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The lattice dynamics in magnetic materials, such as Fe depends on the degree of disorder of the atomic
magnetic moments and the time scale of spin fluctuations. Using first-principles methods, we have studied
this effect by determining the force constant matrix in two limits: (i) When spin fluctuations are much faster
than the atom vibrations, their combined impact is captured by a spin-space averaged force constant matrix,
(ii) when individual spin fluctuations are sufficiently slow to scatter the phonon modes, the itinerant coherent
potential approximation with spin-pair resolved force constants (i.e., �↑↑, �↓↓, and �↑↓) is employed in this
paper. The physical consequences for the vibrational spectral functions are analyzed by systematically modifying
the input parameters (magnetization and ratio of force constants betweens atoms with equal and opposite spin
directions) and by deriving them for the prototype material system bcc Fe from first-principles calculations. In
the paramagnetic regime, the two limits yield identical phonon spectra. Below the Curie temperature, however,
there are regions in the parametric study that show qualitative differences, including a broadening of the phonon
peaks. For bcc Fe, however, the quantitative modifications of phonon frequencies turn out to be small.

DOI: 10.1103/PhysRevB.101.094201

I. INTRODUCTION

Lattice vibrations are typically the dominant temperature-
induced excitations in solids and, therefore, play a pivotal
role in state-of-the-art materials science research [1]. Impor-
tant insights about phase stability [2,3], ordering [4], and
elastic properties [5] can be obtained from lattice dynamical
studies. For chemically ordered systems, the calculation of
quasiharmonic phonon frequencies requires the diagonaliza-
tion of the dynamical matrix, which can be straightforwardly
performed with standard techniques. The presence of disorder,
however, introduces additional complexities. The disorder-
induced scattering is determined by fluctuations in both the
masses and the interatomic force constants [6–10], leading
to off-diagonal disorder in the dynamical matrix. Moreover,
the sum rule obeyed by the diagonal and off-diagonal parts of
the force constants ensures that the disorder at a certain site
depends upon its neighborhood—the so-called environmental
disorder [11]. Due to this complex nature of the phonon
problem, the calculation of the dynamical matrix in disordered
systems is challenging.

The effect of large mass disorder between the components
has meanwhile been investigated for several alloys [12–14].
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Neutron-scattering measurements revealed disorder-induced
asymmetric broad phonon peaks in these systems. The special
features related to disorder further include the splitting of
phonon modes into two branches [6,7]. If one studies the
thermodynamics of pure Fe, however, one is not confronted
with mass disorder due to the presence of only one chemical
species. Nevertheless, there can still be disorder in the force
constants between atoms with differently aligned magnetic
moments. This situation is comparable to a Ni-Co alloy,
which has negligible mass disorder but force constants that are
significantly different from pure Ni. As a consequence of the
disorder in the force constants, appreciable modifications in
the phonon dispersions of a Ni-Co alloy as compared to bulk
Ni has been observed in neutron-scattering experiments [15].

The theoretical investigation of vibrational effects in dis-
ordered systems was for a long time confined to chemically
random alloys. Only recently, significant improvements in
methodology and computational facility have provided ac-
cess to systems with magnetic disorder as well [16–20].
The delicate interplay between magnetic and lattice degrees
of freedom forms the basis for several investigations and
interesting insights. For example, in CrN, the contribution
of magnetic disorder to the vibrational free energy is es-
sential for achieving transition temperatures from the cubic
paramagnetic phase to the orthorhombic antiferromagnetic
phase [21] in good agreement with experiment [22,23]. In
Ni-Mn-Ga Heusler alloys, the approximate treatment of mag-
netic excitations by the fixed-spin moment approach removes
the dynamical instability (soft phonon modes) in the cu-
bic austenite thereby stabilizing this phase [24,25]. Further-
more, spin-phonon coupling is of tremendous importance
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for the interpretation of various phenomena in pure Fe and
Fe-based materials [26,27]. Recently, it has been shown
that the incorporation of a temperature-dependent mag-
netic energy yields reasonable agreement between theoretical
phonons and experimental data for the temperature depen-
dence of phonon frequencies in bcc Fe [28].

To meet these challenges, several theoretical approaches
have been suggested in recent years to calculate phonons in
paramagnetic systems with fully disordered spins: disordered
local moments and spin molecular dynamics [29,30], a
spin-spiral approach [31], dynamical mean-field theory [32],
and a spin-space averaging (SSA) procedure [17]. All of
them have specific approximations, particularly, connected
to the handling of the magnetic vs phononic time scales.
The SSA allows us to describe paramagnetic phonon modes
and even their temperature dependence across the magnetic
transition temperature reasonably well [28,33]. The approach
has the underlying assumption that spin directions are
changing so fast that the various local spin configurations
become indistinguishable for the forces on the atoms. In
other approaches, such as the above-mentioned molecular
dynamics [29], the atomic forces depend on quasistatic
magnetic configurations, allowing a modification of both on
comparable time scales. It has recently been shown that a
regular update of these magnetic configurations on the same
time scale and dependent on the present displacement in the
MD has a strong impact on phonon broadening [34].

