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a b s t r a c t 

Fibrous networks are essential structural components of biological and engineered materials. Accordingly, 

many approaches have been developed to quantify their structural properties, which define their material 

properties. However, a comprehensive overview and comparison of methods is lacking. Therefore, we 

systematically searched for automated tools quantifying network characteristics in confocal, stimulated 

emission depletion (STED) or scanning electron microscopy (SEM) images and compared these tools by 

applying them to fibrin, a prototypical fibrous network in thrombi. Structural properties of fibrin such as 

fiber diameter and alignment are clinically relevant, since they influence the risk of thrombosis. Based on 

a systematic comparison of the automated tools with each other, manual measurements, and simulated 

networks, we provide guidance to choose appropriate tools for fibrous network quantification depending 

on imaging modality and structural parameter. These tools are often able to reliably measure relative 

changes in network characteristics, but absolute numbers should be interpreted with care. 

Statement of significance 

Structural properties of fibrous networks define material properties of many biological and engineered 

materials. Many methods exist to automatically quantify structural properties, but an overview and com- 

parison is lacking. In this work, we systematically searched for all publicly available automated analysis 

tools that can quantify structural properties of fibrous networks. Next, we compared them by applying 

them to microscopy images of fibrin networks. We also benchmarked the automated tools against man- 

ual measurements or synthetic images. As a result, we give advice on which automated analysis tools to 

use for specific structural properties. We anticipate that researchers from a large variety of fields, ranging 

from thrombosis and hemostasis to cancer research, and materials science, can benefit from our work. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Fibrous networks are critical structural components of many 

iological and engineered materials and are therefore studied in 

 wide range of fields. In a biomedical context, important ex- 
� Authors confirm they have checked all supplementary files (removing any high- 

ighting of the edits) and e-Extra content tabs. 
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mples include collagen or elastin fibers found in the extracel- 

ular matrix of mammalian connective tissues [ 1 , 2 ], fibrin fibers 

ound in thrombi [3] , and neurons in the brain [4] . Material sci-

ntists widely use fibrous networks to engineer hydrogels [5] , pa- 

er, and textiles [6] . The structural characteristics of fibrous net- 

orks, such as the fiber length, diameter, density and alignment, 

ictate the physical properties of these materials, including their 

lastic modulus, strength, and permeability [7] . A distinction can 

e made between fiber properties, describing characteristics of in- 

ividual fibers such as diameter, and network properties, describ- 

ng the network as a whole such as fiber density or alignment. 

he structure of fibrous networks is commonly determined by 
c. This is an open access article under the CC BY-NC-ND license 
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maging, in particular by scanning electron microscopy (SEM) or 

onfocal microscopy. SEM provides high resolution, but requires 

xtensive sample preparation such as dehydration and sputter 

oating, which can affect network properties and introduce imag- 

ng artefacts [8] . Preparation of samples for confocal microscopy 

s less invasive, but this method has a limited resolution and can 

herefore not reliably measure the diameter of fibers, which are 

ften below 200 nm in biological materials [9] and synthetic hy- 

rogels [10] . Recently developed super-resolution methods such as 

timulated emission depletion (STED) microscopy offer a good al- 

ernative, but are so far not exploited much for fibrous networks. 

TED microscopy selectively switches off fluorophores around the 

ocal point, thereby increasing resolution below 50 nm and im- 

roving the differentiation of separate fibers [11] . An advantage of 

TED microscopy over other super-resolution techniques is that it 

s applicable to samples prepared in the same way as for confocal 

icroscopy. 

Many different approaches have been developed for the (semi- 

automated quantification of fibrous network characteristics from 

icroscopy images, though often in a specific and narrow con- 

ext, such as collagen or (synthetic) nanofibers [12] and neurites 

n neurons [13] . It is unknown to what extent these tools can be

sed across fields for other types of fibrous networks. More gen- 

rally, it is unclear which methods are suitable for which struc- 

ural characteristics because a comprehensive overview is missing. 

herefore, our first aim is to provide an overview of publicly avail- 

ble automated tools that can be used to quantify fibrous network 

haracteristics. Next, we systematically tested these tools on con- 

ocal, STED, and SEM images of fibrin networks, a representative 

xample of a biological fibrous network with high clinical rele- 

ance. Fibrin is the main structural component of the thrombus 

hat forms upon blood clotting. Structural properties of fibrin are 

mportant determinants of the disease burden and mortality asso- 

iated with various diseases, such as cardiovascular disease and in- 

ammatory diseases such as COVID-19 [14–16] . The fibrin network 

orms after activation of the coagulation cascade, ultimately lead- 

ng to the cleavage of fibrinogen molecules into fibrin monomers 

hat laterally and longitudinally associate into thick fibers that 

orm branched networks [17] . Characteristics of the fibrin network, 

uch as fiber thickness, pore size, and number of branch points, 

etermine among others the risk of embolization and the sus- 

eptibility of thrombi to fibrinolysis [18] . For instance, in patients 

ith thrombotic disease, more compact thrombi are observed that 

re characterized by many thin fibers, a dense fibrin network 

ith small pores, and a large number of branch points [19] . This 

esults in decreased permeability for proteins of the fibrinolytic 

ystem, enhancing resistance to breakdown of the thrombus 

20] . 

Here we systematically searched the literature for available 

utomated tools that can be used to quantify characteristics 

f fibrous networks. By testing these tools on confocal, STED, 

nd SEM images of fibrin networks in addition to testing them 

n synthetic and simulated images, we provide guidance to 

hoose appropriate tools for the quantification of fibrous network 

haracteristics. 

. Methods 

The systematic review was performed according to the Pre- 

erred Reporting Items for Systematic Reviews and Meta-Analyses 

PRISMA) guidelines [21] . 

