authors introduce a new model of software evolution called the ”staged model”, which
comprises five distinct steps: initial development, evolution, servicing, phase-out, and re-
tirement. This model provides a framework to analyze software evolution and identify re-
search needs and areas. The paper distinguishes between maintenance and evolution, with
maintenance referring to general post-delivery activities and evolution referring to a par-
ticular phase in the staged model. The authors argue that software evolution is a distinct
activity that requires a different approach than maintenance. The paper also addresses the
problems of legacy systems, which are often difficult to maintain and evolve, so a better un-
derstanding of such systems is needed to improve software evolution. The proposed staged
model of software evolution comprises five distinct phases:

1. Initial Development: This phase involves the creation of the first version of the
software system, which may be lacking some features but already possesses the ar-
chitecture that will persist throughout the life of the program. The programming team
acquires knowledge of the application domain, user requirements, and other aspects
of the software system that will be crucial for subsequent phases of evolution.

2. Evolution: This phase involves adapting the software system to changing user re-
quirements and operating environments. The goal is to make substantial changes in
the software without damaging the architectural integrity.

3. Servicing: This phase involves making small tactical changes to the software system,
such as patches, code changes, and wrappers. The software system is no longer a core
product, and the cost-benefit of changes is much more marginal.

4. Phase-out: This phase involves the gradual reduction of support for the software
system, as it becomes less relevant or is replaced by newer systems. The software
system is still in use, but its importance is diminishing.

5. Retirement: This phase involves the complete retirement of the software system, as
it is no longer in use or has been replaced by newer systems. The software system is
no longer supported, and its code and documentation may be archived or discarded.

The research by Von Krogh et al. from 2003 [62] proposes several constructs that can
help explain how new people join the existing community of software developers in open-
source software projects, and how they initially make contributions. These constructs in-
clude ”joining script”, ”specialization”, ”contribution barriers”, and ”feature gifts”. The
authors suggest that newcomers can derive benefits from specializing in their contributions
and that the specialization of newcomers will be related to the contribution barriers in the
project. They also propose that feature gifts given by newcomers will be related to their
specialization in the project and that these gifts can create new entry points for developers
who follow. These constructs offer insights into the processes and strategies that can impact

14

2.2. The Phases of Open-Source Software Evolution

the evolution of open-source software systems and communities. From this, the following
evolution phases are presented:

1. Initial Development: This phase involves the initial creation of the software, includ-
ing the design, coding, and testing of the first version.

2. Maintenance and Bug Fixing: After the initial release, the software enters a phase
of maintenance where bugs and issues are identified and fixed.

3. Updates and Enhancements: As the software is used, new features and enhance-
ments may be added to improve its functionality and address user needs.

4. Legacy Support: Over time, the software may become a legacy system, requiring
ongoing support and maintenance to ensure its continued operation.

5. End of Life: Eventually, the software may reach the end of its useful life and be
retired or replaced by newer systems.

The work from 2006 by Girba et al. [43] analyzes software evolution phases by intro-
ducing Hismo, a meta-model that adds a time layer on top of structural information. Hismo
is designed to provide a common infrastructure for expressing and combining evolution
analyses and structural analyses. The paper demonstrates how various software evolution
analyses can be expressed using Hismo, including measurements for quantifying changes,
reverse engineering analyses, historical co-change, and class hierarchy evolution visualiza-
tion. Overall, the paper provides a framework for understanding and analyzing the evolution
of software systems, enabling better reasoning about software systems and the derivation
of general laws of software evolution based on historical data. The identified phases of
software evolution are listed as follows:

1. Initial Development: This phase involves the creation of the initial version of the
software, including requirements gathering, design, implementation, and testing.

2. Maintenance: After the initial release, the software enters the maintenance phase,
where updates, bug fixes, and minor enhancements are made to address issues and
improve functionality.

3. Evolution: As the software continues to be maintained, it evolves to meet changing
user needs, technological advancements, and market demands. This phase involves
significant changes, new feature additions, and architectural modifications.

4. Retirement/Phase-out: Eventually, software reaches the end of its life cycle and
may be retired or phased out. This phase involves transitioning users to alternative
solutions and discontinuing support for the software.

These phases are not always linear and may overlap, especially in the case of long-
lived software systems. Additionally, the evolution phase may involve iterative cycles of

15

2. RELATED WORK

maintenance, updates, and enhancements as the software continues to adapt to changing
requirements and environments.

Fluri et al., in their work from 2007 [31], focus on the identification and extraction of
particular changes that occur across multiple versions of open-source software. The au-
thors introduce a change-distilling algorithm that enables fine-grained source code change
extraction by improving upon existing methods. By evaluating the algorithm with a bench-
mark of manually classified changes in revisions of methods from open-source projects, the
paper demonstrates significant improvements in extracting types of source code changes.
This analysis contributes to a better understanding of software evolution by providing a
more accurate and detailed approach to identifying and categorizing changes in source code
over time. The phases of software evolution can vary depending on the specific model or
framework used, but generally include the following:

1. Inception: This phase involves the initial planning and conceptualization of the soft-
ware system, including defining the scope, requirements, and goals.

2. Development: In this phase, the software system is designed, developed, and tested.
This includes coding, testing, and debugging to ensure that the software meets the
specified requirements.

3. Maintenance: Once the software system is deployed, it enters the maintenance phase.
This involves ongoing support, bug fixing, and updates to ensure that the software re-
mains functional and relevant.

4. Evolution: The evolution phase involves the ongoing development and improvement
of the software system over time. This can include adding new features, adapting to
changing requirements, and addressing issues that arise during maintenance.

5. Retirement: Eventually, the software system may reach the end of its useful life and
be retired. This may involve transitioning to a new system or archiving the software
for historical purposes.

The paper by Godfrey et al. from 2008 [36] discusses the historical context of software
evolution, and the current state of research in the field, and outlines future challenges and
opportunities for software evolution research. The paper aims to highlight the importance of
understanding how software systems evolve and the implications of this evolution on soft-
ware development practices. The work involves a literature review and analysis of existing
research in the field of software evolution. The authors discuss insights from Lehman’s
laws of software evolution [65], the staged life cycle model of Bennett and Rajlich [83],
and other relevant concepts to provide a comprehensive understanding of software evolu-
tion. According to the findings of the literature review, the lifespan of a typical software
system is divided into four stages:

1. Initial Development: In this stage, the first version of the software system is devel-
oped. Knowledge about the system is fresh and constantly changing, with change

16

2.2. The Phases of Open-Source Software Evolution

being the norm. An architecture emerges and stabilizes, laying the foundation for
future development.

2. Active Evolution: During this stage, simple changes can be easily implemented,
and more significant changes are also possible, albeit with increased cost and risk
compared to the initial development stage. Knowledge about the system remains
good, although many original developers may have moved on.

3. Servicing: In the servicing stage, the software system is no longer a key focus for
developers, who primarily concentrate on maintenance tasks to keep the system run-
ning. Architectural or functional changes take a back seat, and the predictability of
change decreases as knowledge about the system diminishes.

4. Phase Out: This phase is characterized by the decision to replace or eliminate the sys-
tem, either because the maintenance costs have become too high or because there is a
more suitable solution to be deployed. An exit strategy is planned and implemented,
often involving techniques such as legacy wrapping and data migration. Ultimately,
the system is shut down.

The research by Guimaraes et al. from 2013 [26] investigates the life cycle patterns of
open-source software development communities (OSSDC) using functional data analysis.
The study aims to understand how OSSDC evolves in terms of activity levels and effec-
tiveness, providing insights into the dynamics of these communities and their development
stages. Effectiveness levels are measured by the number of downloads in a month, while
activity levels are measured by various actions such as bugs opened, messages posted and
code contributed. The data is transformed to make values commensurate and adjusted for
project size. Functional data analysis is employed to assess hypotheses regarding the shapes
of effectiveness and activity levels over time. This finding emphasizes the importance of
understanding the underlying processes of community activity and participation dynamics
for enhancing community effectiveness and survival. Such considerations are relevant for
online community users and policymakers. Users are encouraged to pay greater attention
to community activity and participation dynamics, while policymakers gain insights into
the development patterns and the relationship between effectiveness and activity levels in
OSSDC. The identified phases of software evolution typically include the following stages:

1. Initial Development: This phase involves the initial creation of the software product,
including defining requirements, designing the architecture, coding, and testing.

2. Growth: During the growth phase, the software product gains users and features.
Updates and enhancements are made to meet user needs and address any issues that
arise.

3. Maturity: In the maturity phase, the software product has stabilized, and the focus
shifts to maintaining and optimizing the product. This phase involves regular updates,
bug fixes, and support for existing users.

17

2. RELATED WORK

4. Decline: The decline phase occurs when the software product becomes outdated or
faces competition from newer technologies. Sales and user base may decrease during
this phase.

5. Retirement: The retirement phase marks the end of the software product’s life cycle.
The product is no longer supported, and users are encouraged to migrate to newer
solutions.

Barahona et al., in their work from 2014 [37], aim to explore the applicability and
validity of the laws of software evolution in the context of a real-world, long-lived software
project. Additionally, the paper aims to develop a methodology for analyzing the evolution
of large, long-lived software projects using data from Software Configuration Management
(SCM) systems, providing insights into how such projects evolve. This study provides a
detailed analysis of 20 years of the glibc project, offering insights into its evolution patterns
over time. It is one of the first studies to examine the life of a software project over such an
extended period using data from its SCM repository. This analysis is done by introducing a
methodology for studying the evolution of long-lived software projects. This methodology
outlines specific steps for data retrieval, validation, and analysis to interpret the laws of
software evolution in the context of a project’s history. The adopted transparency enhances
the reproducibility of the study and provides a framework for future research in analyzing
software evolution in large projects. The phases of software evolution, as identified in the
study, are based on the staged model of software evolution [6]. This model divides the
lifetime of a software project into five stages:

1. Initial Development: This phase involves the initial creation and development of
the software product until its first release. It encompasses activities such as design,
coding, and testing to bring the software to a functional state.

2. Evolution: After the initial release, the software enters the evolution phase, where
it undergoes continuous updates, enhancements, and modifications to meet changing
requirements and address issues discovered during usage.

3. Servicing: In the servicing phase, the focus shifts towards maintaining the software
by providing patches, updates, and fixes to address bugs, security vulnerabilities, and
other issues without introducing new features.

4. Phase-Out: The phase-out stage occurs when a new version or system is introduced
to replace the existing software. This phase involves transitioning users to the new
system while gradually phasing out the old one.

5. Close-Down: The close-down phase marks the end of the software’s lifecycle, where
the system is discontinued, and resources are reallocated to other projects or initia-
tives. This phase involves archiving data, documenting final processes, and ensuring
a smooth transition to alternative solutions.

18

2.3. Time Series Analysis

The phases of software evolution described in this section highlight the changing nature of
software systems over time and the different challenges that come into play. The informa-
tion highlighted in this literature review provides the basis to link the evolution patterns to
the theoretical concepts of previous research. This is discussed in chapter 5.2.

2.3 Time Series Analysis

In this section, previous research on the analysis of time series data is presented by dis-
cussing the time series modeling in section 2.3.1, the clustering in section 2.3.2 and the
forecasting in section 2.3.3.

2.3.1 Time Series Modeling

The work by Han et al. from 1998 [44] discusses new data mining algorithms by aug-
menting their methodologies, real-world applications and effectiveness through validation
experiments. The main focus of these techniques is the processing of time series data to
extract patterns, trends and insights that can help in understanding the underlying dynam-
ics of the data. The findings can then be applied to perform clustering, classification and
association of the time series data. Overall, the algorithms presented in this work allow
for the identification of temporal patterns and relationships that can be valuable for making
predictions and informed decisions in various domains.

Guranlik et al, in their work from 1999 [41], present an approach for change point de-
tection in time series data. This involves detecting changes in the model or parameters that
describe the underlying data, without assumptions about existing deviation points. The pa-
per combines change point detection and model selection techniques to develop algorithms
for both batch and incremental versions of the problem. The goal is to provide a method
that is robust against noisy data sets and outperforms visual inspection by humans. The
approach starts with the modeling of time series data by representing it using a set of statis-
tical parameters that are used to identify change points in time segments through likelihood
criteria. Significant shifts in the underlying model will represent a significant event at a
given point in the time series. The effectiveness of the approach is assessed by comparing it
with visual inspection in noisy time series data. The benefit of the introduced methodology
is the enabling of event detection in environments where the underlying phenomenon is not
well understood.

The paper by Keogh et al. from 2001 [58] provides an extensive review and comparison
of algorithms for segmenting time series data, with a focus on introducing a new scal-
able and high-quality approximation algorithm. Through empirical evaluation of diverse
datasets, the authors address the limitations of existing approaches and show the effective-
ness of the new one. The introduced algorithm called SWAB is a combination of the existing
Sliding Window and Bottom-up approaches. In particular, the goal is to include the online
nature of Sliding Window to the highly robust segmentation performance of the Bottom-up
algorithm.

19

2. RELATED WORK

In their work from 2004, Chung et al. [20] introduce a new distance measure for evo-
lutionary time series based on the similarity of segments’ patterns. The paper focuses on
improving the performance of evolutionary approaches by addressing the limitations of ex-
isting distance measures, specifically the Direct Point-to-Point Distance (DPPD) approach.
The proposed new distance compares the trend similarity of two sequences, making it robust
to amplitude transformation, time phase, scale, and baseline differences. This will enhance
the accuracy of time series segmentation by utilizing pattern distance as a more effective
evaluation metric compared to traditional methods. In particular, the segments are identi-
fied through the perceptually important points in the time series, which capture essential
characteristics of the data. Experimental evaluation supports the claims that the new pattern
distance performs better than the existing DPPD.

The work by Sabeti et al. from 2020 [85] introduces a novel method called ”pattern
tree for learning patterns in time series” data using a binary-structured tree. The paper
focuses on the application of the pattern tree method in time series estimation and forecast-
ing, aiming to improve the mean squared error of estimation compared to other methods.
Additionally, the paper discusses the potential applications of the pattern tree method in
handling continuous streams of information from IoT devices and sensors, highlighting its
versatility for tasks such as lossless compression, prediction, and anomaly detection in time
series data. The analysis of time series data involves the following key steps: pattern iden-
tification; pattern learning; pattern estimation; pattern forecasting. The paper conducts a
comparative analysis of the pattern tree method with other existing approaches, such as lin-
ear prediction and pattern-based forecasting. Overall, the introduced algorithm successfully
improves estimation accuracy and enables real-time analysis of evolving data streams.

Among the described work about time series modeling, the techniques from Keogh et al.
[58] and Chung et al. [20] were picked to be included in the presented framework. Keogh
et al. [58] provide a reproducible and easy-to-apply algorithm to merge time series into a
unique representation. Chung et al. [20] introduce a novel distance measure that focuses
on time series patterns and it can be translated from the financial domain to the topic of
open-source software evolution.

2.3.2 Time Series Clustering

In their work from 2006, Wang et al. [100] propose a method for clustering time series
data based on their structural characteristics rather than distance metrics. The method aims
to extract global features from time series data, such as trend, seasonality, periodicity, and
other characteristics, to reduce dimensionality, improve robustness to missing or noisy data,
and provide meaningful clusters for analysis. Feature extraction and dimensionality reduc-
tion make the process more manageable for clustering algorithms, especially when dealing
with sizeable time series datasets.

Zhang et al., in their work from 2011 [108], introduce a novel algorithm for shape-
based time series clustering that can reduce data size, improve efficiency, and maintain
effectiveness by utilizing complex network principles. The algorithm involves building a
one-nearest neighbor network based on time series similarity, selecting nodes with high de-

20

2.3. Time Series Analysis

grees for clustering, and applying dynamic time warping distance function and hierarchical
clustering. The analysis involves: common properties extraction (noise, amplitude scaling,
and temporal drift); time series distance evaluation using dynamic time warping (DTW);
building 1-NN network based on series similarity; identifying nodes with high clustering
density; performing hierarchical clustering on nodes of neighbors. Through these analy-
ses and methodologies, the paper aims to provide insights and advancements in the field
of time series clustering, particularly in terms of data reduction, efficiency, and clustering
effectiveness.

The research from 2015 by Paparrizos et al. [79] develops a scalable domain-independent
algorithm for time series clustering. The key focus is on creating a clustering algorithm that
preserves the shapes of time series sequences and is invariant to scaling and shifting. The
proposed k-Shape algorithm is a centroid-based clustering approach that aims to gener-
ate homogeneous and well-separated clusters. It utilizes an iterative refinement procedure
similar to k-means but with significant differences in distance measure and centroid com-
putation. Efficient steps are implemented in the algorithm, including cluster membership
updates and centroid refinements, to achieve accurate clustering results. Through experi-
mental evaluations and methodological advancements, the paper provides insights into ef-
fective clustering techniques for time series analysis.

The work by Guijo-Rubio et al. from 2021 [40] introduces a novel clustering methodol-
ogy for time series data, referred to as the two-stage statistical segmentation-clustering time
series procedure (TS3C). This methodology aims to improve the quality of clustering by first
segmenting each time series into sub-sequences, extracting statistical features, and cluster-
ing these segments. Then, a second clustering stage is applied to the mapped time series
to identify groups based on common patterns. The overall goal is to enhance the clustering
process by exploiting similarities found in the segments of individual time series and im-
proving the final clustering quality. This paper analyzes time series clustering by proposing
a novel methodology, the two-stage statistical segmentation-clustering time series proce-
dure (TS3C), which focuses on characterizing segment typologies within time series data.
By incorporating segmentation (patterns discovery), feature extraction (segments variance,
skewness, and autocorrelation coefficient), dimensionality reduction (mapping segments to
statistical features), and a two-stage clustering process, this paper provides a comprehen-
sive analysis of time series clustering that aims to enhance clustering quality and capture
the similarities within segment typologies for improved clustering outcomes.

Bonifati et al., in their work from 2022 [9], introduce an interpretable and efficient end-
to-end clustering system (Time2Feat) for multivariate time series (MTS) data. This system
aims to provide users with insights into the clustering process while maintaining efficiency.
The comprehensive evaluation of Time2Feat against state-of-the-art MTS clustering sys-
tems on various datasets is also a key objective of the paper. By incorporating interpretable
features, human expertise, and efficient clustering techniques, the paper provides a detailed
analysis of time series clustering, emphasizing the importance of interpretability and accu-
racy in real-world applications.

The works from 2022 and 2023 by Ji et al. [49][50] address the challenge of accurately
classifying time series data based on intuitively interpretable features. The paper proposes a

21

2. RELATED WORK

novel Time Series Classification method based on Temporal Features (TSC-TF) that aims to
generate temporal feature candidates, select important features using a random forest, and
train a fully convolutional network for high accuracy in classification. Experimental valida-
tion on various datasets from the UCR Time Series Classification archive demonstrated the
effectiveness of the proposed method in accurately classifying time series based on intuitive
temporal features. These contributions highlight the significance of the proposed approach
in addressing the challenges of time series classification based on interpretable features.

The works from Guijo-Rubio et al. [40] and Bonifati et al. [9] were chosen for the evolution
patterns modeling and multivariate time series forecasting, respectively. The methodology
from Guijo-Rubio et al. [40] fits the task of segmenting and clustering time series segments
to identify generalized patterns. Bonifati et al. [9] specific focus on multivariate time series
makes their work a suitable choice for the clustering task of this work. Additionally, both
were reproducible and easily adaptable since the source code was made available.

2.3.3 Time Series Forecasting

Jones et al., in their work from 2009 [51], aim to study the temporal relationships between
the demands for key resources in the emergency department (ED) and the inpatient hospital
and to develop multivariate forecasting models. The study seeks to understand the dynam-
ics of demand in the ED, develop models for forecasting ED census and critical resource
demand, and explore the potential utility of multivariate forecasting models for decision
support in real-time for on-call nurse staffing. The contributions of this paper include:
providing insights into the temporal relationships between the demand and availability of
emergency departments; developing multivariate forecasting models that offer more accu-
rate forecasts compared to a univariate benchmark model; exploring the potential utility of
multivariate forecasting models for decision support in real-time. These contributions en-
hance our understanding of demand dynamics in emergency departments and offer valuable
insights for healthcare management and decision-making.

In their work from 2015, Kattan et al. [54] propose an unsupervised learning framework
based on genetic programming (GP) for predicting the position of a particular target event
defined by the user in an unseen time series. The framework aims to learn the behavior of
the environment that generates the time series and use this knowledge to predict when the
target event is likely to occur. The goal is to provide a method that does not require labeled
data and can be applied to various domains such as stock markets, buyer-seller negotiations,
or international market prices. The framework learns the behavior of the environment by
analyzing historical time series vectors and using GP to evolve programs that distinguish
different behaviors in the training data. By understanding the patterns that indicate the
occurrence of target events, the framework can predict when these events are likely to occur
in unseen time series data. GP is used to automatically build a library of candidate temporal
features from historical time series vectors generated from the same environment. This
approach allows the framework to capture the underlying patterns and behaviors in the
data without the need for manual feature engineering. Overall, the paper provides a novel
perspective on time series forecasting by emphasizing the importance of understanding the

22

2.3. Time Series Analysis

generating environment’s behavior and using this knowledge to predict specific events in
time series data

The paper from 2018 by Chang et al. [16] presents a novel deep learning model called
MTNet that addresses the challenges of multivariate time series forecasting. The goal is
to improve the accuracy of time series predictions by capturing long-term dependencies
and incorporating information from multiple variables in a way that is both effective and
interpretable. The paper aims to demonstrate the effectiveness of MTNet through exten-
sive experiments on benchmark datasets and compare its performance with state-of-the-art
methods in both univariate and multivariate time series forecasting tasks. The paper ana-
lyzes time series forecasting by proposing a novel deep learning model, MTNet, specifically
designed to address the challenges associated with multivariate time series data. MTNet
consists of a memory component, three separate encoders, and an autoregressive compo-
nent. These components work together to capture long-term dependencies and patterns in
multivariate time series data. MTNet incorporates an attention mechanism that allows the
model to focus on relevant segments of historical data when making predictions. This atten-
tion mechanism enhances the interpretability of the model by highlighting the importance
of different parts of the input data. The paper analyzes the attention weights assigned by
MTNet to different segments of historical data. By visualizing these attention weights, the
model’s ability to capture and utilize relevant information from the input data is assessed,
providing insights into the forecasting process.

The work by Wan et al. from 2019 [99] discusses a novel deep learning model that
can effectively capture long-term dependencies in multivariate time series data for accu-
rate forecasting. The paper introduces the Multivariate Temporal Convolutional Network
(M-TCN) model, which is specifically designed for multivariate time series forecasting.
The model utilizes deep neural networks and convolutional architectures to capture long-
term dependencies in the data. The performance of the M-TCN model is compared with
traditional baseline models such as naive forecast, average approach forecast, and seasonal
persistent forecast models. This comparison helps evaluate the effectiveness and superiority
of the proposed model in time series forecasting tasks. The study utilizes the Walk-Forward
Validation method to test the M-TCN model without updating it. This approach involves
making predictions for a period of time and then comparing them with actual data to assess
the model’s forecasting accuracy and performance. The paper provides specific experimen-
tal details such as input lengths, batch size, loss function, optimization strategy (Adam),
initial learning rate, and learning rate adjustments. These details contribute to the thorough
analysis of the model’s performance in time series forecasting tasks. By incorporating these
methodologies and approaches, the paper conducts a comprehensive analysis of time series
forecasting using the M-TCN model, demonstrating its efficiency and accuracy in capturing
complex dependencies in multivariate time series data.

Cao et al., in their work from 2020 [11], develop a novel model, StemGNN (Spectral
Temporal Graph Neural Network), that can effectively capture both intra-series temporal
patterns and inter-series correlations in multivariate time series data. The goal is to leverage
the benefits of Graph Fourier Transform (GFT) and Discrete Fourier Transform (DFT) to
model time series data entirely in the spectral domain, enabling clearer patterns and more

23

2. RELATED WORK

effective predictions. StemGNN incorporates a carefully designed block that applies GFT
to transfer structural multivariate inputs into spectral time series representations and DFT to
transfer univariate time series into the frequency domain. By doing so, the spectral represen-
tations become easier to recognize by convolution and sequential modeling layers, leading
to improved forecasting results. Additionally, StemGNN includes a latent correlation layer
to automatically learn inter-series correlations, making it a general approach applicable to
various multivariate time series forecasting tasks. The paper analyzes time series forecasting
by proposing a novel approach, StemGNN, that leverages Graph Fourier Transform (GFT)
and Discrete Fourier Transform (DFT) to capture inter-series correlations and temporal de-
pendencies jointly in the spectral domain. Overall, the analysis of time series forecasting
in this paper focuses on the development of a novel model that integrates spectral domain
representations, automatic learning of inter-series correlations, and the application of GFT
and DFT to enhance forecasting accuracy in multivariate time series data.

