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Abstract

Detecting nearby vehicles involves utilizing data from various sensors installed on a car as
it moves. Common sensors for identifying nearby vehicles include LiDAR, cameras, and
RADAR. However, all of these sensors suffer from the same issue – they cannot detect an
approaching vehicle that is not yet visible. Hence, this thesis explores the potential of using a
microphone array – an array of sensors capable of detecting vehicles that are out of sight. Ex-
ploring prior research on detecting obstructed vehicles using sound reveals an existing model
capable of detecting nearby vehicles approaching from behind blind corners. However, as the
local geometry around the ego vehicle affects the perceived sound patterns, this model was
only designed to work within a specific set of T-junctions. Therefore, the thesis aims to take a
step further and develop a detection model capable of detecting vehicles behind blind corners
in environments not included in the training set of the deployed model. This is challenging
for multiple reasons. First, literature review revealed a lack of suitable datasets comprising
sounds from approaching vehicles behind blind corners within various road junctions. In
addition, microphones, like other sensors, come with limitations. Sound inherently provides
less spatial information compared to commonly used sensors in autonomous driving, such
as LiDAR or cameras. Considering sound propagation variations in different road junction
geometries, building a model adaptable across diverse junction types presents a challenge.
To overcome the data scarcity and sound’s inherent spatial limitations, the study investigates
the potential of employing simulated acoustic responses within artificial road environments
as training data for real-world vehicle detection. Simultaneously, to complement the sounds
inherent advantage of detecting objects that are out of sight, the thesis proposes to use a Bird’s
Eye View (BEV) encoding of the top-down map from the driving vehicle’s perspective. Having
an encoding of the top-down map of the current driving environment would allow a detec-
tion model to expect sound signatures commonly observed within a given setting. Overall,
the assessment of acoustic simulations could not outline a singular configuration of simu-
lation properties allowing realistic sound propagation for any kind of considered junctions
when hearing an approaching vehicle. However, it was observed that the utilization of spe-
cific simulation parameters can result in realistic sound propagation within the given junction.
Subsequently, evaluating a novel BEV encoding within the newly proposed acoustic detection
pipeline demonstrated either equivalent or superior performance compared to a model relying
solely on sound. Overall, this research underscores the potential of incorporating BEV encod-
ing in non-line-of-sight acoustic detection and suggests the promise of acoustic simulations
within the field. This study contributes to advancing the integration of sound as an additional
data modality in vehicle detection.
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1. Introduction

1.1. Problem statement

Human perception allows us to detect presence of objects in our surroundings even without
directly seeing them. One of the reasons why this is possible is due to our capability to
hear. The ability to detect sounds emerging from occluded sources is especially valuable in
circumstances where a source is obstructed by a wall or located behind, providing essential
information to avoid potential risks like collisions. Unlike with humans, usage of audio for
detecting nearby vehicles in the context of autonomous driving has been limited. Nevertheless,
incorporating audio as an additional data source holds great promise for vehicle detection as
well for multiple reasons.

As previously illustrated with an example involving humans, perception with sound excels in
detecting objects that are out of sight. Naturally, this is an inherent and crucial advantage of
sensing with sound compared to common sensors employed in autonomous driving, such as
LiDAR or cameras (illustrated with Figure 1.1). Moreover, microphones are less affected by
specific lighting or weather conditions like snow or fog, granting an advantage in challenging
environments. On the other hand, the audio recorded by microphones typically conveys less
spatial information compared to LiDAR or cameras. For instance, data derived from LiDAR
point clouds can not only help with establishing the distance to the sound source, but also its
shape. This inherently presents a more formidable challenge when attempting to extract such
spatial data from audio input.

Figure 1.1.: Illustration of an inherent advantage of using microphones for detecting nearby
vehicles. With the first part of the figure, the camera fails to see an incoming vehicle. In the

second part of the figure, microphones are able to hear an approaching vehicle.

In the domain of acoustic vehicle detection, distinct research trajectories have emerged, de-
lineating two primary approaches: detecting nearby vehicles within direct line of sight and
identifying vehicles that are not visible from the perspective of the ego vehicle (i.e., the vehicle

1



1. Introduction

containing the sensors that perceive the surrounding environment). In the realm of non-line-
of-sight detection, which is the primary focus of this thesis, earlier study (Schulz et al., 2020)
proposed a direction of arrival classification model. Namely, the model is able to classify
which direction an incoming vehicle is arriving from. The results suggested that utilizing
sound grants invaluable reaction time to the driver to recognize that there is an incoming
vehicle.

Nevertheless, previous work in non-line-of-sight detection faces notable challenges:

1. Lack of generalizability to many types of driving environments.. Previously proposed
model in the recent study for this detection type works in a fixed number of outdoor
environment types (two types of T-junctions). The model’s emphasis on T-junctions is
a deliberate design choice, driven by the distinctive variations in sound propagation
and reflections encountered as a vehicle approaches different types of intersections like
T-intersections, Y-intersections, or others. Hence, the model inherently lacks generaliz-
ability across various road junction settings not included in the training dataset, severely
limiting its real-world applicability;

2. Scarcity of available data from diverse driving scenarios for detecting vehicles using
sound. The literature review performed in the thesis revealed that most popular datasets
in autonomous driving, such as nuScenes (Caesar et al., 2020), Waymo (Sun et al., 2020),
and KITTI (Geiger, Lenz, Stiller, & Urtasun, 2013) do not provide acoustic data, as there
were no microphones mounted on a driving ego vehicle while recording the respective
datasets. In addition, only three datasets could be found for the purposes of detecting
vehicles that are either in-line-of-sight (Chakravarthy et al., 2023; Valverde et al., 2021)
or out-of-sight (Schulz et al., 2020). However, upon reviewing the datasets, it became
evident that the in-line-of-sight detection datasets either lacked the reported data types
as described in the respective papers or had data quality issues. In addition, the available
dataset for non-line-of-sight detection included sound recordings limited to specific envi-
ronmental types. Hence, the scarcity of applicable data poses a constraint on developing
a model with the capacity to generalize to scenarios the model was not trained on.

As such, these challenges present exciting research opportunities and shape the research ques-
tions of the thesis.

1.2. Research questions

The challenges evident in previous non-line-of-sight detection studies, coupled with the in-
herent difficulty of extracting spatial details from sound, present several promising research
opportunities:

Utilizing simulation software for simulating sound propagation in driving scenarios

The absence of diverse sound data in various driving scenarios hinders the development of a
detection model generalizable to different types of road junction settings. In addition, obtain-
ing new data within the autonomous driving domain is both time consuming and expensive.
The limited availability of relevant data leads to an intriguing possibility: utilizing simulated
acoustic responses within artificial road environments as training data for vehicle detection
in the real-world setting. The use of simulations is not new to the autonomous driving do-
main. For example, there have been developments in simulation software for autonomous
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vehicle planning (Gulino et al., 2023), and there exists software for imitating real-world driv-
ing scenarios, including multi-sensory data perception from the ego vehicle (NVIDIA, 2023).
In addition, the use of simulations is also not limited to the autonomous driving domain. For
example, Generative Adversarial Networks (GANs) have proven effective in generating simu-
lated images, thereby augmenting training data and enhancing image classification and recog-
nition (Fang, Zhang, Sheng, & Ding, 2018; Frid-Adar, Klang, Amitai, Goldberger, & Greenspan,
2018).

Overall, the research opportunity can be summarized with the following question:

To what extent is acoustic simulation software capable of realistically simulating sound
propagation in artificial driving settings, and what is the gap between the simulated sound
responses and real-world recordings?

In order to evaluate the simulation software’s effectiveness, the thesis compares the acoustic
responses between the available real-world dataset (Schulz et al., 2020) and the simulated
responses generated within the imitated settings.

Using Bird’s Eye View encoding of the surrounding driving environment

Given sound’s inherent limitation in providing spatial information compared to other sensors
in autonomous driving, utilizing some prior knowledge about the surrounding environment
can be one way to deal with the limitation. Modern vehicles often come equipped with GPS
that can provide real-time top-down map of the surrounding environment. In addition, mod-
ern vehicles can also have front-view cameras, which provide the view in front of the vehicle
while it is in motion. Both the map and the front view data can offer valuable cues about the
surroundings – the shape of the junction that is being approached, number of nearby walls or
vehicles, etc. This thesis explores utilizing one type of the available data – top-down maps, for
improving non-line-of-sight vehicle detection.

Utilizing top-down maps while the ego vehicle is in motion can help anticipate sound sig-
natures commonly associated with similar settings. For example, sound propagation and
reflection can differ based on whether the vehicle approaches a T-intersection, Y-intersection,
or a cross-intersection. Therefore, the thesis explores encoding top-down maps into a compact
Bird’s Eye View (BEV) representation, aiming to incorporate this information as an additional
feature for non-line-of-sight vehicle classification using sound. The subsequent research ques-
tion becomes:

How can a top-down map of the surrounding environment, centered around the ego vehicle,
be encoded to be used as an additional feature for the direction of arrival classification?

Developing a new classification model

Previous research lacks a classification model capable of generalizing to driving environments
beyond its training set. This motivates the need to develop a model with broader generalization
capabilities. Following the previous two research questions, the remaining question arises:

Does training a vehicle detection model on acoustic features and BEV encodings allow
it to more accurately classify a direction of arrival of an occluded vehicle in the driving
environments not covered by the model’s training dataset?
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1.3. Contributions

Having presented the challenges within the relevant research domain and defined the research
questions the thesis is approaching, the following are the contributions of this work:

• New direction-of-arrival classification pipeline for non-line-of-sight vehicles that in-
corporates sound simulations and BEV encodings as complementary information to the
acoustic features. To the best of our knowledge, this thesis presents the first work in
utilization of acoustic simulations for detecting nearby vehicles. Given the limited avail-
ability of applicable data, the utilization of simulations in the proposed pipeline marks a
crucial advancement in acoustic vehicle detection. In addition, this is the first work that
aims to fuse prior knowledge about the surrounding driving environment in the form of
the BEV encoding together with acoustic features for non-line-of-sight vehicle detection.

• Simulator setup. The proposed pipeline required acoustic simulations to generate train-
ing data for direction of arrival classification. However, no existing simulator was suitable
for this purpose. Therefore, a key contribution of this thesis is the development of a sim-
ulator setup enabling the modeling of sound propagation from an approaching vehicle
to the ego vehicle at a road intersection.

• Compact BEV encoding to encode the information about the surrounding environment
in a simulated setting. Given the environment’s influence on sound propagation, this
thesis suggests using a specialized BEV encoding of the surrounding environment while
the ego vehicle is in motion. Utilizing BEV encoding in the classifier enables generaliza-
tion across different junction types that exhibit similar encodings to those the model was
trained on, owing to the similar propagation of sound in analogous road environments.

These contributions get presented and thoroughly described in Chapter 3. Afterwards, new
approaches get tested in Chapter 4.

1.4. Document structure

This document is structured as follows. First, in order to have a better understanding about
the rest of the thesis, Chapter 2 presents background information and prior work on tradi-
tional sound source localization methods, acoustic vehicle detection and acoustic simulation
software. Then, Chapter 3 covers the methods used for answering the previously posed re-
search questions. Consequently, Chapter 4 presents the experimental results from the devised
method. Lastly, Chapter 5 reflects on the obtained results, discusses limitations, explores po-
tential avenues for future work, and draws final conclusions based on the research findings.
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2. Theoretical background and related work

This chapter describes the research conducted to explore applicable literature and datasets.
It initiates by presenting the efficacy of sound in localization using traditional techniques to
motivate its role as a data modality in vehicle detection. Subsequently, it offers an overview
of studies leveraging audio within the autonomous driving context, as well as motivates the
choice of using BEV encoding of the top-down map of the surrounding environment. The
chapter proceeds with an overview of the available datasets with road acoustics for vehicle
detection. Then, it continues with exploration of non-line-of-sight detection – a pivotal task
addressed within this thesis. Lastly, the chapter concludes with an overview of the acoustic
simulation software.

2.1. Acoustic source localization

First and foremost, it is essential to outline why sound can be a valuable and informative
modality for localizing nearby cars. Localizing objects using sound waves is called acoustic
source localization. Utilizing sound for object localization has been a well-established practice
for a long time. The topophone, one of earlier devices for acoustic source localization, was
invented more than a century ago. When being worn by people, it allowed to detect ships in
foggy conditions by orienting the device toward a sound source, which amplified the incoming
sound (Yangfan Liu and J. Stuart Bolton and Patricia Davies, 2021). Subsequently, acoustic
source localization played an important role in the First World War (Voort & Aarts, 2009). Since
then, the relevance of acoustic source localization has extended widely, finding applications
in the military domain (Baron, Bouley, Muschinowski, Mars, & Nicolas, 2019), automotive
domain (Kim et al., 2005), wildlife tracking (Rhinehart, Chronister, Devlin, & Kitzes, 2020),
and other areas.

Acoustic source localization can be either active or passive:

• Active acoustic location entails emitting sound to create an echo, which is subsequently
analyzed to derive the sounding object’s location;

• On the other hand, passive acoustic location involves detecting sound or vibrations emit-
ted by the sounding object. The sound emitted by the object of interest gets analyzed to
determine the position of the object.

This thesis delves into the utilization of microphones for acoustic source localization. Consid-
ering that microphones do not emit sound but only capture it, they are classified as passive
sensors. Therefore, the thesis focuses on passive sound source localization within the domain
of autonomous driving. Leveraging microphones, several traditional approaches exist for de-
tecting sound-emitting objects. Before delving into acoustic source localization in the context
of autonomous driving (Section 2.2), this section offers an outline of conventional approaches
used for localizing sound-emitting objects with microphones.
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2.1.1. Triangulation

Triangulation is the process of determining the location of a point by forming triangles to
the point from known points (The MathWorks, 2023b). In the context of acoustic perception,
this would imply that knowing (1) the distance between two microphones and (2) the angles
between the sounding object to the first and the second sensor allows to calculate the distance
d, as shown in Figure 2.1. Namely, by measuring α, β (i.e., angles formed by a baseline
between the two microphones and the sounding object), and the distance L between the two
microphones, the distance from the baseline d to the sounding object can be expressed by the
following formula:

d =
L

1
tan α + 1

tan β

(2.1)

Figure 2.1.: Visualization of
a triangle formed

between the sensors and
the object of interest.

2.1.2. Acoustic beamforming

Acoustic beamforming is a traditional signal processing method that improves the quality of
signals originating from specific directions, while reducing unwanted noise and interference
from other directions (Johnson & Dudgeon, 1993). This is a very well recognized method for
acoustic localization, and several methods build on top of beamforming, such as SRP-PHAT
(gets described in Section 2.1.3). This technique can be applied using a single or multiple
sensor arrays. When employing microphones, arrays usually consist of omnidirectional (i.e.,
receiving signals in all directions) microphones, directional microphones, or a combination
of both distributed around the perimeter of a space. These microphones are connected to a
computing unit that records the results.

