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Chapter 1

Introduction

1.1 Research background

Quantum computers open the door to quantum simulation with potential applications
in the field of condensed-matter physics, high-energy physics, atomic physics, quan-
tum chemistry and cosmology [1]. Moreover, some problems like factoring very large
numbers into their primes using Shor’s algorithm and searching large, unstructured
data sets with Grover’s search algorithm, can be solved in a reasonable amount of time
using a quantum computer contrary to a conventional, classical computer [2]. This
large panel of applications and the potential impacts on society explain why building a
quantum computer is a major focus for the scientific community. Then comes the ques-
tion of how can a quantum computer be implemented. First and foremost, quantum
information is encoded in qubit states. A qubit is a mathematical object whose general
state is a linear combinations of |0i and |1i, ı.e |yi = a |0i + b |1i with the complex
numbers a and b satisfying |a|2 + |b|2 = 1 [2]. The following five DiVincenzo criteria
are necessary conditions for constructing a quantum computer [3] :

1. A scalable physical system with well characterized qubit

2. Long relevant decoherence times

3. A "universal" set of quantum gates 1

4. The ability to initialize the state of the qubits to a simple fiducial state

1An arbitrary quantum computation on any number of qubits can be generated by a finite set of gates
that is said to be universal for quantum computation [2].

4



5. A qubit-specific measurement capability

The way the first three criteria are satisfied in the context of circuit quantum elec-
trodynamics (circuit QED) [4], which is a possible hardware for a quantum computer,
is of interest for this master thesis. More precisely, we focus on the implementation of
surface code fabric developed at Qutech whose purpose is given at point 2 [5]. :

1. Qubits are realized by flux-tunable transmons interconnected by bus resonators
[6]. They are presented in details in Sec. 2.1 and are laid out on a two-dimensional
square lattice to form the surface code [7]. The latter consists of data-carrying
qubits and X (Z) type ancilla qubits. The numbers in Surface-7, Surface-17 and
Surface-49 indicate the amount of qubits on the chip, as shown in Fig. 1.1.1 for
the specific example of Surface-17 [5].

2. The surface code protects data qubits from decoherence caused by the interaction
between the qubit and the noisy environment. As the surface code itself is not the
main focus of this work, we only mention its purpose, give a general idea on how
it works and recommend the reader to turn to Refs. [8] and [9] for more details.
In order to detect whether errors occurred on the data qubits and to correct them
afterwards, ancilla qubits are used to perform X type and Z type quantum parity
checks of their nearest-neighbor data qubits [5]. In other words, each ancilla qubit
interacts with its four neighouring data qubits in a specific order and the states of
the ancillas are then measured. From the output formed by the set of parity checks
on the whole fabric, errors on data qubits can be extracted and then (hopefully)
corrected.

3. A universal set of quantum gates for computation with unencoded qubits, ı.e. the
state of one qubit is encoded in a single physical qubit, is formed by the unen-
coded CPHASE gate and with some single qubit rotation gates2. However, in the
context of the Surface code, the state of a qubit is encoded redundantly in a so-
called logical qubit formed by a higher number of qubits [8]. Then, an encoded
universal set of gates, ı.e. gates which are effective on the logical qubit, is required

2Single qubit and CNOT gates are universal [2]. CNOT and CPHASE can be built from each other via

the relation CNOT = (I ⌦ H)CPHASE(I ⌦ H), where the hadamard gate is H = 1p
2

 
1 1
1 �1

!
, see Fig.

8 in [10]. Hence CPHASE gate together with the set of single-qubit rotations also form a universal set of
quantum gates.
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for computation. This thesis discusses unencoded CPHASE gates. In the Surface
code, they are used in order to do error correction.

Figure 1.1.1: Layout of the so-called Surface-17 code fabric (enclosed in the black line) where
data qubits are represented by red circles with D labels, while blue (green) circles with X (Z)
labels represent ancillas performing X type (Z type) quantum parity checks of their nearest-
neighbor data qubits [5]. (The figure is taken from [5], page 2.)

1.2 Problem description

In superconducting qubit architectures achieving high fidelity two-qubit gates is chal-
lenging. Considering the CPHASE two-qubit gate, the interaction that allows its imple-
mentation is the so-called cross-Kerr interaction, which is characterized by the cross-
Kerr coefficient defined as

c = E11 � E10 � E01. (1.1)

Here E11, E10 and E01 are the instantaneous eigenenergies associated with the states
|11i, |01i and |10i and the lowest energy level E00, associated with the state |00i, is
set to zero3. When we want to perform a CPHASE gate, the system is generally taken
to a point where the cross-Kerr coefficient c between the two qubits involved in the
CPHASE gate is high, leading to a fast gate [11]. On the other hand, the ability to reach
high cross-Kerr at the interaction point generally entails also non-negligible residual
cross-Kerr between neighbouring qubits, when they are not supposed to interact. This
unwanted residual cross-Kerr interaction is referred to as ZZ crosstalk [12]. The latter
causes a shift of the frequency of a qubit depending on the state of each of its neigh-
bours. The value of the shift is also given by the cross-Kerr coefficient in Eq. (1.1). The

3We emphasize that the states |00i, |01i, |10i and |11i are the instantaneous eigenstates and not the
computational ones. These bases are not equivalent when an external flux is applied to the circuit.
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effect of crosstalk on the fidelity of the CPHASE gate, as yet not well known, is cur-
rently being studied [13]. Additionally, the method that we use in order to simulate
the CPHASE gate in this thesis, the eigenmode approach, involves different approxi-
mations that can be applied. To the best of our knowledge, the problem of determining
which approximation can be used to simulate the CPHASE gate has never been studied.

1.3 Scope of this work

In this thesis, a method referred to as the ’eigenmode approach’, is introduced in Sec.
2.2. Given a certain circuit composed of capacitances, inductances and Josephson junc-
tions, it identifies the eigenmodes of the linear part of the circuit as qubit-like or resonator-
like modes and adds the non-linearity of the Josephson junctions as a coupling between
the modes. Approximations can be applied to the potential of the Josephson junctions.
Firstly, a Taylor expansion up to a certain order is performed on it. Then, the rotating-
wave approximation (RWA) or what we will call the full rotating wave approximation
(full RWA) can be applied on top of that to the non-linearity. These approximations
are presented in Subsec. 2.2.2. This method was initially presented in Ref. [14] and a
Quantum Circuit Analyzer Tool, called QuCAT, based on this method is presented in
[15]. As the ultimate goal is to provide an accurate CPHASE analysis in presence of
ZZ crosstalk, the first step is to validate the accuracy of the different approximations.
The (in-)validation of the approximations is carried out in Subsec. 3.1.3 using two ca-
pacitively coupled transmon qubits. This circuit is chosen because it can be easily nu-
merically diagonalized in the Cooper-pair basis. As a result, a comparison between
the exact solution in the Cooper-pair basis and the results obtained with the differ-
ent approximations, provides a way to check their validity. The energy levels and the
avoided crossing positions (point where a CPHASE gate can be implemented [11]), are
compared between each approximation and the exact solution in Subsec. 3.1.3. Once
the approximation with desired accuracy is determined, it is used for CPHASE simula-
tion. In order to tackle the problem described in Sec. 1.2, this work provides a CPHASE
analysis without crosstalk and then with crosstalk from a neighbouring qubit. Firstly,
in Subsec. 3.2.1 CPHASE simulations are performed using a system of two capacitively
coupled transmons. Then, in Subsec. 4.2 a third transmon, the spectator, is added in
order to perform CPHASE simulations in presence of crosstalk using a system of three
capacitively coupled transmons. We analyze how crosstalk from the spectator impacts
the CPHASE fidelity. We point out out that no noise is implemented as we aim to verify
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whether simulations using the eigenmode approach can be used to accurately model
the CPHASE gate. Another reason we do not implement random noise is that we need
to compare simulations in Subsec. 4.2, in order to determine the effect of the crosstalk
on the gate itself.