The paper by Du et al. from 2020 [28] introduces a novel multivariate time series multi-
step forecasting model using an attention-based sequence-to-sequence learning structure.
The goal is to effectively forecast multi-step time series values under different conditions
by leveraging the encoder-decoder architecture with attention mechanisms. The paper intro-
duces an encoder-decoder deep learning structure with a temporal attention mechanism to
address the limitations of traditional methods. The model encodes hidden representations of
multivariate time series data using Bi-LSTM and decodes them for multi-step forecasting.
By incorporating a temporal attention layer between the encoder and decoder networks,
the model can select relevant encoder hidden states across all time steps for more accu-
rate forecasting. This mechanism enhances the model’s representation ability of dynamic
multivariate time series data. The analysis includes experiments on five multivariate time
series datasets to evaluate the performance of the proposed model. The results demonstrate
the effectiveness of the model in forecasting multi-step time series values under different
conditions, showcasing its superiority over baseline methods.

In their work from 2020, Wu et al. [103] develop a general graph neural network frame-
work specifically designed for multivariate time series data. The paper introduces a graph-
based perspective for analyzing multivariate time series data. It views variables from multi-
variate time series as nodes in a graph interconnected through hidden dependency relation-
ships. This perspective allows for the exploration of temporal trajectories while capturing
interdependencies among time series variables. The paper identifies key challenges in ex-
isting approaches to time series forecasting using graph neural networks. These challenges
include dealing with unknown graph structures and the need for simultaneous learning of
the graph structure and the GNN for time series data. To overcome these challenges, the
paper proposes a novel framework consisting of a graph learning layer, a graph convolution
module, and a temporal convolution module. The graph learning layer extracts a sparse
graph adjacency matrix adaptively based on the data, while the graph convolution module
addresses spatial dependencies among variables. The temporal convolution module cap-
tures temporal patterns using modified 1D convolutions. The proposed framework allows
for end-to-end learning, where all parameters are learnable through gradient descent. This
approach enables the model to simultaneously model multivariate time series data and learn

24

2.3. Time Series Analysis

the internal graph structure, addressing the challenge of graph learning and GNN learning.
The paper presents experimental results showing that the proposed method outperforms
state-of-the-art methods on benchmark datasets and achieves competitive performance on
traffic datasets with structural information. This analysis demonstrates the effectiveness of
the proposed framework in improving time series forecasting accuracy.

The work by Challu et al. from 2022 [15] introduces a novel forecasting model that
addresses challenges in long-horizon forecasting. The N-HiTS model aims to improve
forecasting accuracy by incorporating hierarchical interpolation and multi-rate data sam-
pling techniques. By synchronizing input sampling rates with output interpolation scales
and leveraging hierarchical structures, the model aims to enhance predictions for various
frequency bands in time series data. The ultimate goal is to achieve state-of-the-art results
on large-scale benchmark datasets commonly used in long-horizon forecasting research.
The paper compares the performance of the N-HiTS model with several alternative models,
including variations of N-HiTS with different components enabled or disabled, as well as
existing models like N-BEATS. This comparison highlights the effectiveness of the pro-
posed techniques in improving long-horizon forecasting accuracy.

The paper from 2023 by Chen et al. [18] aims to provide a novel approach to time se-
ries forecasting for cumulative data that effectively addresses monotonicity and irregularity
issues. The paper starts by analyzing the monotonic increasing property of cumulative data
in time series forecasting. It highlights the challenges posed by monotonicity, such as non-
stationarity and large variances in the data, making the model training process challenging.
To address the challenges of monotonicity, the paper proposes predicting the growth rate of
cumulative data instead of exact values. By focusing on modeling the growth rate, the paper
aims to ensure the monotonicity of predicted values during the inference stage. The paper
also addresses the issue of irregularity in cumulative data, caused by errors like missing data
or ”not a number” (NaN) entries. To mitigate irregularity challenges, the paper discusses
incorporating time difference information into the model, although the uncertainty of errors
poses a challenge. Based on the analysis of monotonic properties and irregularities, the pa-
per proposes the Monotonic Ordinary neural Differential Equation (MODE) model within
the framework of neural ordinary differential equations. The MODE model is designed to
effectively capture the monotonicity and irregularity of cumulative data, providing a princi-
pled approach to time series forecasting. Extensive experiments are conducted to validate
the effectiveness of the MODE model in simulation, offline, and online environments. The
experimental results demonstrate the superiority of the MODE model in forecasting cumu-
lative data, showcasing its ability to address monotonicity and irregularity challenges in
time series forecasting.

The described previous work about multivariate time series forecasting presents many mod-
els that have been developed for that task. The methodology from Jones et al. [51] was
chosen to be applied to this work as it described a footprint to follow rather than a specific
forecasting model. Additionally, the neural network-based models were not adaptable to the
available computational resources. Therefore, the approach from Jones et al. [51] allowed
the creation of lighter models that still suited the aim of the forecasting task of the presented
framework.

25

Chapter 3

Framework Design and
Implementation

This chapter aims to present the methodology used to build the components of the frame-
work introduced in this thesis. In section 3.1 an overview of this framework is given. Section
3.2.1 discusses the process of metrics selection through previous literature and the linking
of these measures to the GitHub API1. The building of the dataset using these findings is ad-
dressed in section 3.2.2. Sections 3.3.1 and 3.3.2 illustrate the steps taken to build a model
that maps the time series metrics data to generalized pattern curves and to merge time series
into a unique representation. The clustering of open-source software projects based on their
metrics evolution patterns is discussed in section 3.3.3, where the development of a related
model is also shown. Section 3.3.4 describes the training and testing of multiple forecasting
models for each metric in the identified project clusters.

3.1 Framework Overview

The framework presented in this thesis is a combination of time series methodologies
[40][57][9][20][51] applied to open-source software evolution to fulfill several tasks: break
points detection; evolution patterns modeling; metrics time series combination; reposito-
ries clustering; metrics values forecasting. The framework methodologies described in the
following sections can be applied to a different set of metrics and used to the extent that
researchers need them. Thus, the presented work can be taken as is or easily expanded by
introducing more projects, a different set of metrics and additional methodologies. Overall,
the framework pipeline is illustrated in figure 3.1 and summarized in the following steps:

1. Metrics Data Collection: Given an open-source project and a set of metrics, the
historical data is collected from the GitHub API and stored in a database for easy
retrieval.

1https://docs.github.com/en/rest?apiVersion=2022-11-28

27

https://docs.github.com/en/rest?apiVersion=2022-11-28

3. FRAMEWORK DESIGN AND IMPLEMENTATION

2. Metrics History Patterns Modeling: The metrics history data are split into seg-
ments, which are then classified into related patterns. This step outputs a sequence of
patterns per metric alongside the break points when a change in pattern occurs.

3. Metrics Curves Merging: The metrics patterns are merged into a single curve that
provides a representation of the evolution of the open-source software project.

4. Finding Similar Projects: The analyzed project is assigned to one of the identified
clusters to allow the finding of other similar projects. The clustering also allows the
selection of the correct forecasting model, which is trained using data with similar
evolution patterns.

5. Evolution Forecasting: With the forecasting models is possible to predict the future
values of specific metrics based on the evolution of the other ones. The predicted time
series can then be processed to obtain further break points and evolution patterns.

Figure 3.1: Framework pipeline steps. Source: Thesis author

Overall, the framework aims to support researchers in their studies of open-source soft-
ware evolution. This is achieved by leveraging multivariate time series techniques to iden-
tify the evolution patterns of the projects’ metrics to derive which factors and causes influ-
ence their growth.

28

3.2. Metrics Selection and Dataset

3.2 Metrics Selection and Dataset

Section 3.2.1 illustrates the methodology adopted to select the metrics from previous lit-
erature, while section 3.2.2 shows how they were used to build the open-source software
projects dataset.

3.2.1 Metrics Selection

The methodology adopted for the metrics selection process started with the gathering of
relevant literature following the systematic review strategy discussed by Kitchenham et al.
in their work from 2013 [60]. The definition of search keywords was the first action taken.
In this regard, three sets of keywords were defined and potential pertinent synonyms were
found. Table 3.1 shows the chosen main keywords and the related synonyms.

Main Keyword Context Synonyms

Evolution Maturity, Growth, Success
Open-source Software (OSS) Open-source projects, Free software, Free Open-

source Software (FOSS), Free/Libre and Open-
source Software (FLOSS), Libre software

Table 3.1: Keywords and context related synonyms used for the first round of papers search

After the keywords selection, the selection of previous papers was carried out. Google
Scholar 2 was used as the source to find papers and initial targets of time-range and min-
imum citations were set to 2010-2023 and 100, respectively. The goal was to identify at
least 40 papers to analyze on further steps. The first iteration was carried out using the main
keywords, which needed to appear both in the title and the abstract of potential papers.
Synonyms were also used as well in the next iterations. This resulted in the choice of the
following keywords, which contributed to the gathering of 50 papers in total: Evolution;
Growth; Open-Source Software; Open-Source Projects.

The further iterations of the articles selection step focused on assessing that the set
targets for minimum citations and time range would provide enough relevant papers. In
this regard, it was noticed that the time range 2010-2023 returned less than 40 papers (25)
that discussed the evolution of open-source software using tangible metrics. Therefore, the
range was expanded to 2000-2023. This new setting resulted in 15 more relevant articles
that could be analyzed. On top of this, the minimum number of citations set to 100 was
too restrictive, especially for papers published in recent years. Thus, other iterations for
the time range between 2000 and 2023 were run with minimum citations of 50 and without
minimum citations at all for the papers between 2010 and 2023. This achieved the goal
of gathering 40 papers to review for the next step of the systematic literature review. In
the eventuality of missing this target, the iterations would have been repeated starting with
alternative keywords.

2https://scholar.google.com/

29

https://scholar.google.com/

3. FRAMEWORK DESIGN AND IMPLEMENTATION

Summarizing Questions

What are some of the most important factors that contribute to the evolution of open-
source software projects, according to the authors of this paper?
What are some practical implications of the findings presented in this paper for indi-
viduals and organizations involved in open-source software development?
What is the used methodology?
Why are the results relevant?
Which metrics are used to define the evolution of an open-source project?

Table 3.2: Questions used to review and summarize a paper with the goal of guiding its
quality-assessment score

Quality-Assessment Questions Weight

Does the paper provide a set of factors and/or metrics to define the evo-
lution of open-source projects?

0.4

Does the paper build upon relevant studies and/or research involving
open-source contributors and users?

0.25

Are the provided factors/metrics tangible? 0.35

Table 3.3: Quality-assessment questions used to score a paper between 0 and 1. Papers with
a score greater than 0.5 were selected

The articles inspection step started with the definition of the research questions, as dis-
cussed in the introduction. Based on the identified aims of the work, a set of questions
that would support the papers review and summary were drafted as well as three quality-
assessment questions that would provide an importance score of a paper. Each quality-
assessment question was given a score of 1 (the paper addresses the topic in detail), 0.5
(the paper partially addresses the topic), or 0 (the paper does not address the topic at all).
The three quality-assessment questions started with equal weights and the average of the
three scores was assigned as the final score to an article. If the score was higher than 0.5,
an article would be selected to be included in the literature review. The minimum target
of 30 papers to be included in the final work was then established to guide the inspection
and filtering process. The summarizing questions and quality-assessment questions and
weights are listed in tables 3.2 and 3.3, respectively. A total of 31 papers were selected
for the final work after this step. In the eventuality of missing this minimum target, the in-
spection step would have been run again on the excluded papers using additional questions.
The analysis of the papers allowed the extraction of the factors used to define the evolution
of open-source software projects. Tables 3.4 and 3.5 illustrate which factors are listed in
the analyzed literature and provide a total count of how often they appear in the reviewed
research.

The next step in the metrics selection process was the identification of tangible measures
for each one of the identified factors. To fulfill the aim of studying the evolution patterns

30

3.2. Metrics Selection and Dataset

Papers/Evolution Factors L
ic

en
si

ng

C
on

tr
ib

ut
or

s

Su
bs

cr
ib

er
s

Fo
ot

pr
in

t

C
on

tr
ib

ut
io

ns

B
es

tP
ra

ct
ic

es

R
el

ea
se

s

Is
su

es

Si
ze

C
om

pl
ex

ity

Godfrey (2000) • • •
Godfrey (2002) • • •
Nakakoji (2002) • • •
Scacchi (2003) • • •
Paulson (2004) • • •
Aberdour (2007) • • •
Capiluppi (2007) • • • • •
Wang (2007) • • • • •
Koch (2007) • • • •
Nakagawa (2008) • •
Xie (2009) • • • • •
Hotta (2010) • • • • •
Breivold (2010) • • • •
Karus (2011) • •
Khan (2012) • • •
Capiluppi (2012) • • • • •
Crowston (2012) • • •
Syeed (2013) • • • •
Alenezi (2015) • • • • • •
Kumar (2020) • • • • •
Tandon (2020) • • • • •
Baabad (2020) • • • • • •
Dawood (2020) • • • •
Bogart (2021) • • • • •
Molnar (2021) • • • • • •
Michelon (2022) • • • • • •
Kaur (2022) • • • •
Zhang (2022) • • • •
Chakroborti (2023) • • • • •
Jain (2023) • • •
Jallow (2024) • • • • •

Total 6 29 27 5 22 18 7 6 4 5

Table 3.4: Grouping of open-source software evolution factors cited by surveyed literature

31

3. FRAMEWORK DESIGN AND IMPLEMENTATION

Evolution Factor Citations

Number of contributors 29
Number of subscribers 27
Number of contributions 22
Best practices adoption 18
Number of releases 7
Licensing 6
Number of issues 6
Footprint 5
Complexity 5
Size 4

Table 3.5: Summary of the open-source software evolution factors with their number of
citations in the reviewed literature

of open-source software, the focus of this selection was directed toward metrics that are
already represented as tangible time series data. This is because this type of information is
efficiently retrievable and the data mining task can be automatized and scaled [61]. Non-
tangible metrics can also be quantified as time series but were purposely excluded from
this work to prioritize a more systematic data collection approach. The chosen source of
data was the online version control management system GitHub [69][68][96], which hosts
more than 420 million repositories3 of which more than 100 million are public4, at the time
of writing. Leveraging on the GitHub REST API5, it is possible to access historical data
from any open-source repository hosted on GitHub. Therefore, the gathered factors from
the literature were mapped to the following metrics from the API:

• Number of contributors: The amount of developers that contributed to the source
code over time is gathered from the list of contributors provided by the REST API6.
The date of the first commit made is used as a time reference for the time series
data. The number of contributors over time is represented by a monotonically non-
decreasing curve.

• Number of subscribers: GitHub interprets subscribers as the number of users that
marked a repository with a star7,8[89], who are referred to as stargazers. Therefore,
the number of stargazers assigned over time has been gathered from the related API

3https://github.com/about
4https://github.com/search?q=is%3Apublic&type=repositories
5https://docs.github.com/en/rest?apiVersion=2022-11-28
6https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#list-repositor

y-contributors
7https://github.com/holoviz/param/issues/273
8https://docs.github.com/en/rest/activity/watching?apiVersion=2022-11-28

32

https://github.com/about
https://github.com/search?q=is%3Apublic&type=repositories
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#list-repository-contributors
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#list-repository-contributors
https://github.com/holoviz/param/issues/273
https://docs.github.com/en/rest/activity/watching?apiVersion=2022-11-28

3.2. Metrics Selection and Dataset

endpoint9. The number of stargazers over time is represented by a monotonically
non-decreasing curve.

• Number of contributions: The amount of activity that developers contribute towards
an open-source project is measured by the number of commits and pull requests to
the main branch [61][14][7]. Therefore, the related endpoints of the GitHub API are
used to gather the commits over time10 and merged pull requests over time11 to the
main branch. Both commits over time and pull requests over time are represented by
monotonically non-decreasing functions.

• Best practices adoption: As this factor is quite abstract to measure, metrics related to
the presence of a continuous integration and continuous deployment (CI/CD) pipeline
were taken into account [14]. Therefore, the number of successful workflows12 and
successful deployments to a production environment13 over time were retrieved from
the GitHub API. Both time series are represented by monotonically non-decreasing
curves.

• Number of releases: The number of releases over time is taken directly from the
related GitHub API endpoint14. The time series is represented by a monotonically
non-decreasing curve.

• Licensing: The presence of a license and its eventual type is not represented by
a tangible measure over time by the GitHub API. Therefore, this factor has been
omitted from the data collection.

• Number of issues: The GitHub API provides the list of issues over time that are still
open at the time of the request15. This way, it is possible to get sense of how many
issues have accumulated since the start of the project. The number of open issues
over time is represented by a monotonically non-decreasing curve.

• Footprint: The footprint of a project is also an abstract factor since it can be inter-
preted in different ways. By following previous research [82][33][68][96][21], the
project’s footprint has been linked to the size of the network of projects that has been
created using the project itself as a starting point, which can be measured by the

9https://docs.github.com/en/rest/activity/starring?apiVersion=2022-11-28#list-starg
azers

10https://docs.github.com/en/rest/commits/commits?apiVersion=2022-11-28#list-commits
11https://docs.github.com/en/rest/pulls/pulls?apiVersion=2022-11-28#list-pull-reque

sts
12https://docs.github.com/en/rest/actions/workflows?apiVersion=2022-11-28#list-repos

itory-workflows
13https://docs.github.com/en/rest/deployments/deployments?apiVersion=2022-11-28#list

-deployments
14https://docs.github.com/en/rest/releases/releases?apiVersion=2022-11-28#list-relea

ses
15https://docs.github.com/en/rest/issues/issues?apiVersion=2022-11-28#list-repositor

y-issues

33

https://docs.github.com/en/rest/activity/starring?apiVersion=2022-11-28#list-stargazers
https://docs.github.com/en/rest/activity/starring?apiVersion=2022-11-28#list-stargazers
https://docs.github.com/en/rest/commits/commits?apiVersion=2022-11-28#list-commits
https://docs.github.com/en/rest/pulls/pulls?apiVersion=2022-11-28#list-pull-requests
https://docs.github.com/en/rest/pulls/pulls?apiVersion=2022-11-28#list-pull-requests
https://docs.github.com/en/rest/actions/workflows?apiVersion=2022-11-28#list-repository-workflows
https://docs.github.com/en/rest/actions/workflows?apiVersion=2022-11-28#list-repository-workflows
https://docs.github.com/en/rest/deployments/deployments?apiVersion=2022-11-28#list-deployments
https://docs.github.com/en/rest/deployments/deployments?apiVersion=2022-11-28#list-deployments
https://docs.github.com/en/rest/releases/releases?apiVersion=2022-11-28#list-releases
https://docs.github.com/en/rest/releases/releases?apiVersion=2022-11-28#list-releases
https://docs.github.com/en/rest/issues/issues?apiVersion=2022-11-28#list-repository-issues
https://docs.github.com/en/rest/issues/issues?apiVersion=2022-11-28#list-repository-issues

3. FRAMEWORK DESIGN AND IMPLEMENTATION

number of forks16. The number of forks over time is represented by a monotonic
non-decreasing curve.

• Complexity: The GitHub API does not provide a metric that can be used to measure
the complexity of a repository over time as parameters such as the number of depen-
dencies and the number of programming languages are only available with their most
recent snapshot. Therefore, this factor has been omitted from the data collection.

• Size: The size of a project can be estimated by adding and subtracting the addition
and deletion changes from different commits. However, the GitHub API does not
return such information from the commits listing endpoint and it is required to re-
quest data for each commit. This task is quite cumbersome and it results in a volume
of API requests that exhaust the permitted limit of 5000 requests per hour17. As
repositories differ highly in the amount of commits, the execution time of this spe-
cific metric gathering is not scalable. On top of this, the GitHub API endpoint that
returns the weekly additions and deletions is limited to repositories with less than
10000 commits18, which would limit the scope of this research significantly. There-
fore, a down-sampling approach has been taken to gather this metric data efficiently.
The repository commits were grouped by month and one commit was taken for each
month. The stored results from the GitHub API endpoint19 included the number of
additions, deletions and total changes related to each requested commit. Addition-
ally, the difference of additions and deletions has been stored as a project size change
reference. The cumulative number of changes is represented by a monotonic non-
decreasing curve, while the size change is represented by a non-monotonic curve.
The cumulative number of changes has been used for further computations to keep it
consistent with the other metrics time series.

The mapping of the retrieved factors from previous literature to the GitHub API metrics
is summarized in table 3.6. Overall, the identified factors and the related tangible metrics
are used to gather time series data for different open-source GitHub projects. The process
of building the dataset is discussed in the next section (3.2.2).

3.2.2 Building the Dataset

As discussed in section 3.2.1, GitHub is home to more than 100 million open-source projects.
Therefore, the GitHub API is used to retrieve the metrics data necessary for the realization
of this research. However, consideration of which projects to use to build the dataset is
required since there is the risk of selecting projects that are not diverse enough or that do
not have enough data to offer.

16https://docs.github.com/en/rest/repos/forks?apiVersion=2022-11-28#list-forks
17https://docs.github.com/en/rest/using-the-rest-api/rate-limits-for-the-rest-api?a

piVersion=2022-11-28#primary-rate-limit-for-authenticated-users
18https://docs.github.com/en/rest/metrics/statistics?apiVersion=2022-11-28#get-the-w

eekly-commit-activity
19https://docs.github.com/en/rest/commits/commits?apiVersion=2022-11-28#get-a-commit

34

https://docs.github.com/en/rest/repos/forks?apiVersion=2022-11-28#list-forks
https://docs.github.com/en/rest/using-the-rest-api/rate-limits-for-the-rest-api?apiVersion=2022-11-28#primary-rate-limit-for-authenticated-users
https://docs.github.com/en/rest/using-the-rest-api/rate-limits-for-the-rest-api?apiVersion=2022-11-28#primary-rate-limit-for-authenticated-users
https://docs.github.com/en/rest/metrics/statistics?apiVersion=2022-11-28#get-the-weekly-commit-activity
https://docs.github.com/en/rest/metrics/statistics?apiVersion=2022-11-28#get-the-weekly-commit-activity
https://docs.github.com/en/rest/commits/commits?apiVersion=2022-11-28#get-a-commit

3.2. Metrics Selection and Dataset

Evolution Factor GitHub API Metric

Number of contributors Contributors
Number of subscribers Stargazers
Number of contributions Commits, Pull requests
Best practices adoption Workflows, Deployments
Number of releases Releases
Licensing -
Number of issues Open issues
Footprint Forks
Complexity -
Size Commit changes

Table 3.6: Mapping of the open-source software evolution factors to the available metrics
from the GitHub API

In their work from 2023, Chakroborti et al. [14] needed to build a dataset of open-
source software projects to inspect their release practices. As they used both the Software
Heritage Graph Dataset (SWHGD)20 and the GitHub API to find common development
patterns, a large amount of data mining was required. The applied repository filtering was
based on: presence of development activities; opening and closing of issues; project boards
management. Thus, the final list of candidates from Chakroborti et al. was chosen as a
starting point to build the time series dataset of the metrics discussed in section 3.2.1. All the
1800 repositories in the list have been processed and their details have been requested from
the GitHub API using the endpoints listed in table 3.7. It occurred that some of the projects
in the starting list were not available on GitHub anymore, which led to their exclusion
from the data collection. The GitHub data mining process resulted in a dataset of 1328
repositories with related evolution metrics time series data. The dataset created is openly
available at the following URL: https://huggingface.co/datasets/MattiaBonfanti
-CS/IN5000-MB-TUD-Dataset-MongoDB.

In terms of data storage, MongoDB21 was chosen as the database due to its flexibility[52][70]
since the data schema evolved through the research. The repositories’ general information,
which summarizes the main properties of an open-source project, was stored in a collection
named repositories data and assigned a unique identifier. This collection acts as a central
point for data retrieval as each metric time series data has been stored in dedicated col-
lections to avoid exceeding the MongoDB object size limit of 16MB22. Each object in the
metrics collections has a repository id value that references the repositories data collection
to ease data retrieval. The database schema overview is illustrated in appendix A.