The present study of magnetic disorder distinguishes force
constants between pairs of atoms with equal and with oppo-
site spins, whereas averaging force constants over magnetic
configurations in the neighborhood of these pairs. The idea
behind this approach is that a disordered arrangement of atoms
with spin-up and spin-down changes sufficiently slow to re-
solve the interaction of lattice vibrations with these magnetic
fluctuations. For this purpose, we make use of the coherent
potential approximation (CPA) [35] and its generalizations.
Similar to the application of CPA for chemical disorder, the
traveling phonon experiences a nonhomogeneous background
due to the fluctuations, which results into scattering effects
and finite phonon lifetimes.

A straightforward application of CPA normally fails to
provide an accurate description for phonons mainly due to two
reasons: (i) It is a single-site theory, i.e., it cannot capture non-
local fluctuations, and (ii) the resulting medium is structure-
less which prohibits incorporation of structural relaxations.
Various generalizations of CPA have been suggested [36–38]
of which two approaches based on the augmented space
theorem of Mookerjee [39], have been particularly successful
in the case of substitutionally disordered alloys. These are the
itinerant coherent potential approximation (ICPA) of Ghosh
et al. [40] and the augmented space recursion of Saha et al.
[41] and Alam and Mookerjee [42]. Both of them have proven
to provide almost identical results for several systems [43].

These methods have to date solely been applied to chem-
ically disordered systems, and the generalization to magnetic
disorder performed in this paper is so far missing. Beyond
the relevance for magnetism, the study is also valuable for
determining the impact of force constant fluctuations since no
contributions of mass disorder are overshadowing the effect in
this case. We demonstrate and discuss the salient features for

the resulting phonon spectral density as a function of magne-
tization, including modified dispersions and the broadening
of phonon linewidths. After having identified these trends,
we apply our methodology to bcc Fe and clarify in this way
the temperature-dependent impact of magnetic fluctuations on
an intensively studied material system. The methodology, in
the future, can be extended to study vibrational properties
of magnetically disordered random solid solutions. Such an
extension would require consideration of both chemical and
magnetic disorders within the disorder model along with an
expansion of the configurational space within the ICPA to
specify both degrees of freedom.

II. METHODOLOGY

Our formalism consists of two major steps: First, it is
necessary to derive the force constants of magnetically dis-
ordered Fe using density functional theory (DFT). Only if
they are available, ICPA can be employed in a second step
to perform the configuration averaging and to consider the
magnetic fluctuations.

A. Density functional theory

The DFT calculations for Fe have been performed with
a plane-wave basis set as implemented in the Vienna ab
initio simulation package (VASP) [44,45] in order to obtain
accurate forces based on the Hellmann-Feynman theorem.
The ion-electron interactions are treated with the projector-
augmented wave method [46] together with the generalized
gradient approximation for the exchange-correlation potential
parametrized by Perdew-Burke-Ernzerhof [47]. A large basis
with a plane-wave cutoff of 340 eV and a k-point grid of
7 × 7 × 7 are used. For the force calculations, the Methfessel-
Paxton scheme [48] with a smearing of 0.1 eV is used. The ab
initio force constants are calculated using a direct approach
in which each atom in a 4 × 4 × 4 supercell (of the primitive
unit cell) is moved by 0.015 Å along three Cartesian axes, and
the forces on the atoms are calculated. The lattice parameter
used for bcc Fe is 2.871 Å. The ICPA calculations described
below are performed with a 25 × 25 × 25 k mesh and 2000
energy points.

B. Magnetic disorder

For the calculation of the force constant matrix in the
paramagnetic state, we use a randomly disordered collinear
spin configuration constructed using the concept of special
quasirandom structures (SQSs) [49] as obtained from the
ATAT package [50]. Within these structures, the N atoms in a
given periodically repeated cell are distributed such that their
distinct correlation functions �(k,m) best match the ensemble-
averaged correlation functions 〈〈�(k,m)〉〉 for the infinite per-
fectly random configuration. Here, (k, m) corresponds to the
vertex (structural figure) defined by the number of involved
atoms k (pairs, triples, ...) and the order of separation of the
atoms m [first, second, ..., nearest neighbors (nns)].

Because of the low symmetry of the SQSs, the force
constant tensors between a given pair of atoms do not have
the symmetry of the underlying lattice (here: bcc). There-
fore, the displacement of each atom gives rise to a different
force constant matrix. Inelastic neutron scattering, on the
other hand, uses the crystal symmetry of the ideal lattice to

094201-2



PHONONS IN MAGNETICALLY DISORDERED MATERIALS: … PHYSICAL REVIEW B 101, 094201 (2020)

determine phonon dispersions. In order to achieve force con-
stant tensors with such a symmetry also for the disordered
alloy, we perform a two-step averaging procedure [51].

(1) We average for each atomic pair individually (here:
up to second-nearest neighbor) over the force constants, to
achieve transformed 3 × 3 force constant matrices with the
rotational symmetry of the underlying crystal lattice. This step
is identical to SSA where it is motivated by a much shorter
magnetic as compared to the phononic time scale.

(2) We average over the force constant matrices of all
atomic pairs in the supercell belonging to one of the sets
↑↑, ↓↓, or ↑↓ to eventually achieve three 3 × 3 force con-
stant matrices �↑↑, �↓↓, and �↑↓ that also obey the transla-
tional symmetry of the crystal. The distinction between spin
pairs allows for a partial consideration of magnetic disorder
and their fluctuations on a time scale comparable to phonons.