.1. Article search 

We conducted a systematic literature search in the Embase, 

edline-Ovid, Cochrane Library, and Web of Science databases on 
264 
pril 2nd, 2021; and the search was repeated on November 7, 2021 

nd May 10, 2022. The search strategy included different types of 

brous networks, such as fibrin, collagen, and nanofibers, in com- 

ination with image analysis terms (e.g. algorithm or automated 

nalysis), different microscopes (e.g. fluorescence, confocal, scan- 

ing electron microscopy), and network characteristics (e.g. diam- 

ter, pore size, orientation, length). For the full search terms, see 

he Supplementary Information. 

.2. Study selection 

After deduplication, the search resulted in 5799 results ( Fig. 1 ). 

wo researchers (J.J. de Vries and D.M. Laan) independently 

creened these articles. In the first step, articles were included 

ased on title and abstract. Subsequently, these abstracts were 

ead full text and articles that did not match the research ques- 

ions were excluded. Reasons for exclusions were: manual mea- 

urements, no quantification of (relevant) parameters, no (relevant) 

maging, or when the paper was only theoretical. In addition, re- 

iews and articles not available in full text were excluded. While 

eading the articles, additional relevant articles based on the bibli- 

graphy were also assessed for inclusion. In case of disagreement 

etween the two researchers, consensus was reached through dis- 

ussion. 

.3. Data extraction 

To prevent bias, data were independently extracted from the ar- 

icles by two researchers (J.J. de Vries and D.M. Laan). The follow- 

ng data was collected: first author, publication year, name of the 

sed tool, type of network the tool was used on, imaging modality 

sed to make the images, and quantified characteristics (alignment, 

ber diameter, fiber length, fiber density, number of branch points 

r junctions, pore size and/or porosity). 

.4. Testing and comparison of the automated tools 

After identification of the automated tools, these tools were 

ested on different sets of images of fibrin networks to assess 

hether the tools worked on these images and resulted in au- 

omated quantification of relevant characteristics. Tools were ex- 

luded when manual steps such as manual tracing were needed, 

hen only images from specific devices could be used, when the 

oftware was commercial, or when specific requirements were 

eeded that were not present in our fibrin network images (e.g. 

ultiple imaging channels or specific shapes, such as a neuron 

ody). Next, tools that worked on our fibrin images were applied 

n a test set of fibrin network images and results of the dif- 

erent tools were compared. The test set of fibrin network im- 

ges consisted of 50 scanning electron microscopy (SEM) images 

ith a pixel size of 8.3 nm [9] , 100 confocal laser scanning mi- 

roscopy images (50 images of clots formed under static condi- 

ions with a pixel size of 67.6 nm [ 16 , 22 ], and 50 images of clots

ormed in a flow chamber at different shear rates with a pixel 

ize of 94.6 nm), and 50 stimulated emission depletion (STED) 

icroscopy images with a pixel size of 26.4 nm [ 16 , 22 ]. Fur-

her details on these images can be found in the Supplementary 

ethods and examples can be found in Fig. 2 A. Before analyz- 

ng the images using the automated tools, STED and confocal im- 

ges were preprocessed by subtracting the background. A rolling 

all radius of 50 pixels for STED images and 25 pixels for con- 

ocal images was used. These settings were based on the size 

f the largest objects in the images. In addition, other relevant 

reprocessing steps were used when this was deemed necessary 

or a good performance of the analysis tool (Supplementary Table 
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Fig. 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses [21] ) flow diagram of study selection. In the identification phase, we systematically 

searched the literature to identify articles using automated tools that quantify fibrous network characteristics. In the screening phase, articles were first screened based on 

title and abstract. Next, articles were read full-text to assess their eligibility. Finally, we included 183 articles in which automated analysis tools were used, of which we 

extracted 75 different tools. We applied these tools to fibrin, a prototypical fibrous network example present in thrombi. Of the 75 tools, 27 could be used on our confocal, 

stimulated emission depletion (STED), or scanning electron microscopy (SEM) images. The results of these tools were compared to each other, manual measurements, and 

simulated networks. 
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VIII). Most of the settings in each tool were left as their default 

ettings, except when stated otherwise in Supplementary Table 

VIII. 

.5. Comparing automated tools on synthetic images and simulated 

brous networks 

To test the performance of each tool, we also applied the auto- 

ated tools to digital synthetic images of branched fibrous net- 

orks with flexible fibers with known diameters, generated by 
265 
otaling et al. [23] . We used 15 images with a monodisperse fiber 

iameter and nine images with polydispersity in the thickness of 

bers (see Fig. 3 B and C for examples). All tools able to measure

iameter were applied to these images. Additionally, we used 13 

ynthetic images containing rigid, short fibers with known disper- 

ion parameters ranging from 0.2 to 5, generated by Morrill et al. 

24] (see Fig. 3 A for examples). These images all had a mean fiber

rientation of 90 °. All tools able to measure fiber alignment were 

pplied to these images. 