One of the simplest beamformers is a delay-and-sum (DAS) beamformer (Johnson & Dudgeon,
1993). The DAS beamformer uses a set of delays and weights to steer the array to different
points or directions in a measurement plane (next to the sensor array). The delays are se-
lected to optimize the array’s sensitivity specifically to waves propagating from a particular
direction. The amplitude weights allow to adjust the individual contributions of each sensor,
thus changing the shape of the beam and reducing sidelobes (i.e., local maximas in the beam
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pattern, different from the beam with the highest power). After applying a weight and a delay
to each signal from the microphone array, the DAS beamformer sums the resulting signals.
The formula for the beamformer’s output in the time domain is as follows:

y(t) =
N

∑
i=1

wi · xi(t − ∆i) (2.2)

In this equation, xi · (t − ∆i) represents the delayed signal from the ith sensor at time t after
applying the appropriate delay ∆i, N is the number of sensors, and wi represents the weight
or coefficient applied to the delayed signal before summation.

The resulting beam can be visualized by displaying the spatial sensitivity pattern or the di-
rectional response of the array to an incoming signal. As shown in Figure 2.2 (based on the
work done by Schulz et al. (2020)), the beam can be visualized and overlaid with the image
depicting a sounding vehicle.

Figure 2.2.: Visualization of a beam over an incoming car. The beam is overlaid on an image
captured by the front camera mounted on an ego vehicle.

2.1.3. Direction of arrival with SRP-PHAT

Several methods in acoustic localization handle a more specific task – Direction of Arrival
(DoA) estimation. A DoA represents the direction from which a propagating wave arrives at
a receiver or the receiver array. One of the more complicated methods for DoA estimation is
Steered-response power with phase transform (SRP-PHAT) (Dibiase, 2000). Steered Response
Power comprises a range of acoustic source localization algorithms. These algorithms can be
understood as utilizing a beamforming-based approach, seeking the position or direction that
maximizes the output of a steered delay-and-sum beamformer (Johnson & Dudgeon, 1993).
SRP-PHAT is one of the methods within the family of SRP algorithms that uses phase trans-
form (gets defined later in this section), which makes the algorithm more applicable to a variety
of different acoustic environments. As SRP-PHAT DoA outputs are the acoustic features em-
ployed in the method of this thesis, the following presents an outline of how the algorithm
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works. Lastly, the section is concluded with a practical explanation of how to interpret the
resulting feature vector, as it appears many times later in the thesis.

Outline of the algorithm

Before using the algorithm, a multi-channel audio input captured with multiple microphones
is required. Then, each signal needs to be converted into the time-frequency domain by using
Short Time Fourier Transform (STFT). The resulting spectrograms get processed by the algo-
rithm as follows. One of the ways to express the SRP is by using the sum of the generalized
cross-correlations (GCCs) of all possible microphone pairs M̂ = (M

2 ) = M · (M−1)
2 , weighted

with a phase transform function Ψm1,m2( f ). This is a multi-step process (Dibiase, 2000):

First, the algorithm defines a generalized cross-correlation (GCC) for the difference between
the two steering delays (i.e., the delays chosen to steer the array to the source’s spatial location)
of any two microphones in the array:

Rm1,m2 (∆m1,m2) =
1

2π

∫ ∞

−∞
Ψm1,m2( f ) · Xm1( f ) · X∗

m2( f ) · ej· f ·∆m1,m2 d f (2.3)

• ∆m1,m2 is the difference between the two steering delays, ∆m1,m2 = ∆m1 − ∆m2;

• f denotes the frequency;

• Xm1( f ) is the spectrogram from the STFT applied to the signal from microphone m1;

• X∗
m2( f ) is the complex conjugate of the STFT spectrogram applied to the signal from

microphone m2;

The crucial part of the SRP-PHAT approach is to weight the GCCs with the phase transform
function. Effectively, the phase transform is used to whiten the cross-spectrum Xm1( f ) · X∗

m2( f )
(i.e., make it more uniform) between the two microphone signals. Phase transform function is
defined as follows:

Ψm1,m2( f ) =
1

|Xm1( f ) · X∗
m2( f )| (2.4)

Lastly, steered response power (the objective function of the SRP-PHAT algorithm) can be
expressed as a function of the generalized cross-correlation:

SRP(∆1 . . . ∆M) = 2π
M

∑
m1=1

M

∑
m2=1

Rm1,m2 (∆m1,m2) (2.5)

• ∆1 . . . ∆M are the steering delays for each microphone M;

• m1 and m2 are two microphones from a set of all possible pairs M̂;

• ∆m1,m2 is the difference between the two steering delays, ∆m1,m2 = ∆m1 − ∆m2.
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SRP-PHAT algorithm consists in a grid-search procedure that evaluates the objective function
SRP(∆1 . . . ∆M) on a grid of candidate source locations. Hence, the output is dependent on
the grid it is sampled on. Within the context of the thesis, the grid that is used is the azimuth
direction around the microphone array. The range is limited to [0, π], centered around the
driving direction. For a better interpretation, the output of the algorithm gets visualized in the
following section.

Interpretation of the algorithm’s output

With the previously outlined algorithm, SRP-PHAT calculates the DoA energy for a fixed
number of azimuth angles λ. Within the context of the thesis, these angles are in the range
[0, π]. Effectively, the output of SRP-PHAT contains intensities over λ angles, adopting a polar
coordinate representation. With favorable conditions, the peak intensity matches the location
or direction of the sound source. For example, in Figure 2.3, the first image indicates that there
is a sound source in front of the receiving microphone array from the top-down perspective.
The last two images provide a top-down view illustrating a sound source’s location relative to
the microphone array, indicating whether it is coming from left or right. Importantly, while
the peak intensity can point to the left, the sound can actually be originating from the opposite
direction (i.e., right), and vice-versa. This can be possible in a scenario when a vehicle is
approaching from behind a blind corner, and the sound gets reflected from the wall close to
the ego vehicle (as demonstrated with Figure 1.1, Image 2).

Figure 2.3.: Sample DoA features for three classes. From left to right: DoA intensities for a
sound source located in front of the receiving microphone, to the left of it, or to the right of

it. The direction can be deduced by identifying where the peak intensity points to.

2.2. Acoustic localization in autonomous driving

Audio is utilized in various research domains within the context of autonomous driving. There
is a variety of tasks being addressed (Marchegiani & Fafoutis, 2021):

• Acoustic object classification, which involves classifying sounds with types of vehicles
and siren/horn detection;
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• Acoustic object localisation, which involves car localization using audio, and localiza-
tion of sirens and horns;

• Surface classification of the surface type a vehicle is driving on;

• Self-noise modelling for anomaly detection of the driving vehicle, amongst others.

Given the project’s specific emphasis on acoustic traffic detection, this section provides an
overview of relevant works within that field. Namely, the section describes recent works in
non-line-of-sight vehicle detection, pertaining to scenarios where approaching vehicles are not
visible, as well as works that consider situations when the nearby vehicles are within direct
line of sight.

2.2.1. Works in non-line-of-sight acoustic vehicle detection

In the context of non-line-of-sight vehicle detection, Schulz et al. (2020) devise a method to
recognize an approaching car’s direction at a road intersection when it arrives behind a blind
corner. The researchers equipped a vehicle with a roof-mounted microphone array and po-
sitioned it at various locations near the intersection of T-junctions in Delft, The Netherlands.
Subsequently, they recorded the ambient sounds of the environment, capturing instances with
approaching vehicles as well as periods when there were no approaching vehicles at all. The
multi-channel audio obtained was subjected to a standard audio processing algorithm to ex-
tract features indicating the direction from which an incoming vehicle approached. The pro-
cessed data served as training input to train a Support Vector Machine, classifying the direction
of the incoming vehicle into four categories: {le f t, f ront, right, none}, with none class indicat-
ing no approaching vehicle. The proposed pipeline was compared to the state-of-the-art visual
object detection network Faster R-CNN, which can locate incoming cars when they are already
visible. Thanks to the proposed model’s capability to detect cars with sound, the pipeline
achieves the same accuracy more than a second in advance, providing crucial reaction time
to the driver. With this research, the authors provided pioneering work in non-line-of-sight
vehicle detection using a microphone array.

2.2.2. Works in line-of-sight acoustic vehicle detection

Line-of-sight vehicle detection commonly involves training models on visual inputs like images
and LiDAR point clouds, addressing tasks of 2D or 3D object detection. In computer vision,
object detection focuses on identifying object instances within images or videos (The Math-
Works, 2023c). For 2D object detection, a detection model typically outputs bounding boxes
with width, height, x, and y coordinates within the image, along with class confidence scores
and labels (Figure 2.4). In 3D object detection, additional parameters like an object’s orienta-
tion in 3D space and corresponding bounding boxes get estimated as well. Traditionally, object
detection primarily processes visual inputs such as images, videos, and LiDAR point clouds.
However, there have been studies exploring the use of acoustic features for this task as well.

One of the pioneering works in object detection using sound comes from Gan, Zhao, Chen,
Cox, and Torralba (2019). In this work, authors propose a model that allows to uses audio and
camera meta-data information alone for detecting instances of a “car” class. Namely, using
only acoustic features during inference, the model has the capability to output predictions
about the surrounding vehicles on an image, similarly to the outputs depicted in Figure 2.4.
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Figure 2.4.: Example of object detection using pre-trained YOLOv3 detection model. Image
taken from Ethan Hooson, Unsplash, and processed with the detection model.

This gets achieved with a self-supervised model that uses knowledge distillation technique.
The proposed pipeline includes a single vision (RGB) YOLOv2 teacher network to train the
audio student subnetwork to regress the bounding boxes of the nearby vehicles by providing
bounding box annotations. This study was pioneering in suggesting the potential of knowl-
edge distillation for object detection using sound. The proposed model enabled 2D object
detection of vehicles using a data modality that is not conventionally employed for object
detection.

Another study conducted by Valverde et al. (2021) tackles the task of 2D object detection
by making use of knowledge distillation as well. However, the researchers employ multiple
teacher networks – depth, thermal, and RGB – to generate bounding box annotations for the
audio student network. Unlike in the aforementioned study (Gan et al., 2019), the researchers
do not utilize camera metadata as an input for the audio student network. The utilization of
multiple teacher networks and the introduction of a novel loss function, specifically designed
to facilitate information distillation from multiple modalities, led to improved performance
compared to Gan et al. (2019). This enhancement was evidenced through the experiments
described in the paper. In addition, Valverde et al. (2021) introduced a large-scale driving
dataset, in which an ego vehicle drove in urban environments and collected multi-modal data.
Training the proposed model on this dataset facilitated object detection across images captured
in motion, presenting an advancement over Gan et al. (2019), wherein the model was solely
trained and tested using data captured from static positions.

One of the recent studies (Chakravarthy et al., 2023) proposes to use long-range acoustic beam-
forming as a complementary modality to RGB for improved vehicle detection, especially in the
scenarios with visible artifacts (e.g., glares), where audio information helps with forming more
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Figure 2.5.: Two different images from the same driving sequence. While being two different
image files, these images have a lot of visual overlap.

precise bounding boxes. The authors’ approach can either use acoustic beamforming features
alone, or in combination with RGB images. Notably, the proposed method surpasses the per-
formance of the work conducted by Gan et al. (2019). Furthermore, unlike the aforementioned
studies conducted by Gan et al. (2019); Valverde et al. (2021), the evaluation is carried out on
images and sounds of driving environments not included the training dataset, compared to
using frames from the same sequences for both train, test and validation sets. This implies that
the validation of the trained model is more fair, as images and sounds from the same driving
sequence can be very similar to each other. This is demonstrated by Figure 2.5 – while two
images come from two different files, their contents are very similar. This observation can also
be applicable to overlapping sounds when recorded in identical locations or with minimal time
intervals between recordings. The resulting similarity makes the train, test, and validation sets
dependent, which makes the model validation results less reliable.

Among the referenced papers, the contributions from Chakravarthy et al. (2023) and Valverde
et al. (2021) held significant relevance to the research objectives of the thesis. Hence, in the
thesis’s early stages, the initial work involved conducting reproducibility experiments and
exploring the published datasets from both papers. However, several challenges emerged
when attempting to reproduce the findings from the two papers. Chakravarthy et al. (2023)
did not disclose the utilized code, making it inherently difficult to reproduce their outcomes.
Furthermore, despite the publication of complete experiment code by Valverde et al. (2021),
reproducing their results proved unattainable. Additionally, the method outlined in their
paper did not generalize to alternative training data. Lastly, the datasets from both studies
proved to be different from their descriptions in the respective papers, directing the focus of
the thesis towards non-line-of-sight detection instead. The approach for assessing both papers
and respective conclusions get described in Appendix B.
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2.3. Bird’s eye view perception in autonomous driving

Bird’s eye view (BEV) perception is an emerging field of study that involves transforming
perspective-view inputs into BEV features and performing different perception tasks, such as
3D object detection or semantic map generation of the surroundings in the bird’s eye view
(Lang et al., 2019; Liu et al., 2022; Wang et al., 2021). There has been an increasing amount
of works in the field that encode LiDAR/image information into top-down BEV structure,
due to the method’s remarkable performance and straightforward interpretability as a unified
representation for multiple sensors.

Another alternative view to the BEV can be a perspective view – the view that is typically
orthogonal to BEV, and which can be retrieved by using a camera. When comparing the two
views, BEV representation holds several advantages over the perspective view:

1. Detecting occluded vehicles (e.g., occluded by trees, other vehicles) with BEV represen-
tation is easier than in perspective view (Li et al., 2023) – objects in BEV are viewed
from above, allowing a clear view of their tops and reducing occlusion caused by nearby
objects or obstacles in the perspective view;

2. Perspective view is a subject to the scale problem – there can be many variations in the
size of identical objects within the view. For example, the same car can be approaching
from either 10 meters or 100 meters. While it is the exact same car, it appears to be much
smaller in perspective view when being further away from the camera. On the other
hand, BEV provides a consistent scale across the scene, facilitating uniform object size
estimation;

3. Cars typically do not ascend or move vertically, given that urban roads generally lack
steep inclines. Thus, the cars’ movement limited to forward, left, right, and backward
directions makes the BEV representation a more suitable and representative choice;

4. The top-down BEV representation can be easily obtained by the ego vehicle equipped
with GPS, just like the perspective view can also be obtained on a vehicle equipped with
a front-view camera. However, unlike the perspective view, the top-down map offers
significantly more insights into the approaching junction. First, it allows to evaluate the
relative widths of junction segments. In addition, it allows to see the outline of the road
junction being approached (e.g., Y-junction, T-junction, cross-junction, illustrated with
Figure 2.6).