The creation of the dataset of 1328 open-source software projects metrics data repre-
sents one of the contributions of the current work as it can be updated, expanded and re-used

20https://docs.softwareheritage.org/devel/swh-dataset/graph/
21https://www.mongodb.com/
22https://www.mongodb.com/docs/v5.2/reference/limits/

35

https://docs.github.com/en/rest/commits/commits?apiVersion=2022-11-28#list-commits
https://docs.github.com/en/rest/activity/starring?apiVersion=2022-11-28#list-stargazers
https://docs.github.com/en/rest/commits/commits?apiVersion=2022-11-28#list-commits
https://docs.github.com/en/rest/pulls/pulls?apiVersion=2022-11-28#list-pull-requests
https://docs.github.com/en/rest/actions/workflows?apiVersion=2022-11-28#list-repository-workflows
https://docs.github.com/en/rest/deployments/deployments?apiVersion=2022-11-28#list-deployments
https://docs.github.com/en/rest/releases/releases?apiVersion=2022-11-28#list-releases
https://docs.github.com/en/rest/issues/issues?apiVersion=2022-11-28#list-repository-issues
https://docs.github.com/en/rest/repos/forks?apiVersion=2022-11-28#list-forks
https://docs.github.com/en/rest/commits/commits?apiVersion=2022-11-28#get-a-commit
https://huggingface.co/datasets/MattiaBonfanti-CS/IN5000-MB-TUD-Dataset-MongoDB
https://huggingface.co/datasets/MattiaBonfanti-CS/IN5000-MB-TUD-Dataset-MongoDB
https://docs.softwareheritage.org/devel/swh-dataset/graph/
https://www.mongodb.com/
https://www.mongodb.com/docs/v5.2/reference/limits/

3. FRAMEWORK DESIGN AND IMPLEMENTATION

Evolution Factor GH API Metric GH API Endpoint

Number of contributors Contributors /repos/{owner}/{repo}/contributors
Number of subscribers Stargazers /repos/{owner}/{repo}/stargazers
Number of contributions Commits /repos/{owner}/{repo}/commits

Pull requests /repos/{owner}/{repo}/pulls
Best practices adoption Workflows /repos/{owner}/{repo}/actions/workflows

Deployments /repos/{owner}/{repo}/deployments
Number of releases Releases /repos/{owner}/{repo}/releases
Number of issues Open issues /repos/{owner}/{repo}/issues
Footprint Forks /repos/{owner}/{repo}/forks
Size Commit changes /repos/{owner}/{repo}/commit/{sha}

General Information /repos/{owner}/{repo}

Table 3.7: Evolution factors with the corresponding GitHub API metrics and retrieval end-
points

beyond the scope discussed in this thesis. Figure 3.2 illustrates an example of a collected
metric time series data of an open-source software project.

3.3 Multivariate Time Series Models

This section aims to show the methodology used to apply the multivariate time series tech-
niques from other domains (finance and healthcare) [40][9][20][51] to the study of open-
source software evolution. The patterns modeling is presented in section 3.3.1 followed by
the time series merging in section 3.3.2. The multivariate time series clustering is discussed
in section 3.3.3. Finally, the multivariate time series forecasting is described in 3.3.4.

3.3.1 Evolution Patterns Modeling

This step of the methodology describes how time series data, related to open-source soft-
ware metrics, can be used to generate general evolution patterns. This results in an algorithm
that can split time series data into segments, which are then clustered to produce generalized
evolution pattern curves. A classifier model is also trained to predict the patterns sequence
of new time series data. The identification of the pattern curves follows the first step of the
two-stage methodology proposed by Guijo-Rubio et al. in their work from 2020 [40], where
they discuss a novel time series clustering approach based on characterization of segment
typologies. The part of this work that was implemented in the current research consists
of applying time series segmentation via efficient polynomial approximation. Next, the
heterogeneous segments are projected into feature vectors of equal length, to reduce the
dimensionality of the original data and have the same length for each mapped segment.
Hierarchical clustering is then applied to group the segments to recognize similar patterns.
Finally, the clustering results are used to train a K-nearest neighbors (KNN) classifier model

36

3.3. Multivariate Time Series Models

Figure 3.2: Time series data of the cumulative stargazers for the saltstack/salt project.
Source: Thesis author

that can be used to identify the patterns of new time series data. The following definitions
are applied to the key terms of this section:

• Time Series: A series of values over time T = ((t1,v1), ...,(tN ,vN)) with ti,vi as the
pair of registered value vi at the related time ti and N as the length of the data series.

• Time Series Segment: A set of values and times from a time series T between two
time points. It is defined as T ′i j = (ti,vi), ...,(t j,v j)), with T ′ ⊆ T .

• Evolution/Growth Pattern: A representation of a time series segment as an approx-
imated polynomial curve to establish its growth trend. Given a time series segment
T ′ and a polynomial approximation function F , the evolution pattern is defined as
E = (e0,e1, ...,em), with ei as a polynomial coefficient and m as the degree of the
polynomial.

• Evolution/Growth Patterns Sequence: A series of pattern curves that approximate
a sequence of time series segments, defined as G = (E1, ...,EK) with K the number of
time series segments.

Given a time series of length n, a segmentation problem consists in finding m segments
defined by a set of m− 1 breaking points. This has been achieved by using the window-

37

3. FRAMEWORK DESIGN AND IMPLEMENTATION

based change point detection functionality of the Python package ruptures23 [95]. The
window-based change point detection algorithm uses two windows that slide along the data
series and measure the discrepancy of the signals’ statistical properties within each window
range. Given a cost function c(·), a discrepancy d(·, ·) is computed as follows:

d(yu..v,yv..w) = c(yu..w)− c(yu..v)− c(yv..w)

with ya..b as the time series windowed data and u < v < w the windows indexes. The
discrepancy is the cost gain of splitting the signal interval yu..w at index v. If the sliding win-
dows u..v and u..w both overlap with a segment, their statistical properties will be similar,
thus their discrepancy will be low and no break point will be introduced. On the other hand,
if the two windows overlap with different segments, their discrepancy will be significantly
higher and a break point will be introduced. The discrepancy can be represented as a curve
for all indexes t between w/2 and n−w/2, with w as the window length and n the time
series length: (t,d(yt−w/2..t ,yt..t+w/2). A sequential peak search is performed on this curve
to detect the break points. In terms of cost function, the least squared deviation (L2), which
detects mean shifts in a data series, has been applied. Considering {yt}t a time series within
an interval I and y the mean value of the data in the interval, the cost L2 function is defined
as:

c(yI) = ∑
t∈I
∥yt − y∥2

2

Overall, this window-based segmentation approach is well suited for this part of the
methodology due to its low time complexity of O(nw) (w the window length, n the time
series length) and to the fact that it works even when the number of break points is not
known beforehand. This is important as the built dataset includes time series of 10 het-
erogeneous metrics for more than 1300 projects. Additionally, this method adheres to the
statistical approximation-based segmentation used by Guijo-Rubio et al. in their work from
2020 [40]. As the input time series data is grouped by month, a window size of 12 months
has been used to identify the segments. Figure 3.3 illustrates the segmentation of metric
time series data of an open-source software project obtained by following the explained
procedure.

After the segmentation process, each segment is scaled to a [0,1] range to make the
pattern identification independent from the metric values the segment is extracted from.
This allows the isolation of the growth patterns of each time series from all the collected
repository data and produces generalized trend curves. After this, the scaled segments are
projected to l-dimensional arrays to allow their clustering. The mapping to the same dimen-
sional space is performed by extrapolating the statistical properties of each segment using
the Python tsfresh24 [19]. The following statistical features are computed:

1. Polynomial coefficients: Least squares approximation of the segment data sequence,
which provides the coefficients of a third-degree polynomial [32].

23https://centre-borelli.github.io/ruptures-docs/
24https://tsfresh.readthedocs.io/en/latest/

38

https://centre-borelli.github.io/ruptures-docs/
https://tsfresh.readthedocs.io/en/latest/

3.3. Multivariate Time Series Models

Figure 3.3: Stargazers time series segmentation for the saltstack/salt project. Source: Thesis
author

2. Variance: Measure of the variability of the segment data.

S2
s =

∑
n
i=1(yi− ys)

2

n−1

with yi as the values of the segment s of length n and ys as their average.

3. Skewness: The asymmetry of the segment data distribution with respect to the mean
value.

γs =
∑

n
i=1(yi− ys)

3

(n−1) · σ̂3
s

with σ̂s as the standard deviation of the segment s of length n.

4. Autocorrelation coefficient: Measure of the correlation between the data in the seg-
ment.

ACs =
∑

n
i=1(yi− ys) · (yi+1− ys)

S2
s

With the aid of the statistical features listed above, it is now possible to map the seg-
ments to a l-dimensional space, where l = c+ f with c as the number of polynomial coef-
ficients and f as the number of statistical properties. Thus, the segment mapping is defined
as follows.

39

3. FRAMEWORK DESIGN AND IMPLEMENTATION

vs = (c0,c1,c2,c3,S2
s ,γs,ACs)

Now that all the segments are translated to the same dimensional space, it is possible
to cluster them. The clustering technique used is hierarchical clustering with Ward distance
as the similarity measure. The overall time series segmentation and segments clustering
process is illustrated in figure 3.4. Finally, by leveraging on the results of the hierarchical
clustering it is now possible to train a KNN classifier that can be used to assign the segments
of an input time series to one of the clusters. The results of this methodology are shown in
chapter 4.1.1.

Figure 3.4: Time series segmentation and segments clustering process overview. Source:
Guijo-Rubio et al., 2020 [40]

3.3.2 Time Series Merging

Now that a generalization technique for time series segments has been provided (3.3.1), it
is important to convey all the metrics information to a single representation of a project’s

40

3.3. Multivariate Time Series Models

status. This will allow researchers to have an efficient way to assess the evolution of a
project before digging into the specific factors [57][67]. To achieve this, the metrics time
series must be combined to show a unique signal that still reflects the previously identified
break points of each metric.

The merging of metrics time series into a single representation follows the algorithm
proposed by Keogh et al. from 1998 [57], where a merge operator enables the combination
of information from two or more sequences, based on how many times it is applied. The
output of this algorithm will be a sequence that represents a compromise between the two
input sequences based on the relevance associated with each of their segments. To focus on
the growth patterns, the metrics time series are scaled between 0 and 1, as they were during
the segment extraction process. The break points of each metrics time series are merged
into a single ordered set and used as a reference to compute the combined signal. This way
the break points identified earlier are preserved in the final representation. The procedure is
illustrated in algorithm 1 and figure 3.5. A combination example of the time series is shown
in figure 3.6.

Algorithm 1 Merging Time Series Algorithm
Require: ts1, ts2, bp1, bp2
Ensure: ||ts1||= ||ts2||; ts1, ts2 ∈ [0,1]

BP = bp1∪bp2
for i← 1, ||BP|| do

seg1← (ts1[i−1], ts1[i])
seg2← (ts2[i−1], ts2[i])
seg avg← (seg1 + seg2)/2
pattern1← get pattern(seg1)
pattern2← get pattern(seg2)
weight1← get pattern weight(pattern1)
weight2← get pattern weight(pattern2)
weight avg← (weight1 +weight2)/2
outts[i]← seg avg∗weight avg

end for
outts← normalize(outts)
return outts

Overall, the discussed methodology step allows an efficient representation of the his-
torical data of a given open-source software. The resulting time series curve can then be
mapped to a sequence of patterns as discussed in chapter (3.3.1).

3.3.3 Multivariate Time Series Clustering

The findings from chapter 3.3.1 allow the modeling of time series data as a sequence of
labeled patterns based on the polynomial approximation and statistical features of their
segments. Each open-source software metrics data is now represented homogeneously and
can be used to define further generalizations on the evolution of such projects. This step of

41

3. FRAMEWORK DESIGN AND IMPLEMENTATION

Figure 3.5: Time series merging procedure. Source: Keogh et al., 1998[57]

Figure 3.6: Merged metrics time series for the saltstack/salt project. Source: Thesis author

the methodology aims to categorize the growth behavior of open-source software projects
by grouping them following their history patterns and their metrics correlation. This results
in a clustering model that can identify similar open-source projects based on the described
criteria.

The open-source software projects clustering procedure is based on the work by Boni-
fati et al. from 2022 [9], where they propose Time2Feat, a system for multivariate time
series clustering relying on an end-to-end semi-supervised feature-based pipeline. In the
specific case of this research, the repository data is used as a starting point. This historical
data is presented as a set of heterogeneous time series, which need to be handled properly

42

3.3. Multivariate Time Series Models

to allocate them into clusters. The challenge is introduced by the fact that each reposi-
tory’s evolution data is characterized by several metrics time series. Therefore, the chosen
clustering technique requires strong scalability to account for the multivariate nature of the
repositories dataset. The approach used by the Time2Feat system relies on translating each
multivariate data point to a vector composed of the intra-signal features and inter-signal
features of the different time series. This way, the nature of each independent signal is in-
cluded as well as the relationship between each signal pair. The elements of this multivariate
clustering pipeline are defined as follows:

• Multivariate Time Series: A set of univariate time series M = (u1, ...,uS), where S
is the number of such series and u j = (t1, ..., tN) is a time series of length N. There-
fore, a multivariate time series can be represented as a matrix RNxS with the series as
columns.

• Multivariate Time Series Dataset: A dataset D of V multivariate time series, defined
as D = (M1, ...,MV) and represented as a tensor RV xNxS.

• Intra-signal Features: A set of statistical features for each independent time series in
a multivariate time series M = (u1, ...,uS). Given a set of feature extraction functions
F =(f1, ..., fF), the intra-signal features set is define as Fintra =(e11, ...,e1F , ...eS1, ...eSF)
with ei j = f j(ui).

• Inter-signal Features: A set of correlation features between each pair of time se-
ries in a multivariate time series M = (u1, ...,uS). Given a set of correlation ex-
traction functions G = (g1, ...,gG), the inter-signal features set is defined as Finter =
(e(1,2)1, ...,e(1,S)G, ...e(S−1,S)G) with e(i, j)k = gk(ui,u j).

• Multivariate Time Series Clustering: Definition of a surjective function m : D→
C that maps each multivariate time series M ∈ D into a cluster k ∈ C, with D the
multivariate time series dataset and C a set of clusters.

The first step of applying the Bonifati et al. [9] methodology to the repositories dataset
is the extraction of intra-signal and inter-signal features from the multivariate time series
entries. For the intra-signal features, the evolution patterns modeling from chapter 3.3.1 is
used as it provides a statistical approximation of the different metrics time series segments.
Each metric signal can now be represented as a sequence of growth patterns, each one char-
acterized by its polynomial coefficients, variance, skewness and autocorrelation values. The
inter-signal features of a single metric are defined as the average of the statistical features
of its evolution patterns. This approach is in line with what Time2Feat adopts as it uses
the tsfresh25[19] Python package to compute the same properties as already performed in
chapter 3.3.1.

The inter-signal features extraction is based on measuring the similarity between each
pair of metrics time series for a repository. The Time2Feat system proposes several distance

25https://tsfresh.readthedocs.io/en/latest/

43

https://tsfresh.readthedocs.io/en/latest/

3. FRAMEWORK DESIGN AND IMPLEMENTATION

measures (e.g. Correlation, Euclidean), which fit well the general study of time series sim-
ilarity but present some challenges as the focus of this step is on the evolution patterns of
each metric signal. These shortcomings are mainly because these distances are based on a
point-to-point comparison and are affected by signals with different lengths, frequencies and
amplitude [105][58]. Therefore, as repositories time series data are quite heterogeneous, a
uniform representation is needed to properly compare the growth patterns of the different
metrics. To achieve this, the pattern distance introduced by Chung et al. in their work
from 2004 [20], which analyzed stock markets time series, provides a suitable solution as
it overcomes the problems of pattern mismatch and works well with time series of different
resolutions. This follows the choice of previous works [39][87][88] to rely on time series
techniques applied to financial markets as the research on this topic is more well-developed.

To calculate the pattern distance between two time series, they both need to be converted
to a piece-wise linear representation first, which represents a sequence of trends rather than
raw values. The modeling consists of mapping time series values to a sequence of 0, 1, or
-1 based on the growth between two points. This allows the translation of time series data
into a trend sequence St = {(m1, t1), ...,(mN , tN)}, with mi ∈ {0,1,−1} as the trend value
and ti as the end time point of the related trend. In particular:

• 0 when the value remained constant (continuation).

• 1 when the value increased (uptrend).

• -1 when the value decreased (downtrend).

Therefore, given two time series and the two respectively mapped trend sequences S1 =
{(m11, t11), ...,(m1N , t1N)} and S2 = {(m21, t21), ...,(m2N , t2N)}, with t1i = t2i for i = 1, ...,N,
the pattern distance between S1 and S2 is defined as:

Dp(S1,S2) =
1

t1N

N

∑
i=1

(t1i− t1(i−1))|m1i−m2i|

The value of the pattern distance Dp will be between 0 and 1 and smaller values will
determine higher similarity in the two trend sequences. This distance is calculated for all
pairs of time series in each repository in the dataset.

Finally, repository clustering was performed using the hierarchical clustering technique
with Ward distance as a similarity measure. Leveraging on the results of the hierarchical
clustering, it is now possible to train a KNN classifier that can be used to assign an open-
source project to one of the defined clusters by using the intra-feature and inter-feature
representation of its metrics data as input.

Overall, the discussed methodology step allows the clustering of open-source software
projects based on their evolution patterns representation extracted following the techniques
from chapter 3.3.1. The developed classifier can be used to identify similar projects and
will serve as a starting point for the next step of the overall methodology, which handles
the multivariate metrics evolution patterns forecasting. The results of this methodology are
shown in chapter 4.1.1.

44

3.3. Multivariate Time Series Models

3.3.4 Multivariate Time Series Forecasting

To support the analysis of open-source software evolution, researchers should understand
how the different metrics can evolve based on their history. Furthermore, the changes re-
lated to one metric can impact the evolution of other ones as well. Thus, multivariate time
series forecasting is used to predict the evolution of the different metrics of an open-source
software project. This last step of the methodology aims to provide a set of models (one per
metric) for each repository cluster that can be used for the following purposes:

1. Predict the next patterns of open-source metrics based on their history data as they
are.

2. Assess future evolution of metrics based on manually introduced patterns as assumed
forecasts.

3. Replay and assess the evolution history of metrics based on manually introduced
patterns at some point in the past.

The forecasting models tailored for different repositories clusters (3.3.3) enhance the
ability to analyze open-source software evolution with the additional aid of the related evo-
lution patterns (3.3.1), which allow the shaping of the metrics history to evaluate the impact
of past events and predict future ones.

The application of multivariate time series forecasting in open-source software evo-
lution is inspired by the research by Jones et al. from 2008 [51], where they apply this
technique to predict the demand in emergency departments for hospitals. Although from a
different domain, this work serves as a starting point as its methodology relies on studying
the temporal relationships between the demands for key resources in the emergency depart-
ment and the inpatient hospital. The relationship between the evolution of these different
factors provides the basis for the multivariate forecasting model. The data used to train and
evaluate this model was collected from three different hospitals and sampled by the hour
for a specific year. The multivariate forecasting model produced by this research performed
better than the univariate ones it was compared to. The described methodology gives the
necessary steps to guide the development of multivariate forecasting models in the field of
open-source software development.

The metrics time series data have been prepared for the models training by being sam-
pled by month and being scaled between 0 and 1, as the patterns are the matter of interest
here rather than the values themselves. Each metric has then been selected as the model tar-
get, in turn, to produce a forecasting model per metric, using the other ones as training data.
The mlforecast26 Python library [77], has been used to train the forecasting models. The
advantage of this framework is that it already provides a series of machine learning mod-
els suitable for time series forecasting. Among these options, XGBoost [17] was chosen
as the base model for the training task due to its speed, scalability and good performance
[78][107][98].

26https://github.com/Nixtla/mlforecast

45

https://github.com/Nixtla/mlforecast

3. FRAMEWORK DESIGN AND IMPLEMENTATION

The described procedure resulted in the development of a set of forecasting models,
which are divided evenly among the identified clusters and each represents one of the 10
metrics associated with the evolution of open-source software projects. These models can
be used to predict future patterns for the metrics and to infer hypothetical scenarios by ma-
nipulating the input data with different pattern types. Overall, the discussed methodology
step finalizes the elements that compose the support framework. The results of this method-
ology are shown in chapters 4.1.2 and 4.1.3.

46

Chapter 4

Results and Evaluation

This chapter aims to provide an answer to the research questions, which are discussed in
each one of the following sections: 4.1 for RQ1; 4.2 for RQ2; 4.3 for RQ3. Each section
describes the evaluation approach followed and illustrates the results obtained.

4.1 RQ1: What Insights can be Derived from the Framework?

This research question aims to show which useful information researchers can retrieve using
the framework methodologies described in chapter 3 to gain a better understanding of open-
source software evolution. The results from the patterns modeling and multivariate time
series clustering are discussed in section 4.1.1. Additionally, in section 4.1.2, an assessment
is conducted about how well the forecasting models fit the time series data and can predict
evolution patterns for open-source projects metrics. Finally, the influence that metrics have
on each others’ growth is analyzed and the most influential evolution metrics are listed in
section 4.1.3.

4.1.1 RQ1.1: What are the Generalized Patterns and Clusters of
Open-Source Software Evolution?

The goal of this research question is to discuss the results obtained from the patterns model-
ing from chapter 3.3.1 and the multivariate time series clustering from chapter 3.3.3. First,
the generated generalized patterns are discussed and an experiment is conducted to check if
the results are consistent with smaller input sizes. Following that, the obtained repositories
clusters are illustrated.

The methodology described in chapter 3.3.1 resulted in 3 clusters of segments grouped
by the similarity of their polynomial approximation and statistical features. From this, it is
possible to generalize the 3 curves that represent the segments’ behavior in the time series
data of the analyzed metrics. The average coefficients of the clustered segments are used to
define the following third-degree polynomial equations:

1. Steep growth:
y = 0.03x3 +0.043x2−0.305x+1.725+C

47

4. RESULTS AND EVALUATION

2. Shallow growth:

y = 0.012x3−0.017x2 +0.027x−0.011+C

3. Plateau:
y = 0.0001x3 +0.001x2−0.002x+0.002+C

The defined equations are illustrated by the curves in figure 4.1 and can be used to
approximate the sequence of segments in the collected time series data. By providing a
generalized representation of the metrics growth over time it is then possible to analyze
their correlation and to group open-source projects with similar evolution patterns.

Figure 4.1: Generalized time series segments growth patterns. Source: Thesis author

The results from the experiments run with smaller input sizes still produced 3 general
curves with similar behaviors to the ones obtained using the full dataset. This can be seen
in table 4.1, where the polynomial coefficients are in line across the different iterations. The
curve plots are shown in appendix B.

The multivariate time series clustering discussed in chapter 3.3.3 produced 3 clusters
to which repositories are assigned. The dendrogram that resulted from the hierarchical
clustering is illustrated in figure 4.2. The average metrics evolution patterns for each cluster
are shown in figures 4.3, 4.4 and 4.5. From the plots, it can be seen how the projects in
each cluster differ in terms of their evolution related to the metrics scale over time and their
correlation. The plot for Cluster 0 presents a growth for all the metrics, with some being
faster than others. It is expected that the projects in this cluster mostly have continuous
growth in their metrics values and that the evolution of one metric affects the others as well.

48

4.1. RQ1: What Insights can be Derived from the Framework?

Steep Shallow Plateau

Input Size x3 x2 x1 x0 x3 x2 x1 x0 x3 x2 x1 x0

1328 (Baseline) 0.03 0.043 -0.305 1.725 0.012 -0.017 0.027 -0.011 0.0001 0.001 -0.002 0.002

664 0.04 0.037 -0.139 0.289 0.01 -0.01 0.015 -0.004 0 0 0 0
332 0.04 0.059 -0.242 0.499 0.015 -0.013 0.02 -0.004 0 0 0 0
166 0.06 0.049 -0.318 0.887 0.02 -0.016 0.024 -0.005 0 0 0 0
83 0.08 0.022 -0.119 0.439 0.02 -0.02 0.034 -0.01 0 0 0 0
41 0.07 0.03 0.01 -0.06 0.023 -0.023 0.033 -0.01 0 0 0 0

Table 4.1: Generalized patterns curves coefficients for different input size, with full dataset
of 1328 repositories as baseline

In total, 141 open-source projects were assigned to this cluster and it is assumed that the
Steep and Shallow patterns are the most common in the metrics evolution. From the plot
of Cluster 1, it can be seen that the metric growth is slower than in Cluster 0 and that a
few of them hardly evolve. The metrics growth correlation is expected to be limited, where
the evolution of one of them will only impact the evolution of a small group of other ones.
A total of 910 projects were assigned to this cluster and a majority of Plateau patterns are
assumed in the evolution of the metrics. Finally, the plot of Cluster 2 is between the other
two clusters. On one end, it shows a faster growth for some metrics than Cluster 1, while
it also shows a more limited metrics correlation than Cluster 0. A total of 277 open-source
repositories was assigned to this cluster and it can be expected to see a combination of
Shallow and Plateau patterns in the metrics evolution. The discussed results and patterns
assumptions are confirmed by the distributions shown in table 4.2.

Clusters / Patterns Steep Shallow Plateau

Cluster 0 0.198 0.512 0.29
Cluster 1 0.088 0.047 0.865
Cluster 2 0.088 0.38 0.531

Table 4.2: Distribution of metrics evolution patterns over the repositories clusters

The discussed results provide insights into what the patterns modeling and the multi-
variate time series methodologies from the framework can achieve. The identified evolution
patterns give researchers the means to interpret the evolutionary behavior of open-source
projects, while the clustering allows the identification of similar ones to draw further com-
parisons.