Apart from the fully paramagnetic state, also unequal
concentrations of ↑ and ↓ spins as expected below the Curie
temperature are considered. Furthermore, to mimic magnetic
short-range order (SRO), the overall concentrations are kept
equal, but the second averaging is performed only over force
constants that have been determined in a configuration with
an unequal number of ↑ and ↓ spins for the nearest-neighbor
shell.

C. Itinerant coherent potential approximation (ICPA)

The central quantity for the determination of phonon en-
ergies and linewidths in magnetically disordered Fe is the
spectral density belonging to the Green’s function of lattice
excitations,

〈〈G(ω2)〉〉 = 〈〈[mω2 − �]−1〉〉, (1)

which itself is the Fourier transform of a displacement-
displacement Green’s function. Here, � is again the 3 × 3
force constant matrix as determined above, ω is the frequency,
containing a small imaginary part, and m is the mass operator.
In the case of paramagnetic Fe, the two kinds of atoms ↑
and ↓ have identical mass, i.e., m = m1. This simplifies the
formalism as compared to a situation with chemical disorder
[40]. However, since the force constants �↑↑, �↓↓, and �↑↓
still represent a disorder, the averaging 〈〈· · · 〉〉 is performed
over spin-configurational degrees of freedom.

The disorder is characterized by the concentrations c↑ and
c↓ of atoms with collinear spins in both directions. Within the
space of all possible spin configurations of the system, the
state of site i is defined by |↑i〉 or |↓i〉. The Hamiltonian of the
system, however, operates in the Hilbert space where mass m,
force constant �, and Green’s function G are defined. Using
the augmented space formalism (ASF) [39], we expand the
Hilbert space with the configuration space to take into account
the statistics of random site occupancy. To this end, one of the
bases representing the site-average state in the configuration
space, which is augmented to the real space, is given as

|0〉 =
∏

i

(
√

c↑|↑i〉 + √
c↓|↓i〉). (2)

If we would only consider the projection �̄ of the force
constant operator �̂ on this subspace, then the corresponding
Green’s function was that of the SSA approach,

GSSA(ω2) = [mω21 − �̄]−1. (3)

This is because the corresponding matrix element in Eq. (A5)
completes the averaging over force constants such that no
distinction between spin pairs is present anymore.

Within the ICPA method [40], corrections are employed
before the averaging over spin directions happens. Based on
the profound experience with chemical disorder, the single-
fluctuation approximation is used as

| j fk〉 = (
√

c↓|↑ j〉 − √
c↑|↓ j〉)

∏
i �= j

(
√

c↑|↑i〉 + √
c↓|↓i〉), (4)

where (
√

c↓|↑ j〉 − √
c↑|↓ j〉) defines a fluctuation on site j.

Thus, | j fk〉 is a state in which fluctuation in the average state
|0〉 is present only on site j. The states in the ASF can,
therefore, be expressed as |i0〉 and |i fk〉 where i specifies the
site index of the dynamic variable, position or momentum, and
k indicates the presence of fluctuation on site i.

Within the ASF, the force constant operator becomes in a
block representation,

�̂ =
(

�̄ �′

�′† �̃

)
, (5)

with block matrix elements,

�̄i j = 〈i0|�̂| j0〉,
�

′(k)
i j = 〈i0|�̂| j fk〉,

�
′†(k)
i j = 〈i fk|�̂| j0〉,

�̃
(k)(l )
i j = 〈i fk|�̂| j fl〉, (6)

where i and j specify site indices whereas k and l indicate
the presence of fluctuation on these sites. The ASF is a smart
bookkeeping technique to keep track of the fluctuations in
the environment due to disorder. For details of the performed
projection, the reader is referred to Ref. [40]. A similar
ASF representation could be also introduced for the Green’s
function. The relevant propagator is only the configuration-
average part,

Ḡ = 〈〈G(ω2)〉〉 = [
G−1

SSA(ω2) − �(ω2)
]−1

, (7)

and due to the inversion in (5), the self-energy �(ω2) contains
fluctuations of the form

� = �′ · F · �′†, (8)

with

F = [
G−1

SSA · 1̃ − (�̃ − �̄ · 1̃)
]−1

, (9)

where 1̃ is the identity matrix associated with two sites with
fluctuation present on both sites. In particular, �′ and �′† in
(8) can be considered as annihilation and creation operators of
single spin fluctuations in the material.

We follow the philosophy of CPA and replace the Dyson
equation for the itinerator,

F(i)( j) = GSSA

[
1̃(i)( j) +

∑
l

(�̃ − �̄ · 1̃)(i)(l )F(l )( j)

]
, (10)

by its self-consistent extension,

F(i)( j) = G(i)

[
1̃(i)( j) +

∑
l

(�̃ − �̄ · 1̃)(i)(l )F(l )( j)

]
, (11)
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FIG. 1. Schematic indicating that a spin flip (marked with the thick black circle) in an ideal paramagnet with concentrations c↑ = c↓, masses
m↑ = m↓, and force constants �↑↑ = �↓↓ does not change the physical state (a). The situation for spin fluctuations is different if c↑ �= c↓ and/or
�↑↑ �= �↓↓ (b). A spin flip in this case modifies the force constants thereby leading to a new state. The situation is fundamentally different
for chemical fluctuations since for two chemically different species A and B with masses mA and mB, �AA �= �BB always holds (c) and (d).
Hence, independent of composition, i.e., for both cA = cB in (c) and cA �= cB in (d), any chemical fluctuation will modify the physical state.