1.4 Research questions

This thesis addresses mainly the following questions. Firstly, we would like to deter-
mine if the eigenmode approach can be used to accurately model the CPHASE gate.
And which approximation can be used for describing the two-qubit interaction in the
CPHASE gate simulation. Secondly, we consider the question of whether other approx-
imations could be used to accurately describe crosstalk effects from neighbouring qubits on
QH and QM, ı.e. the two qubits involved in the CPHASE gate. And if this is the case,
which approximation could be used for that purpose.

The choice of the two capacitively coupled transmons for CPHASE simulation raises
another question because in superconducting qubit architectures, the coupling is often
mediated via resonators. Indeed, one could ask whether the simulations, when using a
resonator would remain the same or, on the contrary, invalidate the conclusions drawn from
CPHASE simulations with a capacitive coupler. As the behaviour of a system is charac-
terized by its Hamiltonian, we are seeking to prove that the energy levels of interest,
obtained on one side with the resonator and in the other side removing the resonator,
are in good agreement. This analysis is carried out in Sec. 3.3. Finally, the questions
"What are the CPHASE fidelity when we apply diabatic pulses and use the method
of the eigenmode approach ?" and "How much does crosstalk affect the fidelity of the
CPHASE gate?" are addressed in Subsec. 3.2.1 and Sec. 4.2, respectively.

1.5 Plan

This thesis is organized as follows :

Chapter 2 introduces some theory underlying circuit QED : its building blocks
and the eigenmode approach, to mathematically analyze its circuits. Finally, the
CPHASE gate is presented.

Chapter 3 gathers the eigenmode analysis and CPHASE simulation without crosstalk
of a system composed of two capacitively coupled transmon qubits.
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Chapter 4 is dedicated to the eigenmode analysis and CPHASE simulation with
crosstalk of a system involving three capacitively coupled transmons qubits.

In Appendix A, a clarification about what terms drives effectively the CPHASE
gate in the eigenmode approach is presented. Then, a proof on which the deriva-
tions of the eigenmode method is based is given in Appendix B. Finally, in Ap-

pendix C, a connection between a N-port network and its equivalent Foster circuit
is drawn.
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Chapter 2

Theory

This chapter starts with an introduction of the circuit QED building blocks in Subsec.
2.1. Then, the eigenmode approach is described in Subsec. 2.2. Finally, the theory
underlying the CPHASE gate is presented in Subsec. 2.3.

2.1 Circuit building blocks

In this section, we introduce the building blocks of circuit QED quantum processors.
These circuits generally consist of capacitances, inductances, Josephson junctions and
transmission line resonators [4]. From these elements, different types of Josephson junc-
tion based qubit circuits can be build up such as the Cooper-pair box, the transmon
qubit, the flux qubit, the phase qubit and the fluxonium (see [16] and [17]). In this thesis
we focus on the transmon qubit, which is a Cooper-pair box shunted by a large capac-
itance [16], because currently most of superconducting chips are based on transmons
[18]. Both are extensively presented in Subsec. 2.1.2. The resonators are supercon-
ducting coplanar waveguides and the ones we consider are used either to read-out the
qubit state or to mediate the interaction between them, in order to perform two-qubit
gates. In effect, the state of a qubit capacitively coupled to a readout resonator can be in-
ferred by measuring the state-dependent shift of the resonance peak in the transmission
spectrum of the latter [4]. This procedure is called dispersive readout. Instead, bus res-
onators are capacitively coupled to two transmons and mediate the coupling between
them. Although transmission line resonators have many resonant modes, they are gen-
erally modelled by single quantum harmonic oscillators, focusing on the fundamental
mode [19].
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Unlike resonators, transmons are anharmonic oscillators. The anharmonicity is re-
quired in quantum computation in order to isolate the computational basis spanned
by the two lowest states |0i and |1i from the higher energy levels. In fact, a harmonic
oscillator cannot be used as a two-level system because a linear drive at the resonant
frequency would induce transition with higher energy levels and populate them. The
element that brings anharmonicity to the transmon spectrum is the Josephson junction
(JJ), which can be seen as a non-linear inductor. Josephson junctions are supercon-
ducting circuit elements formed by two pieces of superconductors separated by a thin
insulating barrier. Cooper-pairs can tunnel through the barrier resulting in a flow of
superconducting current across the junction [16]. The quantum treatment of harmonic
and anharmonic oscillators is presented in Subsecs. 2.1.1 and 2.1.2, respectively.

2.1.1 Quantum LC oscillator

An LC oscillator, whose circuit is shown in Fig. 2.1.1, is formed by a capacitance and an
inductor, denoted by C and L respectively, connected in parallel and across which we
define the flux difference

F(t) =
Z t

�•
dt0V(t0), (2.1)

where V(t) is the voltage across C and L.

Figure 2.1.1: LC oscillator circuit.

The resonant frequency of the oscillator is wLC = 1/
p

LC and its Lagrangian is
given by the capacitive energy ("kinetic energy") minus the inductive energy ("potential
energy"):

L(F, Ḟ) =
CḞ2

2
� F2

2L
. (2.2)

The charge Q is the canonical conjugate variable of F and is obtained with the rela-
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tion :
Q =

∂L
∂Ḟ

. (2.3)

The Legendre transform of the Lagrangian in Eq. (2.2) with respect to F leads to the
Hamiltonian [19] :

H(F, Q) = ḞQ � L(F, Ḟ) =
Q2

2C
+

F2

2L
. (2.4)

In order to obtain a quantum description of the problem, canonical quantization is per-
formed by promoting F and Q to operators (denoted by hat) and imposing the commu-
tation relation [F̂, Q̂] = ih̄. This commutation relation implies that the spectrum of the
Hamiltonian is discrete, with each energy levels separated by the constant quanta given
by : DE= En+1-En= h̄wLC with n 2 N0. Thus, the Hamiltonian in Eq. (2.4) describes an
harmonic oscillator.

2.1.2 Anharmonic oscillator: the Cooper-pair Box and the Transmon

Figure 2.1.2: Circuit of the Cooper-pair box. The red dashed part of the circuit is used as a
model for charge noise. The superconducting phase, j, associated with the flux F is given by
j = 2pF

F0
, where F0 = h

2e is the superconducting flux quantum.