Finally, we used three simulated branched fibrous networks 

ith flexible fibers with known diameters, branch point number 
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Fig. 2. Correlation between the results of the different tools applied to SEM, STED, and confocal images (A) to quantify fibrin fiber diameter (B), fiber length (C), number of 

branch points (D), fibrin network density (E), and fractal dimension (F). The solid lines in (B-F) indicate the x = y-lines. B) Manual measurements of fiber diameter were used 

as reference on the x-axis in the SEM images, while the fiber diameters quantified by the ER network analysis were used as reference in the STED images, since its absolute 

values were closest to the manual measurements in SEM. Every dot presents the mean fiber diameter per image. C) For fiber length measurements, the results of the ER 

network analysis were used as reference, since the results from this tool were closest to known values in synthetic images. Total fiber length measured by the different 

tools was divided by the surface area of the image, to be able to compare absolute values between different imaging methods. Every dot represents the fiber length per 

μm 

2 in one image. D) For the quantification of the number of branch points, the numbers calculated by StructuralGT (SEM) and DiameterJ (STED and confocal) were used 

as reference, since these tools performed best on simulated networks with known number of branch points. The total number of branch points was divided by the surface 

area of the image. Therefore, every dot represents the number of branch points per μm 

2 in one image. E, F) Fibrin network density and fractal dimension were quantified by 

only two or three tools. Therefore, Pearson’s correlation coefficients (r) are given for every combination of tools in the graph, indicated by boxes in the color of the dots of 

the correlation of that specific tool with the tool on the x-axis, or in black boxes when two tools on the y-axis are correlated; ∗p < 0.05. 
266 
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Fig. 3. Examples of (A) synthetic images with known dispersion (k) values [24] , synthetic images with (B) monodisperse or (C) polydisperse diameters [23] , and (D) simulated 

networks. Correlation plots show the known values on the x-axis and the results of the different tools on the y-axis. The solid lines indicate the x = y-lines. Every dot 

represents the result of one image. In B and C, three different images per diameter value were used, while in A and D, only one image per value was used. 
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nd fiber length ( Fig. 3 D). The algorithm to generate fibrous 

etworks was written in Python (See Supplementary Informa- 

ion) and more information is available in the Supplementary 

ethods. 

.6. Statistical analysis 

For each quantified characteristic, we assessed the correlation 

etween results obtained using the different tools, reporting the 

earson’s correlation coefficient (r). All tools able to quantify a spe- 

ific characteristic were used in the comparison of that character- 

stic. 
267 
.7. Data availability 

The full set of confocal, STED, SEM, and simulated images are 

vailable from the authors upon request. The numbers obtained af- 

er applying the automated tools on the images are available in a 

ata supplement. 

.8. Code availability 

The Python code to generate simulated images can be found 

n a data supplement available with the online version of this 
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Table 1 

Overview of identified automated tools that can be used to quantify fibrin fiber network characteristics.. 

Name of the tool 

Type of network it was 

developed for 

Image type it was developed 

for Confocal SEM STED Batchprocessing 2D/3D Reference 

ACCMetrics Nerve fibers Confocal 
√ 

✗ 
√ √ 

2D [ 32 , 33 ] 

DiameterJ Nanofibers SEM ✗ 
√ √ √ 

2D [34] 

CT-FIRE Collagen SHG 
√ 

✗ 
√ √ 

2D/3D [29] 

FIRE (FIbeR Extraction) Collagen Confocal microscopy 
√ 

✗ 
√ 

✗ 2D/3D [28] 

Local Thickness plugin In general, bone tissue as 

example 

In general 
√ √ √ √ 

2D [ 35 , 36 ] 

SIMPoly Nanofibers SEM ✗ 
√ 

✗ ✗ 2D [37] 

ER Network Analysis Endoplasmic reticulum Confocal microscopy 
√ √ √ √ 

2D [38] 

REAVER Vascular networks High-resolution fluorescence 

microscopy 

✗ 
√ √ √ 

2D [39] 

Quanfima Fibrous biomaterials In general 
√ √ √ √ 

2D/3D [40] 

Qiber3D Networks 3D image stacks 
√ 

✗ ✗ ✗ 3D [30] 

Algorithms Hood et al. Fibrin Confocal microscopy 
√ √ √ √ 

2D [41] 

AngioTool Vascular networks Fluorescence microscopy ✗ 
√ √ 

✗ 2D [42] 

SOAX Biopolymer networks Confocal microscopy 
√ 

✗ 
√ √ 

2D/3D [43] 

StructuralGT Nanoscale networks SEM ✗ 
√ √ √ 

2D [44] 

BoneJ Bone Computed Tomography 
√ √ √ √ 

2D/3D [45] 

Pore size analysis (Krauss 

et al.) 

Collagen Confocal microscopy 
√ 

✗ ✗ ✗ 2D [46] 

Hydrogel analysis Hydrogels Cryo-SEM 

√ 

✗ ✗ ✗ 2D [47] 

Bubble analysis Biopolymer networks Confocal 
√ √ 

✗ 
√ 

2D [48] 

3D directional variance 

algorithm 

Collagen SHG 
√ 

✗ 
√ 

✗ 3D [31] 

CurveAlign Collagen SHG 
√ √ √ √ 

2D/3D [49] 

OrientationJ Collagen Confocal 
√ √ √ √ 

2D [50] 

Directionality plugin - - 
√ √ √ 

✗ 2D None 

FibLab/FOA tool Fibrous networks Fluorescence microscopy 
√ √ √ 

✗ 2D [51] 

Cytospectre Cytoskeleton filaments Microscopy images 
√ √ √ √ 

2D [52] 

FiberFit Collagen Confocal microscopy 
√ √ √ √ 

2D [24] 

GTFiber Nanofibers AFM 

√ √ √ √ 

2D [53] 

AFT (Alignment by Fourier 

Transform) 

Fibrillar features Microscopy images 
√ √ √ √ 

2D [54] 
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rticle. The software and scripts of the used methods identified in 

he systematic search can be found via the original publications. 

. Results 

.1. Study selection 

A total of 9212 articles was found in the literature search (see 

upplementary Information for the full search terms). After dedu- 

lication, 5799 articles were screened based on title and abstract 

 Fig. 1 ). From the 1055 articles read in full text, we included 144

rticles in which an automated tool was used that was publicly 

vailable as a script, program, or plugin. In addition, while read- 

ng these articles full text, we identified 39 other relevant articles 

hat met the inclusion criteria in the references which were also 

ncluded. In total, we identified 75 different automated tools or 

cripts in 183 papers. 