where G(i) is identical to the full propagator Ḡ in (7) except
that all irreducible scatterings beginning or ending on site i are
omitted. These equations need to be resolved iteratively. The
concept corresponds to the traveling cluster approximation
(TCA) [52] due to the “itineration” of fluctuations caused
by the off-diagonal character of the force constant matrix
�̂ involving, e.g., nearest-neighbor interactions. Note that
other cluster generalizations of CPA are typically difficult
to implement beyond pair scattering and diagonal disorder
since they do not provide any precise guidance regarding the
diagrams that are to be summed. Due to the mapping onto
matrix elements in the augmented space [53] as performed
here, the enlarged Hilbert space to accommodate configura-
tion fluctuations due to spin disorder, and the overlapping sets
with scattering are straightforwardly mapped onto the set of
sites with “fluctuation states” [54]. Thus, the ideas in the TCA
are implemented with the advantage of a tractable approach to
treat off-diagonal disorder.

Since the Green’s function in the augmented space is, by
construction, site translation invariant, it can also be Fourier
transformed to 	q space as

〈〈Gi j (ω
2)〉〉 = 1

N

∑
	q

〈〈G(	q, ω2)〉〉e−i 	q 	Ri j , (12)

where N defines the number of neighbors perturbed due to
the single-site fluctuation in a lattice. For the investigation of
phonon spectra throughout the Brillouin zone, we are inter-
ested in the peak position and width of the spectral function
of this Green’s function,

Sσ1,σ2 (	q, ω) = 1

π
Im〈〈Gσ1,σ2 (	q, ω2)〉〉, (13)

with 〈〈Gσ1,σ2 (	q, ω2)〉〉 being the conditional or partial Green’s
function in 	q space. The advantage of the method is that these
results are obtained spin resolved with σ1, σ2 representing the
spin directions.

The required matrix elements in the special case of a bcc
crystal structure are provided in the Appendix. Particularly

important is �′, which directly determines the self-energy in
(8) and is of the principal shape,

�′ = √
c↑c↓[c↑�↑↑ − c↓�↓↓ + (c↓ − c↑)�↑↓]. (14)

Using these equations, one can quickly convince oneself that
some special cases are fulfilled. First of all, the impact of
fluctuations disappears by definition, if �↑↑, �↓↓, and �↑↓
are identical, i.e., if the forces do not depend on the spin. The
other way around, fluctuation effects become more dominant
the larger the difference �↑↑ − �↑↓ of the system is since
�′ ∼ (c↓ − c↑)(�↑↑ − �↑↓) for �↑↑ = �↓↓.

Less obvious is the fact that the fluctuation effects also
disappear in the ideal paramagnetic limit, where c↑ = c↓ and
�↑↑ = �↓↓. This can be considered as a first major result of
the ICPA approach. It represents the fact that single-site fluc-
tuations of spins do not change the ideal paramagnetic state
for the force constants. This is schematically demonstrated
in Fig. 1. In this respect, the impact of the force-constant
disorder is qualitatively different from mass disorder. The
situation can be also different for two-site spin fluctuations.
In our evaluation of this limit not only �′ vanishes, but also
Eq. (9) becomes identical with the SSA propagator GSSA,
and the spectral density will have sharp peaks without any
broadening.

The self-energy (8) obviously also disappears in the case
of magnetic saturation c↑ = 1 and c↓ = 0. The fluctuations
are, therefore, expected to be strongest close to the magnetic
transition temperature where a long-range or a short-range
order is present.

III. RESULTS AND DISCUSSION

A. Force constant matrix

We take paramagnetic bcc Fe described by a SQS model
as a starting point for our discussion to get realistic input
parameters for the force constant matrix. For this purpose,
we have performed collinear DFT calculations (Sec. II A)
and have averaged the force constants (Sec. II B). Tests with
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TABLE I. Real-space nearest- (nn) and next-nearest-neighbor (nnn) force constants �αβ [α, β are Cartesian directions, see also Eqs. (A2)
and (A3)] for bcc Fe computed from SQS. Different global and local concentrations of spins are considered. The units are dyn cm−1.

c↑/c↓ = 1 SRO (6↑/2↓) c↑/c↓ = 3

Component φ↑↑ = φ↓↓ φ↑↓ φ↑↑ = φ↓↓ φ↑↓ φ↑↑ φ↑↓ φ↓↓

nn-xx 9781 9086 10814 10862 14705 13622 7855
nn-xy 11293 14421 11710 15071 11729 12360 7733

nnn-xx 10183 3357 10183 3357 15714 9987 7748
nnn-yy 335 2379 335 2379 −1488 −699 1727

different SQSs revealed similar interatomic force constants..
The first block of Table I contains the results for �↑↑ and
�↑↓ for the paramagnet (c↑ = c↓). In this case, the symmetry
requires �↑↑ = �↓↓. We observe that the ratio in the nn force
constants between �↑↑ and �↑↓ is for paramagnetic bcc Fe
below 1.3. This is even true if the averaging is limited to those
local configurations where the number of nearest-neighbor ↑
and ↓ spins is not equal, labeled as SRO in Table I (second
block).