Therefore, the aforementioned advantages make BEV applicable for non-line-of-sight vehicle
detection scenarios as well. Incorporating data about the current driving environment in the
form of a BEV encoding should guide the detection model, conditioned on sound features, to
anticipate sound signatures commonly associated with similar road settings.

2.4. Datasets for acoustic vehicle detection

Initially, the goal of the thesis was to use acoustic information for detecting vehicles that are not
necessarily out of sight. However, based on available data and initial work done in the thesis
(described in Appendix B), the decision was made to confine the research scope. Nonetheless,
this section describes the datasets containing acoustic information for both line-of-sight and
non-line-of-sight detection.
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Figure 2.6.: An overview of several top-down junction maps in Delft. From left to right:
Y-junction map, cross-junction map, T-junction map. Images retrieved using Google Earth

by the author of the thesis.

In order to use acoustic information for detecting nearby vehicles, an extensive audio dataset
captured by multiple microphones mounted on an ego vehicle is necessary. When examining
some of the most prominent self-driving datasets available, such as nuScenes (Caesar et al.,
2020), KITTI (Geiger et al., 2013), and Waymo (Sun et al., 2020), it became evident that they
did not contain audio data captured by microphones. Instead, they included other modali-
ties typically used for vehicle detection – LiDAR point clouds, RADAR sweeps, multi-view
camera images, as well as sensor calibration and positioning information. Hence, the search
involved finding non-conventional datasets in the context of autonomous driving. The search
requirements were as follows:

1. As shown in Section 2.1.1, estimating the direction a vehicle is coming from is already
possible with two microphones by using triangulation. The same requirement is applica-
ble for beamforming, which requires signals from at least two microphones. Hence, the
most important search requirement was finding a dataset for which a microphone array
was used to record the sounds of approaching vehicles behind blind corners or vehicles
in direct line of sight;

2. Inclusion of RGB images or a video feed synchronized with the microphone array. Hav-
ing this type of data would allow to visually confirm the presence of the nearby vehicles,
facilitate knowledge distillation approach as in Gan et al. (2019); Valverde et al. (2021),
and allow for a beamforming overlay to visualize the acoustic localization features (like
in Figure 2.2);

3. Inclusion of class annotations for sound samples. These would facilitate supervised
learning approaches for detecting instances of multiple different classes (e.g., car, truck,
motorcycle). In the context of non-line-of-sight detection, direction-of-arrival annotations
(e.g., left, front, right) would enable classification with these classes;

4. Inclusion of sensor calibration and positioning information: necessary for accurate com-
putation of acoustic features with a microphone array, and crucial for determining the
relative sensor positions to each other and their placement in the world (i.e., sensor ex-
trinsics).

Overall, it was only possible to find two applicable datasets for line-of-sight detection and one
for non-line-of sight detection. Table 2.1 presents an overview of the available datasets.

14



2. Theoretical background and related work

Authors Task Modalities Dataset annota-
tions

Dataset Description

Valverde et
al. (2021)

Line-of-sight
detection

RGB, RGB-
D, thermal,
audio

Bounding boxes,
class labels and
probabilities for a
single class “car”

The multi-modal dataset comprises of
two recording types captured via a mi-
crophone array mounted on the ego
vehicle: during the vehicle’s move-
ment and while stationary. In total,
it encompasses 114380 entries of syn-
chronized RGB, RGB-D, thermal, and
audio frames.

Chakravarthy
et al. (2023)

Line-of-sight
detection

RGB, Li-
DAR point
clouds, au-
dio

Multi-class image
annotations (car,
van, pedestrian,
bus, amongst oth-
ers), 11 classes
for sounds (small
vehicle, horn,
emergency ve-
hicles, amongst
others)

This dataset, reportedly, comprises of
LiDAR point clouds, RGB images and
sound recordings from a microphone
array, captured in urban Montreal set-
ting. The dataset spans 66 km of urban
roads, amounting to 14 TB of storage.

Schulz et al.
(2020)

Non-line-
of-sight
detection

Audio,
video

Direction-of-
arrival classes for
a single incoming
vehicle (left, right,
front, none)

The dataset provides one-second au-
dio recordings gathered by a vehi-
cle’s microphone array, captured dur-
ing both stationary periods and while
in motion. Moreover, the dataset in-
cludes video recordings of approach-
ing vehicles.

Table 2.1.: Dataset descriptions

2.5. Non-line-of-sight acoustic vehicle detection

At the time of writing the thesis, Schulz et al. (2020) remains the sole published work on non-
line-of-sight vehicle detection utilizing sounds captured by a microphone array. Hence, this
thesis extends upon the work done by Schulz et al. (2020), and tries to address the inherent
challenges associated with their proposed method. Before delving into the methodology em-
ployed in this thesis, it is essential to outline the previous method to gain a comprehensive
understanding of the challenges associated with it.

2.5.1. Outline of the method from Schulz et al. (2020)

In this research paper, the authors want to predict if and from where another vehicle is ap-
proaching, both when the vehicle is in direct line of sight and when it is behind a blind corner.
Namely, the work distinguishes three situations (as stated in the paper):

• an occluded vehicle approaches from behind a corner on the left, and only moves into
view last-moment when the ego-vehicle is about to reach the junction;

• same, but a vehicle approaches behind a right corner;

• no vehicle is approaching.
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Therefore, the paper proposes to develop a classifier designed to analyze audio samples cap-
tured by a microphone array. The primary objective of this classifier is to differentiate among
four distinct categories. Namely, whether a vehicle is approaching from left or right, whether
it is within the line of sight (implying a frontward direction of arrival), or whether there is no
approaching vehicle at all.

When the vehicle is in direct line of sight, the method relies on using a conventional Direction-
of-Arrival (DoA) algorithm for localizing sound sources. Namely, the implementation uses
Steered-Response Power-Phase Transform (SRP-PHAT) algorithm, which was described in Sec-
tion 2.1.3. Given continuous synchronized signals, SRP-PHAT computes the DoA energy for
any given azimuth angle around the vehicle. Utilizing a DoA feature vector facilitates compu-
tation of the azimuth angle associated with the highest DoA energy. Through the establishment
of a predefined threshold, the implementation straightforwardly assigns anticipated direction
of arrival by comparing whether the angle surpasses or falls below the threshold angle. This
process ultimately categorizes the perceived sounds into classes, namely le f t, f ront, right.

As demonstrated in the paper, direct line-of-sight classification does not pose a significant
challenge, as a simple implementation that computes DoA and does threshold checks already
performs well. With non-line-of-sight detection, solely using a DoA algorithm becomes insuf-
ficient, as salient sound sources produce sound wave reflections on surfaces, such as walls.
This implies that, for instance, although the algorithm may indicate that the highest energy is
originating from the right, the actual source of the sound can be coming from the left. Hence,
the authors propose to use a data-driven approach, in which DoA features get used to train a
Support Vector Machine (SVM).

As sound reflection patterns are observably different for different junction geometries, it was
proposed to distinguish two types of junctions: “A” (completely walled junction) and “B”
(walled exit junction), which get demonstrated with Figure 2.7. With the predefined junction
types, the authors recorded a dataset in Delft. Data were collected from five distinct locations,
where three of these locations fell under the category of type B, and the remaining two un-
der type A. The recordings got further divided into static data, made while the ego-vehicle
was in front of the junction but not moving, and dynamic data, where the ego-vehicle was
reaching the junction at ∼ 15 km/h. After collecting the dataset, the authors proceeded to
train a SVM model, which yielded favorable results in accurately classifying the direction of
arrival of out-of-sight vehicles within the specified locations. Overall, the authors presented
a pioneering approach, being the first to use passive acoustic perception for non-line-of-sight
vehicle detection.

2.5.2. Main challenges of the method

Having identified the main contributions of the paper, the following observation becomes ev-
ident. The proposed model is not designed to be generalizable across different environments,
primarily because it was exclusively trained on data from the specific locations used in the
study. However, considering the myriad variations in real-world junctions and driving sce-
narios, deploying a model operating exclusively for a specific set of junctions would not be
practical in real-world scenarios.

Another observation is that predicting direction of arrival for an obstructed vehicle in diverse
driving environments in inherently difficult, attributed to the diverse sound reflection patterns
in these environments. This is why the approach only considers two types of T-junctions, in
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Figure 2.7.: Schematics of considered environment types. The ego-vehicle approaches the
junction from the bottom. Another vehicle might approach behind the left or right blind

corner. Dashed lines indicate the camera field of view. Adapted from “Hearing What You
Cannot See: Acoustic Vehicle Detection Around Corners” by Schulz et al., 2020, IEEE
Robotics and Automation Letters, vol. 6, p. 2587 - 2594. ©2021 IEEE. Adapted with

permission.

which the sound propagation patterns are very different compared to each other. Even with
the potential to amass a dataset inclusive of extensive sound recordings across diverse junc-
tion types and subsequently train a classification model conditioned solely on DoA features
for these variants, potential challenges emerge. First, the resulting training dataset would con-
tain numerous DoA features, potentially exhibiting considerable feature overlap. Within the
context of a classification task involving only four classes (front, left, right, none), such fea-
ture overlap could feasibly diminish the model’s accuracy (Almutairi & Janicki, 2020). More-
over, achieving comprehensive coverage of various junction types within the dataset would
be exceedingly challenging. This limitation implies that the fundamental issue of the model’s
inability to generalize to new environments remains unaddressed.

2.5.3. Proposed improvements over the method

In order to address the first challenge with the approach, collecting a more extensive dataset
would still be pivotal. However, gathering a new dataset necessary for the task posed requires
several time-consuming steps:

1. Getting an ego vehicle with a sensor arrangement;

2. Deciding on new locations with new types of intersections;

3. Getting the vehicle to the locations and recording new data. This is especially chal-
lenging, as there are several latent variables that can influence recorded sounds, such as
weather conditions, ambient noise from crowds, and construction activities. Recording
a new dataset would necessitate ensuring consistency in these factors across different
recording sessions;

4. Post-processing the acquired data.
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Hence, collecting a new dataset for the posed classification task is a labor-intensive endeavor.
However, there is a way to address the challenge – using simulation software for simulating
sounds in driving environments. As such, the thesis suggests utilizing acoustic simulations,
and aims to assess the representativeness of such simulations for imitating sounds in driving
environments. Having a more extensive dataset would enable training a model that possesses
greater suitability for application across a broader range of locations, making it more adept for
various driving scenarios.

Despite possessing a more extensive dataset, the challenge of potential feature overlap and
the model’s inability to generalize across even more diverse junction types and geometries
persists. Nevertheless, there is a way to address these concerns. A modern vehicle is typically
equipped with GPS, so a top-down view of the surrounding environment is readily available
while the ego vehicle is moving. Leveraging these top-down maps during vehicle movement
may help in anticipating sound signatures commonly associated with similar environments.
However, there remains of question of how to use the maps for classification. In terms of
representation, top-down maps are essentially arrays of pixel values. Compared to DoA, a
pixel array is a much more higher dimensional feature vector. As such, training a classifier on
both DoA vectors and the raw top-down maps would considerably diminish the representation
of DoA acoustic features. Therefore, the thesis proposes a more condensed BEV encoding in
Section 3.4. Then, it aims to determine whether using acoustic features and BEV encodings
can improve classification accuracy of direction of arrival of an obstructed vehicle in driving
scenarios not included in the model’s training dataset. This proposal aims to directly tackle
concerns about the model’s generalizability to new environments.

2.6. Acoustic simulation software

As the choice of the acoustic simulation software was crucial for the method of the thesis, this
section provides an overview of software / packages that were under consideration. Table 2.2
presents the overview of the applicable software.

Overall, the search for solutions in programming languages revealed two packages – one for
indoor acoustics simulations and another one for outdoor road acoustics simulations. Search
in Matlab packages revealed no software that would allow simulating sound propagation in
outdoor scenarios. While some packages for outdoor acoustics were available, they lacked the
capability to model rooms with non-rectangular shapes, a crucial necessity for representing
road settings accurately. This aligns with the assertion made in the pyroomacoustics paper
(Scheibler, Bezzam, & Dokmanic, 2018), which stated that a key motivation behind developing
pyroomacoustics was the absence of Room Impulse Response generators accommodating rooms
beyond rectangular shapes. In addition, search for packages in other programming languages
yielded no packages for outdoor simulations or packages similar to pyroomacoustics that would
both allow for configuration of non-rectangular rooms and have a realistic sound simulation
model. Lastly, the search for GUI applications revealed two solutions. Notably, it was not
possible to investigate a complete feature set of COMSOL (Multiphysics, 1998), as the software
is not free. Hence, only limited information could be retrieved about that package.

When comparing the packages, one of the most important factors is the utilized sound prop-
agation model. The models mentioned in Table 2.2 compute Room Impulse Response (RIR).
In essence, a RIR is an audio recording of what it would sound like in a given room. The
following provides descriptions about the mentioned RIR modelling techniques:
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• Image Source Model (ISM). ISM is a geometric simulation method that models specular
sound reflection paths between the source and receiver (The MathWorks, 2023a). It as-
sumes that sound travels in straight lines (rays) and undergoes perfect reflections when
it encounters an obstacle. ISM has an important adjustable parameter — “order”. This
parameter signifies the level of sound reflections to be taken into account, with higher
values entailing a greater number of mirrored sound reflections in the modeling process
(illustrated with Figure 2.8);

• Ray Tracing (RT). This model assumes that sound energy travels around the room in
rays. From a sound source, a multitude of rays gets emitted and gets traced until the en-
ergy of each ray diminishes below a specified threshold. Modeled as a receiver volume,
each microphone collects specular rays intersecting with it, contributing to the resulting
RIR (Bezzam, Scheibler, Cadoux, & Gisselbrecht, 2020). The method requires a num-
ber of hyperparameters to be fine-tuned: (1) number of rays to be shot from the sound
source, (2) receiver volume radius, (3) energy threshold at which rays get stopped, (4)
maximum time of flight for rays. In addition, the technique is fundamentally different
from ISM, as it allows to model diffuse reflections (visualized with Figure 2.9). This
capability allows RT to capture the behavior of sound when reflecting off irregular sur-
faces (e.g., brick walls, compared to glass that exhibit specular reflections). These diffuse
reflections contribute to creating a more realistic simulation of how sound propagates in
an environment with more realistically textured walls.