.2. Testing of the automated tools 

The selected tools were tested on our confocal, STED, and 

EM images of fibrin networks to check whether they can be 

sed on fibrin networks imaged using one of these imaging tech- 

iques. From the 75 tools, 48 tools were excluded. Reasons for 

xclusion during testing were, among others, that some tools re- 

uired manual processing steps, could only be used on images 

rom specific devices, needed paid software, or were not suit- 

ble for our images of fibrin fibers (Supplementary Table I). This 

ast category includes tools that for example looked for cross- 

ections of fibers [25] , needed multi-channel images [ 26 , 27 ], or

eeded specific kinds of structures, such as cell bodies in neurons 

13] . 
268 
.3. Comparison of the automated tools 

Next, the automated tools that could be used on our fibrin 

etwork images were applied to 100 confocal (50 of fibrin net- 

orks formed under static conditions and 50 of fibrin networks 

ormed under flow), 50 SEM, and 50 STED images of fibrin net- 

orks (see Supplementary Fig. I-IV for visual presentations of the 

pplied tools). Many of the automated image analysis tools were 

riginally developed for collagen or nanofibers ( Table 1 ). Most tools 

ere suitable for confocal, STED, and SEM images and could be 

sed with a batch processing option. In addition, most tools quan- 

ified network characteristics in 2D, while some were able to also, 

r solely, use 3D image stacks. Most of the identified tools were 

ble to quantify fibrin fiber diameter, fiber length, or alignment 

 Table 2 ). Three of the 27 tools were not included in the compari-

on analyses. FIRE [28] was not used, since CT-FIRE [29] was used 

nstead, which is an extension of FIRE. Qiber3D [30] and the 3D di- 

ectional variance algorithm [31] could only be used on 3D image 

tacks. However, all other tools were applied to 2D images, so we 

id not include Qiber3D and the 3D directional variance algorithm 

n the comparison analyses. 

AFM, atomic force microscopy; SEM, scanning electron mi- 

roscopy; SHG, second-harmonic generation; STED, stimulated 

mission depletion. 

.3.1. Fiber alignment 

We tested nine tools that could quantify alignment, a charac- 

eristic describing the network as a whole (Supplementary Table 

I): OrientationJ [50] , CurveAlign [49] , GTFiber [53] , CT-FIRE [29] , 

ytospectre [52] , Directionality, FOA tool [51] , FiberFit [24] , and 

lignment by Fourier Transform (AFT) [54] . Most of the methods 

easured global alignment (within the whole image), while Ori- 

ntationJ, GTFiber, and AFT used local alignment measurements 
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Table 2 

Overview of quantified characteristics per tool. 

Fiber properties Network properties 

Image analysis tool Fiber orientation Fiber diameter Fiber length Alignment Branch points Fiber density Fractal dimension Porosity/Pore size 

ACCMetrics ✗ 
√ √ 

✗ 
√ √ √ 

✗ 

DiameterJ ✗ 
√ √ 

✗ 
√ 

✗ ✗ 
√ 

CT-FIRE 
√ √ √ √ 

✗ ✗ ✗ ✗ 

FIRE (FIbeR 

Extraction) 

✗ ✗ 
√ 

✗ 
√ √ 

✗ ✗ 

Local Thickness plugin ✗ 
√ 

✗ ✗ ✗ ✗ ✗ ✗ 

SIMPoly ✗ 
√ 

✗ ✗ ✗ ✗ ✗ ✗ 

ER Network Analysis ✗ 
√ √ 

✗ 
√ 

✗ ✗ ✗ 

REAVER ✗ 
√ √ 

✗ 
√ √ 

✗ ✗ 

Quanfima 
√ √ 

✗ ✗ ✗ ✗ ✗ 
√ 

Qiber3D ✗ 
√ √ 

✗ 
√ √ 

✗ ✗ 

Algorithms Hood et al. ✗ ✗ ✗ ✗ ✗ ✗ 
√ √ 

AngioTool ✗ ✗ 
√ 

✗ 
√ √ 

✗ ✗ 

SOAX 
√ 

✗ 
√ 

✗ ✗ ✗ ✗ ✗ 

StructuralGT ✗ ✗ ✗ ✗ 
√ 

✗ ✗ ✗ 

BoneJ ✗ ✗ ✗ ✗ ✗ ✗ 
√ 

✗ 

Pore size analysis 

(Krauss et al.) 

✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√ 

Hydrogel analysis ✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√ 

Bubble analysis ✗ ✗ ✗ ✗ ✗ ✗ ✗ 
√ 

3D directional variance 

algorithm 

✗ ✗ ✗ 
√ 

✗ ✗ ✗ ✗ 

CurveAlign 
√ 

✗ ✗ 
√ 

✗ ✗ ✗ ✗ 

OrientationJ 
√ 

✗ ✗ 
√ 

✗ ✗ ✗ ✗ 

Directionality 
√ 

✗ ✗ 
√ 

✗ ✗ ✗ ✗ 

FibLab/FOA tool 
√ 

✗ ✗ 
√ 

✗ ✗ ✗ ✗ 

Cytospectre 
√ 

✗ ✗ 
√ 

✗ ✗ ✗ ✗ 

FiberFit 
√ 

✗ ✗ 
√ 

✗ ✗ ✗ ✗ 

GTFiber ✗ ✗ ✗ 
√ 

✗ ✗ ✗ ✗ 

AFT (Alignment by 

Fourier Transform) 