A Cooper-pair box (CPB) is a circuit formed by a Josephson junction and an additional
capacitance, as depicted in Fig. 2.1.2. It is characterized by the following Hamiltonian:

Ĥ = 4Ec(n̂ � ng)
2 � EJ cos(ĵ), [ĵ, n̂] = i (2.5)

with charging energy Ec = e2/(2CS), CS = C + Cg, and ng = CgVg/(2e) the reduced
gate charge, ı.e., the parameter that characterizes charge noise. Ec is the energy cost
of adding or removing a Cooper-pair on the capacitor plate. The Josephson energy
EJ is the energy involved when a Cooper-pair tunnels through the insulating barrier
in order to reach the island at the other side [20]. Here n̂ and ĵ, which are canonical
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conjugate variables as they satisfy the commutation relation in Eq. 2.5, are respectively
the operator for the number of Cooper-pairs transferred between the islands and the
phase difference across the superconducting electrodes of the Josephson junction. n̂ is
related to the charge operator by Q̂ = 2en̂.

Diagonalization in the Cooper-pair basis

We introduce the Cooper-pair basis formed by the set {|ni} where the integer n corre-
sponds to the number of pairs in state |ni. n̂ and ĵ satisfy the relation [n̂, e±iĵ] = ±e±iĵ,
see [21], which implies:

eiĵ |ni = |n + 1i . (2.6)

We express the potential in Eq. (2.5),

V̂ = �EJ cos(ĵ) = �EJ
eiĵ + e�iĵ

2
, (2.7)

in the Cooper-pair basis using Eq. (2.6) as

V̂ =
•

Â
n=�•

�EJ

2
�
|ni hn + 1| + |n + 1i hn|

�
. (2.8)

Notice that the operator n̂ has a discrete spectrum given by Z, the set of integers. This
implies that its conjugate variable ĵ is a compact variable whose eigenvalues are de-
fined in j 2 (�p, p], ı.e. the states |j � pi and |j + pi are identical. Using the discrete
relation of completeness I = Â•

m=�• |mi hm| and the fact that hm|ji = e�imj, we obtain
the relation |ji = Â•

m=�• e�imj |mi from which we can check that |j � pi = |j + pi.
The eigenvalue problem associated with Eq. (2.5) has an analytical solution in terms of
Mathieu functions [22]. However, Eq. (2.5) can also be diagonalized numerically in the
Cooper-pair basis by cutting the Hilbert space to a sufficient number of charge states,
taken to be symmetric around zero (ng 2 [0, 1)), and by checking that the eigenenergies
we are interested in do not change if we include more charge states in the diagonal-
ization. We use this approach since it is easy to code also when we consider more
capacitively coupled Cooper-pair boxes as in [23]. Explicitly, in the Cooper-pair basis
we are making the following approximations :

(n̂ � ng)
2 =

•

Â
n=�•

(n � ng)
2 |ni hn| ⇡

m

Â
n=�m

(n � ng)
2 |ni hn| (2.9)

13



and

cos(ĵ) =
1
2
(eiĵ + e�iĵ) =

•

Â
n=�•

1
2
(|ni hn + 1| + |n + 1i hn|)

⇡
m�1

Â
n=�m

1
2
(|ni hn + 1| + |n + 1i hn|).

(2.10)

We perform these approximations on the Hamiltonian in Eq. (2.5) and we obtain a finite
matrix to be diagonalized numerically. We refer to this method as exact diagonalization.

Transmon regime

The transmon qubit is essentially a CPB operated in the regime of EJ/Ec 2 [40, 200] [17].
In many designs, transmons are flux tunable so the single Josepshon junction shown in
Fig. 2.1.2 is replaced by a SQUID loop. In other words, a flux-tunable transmon consists
of two superconducting islands coupled through two Josephson junctions [6]. The use
of the SQUID loop is discussed in Subsec. 2.1.3.

In the so-called transmon regime, EJ/Ec � 1, the phase variable remains close to
the minima of the cosine potential. Indeed, the low-energy wavefunctions are confined
near j = 0, the only minimum for j 2 (�p, p] [20]. The confinement of the wave-
functions in phase representation allows us to take the Taylor expansion of the cosine
[24]:

V̂ ⇡ �EJ
�
1 � 1

2!
ĵ2 +

1
4!

ĵ4 � 1
6!

ĵ6 + . . . ). (2.11)

This approximation however is only valid if we are interested in the low lying energy
levels of the system, it completely neglects the periodic boundary conditions and con-
sequently it cannot see the dependency of the spectrum on the parameter ng. This is
because we are substituting solutions normalized in j 2 (�p, p] with solutions nor-
malized in R. As a consequence the charge operator has no longer a discrete spectrum
in this approximation [24]. We now derive the linear and non-linear Hamiltonian of a
transmon in terms of its creation and annihilation operators. We expand the cosine in
Eq. (2.5) up to 4th order and neglect ng, which is valid in the regime EJ/Ec � 1 [19]
and [24], and we get

Ĥ ⇡ Ĥ(4) = 4Ecn̂2 � EJ
�
1 � 1

2!
ĵ2 +

1
4!

ĵ4�. (2.12)

In general if we perform a Taylor expansion up to order k we will denote the associated
Hamiltonian Ĥ(k). The strategy now is to diagonalize the quadratic part by introducing
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the annihilation and creation operators, â and â†, as :
8
><

>:

ĵ =
⇣

2Ec
EJ

⌘ 1
4 �

â† + â
�
,

n̂ = i
2

⇣
EJ

2Ec

⌘ 1
4 �

â† � â
�
.

(2.13)

They satisfy the commutation rule
h

â, â†
i
= 1. The transmon Hamiltonian in Eq. (2.12)

omitting the constant term, is split into a linear, Ĥlin, and a non-linear, Ĥnonlin, part as
follows : (

Ĥlin = 4Ecn̂2 + 1
2 EJ ĵ2,

Ĥnonlin = � 1
24 EJ ĵ4.

(2.14)

Substituting the expressions in Eq. 2.13, this becomes :
8
><

>:
Ĥlin = �4Ec

1
4

⇣
EJ

2Ec

⌘ 1
2 �

â† � â
�2

+ 1
2 EJ

⇣
2Ec
EJ

⌘ 1
2 �

â† + â
�2,

Ĥnonlin = � 1
24 EJ

⇣
2Ec
EJ

⌘�
â† + â

�4.
(2.15)

A quantum harmonic oscillator with frequency wt =
p

8EcEJ/h̄ is recovered for the
linear part of the Hamiltonian :

Ĥlin = h̄wt

⇣
â† â +

1
2

⌘
, (2.16)

while the full expression for the 4th order Hamiltonian is given by:

Ĥ(4) = h̄wt

⇣
â† â +

1
2

⌘
� 1

24
EJ

⇣2Ec

EJ

⌘�
â† + â

�4. (2.17)

Eq. (2.17) can be diagonalized for instance in the Fock basis, by considering a finite
number of Fock states, to provide an approximation of the eigenenergies of the trans-
mon Hamiltonian. Notice that since the 4th order potential goes unphysically to -• for
ĵ ! ±•, we have to be careful, since including too many Fock states in the diagonal-
ization might give unphysical solutions that are an artifact of the approximation.