• Hybrid simulator (ISM + RT). The hybrid simulator uses ISM for modelling the early
reflections and RT for the diffuse tail. Namely, the algorithm applies ISM of order N
for specular reflections. Then, it applies RT for later reflections and late reverberation
(Bezzam et al., 2020);

• Sound-particle tracing (SPPS) involves simulating movement of particles representing
sound waves within an acoustic environment (Picaut & Fortin, 2012b). It traces the paths
and interactions of these particles as they propagate and reflect within a room. In con-
trast to RT where reflection, wall absorption, diffusion, and atmospheric absorption are
managed by applying weightings to the sound intensity carried by a ray, the SPPS ap-
proach adopts a probabilistic consideration of these physical phenomena. For instance,
when encountering a wall with an absorption coefficient, the particle in this approach
may have probabilities assigned to being reflected or absorbed. This method introduces
a more realistic propagation of sound compared to the traditional RT approach by prob-
abilistically addressing these physical interactions;

• Simulation using variable length delay lines. This is a specific simulation technique for
modelling sound propagation on a non-urban road and was proposed in pyroadacoustics
(Damiano & van Waterschoot, 2022). Namely, the model works with a static microphone
array M and a single moving sound source S. The microphone array M receives the
direct signal originating from S, and the sound that is a specular reflection off the road.
In addition, the implementation uses variable length delay lines – signal processing units
for introducing a variable delay in a signal path to simulate the time delay caused by the
sound traveling a certain distance. The advantage of the approach lies in its consideration
of road reflectivity and its capability to model the Doppler effect. This feature is essential
for accurately capturing driving acoustics, as it accounts for changes in sound frequency
caused by the relative motion between the source and the receiver.
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Overall, ISM, RT, Hybrid simulator and SPPS are the simulators listed in ascending order of
realism. The remaining simulation approach utilizing variable delay lines offers an advantage
by accurately modeling the Doppler effect and considering road reflectivity. However, it lags
behind the preceding approaches as it lacks the capability to include multiple sound sources
and receivers.

Having outlined the available packages and their characteristics, Section 3.2 in the Method
Chapter motivates the final choice of the acoustic simulation software that was employed for
creating a necessary simulation pipeline.

Name Type Free
to use

Supported
environ-
ment types

Support
for custom
room shapes

Sound propaga-
tion model

Important features

Pyroomacoustics
(Scheibler et al.,
2018)

Python
Package

Yes Indoor Yes Image Source
Model (ISM), ISM
and Ray Tracing
Hybrid

Ability to define multiple
sound sources and micro-
phones, support for sav-
ing propagated sound (as
perceived by the micro-
phones)

Pyroadacoustics
(Damiano & van
Waterschoot, 2022)

Python
Package

Yes Outdoor No (i.e.,
only allows
rectangular,
shoebox-like
rooms)

Simulation using
variable length
delay lines

Ability to define road
materials and moving
sound sources, support
for Doppler effect

I-SIMPA (Picaut &
Fortin, 2012a)

GUI app Yes Indoor and
outdoor

Yes Ray Tracing,
Sound-particle
tracing

Ability to model back-
ground noise, ability to
define occlusions within
the room other than walls

COMSOL (Multi-
physics, 1998)

GUI app No Indoor and
outdoor

Yes Ray Tracing Ability to define occlu-
sions within the room
other than walls

Table 2.2.: Available software for acoustic simulations.

Figure 2.8.: Illustration of an order parameter in the ISM.
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Figure 2.9.: Basic illustration showing diffuse reflections and a specular reflection off an
irregular surface.
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Having provided essential background context in the preceding chapter, this chapter intro-
duces the detection task we aim to address. Then, the chapter continues with the motivation
regarding the choice of the simulation software designed to generate sounds audible to a mi-
crophone array within road junction settings. After motivating the choice of the software, the
chapter presents a simulator pipeline that allows to generate sounds in the configured envi-
ronments. The proposed pipeline enables the simulation of sounds in geometries resembling
the shapes of real-world junctions. This facilitates the experiments in Chapter 4 to address the
stated research questions. Afterwards, a novel BEV encoding technique gets presented. With
both synthetic data generation and the new BEV encoding method established, this chapter
introduces a new direction of arrival classification pipeline. Finally, the chapter outlines a
method used to simulate junction scenarios from prior research, enabling a direct assessment
of the simulations’ representativeness compared to real-world settings in Chapter 4.

3.1. Formulation of the detection task

The task that the thesis is tackling is an online classification problem – prediction of a direction-
of-arrival class of a single approaching vehicle. As the method of the thesis is an extension of
the method devised by Schulz et al. (2020), the following first explains how the previous work
approaches the stated classification problem.

3.1.1. Complete pipeline from Schulz et al. (2020)

In summary, the authors propose use DoA acoustic feature vectors computed with SRP-PHAT
(defined in Section 2.1.3) for non-line-of-sight acoustic vehicle detection. These DoA features
are effective in line-of-sight acoustic sensing, as they allow to determine the direction of the
arriving vehicle by determining the peak intensity in the vector. However, solely determining
the peak in non-line-of-sight scenario is not sufficient. The sound reflects from various occlud-
ers in the scene, bringing ambiguity about the direction of arrival of an approaching vehicle (as
shown in Section 2.1.3). Recognizing that a straightforward rule system is not adequate for the
task at hand, the authors opt for a data-driven approach instead. Namely, the researchers take
the complete DoA feature vectors as features for a SVM classifier. As these features provide a
signature of the surrounding sound propagation, the idea is that the classifier would be able
to distinguish what kind of DoA patterns correspond to a discrete arrival class.

Figure 3.1 visualizes the approach taken by Schulz et al. (2020). The detection pipeline starts
with the microphones that are mounted on an ego vehicle and are actively recording the
sounds of the surrounding environment. Then, spectrograms for each of the individual micro-
phone’s sound recordings get computed. Afterwards, in order to capture temporal changes
in the reflection pattern, these spectrograms get divided into a fixed number of L segments
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(in the case with the Figure 3.1, the number of segments is equal to two). Consequently, the
authors compute DoA vectors from the spectrogram segments which serve as the sole features
for training a SVM classifier. The output of the classification is a class probability distribution
for the four classes, denoted as C = {le f t, f ront, right, none}. The labels “left”/“right” signify
an occluded (not in direct line-of-sight) approaching vehicle from left/right, while “front” in-
dicates that a vehicle is already in direct line-of-sight. The label “none” implies no approaching
vehicle.

In the end, the detection task from the previous work can be concisely formulated as follows:

Given DoA vectors γ at train time, output one of the four discrete classes
{le f t, f ront, right, none}.

Figure 3.1.: Complete non-line-of-sight detection pipeline from Schulz et al. (2020). Images in
the figure depict the following: (1) Microphone array records the sounds of the surrounding
environment, (2) Multi-channel sound of an approaching vehicle, (3) STFT computation for

each of the microphone signals, (4) Spectrogram segmentation in time dimension into L
pieces, (5) Computation of Direction of Arrival, (6) Classification using the concatenated

DoA vector, (7) Output of the classification, which is a class probability distribution.

3.1.2. Formulation of the detection task in this thesis

There are several changes to the formulation from previous work in the context of the thesis.
Firstly, due to the constraints of the simulation software pyroomacoustics, modeling background
noise is impossible. This implies that there are insufficient grounds to simulate the “none”
class, leading the thesis approach to predict only the remaining three classes. In addition, as
the primary goal of the thesis is to train a classifier that is generalizable to the environments
not covered by the training dataset (e.g., sounds from a Y-junction when the classifier was
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only trained on sounds from junctions of different shapes), the input to the classifier is a
concatenation of a DoA vector γ and a BEV representation vector β. Hence, the detection task
in the thesis becomes as follows:

Given DoA vectors γ and BEV encodings β at train time, output one of the three discrete
classes {le f t, f ront, right}.

The design of the BEV encoding gets discussed in Section 3.4, and the complete proposed
detection pipeline gets presented in Section 3.5.

3.2. Choice of acoustic simulation software

Following the overview of the available acoustic simulation software in Section 2.6, this section
outlines the reasoning behind selecting pyroomacoustics for constructing a simulation pipeline.
Overall, having concluded the search for acoustic simulation software, the decision was made
to opt for pyroomacoustics. The remaining packages were not selected for the following rea-
sons:

• Pyroadacoustics: Inability to define any occlusions – walls, trees, etc, which is necessary
for a proper modelling of the road junction settings;

• I-SIMPA: Inability to save the Room Impulse Response (i.e., the sound perceived by
the microphone array in the given room), which is crucial subsequent processing with
SRP-PHAT or other algorithms;

• COMSOL: The simulation package is not free, which can greatly hurt the reproducibility
of the experiments. In addition, it was not possible to get the full feature specification of
the product.

In contrast, pyroomacoustics has the necessary minimal requirements for collecting sounds in
simulated junction environments, it allows to: (1) save audio captured by simulated micro-
phone arrays of arbitrary shapes, (2) define room materials impacting sound propagation (3)
define non-rectangular rooms. Lastly, it includes beamforming and direction-of-arrival algo-
rithms out of the box. As such, pyroomacoustics was utilized for creating a simulator pipeline
described in the following section.

3.3. Simulator setup

As one of the goals of the thesis is to use acoustic simulations for simulating sounds in driving
scenarios, this section presents a description of the simulator setup.

In summary, the simulator is utilized to create the scenario wherein the ego vehicle approaches
the beginning of the junction, along with the obscured sound source that remains out of sight
(Figure 3.1, first image). To simulate this particular scenario, the procedure outlined below is
executed within pyroomacoustics (visualized with Figure 3.2). Each step of the procedure refers
to the respective numbered part of the Figure 3.2.
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1. Initially, a set of walls is defined by their initial 2D coordinates. For each wall, the
definition includes either the specification of its energy absorption and sound scattering
coefficients, or the assignment of a material name (e.g., brickwork) that automatically
configures these coefficients;

2. Subsequently, the position of the sound source gets specified, along with the emitted
sound. For the simulator, a one-second recording of a functioning engine was selected.
Following this, a microphone array gets defined within the room settings, described by
its position, shape, and the overall number of microphones;

3. After finishing the previous steps, pyroomacoustics package simulates the microphone
signal at every microphone in the array using a predetermined sound propagation model.

Figure 3.2.: Illustration of the simulator setup. From left to right: first, walls and their
material properties get defined. Then, a sound source and a microphone array get created.
After finishing the previous steps, it is possible to conduct an acoustic simulation, result of

which are simulated sounds for each microphone.

One of the important requirements for the simulator is the ability to model junctions with
some walls being absent, presenting an open space in front of the ego vehicle (as shown with
some junctions in Figure 3.7). However, this is not possible in pyroomacoustics by default, as
it requires definition of an enclosed space to run acoustic simulations. To address this, the
simulation employs walls at the junction ends configured with sound energy absorption set
to one (maximal absorption, which removes reflectivity) and sound scattering set to zero (no
diffuse reflections). This configuration mimics sound propagation through open space, which
allows modeling non-enclosed junctions within a 2D simulated setting.

3.3.1. Choice of the sound propagation model

Under the hood, in order to compute how sound waves interact with the space, pyroomacoustics
uses an ISM simulator and a hybrid simulator based on ISM and Ray Tracing (as described in
Section 2.6).

During this project, both hybrid and ISM simulators were used. In empirical observations, the
DoA features from the sounds generated with a hybrid model exhibited high variability with

25



3. Methodology

each run due to the stochastic nature of the approach. This can be illustrated with an example.
Consider the environment from Figure 3.4. Here, there is a sound source located to the right of
the microphone array positioned at the bottom part of the road junction. Using this environ-
ment, it is possible to run acoustic simulations and compute DoA features from the simulated
sounds. This can done with either ISM or the Hybrid model. Figure 3.3 presents the computed
DoA features from four distinct runs in the aforementioned environment. Namely, the figure
illustrates three images of visualized DoA features by using sounds generated with RT simu-
lation model and one image for the sound generated with ISM. Overall, significant variability
can be observed while using the RT model. This results from different seed initializations
during each simulation round, as no simulation parameters were changed. Importantly, there
was no way to fix the random seed, as in pyroomacoustics random seeds cannot be controlled
for the RT model. In contrast, as ISM is deterministic, each acoustic simulation run within this
model results in the same produced sound. Observations from this experiment and other alike
tests suggest that using RT approach would add a layer of variability to the simulations for
all junction environments, which can potentially hurt explainability of DoA patterns between
different junctions. In addition, RT approach requires a greater number of hyperparameters
to tune for effective operation, including parameters like the radius of the sphere around the
microphone for energy integration, the energy threshold at which rays are terminated, the
maximum time of flight for rays, among others. Conversely, ISM only depends on the “order”
parameter.

In the end, owing to the simplicity of the ISM model and its interpretability observed in initial
experiments, it was concluded that the ISM model would be the preferred choice.

3.4. Description of the proposed BEV encoding

Sound inherently conveys less spatial information compared to other sensors commonly em-
ployed in autonomous driving. Consequently, training a DoA classification model based on
the features from sounds in multiple environments may not make the model generalizable to
the environments not included in the training dataset. In addition, the resulting model may
suffer performance issues due to feature overlap (as discussed in Section 2.5.2).

Importantly, sound propagates differently based on the environment – its geometry, number
of occluders, wall materials, etc. As such, a geometric prior of the surrounding environment
can guide the model to anticipate sound propagation associated with similar settings. As
mentioned in Section 2.5.3, a modern vehicle is typically equipped with GPS, so a top-down
view of the surrounding environment is readily available while the ego vehicle is moving.
These maps provide important prior information about the driving surroundings, as they can
depict the junction the vehicle is approaching (Y-junction, T-junction, etc.). However, there
remains of question of how to use the maps for classification. In terms of representation,
top-down maps are essentially arrays of pixel values. Compared to DoA acoustic features, an
array of pixels is a much more higher dimensional feature vector. Hence, one of the research
objectives of the thesis involves a design of a compact BEV encoding that will be used in
conjunction with DoA features during the training process of the classification model.

As such, this section presents a novel encoding of the surrounding environment, which gets
applied in the simulated settings. However, the approach can be generalized to encode a
regular top-down map. The approach is heavily inspired by the DoA representation in sound
processing. As described in section 2.1.3, the output of running SRP-PHAT on the sounds from
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Figure 3.3.: Visualized DoA features for a vehicle approaching from the right behind the blind
corner. From left to right: first three pictures show DoA intensities computed with sounds
from three distinct simulation runs using RT. The remaining picture shows DoA intensities

for any simulation round using ISM, which is deterministic.

Figure 3.4.: Top-down view of the considered environment type in the simulator. In the
image, a microphone array is located at the bottom of the image (black square), and the

sound source is positioned behind a blind corner (black dot).
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a microphone array is a DoA vector comprising sound intensities for a fixed number of azimuth
angles. One could consider devising a BEV encoding represented with polar coordinates as
well. Specifically, the approach in this thesis involves compressing the map of the surrounding
environment with the ego vehicle situated at the center into a polar representation. This is
achieved by emitting rays from the ego vehicle’s position and sampling points along these
rays. These sampled points are assigned values of either 0 or 1, depending on whether they
fall within the boundaries of the junction’s roads. The outcome is a concise fingerprint of the
surrounding environment.