✗ ✗ ✗ 
√ 

✗ ✗ ✗ ✗ 
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within the local neighborhood). To compare these tools, we ap- 

lied them to confocal images of fibrin fibers aligned by apply- 

ng shear flow with different shear rates. Visual examples of the 

pplied tools are shown in Supplementary Fig. IV. Supplementary 

ig. V shows the 50 images with their corresponding nematic order 

arameter (S) as calculated by OrientationJ. OrientationJ was used 

s reference because of its proven sensitivity for fiber alignment 

55] . OrientationJ and the CurveAlign, GTFiber, CT-FIRE and AFT 

ools provide an orientation parameter that describes the align- 

ent with a value between 0 (randomly aligned) and 1 (perfectly 

ligned). Strong correlations were found between these five tools, 

ith good agreement in absolute levels between OrientationJ and 

urveAlign and between CT-FIRE, GTFiber, and AFT (Supplementary 

able II and Supplementary Fig. VI). CT-FIRE, GTFiber, and AFT re- 

ort levels that are clearly higher than OrientationJ and CurveAlign. 

ytospectre also returns a value between 0 and 1, but in this case 

he alignment parameter is defined such that 1 means randomly 

ligned and 0 means perfectly aligned. This is opposite to the other 

ools, which explains the negative correlations. FiberFit returns the 

ber dispersion parameter, which is analogous to the reciprocal 

f variance in fiber orientation, therefore low values mean disor- 

ered networks and large values mean aligned networks. FiberFit 

hows a significant correlation with OrientationJ. Finally, the direc- 

ionality plugin and the FOA tool result in parameters describing 

he spread of the orientation distribution. Lower values represent 

etter aligned fibers, while higher values represent more variation 

nd therefore less aligned fibers. Directionality and the FOA tool 

ppear to be rather insensitive to alignment as quantified by Ori- 

ntationJ. 

Additionally, we applied the tools to synthetic images gener- 

ted based on a semicircular von Mises probability density func- 

ion [24] with known dispersion parameters ( Fig. 3 A and Supple- 

entary Table III). Since all tools report different outcome parame- 

ers with different absolute values, we could not compare absolute 
269 
alues to the known dispersion parameter. Similar to the results in 

he confocal images, we did see very strong significant correlations 

r > 0.85) of the results of almost all tools with the known disper- 

ion values, except for the FOA tool (r = -0.73, p < 0.05). The Direc-

ionality plugin did not provide useful results from these images, 

ince no reliable fit could be made to the histogram. 

.3.2. Fiber diameter 

To quantify fibrin fiber diameter (a fiber property), we identi- 

ed eight automated tools: DiameterJ [34] , Local Thickness plugin 

 35 , 36 ], REAVER [39] , ER network analysis [38] , ACCMetrics [ 32 , 33 ],

T-FIRE [29] , Quanfima [40] and SIMPoly [37] . Visual presentations 

f these algorithms can be found in Supplemental Figs. I and II. 

ecause a high image resolution is needed to quantify fibrin fiber 

iameters, we only tested these tools on STED and SEM images 

 Fig. 2 A). For SEM images, we benchmarked the results from the 

utomated tools against manually measured fiber diameters [9] . 

oth in SEM and STED images, almost all tools showed strong cor- 

elations with each other ( Fig. 2 B and Supplementary Table IV and 

). SIMPoly and the ER network analysis found similar absolute 

alues as the manual measurements in SEM images. By contrast, 

iameterJ systematically underestimated fiber thickness. The mean 

iameter measured by DiameterJ was 17% lower than the manual 

easurement. The Local Thickness plugin and REAVER showed no 

r weak correlations with the manual measurements, as well as 

 large overestimation (31%) of the fiber thickness in the case of 

EAVER. In the STED images, we used the results of the ER net- 

ork analysis for reference since the mean value of the diameter 

alculated by this tool was closest to the manual measurement of 

he diameter in the SEM images. All other tools showed strong cor- 

elations with the ER network analysis tool and with each other in 

TED images. The absolute diameter values in STED images ranged 

rom 200 nm (measured by CT-FIRE) to 400 nm (measured by 

EAVER). 



J.J. de Vries, D.M. Laan, F. Frey et al. Acta Biomaterialia 157 (2023) 263–274 

t

t

m

p

e

(

i

W

v

n

b

a

d

s

t

s

m

fi

fi

e

a

q

t

n

a

a

t

T

n

r

o

i

m

t

n

3

fi

A

[  

t

I

w

f

u

a

i

w

s

t

k

s

g

r

m

3

w

S

C  

p

f

a

p  

p

a

n

s

a

r

t

a

o

a

t

n

i

m

s

t

m

w

o

w

i

p

3

fi

a  

c

a

t

a

s

c

3

n

s

o  

y

i

l

C

m

s

3

s

m

f

o

s

w

μ

0

d

o

s

a

[

r

i

E

r

To further check the performance of the tools, we next tested 

hem also on synthetic images of fibrous networks drawn using 

he freehand tool in Inkscape [23] with either known and validated 

onodisperse fiber diameters between 5 and 50 pixels ( Fig. 3 B) or 

olydisperse fiber diameters with an average of 20, 35, or 50 pix- 

ls ( Fig. 3 C), and to simulated networks with known characteristics 

 Fig. 3 D and Supplementary Fig. VII), generated using an algorithm 

n Python (see Supplementary Information for the Python code). 

e used both synthetic images of fibers that were published and 

alidated previously for DiameterJ and FiberFit, as well as fibrous 

etworks that we simulated ourselves to be able to perform un- 

iased comparisons. DiameterJ performed well in synthetic images 

nd the simulated networks with constant fiber diameters, while 

iameter values were underestimated (on average by 44%) in the 

ynthetic images with polydisperse fiber diameters (Supplemen- 

ary Table VI). This limitation is a consequence of the intersection 

ubtraction of DiameterJ. [34] Thicker fibers are more likely to have 

ore intersections due to their increased size. Therefore, thicker 

bers will have less influence on the mean diameter than thinner 

bers, which results in an underestimation of the mean fiber diam- 

ter. Fibrin networks are usually polydisperse in terms of fiber di- 

meters [56] , making DiameterJ less suitable for absolute diameter 

uantification. The Local Thickness plugin and REAVER were sensi- 

ive to changes in fiber diameters in the synthetic images, but sig- 

ificantly overestimated (mean) fiber thickness by respectively 79% 

nd 121%. SIMPoly performed well in images containing fibers with 

 thickness between 10 and 50 pixels, while the fiber thickness in 

he images with the thinnest fibers was not correctly measured. 