2.1.3 SQUID

A SQUID is a device where two Josephson junctions of energy EJ1 and EJ2, respectively,
form a loop. We will show that the effective Josephson energy of a SQUID, and thus its
resonant frequency, can be tuned by changing the external flux, Fext, through the loop.
The circuit of a flux-tunable transmon, depicted in Fig. 2.1.3, is obtained by shunting a
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SQUID with a capacitance. It realizes a flux-tunable qubit platform. We use the relation
between the flux and the phase

ĵ =
2pF̂
F0

, (2.18)

where F0 is the magnetic flux quantum. Then, the potential of a SQUID reads:

V̂SQUID = �EJ1 cos(ĵ1) � EJ2 cos(ĵ2). (2.19)

We associate to the external flux applied through the loop, Fext, an external phase given
by:

jext =
2pFext

F0
. (2.20)

Due to flux quantization within the closed superconducting loop [16], the phase differ-
ence between the two junctions is fixed by the condition

ĵ1 � ĵ2 = 2pn + jext. (2.21)

Here n is an integer. We assume the symmetry of the two Josephson junctions, ı.e.
EJ1 = EJ2 = EJ , and we use a trigonometric relation. Then we get:

V̂SQUID = �2EJ cos(
ĵ1 � ĵ2

2
) cos(

ĵ1 + ĵ1

2
). (2.22)

We introduce
ĵ =

ĵ1 + ĵ2

2
(2.23)

and we use Eq. (2.21) to obtain the potential

V̂SQUID = �2EJ cos(
jext

2
) cos(ĵ). (2.24)

We define EJ(Fext) = 2EJ cos
�
pFext/F0

�
as the effective Josephson energy of the cir-

cuit when an external flux pulse is applied. An effective Josephson energy can also be
derived in the case of non-symmetric Josephson junctions, see Eq. (2.18) in [6].

Figure 2.1.3: Transmon circuit with a SQUID loop. The resonant frequency of the transmon can
be tuned by changing the external flux Fext applied through the loop.

16



2.2 Eigenmode approach

The method we denote by the eigenmode approach was presented for the first time
in Ref. [14] and recently a Quantum Circuit Analyzer Tool in Python implementing
the method has been developed [15]. Before providing a detailed derivation of the
eigenmode approach in the subsequent sections, let us give its main steps.

1. Superconducting circuits consist generally of connections of capacitances, induc-
tances and Josephson junctions. We will focus on circuits involving transmons
capacitively coupled to bus resonators. An example for the specific case of the
Surface-7 layout is depicted in Fig. 2.2.1a and schematically in Fig. 2.2.1b. The as-
sociated Lagrangian is obtained by performing circuit quantization. By expansion
of the cosine potential, the Josephson junctions of the transmons are split into a
linear (linear inductor) and a non-linear (spider) part as represented on Fig. 2.2.2.

2. The non-linearities of the Josephson junctions are taken out of the linear network,
characterized by its impedance matrix Z(s) [25]. The basics about N-port network
are presented in Appendix C.

3. In a first step, the eigenmode approach consists in focusing on the linear network
in order to obtain its normal modes and the associated frequencies. This is done
by diagonalization at the Lagrangian level as presented in Sec. 2.2.1. We em-
phasize that only the linear Lagrangian is treated in this step. The eigenmodes
obtained are identified as either qubit-like or resonator-like modes.

4. In a second step, the non-linearity is expressed in terms of the eigenmodes. Then,
applying the second quantization, the Lagrangian and the Hamiltonian are ex-
pressed in terms of the annihilation and creation operators associated with the
normal modes. On top of the non-linear Hamiltonian, different approximation
can be taken. These are introduced in Sec. 2.2.2.
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(a) (b)

(c)

Figure 2.2.1: Surface-7 layout developed at Qutech in the DiCarlo lab. It is used in order to im-
plement Quantum Error Correction. Fig. a) shows the Surface-7 layout as drawn in the context
of FEM simulation in [26]. Here a is one of the qubits, b and c are one of the bus and readout
resonators, respectively. d is one of the feedlines that is part of the qubit measurement circuitry
and e is one of the flux drive line used to apply an external flux in the loop of a SQUID. Finally,
f is one of the microwave drive line. (The figure is taken from [26], page 3). Fig. b) represents
schematically Surface-7. It shows the bus resonator connecting the coloured transmons, whose
associated target frequencies are indicated. The names Di, Zi and X refers to the role the qubits
play in Quantum Error Correction protocol : data-carrying vs Z (X) type ancilla qubits. Fig. c)

illustrates how the Surface-7 is seen from a network point of view, in which the linear network,
within the black box, is fully characterized by the impedance matrix, Z(s), while the coloured
spiders stand for the non-linearities of the Josephson junction associated with the transmons in
Fig. b).
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Figure 2.2.2: By expansion of its cosine potential, a Josephson junction, symbolized on the
left, can be split into a linear inductor in parallel with a "spider" symbol standing for the non-
linearity as drawn on the right. This representation allows excluding the non-linearity of the
Josephson junctions from the linear part of network.

2.2.1 Diagonalizing classical linear systems at the Lagrangian level

The following derivation is adapted from an unpublished work by Ciani [27]. We con-
sider a N-port linear network consisting only of capacitances, inductances, mutual in-
ductances and ideal transformer. We use the method of nodes, described in the sub-
sections 2.1.6 to 2.1.8 in Ref. [16], in order to determine the degrees of freedom of the
circuit. We gather the resulting independent flux variables and define the vector

eF
PI

=

0

BBBBBBBBBB@

FP1
...

FPN

FI1
...

FINI

1

CCCCCCCCCCA

. (2.25)

Here FPn with n = 1, . . . , N, denote the fluxes across the ports of the network (where
the spiders of the Josephson junctions are attached). They are formally defined as

FPn(t) =
Z t

�•
dt0VPn(t0), (2.26)

where VPn(t) is the voltage across the nth port. The fluxes FIk with k = 1, . . . , NI in
Eq. (2.25) denote generically internal flux degrees of freedom. In the circuits analyzed
in this work, the latter are associated with the bus resonator modes. From now on,
we denote the total number of degrees of freedom by M = N + NI . We introduce
the capacitance matrix C and the inductance matrix L which are, in general, positive
semidefinite, symmetric matrices. In essence, they are positive semidefinite because the
capacitive energies and the inductive energies are sums of non-negative quantities [28].
For simplicity, we will assume from now on that C and L are positive definite matrices
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and they are thus both invertible. The Lagrangian of the N-port linear networks that
we consider can always be expressed as

L(eF
PI

, ˙eF
PI

) =
1
2

˙eF
T
PI

C ˙eF
PI

� 1
2
eFT

PI

L�1 eF
PI

. (2.27)

We take the Euler-Lagrange equations associated with each independent flux variables
and obtain

d
dt

∂L
∂ ėFPIk

� ∂L
∂eFPIk

= 0, for k = 1, 2, .., M. (2.28)

This system of equations can be compactly rewritten as

C
d2 eF

PI

dt2 = �L�1 eF
PI

. (2.29)

As C is symmetric and positive definite, it is invertible and it is thus possible to multiply
on the left by C�1:

d2 eF
PI

dt2 = �C�1L�1 eF
PI

. (2.30)

The solution of the problem thus coincides with the diagonalization of the matrix C�1L�1.
As we assumed that C�1 and L�1 are both separately invertible, this reduces to diago-
nalizing the matrix (LC)�1, leading to:

d2 eF
PI

dt2 = �(LC)�1 eF
PI

. (2.31)

We demonstrate in Appendix B that the matrix (LC)�1 is diagonalizable and has pos-
itive and real eigenvalues. It stems from the symmetry and positive definiteness of the
matrices C and L. As matrix multiplication do not preserve the property of symmetry,
the matrix P diagonalizing (LC)�1 is not necessarily orthogonal (nor unitary). We thus
introduce the matrix P such that

P(LC)�1P�1 =

2

66664

w2
1 0 0 .. ..