Consistent with the aforementioned approach, the following procedure gets used for generat-
ing BEV encodings 3.5:

1. Shoot n rays of length l, uniformly separated between each other with an azimuth angle
ϕ;

2. Sample p points along the ray, by identifying whether a point is inside the junction (0)
or outside (1);

3. The result is n × p matrix.

Figure 3.5.: Illustration of the proposed BEV encoding and its parameters.

The resulting matrix is a representation of the environment that encodes information about the
nearby walls, encompassing information about the distance between the ego vehicle and these
walls or indicating the absence/presence of a wall in particular directions. This encoding can
be flattened and concatenated with the DoA acoustic feature, creating a unified feature vector.
This vector can be subsequently utilized as training data for a classifier. However, the proposed
approach with the encoding takes an additional step by aggregating p points for each of the n
rays, resulting in a vector of size n. This approach is advantageous for several reasons:

1. Initially, the resulting matrix possesses significantly higher dimensionality compared to
the acoustic DoA feature array. As a consequence, concatenating the acoustic and BEV
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features yields a vector that primarily comprises the BEV feature. This dominant pres-
ence of the top-down map feature over the acoustic one is undesirable, as most of the
resulting concatenated feature would consist of non-acoustic features;

2. In addition, current representation overlooks slight variations in room dimensions. Em-
ploying an aggregation function to aggregate sampled point features would consider
the variations in room geometry. This adjustment would result in a more generalized
encoding, reducing overfitting to specific room geometries.

Consequently, the following aggregation approaches get considered: (1) downsample the ma-
trix by averaging p values n times (results in a vector of size n), (2) downsample the matrix by
calculating the first principal component with Principal Component Analysis (PCA) (results in
a vector of size n). Aggregating with average values addresses the aforementioned concerns by
accommodating potential variability in room geometries. Regarding PCA, the first principal
component is expected to capture the most variance for each ray, effectively addressing these
concerns too.

Importantly, l, p, n and aggregation function are hyperparameters that can influence the
performance of the model utilizing both DoA features and BEV encodings. Hence, Section
4.3.3 provides a study of these parameters.

3.5. Proposed detection pipeline

Having proposed a new BEV encoding and a simulator setup, this section describes a new
detection pipeline – an extension of the method from Schulz et al. (2020) that integrates the
newly proposed components. Figure 3.6 presents the proposed detection pipeline:

1. The pipeline begins with defining a road junction environment using the previously
described simulator setup (Section 3.3);

2. Using the environment with a microphone array and a sound source removed, a BEV
encoding gets constructed using the method from the previous Section 3.4;

3. The acoustic simulation gets executed;

4. Results of the simulation is simulated multi-channel sound (as perceived with each mi-
crophone);

5. Following the approach from the previous work, the sounds from all channels get con-
verted into spectrograms with STFT;

6. The spectorograms get used as inputs for the DoA algorithm SRP-PHAT, just as in pre-
vious work;

7. The resulting DoA vector gets concatenated with the BEV vector for the respective room
and serves as an input to the SVM classifier;

8. Output of the classification is a confidence distribution for the direction of arrival classes
{le f t, f ront, right}.
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Overall, several differences can be observed with respect to the pipeline proposed by Schulz
et al. (2020). First, contrary to the previous method, the STFT spectrograms do not get divided
into L segments and get directly processed by SRP-PHAT to compute the DoA vector. The
underlying reason for segmenting spectrograms in previous work was to capture temporal
changes in the produced sound reflection pattern. However, with pyroomacoustics, it is not
possible to define moving sound sources, which renders the segmentation approach redun-
dant. In addition, the output of the classifier considers only three classes, due to the inherent
limitation of the simulator setup. The simulator does not allow modelling background noise,
and as such, class none (i.e., no approaching vehicle) does not get predicted.

Figure 3.6.: Illustration of the proposed detection pipeline. Images in the figure depict the
following: (1) Configuration of the simulated environment, (2) Creation of the BEV

encoding of the environment, (3) Running acoustic simulation, (4) Microphone array
records the sounds of the surrounding environment, (5) STFT computation for each of the
microphone signals, (6) Computation of Direction of Arrival, (7) Classification using the

concatenated DoA and BEV vector, (8) Output of the classification, which is a class
probability distribution.

3.6. Generation of the simulated dataset

One of the goals of the thesis is to assess the effectiveness of acoustic simulations in sim-
ulating sound propagation in a driving scenario. Namely, we want to understand whether
the proposed simulator setup allows to produce sound reverberation similar to what can be
observed in the real-world settings. In the thesis, we approach this task by simulating the
settings from Schulz et al. (2020). In the paper, the authors provide a detailed specification of
the environments the dataset was recorded at – ego vehicle distances to the intersections, loca-
tion coordinates, amongst others. Based on the provided information, it was possible to create
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Location name Location Abbreviation Coordinates (latitude, longitude)
Anna Boogerd SA1/DA1 52.01709, 4.3556
Kwekerijstraat SA2/DA2 52.0087, 4.3530

Willem Dreeslaan SB1/DB1 51.9812, 4.3670
Vermeerstraat SB2/DB2 52.0165, 4.3618
Geerboogerd SB3/DB3 52.0173, 4.3540

Table 3.1.: Overview of the dataset locations.

a dataset of sounds generated within the simulated settings of the paper. Having both the
real-world dataset and the corresponding simulated version allowed to conduct an experiment
(Section 4.2) that aimed to assess the effectiveness and realism of acoustic simulations. Hence,
this section describes how the simulated dataset was generated, laying the groundwork for the
subsequent experiment.

The real world dataset at hand consists of audio recorded at the road junctions displayed in
Table 3.1. Here, the recordings are divided into static data (S), made while the ego-vehicle
was in front of the junction and not moving, and dynamic (D) data when the ego-vehicle was
approaching the junction at ∼ 15 km/h. The recordings are also divided in two categories of
sound patterns (as show in Figure 2.7, type A and B). Then, for each type of junction, there
are one second sound samples, where each sample is annotated with one of the four arrival
classes {le f t, f ront, right, none}.

As such, the dataset creation involved simulation of the aforementioned settings. However,
the limitations of the utilized simulation software limited the extent to which the settings
could be simulated. Namely, as the package did not allow to simulate background noise,
it was determined to exclude the none class and train a classifier for the prediction of three
classes. In addition, the package did not have support for moving sound sources, which was
necessary to appropriately model the incoming cars, as well as the moving ego-vehicle in
dynamic setting. Subsequently, the decision was made to omit the dynamic junction type and
focus on simulating the static class.

In order to simulate the junction settings with the devised simulator setup, the simulator setup
requires definition of an environment’s walls, as well as the creation of a sound source and
a microphone array. Overall, five environments were defined with similar dimensions and
shapes to the real world junctions (as shown in Figure 3.7). While creating the new room
geometries, the following procedure was conducted:

1. Each junction was simulated as a walled room, with each wall having sound energy
absorption and sound scattering coefficients assigned;

2. As the simulator only allows to define a room geometry and not a geometry of open
space, having no wall at some parts of the junction was simulated as having a wall with
sound energy absorption set to one and scattering set to zero (as described in Section
3.3);

3. Distances between the walls were approximated based on the information from Google
Maps and the provided coordinates (Table 3.1).

To faithfully simulate the positions of the sound sources behind blind corners, it was essential
to revisit the configuration outlined in the paper. In the paper, for le f t and right classes within
the static category, 1-second sound samples are extracted using a time window of [t0 − 1s, t0].
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Figure 3.7.: An overview of the top-down junction images and the respective simulated
versions. From left to right: SA1, SA2, SB1, SB2, SB3. Real-world images retrieved using

Google Earth by the author of the thesis.

Figure 3.8.: Illustration of the ego vehicle’s field of view and its center. The approaching red
vehicle is out of sight from the ego vehicle’s perspective, and the yellow car is visible.

Here, t0 denotes the moment when an approaching vehicle enters the direct line of sight (i.e.,
ego vehicle camera’s field of view f ov, as demonstrated with Figure 3.8). Then, f ront class
gets extracted 1.5s after the le f t/right samples. Given that the dataset was recorded in neigh-
borhoods of Delft with a low speed limit, the approaching vehicles were likely moving at
∼ 15 km/h speed (roughly 4 m/s). Hence, the sound source positions within the simulations
were chosen to be in [− f ov − 4,− f ov] for the le f t class and [ f ov, f ov + 4] for the right class.
For the front class, static approaching vehicle was placed at fixed positions within the range
[ f ovcenter − 2, f ovcenter + 2], with f ovcenter being the center of the field of view. On the con-
trary, generating microphone positions was a simpler process, and in the simulations, a fixed
coordinate [xmic, ymic] was employed for this purpose.

In the end, generation of three new samples of three classes followed a specific procedure:
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1. Set three unique sound source positions. For le f t and right classes, set it within the
ranges of [− f ov − 4,− f ov] and [ f ov, f ov + 4]. For f ront class, define a sound source
position in the range of [ f ovcenter − 2, f ovcenter + 2];

2. For each of the sound source positions, define an equal emitting sound (1s sample of a
running engine);

3. For each of the sound positions, set an ego vehicle position to the fixed coordinates
[xmic, ymic];

4. Run the simulation, process the 3 resulting sound waves with SRP-PHAT algorithm.

In the end, this procedure was used multiple times to generate a complete dataset within each
of the simulated intersections from Figure 3.7. The resulting dataset comprised of 96 sound
samples (32 for each DoA class) for every type of junction {SimSA1, SimSA2, SimSB1, SimSB2,
SimSB3}, as well as the corresponding class annotations. The dataset got further used in one of
the experiments (Section 4.2). In addition, for the other experiment, the dataset got expanded
by applying the aforementioned procedure for different kinds of junctions (e.g., Y-junction,
cross-junction).
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In the preceding chapter, we detailed a simulator setup to generate sounds within simulated
road junctions. Alongside this, we put forth a compact BEV encoding and introduced a novel
detection pipeline. Now, in this chapter, we delve into experiments that strive to answer the
research questions posed earlier in Section 1.2.

The chapter is divided into three experiments. With the first experiment, the goal is to un-
derstand the characteristics of DoA features that can be derived from the utilized real-world
dataset (Schulz et al., 2020). This sets the expectations for the respective DoAs derived from
the sounds in simulated settings. Then, the second experiment aims to assess the effectiveness
of using simulations by training a classification model on simulated DoAs and testing on the
DoAs from the respective real-world junctions. With the third experiment, the goal is to assess
the effectiveness of the proposed BEV encoding for training a generalizable model, effectively
addressing the last research question from Section 1.2.

4.1. Experiment 1: Exploring characteristics of the DoA
acoustic features derived from the real-world dataset

Before diving into the exploration of DoA features from simulated sounds, this section pro-
vides an overview of how these features look like when computed from the real-world sounds.
As a reminder, the real-world dataset consists of sound samples recorded in five different lo-
cations, with the locations belonging to two different types: A and B (Figure 2.7) With type A,
there is a wall in the direction that the ego vehicle is facing, and type B there is no wall. Schulz
et al. (2020) make an a crucial assumption that the sound propagation is different depending
on the junction geometry. As such, this experiment aims to visualize the difference between
the DoA features that can be computed from two types of junctions, setting the expectations
for the respective simulations.

4.1.1. Experimental setup

To evaluate the assumption of sound propagation dissimilarity in different road junction set-
tings, this experiment visualizes DoAs for sounds in different locations. Furthermore, the DoA
features get visualized using the first two principal components of the Principal Component
Analysis. Ultimately, the objective is to identify the specific DoA distributions that should be
approximated by the simulation software.
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4.1.2. Results

Figure 4.1 visualizes two principal components for each junction category (SA and SB). Overall,
it is evident that there is a noticeable overlap between classes in both cases, albeit the features of
the “front” class exhibit greater separability within each category. As such, DoA distributions
from simulated sounds would have to demonstrate similar overlaps. In addition, it is clear that
the class distribution from SA looks fundamentally different to the one in SB. These findings
serve as the first point of evidence that the sound distributions are different depending on the
type of the T-junction.

Next, to have a closer look at how the DoA features look like, Figures 4.2 and 4.3 present DoA
features for each category {SA, SB}, location {SA1, SA2, SB1, SB2, SB3}, and class {left, front,
right}. The “none” class is excluded from the visualizations, as it is not possible to simulate
it with the proposed simulator setup. From the figure, it is evident that there is noticeable
variance in DoAs not only between each category but also within each category. For instance,
in SB2, DoAs exhibit a distinct intensity peak to the right when a vehicle approaches from
the left, and vice versa. In contrast, the distributions in SB1 differ significantly, indicating that
other factors in junctions may influence the propagation of sound to the ego-vehicle. These
factors may include:

1. Wider roads;

2. Different wall materials, heights;

3. Vegetation;

4. Average distance to the surrounding walls from the approaching vehicle;

5. Presence of other occluders, such as parked cars, other walls;

Taking these factors into account with the BEV encoding could potentially help the subsequent
detection model to expect alike DoA distributions for the similar junction settings. Admit-
tedly, the suggested BEV encoding solely captures data regarding the vehicle’s proximity to
surrounding walls. Hence, it may only cater to addressing points 1 and 4.

In the end, the experiment shows that there is noticeable variance in DoAs between not only
location types, but the distinct locations as well. Based on these findings, it’s implied that the
DoA distributions within the simulated settings should exhibit similar properties observed in
the real-world data to be representative.
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Figure 4.1.: Dimensionality reduction with PCA for all DOA feature vectors of three distinct
arrival classes in SA and SB categories.
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Figure 4.2.: Visualized DoA features for the SA category and locations. The columns
represent entries for front, left, and right classes (reading from left to right). The rows

represent entries for (1) the whole SA category, (2) SA1, (3) SA2 locations (reading from top
to bottom). In each image, red lines represent camera’s f ov, grey lines DoAs computed for

all sounds from a category or location, a blue line shows a mean DoA feature and blue
stripes represent standard deviation per azimuth angle.
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Figure 4.3.: Visualized DoA features for the SB category and locations. The columns represent
entries for front, left, and right classes (reading from left to right). The rows represent

entries for (1) the whole SB category, (2) SB1, (3) SB2, (4) SB3 locations (reading from top to
bottom). In each image, red lines represent camera’s f ov, grey lines DoAs computed for all
sounds from a category or location, a blue line shows a mean DoA feature and blue stripes

represent standard deviation per azimuth angle.
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4.2. Experiment 2: Assessing the effectiveness of acoustic
simulations in imitating sound propagation observed in the
real world

Having outlined the procedure for generating the DoA dataset for simulated locations in Sec-
tion 3.6, and examined the real-world DoA distributions in T-junctions, the next step is to
assess how effectively the simulations imitate real-world observations.

We approach this task by training classification models using DoA from the simulated junc-
tions and testing on the respective real-world junctions. Consequently, the accuracy of the
model trained on the simulated data and tested on the respective real-world data serves as
a quantitative metric. This metric assesses the effectiveness of utilizing simulations to pre-
dict direction of arrival classes in real-world sounds. Hence, it is used as a factor of how
representative the simulations are.