It is also evident from Table I that, in bcc Fe, the nnn force
constants are—in contrast to fcc Fe [40]—still significant.
This is a consequence of the more open structure of bcc
with a comparable distance of the first and second atomic
shells. We further note the strong impact of the magnetic
configuration on these force constants. Therefore, the nnn
shell has been taken into account. In contrast to nn and nnn
force constants, third- and fourth-neighbor force constants
are orders of magnitude smaller and, hence, have negligible
impact on phonon frequencies.

In the case that the magnetic moments are partially
ordered—such as c↑:c↓ = 3:1 (see the third block of
Table I)—already the ratio between �↑↑ and �↓↓ in the nn
shell can be as high as 2.0, whereas even the sign of the force
constants in the nnn shell can be different. Furthermore, �↑↑
and �↓↓ do not need to be identical anymore. These observa-
tions raise the expectation that significant deviations from a
SSA approach can be expected below the Curie temperature.

B. Model parameters

To qualitatively investigate the impact of the resulting fluc-
tuations on the spectral density, we have simplified the DFT
values for the force constants of bcc Fe to model parameters
and have systematically modified them. Using Table I as a
guideline for realistic sizes and ratios of the force constants,
the actually chosen model parameters are given in Table II.
The obtained results for the longitudinal branch at a selected
wave-vector [0.35,0.35,0] and for the concentration c↑:c↓ =
3:1 are shown in Fig. 2. The wave vector and composition
are chosen such that the fluctuations are clearly visible in the
corresponding phonon spectral functions. From left to right,
the nn force constant ratio �nn

↑↑/�nn
↑↓ is changed, whereas the

upper and lower panels differ in the nnn force constants.
The peak position of the total spectral functions in Fig. 2

(the black lines) determines the phonon frequency. The upper
left diagram in Fig. 2 is close to the homogeneous case of
�↑↑ = �↓↓ = �↑↓ for which no fluctuations are present, and,
therefore, a δ peak in the spectral function is expected. The

small broadening of the peak is due to the ratio �nn
↑↑/�nn

↓↓ =
2.0, which has, however, little impact since only 1/42 = 6%
of the nn force constants are described by �nn

↓↓.
In contrast to this, the ratio �nn

↑↑/�nn
↑↓ has a stronger impact

since �nn
↑↓ describes 6/16 = 37.5% of the nn force constants.

The modifications have two consequences for the spectral
function: On one hand, the position of the phonon peak is
shifted. This seems to be mainly caused by the increase in
�nn

↑↑ as indicated by the partial spectral function for the ↑↑
contribution to the Green’s function (the red line in Fig. 2).
The increase in �nn

↑↑ is chosen such that the SSA result (the
vertical dashed line) is not changed by the modification of the
force constants. Nevertheless, the difference of ICPA and SSA
phonon energies seems to scale with the ratio �nn

↑↑/�nn
↑↓.

On the other hand, with the increase in the ratio �nn
↑↑/�nn

↑↓,
the spectral lines become broad and asymmetric. In particular,
a strong shoulder towards lower frequencies develops. In
cases of extreme disorder, the spectral function can even split
into two peaks. The main reason seems to be that the peak
of the partial spectral function for the ↑↓ contribution (the
green line in Fig. 2) does not follow the trend of the ↑↑
partial spectral function and remains close to the SSA value.
It is additionally broadened towards lower frequencies and
even shows negative values. The emergence of negative partial
spectral densities is mathematically correct since only the total
spectral function has a physical meaning. In fact, the negative
contributions are mainly compensated by the enhanced values
of the ↓↓ partial spectral function [8,9].

The behavior demonstrates the averaging of spin degrees of
freedom in the ICPA: The initial assumption is that the force
constants of the majority and minority as well as the equal and
opposite spin can be distinguished. The SSA part (3) of the

TABLE II. Real-space nearest-neighbor force constants �αβ (no-
tation as in Table I) chosen for the systematic study in Fig. 2. The
units are 103 dyn cm−1.

φ↑↑ φ↑↓ φ↓↓ φ↑↑ φ↑↓ φ↓↓ φ↑↑ φ↑↓ φ↓↓

nn-xx 14 14 7 16 10.6 8 18 9 9
nn-xy 12 12 6 14 9.3 7 15 7.5 7.5

nnn-xx 13 13 13 13 13 13 13 13 13
nnn-yy −1 −1 −1 −1 −1 −1 −1 −1 −1

nn-xx 14 14 7 16 10.6 8 18 9 9
nn-xy 12 12 6 14 9.3 7 15 7.5 7.5

nnn-xx 15 10 7.5 15 10 7.5 15 10 7.5
nnn-yy −1.2 −0.8 −0.6 −1.2 −0.8 −0.6 −1.2 −0.8 −0.6
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FIG. 2. Partial and total spectral functions calculated by the
ICPA for the longitudinal branch at q = [0.35, 0.35, 0] obtained with
the six different sets of model force constants given in Table II and
c↑:c↓ = 3:1. The dashed line corresponds to the SSA result.

Green’s function (7) still weights them straightforwardly with
the corresponding concentrations [see Eq. (A5)]. However,
the fluctuations entering the self-energy in (7) yield nontrivial
mixing terms, such as the prefactor

√
c↑c↓ in Eq. (14) that

couple the spin channels. Such an averaging is only justified
if spin and lattice degrees of freedom are changing on compa-
rable time scales.