49

4. RESULTS AND EVALUATION

Figure 4.2: Dendrogram representing the hierarchical clustering of open-source software
projects based on their metrics evolution patterns. Source: Thesis author

Figure 4.3: Average metrics evolution patterns for cluster 0. Source: Thesis author

50

4.1. RQ1: What Insights can be Derived from the Framework?

Figure 4.4: Average metrics evolution patterns for cluster 1. Source: Thesis author

4.1.2 RQ1.2: How Well Do the Forecasting Models Fit the Historical Data?

The evaluation of the multivariate forecasting models from chapter 3.3.4 is performed by
training a new model for all metrics of 10 randomly picked open-source projects from the
dataset using an increasing amount of historical data. This amount of projects was chosen
as it suited the computational resources available for the experiments. The forecast metrics
values are then segmented and mapped to a series of patterns. The obtained patterns are then
compared to the ground truth, which is the sequence of patterns derived from the originally
collected time series data. The quality of predictions and how well the models fit the data
are evaluated using the following scores:

• Performance: The performance is the ratio between the matching monthly pattern
predictions and the total monthly patterns. This aims to assess the ability of the
forecasting models to predict values that can be mapped to the same patterns as the
original time series.

• Precision: The precision is the fraction of the forecast relevant break points (detected
within 12 months from the true values) and their total amount. This aims to assess
how many detected break points from the forecast time series are relevant compared
to the ones from the historical data [94].

• Recall: The recall is the fraction of the forecast relevant break points (detected within
12 months from the true values) and the total amount of break points detected in the

51

4. RESULTS AND EVALUATION

Figure 4.5: Average metrics evolution patterns for cluster 2. Source: Thesis author

original data. The aim is to assess how many relevant break points have been detected
from the forecast time series [94].

• Random Index (RI): The random index measures the similarity between two time
series segmentation by comparing the detected break points. A value of 0 represents
a total disagreement, while 1 represents a total agreement. The aim is to assess the
similarity of the break points derived from the forecast time series and the ones from
the historical data [25].

• Deviation: The deviation measures the average difference between the monthly pre-
dictions and the original data. The patterns defined in research question 1.1 4.1.1 are
mapped as follows: Steep as 0; Shallow as 1; Plateau as 2. This aims to assess how
far the patterns of the predicted time series are from the ones of the historical data.

• Hausdroff Score: The Hausdroff score computes the worst prediction error when
comparing two time series segmentation. This aims to assess the maximum misalign-
ment (in months) that occurs between the break points derived from the forecast time
series and the ones from the historical data [71].

• R2 score: The coefficient of determination provides a measure of how well the histor-
ical time series data are replicated by the forecasting model, based on the proportion
of total variation of outcomes provided by the model [30].

52

4.1. RQ1: What Insights can be Derived from the Framework?

Months Performance Precision Recall RI Deviation Hausdorff R2

1 0.777 0.474 0.549 0.774 0.238 21.85 0.553
2 0.782 0.469 0.576 0.774 0.229 22.35 0.555
4 0.802 0.469 0.533 0.775 0.215 21.95 0.559
6 0.759 0.485 0.586 0.774 0.257 21.75 0.559
12 0.776 0.504 0.578 0.776 0.224 21.65 0.657
24 0.792 0.504 0.577 0.776 0.224 21.65 0.657
48 0.771 0.506 0.589 0.797 0.239 19.6 0.692
72 0.861 0.562 0.613 0.844 0.149 16 0.739

Table 4.3: Average metrics patterns prediction accuracy measures and model R2 score eval-
uated on 10 randomly picked open-source projects

The results of the evaluation procedure are shown in table 4.3, where the average scores
of the 10 randomly picked projects are reported for each of the amount of training history
data used. In terms of models fitting, the R2 scores indicate that more than 12 months
of history start providing a better match between the forecast data and the historical data,
with the value steadily increasing as more known project history is included in the training
data. Using more historical data also brings the patterns predicted from the forecast time
series more in line as shown by the increasing performance and decreasing deviation scores.
In this case, it is worth pointing out how even the smallest amount of historical data (1
month) shows about 77% of correct pattern prediction and a small value of pattern deviation.
This might suggest that, if the only goal is the pattern prediction, even a contained size of
historical data might suffice.

In terms of the time series segmentation and the comparison of the break points detected
from the forecast time series and the historical data, the random index score shows a good
overall similarity even for small amounts of training history. As more training data is used,
the score shows better values. On the other hand, the precision and recall do not increase
as much as other scores and just reach around 60% in the best case when 72 months of
historical data is used for the training. This might be related to the fact that the average
Hausdorff error, despite decreasing, is still at 16 months in the best case. This value is
higher than the margin of 12 months allowed for the precision and recall scores and probably
affects their outcomes.

Overall, the evaluation output shows that the multivariate forecasting models provide
good results when it comes to predicting the evolution patterns, which can be done with
limited amounts of training data. For this task, the inverse relationship between the patterns
prediction performance and deviation is directly linked to how well the model fits the data
as shown in figure 4.6. On the other hand, more training data is needed to obtain more
accurate value predictions and better break points detection.

53

4. RESULTS AND EVALUATION

Figure 4.6: Average patterns prediction performance, deviation and model R2 scores over
training months size evaluated on 10 randomly picked open-source projects. Source: Thesis
author

4.1.3 RQ1.3: How do the Metrics Influence Each Other in Project
Evolution?

From the trained forecasting models described in chapter 3.3.4, it is possible to extract
the relevance of each feature in the prediction task. This allows the inspection of which
metric influences the most the growth of another. This research question aims to provide an
overview of the features importance for each metric forecasting model and how the removal
of features affects the accuracy of such models.

The features importance is obtained from the XGBoost regression models trained fol-
lowing the methodology from chapter 3.3.4 using their native features importances func-
tion1. The measured importance corresponds to the Gain, which represents the average im-
provement in loss brought by a feature. In other words, it tells how much a feature helps to
make accurate predictions using the training data [91]. To evaluate the effect of the features
importance in the metrics forecasting models, an ablation study is conducted by performing
the same tasks described in chapter 4.1.2 for research question 1.2 using the best results of
N = 72 as baseline and the same 10 random projects sample. The tasks are repeated for a
smaller amount of the most important features for each model in each iteration, namely 9
(baseline), 6, 3, and 1. This ablation study aims to assess the impact of feature selection on
the accuracy metrics described earlier.

1https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.dask.DaskX
GBRegressor.feature_importances_

54

https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.dask.DaskXGBRegressor.feature_importances_
https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.dask.DaskXGBRegressor.feature_importances_

4.1. RQ1: What Insights can be Derived from the Framework?

Models / Features St
ar

ga
ze

rs

Is
su

es

C
om

m
its

C
on

tr
ib

ut
or

s

D
ep

lo
ym

en
ts

Fo
rk

s

Pu
ll

R
eq

ue
st

s

W
or

kfl
ow

s

R
el

ea
se

s

Si
ze

Stargazers - 0.11 0.2 0.13 0.01 0.13 0.08 0.13 0.08 0.13

Issues 0.09 - 0.1 0.11 0.01 0.09 0.3 0.07 0.09 0.1

Commits 0.07 0.1 - 0.12 0.02 0.08 0.06 0.14 0.1 0.3

Contributors 0.08 0.08 0.24 - 0.02 0.08 0.09 0.05 0.09 0.27

Deployments 0.19 0.2 0.06 0.04 - 0.03 0.01 0.0001 0.04 0.1

Forks 0.12 0.13 0.12 0.11 0.045 - 0.16 0.1 0.09 0.14

Pull Requests 0.11 0.15 0.11 0.11 0.07 0.15 - 0.13 0.08 0.09

Workflows 0.11 0.12 0.12 0.11 0.03 0.06 0.37 - 0.04 0.04

Releases 0.13 0.13 0.14 0.11 0.06 0.09 0.04 0.18 - 0.12

Size 0.06 0.09 0.37 0.12 0.04 0.11 0.07 0.06 0.08 -
Average Importance 0.1 0.11 0.15 0.1 0.03 0.08 0.12 0.09 0.07 0.13
Most Important 0 2 2 0 0 1 3 1 0 2

Table 4.4: Average features importance for the metrics forecasting models including how
many times they are the most important

From the values shown in table 4.4, it can be seen to which extent each feature plays a
role in the prediction accuracy of other ones. From these findings, insights on how metrics
influence each other in the evolution of open-source software can be drawn. For example,
the number of pull requests is what affects the forecast of the number of issues the most,
which can be translated to actual dynamics of open-source project development as more of
the former is usually linked to a fix of the latter. Additionally, from the average importance,
it emerges that the number of commits, pull requests, issues and the project size are the
four features that yield the highest gain in the metrics forecasting models. The number of
pull requests also appears to be the most frequently important feature across the models.
These results can also be used to revise the metrics selection process as the ones with lower
importance might be omitted from the evolution analysis.

Table 4.5 shows the results of the ablation study compared to the baseline results when
all 9 features are used. In general, a reduction of features seems to improve specific metrics
depending on the extent of the omissions. When only 6 features are used, the patterns
prediction scores show slight improvements that can be related to the fact that the features
that yield the smallest gain are not accounted for anymore. A more drastic reduction does
not seem to improve these metrics but it benefits the models’ ability to fit the training data,

55

4. RESULTS AND EVALUATION

Features Months Performance Precision Recall Random Idx Deviation Hausdorff R2

9 (Baseline) 72 0.861 0.562 0.613 0.844 0.149 16 0.739

6 72 0.877 0.585 0.613 0.849 0.13 16.25 0.74
3 72 0.874 0.566 0.623 0.844 0.14 14.8 0.739
1 72 0.878 0.553 0.615 0.842 0.136 15.55 0.85

Table 4.5: Average metrics patterns prediction accuracy measures and model R2 score eval-
uated on 10 randomly picked open-source projects using a decreasing amount of features.
Features=9 and Months=72 are used as baseline

as seen on the R2 score.
Overall, the assessment of the features importance highlighted how it is possible to in-

spect how metrics influence each other through the evolution of an open-source project.
From this, researchers can derive the relationships between metrics and inform their se-
lection. On top of this, the ablation study showed how a feature selection based on their
importance might benefit some tasks in the study of open-source software evolution, espe-
cially when it comes to use the forecasting models to predict growth patterns.

4.2 RQ2: How Much History is Needed for the Patterns
Predictions?

This research question aims to take a deeper look at the prediction of monthly evolution
patterns to understand how many months of historical patterns have to be known to perform
accurate forecasting. The evaluation is based on the comparison of the following pattern
prediction models using an increasing amount of known monthly patterns:

• Baseline: The model used as a baseline simply repeats the latest known pattern until
the last month.

• N-grams: The N-grams model performs an N-gram analysis of the patterns se-
quences to calculate the probabilities with which one pattern appears [4][90]. The
next pattern is chosen by calculating the sequence probability by applying the bi-
grams probabilities from table 4.6 to the chain rule formula[90]:

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2)...P(wn|w1:n) =
n

∏
k=1

P(wk|w1:k−1)

The input data for the models is the metrics patterns sequences from the collected open-
source projects. The data is split into training and test sets using an 80%-20% ratio. The
training set is used to build the bi-grams probabilities for the N-grams models, which are
shown in table 4.6. Due to its simplicity, the Baseline model is directly applied to the test set
as no training is needed for it. Both models are then evaluated by predicting future patterns

56

4.2. RQ2: How Much History is Needed for the Patterns Predictions?

Pattern Plateau Shallow EOS Steep Plateau Shallow EOS Steep

Plateau 0.983 0.003 0.012 0.001 190183 659 2370 276
Shallow 0.045 0.984 0.009 0.002 632 138720 1322 327
EOS 0.453 0.276 - 0.271 1880 1144 - 1122
Steep 0.046 0.028 0.026 0.9 793 478 454 15528

Table 4.6: Bi-grams probabilities and frequencies with EOS indicating one of the ends of a
sequence (first or last)

given an increasing amount of known previous ones. The original pattern sequences are
used to evaluate the quality of the forecasts, which is expressed using the following metrics:

• Performance: The performance is the ratio between the matching monthly pattern
predictions and the total monthly patterns. This aims to assess the ability of the
forecasting models to predict values that can be mapped to the same patterns as the
original time series.

• Deviation: The deviation measures the average difference between the monthly pre-
dictions and the original data. The patterns defined in research question 1.1 4.1.1 are
mapped as follows: Steep as 0; Shallow as 1; Plateau as 2. This aims to assess how
far the patterns of the predicted time series are from the ones of the historical data.

Months N Performance N-grams Performance Baseline Deviation N-grams Deviation Baseline

1 2 0.849 0.848 0.222 0.223
2 3 0.85 0.848 0.221 0.223
3 4 0.851 0.848 0.219 0.223
6 7 0.855 0.848 0.214 0.223
12 13 0.931 0.924 0.083 0.091
24 25 0.945 0.938 0.071 0.076

Table 4.7: Patterns prediction performance and deviation over increasing N comparison
between N-grams and baseline models

The evaluation results are shown in table 4.7 and figure 4.7. From the numbers and
the plot, it can be seen how the predictions get more accurate as more historical patterns
are known with a significant increase after N = 13. This also coincides with a more than
half reduction of the deviation value. In terms of the comparison between the two models,
the results suggest that there is not much difference between the Baseline and the N-grams.
This can be caused by the nature of the input data itself since table 4.6 shows that a pattern
is very likely followed by one of the same type. Therefore, even repeating the latest known
pattern or having little historical data yields good prediction accuracy. In light of this, when

57

4. RESULTS AND EVALUATION

the dataset presents sequences of frequent pattern repetitions, using a simple model with a
limited amount of historical patterns can be enough to infer future patterns.

Figure 4.7: Patterns prediction performance and deviation over increasing N. Source: Thesis
author

Although the results obtained in the previous iteration of the models evaluation are good
and provide useful insights, it is important to take a step further in answering this research
question. As mentioned before, table 4.6 shows how most of the patterns sequences are
made of the same types of patterns. These probabilities suggest that the models that were
previously evaluated are good when it comes to predicting the same pattern over and over.
However, the changes in pattern type are the ones that reflect useful information about the
evolution of an open-source project. Therefore, it is worth inspecting how good the two
models are in predicting future patterns for sequences that are not just made of one pattern
type. This is achieved by removing from the test set the patterns sequences that present no
changes in pattern types. This validation set is then used to evaluate the accuracy of the two
models.

The results in table 4.8 and figure 4.8 show how the models perform when it comes
to predicting sequences of patterns that change type at some point in time. The first thing
to notice is how the performance and the deviation are worse than the previous results,
especially for lower amounts of known patterns. A significant improvement is present when
more than 12 months of history are known both in terms of performance and deviation. The
trend of having better results as N increases is then confirmed here as well. Additionally,
the results between the two models are not very far apart. Although the gap is slightly
wider compared to the previous iteration, the simpler model might still be enough to obtain
accurate pattern predictions. The main difference with the former experiment is that, in this

58

4.2. RQ2: How Much History is Needed for the Patterns Predictions?

Months N Performance N-grams Performance Baseline Deviation N-grams Deviation Baseline
1 2 0.648 0.646 0.518 0.522
2 3 0.651 0.646 0.515 0.522
3 4 0.654 0.646 0.511 0.522
6 7 0.662 0.646 0.499 0.522
12 13 0.841 0.823 0.192 0.213
24 25 0.874 0.855 0.163 0.178

Table 4.8: Patterns prediction performance and deviation over increasing N comparison
between N-grams and baseline models considering pattern changes only

case, a higher amount of known patterns is required for good results.

Figure 4.8: Patterns prediction performance and deviation over increasing N considering
only patterns changes. Source: Thesis author

Overall, the performed evaluation suggests that the amount of history needed to predict
patterns is dependent on the goal of the forecasting, given the fact that repetitions of the
same pattern types occur more often. When it comes to just predicting the patterns sequence
without focusing on type shifts, a small amount of known patterns (N = 2) and a simple
model (Baseline) is enough. On the other hand, when the focus is to accurately predict
changes in patterns, the simple model (Baseline) still suffices but the more previous patterns
are known (N >= 13) the better it is.

59

4. RESULTS AND EVALUATION

4.3 RQ3: How Reliable is the Break Points Detection?

This research question aims to assess if the detected break points from the time series seg-
mentation (chapter 3.3.1) can be traced back to relevant real world events that occurred
throughout the history of an open-source project. The inspection of the break points and
real events alignment is firstly carried out in section 4.3.1 on 10 randomly picked projects.
For the projects with little to no events found, a further inspection is performed by introduc-
ing additional metrics in section 4.3.2.

4.3.1 RQ3.1: How Well Do the Detected Break Points Align With Real
Events?

The evaluation of the break points alignment with real events is performed on a random sam-
ple of 10 of the most active open-source projects from the collected dataset. This amount of
projects was chosen as it suited the computational resources available for the experiments.
The break points generated from the time series segmentation process, which serve as time
boundaries for the metrics growth patterns, are validated by confirming relevant changes
in the projects’ GitHub activities around the indicated date. Additionally, where possible,
events that reflect the break points beyond GitHub are reported. The break points accuracy
is also validated the other way around by inspecting if relevant activities on a project outside
of GitHub (e.g. release announcement on website, external bug tracker, issues blog) also
correspond to a break point around the same time. Overall, 5 projects are assessed using the
former approach (PatternFly-React, Conan, CockroachDB, pip, Woocommerce), while the
other 5 are assessed using the latter (NextCloud, Nixpkgs, Gutenberg, Salt, AWX).

For this evaluation, the focus is directed to the following metrics: releases; issues;
pull requests; workflows. This is because the manual analysis of such metrics in the GitHub
user interface (UI) is straightforward, unlike the other ones (e.g. commits and contributors
only show statistics for the last 14 days, deployments are not searchable by date). For
each analyzed project, the plot of the merged metrics curve is shown alongside a table that
summarizes the metrics patterns and break points. The patterns in the tables are color-coded
as follows to improve readability: Steep (Red); Shallow (Orange); Plateau (Yellow).

patternfly/patternfly-react PatternFly-React provides a React component to PatternFly,
an open-source design system that enables the creation of enterprise products. Started in
early 2017, the project gathered more than 700 stargazers, 180 contributors and was forked
more than 300 times. At the time of writing, more than 150 issues are still open (more than
4500 closed overall) together with more than 20 pull requests (almost 5300 closed overall)2.

The merged curve in figure 4.9 shows how the development activities for the project
followed a steady growth until more recent years when a sharp increase in the pace was
detected. This is reflected by the change of pattern from Shallow to Steep in metrics like
the number of open issues, pull requests and changes size after July 2022. By inspecting
the number of opened issues around the July 2022 break point from project’s GitHub issues

2https://github.com/patternfly/patternfly-react

60

https://github.com/patternfly/patternfly-react

4.3. RQ3: How Reliable is the Break Points Detection?

Figure 4.9: Merged metrics curve for the patternfly/patternfly-react project. Source: Thesis
author

page, it can be seen how they started accumulating after the beginning of 20203. This can
be interpreted as the beginning of the growth pattern shift for this metric and it can be
related to the need of addressing the technical debt that piled up over the years as a third
of the opened issues before July 2022 are marked for that scope. Additionally, the Steep
patterns that follow can be attributed to a rise in the amount of breaking changes introduced
and detected bugs, which concern more than a half of the newly opened issues until March
20244. This is in line with the changelogs of the releases created from March 2024 until the
time of writing, where less than 10 of the more than 50 releases are not about bug fixes5.

The shift in pattern from Shallow to Steep after May 2023 for the opened pull requests is
linked to a series of dependency updates6. The number of releases growth registered a break
point around February 2022. As the project holds more than 10000 releases on GitHub, this
shift in the growth rate is confirmed by the fact that about 8000 releases were created in the

3https://github.com/patternfly/patternfly-react/issues?q=is%3Aissue+is%3Aopen+creat
ed%3A%3C2022-07-01

4https://github.com/patternfly/patternfly-react/issues?q=is%3Aissue+is%3Aopen+creat
ed%3A2022-07-01..2024-03-01

5https://github.com/patternfly/patternfly/releases?q=created%3A2024-03-01.
.2024-06-01&expanded=true

6https://github.com/patternfly/patternfly-react/pulls?page=1&q=is%3Apr+is%3Aopen+c
reated%3A%3E%3D2023-05-01

61

https://github.com/patternfly/patternfly-react/issues?q=is%3Aissue+is%3Aopen+created%3A%3C2022-07-01
https://github.com/patternfly/patternfly-react/issues?q=is%3Aissue+is%3Aopen+created%3A%3C2022-07-01
https://github.com/patternfly/patternfly-react/issues?q=is%3Aissue+is%3Aopen+created%3A2022-07-01..2024-03-01
https://github.com/patternfly/patternfly-react/issues?q=is%3Aissue+is%3Aopen+created%3A2022-07-01..2024-03-01
https://github.com/patternfly/patternfly/releases?q=created%3A2024-03-01..2024-06-01&expanded=true
https://github.com/patternfly/patternfly/releases?q=created%3A2024-03-01..2024-06-01&expanded=true
https://github.com/patternfly/patternfly-react/pulls?page=1&q=is%3Apr+is%3Aopen+created%3A%3E%3D2023-05-01
https://github.com/patternfly/patternfly-react/pulls?page=1&q=is%3Apr+is%3Aopen+created%3A%3E%3D2023-05-01

4. RESULTS AND EVALUATION

st
ar

ga
ze

rs

re
le

as
es

si
ze

co
m

m
its

co
nt

ri
bu

to
rs

de
pl

oy
m

en
ts

is
su

es

fo
rk

s

pu
ll

re
qu

es
ts

w
or

kfl
ow

s

03/2017
05/2018 0.18
10/2018 0.21 0.12
03/2019 0.22 0.36
04/2021 0.64 0.63
09/2021 0.57
02/2022 0.53 0.77
07/2022 0.74 0.21 0.84
05/2023 0.67 0.94 0.06 0
03/2024 1 1 1 1 1 0 1 1 1 1

Table 4.9: Metrics patterns for the patternfly/patternfly-react project

first 5 years7, while more than 6500 were added in the last 2 years8. Although the pattern
changes have been successfully linked to GitHub, no external events were detected for this
project given its break points.

conan-io/conan Conan is a decentralized package manager that allows developers to pub-
lish and install C and C++ binaries. Started in late 2015, the project gathered more than 7500
stargazers, 350 contributors and was forked more than 900 times. At the time of writing,
more than 1500 issues are still open (more than 8500 closed overall) together with more
than 40 pull requests (almost 5900 closed overall)9.

The merge curve from figure 4.10 shows that the overall growth of the project has been
consistent throughout its lifetime with a sharper rise in recent times. This is reflected in ta-
ble 4.10, where the majority of metrics follow a series of Shallow patterns before changing
into Steep ones in the last segment. The shift in pattern for the number of opened issues
is detected around July 2022. Before this time, the growing amount of open issues was
evenly split between support questions, features request and bugs10. After this, a signifi-
cant increase in the number of support questions drove the growth pattern of these metrics
to Steep. Although the number of bugs and feature requests also increased, the support
questions accounted for about half of the newly opened issues after July 2022. Still, the

7https://github.com/patternfly/patternfly-react/releases?q=created%3A%3C2022-02-01&
expanded=true

8https://github.com/patternfly/patternfly-react/releases?q=created%3A%3E%3D
2022-02-01&expanded=true

9https://github.com/conan-io/conan
10https://github.com/conan-io/conan/issues?q=is%3Aissue+is%3Aopen+created%3A%3C

2022-07-01

62

https://github.com/patternfly/patternfly-react/releases?q=created%3A%3C2022-02-01&expanded=true
https://github.com/patternfly/patternfly-react/releases?q=created%3A%3C2022-02-01&expanded=true
https://github.com/patternfly/patternfly-react/releases?q=created%3A%3E%3D2022-02-01&expanded=true
https://github.com/patternfly/patternfly-react/releases?q=created%3A%3E%3D2022-02-01&expanded=true
https://github.com/conan-io/conan
https://github.com/conan-io/conan/issues?q=is%3Aissue+is%3Aopen+created%3A%3C2022-07-01
https://github.com/conan-io/conan/issues?q=is%3Aissue+is%3Aopen+created%3A%3C2022-07-01

4.3. RQ3: How Reliable is the Break Points Detection?

Figure 4.10: Merged metrics curve for the conan-io/conan project. Source: Thesis author

increase in the number of features requests and bugs reports contributed to the faster growth
of the opened pull requests after May 202311. These patterns are also reflected in the fea-
tures announcements of the following months: agnostic deployment of dependencies in
May 202312; bulk uploads and downloads in June 202313; CLion Conan plugin in August
202314.