In addition, we aim to identify the most important simulator properties that can affect the
classification accuracy on the real world data. By outlining these properties, we can pinpoint
the specific factors to prioritize when attempting to imitate a real-world junction and compute
simulated sounds accurately. The proposed simulator setup has multiple parameters that can
affect the resulting sounds (Figure 4.4): (1) width of parts of the junction w, (2) position of the
microphone array pm, (3) positions of a sound source ps, (4) ISM reflection order, (5) type of the
microphone array and the number of microphones. As such, we study how changing a single
factor while leaving the other unaffected changes the resulting classification performance.

4.2.1. Experimental setup

The experiment involves training a classifier using simulated data and subsequently testing
it on DoAs computed from the real data in multiple rounds. Each round involves altering
only one of the previously mentioned simulator parameters at a time. In addition, for a single
round, a model only gets trained on DoAs from a single simulated junction (e.g., SimSB1),
and tested on the respective real-world junction (e.g., SB1). The trained classifier possesses the
following properties:

• Model type: SVM with RBF kernel, no regularization. Choice of the classifier is moti-
vated by previous work (Schulz et al., 2020);

• Training data: normalized DoAs from sound sources in a single simulated junction,
which can be SimSA1, SimSA2, SimSB1, SimSB2, or SimSB3;

• Test data: normalized DoAs in the corresponding real-world junction, which can be SA1,
SA2, SB1, SB2, or SB3.

The accuracy of the model is utilized as a quantitative indicator of the effectiveness of the sim-
ulations. Given the deterministic nature of SVM, to enhance robustness without altering the
random seed, the training set is varied ten times using 10-Fold cross-validation. The accuracies
from each fold are then averaged. Finally, for a qualitative assessment of the model, DoAs for
the simulations with the most optimal properties are visualized and directly compared to the
DoAs computed from the real-world sounds.
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Figure 4.4.: Parameters within the simulator that can influence the sound perceived by the
microphone array. Parts of the figure represent the following parameters: (1) width of parts
of the junction w, (2) position of the microphone array pm, (3) positions of sound sources ps,
(4) ISM reflection order, (5) type of the microphone array and the number of microphones.

4.2.2. Results

Having identified the properties of DoA distributions of the real-world dataset, simulations
can be used and compared to the real-world responses. Given the multitude of parameters
that can impact sound within the chosen simulation software, the subsequent Figure 4.5 and
Tables 4.2, 4.1, 4.3, 4.4 present the outcomes of training a model using the simulated data and
subsequently testing it on corresponding real-world DoA features.

Overall, it’s noticeable that the model’s performance exhibits significant variation based on the
chosen simulated location. In some cases, it achieves a perfect accuracy of 1.00 on the real-
world junctions’ test data (as shown in Table 4.1), while in other instances, it performs poorly
(as indicated in Table 4.3, SimSA1 column). Additionally, considering three classes with an
equal number of samples in each run, a random classifier would typically achieve around 0.33
accuracy. However, most accuracies surpass this random baseline, suggesting that the DoAs
derived from the simulated data offer valuable insights.

Next, the selected simulation properties also have an impact on performance, to varying de-

40



4. Experiments

grees. Observing the standard deviations of performances per location, it becomes evident
that, among all the considered properties, (1) position of the microphone array, (2) the sound
source position along its part of the road, and (3) the type of microphone array emerge as
the most influential factors in generating simulations that closely imitate real-world sound
characteristics. However, there is no distinct trend on which properties work consistently well
amongst all types of locations. For example, the results concerning the impact of the micro-
phone array position roughly align with the settings in Schulz et al. (2020). Optimal perfor-
mance occurs when a microphone array is 7-12 meters away from the intersection (as evident
by Figure 4.5). This is comparable to the paper’s setting, which indicates an average dis-
tance of 7-10 meters. However, similar generalizations cannot be extended to other simulation
properties. Notably, findings from sound source position measurements are counter-intuitive,
as, for some simulated locations, closer-than-actual source positions lead to improved perfor-
mance. Nevertheless, when examining the DoAs for models trained with the settings resulting
in the highest performance, it is apparent that simulating sound with the chosen software
can produce sound features closely resembling those computed from real-world settings. This
resemblance is particularly notable for category B, when comparing Figures A.2 and 4.3.

Ultimately, this experiment provided insights into the primary simulation properties influenc-
ing performance outcomes. Additionally, the reported accuracies demonstrate varying perfor-
mance, with most exceeding what a random classifier would achieve. The findings suggest
that the DoAs derived from simulations enable models to acquire transferable knowledge for
real-world performance, emphasizing the utility of acoustic simulations for the given task.

Figure 4.5.: Relationship between microphone array position pm and the accuracy of the
model. Each graph consists of points that represent average accuracies from 10-fold

cross-validation when training on DoA features from a single simulated junction and
testing on DoA features from the respective real-world junction. The bold colored points

represent the highest accuracies within the given train and test settings.
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Material SimSA1 SimSA2 SimSB1 SimSB2 SimSB3
Brickwork 0.56 0.72 1.00 0.72 0.67

Rough lime wash 0.57 0.72 1.00 0.72 0.65
Ceramic tiles 0.54 0.72 1.00 0.72 0.67

Brick wall rough 0.57 0.72 1.00 0.72 0.66
Wooden lining 0.58 0.72 0.99 0.71 0.65
Plasterboard 0.56 0.72 1.00 0.71 0.67
Wood 16mm 0.56 0.72 1.00 0.71 0.65

Mean µ 0.56 0.72 1.00 0.72 0.66
Standard Deviation σ 0.01 0.00 0.00 0.00 0.01

Table 4.1.: Effect of changing the shared wall material in the simulation. Each entry in the
table represents an average accuracy from 10-fold cross-validation when training on DoA
features from a single simulated junction and testing on DoA features from the respective

real-world junction.

Image Source Model order SimSA1 SimSA2 SimSB1 SimSB2 SimSB3
3 0.60 0.72 0.85 0.61 0.75
4 0.54 0.73 1.00 0.71 0.67
5 0.56 0.72 1.00 0.72 0.67
6 0.56 0.71 0.99 0.72 0.67
7 0.55 0.71 1.00 0.72 0.68

Mean µ 0.56 0.72 0.97 0.70 0.69
Standard Deviation σ 0.02 0.01 0.06 0.04 0.03

Table 4.2.: Effect of changing the ISM reflection order. Each entry in the table represents an
average accuracy from 10-fold cross-validation when training on DoA features from a single

simulated junction and testing on DoA features from the respective real-world junction.

Sound source position SimSA1 SimSA2 SimSB1 SimSB2 SimSB3
9 0.40 0.62 0.86 0.65 0.78
8 0.47 0.61 0.56 0.68 0.83
7 0.57 0.73 0.83 0.67 0.82
6 0.56 0.72 1.00 0.72 0.67
5 0.10 0.77 0.52 0.70 0.73

Mean µ 0.42 0.69 0.75 0.68 0.77
Standard Deviation σ 0.17 0.06 0.18 0.02 0.06

Table 4.3.: Effect of changing the source positions. Sound source position indicates y position
of a sound source. Each entry in the table represents an average accuracy from 10-fold
cross-validation when training on DoA features from a single simulated junction and

testing on DoA features from the respective real-world junction.
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Microphone Array SimSA1 SimSA2 SimSB1 SimSB2 SimSB3
Circular (32 mics, radius=0.25) 0.56 0.72 1.00 0.72 0.67
Circular (32 mics, radius=0.23) 0.57 0.72 0.99 0.72 0.67
Circular (32 mics, radius=0.22) 0.58 0.72 0.97 0.72 0.67
Circular (32 mics, radius=0.20) 0.62 0.72 0.97 0.72 0.67
Circular (32 mics, radius=0.15) 0.62 0.76 0.96 0.72 0.66
Circular (56 mics, radius=0.30) 0.39 0.75 1.00 0.71 0.68
Circular (48 mics, radius=0.25) 0.56 0.72 1.00 0.72 0.67
Circular (48 mics, radius=0.35) 0.36 0.73 1.00 0.69 0.68

Square (16 mics, d=0.1) 0.63 0.77 0.96 0.72 0.67
Square (25 mics, d=0.1) 0.61 0.73 0.96 0.72 0.67
Square (25 mics, d=0.05) 0.55 0.81 0.94 0.68 0.60
Square (36 mics, d=0.05) 0.55 0.82 0.95 0.70 0.60
Square (36 mics, d=0.03) 0.55 0.78 0.91 0.63 0.55
Linear (12 mics, d=0.08) 0.38 0.68 1.00 0.73 0.56
Linear (24 mics, d=0.08) 0.36 0.67 0.97 0.67 0.48
Linear (36 mics, d=0.06) 0.34 0.67 0.96 0.73 0.52
Linear (24 mics, d=0.04) 0.40 0.67 1.00 0.73 0.56
Linear (29 mics, d=0.04) 0.36 0.67 1.00 0.71 0.57
Linear (28 mics, d=0.04) 0.38 0.67 1.00 0.72 0.56
Linear (27 mics, d=0.04) 0.37 0.68 1.00 0.72 0.57

Mean µ 0.49 0.72 0.97 0.71 0.61
Standard Deviation σ 0.11 0.05 0.03 0.02 0.06

Table 4.4.: Effect of changing the microphone array. Array entries contain their shapes,
number of microphones, array radius/distance between each microphone in metres. Each

entry in the table represents an average accuracy from 10-fold cross-validation when
training on DoA features from a single simulated junction and testing on DoA features

from the respective real-world junction.
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4.3. Experiment 3: Training a direction of arival classification
model on DoA acoustic features and BEV encodings

The remaining goal of the thesis was to train a classifier that can generalize to sounds from the
intersection types not covered by its training dataset. This is why with this last experiment,
we wanted to evaluate the effectiveness of using a BEV encoding for training a generalizable
classifier. Following the description of the experimental results, the section concludes by con-
ducting a hyperparameter study. This study aims to assess the robustness of the proposed
BEV encoding when subjected to various parameter variations.

4.3.1. Experimental setup

The evaluation of the BEV encoding is carried out by comparing performance of two different
models from Table 4.5. The evaluation compares the following models: the model conditioned
on the BEV encoding, and the model that follows the approach from Schulz et al. (2020),
employing an SVM with a linear kernel using only DoAs as inputs. Importantly, it was decided
to only train and test the models on the simulated data. Firstly, there is not much variation in
the types of junctions in the available real-world dataset from Schulz et al. (2020) – the dataset
only covers T-junctions and the two respective types SA and SB. In addition, mixing simulated
and real-world data was also out of the consideration. There is an inherent domain gap
between the simulated sounds and the real-world sounds because of the simplified simulator
setup and the sound propagation model. Therefore, incorporating both types of sounds would
introduce additional inherent variability that can potentially influence the experimental results.
This can compromise the interpretability of the experimental outcomes.

Model Type BEV Encoding Model Properties Training Data Test Data
SVM None Linear kernel, reg-

ularized (C=2)
Normalized DoAs from
sound sources in simu-
lated junctions

Normalized DoAs from
sound sources within a
new simulated junction,
excluded from the train-
ing dataset

SVM w. BEV Polar represen-
tation with l=20,
p=50, n=20, aggre-
gation function=
averaging

Linear kernel, reg-
ularized (C=2)

Vectors that are results
of concatenating normal-
ized DoAs from sound
sources in simulated
junctions and BEV en-
codings of the respective
junctions

Concatenated vectors
comprising (1) normal-
ized DoAs from sound
sources within a new
simulated junction (ex-
cluded from the training
dataset) and (2) the junc-
tion’s BEV encoding

Table 4.5.: Descriptions of an unconditioned SVM model and the SVM model conditioned on
BEV encodings.

In this experiment, the two types of classifiers get evaluated on a new dataset, an extension
of the dataset used in the previous experiment (Section 4.2). This extended dataset includes
sounds from five additional intersections: SCross1, SCross2, SAR, SY1, SY2 (Figure 4.6), en-
larging the dataset to 928 DoA feature vectors for simulated sounds in total. For each of the
junctions, there are 96 DoA feature vectors (32 for each arrival class). The only exception is
the SAR junction, in which there cannot be a car arriving from the left, resulting in 64 DoA
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feature vectors. The classifiers undergo multiple training sessions, excluding one of ten junc-
tion sounds from the training data each time, along with the sounds of the entire respective
category. For instance, while evaluating the model’s performance on SB3, the entire SB cate-
gory (SB1, SB2, SB3) is omitted from the training dataset to assess performance in previously
unencountered junction settings.

Furthermore, to identify consistent trends in model accuracies regardless of the amount of
training data, the performances of the models get compared using different proportions of
training data (i.e., 10%, 30%, 50%, 70%, 90%, 100%). To ensure robustness, the training data
got shuffled ten times. As such, ten distinct runs for each entry in Table 4.7 were conducted,
with each entry taking a proportion of a shuffled dataset. This allowed for incorporating
randomness into all proportions except for the 100% proportion accuracies, as shuffling and
adjusting the proportion does not alter the outcome in that case. In the end, each entry repre-
sents an average accuracy from ten distinct runs.

SA1

SCross1

SA2

SCross2

SB1

SA-Rotated (SAR)

SB2

SY1

SB3

SY2

Figure 4.6.: An overview of the top-down junction images for the newly created simulated
dataset. The points indicate positions of the microphone arrays. Black lines illustrate the
starts of the walls, and grey indicates space beyond the road junction. The junction types
(i.e., SA, SB, SCross, SY) are arranged in ascending order based on the width of the road

where the microphone array is situated.

4.3.2. Results

Following the training of the model conditioned on the BEV encoding and the unconditioned
model, the findings are detailed in Table 4.6. The obtained accuracies indicate that the model
trained with BEV encodings and sound DoAs is at least as effective as the model trained
without BEV encodings. Notably, in several cases, it demonstrates a significant improvement,
as evidenced by the accuracies when testing on DoAs from SA1, SB2, SB3 intersections. On
the other side, the conditioned model demonstrates slightly inferior performance within SY1,
SAR, SB1 junction settings.

Consequently, when assessing the model performances with the same dataset but varying
amounts of training data, a consistent trend emerges. The conditioned model consistently
outperforms the unconditioned one when evaluating sounds from SA1, SA2, SB2, and SB3
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intersections. In the case of other intersections, the performance of the conditioned model
compared to the base model may exhibit slight variations based on the amount of utilized
training data. Importantly, the average accuracy remains relatively stable for the uncondi-
tioned model when varying the amounts of training data. However, for the model conditioned
on BEV encodings, the average accuracy decreases as the amount of training data decreases.