his is probably caused by an unsuccessful detection of the thin- 

er fibers. The ER network analysis on the other hand showed cor- 

ect values for fibers with a diameter up to 25 pixels, while fibers 

f 50 pixels were underestimated. Visual inspection showed that 

n very thick fibers, sometimes two centerlines were drawn, which 

ight explain this underestimation. Quanfima was rather insensi- 

ive to changes in fiber diameter. Overall, we recommend to use ER 

etwork analysis or SIMPoly to measure fibrin fiber diameters. 

.3.3. Fiber length 

We found seven different tools that quantify fiber length (a 

ber property) in confocal, STED, or SEM images: DiameterJ [34] , 

ngioTool [42] , REAVER [39] , ER network analysis [38] , CT-FIRE 

29] , ACCMetrics [ 32 , 33 ], and SOAX [43] ( Fig. 2 C). Visual presen-

ations of these algorithms can be found in Supplemental Figs. I, 

I, and III. The results of these tools showed strong correlations 

ith each other when applied to STED and SEM images, but not 

or confocal images (Supplementary Tables VII-IX). Absolute val- 

es of fiber length, normalized against the surface area of the im- 

ge, were higher in SEM images compared to STED and confocal 

mages, likely since SEM images show fibers from multiple layers 

hereas STED and confocal show fibers only within the confocal 

lice. Applying the automated tools to simulated networks showed 

hat the ER network analysis returned values very similar to the 

nown values ( Fig. 3 D and Supplementary Table X). DiameterJ was 

ensitive to changes, but underestimated fiber length, while An- 

ioTool and REAVER were not sensitive to fiber length. We hence 

ecommend to use the ER network analysis to automatically deter- 

ine fiber length. 

.3.4. Number of branch points 

To automatically quantify the number of branch points (a net- 

ork property), we found six tools: DiameterJ [34] , AngioTool [42] , 

tructuralGT [44] , REAVER [39] , ER network analysis [38] , and AC- 

Metrics [ 32 , 33 ] (see Supplementary Figs. I, II, and III for visual

resentations of these algorithms). Again, strong correlations were 

ound between the results of the tools in both SEM and STED im- 

ges, with remarkably higher absolute numbers of branch points 
270 
er μm 

2 in SEM than in STED or confocal images ( Fig. 2 D and Sup-

lementary Tables XI-XIII). In confocal images, significant associ- 

tions were present between DiameterJ, StructuralGT, and the ER 

etwork analysis. However, absolute numbers of the different tools 

howed a very broad range, suggesting that confocal imaging is not 

 reliable tool for measuring branch points. In SEM images, REAVER 

eported a significantly lower number of branch points compared 

o the majority of tools, while the ER network analysis resulted in 

 significantly higher number. In STED images, also a large range 

f numbers was found: between 30 (StructuralGT and ACCMetrics) 

nd 70 (DiameterJ and AngioTool). Upon inspection of the fiber 

racing results, we observed that StructuralGT and ACCMetrics did 

ot detect all fibers and therefore all branch points present in STED 

mages, while DiameterJ and AngioTool performed better (Supple- 

entary Fig. III). When analyzing the simulated networks, we ob- 

erved the best results for StructuralGT ( Fig. 3 D and Supplemen- 

ary Table XIV). DiameterJ and the ER network analysis overesti- 

ated the number of branch points, while AngioTool and REAVER 

ere insensitive to changes in the number of branch points. Based 

n visual inspection and the results from the simulated images, 

e recommend to use StructuralGT in SEM images and DiameterJ 

n STED images to automatically measure the number of branch 

oints. 

.3.5. Fiber density 

We found three different tools to quantify the density of the 

brin network (a network property): AngioTool [42] , REAVER [39] , 

nd ACCMetrics [ 32 , 33 ]. Density is defined as the fraction or per-

entage of the area occupied by fibers. Similar to the branching 

nalysis, significant correlations were observed between the quan- 

ifications in SEM and STED images, while results in confocal im- 

ges did not significantly correlate ( Fig. 2 E). Absolute numbers 

trongly varied between different automated tools with no tool 

learly being most reliable (Supplementary Table XV). 

.3.6. Fractal dimension 

Fractal dimension can be used to investigate complexity of the 

etwork. It measures how details in an object change with the 

cale at which it is measured [57] . BoneJ [45] , algorithms devel- 

ped by Hood et al. [41] , and ACCMetrics [ 32 , 33 ] were able to anal-

se the fractal dimension in our fibrin networks. In SEM and STED 

mages, a strong correlation between the fractal dimension calcu- 

ated by BoneJ and Algorithms of Hood et al. was found, while AC- 

Metrics gave different results in STED images ( Fig. 2 F and Supple- 

entary Table XVI). In confocal images, the three tools correlated 

trongly. 