We further learn from Fig. 2 that the large values and
strong differences of the nnn force constants in Table I have
a very limited impact on the ICPA spectral function. This is
mainly due to the fact that the symmetry constraints of the bcc
lattice yield only diagonal contributions in �nnn [see Eq. (A3)]
and, consequently, limit the number of terms entering �̄, �̃,
and �′.

After having studied the impact of the force constants
on the phonons, we next investigate the impact of the mag-
netic temperature by changing the concentrations c↑:c↓ in
the ICPA (which was fixed to 3:1 in Fig. 2). In Fig. 3, the
dependence along the [ζ , ζ , 0]L phonon branch for the fully
disordered (c↑ = 0.50), a partially ordered (c↑ = 0.75) and a
fully ordered (c↑ = 1.0) magnetic state is provided, whereas
keeping the interatomic force constants unchanged. Taking the
ferromagnetic state as a reference, the phonons are signifi-
cantly softened when decreasing the magnetization (i.e., the
concentration c↑). This tendency is clearly visible throughout
the whole phonon branch but is particularly pronounced in the
region 0.2 � ζ � 0.4.

In order to understand the wave-vector dependence along
[ζ , ζ , 0]L, we have plotted the partial spectral functions of
c↑ = 0.5 for three ζ values in the insets of Fig. 3. It can
be seen that, at ζ = 0.15, all three contributions to the total
spectral function are peaked at almost the same frequency,
which is identical to the SSA result (the dashed line). At
ζ = 0.3, a separation of the ↑↑ contribution from the ↓↓
and ↑↓ contributions can be noted because the stronger force
constant gives rise to higher frequencies. Since the latter
contributions (the blue dashed dispersion line) still dominate
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FIG. 3. Dependence of phonon frequencies and spectral func-
tions on the wave vector and the concentration for a fixed set of
model force constants (the upper right block of Table II, �nn

↑↑/�
nn
↓↓ =

�nn
↑↑/�

nn
↑↓ = 2). The upper figure shows the wave-vector dependence

along the [ζ , ζ , 0]L branch of the total phonon energies (the solid
lines) for the concentrations c↑ = 0.5, 0.75, and 1.0. For c↑ = 0.5,
the peak positions for the ↑↑ (the red dashed line) and the ↓↓ (the
blue dashed line) partial spectral function are additionally plotted,
whereas the insets provide the full frequency dependence of the par-
tial spectral functions at ζ = 0.15, 0.30, and 0.45. The lower figure
provides the frequency dependence of the total spectral function at
ζ = 0.15, 0.30, and 0.45 for various given concentrations.

the total spectral density, the phonon frequency is clearly
shifted below the SSA result. At the same time, we ob-
serve a broadening of the phonon peak. As the wave vector
is increased, the respective peaks further separate, and the
distribution of spectral weight of the ↑↑ contribution (the
red dashed dispersion line) is changed such that the two-
peak structure changes to a pronounced peak well above the
SSA position. This high-frequency peak dominates the total
spectral function close to the edge of the Brillouin zone,
therewith reducing the softening effect as compared to SSA.

The dependence of the full spectral function on the
concentration ratio c↑:c↓ is shown in the lower panel of
Fig. 3. As discussed earlier, the spectral function shows
δ-shaped peaks for the limiting case of full magnetic order
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FIG. 4. Phonon dispersions for paramagnetic bcc Fe calculated
with the ICPA and SSA approaches. The concentration ratios c↑ = c↓
(ideal paramagnet) and c↑:c↓ = 3:1 (ferromagnet close to saturation)
are considered. The SSA approach with magnon-phonon coupling is
an interpolation to the experimental temperature (1043 K) [28]. The
“6up2dn” result corresponds to force constants in a paramagnetic
supercell with SRO such that locally c↑:c↓ = 3:1. The black filled
circles correspond to experimental data [55].

(c↑ = 1.0). The opposite limit of c↑ = c↓ also yields to
a sharpening of peaks due to reduced fluctuation effects.
However, it does not correspond to the perfect paramagnet
because the force constants are fixed to �nn

↑↑/�nn
↓↓ = 2. At

ζ = 0.45, remainders of the two-peak structure for c↑ = 0.5
are visible, but the peaks are rather flat. The behavior for
intermediate concentrations is for all ζ values a smooth
transition between these two extreme cases. The distance
between the extrema depends again on the wave vector but
seems to be largest when the spectral function becomes
broadest, i.e., when the strongest fluctuation effects occur.

C. Application to bcc Fe

To quantitatively evaluate the performance of the ICPA
for bcc Fe, we now return to the force constants presented
in Table I. All three scenarios considered in the table are
plotted in Fig. 4. As indicated earlier, the ICPA result for
c↑ = c↓ (the brown lines) is formally identical with the SSA
result published in Ref. [17], except the restriction of the
force constants to first and second neighbors. Therefore, no
fluctuation effects are expected in this high-temperature limit.