Overall, the findings from the experiment suggest the usefulness of the BEV encoding for train-
ing a generalizable model, albeit by a slight margin. As such, more research will be needed
involving an assessment on more kinds of junctions. In addition, a subsequent experiment
is needed with a stricter control of the variability factors within the simulated junctions (e.g.,
the microphone array position, the distance of the microphone array to the walls) that form
the models’ training dataset. This will further allow to test the usefulness of the proposed
encoding. Lastly, experiments involving varied data quantities indicate that the conditioned
model generally outperforms the other model across most data availability settings. Nonethe-
less, there is a minimal discrepancy between the two models when trained with very limited
amounts of data.

Model SCross1 SCross2 SY1 SY2 SAR SA1 SA2 SB1 SB2 SB3 Average
SVM 0.97 1.00 1.00 0.79 1.00 0.35 0.55 0.88 0.71 0.70 0.80

SVM w. BEV 0.98 1.00 0.95 0.79 0.98 0.42 0.56 0.82 0.92 0.94 0.84

Table 4.6.: Accuracies of the models when tested on a new type of intersection. The results are
compared between the unconditioned model and the BEV model.

% of training data used SCross1 SCross2 SY1 SY2 SAR SA1 SA2 SB1 SB2 SB3 Average

10% 0.96 0.98 0.95 0.64 0.99 0.37 0.45 0.77 0.80 0.84 0.77
0.93 0.96 0.96 0.74 0.86 0.39 0.49 0.79 0.83 0.82 0.78

30% 0.98 0.99 1.00 0.70 1.00 0.37 0.49 0.81 0.71 0.76 0.78
0.97 0.99 0.97 0.75 0.90 0.43 0.49 0.82 0.87 0.86 0.81

50% 0.97 1.00 1.00 0.70 1.00 0.37 0.50 0.81 0.70 0.70 0.78
0.98 1.00 0.98 0.77 0.92 0.44 0.52 0.80 0.91 0.91 0.82

70% 0.97 1.00 1.00 0.75 1.00 0.35 0.53 0.82 0.69 0.70 0.78
0.98 1.00 0.97 0.79 0.92 0.44 0.54 0.82 0.92 0.93 0.83

90% 0.97 1.00 1.00 0.77 1.00 0.36 0.54 0.84 0.69 0.70 0.79
0.98 1.00 0.96 0.79 0.99 0.43 0.56 0.81 0.92 0.94 0.84

100% 0.97 1.00 1.00 0.79 1.00 0.35 0.55 0.88 0.71 0.70 0.80
0.98 1.00 0.95 0.79 0.98 0.42 0.56 0.82 0.92 0.94 0.84

Table 4.7.: Accuracies of the models when tested on a new type of intersection using varying
quantities of training data. Each cell with the different training data amounts includes two
rows next to it: the first row displays accuracies for the unconditioned model (SVM), while

the second row illustrates accuracies for the conditioned model (SVM w. BEV).

4.3.3. Hyperparameter study

As the proposed BEV encoding has several parameters that can affect the quality of the encod-
ing (visualized in Figure 3.5), this section discusses the effect of changing one of the encoding
parameters. To reiterate, the proposed encoding works as follows:
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1. Shoot n rays of length l, uniformly separated between each other with an azimuth angle
ϕ;

2. Sample p points along the ray, by identifying whether a point is inside the junction (0)
or outside (1);

3. The result is n × p matrix.

The resulting matrix can either be flattened into a vector, or p points inside the matrix can
be aggregated by using some aggregation function, resulting in a vector of length n. The
following aggregation functions get considered:

• First principal component from PCA;

• Averaging p values.

The newly proposed model, conditioned on BEV encodings and acoustic features, underwent
multiple retraining cycles. In each cycle, only a single hyperparameter got altered. Tables
4.8, 4.9, 4.10, and 4.11 showcase averages from the accuracies attained when testing the model
on data from individual simulated junctions, just as in the last column of Table 4.6. To start
off, the model was retrained by changing the number of rays only (Table 4.8). Here, one
ray indicates shooting a single ray forward from the microphone position. As for more rays,
they denote using multiple uniformly separated rays. Alteration of this parameter revealed
minimal variability in the results, especially as the number of rays increased. When observing
the influence of picking different aggregation functions in Table 4.9, it becomes evident that
using averaging results in the best model performance. Employing PCA surprisingly leads
to notably inferior performance compared to even the base SVM model conditioned solely on
DoAs, as evident when comparing to entries from Table 4.6. Lastly, the final two tables (4.10,
4.11) demonstrate limited variability in results when either of the parameters gets modified.

Overall, the findings from the hyperparameter study suggest that incorporating the proposed
BEV encoding as an additional feature, even with considerable changes to the hyperparam-
eters, results in little variability between the model performances. Importantly, most of the
tested models outperform the SVM model that lacks conditioning on BEV encodings at least
by a slight margin, as evidenced by the results from Table 4.6.. Notably, the utilization of PCA
as an aggregation function demonstrated no utility, indicating that averaging is the preferred
aggregation method.

1 ray 10 rays 20 rays 30 rays 40 rays 50 rays 60 rays
Accuracy 0.79 ± 0.21 0.80 ± 0.21 0.84 ± 0.19 0.80 ± 0.19 0.81 ± 0.18 0.80 ± 0.19 0.80 ± 0.18

Table 4.8.: Accuracies for SVM w. BEV models having different number of rays n. Accuracies
show average model accuracy across all simulated junctions with a standard deviation.

Average PCA Full
Accuracy 0.84 ± 0.19 0.69 ± 0.23 0.82 ± 0.22

Table 4.9.: Accuracies for SVM w. BEV models having different point aggregation functions.
Accuracies show average model accuracy across all simulated junctions with a standard

deviation.
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5 points 10 points 20 points 30 points 40 points 50 points
Accuracy 0.84 ± 0.19 0.81 ± 0.20 0.84 ± 0.19 0.84 ± 0.19 0.84 ± 0.19 0.84 ± 0.19

Table 4.10.: Accuracies for SVM w. BEV models having different number of points p being
sampled per ray. Accuracies show average model accuracy across all simulated junctions

with a standard deviation.

ray length 15 ray length 20 ray length 25 ray length 30
Accuracy 0.85 ± 0.17 0.82 ± 0.18 0.84 ± 0.19 0.84 ± 0.19

Table 4.11.: Accuracies for SVM w. BEV models having different ray lengths l. Accuracies
show average model accuracy across all simulated junctions with a standard deviation.
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5.1. Conclusions

In this thesis, multiple research questions were tackled, and by performing the previously
described experiments, several observations and conclusions can be made.

The assessment of similarity between simulated sounds and real-world sounds resulted in in-
teresting observations. Notably, no singular configuration of simulation properties was iden-
tified to effectively align simulated sounds with the expected sounds at a T-junction when
hearing an approaching vehicle. This finding suggests that external engineers or researchers
seeking to simulate realistic sound reverberation for any junction face challenges, as a straight-
forward set of instructions applicable for any type of junction could not be identified. However,
it was observed that the utilization of specific simulation parameters can lead to the genera-
tion of sounds, from which the computed DoA intensities closely match those calculated from
real-world sound data. These findings indeed encourage further exploration of simulations
in future studies. Given that the employed simulation setup significantly simplified the real-
world scenario, one can anticipate that employing specialized software incorporating a more
intricate sound propagation model and additional features could potentially yield improved
outcomes in subsequent research.

As sound inherently conveys less spatial information compared to other conventional sen-
sors in autonomous driving, this research aimed to develop a method that would fuse prior
information about the surroundings (BEV encoding) with a acoustic features. Namely, the ap-
proach aimed to train a classifier capable of operating across environments excluded from the
training data. The study introduced a novel BEV encoding technique: transforming the map’s
top-down view into a polar representation that encodes information about the surrounding
walls across all polar directions. The result of the method is a concise fingerprint of the sur-
rounding environment. With the creation of the new encoding, it was combined with DoA
features to train a classifier capable of processing sounds from previously unexplored envi-
ronments. Results from the experiment indicated that the new classifier could either match the
base classifier in accuracy when handling sounds from junctions excluded from the training
dataset, or outperform it. Granted, more experiments in the future will be needed to confirm
this improvement across many settings, and to make the results more reliable and robust. Nev-
ertheless, the conducted experiment suggests the utility of incorporating information about the
surrounding driving environment in the form of the BEV encoding in developing a classifier
capable of generalizing to new environments.
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5.2. Limitations

The methodology employed in this research has several limitations. First of all, the proposed
simulator setup relies on external software pyroomacoustics that, as of the thesis writing, pos-
sessed the following limitations:

• Inability to define unbounded spaces. Pyroomacoustics is simulation software for indoor
acoustics, so it requires a definition of an enclosed space to run acoustic simulations. This
is why workarounds for defining junctions with some walls being absent were needed
(described in Section 3.3);

• Inability to define occlusions other than walls. Another limitation of the software is
its absence of support for definition of vegetation or various obstructions beyond walls
in the simulated environments. This simplification is notable as sound emitted from a
moving vehicle typically encounters multiple obstacles such as other vehicles, vegetation,
pedestrians, among others;

• Usage of acoustic simulations in 2D space instead of 3D. The proposed simulator setup
makes use of 2D simulations instead of 3D. Initially, when experimenting with the pack-
age, 3D simulations were used for modelling sound propagation in road junction set-
tings. However, this resulted in unrealistic simulations compared to 2D. Namely, the
DoA features computed from sounds simulated in 3D environments did not demon-
strate peak energies for the ground truth directions of incoming vehicles. Hence, the
resulting DoA vectors were not informative for determining the direction of arrival of
an incoming vehicle. As such, the decision was made to utilize 2D acoustic simulations.
That is the reason why walls, the microphone array, and sound sources are defined by
their 2D coordinates rather than 3D in the proposed simulator setup;

• Inability to define moving sound sources. The package does not support definition
of moving sound sources. Consequently, modeling the scenario where the ego vehicle
approaches the junction’s start, along with the obscured sound source, involved main-
taining fixed positions for both (as described in Section 3.6);

• Inability to define background noise. As previously mentioned, the selected package
does not allow definition of background noise in the simulated environments. Conse-
quently, modeling scenarios where there is no approaching vehicle was unfeasible within
this framework.

The aforementioned limitations created a substantial domain gap between the simulated sounds
and the sounds that propagate in real world. Therefore, it is vital to approach the interpreta-
tion of simulation experimental results while considering this domain gap.

Furthermore, the employed methodology possesses another limitation, unrelated to the de-
vised simulator setup. Namely, the BEV encoding experiment (Section 4.3) was conducted
solely within the simulated environments to circumvent the aforementioned domain gap. This
choice weakens the robustness of the experimental outcomes since their transferability to real-
world settings remains uncertain. However, given that simulations demonstrated representa-
tiveness in some instances, there certainly exists a potential for the experimental findings to be
applicable in real-world scenarios. Nonetheless, validating the transferability requires further
experiments and research.
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5.3. Future work

This work creates opportunities for exploring several promising research directions:

• Use newer, more representative simulation software. As simulation software continues
to advance, leveraging updated software for analogous sound simulations within driving
environments becomes even more promising. Enhanced features, particularly the capa-
bility to define moving sound sources, would inherently enhance the representativeness
of simulations in the context of autonomous driving;

• Verify the utility of the proposed BEV encoding with subsequent experiments. As
the potential utility of the BEV encoding was only assessed with a single experiment,
more research is needed to confirm its value. A new experiment would involve (1) a
stricter control of the variability factors within the model’s dataset (e.g., the microphone
array position, the distance of the microphone array to the walls), (2) a bigger coverage
of another types of junctions in the dataset. In addition, the experimental results of
the already executed experiment can be better analyzed in the future experiment. For
example, it is still not clear why the SVM w. BEV model performed much better for
SB2, SB3 environments than the unconditioned model (Section 4.3, Table 4.6). As such,
in one of the upcoming experiments, the objective would be to comprehend the precise
properties of the proposed BEV encoding method that result in either detrimental or
improved performance of the classification model;

• Propose another BEV encoding. There is certainly a potential for development of a
more informative BEV encoding. A more representative encoding would take into ac-
count some additional elements like trees, parked cars, or other occlusions that alter the
propagation of sound in space;

• Check the transferability of a new BEV encoding on a real-world dataset. Since the
experiment solely addressed simulated environments, it is crucial to explore whether
the efficacy of a new BEV encoding extends to enhancing the robustness of a classifier
in real-world scenarios. Given that the utilized real-world dataset exclusively encom-
passes T-junction data, expanding the dataset to include various junction types becomes
imperative to ensure more comprehensive and robust results.

5.4. Ethical considerations

The experiments conducted in this thesis centered on simulations, thereby not presenting im-
mediate ethical concerns regarding the employed methodology. However, the fundamental
concept of employing audio as an additional modality for vehicle detection raises valid ethical
considerations. Addressing these concerns is imperative to ensure the responsible develop-
ment and deployment of this technology.

Privacy concerns
Utilizing yet another sensor for recording information while driving introduces significant
amounts of new data collection. Consequently, recording and processing audio data may inad-
vertently capture private conversations or identifiable information. To safeguard individuals’
privacy and prevent unauthorized access or misuse of sensitive information, robust privacy
measures and stringent data security protocols are essential.
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Bias and discrimination
As with any sensor data in autonomous driving, processing information from audio may
result in both bias and discrimination. For instance, a hypothetical scenario could arise where
the developed model is more prone to detecting motorbikes due to their distinct acoustic
features, while being less adept at detecting electric cars. This situation inherently introduces
discrimination towards individuals owning different types of road vehicles. Therefore, it is
crucial to ensure that the development of future models involves testing for equal performance
in detecting all kinds of vehicles.

In addition, another ethical consideration that emerged while writing the thesis pertained to
the reproducibility of prior research. The initial assessment of previous works in line-of-sight
vehicle detection (as detailed in Appendix B) yielded unexpected results. Both evaluated works
had datasets that did not align with the descriptions provided in their respective papers. Ad-
ditionally, contrary to the claims in Valverde et al. (2021), our reproducibility experiments indi-
cated that the proposed vehicle detection model struggled to generalize to sounds recorded in
driving scenarios not covered by the training dataset. These works initially appeared promis-
ing due to their dataset specifications, which, upon publication, did not match the provided
descriptions. Consequently, these findings prompted a shift in the research focus toward non-
line-of-sight acoustic vehicle detection, primarily due to the absence of applicable datasets
for line-of-sight acoustic vehicle detection within the field. Effectively, the inability to repro-
duce the results significantly impacted our research progress, consuming valuable time and
resources. This highlights the ethical responsibility in ensuring reproducibility, underscoring
its critical significance for the broader scientific community when publishing research.

5.5. Reproducibility

The experimental outcomes described in Chapter 4 can be reproduced by using scripts from
the project’s Github repository1.