0 w2
2 0 .. ..

0 .. .. .. ..
0 .. .. 0 w2

M

3

77775
= w2. (2.32)

The fluxes are related to the eigenmodes F via

eF
PI

= P�1F, (2.33)

and it holds that
d2Fk

dt2 = �w2
k Fk for k = 1, 2, .., M. (2.34)
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These equations describe a set of uncoupled harmonic oscillators and therefore the so-
lutions for the eigenmodes are of the form Fk(t) = Akeiwkt + Bke�iwkt. Starting from
the Lagrangian in Eq. (2.27) and using Eq. (2.33), let us now demonstrate that in the
eigenmode basis we obtain a sum of uncoupled harmonic oscillators. The Lagrangian
in terms of normal modes reads

L(F, ˙F) =
1
2

˙FT(P�1)T CP�1

˙F � 1
2

FT(P�1)T L�1P�1F. (2.35)

As C is invertible, the identity I = CC�1 can be introduced on the right term

L(F, ˙F) =
1
2

˙FT(P�1)T CP�1

˙F � 1
2

FT(P�1)T CC�1L�1P�1F. (2.36)

Similarly, the identity I = P�1P is introduced on the right term

L(F, ˙F) =
1
2

˙FT(P�1)T CP�1

˙F � 1
2

FT(P�1)T CP�1PC�1L�1P�1F, (2.37)

in order to replace PC�1L�1P�1 by the diagonal matrix w2. This gives

L(F, ˙F) =
1
2

˙FT(P�1)T CP�1

˙F � 1
2

FT(P�1)T CP�1w2F. (2.38)

Crucially, the matrix
Ceff = (P�1)T CP�1 (2.39)

is always diagonal with real and positive eigenvalues as we show in detail in Appendix
B. Ceff is called the effective capacitance matrix and its diagonal elements are denoted
by Ck,eff. Thus, as expected, we are able to write the Lagrangian as a collection of un-
coupled harmonic oscillators:

L(Ḟ, F) =
M

Â
k=1

Ck,eff

2
Ḟ2

k �
Ck,effw

2
k

2
F2

k . (2.40)

Before passing to the Hamiltonian we perform a useful rescaling. This will provide
a better connection to the impedance representation of the problem. The impedance
representation and its connection with the eigenmode approach are introduced in Ap-
pendix C. We consider an arbitrary capacitance C and we rescale the variables as

Fk !
s

C
Ck,eff

Fk. (2.41)

After this rescaling the Lagrangian reads

L(Ḟ, F) =
M

Â
k=1

C
2

Ḟ2
k �

Cw2
k

2
F2

k . (2.42)
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We see that now each harmonic oscillator has the same arbitrary capacitance. In this
eigenmode basis, getting the canonical conjugate variable associated with Fk is straight-
forward as there is no more coupling between the variables. Defining the vector of
conjugate variables as

Q =
∂L
∂Ḟ

= CḞ, (2.43)

we can obtain the Hamiltonian

H(F, Q) =
M

Â
k=1

Q2
k

2C
+

Cw2
k

2
F2

k =
M

Â
k=1

Q2
k

2C
+

F2
k

2Lk
, (2.44)

with the effective inductances Lk = 1/(Cw2
k). In order to obtain the quantum Hamilto-

nian, the first quantization is performed by imposing canonical commutation relations
between the flux and charge variables, which are promoted to operators :

[F̂k, Q̂l ] = ih̄dkl . (2.45)

We now express the fluxes and charges in terms of the associated creation and annihi-
lation operators :

F̂k =

r
h̄Zk

2
�
â†

k + âk
�
, (2.46a)

Q̂k = i

s
h̄

2Zk

�
â†

k � âk
�
. (2.46b)

Here the characteristic impedance of mode k = 1, . . . , M are defined as

Zk =

r
Lk

C
. (2.47)

The annihilation and creation operators obey the commutation relations

[âk, âl ] = 0, [âk, â†
l ] = dkl . (2.48)

Thus, in the eigenmode basis, the linear part of the Hamiltonian is a sum of quantum
harmonic oscillators:

Ĥlin =
M

Â
k=1

h̄wk

✓
â†

k âk +
1
2

◆
. (2.49)

The flux at the ports can be expressed as a linear combination of the elements of F as

F̂Pn =
M

Â
k=1

(P�1)nk

s
C

Ck,eff
F̂k. (2.50)
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Finally, and importantly, substituting Eq. (2.46a) in Eq. (2.50) provides an expression for
the flux at the ports in terms of the normal mode creation and annihilation operators,
â†

k and âk :

F̂Pn =
M

Â
k=1

(P�1)nk

s
C

Ck,eff

r
h̄Zk

2
�
â†

k + âk
�
, n = 1, . . . , N. (2.51)

This allows us to generalize the approach of Refs. [14] and [29] to the multi-port case
treating the non-linearity as an additional coupling between the normal modes of the
linear part of the circuit, which is exactly diagonalized.

In the previous derivations, the Lagrangian is expressed in terms of the flux vari-
ables and using the inductance and capacitance matrices. Alternatively, it can be ex-
pressed in terms of the phases variables

j =
2pF

F0
. (2.52)

Then, we use the charging and the Josephson energy matrices Ec and EL, respectively.
We introduce the inverse of the charging energy as

E�1
c =

2
e2 C (2.53)

and the Josephsons energy matrix as

EL =
h2

16e2p2 L�1. (2.54)

The advantage of working with phase variables is that they have no units. The eigen-
value problem is essentially the same as it consists in diagonalizing EcEL instead of
(LC)�1, which are related by a proportionality constant. For convenience, we will use
this second approach when we study the circuit of two capacitively coupled transmons
in Sec. 3.1.2.

2.2.2 Discussion of the approximations

Let us consider again the non-linear part of the Josephson potential which have been
kept out of the linear network previously analyzed. In the normal mode basis, the
non-linear Hamiltonian reads

Ĥnonlin =
•

Â
u=2

N

Â
n=1

EJn


(�1)u+1 1

(2u)!

⇣2p

F0

⌘2u⇣
Â

k
(P�1)nk

s
C

Ck,eff
F̂k

⌘2u
�

(2.55)
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and inserting Eq. (2.51) it becomes

Ĥnonlin =
•

Â
u=2

N

Â
n=1

EJn


(�1)u+1 1

(2u)!