The break points for the number of releases can be inspected by looking at how many of
them occurred before and after the marked dates. Following the almost 40 releases between
December 2015 and December 201715, about 60 releases were added until March 201916,
which reflects an increase in the release per year frequency. Following March 2019, the
growth rate slows down as about 180 releases are added until January 2024. Although
all the segments are classified as Shallow, it is still possible to verify the reliability of the
detected break points for this metric. Overall, the break points inspection for this project
led to successful findings of real events to link to pattern changes.

11https://github.com/conan-io/conan/pulls?q=is%3Apr+is%3Aopen+created%3A%3E%3D
2023-05-01+

12https://blog.conan.io/2023/05/23/Conan-agnostic-deploy-dependencies.html
13https://blog.conan.io/2023/06/28/Conan-bulk-package-operations.html
14https://blog.conan.io/introducing-new-conan-clion-plugin/
15https://github.com/conan-io/conan/releases?q=created%3A%3C2017-12-01&expanded=true
16https://github.com/conan-io/conan/releases?q=created%3A2017-12-01..2019-03-01&ex

panded=true

63

https://github.com/conan-io/conan/pulls?q=is%3Apr+is%3Aopen+created%3A%3E%3D2023-05-01+
https://github.com/conan-io/conan/pulls?q=is%3Apr+is%3Aopen+created%3A%3E%3D2023-05-01+
https://blog.conan.io/2023/05/23/Conan-agnostic-deploy-dependencies.html
https://blog.conan.io/2023/06/28/Conan-bulk-package-operations.html
https://blog.conan.io/introducing-new-conan-clion-plugin/
https://github.com/conan-io/conan/releases?q=created%3A%3C2017-12-01&expanded=true
https://github.com/conan-io/conan/releases?q=created%3A2017-12-01..2019-03-01&expanded=true
https://github.com/conan-io/conan/releases?q=created%3A2017-12-01..2019-03-01&expanded=true

4. RESULTS AND EVALUATION

st
ar

ga
ze

rs

re
le

as
es

si
ze

co
m

m
its

co
nt

ri
bu

to
rs

de
pl

oy
m

en
ts

is
su

es

fo
rk

s

pu
ll

re
qu

es
ts

w
or

kfl
ow

s

12/2015
07/2017 0.12
12/2017 0.21
10/2018 0.37
03/2019 0.42
08/2019 0.38
01/2020 0.44 0.43
06/2020 0.52 0.17
11/2020 0.06
09/2021 0.65
02/2022 0.77
07/2022 0.57
12/2022 0.86
05/2023 0.86 0.89 0.8 0.9 0.47
01/2024 1 1 1 1 1 0 1 1 1 0

Table 4.10: Metrics patterns for the conan-io/conan project

cockroachdb/cockroach CockroachDB is a cloud-based distributed SQL database de-
signed to build and manage scalable data-intensive applications. Started in early 2014, the
project gathered more than 29000 stargazers, 700 contributors and was forked more than
3600 times. At the time of writing, more than 5000 issues are still open (more than 57000
closed overall) together with more than 900 pull requests (almost 61000 closed overall)17.

The steady growth of the project’s metrics is shown in figure 4.11 with a spike detected
at the very end. This is also confirmed in table 4.11, where the last segment of most metrics
is classified as Steep growth. The number of issues opened before March 2023 are mostly
linked to reported bugs and new features18, which cover about half and a quarter of them
respectively. The change from Shallow to Steep in the latest segment is because more than
half of the overall opened issues are clustered after March 2023. These new issues are
mostly characterized by bugs and enhancement related to the code-base19. A similar pattern
is seen in the number of opened pull requests, where more than a half of them were created

17https://github.com/cockroachdb/cockroach
18https://github.com/cockroachdb/cockroach/issues?q=is%3Aissue+is%3Aopen+created%3A

%3C2023-03-01++
19https://github.com/cockroachdb/cockroach/issues?q=is%3Aissue+is%3Aopen+created%3A

%3E%3D2023-03-01

64

https://github.com/cockroachdb/cockroach
https://github.com/cockroachdb/cockroach/issues?q=is%3Aissue+is%3Aopen+created%3A%3C2023-03-01++
https://github.com/cockroachdb/cockroach/issues?q=is%3Aissue+is%3Aopen+created%3A%3C2023-03-01++
https://github.com/cockroachdb/cockroach/issues?q=is%3Aissue+is%3Aopen+created%3A%3E%3D2023-03-01
https://github.com/cockroachdb/cockroach/issues?q=is%3Aissue+is%3Aopen+created%3A%3E%3D2023-03-01

4.3. RQ3: How Reliable is the Break Points Detection?

Figure 4.11: Merged metrics curve for the cockroachdb/cockroach project. Source: Thesis
author

after March 202320,21. In this case, the vast majority of the pull requests are linked to
pending releases, which can also be attributed to the increasing number of issues that were
being addressed. An example of a set of features that might have contributed to these shifts
in patterns is the release of a multi-region deployment feature in May 202322, which likely
required a considerable amount of development activities and is followed by a series of
reports for bugs and enhancements. Although the pattern changes have been successfully
linked to GitHub, only 1 external event was detected for this project given its break points.

pypa/pip pip is the package installer for Python, which allows the packages retrieval from
the Python Package Index and other indexes. Started in early 2011, the project gathered
more than 9000 stargazers, 680 contributors and was forked more than 3000 times. At the
time of writing, more than 900 issues are still open (more than 6200 closed overall) together
with more than 100 pull requests (almost 5400 closed overall)23.

From the merged curve in figure 4.12, it can be seen how the metrics growth started at a

20https://github.com/cockroachdb/cockroach/pulls?q=is%3Apr+is%3Aopen+created%3A%3C
2023-03-01++

21https://github.com/cockroachdb/cockroach/pulls?q=is%3Apr+is%3Aopen+created%3A%3E
%3D2023-03-01+

22https://www.cockroachlabs.com/blog/cockroachdb-23-1-release/
23https://github.com/pypa/pip

65

https://github.com/cockroachdb/cockroach/pulls?q=is%3Apr+is%3Aopen+created%3A%3C2023-03-01++
https://github.com/cockroachdb/cockroach/pulls?q=is%3Apr+is%3Aopen+created%3A%3C2023-03-01++
https://github.com/cockroachdb/cockroach/pulls?q=is%3Apr+is%3Aopen+created%3A%3E%3D2023-03-01+
https://github.com/cockroachdb/cockroach/pulls?q=is%3Apr+is%3Aopen+created%3A%3E%3D2023-03-01+
https://www.cockroachlabs.com/blog/cockroachdb-23-1-release/
https://github.com/pypa/pip

4. RESULTS AND EVALUATION

st
ar

ga
ze

rs

re
le

as
es

si
ze

co
m

m
its

co
nt

ri
bu

to
rs

de
pl

oy
m

en
ts

is
su

es

fo
rk

s

pu
ll

re
qu

es
ts

w
or

kfl
ow

s

02/2014
04/2015 0.15
05/2017 0.35 0.24
10/2017 0.35
08/2018 0.03
01/2019 0.52 0.41
09/2020 0.15
02/2021 0.49 0.68
12/2021 0.82
03/2023 0.87 0.73 0.69 0.6
01/2024 1 0 1 1 1 0 1 1 1 0

Table 4.11: Metrics patterns for the cockroachdb/cockroach project

Figure 4.12: Merged metrics curve for the pypa/pip project. Source: Thesis author

slow pace before picking up and reaching a sharp rise in recent months. Table 4.12 reflects
this behavior as many metrics follow long Shallow patterns before switching to a Steep

66

4.3. RQ3: How Reliable is the Break Points Detection?

pattern in the last segments. The number of opened issues before March 2023 is driven by an
even split of bug report and feature requests24,25,26. The split continues until January 2024,
with the main difference that more bugs are reported rather than feature requests27. This last
segment is marked as Steep since issues are opened at a faster rate than the previous ones.
The same behavior can be found in the growth of the opened pull requests before and after
March 202328,29, where the split between bug fixes and features implementation reflects the
findings discussed for the issues. Finally, the introduction of CI/CD pipelines shown in the
Steep growth of the number of workflows is visible by the more than 7000 GitHub actions
run after March 202330. Although the pattern changes have been successfully linked to
GitHub, no external events were detected for this project given its break points.

st
ar

ga
ze

rs

re
le

as
es

si
ze

co
m

m
its

co
nt

ri
bu

to
rs

de
pl

oy
m

en
ts

is
su

es

fo
rk

s

pu
ll

re
qu

es
ts

w
or

kfl
ow

s

03/2011
11/2014 0.19
03/2018 0.43
08/2018 0.43 0.49
06/2019 0.56
11/2019 0.61 0.61
04/2020 0.38
02/2021
07/2021 0.78
12/2021 0.65 0.68
03/2023 0.9 0.55 0.88 0.69 0
01/2024 1 0 1 1 1 1 1 1 1 1

Table 4.12: Metrics patterns for the pypa/pip project

woocommerce/woocommerce Woocommerce is a customizable e-commerce platform
built on WordPress that supports the creation of dedicated commerce solutions. Started

24https://github.com/pypa/pip/issues?q=is%3Aissue+is%3Aopen+created%3A%3C2020-04-01+
+

25https://github.com/pypa/pip/issues?q=is%3Aissue+is%3Aopen+created%3A2020-04-01.
.2021-12-01

26https://github.com/pypa/pip/issues?q=is%3Aissue+is%3Aopen+created%3A2021-12-01.
.2023-03-01+

27https://github.com/pypa/pip/issues?q=is%3Aissue+is%3Aopen+created%3A%3E%3D
2023-03-01+

28https://github.com/pypa/pip/pulls?q=is%3Apr+is%3Aopen+created%3A%3C2023-03-01+
29https://github.com/pypa/pip/pulls?q=is%3Apr+is%3Aopen+created%3A%3E%3D2023-03-01+
30https://github.com/pypa/pip/actions?query=created%3A%3E%3D2023-03-01+is%3Asuccess

67

https://github.com/pypa/pip/issues?q=is%3Aissue+is%3Aopen+created%3A%3C2020-04-01++
https://github.com/pypa/pip/issues?q=is%3Aissue+is%3Aopen+created%3A%3C2020-04-01++
https://github.com/pypa/pip/issues?q=is%3Aissue+is%3Aopen+created%3A2020-04-01..2021-12-01
https://github.com/pypa/pip/issues?q=is%3Aissue+is%3Aopen+created%3A2020-04-01..2021-12-01
https://github.com/pypa/pip/issues?q=is%3Aissue+is%3Aopen+created%3A2021-12-01..2023-03-01+
https://github.com/pypa/pip/issues?q=is%3Aissue+is%3Aopen+created%3A2021-12-01..2023-03-01+
https://github.com/pypa/pip/issues?q=is%3Aissue+is%3Aopen+created%3A%3E%3D2023-03-01+
https://github.com/pypa/pip/issues?q=is%3Aissue+is%3Aopen+created%3A%3E%3D2023-03-01+
https://github.com/pypa/pip/pulls?q=is%3Apr+is%3Aopen+created%3A%3C2023-03-01+
https://github.com/pypa/pip/pulls?q=is%3Apr+is%3Aopen+created%3A%3E%3D2023-03-01+
https://github.com/pypa/pip/actions?query=created%3A%3E%3D2023-03-01+is%3Asuccess

4. RESULTS AND EVALUATION

in mid-2011, the project gathered more than 9100 stargazers, 1300 contributors and was
forked more than 10700 times. At the time of writing, more than 3100 issues are still open
(more than 24300 closed overall) together with more than 300 pull requests (almost 18800
closed overall)31.

Figure 4.13: Merged metrics curve for the woocommerce/woocommerce project. Source:
Thesis author

The merged curve in figure 4.13 shows how the metrics, after a slower start, grew
steadily over time and picked up the pace in more recent months. Table 4.13 shows how the
sequence of Shallow patterns with a Steep end for most metrics supports the curve behavior.
The growth of the number of open issues before September 2020 is driven by the increas-
ing reporting of bugs and requests for new features32 which followed a significant increase
until March 202333. It is worth to report that, in July 2021, a SQL injection vulnerability
was detected34, which might have contributed to the metric growth. Since March 2023, the
growth rate kept increasing by causing the switch to a Steep pattern until January 202435,
still influenced by the reported bugs and features requests.

31https://github.com/woocommerce/woocommerce
32https://github.com/woocommerce/woocommerce/issues?q=is%3Aissue+is%3Aopen+created

%3A%3C2020-09-01+
33https://github.com/woocommerce/woocommerce/issues?q=is%3Aissue+is%3Aopen+created

%3A2020-09-01..2023-03-01
34https://blog.wpsec.com/woocommerce-unauthenticated-sql-injection-vulnerability-2/
35https://github.com/woocommerce/woocommerce/issues?q=is%3Aissue+is%3Aopen+created

%3A%3E%3D2023-03-01+

68

https://github.com/woocommerce/woocommerce
https://github.com/woocommerce/woocommerce/issues?q=is%3Aissue+is%3Aopen+created%3A%3C2020-09-01+
https://github.com/woocommerce/woocommerce/issues?q=is%3Aissue+is%3Aopen+created%3A%3C2020-09-01+
https://github.com/woocommerce/woocommerce/issues?q=is%3Aissue+is%3Aopen+created%3A2020-09-01..2023-03-01
https://github.com/woocommerce/woocommerce/issues?q=is%3Aissue+is%3Aopen+created%3A2020-09-01..2023-03-01
https://blog.wpsec.com/woocommerce-unauthenticated-sql-injection-vulnerability-2/
https://github.com/woocommerce/woocommerce/issues?q=is%3Aissue+is%3Aopen+created%3A%3E%3D2023-03-01+
https://github.com/woocommerce/woocommerce/issues?q=is%3Aissue+is%3Aopen+created%3A%3E%3D2023-03-01+

4.3. RQ3: How Reliable is the Break Points Detection?

st
ar

ga
ze

rs

re
le

as
es

si
ze

co
m

m
its

co
nt

ri
bu

to
rs

de
pl

oy
m

en
ts

is
su

es

fo
rk

s

pu
ll

re
qu

es
ts

w
or

kfl
ow

s

08/2011
04/2015 0.11
10/2017 0.39 0.37
08/2018 0.36
01/2019 0.54
06/2019 0.53
09/2020 0.69 0.1 0.68
12/2021 0.71
03/2023 0.85 0.93 0.88 0.58 0.26
01/2024 1 1 1 1 1 0 1 1 1 0

Table 4.13: Metrics patterns for the woocommerce/woocommerce project

In the matter of the opened pull requests growth, it interesting to notice how the ones
created before March 2023 are mostly labeled as contributions from the community36. As
not all contributors are part of the core development team, requests coming from outside
developers may be given lower priority and/or longer scrutiny. Following March 2023,
the change into a Steep pattern is dictated by a fast rise in the number of bug fixes and
features implementation37. The Steep patterns of both issues and pull requests can also be
linked to the announcements about the introduction of new features in the editor (November
2023)38 and in the checkout experience (March 2023)39. Finally, the growth in the number
of releases registered a break point around December 2021. Although all the patterns are
classified as Shallow, it is possible to notice that the releases rate increased from almost 280
in about 10 years40 to almost 200 in less than 3 years41. Overall, the break points inspection
for this project led to successful findings of real events to link to pattern changes.

nextcloud/server NextCloud is an open-source alternative to commercial cloud storage
services for both private individuals and enterprises. Started in mid-2016, the project gath-
ered more than 25000 stargazers, 900 contributors and was forked more than 3000 times. At

36https://github.com/woocommerce/woocommerce/pulls?q=is%3Apr+is%3Aopen+created%3A%3C
2023-03-01+

37https://github.com/woocommerce/woocommerce/pulls?q=is%3Apr+is%3Aopen+created%3A%3E
%3D2023-03-01++

38https://wptangerine.com/changes-in-woocommerce-editor/
39https://scottbolinger.com/headless-woocommerce-checkout/
40https://github.com/woocommerce/woocommerce/releases?q=created%3A%3C2021-12-01&expa

nded=true
41https://github.com/woocommerce/woocommerce/releases?q=created%3A%3E%3D2021-12-01&

expanded=true

69

https://github.com/woocommerce/woocommerce/pulls?q=is%3Apr+is%3Aopen+created%3A%3C2023-03-01+
https://github.com/woocommerce/woocommerce/pulls?q=is%3Apr+is%3Aopen+created%3A%3C2023-03-01+
https://github.com/woocommerce/woocommerce/pulls?q=is%3Apr+is%3Aopen+created%3A%3E%3D2023-03-01++
https://github.com/woocommerce/woocommerce/pulls?q=is%3Apr+is%3Aopen+created%3A%3E%3D2023-03-01++
https://wptangerine.com/changes-in-woocommerce-editor/
https://scottbolinger.com/headless-woocommerce-checkout/
https://github.com/woocommerce/woocommerce/releases?q=created%3A%3C2021-12-01&expanded=true
https://github.com/woocommerce/woocommerce/releases?q=created%3A%3C2021-12-01&expanded=true
https://github.com/woocommerce/woocommerce/releases?q=created%3A%3E%3D2021-12-01&expanded=true
https://github.com/woocommerce/woocommerce/releases?q=created%3A%3E%3D2021-12-01&expanded=true

4. RESULTS AND EVALUATION

the time of writing, more than 2300 issues are still open (more than 15700 closed overall)
together with more than 450 pull requests (almost 25400 closed overall)42.

Figure 4.14: Merged metrics curve for the nextcloud/server project. Source: Thesis author

From the merged curve in figure 4.14, it can be seen how the growth pace increases
after the first two years of the project’s lifetime. The final part of the curve shows a steep
increase, which is probably the result of stronger growth in several metrics. From table
4.14, it appears that the number of releases, commits, issues, pull requests, contributors
and changes size all follow a Steep pattern, which supports the behavior of the merged
curve. Starting from the NextCloud help forum43, three of the most active posts related to
development activities are inspected to see if their timeline corresponds to any of the break
points in table 4.14.

In May 2020, an announcement was made to ask users and contributors to help test
the second candidate release for NextCloud version 1944. Until its closure in June 2020,
the post gathered 79 responses from users and contributors who provided feedback, re-
ported their open issues and proposed solutions. Therefore, it is expected that in this period
between May 2020 and June 2020, an increase in issues, pull requests and commits is reg-
istered. Additionally, further increases in these metrics alongside the number of releases
can also appear as more feedback would come in after the new version is released. Table

42https://github.com/nextcloud/server
43https://help.nextcloud.com/
44https://help.nextcloud.com/t/nextcloud-19-rc2-is-here-help-us-test-it/81705

70

https://github.com/nextcloud/server
https://help.nextcloud.com/
https://help.nextcloud.com/t/nextcloud-19-rc2-is-here-help-us-test-it/81705

4.3. RQ3: How Reliable is the Break Points Detection?

st
ar

ga
ze

rs

re
le

as
es

si
ze

co
m

m
its

co
nt

ri
bu

to
rs

de
pl

oy
m

en
ts

is
su

es

fo
rk

s

pu
ll

re
qu

es
ts

w
or

kfl
ow

s

06/2016
06/2018 0.3
04/2019 0.22
09/2019 0.37
02/2020 0.42
07/2020 0.11 0.4 0.21
12/2020 0.6
05/2021 0.55
01/2023 0.86
06/2023 0.83 0.91 0.91 0.75 0.75 0.58
01/2024 1 1 1 1 1 0 1 1 1 0

Table 4.14: Metrics patterns for the nextcloud/server project

4.14 shows that, in the periods February-July 2020 and July-December 2020, the number
of releases, issues, commits and changes size all register a shift in their growth pattern with
the appearance of a break point. The next pattern for most of these metrics, despite having
a stronger growth, is still classified as Shallow except for the change size, which switches
from a Plateau pattern to a Shallow one.

Another help for testing post, which gathered 50 responses, was released in September
2023 about the first release candidate for NextCloud 27.1.245. Here it can be assumed that a
shift in the pattern of the development activities metrics should occur in the months before
the announcement to reflect the work performed to prepare the release to test. From table
4.14, it can be seen how in the January-June 2023 period, the number of releases, issues,
commits, pull requests and changes size all have a break point that marks a change in the
growth pace, which shifts to Steep for all of them. The stronger growth is also probably
due to the activities introduced by users and contributors during the time the post was active
(September-November 2023).

Much earlier in the development, another post was released in April 2018 to ask for
help testing versions 12.0.7 and 13.0.2 of NextCloud46. The same metrics assumptions
discussed before can be applied here for the time the post was active until August 2018. In
table 4.14, the periods June 2016-June 2018 and June 2018-April 2019 show break points
for the number of commits and changes size, which reflect the work on the code-base in
the early releases. A shift in the growth pattern is not detected for other metrics at this
time probably due to the lower amount of contributors involved (the post only gathered

45https://help.nextcloud.com/t/first-rc-of-nextcloud-27-1-2/171104
46https://help.nextcloud.com/t/help-testing-12-0-7-rc1-13-0-2-rc1/30585

71

https://help.nextcloud.com/t/first-rc-of-nextcloud-27-1-2/171104
https://help.nextcloud.com/t/help-testing-12-0-7-rc1-13-0-2-rc1/30585

4. RESULTS AND EVALUATION

20 replies). It is interesting to see how changes in the growth pace for other metrics only
occur after the number of contributors growth rate changes itself. Overall, the break points
inspection for this project led to successful findings of real events to link to pattern changes.

NixOS/nixpkgs Nixpkgs is a repository of software packages that can be installed with
the Nix package manager on the NixOS Linux distribution. Started in mid-2012, the project
gathered more than 15900 stargazers, 5000 contributors and was forked more than 12500
times. At the time of writing, more than 8000 issues are still open (more than 29600 closed
overall) together with more than 5500 pull requests (almost 267100 closed overall)47.

Figure 4.15: Merged metrics curve for the NixOS/nixpkgs project. Source: Thesis author

The merged curve in figure 4.15 shows how the project development started at a slow
pace for the first few years before picking up significantly until recently. Table 4.15 shows
that the number of commits, issues, pull requests, contributors, forks and changes size all
follow a Steep pattern in recent times, which is reflected in the behavior of the last part
of the curve. Starting from the NixOS discussion forum48, three of the most active posts
related to development activities are inspected to see if their timeline corresponds to any of
the break points in table 4.15.

A discussion about the possibility of the NixOS project moving out of GitHub after its
acquisition from Microsoft was held between June 2018 and April 202049. From this type

47https://github.com/NixOS/nixpkgs
48https://discourse.nixos.org/
49https://discourse.nixos.org/t/github-was-purchased-by-microsoft/313

72

https://github.com/NixOS/nixpkgs
https://discourse.nixos.org/
https://discourse.nixos.org/t/github-was-purchased-by-microsoft/313

4.3. RQ3: How Reliable is the Break Points Detection?

st
ar

ga
ze

rs

re
le

as
es

si
ze

co
m

m
its

co
nt

ri
bu

to
rs

de
pl

oy
m

en
ts

is
su

es

fo
rk

s

pu
ll

re
qu

es
ts

w
or

kfl
ow

s

06/2012
02/2016 0.04
12/2016 0.13
03/2018 0.21
01/2019 0.22
06/2019 0.26
09/2020 0.37
12/2021 0.59 0.52
03/2023 0.83 0.86 0.85 0.75 0.56 0.82 0.36
01/2024 1 0 1 1 1 0 1 1 1 0

Table 4.15: Metrics patterns for the NixOS/nixpkgs project

of exchange, it is legitimate to expect an impact on the number of contributors involved in
a project. Overall, since NixOS is still present and active on GitHub, it is safe to assume
that no actions were taken to move it out and that the new ownership of GitHub did not
completely discourage the community. However, it is interesting to see from table 4.15
how shifts in the growth of the number of contributors occurred in the periods of January-
June 2019 and June 2019-September 2020, which overlap with the active time of the forum
discussion. In particular, the metric goes from a Shallow pattern to a Plateau before picking
up again to a Shallow growth from December 2021. This means that in a period of more than
one year, very few new contributors joined the project. Although it is quite speculative to
infer that the acquisition of GitHub by Microsoft drove this, it is an interesting coincidence
that such discussion overlapped with flexion in the project’s community expansion.

Another discussion was held between October 2020 and October 2021 about changing
the releasing priorities of the project to provide more stable versions of the software50. As
the exchange led to the decision to perform contributions to the main branch at a higher
frequency, it is expected to see a change in the growth rate of several metrics in the periods
after the discussion ended. From table 4.15, it can be seen how the number of releases,
commits, issues and pull requests all register a change in their growth pattern from March
2023. Although this is about one year and a half after the contributions style changed, it is
important to remark that this took one year to discuss and would require time to be fully
grasped by a community of over 5000 contributors.