1https://github.com/Borknab/msc-thesis
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A. Extra figures

Figure A.1.: Visualized DoA features for simulated SA locations. The columns represent
entries for front, left, and right classes (reading from left to right). The rows represent
entries for (1) SimSA1, (2) SimSA2 locations (reading from top to bottom). Grey lines

represent DoAs computed for all sounds from a location, a blue line shows a mean DoA
feature and blue stripes represent standard deviation per azimuth angle.
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Figure A.2.: Visualized DoA features for simulated SB locations. The columns represent
entries for front, left, and right classes (reading from left to right). The rows represent

entries for (1) SimSB1, (2) SimSB2, (3) SimSB3 locations (reading from top to bottom). Grey
lines represent DoAs computed for all sounds from a location, a blue line shows a mean

DoA feature and blue stripes represent standard deviation per azimuth angle.

54



B. Initial work with line-of-sight acoustic
vehicle detection

Initially, the goal of the thesis was to use acoustic information for detecting vehicles that are in
direct line of sight. Namely, the research prospect was to use acoustic information and respec-
tive features to train a model for the task of object detection. 2D object detection is a task in
computer vision that tackles locating instances of objects in images or videos (The MathWorks,
2023c). The outputs of an object detection model are typically bounding boxes defined by their
widths, heights, x and y coordinates within the image, as well as respective class confidence
score and a class. Having been inspired by the line-of-sight 2D vehicle detection research
mentioned in the related work section (Section 2) (Chakravarthy et al., 2023; Gan et al., 2019;
Valverde et al., 2021), the underlying vision was to use sound for downstream 3D perception
tasks, such as 3D object detection, or semantic map segmentation. Hence, before proceeding
with 3D perception tasks, the first experiments of the thesis revolved around reproduction of
the results from the 2D detection works, so that any domain gaps and model failure cases
could be identified.

Hence, this chapter presents the reproducibility efforts of the works from Valverde et al. (2021)
and Chakravarthy et al. (2023). The chapter then concludes the reproducibility experiments
and motivates why it was decided to switch the research interest to non-line-of-sight acoustic
vehicle detection instead.

B.1. Reproducing the work from Valverde et al. (2021)

The underlying goal from the work done by Valverde et al. (2021) is to tackle 2D object de-
tection by using sound features as an input only. In order to do that, the researchers utilize a
knowledge distillation technique. Namely, the authors employ three EfficientDet-D2 modality-
specific teacher networks (thermal, depth, RGB) that regress the bounding boxes for the nearby
vehicles together with class confidence thresholds for a single class “car”. Consequently, the
student audio network learns to acoustic features to the bounding box predictions from the
teacher networks. This architecture implies that the modalities were synchronized between
each other, so that audio, as well as thermal, depth, and RGB images were sampled at the
same timestamp. The acoustic features employed for the vehicle detection in the student
audio network were spectrograms from one second long sound recordings, recorded by the
microphone array mounted on the ego vehicle while driving or remaining in a static position.
Having trained the knowledge distillation networks, the authors achieved remarkable results,
demonstrating that the trained model was able to detect nearby vehicles using sound alone
during the inference.

As the work from Valverde et al. (2021) included a code and a dataset release, as well as the
weights for the pre-trained model, it was possible to directly assess reproducibility of their
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work. Consequently, this section provides an overview of the experiments performed to assess
the reported results. The section is structured as follows. First, an initial assessment of the
model and its outputs gets presented. Then, an important discovered property of the acoustic
model – ability to detect parked cars, gets outlined. In order to identify a potential reason for
the model’s ability to detect parked cars, the model gets retrained using different train/test/-
validation splits, and the results from retraining the model get discussed afterwards. Lastly,
the issues encountered with the dataset while using it get highlighted, and the section finishes
with conclusions from the experiments with the paper.

B.1.1. Assessment of the pretrained model

As the weights of the pretrained model were already provided by the authors, it was possible
to directly apply the model to the provided dataset. The presentation of sample outputs
is depicted with two subsequent figures. First, Figure B.1 illustrates sample car detections
obtained from modality-specific networks. Subsequently, Figure B.2 displays additional vehicle
detections generated by the model conditioned solely on audio input. Overall, qualitatively, the
audio student model is able to output decent predictions for both static and dynamic driving
sequences for some cars. However, several out-of-place predictions with a high confidence
score for a car class can be observed.

Figure B.1.: Example of inference from 3 teacher networks (RGB on top left,
depth on top right, thermal on bottom left) and an audio student network

(bottom right).

Model type mAP@Avg ↑ mAP@0.5 ↑ mAP@0.75 ↑ CDx ↓ CDy ↓

Reported 61.62 84.29 59.66 1.27 0.69
Reproduced 28.69 44.91 25.43 5.35 3.09

Table B.1.: Comparison of the metrics reported in the paper (Table 1)
against the reproduced results.

In order to have a quantitative evaluation of the model, it was decided to reproduce Table 1
results from the paper. The results can be seen in Table B.1. As can be observed, the model
provided by the authors scores much worse in mean average precision and central distance
metrics, which corresponds to the evaluation efforts done by other people on Github1.

1https://github.com/robot-learning-freiburg/MM-DistillNet/issues/11
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Figure B.2.: Sample car detections from an audio student network that uses sound
spectrograms alone during the inference.

Overall, the initial evaluation of the model indicated satisfactory performance for some cars
but also revealed misplaced predictions, as evidenced by Figures B.1 ans B.2. Moreover, when
the model was being assessed using the same evaluation script as the one used for the paper’s
Table 1 results, a significant discrepancy emerged. The model’s performance metrics were no-
tably worse than those reported in the paper. These findings already indicated issues with the
model, and further unexpected insights into its performance are detailed in the next section.
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B.1.2. Insights on the model

During the assessment of the model conditioned on the audio input (spectrograms from one
second sound recordings), a notable finding emerged: the model was consistently able to detect
the presence of parked cars (as shown in Figure B.3). This outcome could be hypothetically
attributed to several factors. Firstly, the model could learn to focus on sound reflections from
the parked cars. Secondly, the model could be overfitted, which lead to its proficiency in
predicting parked cars. The subsequent experiment focuses on the verification of the second
hypothesis.

Figure B.3.: Examples of predictions from the audio student network which clearly include
parked cars with high levels of confidence.

In order to verify whether the model was overfitting or not, it was decided to start with the
inspection of the train/test/validation splits. Overall, the following observations could be
made:

• The dataset had 48 drive recordings in total. Each of them consisted of timestamp-
synchronized sound, depth, thermal, and RGB images for a distinct location the ego
vehicle was located at, or a path it was following while recording the data. Notably, none
of the drive recordings got specifically allocated for test or validation splits, meaning that
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all of them got shared amongst the splits, resulting in no unique driving scenarios for
test and validation splits;

• Top 10 locations with the most utilized synchronized modality data were exactly the
same for both train, test, and validation splits;

• 14147/18873 (75%) modality entries in the validation set were directly adjacent to one
of the frames in the train set. In other words, they were one increment or decrement to
the timestamp away, presenting a substantial feature overlap. This problem was already
explained in the main part of the thesis (Section 2.2.2) and visualized previously with
Figure 2.5;

• 4640/18873 (25%) modality entries in the validation set were directly adjacent to one of
the frames in the test set (one increment or decrement to the timestamp away).

These observations prompted further investigation to verify whether the model was indeed
overfitting. In order to verify this statement, it was decided to complete the following steps:

1. Retrain the model on half of the data and a quarter of the data respectively (for computa-
tional resource availability reasons), while holding out some recording locations uniquely
for the validation set. Additionally, to address the aforementioned observation with ad-
jacency of modality entries in the splits, decrease the average overlap (i.e., time distance)
between the frames by two for the model trained on half of the dataset and by four for
the other model respectively;

2. Run evaluation script for the resulting modeling models on respective test splits and
compare the performance against the model provided by the authors;

3. Evaluate the retrained models and the original model on the shared driving sequences;

4. Evaluate the retrained models and the original model on two driving sequences that
were only excluded from the train splits for retrained models.

B.1.3. Retraining the model with new data splits

As mentioned in the previous section, the model was retrained two times – on a half and the
quarter of the original training data allocation respectively. Notably, two sequence recordings
were completely left out of the train and validation splits both of the times:

• drive day 2020 03 18 16 02 15 (static recording, daytime, 95 entries of synchronized data);

• drive day 2020 05 21 20 25 14 (dynamic recording, daytime, 1174 entries).

Initially, the models were evaluated against each other using an original test split (18874 entries
of synchronized RGB, depth, thermal, and audio data; Table B.2). As can be observed, the
model retrained on 1/2 of the dataset actually scored higher than the model with weights
provided by the authors. The model trained on 1/4 of the original train set scored much lower
than the other models, which may be attributed not only to the decreased size of the dataset,
but also the modality-specific recordings (e.g., sound clips, images) being further away to each
other in time.

Subsequently, the models were applied to two different recordings that were excluded from
the train and test sets (Table B.3), along with two recordings that were included in the train
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sets of all models (Table B.4). Surprisingly, both of the retrained models failed to general-
ize to the entries from the driving locations excluded from the training dataset, achieving a
mean average precision score of zero. This discovery aligns with the observation made by
Chakravarthy et al. (2023), where it was found that a similar method (Gan et al., 2019) to the
one employed by Valverde et al. (2021) could not generalize to new driving scenarios, scoring
zero in average precision metrics. Consequently, looking at the evaluation results for the two
remaining recording sequences that were included in the training dataset (Table B.4), it can be
seen that they are more aligned with the general evaluation done in Table B.2.

Model type mAP@Avg ↑ mAP@0.5 ↑ mAP@0.75 ↑ CDx ↓ CDy ↓

Reported 61.62 84.29 59.66 1.27 0.69
Reproduced 28.69 44.91 25.43 5.35 3.09

1/2 training data 33.39 46.00 31.58 4.77 2.78
1/4 training data 16.29 20.33 15.84 8.57 5.07

Table B.2.: Evaluation of the models trained on different overlaps
between the data splits and data amounts.

Model type mAP@Avg ↑ mAP@0.5 ↑ mAP@0.75 ↑ CDx ↓ CDy ↓

drive day 2020 03 18 16 02 15 (95 entries, static, day)

Reproduced 15 33.92 7.93 12.64 5.66
1/2 training data 0.00 0.00 0.00 26.97 12.67
1/4 training data 0.00 0.00 0.00 27.73 13.12

drive day 2020 05 21 20 25 14 (1174 entries, dynamic, day)

Reproduced 29.25 50.2 24.13 6.42 3.25
1/2 training data 0.00 0.03 0.00 12.8 7.51
1/4 training data 0.00 0.02 0.00 13.19 7.79

Table B.3.: Evaluation of the models on two different recordings which
the retrained models were not trained on.

Model type mAP@Avg ↑ mAP@0.5 ↑ mAP@0.75 ↑ CDx ↓ CDy ↓

drive day 2020 03 18 15 52 13 (83 entries, static, day)

Reproduced 11.12 30.96 7.57 17.25 8.02
1/2 training data 30.74 58.52 20.45 10.63 5.45
1/4 training data 1.32 3.05 0.33 25.67 13.55

drive day 2020 05 29 17 53 48 (5181 entries, dynamic, day)

Reproduced 26.47 51.21 18.81 4.04 2.90
1/2 training data 14.48 29.76 9.50 5.85 4.11
1/4 training data 0.17 0.38 0.10 10.33 7.31

Table B.4.: Evaluation of the models on two different recordings which
all models were trained on.

B.1.4. Issues with the provided dataset

Several issues emerged while working with the dataset. Firstly, there were noticeable distor-
tions and shifts observed in both thermal and depth images across various driving sequences,
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as depicted in Figures B.4 and B.5. In addition, the included extrinsics for the sensor mounted
on the ego vehicle (i.e., positions and orientations with respect to the the other sensors or the
world) were not documented, so it was not clear how to use them. Lastly, as LiDAR point
clouds are one of the most common modalities in 3D object detection in the context of au-
tonomous driving (Dong et al., 2023), their inclusion in the dataset would be very beneficial.
However, despite the paper indicating the inclusion of LiDAR point clouds in the dataset, the
published dataset lacks them.

Figure B.4.: An example of 2 RGB images (top) in the dataset and respective correct (bottom
left) and corrupted (bottom right) thermal images.

Figure B.5.: An example of 2 RGB images (bottom) in the dataset and respective correct (top
left) and corrupted (top right) RGB-D images.

Overall, the aforementioned observations raised some concerns about the quality of the avail-
able data and questioned the applicability of the dataset for the tasks of the thesis.

B.1.5. Reflection on the observed results

In the end, the assessment of the proposed approach – knowledge distillation network for the
task of detecting vehicles, yielded unexpected results. The proposed model could not general-
ize beyond the synchronized modality entries from the driving sequences already included in
the training dataset. In addition, the issues with the dataset made it impractical to apply it for
the tasks of the thesis. Therefore, the choice was made to exclude the authors’ approach and
abstain from utilizing the dataset for the thesis objectives.

61



B. Initial work with line-of-sight acoustic vehicle detection

B.2. Reproducing the work from Chakravarthy et al. (2023)

Similar to Valverde et al. (2021), this paper focuses on 2D object detection using acoustic
features. This paper was particularly relevant for the thesis as its dataset contained numer-
ous entries of synchronized sound, image, and LiDAR data, essential for training models for
downstream 3D perception tasks. In addition, the paper reported impressive results demon-
strated the effectiveness of beamforming maps for object detection. Therefore, reproducing the
experimental results of the paper was also intriguing.

Unfortunately, at the time of writing the thesis, the authors did not provide a code release that
would allow to reproduce the experimental results. In addition, upon investigating the dataset
shared on Google Drive2, it became evident that the published dataset was incomplete. Its size
was approximately 190 GB, significantly smaller than the reported 14TB storage utilization.
Furthermore, the dataset’s contents did not align with the specifications outlined in the paper,
and the published dataset lacked proper documentation. In summary, several crucial elements
were missing from the published dataset:

• Images from one of the cameras;

• Sound recordings from the microphone array.

Ultimately, the published dataset proved inadequate for the thesis objectives for the aforemen-
tioned reasons, and most importantly, for missing acoustic data. Therefore, the dataset could
not be utilized for the intended purposes of the thesis.

B.3. Conclusions

In the end, while reviewing both studies, significant insights surfaced. While exploring the
research by Valverde et al. (2021), it became apparent that the provided model and architec-
ture could not generalize to new driving scenarios, and issues arose regarding the quality of
the published dataset. In addition, the study conducted by Chakravarthy et al. (2023) was of
particular interest due to its dataset. However, the published version of the dataset proved in-
complete and inadequate for the thesis’s research objectives. Given the absence of other studies
providing suitable datasets for the intended 3D vehicle perception using acoustic features, a
decision was made to redirect the thesis focus towards non-line-of-sight vehicle detection.

2https://drive.google.com/drive/folders/1CJHbDfqtglHpCa12HLMzc4xfymDuhZBK
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