.3.7. Pore size and porosity 

Finally, we found some tools that automatically measured pore 

ize or porosity (network properties). Pore size is defined as the 

ean size of the pores in the fibrous network, and porosity is the 

raction of the area occupied by pores. In SEM images, we could 

nly use DiameterJ [34] and the Bubble analysis tool [48] to mea- 

ure mean pore size. DiameterJ reports mean pore area in μm 

2 , 

hile the Bubble analysis tool reports the mean pore diameter in 

m. No correlation between both measurements was found (r = - 

.12, p = 0.40) (Supplementary Fig. VIIIA). In confocal images, six 

ifferent tools were found which report pore size, pore diameter, 

r porosity: DiameterJ [34] (mean pore area and porosity), Pore 

ize analysis by Krauss et al. [46] (mean pore diameter), Bubble 

nalysis [48] (mean pore diameter), Hydrogel pore size analysis 

47] (mean pore area, mean pore diameter, and porosity), Algo- 

ithms by Hood et al. [41] (porosity), and Quanfima [40] (poros- 

ty) (Supplementary Table XVII and Supplementary Fig. VIIIB-C). 

xcept for the Hydrogel analysis, the porosity measurements cor- 

elated quite well between the different tools. Pore size measure- 
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ents by the different tools showed only significant correlations 

hen the same parameter was calculated, either diameter or pore 

rea. The pore diameters measured by the Pore size analysis by 

rauss et al. [46] and the Bubble analysis [48] did also not corre- 

ate with the porosity measurements, while the tools calculating 

ore area [ 34 , 47 ] did show significant correlations with the poros-

ty measurements. Visual presentations of these algorithms can be 

ound in Supplemental Figs. I and III. 

. Discussion 

We systematically searched the literature for all available tools 

hat automatically quantify structural characteristics of fibrous net- 

orks from either electron or light microscopy images. Next, we 

ompared the results from the identified automated tools when 

pplied to confocal, STED, and SEM images of fibrin networks, a 

rototypical fiber with biological and clinical relevance. We found 

7 different automated tools that were publicly available and could 

e applied to our images. Of these tools, a minority were originally 

eveloped for fibrin ( Table 1 ). This shows the importance of mak- 

ng research tools available and findable across different fields. 

Using the identified tools, we measured the fiber properties 

ber diameter and fiber length, and the network properties align- 

ent, number of branch points, fiber density, fractal dimension, 

ore size, and porosity. It was striking that the results of the dif- 

erent automated tools often showed good correlations, while the 

bsolute numbers varied a lot. This suggests that most tools are 

ble to measure relative changes in fibrous network characteris- 

ics but absolute numbers should be interpreted with care. There- 

ore, we recommend that comparison of fibrous network charac- 

eristics should always be performed using the same type of mi- 

roscopy image and analysis tool. A possible explanation for dif- 

erences between algorithms is the fact that some tools were de- 

eloped for imaging techniques other than confocal, STED, or SEM, 

hich might result in a mismatch in image size or resolution when 

he tool is applied to another technique than it was originally 

eveloped for. Another observation we made is that the correla- 

ions between results from different automated tools were often 

tronger in the images with high resolution (SEM and STED) than 

n the confocal images. For confocal images, the optical diffraction 

imit, being comparable to the size of the fibers, probably lim- 

ts the reliability of automated analysis of fiber and junction fea- 

ures. Moreover, out of focus light might also influence the mea- 

urements. However, confocal images may be preferred in mea- 

urements of fiber alignment, network density and fractal dimen- 

ion because of their larger field of view compared to electron mi- 

roscopy and the possibility of 3D reconstruction from Z-stacks. 

urthermore, absolute numbers of fiber length per μm 

2 , number 

f branch points per μm 

2 , and density were higher in SEM than in

TED and confocal images. This is likely caused by the fact that the 

canning electron microscope images the surface of fibrous net- 

orks and captures fibers from multiple layers, whereas STED and 

onfocal microscopy optically filter out fibers from above and be- 

ow the confocal plane. The smaller fiber diameter in SEM than in 

TED images can probably be explained by shrinkage of the clot 

n SEM due to the preparation, or some remaining out of focus 

ight in STED images. We acknowledge that in addition to confo- 

al, STED, and SEM microscopy, also other imaging techniques are 

eing used for studying fiber networks, such as AFM [58] and mul- 

iphoton microscopy [59] . We decided to not include those type of 

mages in our comparisons, since these techniques are currently 

ess commonly used than confocal and SEM imaging. Finally, our 

ystematic search revealed that many articles use automated ways 

f measuring fibrous network characteristics, without making their 

ools or scripts available. Therefore, to increase standardization and 
271 
ransparency, open access of newly developed tools should be pro- 

oted. 

Most of the publicly available automated tools in this study 

ere developed for the characterization of fiber or network char- 

cteristics in 2D images. While 2D imaging and quantification is 

ften easier and takes less computing time, it should be noted that 

easurements in 3D might result in more accurate estimations of 

hese characteristics. 2D images do not contain information about 

he third dimension of the structures, and results from these im- 

ges might be different when taken from different angles. Nowa- 

ays, imaging and automated tools that are able to quantify char- 

cteristics in 3D are increasingly being developed, which should 

ead to a broader availability of these tools. Because we only iden- 

ified a very limited number of publicly available tools that are 

ble to quantify fiber and network characteristics in 3D [ 30 , 31 , 43 ],

e decided to focus our comparative analyses on the 2D character- 

zation. Future studies are therefore needed to systematically apply 

nd compare automated tools for 3D fibrous networks when suffi- 

ient publicly available tools are available. 