⇣2p

F0

⌘2u⇣
Â

k
(P�1)nk

s
C

Ck,eff

r
h̄Zk

2
(â†

k + âk)
⌘2u

�
.

(2.56)
In what follows, we present the different approximations which can be applied to

Ĥnonlin.

1. Taylor expansion highest order approximation

The first approximation is the choice of the order 2u of the Taylor expansion. The
Hamiltonian resulting from the lth order Taylor expansion will be denoted as Ĥ(l).
For example choosing the 8th order, we get :

Ĥ(8)
nonlin =

N

Â
n=1

EJn


� 1

4!

⇣2p

F0

⌘4
F4

Pn +
1
6!

⇣2p

F0

⌘6
F6

Pn �
1
8!

⇣2p

F0

⌘8
F8

Pn

�
. (2.57)

2. Rotating-wave approximation

The Hamiltonian resulting from the lth order expansion with a rotating-wave ap-
proximation applied on top is denoted by Ĥ(l)

RWA. Applying the rotating wave
approximation results in keeping only terms with equal overall number of anni-
hilation as creation operators. For example, in 4th order, terms like â1 â2 â†

2 â†
3 are

kept, while terms like â1 â2 â2 â†
3 are dropped.

3. Full rotating-wave approximation

We introduce a further approximation referred to as full RWA and denoted by
Ĥ(l)

fullRWA. This approximation is even more selective as it keeps only terms which
have the same number of annihilation as creation operators for each eigenmodes.
From our last example, â1 â2 â†

2 â†
3 would be dropped because there is neither a

creation operator for mode 1, nor an annihilation operator for mode 3. On the
contrary, terms like â1 â2 â†

2 â†
1 are kept.

The 4th full RWA approximation provides two analytical types of corrections on
the linear Hamiltonian : self-Kerr and cross-Kerr terms. For example, at 4th or-
der, each mode k has a self-Kerr term of the form dk â†

k âk â†
k âk, while the cross-Kerr

interaction between each pair of modes i and j is described by cij â†
i âi â†

j âj, where
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dk and cij denote, respectively, the self-Kerr and cross-Kerr coefficients. We define
cij = E11 � E10 � E01, assuming E00 = 0, as the coefficient that multiplies â†

i âi â†
j âj

in the 4th full RWA approximation. We point out that in the previous definition
in Eq. (1.1), cij is denoted with c as we considered only two modes. We empha-
size that the self-Kerr and cross-Kerr coefficients, as well as the Hamiltonian, are
obtained only from the solution of the classical problem. In other words, solv-
ing a system with M degrees of freedom only requires the diagonalization of the
(LC)�1 matrix of size M ⇥ M, at the Lagrangian level. Thereby, as no further
diagonalization is needed in the Hilbert space, this suggests that the full RWA ap-
proximation could be a scalable way of estimating crosstalk from neighbouring
qubits via the analytical expression of the cross-Kerr coefficients.

Explicit analytical formulas for the 4th order RWA are provided in what follows.
At 4th order, the non-linear term reads:

Ĥ(4)
nonlin = �

N

Â
n=1

EJn

24

✓
2p

F0

◆4✓ M

Â
k=1

(P�1)nk

s
C

Ck,eff
F̂k

◆4

. (2.58)

For each Josephson junction there are two kinds of terms that possess equal num-
ber of annihilation as creation operators for the same normal mode. The associ-
ated Hamiltonians are given in what follows.

• Firstly, the self-Kerr Hamiltonian of mode k associated with Josephson junc-
tion n, Ĥ(nk)

selfKerr, is derived from

Ĥ(nk) = �EJn

24

✓
2p

F0

◆4

(P�1)4
nk

⇣ C
Ck,eff

⌘2
F̂4

k

= �EJn

24

✓
2p

F0

◆4

(P�1)4
nk

⇣ C
Ck,eff

⌘2 h̄2Z2
k

4
�
â†

k + âk
�4.

(2.59)

The self-Kerr of mode k involves terms having the same number of â†
k as âk.

The commutation relation defined in Eq. (2.48) are used in order to simplify
the expression

(âk + â†
k)

4 RWA
= 3 + 12â†

k âk + 6â†
k â†

k âk âk, (2.60)

and neglecting the constant term we get

Ĥ(nk)
selfKerr

RWA
=

dnk

2
â†

k â†
k âk âk + dnkâ†

k âk. (2.61)
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Here the anharmonicity of mode k due to junction n is defined as

dnk = �EJn

8

✓
2p

F0

◆4

(P�1)4
nk

⇣ C
Ck,eff

⌘2
h̄2Z2

k . (2.62)

In terms of energy levels, the anharmonicity of mode k is defined as dk =

(E2 � E1)� (E1 � E0) [19], where we denote Em as the energy corresponding
to the state with m excitations in mode k and no excitation in the other modes.
The total self-Kerr coefficient of mode k, that is its anharmonicity, is obtained
in the RWA approximation by summing over the ports:

dk =
N

Â
n=1

dnk. (2.63)

• Secondly, we denote the cross-Kerr Hamiltonian between each pair of modes
i and j due to junction n, where i and j run from 1 to M and i 6= j, with
Ĥ(n)

crossKerr i,j. For such a pair, the 4th full RWA approximation keeps terms
with a single operator â†

i , â†
j , âi and âj. This is why in Eq. (2.58), the cross-

Kerr between mode i and j only involves terms with the product between F2
i

and F2
j . In order to derive Ĥ(n)

crossKerr i,j, we start from

Ĥ(n)
ij = �EJn

24

✓
2p

F0

◆4

(P�1)2
ni(P�1)2

nj6
C2

Ci,eff · Cj,eff
F2

i F2
j =

�EJn

24

✓
2p

F0

◆4

(P�1)2
ni(P�1)2

nj6
C2

Ci,eff · Cj,eff

h̄2ZiZj

4
�
â†

i + âi
�2�â†

j + âj
�2.

(2.64)

We use the fact that in the full RWA

�
â†

i + âi
�2�â†

j + âj
�2 fullRWA

= 1 + 2â†
i âi + 2â†

j âj + 4â†
i âi â†

j âj. (2.65)

Thus, neglecting constant terms and summing over each port n as well as on each
pair of modes, i and j, the total cross-Kerr Hamiltonian reads :

ĤcrossKerr
fullRWA

=
N

Â
n=1

M

Â
i=1

M

Â
j=1
i 6=j

c(n)
ij

2
â†

i âi +
c(n)

ij

2
â†

j âj + c(n)
ij â†

i âi â†
j âj, (2.66)

where the cross-Kerr coupling between mode i and j due to junction n are
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cn
ij = �EJn

4

⇣2p

F0

⌘4
(P�1)2

ni(P�1)2
nj

C2

Ci,eff · Cj,eff
ZiZjh̄2. (2.67)

Then, the total cross-Kerr coefficient between the 2 modes is obtained by sum-
ming over the ports:

cij =
N

Â
n=1

cn
ij. (2.68)

We have obtained an analytical expression for cij, which is the crosstalk between
the two qubits associated with mode i and j discussed in Sec. 1.2. In the 4th order
full RWA approximation, the diagonal Hamiltonian is given by :