Taking into account that the experiments have been per-
formed at the Curie temperature of Fe (1043 K), a SRO of
localized moments instead of a fully random distribution can
be expected [56]. To evaluate its impact, we have selected
only those nearest-neighbor configurations with six ↑ and
two ↓ spins. The resulting force constants (the second block
of Table I) are approximately the same as for all the other
configurations (the first block of Table I). Nevertheless, due to
the different concentrations c↑ and c↓ used in this case (con-
sidering the SRO as a total magnetization), the corresponding
phonon energies are significantly shifted upwards (the red
line in Fig. 4). Although we can now also formally expect
deviations of the ICPA phonon energies from a similar SSA

FIG. 5. Phonon dispersions for paramagnetic bcc Fe for a con-
centration c↑:c↓ = 3:1. The phonon linewidth as obtained by ICPA
is indicated by the density plot.

procedure, the relatively small difference between φ↑↑ and
φ↑↓ will make the quantitative phonon corrections also small.
We, therefore, compare the approach with the interpolation
scheme of SSA and ferromagnetic force constants to describe
the spin behavior at 1043 K as published in Ref. [28] (the
orange line in Fig. 4). We note that the soft transversal
branches are better captured by the SRO assumption, whereas
the interpolation schemes works better for the stiffer modes.

A direct comparison of ICPA and SSA phonon energies can
be performed if c↑:c↓ = 3:1 globally throughout the crystal.
As compared to the scenario with only SRO configurations of
c↑:c↓ = 3:1, the phonon energies are again shifted upwards.
However, the force constant disorder caused by the difference
between φ↑↑ and φ↑↓ (the third block of Table I) is in
this case even smaller than in the previous discussion. As a
consequence, the fluctuation effects on the phonon energies
(compare the blue and green lines in Fig. 4) are below the
experimental resolution. Hence, bcc Fe seems not to be a ma-
terial for which a slower time scale for magnetic fluctuations
as considered in ICPA has a noticeable impact on phonon
energies. The resulting phonon scattering becomes, however,
apparent if one studies phonon linewidths. As discussed in
the previous subsection, they are strongly influenced by force
constant disorder. Figure 5 demonstrates that the relatively
small spin-induced force constant disorder of bcc Fe has a
noticeable impact on phonon lifetimes. The broadening of
the phonon spectrum seems to be strongest for transversal
branches close to high-symmetry points in the Brillouin zone.

IV. CONCLUSIONS

In conclusion, we have investigated the impact of time
scales on the lattice dynamics in systems with magnetic fluc-
tuations. To this end, the ICPA has been employed to describe
the magnetic disorder. In contrast to chemically disordered
systems for which ICPA has been originally developed, no
mass disorder is present in this case. The method averages
over different local spin configurations contained in a fully
disordered spin distribution for a supercell in such a way
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that a temporal distinction between force constants belonging
to the three different spin pairs ↑↑, ↓↓, and ↑↓ of the
neighboring atoms remains possible. This is different from
the SSA approach where a time scale of spin fluctuations is
considered that is too fast to allow for such a distinction.

In the paramagnetic case, characterized by equal concen-
trations of up and down spins, both approaches yield identical
results. This indicates that, instead of a consideration of
individual fluctuations, an average over all spin configuration
as performed in SSA is sufficient in this temperature regime.
Below the Curie temperature, however, the relevance of mag-
netic fluctuations for phonon line shapes and frequencies has
been demonstrated.

Nevertheless, when calculating the phonon dispersion in
the prototype material system bcc Fe, the results of ICPA and
SSA are very similar even below the Curie temperature. The
main difference is the observation of a phonon broadening,
which is predicted by ICPA but does not exist on the time
scale considered by SSA. In addition, the impact of SRO in
the paramagnetic case has been studied. The comparison of
the obtained results with the experimental data indicates the
validity of our approach. These findings, thus, suggest that
magnetic disorder as present near the Curie temperature can
influence the lattice dynamics in magnetic systems.
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APPENDIX: MATRIX ELEMENTS

In the following, the expressions for the operators
G−1

SSA, �′, and (�̃ − �̄ · 1̃), which are required as input for
the propagator (7), are provided for a bcc crystal struc-
ture. Similarly, the expressions for fcc crystals, given in the
Appendix of Ref. [40], can be reduced to the case of vanishing
mass disorder.

The nn and nnn sites are (± 1
2 ,± 1

2 ,± 1
2 ),

(±1, 0, 0), (0,±1, 0), and (0, 0,±1), respectively, and
corresponding force constant matrices are

�00 = �(000,000) = −
∑
j �=0

� j0, (A1)

�nn = �(000, 1
2

1
2

1
2 )

=
⎛
⎝φ1xx φ1xy φ1xy

φ1xy φ1xx φ1xy

φ1xy φ1xy φ1xx

⎞
⎠, (A2)

�nnn = �(000,100)

=
⎛
⎝φ2xx 0 0

0 φ2yy 0
0 0 φ2yy

⎞
⎠. (A3)

The force constants between the reference atom and the other
neighbors can be calculated by applying cubic symmetry
operations to the above two matrices. We use the notation
Rα

i j = Rα
j − Rα

i and Rαβ
i j = (2Rα

i j )(2Rβ
i j ) for the Cartesian com-

ponents α, β of relative lattice vectors Rα/β
i and Rα/β

j for the
two neighboring atoms at sites i and j. We then obtain the
following matrix elements for �̄i j (with α �= β):