Most of the identified tools were developed for the quantifica- 

ion of fiber alignment, fiber diameter or fiber length of fibrous 

etworks. Alignment of fibers in fibrous networks affects cellu- 

ar behavior, such as cell attachment, migration, and differentia- 

ion, which is important in tissue engineered scaffolds [60] , wound 

ealing, and - in case of fibrin - the susceptibility of thrombi to 

brinolysis [ 61 , 62 ]. We tested nine different tools to automati- 

ally quantify alignment of fibrin fibers. These tools either resulted 

n a nematic order parameter between 0 and 1 or a parameter 

uantifying the spread of the orientation distribution. In general, 

he different tools showed good correlations, showing that most 

ools can be reliably used to measure fibrin fiber alignment in 

onfocal images. Using synthetic images with known fiber disper- 

ion confirmed that most of the tools, except for the Direction- 

lity plugin, performed well in the quantification of fiber align- 

ent. We recommend a tool that returns a nematic order pa- 

ameter, since this provides a sensitive measure between 0 and 

 that can be linked directly to theoretical models that connect 

ber alignment to mechanical properties [ 55 , 63 ]. When also tak- 

ng into account the ease of use of the tools and the possibility 

o adapt parameters, our preferences to quantify fiber alignment 

n fibrin networks go towards OrientationJ [ 50 , 64 ] (ImageJ plugin), 

urveAlign [49] (MATLAB-based standalone application), or Fiber- 

it [24] (Python-based standalone application). 

Until recently, quantification of fiber diameters was often done 

anually, which is inefficient and sensitive to observer bias [ 9 , 65 ].

e tested eight available tools to automatically measure fiber di- 

meter. Our analyses showed that both in SEM and STED images, 

ber diameter quantifications were strongly correlated among dif- 

erent methods, while absolute values differed markedly. Using 

anual measurements and synthetic and simulated images, we 

howed that SIMPoly and the ER network analysis tools reported 

alues closest to the true diameters. Therefore, we recommend to 

se SIMPoly in SEM images and the ER network analysis in SEM or 

TED images. However, both tools showed some variation in per- 

ormance based on the width and polydispersity of the fibers. The 

ptimal thickness of fibers in images is between 10 and 25 pixels 

or both tools, which would require a pixel size between 10 and 25 

m for typical fibrin fibers. SIMPoly is a MATLAB-based tool that is 

ery user-friendly [37] . The ER network analysis tool provides more 

ser control because it has many options that can be adjusted, but 

t therefore requires more testing by the user for their specific im- 

ges [38] . 

Fiber length, the number of branch points, and fiber density are 

ther characteristics which are often used to describe the organi- 

ation of fibrous networks. Increased branching is associated with 

hinner fibers, which is characteristic for more dense fibrin net- 
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Table 3 

Overview of fibrous network characteristics with their appropriate imaging technique and recommended tool 

for automated analysis. 

Structural characteristic Imaging technique Automated tool 

Confocal STED SEM 

Fiber alignment 
√ 

✗ ✗ OrientationJ 

FiberFit 

CurveAlign 

Fiber diameter ✗ 
√ √ 

ER network analysis 

SIMPoly 

Fiber length ✗ 
√ √ 

ER network analysis 

Branch points ✗ 
√ √ 

DiameterJ 

StructuralGT 

Fiber density ✗ 
√ √ 

- 

Fractal dimension 
√ 

✗ ✗ - 

Pore size/porosity 
√ 

✗ ✗ - 
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orks [66] . Our analyses showed that in SEM and STED, good cor- 

elations were found between the different tools. For fiber length, 

est results were obtained with the ER network analysis, while 

tructuralGT gave the best results in the quantification of the num- 

er of branch points. Our results indicate that electron microscopy 

s more suited than confocal imaging for precise quantification of 

ber length and the number of branch points. For fiber density, 

bsolute numbers strongly varied between the three different au- 

omated tools with no tool clearly being most reliable. 

The fractal dimension of fibrin networks is known to increase 

ith increasing thrombin concentration and a denser fibrin net- 

ork structure [67–69] . Moreover, a recent study suggests that 

ractal dimension of the fibrin network is a biomarker for a high 

isk of venous thrombosis [69] . In our analysis, we found only 

hree tools that measured fractal dimension, with variable results. 

ore research should be performed to determine whether this 

haracteristic can be reliably measured in microscopy images to 

escribe network complexity of fibrous networks, for example by 

omparing it to fractal dimension quantifications using rheology 

70] . 

Finally, pore size and porosity were quantified by six differ- 

nt tools. When measuring pore size, only moderate correlations 

ere found between the results from the different tools. In con- 

rast, porosity measurements of different tools were more strongly 

orrelated. Correlations between pore size and porosity measure- 

ents were best when the pore area was calculated instead of the 

ore diameter, suggesting a circle might not be the best description 

f a pore. A major drawback of the included tools is the fact that 

he pores are mostly measured in 2D images, while it is important 

o measure pores in 3D to get reliable information since pores can 

ave different sizes in all three dimensions. Pore size and porosity 

s measured by DiameterJ were indeed shown to be poorly corre- 

ated with functional permeability measurements of plasma clots 

9] . While pore sizes have been measured in 3D [71–73] , and it

as shown that it is possible to work with 2D images while cor- 

ecting for the missing third dimension [74] , these tools are unfor- 

unately not publicly available. We conclude that automated tools 

xist that can measure porosity and/or pore size in 2D images, 

referably by measuring pore area, but that better tools should be- 

ome publicly available. 

. Conclusions 

In conclusion, we have made an overview of a large number of 

utomated quantification tools for fibrous networks and systemat- 

cally compared them on fibrin networks, a prototypical example 

f a fibrous network in thrombi ( Table 3 ). We conclude that fiber

iameter can be measured reliably and efficiently by SIMPoly or 

he ER network analysis in SEM or STED images. For fiber align- 

ent, we recommend using OrientationJ, CurveAlign, or FiberFit 
272
n confocal images. Fiber length can be measured using the ER 

etwork analysis, while we recommend DiameterJ or StructuralGT 

o measure the number of branch points in SEM or STED images. 

or the other network characteristics, such as fractal dimension or 

ore size, more development and open access publication of au- 

omated tools is needed. We anticipate that our analysis provides 

esearchers useful guidelines in their search for suitable automated 

nalysis tools of fibrous networks in different fields, from thrombo- 

is and hemostasis to cancer research, regenerative medicine, ma- 

erials science, and neuroscience. 
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