The change of pattern of these metrics can also be attributed to another reason on top of
the change in the contributions style. In February 2022, breaking changes were announced
for the version of NixOS released at that time51. This meant that the pending fixes could

50https://discourse.nixos.org/t/what-should-stable-nixos-prioritize/9646
51https://discourse.nixos.org/t/breaking-changes-announcement-for-unstable/17574

73

https://discourse.nixos.org/t/what-should-stable-nixos-prioritize/9646
https://discourse.nixos.org/t/breaking-changes-announcement-for-unstable/17574

4. RESULTS AND EVALUATION

have been affected and they needed to be revised. This discussion is still active as of May
2024. From this, it is expected that the development-related metrics would shift to faster
growth as many changes need to be applied to existing open issues and related pull requests.
This can be seen in how the development metrics have been following a Steep growth in re-
cent times (table 4.15). Overall, the break points inspection for this project led to successful
findings of real events to link to pattern changes.

WordPress/gutenberg Gutenberg is an editor for WordPress that introduces a modular
approach to building webpages. Started in early 2017, the project gathered more than 9900
stargazers, 1100 contributors and was forked more than 3900 times. At the time of writing,
more than 5500 issues are still open (more than 21200 closed overall) together with more
than 1100 pull requests (almost 33000 closed overall)52.

Figure 4.16: Merged metrics curve for the WordPress/gutenberg project. Source: Thesis
author

From the merged curve in figure 4.16, it can be seen how the growth pace increases
after the first two years of the project’s lifetime. The final part of the curve shows a steep in-
crease, which is probably the result of stronger growth in several metrics. From table 4.16,
it appears that the number of commits, issues, pull requests and changes size all follow a
Steep pattern, which supports the behavior of the merged curved. Starting from the Word-

52https://github.com/WordPress/gutenberg

74

https://github.com/WordPress/gutenberg

4.3. RQ3: How Reliable is the Break Points Detection?

Press Gutenberg Index53, three of the most active posts related to development activities are
inspected to see if their timeline corresponds to any of the break points in table 4.16.

st
ar

ga
ze

rs

re
le

as
es

si
ze

co
m

m
its

co
nt

ri
bu

to
rs

de
pl

oy
m

en
ts

is
su

es

fo
rk

s

pu
ll

re
qu

es
ts

w
or

kfl
ow

s

02/2017
11/2017 0.14
09/2018 0.33 0.05 0.26 0.19
02/2019 0.04
05/2020 0.57
03/2021 0.44 0.55 0.47
01/2022 0.75 0.61 0.67
06/2022 0.74
11/2022 0.79
04/2023 0.79 0.88 0.73 0.55
01/2024 1 1 1 1 1 0 1 1 1 0

Table 4.16: Metrics patterns for the WordPress/gutenberg project

A post from January 2022 discussed the need to update the version in the JSON schema
of the front-end theme files to align with WordPress 5.854. This involved changes in the
structure of the JSON files themselves as well as updates in CSS files. The discussion was
resolved in April 2022. During this period, a shift in the growth rate of development-related
metrics is expected. This is confirmed in table 4.16, where it can be seen that the number of
commits go from a Shallow to a Steep pattern around June 2022.

On March 2021, a three-month plan was posted to prepare for the release of version 5.8
of the software55. The schedule involved the merge of opened requests, the fix of eventual
bugs and the release of a beta version before the final one. In light of this, it is expected
that the development-related metrics show pattern changes around the time of the release
plan. From table 4.16, it can be seen how the number of commits, releases and contributors
register a break point around March 2021. This reflects the previous assumptions based
on the posted release plan. The same reasoning can be applied to the plan to prepare for
WordPress 6.2.1 posted on May 202356. The Steep pattern for the number of commits,
issues, pull requests and changes size between April 2023 and January 2024 reflect the
need to introduce changes to align with the latest version of WordPress at the time. Overall,

53https://make.wordpress.org/core/handbook/references/keeping-up-with-gutenberg-ind
ex/

54https://make.wordpress.org/core/2022/01/08/updates-for-settings-styles-and-theme
-json/

55https://make.wordpress.org/core/2021/03/30/5-8-pre-planning/
56https://make.wordpress.org/core/2023/05/03/wordpress-6-2-1-planning/

75

https://make.wordpress.org/core/handbook/references/keeping-up-with-gutenberg-index/
https://make.wordpress.org/core/handbook/references/keeping-up-with-gutenberg-index/
https://make.wordpress.org/core/2022/01/08/updates-for-settings-styles-and-theme-json/
https://make.wordpress.org/core/2022/01/08/updates-for-settings-styles-and-theme-json/
https://make.wordpress.org/core/2021/03/30/5-8-pre-planning/
https://make.wordpress.org/core/2023/05/03/wordpress-6-2-1-planning/

4. RESULTS AND EVALUATION

the break points inspection for this project led to successful findings of real events to link to
pattern changes.

saltstack/salt Salt is an event-driven framework to set up and manage cloud systems to
ensure state consistency across all the deployed components. Started in early 2011, the
project gathered more than 13000 stargazers, 2500 contributors and was forked more than
5000 times. At the time of writing, more than 2000 issues are still open (more than 23000
closed overall) together with more than 200 pull requests (almost 40000 closed overall)57.

Figure 4.17: Merged metrics curve for the saltstack/salt project. Source: Thesis author

The merged curve of all the metrics trends is illustrated in figure 4.17 and the summary
of all the metrics patterns are shown in table 4.17. From the merged curve, it can be seen
how the overall metrics of the project follow a constant growth, starting slow, picking up in
the middle and rising fast in more recent months. This is reflected in the patterns represen-
tation of the curve, which starts with a Shallow growth before alternating Steep and Shallow
patterns. Starting from the Salt Project security announcement forum58, several posts are
inspected to see if their timeline corresponds to any of the break points in table 4.17.

In the period between January 2021 and September 2021, a series of security update

57https://github.com/saltstack/salt
58https://saltproject.io/security-announcements

76

https://github.com/saltstack/salt
https://saltproject.io/security-announcements

4.3. RQ3: How Reliable is the Break Points Detection?

st
ar

ga
ze

rs

re
le

as
es

si
ze

co
m

m
its

co
nt

ri
bu

to
rs

de
pl

oy
m

en
ts

is
su

es

fo
rk

s

pu
ll

re
qu

es
ts

w
or

kfl
ow

s

02/2011
07/2013 0.22
12/2013 0.14
10/2014 0.45
03/2015 0.39 0.29
08/2015 0.4
01/2016 0.39
04/2017 0.49
09/2017 0.07
02/2018 0.65 0.76 0.75
07/2018 0.66
12/2018
03/2020 0.35 0.04
08/2020 0.78
02/2023 0.91 0 0.78 0.4 0
12/2023 1 1 1 1 1 1 1 1 1 1

Table 4.17: Metrics patterns for the saltstack/salt project

releases were announced59,60,61,62,63 to inform users and contributors about fixes applied
to prevent detected vulnerabilities. It is expected that the growth patterns of development-
related metrics would be affected by such a series of releases in less than a year. From
table 4.17, it can be seen how the number of issues, pull requests and the changes size
register a break point around February 2023, which is a year after the security updates were
released. This can indicate users and contributors raising additional issues in light of the
latest changes.

An additional reason for the pattern shift in the metrics discussed above can be the criti-
cal vulnerability announcement posted on June 202264. As the development team suggested
users to apply the fixes to their projects, it is possible to expect a rise in the number of issues
and pull requests as eventual new vulnerabilities are identified or older ones are still appli-
cable. The same reasoning can be related to two additional vulnerability announcements

59https://saltproject.io/security-announcements/2021-01-29-advisory/
60https://saltproject.io/security-announcements/2021-02-04-advisory/
61https://saltproject.io/security-announcements/2021-02-25-advisory-01/
62https://saltproject.io/security-announcements/2021-02-25-advisory-02/
63https://saltproject.io/security-announcements/2021-09-21-advisory/
64https://saltproject.io/security-announcements/2022-06-13-advisory/

77

https://saltproject.io/security-announcements/2021-01-29-advisory/
https://saltproject.io/security-announcements/2021-02-04-advisory/
https://saltproject.io/security-announcements/2021-02-25-advisory-01/
https://saltproject.io/security-announcements/2021-02-25-advisory-02/
https://saltproject.io/security-announcements/2021-09-21-advisory/
https://saltproject.io/security-announcements/2022-06-13-advisory/

4. RESULTS AND EVALUATION

from August 202365 and January 202466. In this case, table 4.17 shows how the number
of issues, pull requests and changes size all follow a Steep growth pattern, which can be
related to both users reporting new bugs and the code changes to implement the fixes. Over-
all, the break points inspection for this project led to successful findings of real events to
link to pattern changes.

ansible/awx AWX is a web-based interface that enables a user-friendly interaction with
Ansible to deploy and manage cloud services. Started in mid-2017, the project gathered
more than 13500 stargazers, 450 contributors and was forked more than 3000 times. At
the time of writing, more than 1600 issues are still open (more than 6500 closed overall)
together with more than 100 pull requests (almost 6900 closed overall)67.

Figure 4.18: Merged metrics curve for the ansible/awx project. Source: Thesis author

The merged curve in figure 4.18 shows how the project development picked up momen-
tum after a couple of years of slower growth in the beginning. The growth rate also shows
a strong rise in the past year, which is also reflected by the amount of Steep patterns in
table 4.18 in the period between February 2023 and January 2024. Starting from the Ansi-
ble AWX discussion forum68, a set of popular posts are analyzed to check if their timeline
corresponds to any of the break points in table 4.18.

65https://saltproject.io/security-announcements/2023-08-09-advisory/
66https://saltproject.io/security-announcements/2024-01-30-advisory/
67https://github.com/ansible/awx
68https://forum.ansible.com/

78

https://saltproject.io/security-announcements/2023-08-09-advisory/
https://saltproject.io/security-announcements/2024-01-30-advisory/
https://github.com/ansible/awx
https://forum.ansible.com/

4.3. RQ3: How Reliable is the Break Points Detection?

st
ar

ga
ze

rs

re
le

as
es

si
ze

co
m

m
its

co
nt

ri
bu

to
rs

de
pl

oy
m

en
ts

is
su

es

fo
rk

s

pu
ll

re
qu

es
ts

w
or

kfl
ow

s

05/2017
02/2018 0.19
05/2019 0.44 0.31 0.35
03/2020 0.62 0.28
01/2021 0.1
06/2021 0.52
02/2023 0.73 0.82 0.77 0.83 0.4
01/2024 1 1 1 1 1 0 1 1 1 0

Table 4.18: Metrics patterns for the ansible/awx project

A series of releases announcements between September 2023 and December 202369,70,71,72,73,74

is expected to introduce a stronger growth for the number of releases and other development
related metrics. This is reflected by the Steep growth pattern for the number of releases, is-
sues and changes size in table 4.18. Additionally, the pattern related to the former two
metrics can also be linked to the introduction of a new feature that allows AWX to be better
integrated into Kubernetes75. As the implementation for this feature spanned between Au-
gust 2023 and April 2024, it is expected to see a shift in the growth of the number of issues
and changes size after the February 2023 break point shown in table 4.18. The break points
inspection for this project led to successful findings of real events to link to pattern changes.

Overall, both approaches followed to validate the break point detected in the time se-
ries segmentation process brought encouraging results as it was possible to identify sig-
nificant events in the vicinity of the detected break points dates. Only 3 of the 10 se-
lected projects (PatternFly-React, pip, CockroachDB) were not linked to real events beyond
GitHub. Therefore, the discussed validation process fulfilled its aim to verify the reliability
of the break points detection described in chapter 3.3.1. Additionally, from the inspections,
a dataset of real world events for the analyzed projects has been built as a contribution to
future work.

69https://forum.ansible.com/t/release-annoucement-awx-v23-1-0/611
70https://forum.ansible.com/t/announcing-awx-23-2-0-and-awx-operator-2-6-0/1132
71https://forum.ansible.com/t/announcing-awx-23-3-0-and-awx-operator-2-7-0/1610
72https://forum.ansible.com/t/announcing-awx-23-3-1-and-awx-operator-2-7-1/1927
73https://forum.ansible.com/t/announcing-awx-23-4-0-and-awx-operator-2-7-2/2228
74https://forum.ansible.com/t/announcing-awx-23-5-1-and-awx-operator-2-9-0/2763
75https://forum.ansible.com/t/ability-to-allow-inbound-connection-to-awx-receptor-m

esh-on-kubernetes/215

79

https://forum.ansible.com/t/release-annoucement-awx-v23-1-0/611
https://forum.ansible.com/t/announcing-awx-23-2-0-and-awx-operator-2-6-0/1132
https://forum.ansible.com/t/announcing-awx-23-3-0-and-awx-operator-2-7-0/1610
https://forum.ansible.com/t/announcing-awx-23-3-1-and-awx-operator-2-7-1/1927
https://forum.ansible.com/t/announcing-awx-23-4-0-and-awx-operator-2-7-2/2228
https://forum.ansible.com/t/announcing-awx-23-5-1-and-awx-operator-2-9-0/2763
https://forum.ansible.com/t/ability-to-allow-inbound-connection-to-awx-receptor-mesh-on-kubernetes/215
https://forum.ansible.com/t/ability-to-allow-inbound-connection-to-awx-receptor-mesh-on-kubernetes/215

4. RESULTS AND EVALUATION

4.3.2 RQ3.2: Does the Metrics Selection Need to be Extended?

Following the findings from research question 3.1, 3 of the 10 selected projects (PatternFly-
React, pip, CockroachDB) did not register a detection of real events beyond GitHub given
their break points derived from the metrics time series segmentation. Therefore, this re-
search question aims to assess if extending the metric selection would help identify new
break points that can be linked to real events in the project’s history. The additional metrics
that are considered in this analysis are picked from the ones that were omitted in chapter
3.2.1 due to their non-trivial retrieval from the GitHub API:

• Licensing: Open-source software licenses allow the content to be used, edited and
distributed to different extents. Therefore, a change in licensing might reflect on the
community involvement in the development of a project.

• Complexity: The complexity of software describes a set of properties of the code
base, which can be represented by several metrics. In this case, the cyclomatic and
cognitive complexity are chosen as they are available to collect through software anal-
ysis tools. In particular, the cyclomatic complexity computes the number of linearly
independent paths in a program. A lower score means that the code is easier to test
and modifying it implies fewer risks [29]. The cognitive complexity reflects how easy
it is to read and understand the code, with lower scores being good outcomes [64].
Both scores data have been collected as monotonic time series to be consistent with
the data collection from chapter 3.2.1.

For each one of the 3 projects, the licensing changes have been collected through the
license files’ commits history on GitHub. The cyclomatic and cognitive complexity data
have been collected by loading a sample of 20 previous versions of the code-base to Sonar-
Cloud76 for each project. SonarCloud is a tool that allows the analysis of code and outputs
many quality metrics, including the above-mentioned ones for complexity. For each project,
the two metrics time series have been segmented and mapped to evolution patterns follow-
ing the same procedure of research question 3.1 (4.3.1).

patternfly/patternfly-react In March 2019, a change of license from Apache2.0 to MIT
has been detected in the related file on GitHub77. From table 4.9 in chapter 4.3.1, it can
noticed how the number of forks has a shift in the growth rate despite still holding a Steep
pattern. The license change might have also been dictated by the surge of forks from mid-
2018, which could have influenced the main contributors to shift to the more permissive
MIT license type.

The evolution patterns of the cyclomatic and cognitive complexity are shown in table
4.19. Both metrics follow a Shallow growth without shifts in pattern type. The break point
detected in July 2022 was already present in table 4.9 and did not lead to any real events.
Therefore, the addition of the complexity metrics did not contribute in this regard.

76https://www.sonarsource.com/products/sonarcloud/
77https://github.com/patternfly/patternfly-react/pull/1456

80

https://www.sonarsource.com/products/sonarcloud/
https://github.com/patternfly/patternfly-react/pull/1456

4.3. RQ3: How Reliable is the Break Points Detection?

cyclomatic complexity cognitive complexity

03/2017
07/2022 0.39 0.39
03/2024 1 1

Table 4.19: Complexity metrics patterns for the patternfly/patternfly-react project

pypa/pip Since the project’s creation, the MIT license has not changed. The only relevant
editing was the removal of the CA (certificate authority) certificates notice related to one
dependency as it was updated in October 201378. However, the absence of major changes
in the license type did not provide additional break points.

cyclomatic complexity cognitive complexity

03/2011
02/2021 0.73 0.74
01/2024 1 1

Table 4.20: Complexity metrics patterns for the pypa/pip project

The complexity metrics both followed a Shallow pattern with a shift in the growth rate
in February 2021. This break point did not lead to a pattern change and it was already
detected in table 4.12. Thus, the analysis of the cyclomatic and cognitive complexity did
not contribute to linking the detected break points to more real events.

cockroachdb/cockroach After starting with the Apache2.0 license in 2014, a major change
was adopted in June 2019 with the introduction of the stricter BSL (business source license)
license79,80. However, this change does not seem to have affected the growth patterns of
other metrics as shown in table 4.11 from chapter 4.3.1.

cyclomatic complexity cognitive complexity

02/2014
08/2021 0.16 0.14
05/2022 0.51 0.48
03/2023 0.8 0.79
01/2024 1 1

Table 4.21: Complexity metrics patterns for the cockroachdb/cockroach project

78https://github.com/pypa/pip/pull/1256
79https://www.cockroachlabs.com/blog/oss-relicensing-cockroachdb/
80https://news.ycombinator.com/item?id=20097077

81

https://github.com/pypa/pip/pull/1256
https://www.cockroachlabs.com/blog/oss-relicensing-cockroachdb/
https://news.ycombinator.com/item?id=20097077

4. RESULTS AND EVALUATION

From table 4.21, it can be seen how around May 2022, a shift in the growth pattern
of both complexity metrics occurred by going from Shallow to Steep. This break point
was not detected in the analysis conducted in chapter 4.3.1 and it can be linked to a series of
releases that occurred around that time. In April 2022 the beta versions of a major release of
the software started to come out81. This release focused on refactoring the pipeline required
to set up a Cockroach database cluster, which led to more stable releases starting in May
2022. For this project, the analysis of the complexity metrics successfully led to finding real
events to link to newly detected break points.

Overall, the additional inspections conducted on the 3 projects with missing real events
links from research question 3.1 (4.3.1) brought mixed results. While the extended metrics
selection led to the identification of relevant licensing events for two out of the three, the
complexity metrics inspection was useful only for a single project. While these results are
related to how projects are managed and how much information is made available on them,
it is worth stressing the importance of the metrics selection process as adding more metrics
might result in further insights about the evolution of open-source software.

81https://www.cockroachlabs.com/blog/cockroachdb-22-1-release/

82

https://www.cockroachlabs.com/blog/cockroachdb-22-1-release/

Chapter 5

Results Discussion, Limitations and
Future Work

The framework presented in this work followed a set of approaches based on previous lit-
erature that have been applied to the domain of open-source software evolution. Therefore,
it is important to contextualize the results that can be derived from this framework and to
discuss its shortcomings and possible next steps to improve it. The methodologies insights
are discussed in section 5.1. Section 5.2 reflects on the patterns prediction and its effective-
ness based on the known historical data. The break points detection and their linking to real
events are discussed in section 5.3. Finally the threats to validity are listed in section 5.4.

5.1 Framework Insights

Patterns Modeling and Repositories Clustering The generalized evolution patterns shown
in chapter 4.1.1 suggest which type of growth open-source projects go through based on
their metrics time series data. The Steep, Shallow and Plateau patterns identify trends that
relate to the input data and can be used to represent heterogeneous measures coherently.
Comparing different metrics through their evolution patterns provides a mean to investigate
their relationship and influence on each other. The break points that delimit these patterns
represent the points in time at which a growth shift occurred. This can guide investiga-
tions about the causes that triggered a change in the evolution pattern. Additionally, the
patterns sequences are directly linked to the statistical properties of the original time series
data. This representation enables further comparisons between projects, which has been
discussed with the results of the multivariate time series clustering.

Although these observations provide confidence about the patterns modeling and clus-
tering methodology, it must be remarked that the obtained results are directly related to
the nature of the input data. In the case of this work, the metrics time series followed a
non-decreasing monotonic behavior, which explains why the patterns polynomials repre-
sent increasing growth only. Additionally, the size of the dataset can also be linked to the
number of curves and clusters obtained at the end, with more data potentially resulting in
more of both. Therefore, researchers must have a clear understanding of the type of input

83

5. RESULTS DISCUSSION, LIMITATIONS AND FUTURE WORK

data and its behavior before they derive the generalized evolution patterns.

Finally, despite that the methodology was built on previous literature backed by eval-
uation experiments, what is still missing is the direct involvement of researchers. This
additional validation could bring a better perspective on how actionable the framework is
and how it can be improved to make it more robust and useful. In this regard, a survey can
be organized by preparing a set of hypothetical evolution scenarios for a set of open-source
projects. The interviewees can then give feedback based on their experience on working on
such projects. This would both support the proposed methodologies and also gather further
insights on how the framework can be extended.

Forecasting Models The results presented for research question 1.2 in chapter 4.1.2 ob-
tained using the multivariate time series forecasting models can be interpreted based on the
prediction goals. While the bottom line of the experiments highlighted how more known
historical training data leads to better results, the outcomes themselves need further dis-
cussion. The scores linked to the patterns prediction (Performance, Deviation) show good
output even for the smallest amount of known history for the metric in question. This can be
related to the fact that the patterns classifier is trained on highly generalized curves. Thus,
even if the predicted segments do not resemble the original data well (with R2 barely over
0.5), there is still a high chance that they still fall under the same growth pattern. This means
that researchers can use the forecasting model for patterns prediction even with limited his-
torical data available for a project. However, they must keep in mind that this situation
would not favor the forecasting of accurate future values for the metrics, which requires
more training data.

The break points detection related scores (Precision, Recall, Random Index, Hausdroff)
also improve as more training data is used. Although the patterns prediction results are
still acceptable for small known data, the break points detection struggles to find alignment
between the break points from the predicted curves and the original ones. As the model does
not fit the training data well, the accuracy of the forecasts does not resemble the original
time series. As suggested by the Hausdroff score, the months mismatch can be large for
some of the predicted metrics break points with a difference of over 20 months. As the
sliding window method discussed in chapter 3.3.1 marks break points following shifts in
the windows averages, it might occur that the predicted time series values do not present the
same behavior around the actual break points. This can lead to missing break points and/or
them being identified at later months. This consequently impacts the Precision, Recall and
Random Index scores. Therefore, it can be worth conducting further studies focusing on
comparing results obtained with different window sizes and trying to find the optimal one.

Additionally, an idea for further improvements and research can be the exploration and
comparison of different forecasting models applied to multivariate time series. In the pre-
sented methodology, XGBoost was used to train the prediction models and it obtained en-
couraging results. The choice of this model was also dictated by the available computing
resources and time, which required a reasonably fast and light model. However, discussion
in previous literature highlighted how neural networks are being involved in this research
domain. Therefore, it is worth conducting more studies to understand which methodology

84

5.2. Patterns Prediction

brings the most advantages to multivariate time series forecasting in the context of open-
source software evolution.

Metrics Importance The discussion of research question 1.3 in chapter 4.1.3 gave an
overview of how the metrics affect the forecasting models results and how they play a role in
each others’ evolution. On this note, further discussions can be conducted by following table
4.4. From the values, it can be seen how the growth of commits affects the stargazers and the
size of a project. This relationship can be related to the fact that more commits are the result
of more contributors involved that might provide stargazers to the project. On the other
hand, the commits introduce changes in the code base and affect its size through additions
and deletions. The mutual importance between the pull requests and the number of issues is
expected as the former is usually a consequence of the latter. The link between workflows
and pull requests can be explained by how the project setup can trigger specific actions
based on development activities. It is also worth noticing how the number of forks relates
to the number of pull requests, which can be seen as bug fixes in the parallel developments
being applied to the main project. These insights can give researchers a clearer picture
of the dynamics within open-source projects evolution and allow them to focus on which
metrics have the greatest impact. The discussed relationships between metrics and their
influence on each other can become a topic to follow in future research, where multivariate
forecasting models can be used to evaluate the changes in growth for a metric based on
input data with different growth patterns. Additionally, future works can also study how the
metrics growths and mutual importance are linked to the project type to potentially derive
new measures of similarity.

5.2 Patterns Prediction

The results from the evaluation of research question 2 in chapter 4.2 showed how the num-
ber of known patterns affects the future patterns prediction. For the forecast of just the pat-
terns sequence, repeating the latest known pattern type already yields good enough results
even for a very small amount of available history (2 months). On the other hand, correctly
predicting a change in pattern would require a better knowledge of previous ones (> 12
months). As for the experiment models, the baseline one based on pattern repetition proved
to be almost as performant as the more refined N-grams based one. However, the informa-
tion provided by the N-grams computation can be used to derive further insights about the
evolution of open-source projects. In particular, researchers can contextualize these results
in the theoretical evolution phases discussed by previous literature in chapter 2.2 to provide
additional proof about the phases that an open-source project has been through.