�̄αα
nn = [c2

↑φ1xx
↑↑ + c2

↓φ1xx
↓↓ + 2c↑c↓φ1xx

↑↓ ],

�̄αβ
nn = [c2

↑φ
1xy
↑↑ + c2

↓φ
1xy
↓↓ + 2c↑c↓φ

1xy
↑↓ ] · Rαβ

nn ,

�̄αα
nnn = [c2

↑φ2xx
↑↑ + c2

↓φ2xx
↓↓ + 2c↑c↓φ2xx

↑↓ ] for Rα
nnn = ±1,

�̄αα
nnn = [c2

↑φ
2yy
↑↑ + c2

↓φ
2yy
↓↓ + 2c↑c↓φ

2yy
↑↓ ] for Rα

nnn = 0,

�̄αβ
nnn = 0, (A4)

where Rnn and Rnnn specify distance between sites at nn
and nnn positions, respectively. The matrix elements for �′

i j

are only nonzero if either i or j is a fluctuation site. In
this case, we obtain, similar to (A4), the following matrix
elements (α �= β):

(�′)αα
nn = √

c↑c↓[c↑φ1xx
↑↑ − c↓φ1xx

↓↓ + (c↓ − c↑)φ1xx
↑↓ ]

= √
c↑c↓[(c↑ − c↓)(φ1xx

↑↑ − φ1xx
↑↓ )] for φ1xx

↑↑ = φ1xx
↓↓ ,(

�′)αβ

nn = √
c↑c↓[(c↑ − c↓)(φ1xy

↑↑ − φ
1xy
↑↓ )] · Rαβ

nn ,

(�′)αα
nnn = √

c↑c↓[(c↑ − c↓)(φ2xx
↑↑ − φ2xx

↑↓ )] for Rα
nnn = ±1,

(�′)αα
nnn = √

c↑c↓[(c↑ − c↓)(φ2yy
↑↑ − φ

2yy
↑↓ )] for Rα

nnn = 0,

(A5)

where the last three matrix elements are given for the special
case of φ↑↑ = φ↓↓.

In the case of �̃i j (	q), a distinction between the positions of
the fluctuation sites is required. If i and j are fluctuation sites
(corresponding to creation and annihilation sites) at nn or nnn
positions, then the following equations hold:

(�̃(	q))αα
nn = [c↑c↓(φ1xx

↑↑ + φ1xx
↓↓ ) + (c2

↑ + c2
↓)φ1xx

↑↓ ]

− c↑c↓[φ1xx
↑↑ + φ1xx

↓↓ − 2φ1xx
↑↓ ]ei	q· 	Rnn ,

(�̃(	q))αβ
nn = [2c↑c↓φ

1xy
↑↑ + (c2

↑ + c2
↓)φ1xy

↑↓ ] · Rαβ
nn

− 2c↑c↓[φ1xy
↑↑ − φ

1xy
↑↓ ]Rαβ

nn ei	q· 	Rnn ,

(�̃(	q))αα
nnn = [2c↑c↓φ2xx

↑↑ + (c2
↑ + c2

↓)φ2xx
↑↓ ]

− 2c↑c↓[φ2xx
↑↑ − φ2xx

↑↓ ]ei	q· 	Rnnn for Rα
nnn = ±1,

(�̃(	q))αα
nnn = [2c↑c↓φ

2yy
↑↑ + (c2

↑ + c2
↓)φ2yy

↑↓ ]

− 2c↑c↓[φ2yy
↑↑ − φ

2yy
↑↓ ]ei	q· 	Rnnn for Rα

nnn = 0,

(A6)

with φ↑↑ = φ↓↓ for the last three terms. If only i or j is a fluc-
tuation site, then it is required that another site k is involved,
at which the second fluctuation takes place. If k is located at a

094201-8



PHONONS IN MAGNETICALLY DISORDERED MATERIALS: … PHYSICAL REVIEW B 101, 094201 (2020)

nn position of i and j such that 	Rnn = 	Rki = − 	Rk j , then,

(�̃(	q))αα
nn = c↑c↓[φ1xx

↑↑ + φ1xx
↓↓ − 2φ1xx

↑↓ ]ei	q· 	Rnn ,

(�̃(	q))αβ
nn = 2c↑c↓[φ1xy

↑↑ − φ
1xy
↑↓ ]Rαβ

nn ei	q· 	Rnn . (A7)

If k is located at a nnn position of i and j such that 	Rnnn =
	Rki = − 	Rk j , then,

(�̃(	q))αα
nnn = 2c↑c↓[φ2xx

↑↑ − φ2xx
↑↓ ]ei	q· 	Rnnn for Rα

nnn = ±1,

(�̃(	q))αα
nnn = 2c↑c↓[φ2yy

↑↑ − φ
2yy
↑↓ ]ei	q· 	Rnnn for Rα

nnn = 0, (A8)

with φ↑↑ = φ↓↓ for the last three terms. If none of the above
conditions are fulfilled, then �̃i j (	q) becomes a null matrix.

If φ↑↑ = φ↓↓ = φ↑↓, i.e., the dynamical matrix does not
depend on the spin configuration, then, the system is free
from any kind of fluctuation. This is consistent with the
mathematical observation that �′ and (�̃ − �̄)(	q) reduce
to null matrices. Subsequently, the self-energy contribution
due to scattering vanishes. This even happens if φ↑↑ �=
φ↑↓, but φ↑↑ = φ↓↓ and c↑ = c↓ in the present case. Under
such circumstances, the ICPA and the SSA yield identical
results.
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