Ĥ(4)
fullRWA =

M

Â
k=1

h
Wk â†

k âk +
dk

2
â†

k â†
k âk âk +

M

Â
j=1
j 6=k

ckj â†
k âk â†

j âj

i
, (2.69)

where Wk is the renormalized frequency of mode k given by:

Wk = wk + dk +
1
2

M

Â
j=1
j 6=k

ckj. (2.70)
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2.3 Theory of the CPHASE

A two-qubit gate that is commonly used to form the universal set of gates is the conditional-

phase gate, also known as a CPHASE or CZ gate. It applies a Z =

 
1 0
0 �1

!
gate on

the target qubit if the control qubit is in state |1i [18]. A CPHASE gate is described by
the unitary operator

UCPHASE =

0

BBBB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

1

CCCCA
. (2.71)

For concreteness, we consider a high frequency and a medium frequency transmon
qubit, denoted by QH and QM respectively, in the DiCarlo architecture [5]. As these
transmons are capacitively shunted SQUID loops, introduced in Subsec. 2.1.3, their fre-
quency can be controlled by means of an external flux pulse, Fext

H (t). A CPHASE gate
between these qubits is implemented by tuning in and out of resonance an interaction
in the second-excitation manifold between the states |0M2Hi and |1M1Hi [30]. In other
words, an external flux pulse, Fext

H (t), is applied to the high frequency qubit in order
to lower its Josephson energy, and thus also its frequency wH, until the point where an
avoided crossing between the states |0M2Hi and |1M1Hi occurs [11]. An example of the
CPHASE operating point is shown in Figs. 2.3.1a and 2.3.1b, considering a system of
two capacitively coupled transmons. As the |0M2Hi state is not part of the computa-
tional subspace, we want to avoid any energy transfer to this state at the end of the gate.
This is typically done using a special pulse-shape known as a fast-adiabatic pulse that
minimizes the leakage as presented in [31]. We would like to point out that from now
on, the basis notation without subscript, |iji, denotes the basis |iMjHi and that when
we use phase instead of flux variables, the external pulse applied to QH is denoted by
jext

H (t) = (2p · Fext
H (t))/F0 where F0 is the superconducting flux quantum, instead of

Fext
H (t). The parking frequency is chosen at a flux sweet spot, ı.e. at a point where the

first derivative of the Josephson junctions with respect to the external flux is zero:

∂EJ(Fext
H )

∂Fext
H

= 0. (2.72)

We make the assumption that the sweet spot is located at Fext
H = 0, though experimen-

tally there might be an offset [11]. This is equivalent to assuming that the Josephson
energies of the two junctions in the SQUID loop, discussed in Subsec. 2.1.3, are equal.
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(a) (b)

Figure 2.3.1: a) Energy levels of a two-capacitively coupled transmons as a function of
jext

H (t)/2p. The arrows indicate the points where the avoided crossing associate with CPHASE
and iSWAP take place. The iSWAP is a two-qubit gate implemented by tuning the qubits in
resonance in order to use the |01i-|10i avoided crossing [32]. b) Zoom on the avoided crossing
region for the CPHASE gate.

The CPHASE gate is realized in two steps for a total duration of T = T2Q + T1Q.

1. During the first step, Fext
H (t) is applied to QH for a duration of T2Q. It brings |11i

to the avoided crossing with |02i, at Fext
AC, and back to acquire a conditional phase.

The corresponding unitary evolution is denoted by U2Q. We take out the global
phase and define

U2Q =

0

BBBB@

1 0 0 0
0 eib10 0 0
0 0 eib01 0
0 0 0 eib11

1

CCCCA
, (2.73)

where bij denote the phases acquired by the states |iji during T2Q. The conditional
phase is given by f2Q = b11 � b10 � b01.

2. The phases bij are used in the second step in order to define the single-qubit ro-
tation corrections Rz(�b01) ⌦ I and I ⌦ Rz(�b10), where I is the identity on the
other qubit [30]. We recover the CPHASE gate from Eq. (2.71) if the conditional
phase f2Q is an odd multiple of p.

The total simulation implements the operator Usim, defined as the product:

Usim = (Rz(�b01) ⌦ I)(I ⌦ Rz(�b10))U2Q. (2.74)
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We introduce the adiabatic conditional phase as

fad
2Q =

Z T

0
2p(E11(t) � E01(t) � E10(t))dt, (2.75)

assuming the lowest energy level to satisfy E00(t) = 0. The 2p comes from the fact that
the energy levels are expressed in units of h. In the case of adiabatic evolution, it holds
that fad

2Q = b11 � b10 � b01. We further give the cross-Kerr coefficient in terms of the
energy level as

c(Fext
H (t)) = E11(Fext

H (t)) � E01(Fext
H (t)) � E10(Fext

H (t)). (2.76)

In the case of adiabatic evolution it turns out that

fad
2Q =

Z T

0
2p · c(Fext

H (t)) dt. (2.77)

This means that the cross-Kerr as defined in Eq. (2.76) causes the conditional phase to
be acquired in the adiabatic case.

2.3.1 Adiabatic vs Diabatic pulsing

Let us introduce two basis involved while pulsing from zero to the avoided crossing.
Firstly there is the eigenmode basis at zero flux, { |iji0}, which results from diagonaliz-
ing the linear part of the Hamiltonian when Fext

H (t) = 0, see Subsec. 2.2.1. This is the
computational basis in which the states are initialized in the simulations. Secondly, di-
agonalization of the full Hamiltonian while the external flux, Fext

H (t), is changed leads

for each time t to the instantaneous eigenstates basis, {
⇠
|iji(t)} associated with the en-

ergy levels.

30



(a) (b)

(c) (d)

Figure 2.3.2: Two ways of driving a CPHASE: Adiabatically or Diabatically. Figs. a) and b)

show, respectively, the adiabatic and diabatic evolution of a state initialized in |11i0 in a two-
level Bloch sphere representation. The green arrows represent the axis parallel to the instanta-
neous eigenstates. In Fig. a), the state gradually evolves from the pole, in |11i0, to the equatorial
plane and back to the pole, following the green arrow. On the trajectory, the state also makes
some small rotations around the green arrow cancelled by time-averaging (not shown) [33]. Fig.
b) depicts the diabatic evolution of |11i0, which rotates (blue dots) around the green arrow in
the equatorial plan. It rotates at the Rabi frequency given by DE (in units of h) [33]. Fig. c)

shows the adiabatic evolution of |11i0 remaining on the instantaneous
⇠

|11i(t), while the dia-
batic evolution in Fig. d) involves a quick change (a ’jump’) of the instantaneous eigenstates.

In this basis, a state initialized in |11i0 reads a ⇠
11

(tj)
⇠

|11i(tj) + a ⇠
02

(tj)
⇠

|02i(tj) just after the jump
of the eigenstates. The state indicated with the black dot corresponds to the ideal for which it
holds that a ⇠

11
(tj) = a ⇠

02
(tj) = 1/

p
2.