From table 4.6, it can be seen how likely it is that the identified patterns occur through
the history of the gathered metrics data. As pattern repetition is the most likable scenario, fo-
cusing on pattern changes can drive several reflections. The Plateau has the highest chance
of showing as the first pattern. This is because many metrics show no growth in the first
stages of their history. The Steep and Shallow growths have almost the same probability
of being the first pattern, which can be seen as a phase of initial development for an open-

85

5. RESULTS DISCUSSION, LIMITATIONS AND FUTURE WORK

source project. The Plateau pattern also shows itself as the most likely to appear after a
shift from the Shallow and Steep patterns. This might be linked with the related software
project reaching maturity, which would then require little maintenance. The Shallow pat-
tern shows a good probability of appearing after a Steep one. This can represent a support
phase where bugs are fixed and small improvements are made in the project after a sizeable
amount of changes are introduced. In the light of this discussion, the theoretical framework
of the software evolution phase described by previous literature in chapter 2.2 can be linked
to the tangible evolution patterns found in this step of the methodology as follows:

Initial Development : Steep or Shallow pattern as first phase.

Maintenance : Sequence of multiple Shallow patterns in the middle phases, mostly follow-
ing a Steep phase. This can occur cyclically in the history of open-source software.

Evolution : Presence of a Steep pattern as a middle phase. This can also happen cyclically
in the history of open-source software.

Servicing/Legacy Support : Sequence of multiple Shallow patterns in the middle phases,
which can be interleaved by Plateau patterns. This occurs more as a later stage but
can also repeat itself after more Evolution and Maintenance phases occur.

Maturity/Archiving : Sequence of Plateau patterns only that appear at the last stages in
the history of open-source software.

As the framework provides the tools to allow researchers to enhance time series analysis
in the context of open-source software evolution, it is advised that further research will also
focus on how these approaches can be used to link their empirical results with the existing
theories about the evolution phases of software projects.

5.3 Break Points Detection and Real Events

Results from chapters 4.3.1 and 4.3.2 showed how the time series segmentation method-
ology provides a set of break points that can be linked to real events that occurred in the
projects’ lifetime. This inspection highlighted a use case for the framework that can assist
researchers in finding relevant periods in open-source evolution more efficiently. By know-
ing when significant growth shifts occurred and which metrics are linked to them, it can be
possible to have a clearer idea of how to search for the causes of such changes. However,
it must be remarked that for some projects no events were found following the indicated
break points. Although from the analyzed repositories it emerged that each one follows dif-
ferent ways of handling announcements, issues tracking and releases change-logs, eventual
shortcomings of the used segmentation methodology must be discussed.

As mentioned in chapter 5.1, the sliding window approach used to segment time se-
ries might have caused the misalignment and the missed detection of break points between
predicted and original data due to the window size (12 months). Although this case does
not concern forecast curves, the possibility that some break points have been overlooked

86

5.4. Threats to Validity

should not be excluded. As this can have an impact on the study of open-source software
evolution by making it harder to link the results to real world events, further studies are
again recommended to try different window size settings in the methodology to find the
optimal one. Additionally, a dataset of events linked to changes in growth in the metrics
evolution of open-source software should also be introduced and kept up to date. This will
allow researchers to easily query the data they need and eventually enrich them with more
findings from external resources. As a contribution, a dataset of over 30 events related to
the inspected projects has been built and openly shared to serve as a starting point for future
works.

Considerations on the metrics selection can also be made as research question 3.2, in
chapter 4.3.2, assessed if more measures would lead to additional events linked to break
points. In the conducted research, the metrics selection was derived from the factors ex-
tracted from previous literature on software evolution, which resulted in the time series data
collection of 10 metrics for each open-source project in the dataset. However, as described
above, the inability to find the correspondence between break points and real events for
some repositories led to the investigation of additional metrics, which produced mixed re-
sults. On this note, it is important to underline that the data collection described in this
thesis relies on the GitHub API only. Although this source offers a remarkably wide selec-
tion of historical data from open-source software, it is also true that it is difficult to use for
collecting specific metrics. This was shown in chapter 4.3.2, where the complexity metrics
were generated and collected using SonarCloud. Given the available time and resources, the
GitHub API was the most optimal solution to carry out the current work and still represents
a great source of information.

Further research is advised to look deeper into how open-source software time series
data can be retrieved and translated to usable metrics to study a project’s evolution. Stud-
ies should also focus on which metrics selection is most suited for specific purposes so re-
searchers can better orient themselves when analyzing a certain domain of open-source soft-
ware evolution. Additionally, focusing on how the number of break points affects the met-
rics growth can lead to further findings about differences and similarities between projects’
evolution.

5.4 Threats to Validity

The construct validity is challenged by the metrics selected to represent the open-source
projects using time series data. The threat has been mitigated by building the selection pro-
cess on top of an extensive literature review to include the most relevant measures identified
by the past 20 years of research, as discussed in chapter 3.2.1. However, these metrics
needed to be contextualized to an up-to-date open-source software data source, which was
identified as the GitHub API. Despite most of the metrics being easily retrievable, the best
practices adoption and the project size needed further interpretation. Still following previ-
ous work [14], the best practices adoption was linked to the presence of CI/CD practices in
the repositories, which were provided by the GitHub API. On the other hand, the size met-
ric collection incurred limitations from the data source itself and a monthly down-sampling

87

5. RESULTS DISCUSSION, LIMITATIONS AND FUTURE WORK

was required to complete the task with the available resources. Although the data gathered
for these metrics contributed to deriving insights from the results of chapter 4, further vali-
dation is recommended to establish a robust approach to translate abstract factors to tangible
and retrievable metrics.

In terms of internal validity, the main threats are the selected time series approaches
from different domains, discussed in chapter 3.3, applied to the analysis of open-source
software evolution. This was mitigated by selecting the methodologies through literature
reviews on the topics of patterns modeling, time series clustering and time series forecast-
ing. The techniques were chosen also based on their flexibility and ease of applicability to
other contexts beyond the ones they were experimented on. Additionally, the techniques
were applied following the described setup as closely as possible given the available re-
sources. Although the discussions in sections 5.2 and 5.3 highlighted eventual limitations
and future recommendations, the followed methodologies produced results that reflected
their scalability and reproducibility, as shown in chapter 4.

The external validity is threatened by the selected sample of open-source projects from
GitHub, which can compromise the generalizability of the results. As discussed in chapters
3.2.1 and 3.2.2, GitHub has become the biggest host of open-source projects and is home to
more than 100 million openly available repositories. The choice of the most popular open-
source data source is in line with previous research [5][61][59], where the Sourceforge.net
database was used as the most popular source at that time. In terms of the projects used for
the data collection, previous work was also relied upon [14]. As explained in chapter 3.2.2,
this gave the confidence of having a sample of more than 1300 projects with guaranteed
activity in recent years. This amount of input data also suited the computational resources
available. Additionally, the results from chapter 4 showed consistency when experiments
were run with a variable input size giving confidence about the scalability of the framework.
Furthermore, to determine whether these findings can still be applied to a larger sample of
data, further validation is advised to be performed as discussed in section 5.1.

88

Chapter 6

Conclusions

This chapter aims to provide an overview of the contributions that resulted from this work
in section 6.1 and a summary of the presented thesis in section 6.2.

6.1 Contributions

The work presented in this thesis aimed to provide a reproducible and scalable framework to
support researchers in the analysis of the evolution of open-source software. The followed
methodology allowed the creation of several models that can be leveraged in the study of
the growth patterns of open-source projects. Overall, the contributions of this research are
listed as follows:

1. Provided an extensive literature review on open-source software evolution that spans
from 2000 to 2024.

2. Provided a literature review of multivariate time series segmentation, clustering and
forecasting techniques from economics and healthcare domains that can be applied to
open-source software evolution analysis.

3. Illustrated a detailed systematic literature review procedure to extract relevant open-
source software evolution metrics from previous literature.

4. Built a dataset of 1328 open-source software time series metrics data by contextu-
alizing the literature metrics to the GitHub API. The dataset is openly available at
the following URL: https://huggingface.co/datasets/MattiaBonfanti-CS/
IN5000-MB-TUD-Dataset-MongoDB.

5. Illustrated a methodology to segment, cluster and classify time series patterns with
the definition of three generalized growth curves: Steep; Shallow; Plateau.

6. Trained a KNN classifier to assign one of the generalized curves to a new set of data.
The model is openly available at the following URL: https://huggingface.co/M
attiaBonfanti-CS/IN5000-MB-TUD-Patterns.

89

https://huggingface.co/datasets/MattiaBonfanti-CS/IN5000-MB-TUD-Dataset-MongoDB
https://huggingface.co/datasets/MattiaBonfanti-CS/IN5000-MB-TUD-Dataset-MongoDB
https://huggingface.co/MattiaBonfanti-CS/IN5000-MB-TUD-Patterns
https://huggingface.co/MattiaBonfanti-CS/IN5000-MB-TUD-Patterns

6. CONCLUSIONS

7. Illustrated an algorithm to merge time series curves based on their patterns sequence
to get a generalized curve to describe a project’s growth.

8. Described a methodology to cluster similar open-source software projects based on
their metrics patterns sequences and the similarity between metrics pairs, which re-
sulted in three clusters.

9. Trained a KNN classifier to assign new data to one of the defined clusters. The model
is openly available at the following URL: https://huggingface.co/MattiaBonfa
nti-CS/IN5000-MB-TUD-Clustering.

10. Illustrated a methodology to forecast multivariate time series where metric predic-
tions are based on the evolution of other metrics.

11. Trained 30 forecasting models (1 per metric for 3 clusters) to predict the growth of
specific metrics based on the growth of other ones. The models are openly avail-
able at the following URL: https://huggingface.co/MattiaBonfanti-CS/IN
5000-MB-TUD-Forecasting.

12. Provided a set of scripts to reproduce the methodology and to apply the steps of the
support framework for open-source software projects. The code is openly available
at the following URL: https://github.com/IN5000-MB-TUD/data-analysis.

13. Provided a simple API and UI to expose the functionalities of the scripts in a more
user-friendly way. The code is openly available at the following URL: https://gi
thub.com/IN5000-MB-TUD/data-app.

14. Provided a dataset of over 30 events linked to detected break points for the 10 in-
spected open-source projects in chapter 4.3. The dataset is openly available at the fol-
lowing URL: https://huggingface.co/datasets/MattiaBonfanti-CS/IN5000-M
B-TUD-Real-Events-Dataset-MongoDB.

The listed contributions provide the tools to allow researchers to analyze the evolution
patterns of open-source software. Overall, the results of this thesis can be used as a starting
point for further research in the field of open-source software evolution.

6.2 Conclusion

This thesis aimed to develop a reproducible and scalable framework to analyze the evolution
of open-source software. The methodologies followed to create the framework involved the
modeling, clustering and forecasting of time series data. An extensive inspection of pre-
vious research has been conducted to acquire the necessary understanding of open-source
software evolution as well as multivariate time series techniques from different domains
(economics and healthcare). A systematic literature review was then performed to extrapo-
late the most relevant metrics from papers over the past 20 years, which were then mapped
to the current measures available in the GitHub API. The data collection process resulted

90

https://huggingface.co/MattiaBonfanti-CS/IN5000-MB-TUD-Clustering
https://huggingface.co/MattiaBonfanti-CS/IN5000-MB-TUD-Clustering
https://huggingface.co/MattiaBonfanti-CS/IN5000-MB-TUD-Forecasting
https://huggingface.co/MattiaBonfanti-CS/IN5000-MB-TUD-Forecasting
https://github.com/IN5000-MB-TUD/data-analysis
https://github.com/IN5000-MB-TUD/data-app
https://github.com/IN5000-MB-TUD/data-app
https://huggingface.co/datasets/MattiaBonfanti-CS/IN5000-MB-TUD-Real-Events-Dataset-MongoDB
https://huggingface.co/datasets/MattiaBonfanti-CS/IN5000-MB-TUD-Real-Events-Dataset-MongoDB

6.2. Conclusion

in the creation of a 1328 repositories dataset over the following metrics: stargazers; open
issues; open pull requests; commits; contributors; changes size; forks; deployments; suc-
cessful workflows; releases.

Time series segmentation was applied to split the metrics curves into segments, which
were then clustered based on their statistical properties. The average segment coefficients
were used to define three generalized growth patterns: Steep; Shallow; Plateau. These pat-
terns were then used in the multivariate time series clustering, which relied on the metrics
patterns sequences and metrics pairs similarities to describe open-source projects and to
cluster them into three clusters. For each cluster, a set of 10 forecasting models (1 per met-
ric) were trained to perform multivariate time series predictions for a specific metric based
on the growth of other ones. The experiment results give confidence over the reproducibility
and the scalability of the framework methodologies, which are tested over different sizes of
input data in terms of the number of projects, the amount of historical data and the num-
ber of metrics. Additional inspections also suggest that the shifts in the metrics evolution
patterns can be related to real events in a project’s history.

Overall, this research fulfills its aim of developing a reproducible and scalable frame-
work to analyze the evolution patterns of open-source projects. The described methodology
and results can serve as a starting point for further research on the topic of open-source
software evolution.

91

Bibliography

[1] Mark Aberdour. Achieving quality in open-source software. IEEE Software, 24:
58–64, 1 2007. ISSN 0740-7459. doi: 10.1109/MS.2007.2.

[2] Mamdouh Alenezi and Khaled Almustafa. Empirical analysis of the complexity evo-
lution in open-source software systems. International Journal of Hybrid Information
Technology, 8:257–266, 2 2015. ISSN 17389968. doi: 10.14257/ijhit.2015.8.2.24.

[3] Ahmed Baabad, Hazura Binti Zulzalil, Sa’adah Hassan, and Salmi Binti Baharom.
Software architecture degradation in open source software: A systematic literature
review. IEEE Access, 8:173681–173709, 2020. ISSN 2169-3536. doi: 10.1109/AC
CESS.2020.3024671.

[4] Satanjeev Banerjee and Ted Pedersen. The design, implementation, and use of the
ngram statistics package. In Computational Linguistics and Intelligent Text Pro-
cessing, volume 2000, pages 370–381, 02 2003. ISBN 978-3-540-00532-2. doi:
10.1007/3-540-36456-0 38.

[5] E.J. Barry, Chris Kemerer, and Sandra Slaughter. On the uniformity of software
evolution patterns. In Proceedings of the 25th International Conference on Software
Engineering, pages 106– 113, 06 2003. ISBN 0-7695-1877-X. doi: 10.1109/ICSE
.2003.1201192.

[6] Keith H. Bennett and Václav T. Rajlich. Software maintenance and evolution: a
roadmap. In Proceedings of the Conference on The Future of Software Engineer-
ing, ICSE ’00, page 73–87, New York, NY, USA, 2000. Association for Computing
Machinery. ISBN 1581132530. doi: 10.1145/336512.336534.

[7] Omar Benomar, Hani Abdeen, Houari Sahraoui, Pierre Poulin, and Mohamed Aymen
Saied. Detection of software evolution phases based on development activities. In
Proceedings of the 2015 IEEE 23rd International Conference on Program Compre-
hension, ICPC ’15, page 15–24. IEEE Press, 2015. doi: 10.5555/2820282.2820288.

93

BIBLIOGRAPHY

[8] Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. When and
how to make breaking changes. ACM Transactions on Software Engineering and
Methodology, 30:1–56, 10 2021. ISSN 1049-331X. doi: 10.1145/3447245.

[9] Angela Bonifati, Francesco Del Buono, Francesco Guerra, and Donato Tiano.
Time2feat: learning interpretable representations for multivariate time series clus-
tering. Proc. VLDB Endow., 16(2):193–201, oct 2022. ISSN 2150-8097. doi:
10.14778/3565816.3565822.

[10] Hongyu Pei Breivold, Muhammad Aufeef Chauhan, and Muhammad Ali Babar. A
systematic review of studies of open source software evolution. In 2010 Asia Pacific
Software Engineering Conference, pages 356–365. IEEE, 11 2010. ISBN 978-1-
4244-8831-5. doi: 10.1109/APSEC.2010.48.

[11] Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Conguri Huang,
Yunhai Tong, Bixiong Xu, Jing Bai, Jie Tong, and Qi Zhang. Spectral temporal
graph neural network for multivariate time-series forecasting. In Proceedings of the
34th International Conference on Neural Information Processing Systems, NIPS’20,
Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546. doi:
10.5555/3495724.3497215.

[12] Andrea Capiluppi, Jesús M. González-Barahona, Israel Herraiz, and Gregorio Rob-
les. Adapting the ”staged model for software evolution” to free/libre/open source
software. In Ninth International Workshop on Principles of Software Evolu-
tion: In Conjunction with the 6th ESEC/FSE Joint Meeting, IWPSE ’07, page
79–82, New York, NY, USA, 2007. Association for Computing Machinery. ISBN
9781595937223. doi: 10.1145/1294948.1294968.

[13] Andrea Capiluppi, Klaas-Jan Stol, and Cornelia Boldyreff. Exploring the role of
commercial stakeholders in open source software evolution. In Open Source Systems:
Long-Term Sustainability, volume 378, 09 2012. ISBN 978-3-642-33441-2. doi:
10.1007/978-3-642-33442-9 12.

[14] Debasish Chakroborti, Sristy Sumana Nath, Kevin A. Schneider, and Chanchal K.
Roy. Release conventions of open-source software: An exploratory study. Journal
of Software: Evolution and Process, 35, 1 2023. ISSN 2047-7473. doi: 10.1002/sm
r.2499.

[15] Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza, Max
Mergenthaler-Canseco, and Artur Dubrawski. N-hits: Neural hierarchical interpo-
lation for time series forecasting. In Proceedings of the Thirty-Seventh AAAI Con-
ference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applica-
tions of Artificial Intelligence and Thirteenth Symposium on Educational Advances
in Artificial Intelligence, 1 2022. doi: 10.1609/aaai.v37i6.25854.

94

Bibliography

[16] Yen-Yu Chang, Fan-Yun Sun, Yueh-Hua Wu, and Shou-De Lin. A memory-network
based solution for multivariate time-series forecasting. ArXiv, 9 2018. URL http:
//arxiv.org/abs/1809.02105.

[17] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. CoRR,
abs/1603.02754, 2016. URL http://arxiv.org/abs/1603.02754.

[18] Zhichao Chen, Leilei Ding, Zhixuan Chu, Yucheng Qi, Jianmin Huang, and Hao
Wang. Monotonic neural ordinary differential equation: Time-series forecasting for
cumulative data. In Proceedings of the 32nd ACM International Conference on In-
formation and Knowledge Management, CIKM ’23, page 4523–4529, New York,
NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701245. doi:
10.1145/3583780.3615487.

[19] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas Kempa-Liehr. Time se-
ries feature extraction on basis of scalable hypothesis tests (tsfresh – a python pack-
age). Neurocomputing, 307, 05 2018. doi: 10.1016/j.neucom.2018.03.067.

[20] Fu Lai Chung, Tak Chung Fu, Vincent Ng, and Robert W.P. Luk. An evolutionary
approach to pattern-based time series segmentation. IEEE Transactions on Evolu-
tionary Computation, 8:471–489, 10 2004. ISSN 1089778X. doi: 10.1109/TEVC
.2004.832863.

[21] Kattiana Constantino, Fabiano Belém, and Eduardo Figueiredo. Dual analysis for
helping developers to find collaborators based on co-changed files: An empirical
study. Software: Practice and Experience, 53(6):1438–1464, 2023. doi: 10.1002/sp
e.3194.

[22] Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins. Free/libre
open-source software development: What we know and what we do not know. ACM
Comput. Surv., 44(2), mar 2008. ISSN 0360-0300. doi: 10.1145/2089125.2089127.

[23] Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins. Free/libre
open-source software development. ACM Computing Surveys, 44:1–35, 2 2012.
ISSN 0360-0300. doi: 10.1145/2089125.2089127.

[24] Kareem A. Dawood, Khaironi Y. Sharif, Abdul A. Ghani, H. Zulzalil, A.A. Zaidan,
and B.B. Zaidan. Towards a unified criteria model for usability evaluation in the
context of open source software based on a fuzzy delphi method. Information and
Software Technology, 130:106453, 2 2021. ISSN 09505849. doi: 10.1016/j.infsof
.2020.106453.

[25] Lucas de Oliveira Prates. A more efficient algorithm to compute the rand index for
change-point problems. CoRR, abs/2112.03738, 2021. URL https://arxiv.org/
abs/2112.03738.

95

http://arxiv.org/abs/1809.02105
http://arxiv.org/abs/1809.02105
http://arxiv.org/abs/1603.02754
https://arxiv.org/abs/2112.03738
https://arxiv.org/abs/2112.03738

BIBLIOGRAPHY

[26] André Luiz de Souza Guimarães, Helaine J. Korn, N. Shin, and Alan B. Eisner. The
life cycle of open source software development communities. Journal of Electronic
Commerce Research, 14:167, 2013. URL https://api.semanticscholar.org/
CorpusID:30555255.

[27] Torgeir Dingsøyr, Sridhar Nerur, VenuGopal Balijepally, and Nils Moe. A decade
of agile methodologies: Towards explaining agile software development. Journal of
Systems and Software, 85:1213–1221, 06 2012. doi: 10.1016/j.jss.2012.02.033.

[28] Shengdong Du, Tianrui Li, Yan Yang, and Shi Jinn Horng. Multivariate time series
forecasting via attention-based encoder–decoder framework. Neurocomputing, 388:
269–279, 5 2020. ISSN 18728286. doi: 10.1016/j.neucom.2019.12.118.

[29] Christof Ebert and James Cain. Cyclomatic complexity. IEEE Software, 33:27–29,
11 2016. doi: 10.1109/MS.2016.147.

[30] Dalson Figueiredo, Silva Júnior, and Enivaldo Rocha. What is r2 all about?
Leviathan-Cadernos de Pesquisa Polútica, 3:60–68, 11 2011. doi: 10.11606/issn
.2237-4485.lev.2011.132282.

[31] Beat Fluri, Michael Würsch, Martin Pinzger, and Harald C. Gall. Change distilling:
Tree differencing for fine-grained source code change extraction. IEEE Transactions
on Software Engineering, 33:725–743, 11 2007. ISSN 00985589. doi: 10.1109/TS
E.2007.70731.

[32] R. Friedrich, S. Siegert, Joachim Peinke, Stephan Lück, Malte Siefert, Michael
Lindemann, Jan Raethjen, Günther Deuschl, and Gerd Pfister. Extracting model
equations from experimental data. Physics Letters A, 271:217–222, 06 2000. doi:
10.1016/S0375-9601(00)00334-0.

[33] Amir Hossein Ghapanchi. Investigating the interrelationships among success mea-
sures of open source software projects. Journal of Organizational Computing and
Electronic Commerce, 25(1):28–46, 2015. doi: 10.1080/10919392.2015.990775.

[34] Michael Godfrey and Qiang Tu. Evolution in open source software: A case study. In
Proceedings 2000 International Conference on Software Maintenance, pages 131 –
142, 02 2000. ISBN 0-7695-0753-0. doi: 10.1109/ICSM.2000.883030.

[35] Michael Godfrey and Qiang Tu. Growth, evolution, and structural change in open
source software. In Proceedings of the 4th International Workshop on Principles of
Software Evolution, page 103. ACM Press, 2002. ISBN 1581135084. doi: 10.1145/
602461.602482.

[36] Michael W. Godfrey and Daniel M. German. The past, present, and future of software
evolution. In 2008 Frontiers of Software Maintenance, pages 129–138, 2008. doi:
10.1109/FOSM.2008.4659256.

96

https://api.semanticscholar.org/CorpusID:30555255
https://api.semanticscholar.org/CorpusID:30555255

Bibliography

[37] Jesus M. Gonzalez-Barahona, Gregorio Robles, Israel Herraiz, and Felipe Ortega.
Studying the laws of software evolution in a long-lived floss project. Journal of
Software: Evolution and Process, 26(7):589–612, 2014. doi: 10.1002/smr.1615.

[38] Miguel Goulao, Nelson Fonte, Michel Wermelinger, and Fernando Brito e Abreu.
Software evolution prediction using seasonal time analysis: A comparative study. In
Proceedings of the 2012 16th European Conference on Software Maintenance and
Reengineering, pages 213–222, 2012. ISBN 9780769546667. doi: 10.1109/CSMR
.2012.30.

[39] Miguel Goulão, Nelson Fonte, Michel Wermelinger, and Fernando Brito e Abreu.
Software evolution prediction using seasonal time analysis: A comparative study. In
Proceedings of the 2012 16th European Conference on Software Maintenance and
Reengineering, 03 2012. doi: 10.1109/CSMR.2012.30.

[40] David Guijo-Rubio, Antonio Durán-Rosal, Pedro Antonio Gutiérrez, Alicia Tron-
coso, and Cesar Martı́nez. Time-series clustering based on the characterization of
segment typologies. IEEE Transactions on Cybernetics, PP:1–14, 01 2020. doi:
10.1109/TCYB.2019.2962584.

[41] Valery Guralnik and Jaideep Srivastava. Event detection from time series data. In
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 33–42. Association for Computing Machinery
(ACM), 8 1999. doi: 10.1145/312129.312190.

[42] Tudor Gı̂rba and Stéphane Ducasse. Modeling history to analyze software evolution.
Journal of Software Maintenance, 18:207–236, 05 2006. doi: 10.1002/smr.325.

[43] Tudor Gı̂rba and Stéphane Ducasse. Modeling history to analyze software evolu-
tion. Journal of Software Maintenance and Evolution, 18:207–236, 5 2006. ISSN
1532060X. doi: 10.1002/smr.325.

[44] Jiawei Han, Wan Gong, and Yiwen Yin. Mining segment-wise periodic patterns
in time-related databases. In Proceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining, KDD’98, page 214–218. AAAI Press, 1998.
doi: 10.5555/3000292.3000330.

[45] Michael R. Hoopmann, Veit Schwämmle, and Magnus Palmblad. 2023 special issue
on software tools and resources: Accelerating research with new and evolving open
source software. Journal of Proteome Research, 22:285–286, 2 2023. ISSN 1535-
3893. doi: 10.1021/acs.jproteome.3c00033.

[46] Keisuke Hotta, Yukiko Sano, Yoshiki Higo, and Shinji Kusumoto. Is duplicate code
more frequently modified than non-duplicate code in software evolution? In Proceed-
ings of the Joint ERCIM Workshop on Software Evolution (EVOL) and International
Workshop on Principles of Software Evolution (IWPSE), pages 73–82. ACM, 9 2010.
ISBN 9781450301282. doi: 10.1145/1862372.1862390.

97

BIBLIOGRAPHY

[47] Sanjay Jain, Habib A. Islam, Martin C. Goossen, and Anil Nair. Social movements
and institutional entrepreneurship as facilitators of technology transition: The case
of free/open-source software. Research Policy, 52:104672, 3 2023. ISSN 00487333.
doi: 10.1016/j.respol.2022.104672.

[48] A. Jallow, M. Schilling, M. Backes, and S. Bugiel. Measuring the effects of stack
overflow code snippet evolution on open-source software security. In 2024 IEEE
Symposium on Security and Privacy (SP), pages 26–26, Los Alamitos, CA, USA,
may 2024. IEEE Computer Society. doi: 10.1109/SP54263.2024.00022.

[49] Cun Ji, Mingsen Du, Yupeng Hu, Shijun Liu, Li Pan, and Xiangwei Zheng. Time se-
ries classification based on temporal features. Applied Soft Computing, 128:109494,
10 2022. ISSN 15684946. doi: 10.1016/j.asoc.2022.109494.

[50] Cun Ji, Mingsen Du, Yanxuan Wei, Yupeng Hu, Shijun Liu, Li Pan, and Xiangwei
Zheng. Time series classification with random temporal features. Journal of King
Saud University - Computer and Information Sciences, 35:101783, 10 2023. ISSN
13191578. doi: 10.1016/j.jksuci.2023.101783.

[51] Spencer S. Jones, R. Scott Evans, Todd L. Allen, Alun Thomas, Peter J. Haug,
Shari J. Welch, and Gregory L. Snow. A multivariate time series approach to mod-
eling and forecasting demand in the emergency department. Journal of Biomedical
Informatics, 42:123–139, 2 2008. ISSN 15320464. doi: 10.1016/j.jbi.2008.05.003.

[52] Benymol Jose and Sajimon Abraham. Exploring the merits of nosql: A study based
on mongodb. In 2017 International Conference on Networks & Advances in Com-
putational Technologies (NetACT), pages 266–271, 2017. doi: 10.1109/NETACT
.2017.8076778.

[53] Siim Karus and Harald Gall. A study of language usage evolution in open source
software. In Proceedings of the 8th Working Conference on Mining Software Repos-
itories, pages 13–22. ACM, 5 2011. ISBN 9781450305747. doi: 10.1145/1985441.
1985447.

[54] Ahmed Kattan, Shaheen Fatima, and Muhammad Arif. Time-series event-based pre-
diction: An unsupervised learning framework based on genetic programming. Infor-
mation Sciences, 301:99–123, 4 2015. ISSN 00200255. doi: 10.1016/j.ins.2014.12.
054.

[55] Rajdeep Kaur, Kuljit Kaur Chahal, and Munish Saini. Understanding community
participation and engagement in open source software projects: A systematic map-
ping study. Journal of King Saud University - Computer and Information Sciences,
34:4607–4625, 7 2022. ISSN 13191578. doi: 10.1016/j.jksuci.2020.10.020.

[56] Chris F. Kemerer and Sandra Slaughter. An empirical approach to studying software
evolution. IEEE Transactions on Software Engineering, 25:493–509, 1999. ISSN
00985589. doi: 10.1109/32.799945.

98

Bibliography

[57] Eamonn J. Keogh and Michael J. Pazzani. An enhanced representation of time series
which allows fast and accurate classification, clustering and relevance feedback. In
Proceedings of the Fourth International Conference on Knowledge Discovery and
Data Mining, KDD’98, page 239–243. AAAI Press, 1998. doi: 10.5555/3000292.
3000335.

[58] Eamonn J. Keogh, Selina Chu, David Hart, and Michael J. Pazzani. An online al-
gorithm for segmenting time series. In Proceedings of the 2001 IEEE International
Conference on Data Mining, ICDM ’01, page 289–296, USA, 2001. IEEE Computer
Society. ISBN 0769511198. doi: 10.5555/645496.657889.

[59] Murtaza Khan and Faizan Rehman. Free and open source software:
Evolution, benefits and characteristics. International Journal of Emerg-
ing Trends & Technology in Computer Science (IJETTCS), 1:1–7, 9 2012.
URL https://www.researchgate.net/publication/256088382_Free_and_O
pen_Source_Software_Evolution_Benefits_and_Characteristics.

[60] Barbara Kitchenham and Pearl Brereton. A systematic review of systematic review
process research in software engineering. Information and Software Technology, 55
(12):2049–2075, 2013. ISSN 0950-5849. doi: 10.1016/j.infsof.2013.07.010.

[61] Stefan Koch. Software evolution in open source projects—a large-scale investigation.
Journal of Software Maintenance and Evolution: Research and Practice, 19:361–
382, 11 2007. ISSN 1532-060X. doi: 10.1002/smr.348.

[62] Georg Von Krogh, Sebastian Spaeth, and Karim R. Lakhani. Community, joining,
and specialization in open source software innovation: A case study. Research Policy,
32:1217–1241, 7 2003. ISSN 00487333. doi: 10.1016/S0048-7333(03)00050-7.

[63] Rakesh Kumar and Rinkaj Goyal. Modeling continuous security: A conceptual
model for automated devsecops using open-source software over cloud (adoc). Com-
puters & Security, 97:101967, 10 2020. ISSN 01674048. doi: 10.1016/j.cose.2020.
101967.

[64] Luigi Lavazza, Abedallah Abualkishik, Geng Liu, and Sandro Morasca. An em-
pirical evaluation of the “cognitive complexity” measure as a predictor of code
understandability. Journal of Systems and Software, 197:111561, 11 2022. doi:
10.1016/j.jss.2022.111561.

[65] M.M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE, 68(9):1060–1076, 1980. doi: 10.1109/PROC.1980.11805.

[66] M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry, and W.M. Turski. Metrics
and laws of software evolution-the nineties view. In Proceedings Fourth Interna-
tional Software Metrics Symposium, pages 20–32, 1997. doi: 10.1109/METRIC
.1997.637156.

99

https://www.researchgate.net/publication/256088382_Free_and_Open_Source_Software_Evolution_Benefits_and_Characteristics
https://www.researchgate.net/publication/256088382_Free_and_Open_Source_Software_Evolution_Benefits_and_Characteristics

BIBLIOGRAPHY

[67] Chunbin Lin, Etienne Boursier, and Yannis Papakonstantinou. Plato: approxi-
mate analytics over compressed time series with tight deterministic error guaran-
tees. Proc. VLDB Endow., 13(7):1105–1118, mar 2020. ISSN 2150-8097. doi:
10.14778/3384345.3384357.

[68] Junaid Maqsood, Iman Eshraghi, and Syed Sarmad Ali. Success or failure identifica-
tion for github’s open source projects. In Proceedings of the 2017 International Con-
ference on Management Engineering, Software Engineering and Service Sciences,
ICMSS ’17, page 145–150, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450348348. doi: 10.1145/3034950.3034957.

[69] Nora McDonald and Sean Goggins. Performance and participation in open source
software on github. In CHI ’13 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’13, page 139–144, New York, NY, USA, 2013. Association for
Computing Machinery. ISBN 9781450319522. doi: 10.1145/2468356.2468382.

[70] Nadeem Mehmood, Rosario Culmone, and Leonardo Mostarda. Modeling temporal
aspects of sensor data for mongodb nosql database. Journal of Big Data, 4, 03 2017.
doi: 10.1186/s40537-017-0068-5.

[71] Aleksandr Mezhenin and Alena Zhigalova. Similarity analysis using hausdorff
metrics. In Majorov International Conference on Software Engineering and Com-
puter Systems, 2018. URL https://api.semanticscholar.org/CorpusID:
133597817.

[72] Gabriela Karoline Michelon, David Obermann, Wesley K. G. Assunção, Lukas Lins-
bauer, Paul Grünbacher, Stefan Fischer, Roberto E. Lopez-Herrejon, and Alexan-
der Egyed. Evolving software system families in space and time with feature re-
visions. Empirical Software Engineering, 27:112, 9 2022. ISSN 1382-3256. doi:
10.1007/s10664-021-10108-z.

[73] Vishal Midha and Prashant Palvia. Factors affecting the success of open source
software. J. Syst. Softw., 85(4):895–905, apr 2012. ISSN 0164-1212. doi:
10.1016/j.jss.2011.11.010.

[74] Arthur-Jozsef Molnar and Simona Motogna. A study of maintainability in
evolving open-source software. ArXiv, abs/2009.00959, 2021. doi: 10.1007/
978-3-030-70006-5 11.

[75] Elisa Yumi Nakagawa, Elaine Parros Machado de Sousa, Kiyoshi de Brito Murata,
Gabriel de Faria Andery, Leonardo Bitencourt Morelli, and José Carlos Maldonado.
Software architecture relevance in open source software evolution: A case study. In
Proceedings of the 2008 32nd Annual IEEE International Computer Software and
Applications Conference, pages 1234–1239. IEEE, 2008. ISBN 978-0-7695-3262-2.
doi: 10.1109/COMPSAC.2008.171.

100

https://api.semanticscholar.org/CorpusID:133597817
https://api.semanticscholar.org/CorpusID:133597817

Bibliography

[76] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida, and
Yunwen Ye. Evolution patterns of open-source software systems and communities.
In Proceedings of the International Workshop on Principles of Software Evolution,
IWPSE ’02, page 76–85, New York, NY, USA, 2002. Association for Computing
Machinery. ISBN 1581135459. doi: 10.1145/512035.512055.

[77] Kin G. Olivares, Cristian Challú, Federico Garza, Max Mergenthaler Canseco, and
Artur Dubrawski. Machine learning forecast. PyCon Salt Lake City, Utah, US 2022,
2022. URL https://nixtlaverse.nixtla.io/mlforecast/.

[78] Iliana Paliari, Aikaterini Karanikola, and Sotiris Kotsiantis. A comparison of the op-
timized lstm, xgboost and arima in time series forecasting. In 2021 12th International
Conference on Information, Intelligence, Systems & Applications (IISA), pages 1–7,
07 2021. doi: 10.1109/IISA52424.2021.9555520.

[79] John Paparrizos and Luis Gravano. k-shape: Efficient and accurate clustering of
time series. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pages 1855–1870. ACM, 5 2015. ISBN 9781450327589. doi:
10.1145/2723372.2737793.

[80] J.W. Paulson, G. Succi, and A. Eberlein. An empirical study of open-source and
closed-source software products. IEEE Transactions on Software Engineering, 30:
246–256, 4 2004. ISSN 0098-5589. doi: 10.1109/TSE.2004.1274044.

[81] Maksym Petrenko, Denys Poshyvanyk, Vaclav Rajlich, and Joseph Buchta. Teaching
software evolution in open source. Computer, 40:25–31, 11 2007. ISSN 0018-9162.
doi: 10.1109/MC.2007.402.

[82] James Piggot and Chintan Amrit. How Healthy Is My Project? Open Source Project
Attributes as Indicators of Success. In Etiel Petrinja, Giancarlo Succi, Nabil Ioini,
and Alberto Sillitti, editors, 9th Open Source Software (OSS), volume AICT-404 of
Open Source Software: Quality Verification, pages 30–44, Koper-Capodistria, Slove-
nia, June 2013. Springer. doi: 10.1007/978-3-642-38928-3\ 3.

[83] V.T. Rajlich and K.H. Bennett. A staged model for the software life cycle. Computer,
33(7):66–71, 2000. doi: 10.1109/2.869374.

[84] Nasir Rashid and Siffat Ullah Khan. Developing green and sustainable software us-
ing agile methods in global software development: Risk factors for vendors. In Pro-
ceedings of the 11th International Conference on Evaluation of Novel Software Ap-
proaches to Software Engineering, ENASE 2016, page 247–253, Setubal, PRT, 2016.
SCITEPRESS - Science and Technology Publications, Lda. ISBN 9789897581892.
doi: 10.5220/0005913802470253.

[85] Elyas Sabeti, Peter X.K. Song, and Alfred O. Hero. Pattern-based analysis of time
series: Estimation. In 2020 IEEE International Symposium on Information Theory
(ISIT), pages 1236–1241. IEEE, 6 2020. ISBN 978-1-7281-6432-8. doi: 10.1109/IS
IT44484.2020.9174529.

101

https://nixtlaverse.nixtla.io/mlforecast/

BIBLIOGRAPHY

[86] Walt Scacchi. Understanding open source software evolution: Applying, breaking,
and rethinking the laws of software evolution, 2003. URL https://api.semantic
scholar.org/CorpusID:2641835.

[87] Hamed Shariat Yazdi, Mahnaz Mirbolouki, Pit Pietsch, Timo Kehrer, and Udo Kelter.
Analysis and prediction of design model evolution using time series. In Lazaros
Iliadis, Michael Papazoglou, and Klaus Pohl, editors, Advanced Information Systems
Engineering Workshops, pages 1–15, Cham, 2014. Springer International Publishing.
doi: 10.1007/978-3-319-07869-4 1.

[88] Hamed Shariat Yazdi, Lefteris Angelis, Timo Kehrer, and Udo Kelter. A framework
for capturing, statistically modeling and analyzing the evolution of software models.
Journal of Systems and Software, 118:176–207, 2016. ISSN 0164-1212. doi: 10.
1016/j.jss.2016.05.010.

[89] Jyoti Sheoran, Kelly Blincoe, Eirini Kalliamvakou, Daniela Damian, and Jordan Ell.
Understanding ”watchers” on github. In Proceedings of the 11th Working Conference
on Mining Software Repositories, MSR 2014, page 336–339, New York, NY, USA,
2014. Association for Computing Machinery. ISBN 9781450328630. doi: 10.1145/
2597073.2597114.

[90] Grigori Sidorov, Francisco Castillo, Efstathios Stamatatos, Alexander Gelbukh, and
Liliana Chanona-Hernández. Syntactic n-grams as machine learning features for
natural language processing. Expert Systems with Applications: An International
Journal, 41:853–860, 02 2014. doi: 10.1016/j.eswa.2013.08.015.

[91] Miriam Sitienei, Argwings Ranyimbo, and Ayubu Okango. An application of k-
nearest-neighbor regression in maize yield prediction. Asian Journal of Probability
and Statistics, 24:1–10, 09 2023. doi: 10.9734/ajpas/2023/v24i4529.

[92] Mahbubul Syeed, Imed Hammouda, and Tarja Systa. Evolution of open source soft-
ware projects: A systematic literature review. Journal of Software, 8:2815–2829, 11
2013. doi: 10.4304/jsw.8.11.2815-2829.

[93] Abhishek Tandon, Sharma Meera, Kumari Madhu, and Singh V.B. Entropy based
software reliability growth modelling for open source software evolution. Tehnicki
vjesnik - Technical Gazette, 27, 4 2020. ISSN 13303651. doi: 10.17559/TV
-20181031061451.

[94] Kai Ming Ting. Precision and Recall, pages 781–781. Springer US, Boston, MA,
2010. ISBN 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8 652.

[95] Charles Truong, Laurent Oudre, and Nicolas Vayatis. A review of change point
detection methods. CoRR, abs/1801.00718, 2018. URL http://arxiv.org/abs/
1801.00718.

102

https://api.semanticscholar.org/CorpusID:2641835
https://api.semanticscholar.org/CorpusID:2641835
http://arxiv.org/abs/1801.00718
http://arxiv.org/abs/1801.00718

Bibliography

[96] Kimberly Truong, Courtney Miller, Bogdan Vasilescu, and Christian Kästner. The
unsolvable problem or the unheard answer? a dataset of 24,669 open-source software
conference talks. In Proceedings of the 19th International Conference on Mining
Software Repositories, MSR ’22, page 348–352, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery. ISBN 9781450393034. doi: 10.1145/3524842.
3528488.

[97] Gert Valkenhoef, Tommi Tervonen, Bert Brock, and Douwe Postmus. Product and
release planning practices for extreme programming. In Agile Processes in Software
Engineering and Extreme Programming, volume 48, pages 238–243, 06 2010. ISBN
978-3-642-13053-3. doi: 10.1007/978-3-642-13054-0 25.

[98] Pham Vuong, Dat Trinh, Tieu Mai, Pham Uyen, and Pham Bao. Stock-price fore-
casting based on xgboost and lstm. Computer Systems Science and Engineering, 40:
237–246, 01 2022. doi: 10.32604/CSSE.2022.017685.

[99] Renzhuo Wan, Shuping Mei, Jun Wang, Min Liu, and Fan Yang. Multivariate tem-
poral convolutional network: A deep neural networks approach for multivariate time
series forecasting. Electronics (Switzerland), 8, 8 2019. ISSN 20799292. doi:
10.3390/electronics8080876.

[100] Xiaozhe Wang, Kate Smith, and Rob Hyndman. Characteristic-based clustering for
time series data. Data Mining and Knowledge Discovery, 13:335–364, 9 2006. ISSN
1384-5810. doi: 10.1007/s10618-005-0039-x.

[101] Yi Wang, Defeng Guo, and Huihui Shi. Measuring the evolution of open source
software systems with their communities. ACM SIGSOFT Software Engineering
Notes, 32:7, 11 2007. ISSN 0163-5948. doi: 10.1145/1317471.1317479.

[102] Jingwei Wu. Open Source Software Evolution and Its Dynamics. PhD thesis, Uni-
versity of Waterloo, CAN, 2006. URL http://hdl.handle.net/10012/1095.

[103] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi
Zhang. Connecting the dots: Multivariate time series forecasting with graph neural
networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 753–763. Association for Computing
Machinery, 8 2020. ISBN 9781450379984. doi: 10.1145/3394486.3403118.

[104] Guowu Xie, Jianbo Chen, and Iulian Neamtiu. Towards a better understanding of
software evolution: An empirical study on open source software. In 2009 IEEE
International Conference on Software Maintenance, volume 25, pages 51–60, 09
2009. doi: 10.1109/ICSM.2009.5306356.

[105] Jong Yoon, Jieun Lee, and Sung-Rim Kim. Trend similarity and prediction in time-
series databases. Proceedings of SPIE - The International Society for Optical Engi-
neering, 04 2000. doi: 10.1117/12.381734.

103

http://hdl.handle.net/10012/1095

BIBLIOGRAPHY

[106] Jierui Zhang, Liang Wang, Zhiwen Zheng, and Xianping Tao. Social community
evolution analysis and visualization in open source software projects. In Web Infor-
mation Systems Engineering – WISE 2022, page 38–45, Berlin, Heidelberg, 2022.
Springer-Verlag. ISBN 978-3-031-20890-4. doi: 10.1007/978-3-031-20891-1 4.

[107] Lingyu Zhang, Wenjie Bian, Wenyi Qu, Liheng Tuo, and Yunhai Wang. Time series
forecast of sales volume based on xgboost. Journal of Physics: Conference Series,
1873:012067, 04 2021. doi: 10.1088/1742-6596/1873/1/012067.

[108] Xiaohang Zhang, Jiaqi Liu, Yu Du, and Tingjie Lv. A novel clustering method on
time series data. Expert Systems with Applications, 38:11891–11900, 9 2011. ISSN
09574174. doi: 10.1016/j.eswa.2011.03.081.

104

Appendix A

Database Schema

From the database schema in figure A.1, it is noticeable that some of the fields are listed as
Objects type, which represents a dictionary of key-value pairs. More details on the inner
structure of such Objects type fields are given below for each collection:

• repositories data

– releases

* key: release tag

* value (Object): tag name (String), target(String), body (string), draft (Boolean),
preprelease (Boolean), created at (Datetime), published at (Datetime)

– workflows

* key: workflow unique id

* value (Object): id (Integer), name (String), created at (Datetime)

– environments

* key: environment unique id

* value (Object): id (Integer), name (String), created at (Datetime)

– languages

* key: programming language name

* value (Integer): code bytes written in referred language

– branches

* key: branch unique id

* value (Object): protected (Boolean)

– metadata

* key: database object actions

* value (Object): created (Datetime), modified (Datetime)

• statistics commits

105

A. DATABASE SCHEMA

– commits

* key: commit sha encoding

* value (Object): author (String), date (Datetime)

– contributors

* key: contributor unique username

* value (Object): commits (Integer), first commit (Datetime)

• statistics deployments

– deployments

* key: deployment unique id

* value (Object): id (Integer), environment (String), transient environment
(Boolean), production environment (Boolean), created at (Datetime)

• statistics forks

– forks

* key: fork unique id

* value (Object): id (Integer), number (Integer), state (String), title (String),
user (String), comments (Integer), author association (String), created at
(Datetime), updated at (Datetime), closed at (Datetime)

• statistics pull requests

– pull requests

* key: pull request unique id

* value (Object): id (Integer), number (Integer), state (String), created at
(Datetime), merged at (Datetime), closed at (Datetime)

• statistics workflow runs

– workflows

* key: workflow run unique id

* value (Object): id (Integer), workflow id (Integer), created at (Datetime)

• statistics size

– size

* key: commit sha encoding

* value (Object): additions (Integer), deletions (Integer)total (Integer, addi-
tions + deletions), size (Integer, additions - deletions), date (Datetime)

106

Figure A.1: MongoDB collections schema for repositories data and metrics time series data.
Source: Thesis author

107

Appendix B

Evolution Patterns Evaluation Plots

In this appendix, the generalized patterns curves obtained from the experiments discussed
in chapter 4.1.1 are shown.

Figure B.1: Generalized time series segments growth patterns for N/2 (664 repositories)
input. Source: Thesis author

109

B. EVOLUTION PATTERNS EVALUATION PLOTS

Figure B.2: Generalized time series segments growth patterns for N/4 (332 repositories)
input. Source: Thesis author

Figure B.3: Generalized time series segments growth patterns for N/8 (166 repositories)
input. Source: Thesis author

110

Figure B.4: Generalized time series segments growth patterns for N/16 (83 repositories)
input. Source: Thesis author

Figure B.5: Generalized time series segments growth patterns for N/32 (41 repositories)
input. Source: Thesis author

111

Appendix C

Glossary

In this appendix an overview of used abbreviations is given.

OSS: Open-Source Software

FOSS: Free Open-Source Software

FLOSS: Free Libre Open-Source Software

GH: GitHub

KNN: K-nearest neighbors

MTS: Multivariate Time Series

MIT License: Massachusetts Institute of Technology License

BSL: Business Source License

CI/CD: Continuous Integration and Continuous Deployment

ARMA: Autoregressive Moving Average

ARIMA: Autoregressive Integrated Moving Average

API: Application Programming Interface

UI: User Interface

113

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Open-Source Software Evolution
	The Phases of Open-Source Software Evolution
	Time Series Analysis

	Framework Design and Implementation
	Framework Overview
	Metrics Selection and Dataset
	Multivariate Time Series Models

	Results and Evaluation
	RQ1: What Insights can be Derived from the Framework?
	RQ2: How Much History is Needed for the Patterns Predictions?
	RQ3: How Reliable is the Break Points Detection?

	Results Discussion, Limitations and Future Work
	Framework Insights
	Patterns Prediction
	Break Points Detection and Real Events
	Threats to Validity

	Conclusions
	Contributions
	Conclusion

	Bibliography
	Database Schema
	Evolution Patterns Evaluation Plots
	Glossary