Adiabatic and diabatic regime in a CPHASE context are easily understood by con-

31



sidering the evolution of a state intitialized in |y(t = 0)i = |11i0. In an approxi-
mate two-state picture, the state |y(t)i can be projected and expanded on the subspace

spanned by {
⇠

|11i(t),
⇠

|02i(t)}, for each time t, as:

|y(t)i = a ⇠
11

(t)
⇠

|11i(t) + a ⇠
02

(t)
⇠

|02i(t) (2.78)

Then the instantaneous probability of leakage to
⇠

|02i(t) is given by

p ⇠
02

(t) = |a ⇠
02

(t)|2 (2.79)

Now, depending on the pulse shape the evolution will be completely different as it
ranges between adiabatic and diabatic regimes. In an adiabatic scenario, the pulse
is varied so slowly 1 that it enables the initial state |y(t = 0)i = |11i0 to follow the

instantaneous eigenstate
⇠

|11i(t) without overlapping with
⇠

|02i(t). Therefore, perfect
adiabaticity is realized if and only if p ⇠

02
(t) = 0 for the whole duration of the pulse.

Such evolution is depicted in Fig. 2.3.2c by the black arrow. The green arrows on Fig.
2.3.2a and 2.3.2b represent the axis parallel to the instantaneous eigenstates. Varying
the pulse amplitude changes the axis location. The diabatic regime is obtained in the
opposite limit, ı.e., by strongly and quickly pulsing to the avoided crossing point. The
instantaneous eigenstates are brutally modified jumping from the poles into the equa-
torial plane. Now, the intial |11i0 just after the ’jump’, at tj, is expressed as a linear
superposition in the basis of the new instantaneous eigenstates and reads as follows:

|y(tj)i = a ⇠
11

(tj)
⇠

|11i(tj) + a ⇠
02

(tj)
⇠

|02i(tj). (2.80)

The values of the coefficients depend on the pulse shape. The point in between the en-
ergy levels in Fig. 2.3.2d corresponds to the ideal case when a ⇠

11
(tj) = a ⇠

02
(tj) = 1/

p
2.

The arrow in Fig. 2.3.2b lies on the equatorial plane, therefore the instantaneous eigen-
states at the avoided-crossing are the symmetric and anti-symmetric equal superposi-
tion :

⇠
|11i =

|11i0 + |02i0p
2

⇠
|02i =

|11i0 � |02i0p
2

, (2.81)

1The slow variation of the pulse should ensure that the commonly used approximate adiabatic crite-
rion: Âm 6=n

|h̄hm| ˙H|ni|
|En�Em |2 ⌧ 1 is satisfied [34].
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In this Bloch sphere representation, a state under a diabatic evolution rotates around
the instantaneous eigenstates (direction pointed by the green arrow) at frequency DE
[33]. Consequently, if the arrow of a diabatic pulse is a bit above/below the equatorial
plane, the Rabi oscillation (from a state initialized in |11i0 for example) will not perform
a full 2p rotation between the states |11i0 and |02i0. The duration required for the state
|11i0 in order to perform a complete Rabi oscillation between |11i0 and |02i0 is given
by [30]:

TRabi =
1

DEAC
. (2.82)

Here we give the size of the gap at the avoided crossing, DEAC = E02(Fext
AC)� E11(Fext

AC),
in units of h. If we choose T2Q = TRabi, then the leakage out of the computational basis
is minimized and the overall controlled phase picked up by |11i0 is f2Q ⇡ p [30], [35].
For a diabatic pulse, the fidelity relies on the matching between TRabi and the duration
resulting in f2Q = p. In conclusion, the speed of the CPHASE gate is set by the size
of the gap at the avoided crossing in the case of diabatic pulse. The same limit is also
true for adiabatic pulse. However, we argue that with a diabatic pulse the external
flux is slowly applied to QH, in other words the system is slowly placed at the avoided
crossing, so that it spends less time sitting at this point. Then, the size of the gap at the
avoided crossing matters less than with a diabatic pulse. We stress that a CPHASE gate
can be operated at any point where the cross-kerr interaction is non-zero. Nevertheless,
the speed performance of the gate is higher if the external flux is placed at the avoided
crossing point.

2.3.2 CPHASE simulation

The simulations are done in the eigenmode basis at zero flux which results from diag-
onalizing the linear part of the Hamiltonian when Fext

H (t) = 0, see Subsec. 2.2.1. This
means that the computational basis is formed by the first four eigenstates of the lin-
ear part of the Hamiltonian at zero flux, denoted by

�
|00i0 , |10i0 , |01i0 , |11i0

 2. The
Hamiltonian implemented is derived with the eigenmode approach keeping the non-
linearity up to 6th order, Ĥ(6), without applying the RWA approximation, see Sec. 2.2.2.
We work in the Schrödinger picture with a time-dependant Hamiltonian. The approach
followed in the simulations and a clarification about what terms drive effectively the
CPHASE gate in the eigenmode approach are presented in Appendix A. We point out

2Notice that this is also the eigenbasis at zero flux within the full RWA approximation.
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that the circuit used in the simulations is presented in Subsec. 3.1, where we also derive
the Hamiltonian of the circuit with the eigenmode approach.

CPHASE fidelity and code implementation

Following the definition in [36] and [35], the fidelity of a simulation implementing Usim,
see Eq. (2.74), which aims at reproducing the ideal unitary operator UCPHASE, see Eq.
(2.71), is defined as follows :

F =
1
n2

��Tr(U†
CPHASEUsim)

��2 (2.83)

where n denotes the dimension of the Hilbert space, which is equal to four in the context
of two-qubit gate. The simulations are run in a larger Hilbert space and only when
we compute the fidelity, the evolution operator is projected onto the computational
subspace. It is denoted by Usim. If leakage out of the computational basis occurs, Usim

is not perfectly unitary, and leakage is detected as missing probability [35]. The matrix
elements of U2Q from Eq. (2.74) in the zero flux basis are :

hij|0U2Q|kli0 . (2.84)

Here |iji0 and |kli0 both run on the four computational basis states {|00i0, |10i0, |01i0,
|11i0}. Therefore, in order to assemble U2Q, the four computational basis states are
sequentially simulated. Each time, the overlap between the final state, U2Q |kli0, and
the four computational states are computed. Additionally, we use the phases of the
final states to define single-qubit rotations. After these steps, we obtain the fidelity of
Usim. We denote the probability of the state that evolves ,|y(t)i, to be found in the state
|iji0 at time t as :

Pij(t) = |aij(t)|2. (2.85)

These probabilities evaluated at the end of the CPHASE gate quantify the leakage out
of the computational basis. Note that no noise is implemented as we aim to verify
whether simulations using the eigenmode approach can be used to accurately model
the CPHASE gate. We also keep track over time of the instantaneous probability of

leakage on the states
⇠
|iji(t), which are out of the computational basis, and denote these

probabilities by p⇠
ij
(t). We are especially interested in p ⇠

02
(t) as it is provides information

about the regime we are working in, see Subsec. 2.3.1. Roughly it is a measure of "how
much adiabatic or diabatic" the evolution under a given pulse is. Finally, the fidelity in
Eq. (2.83) is optimized by varying the pulse parameters tI and mainly tR, see Fig. 2.3.3.
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Pulse

Figure 2.3.3: External pulse applied to QH in order to induce |11i0-|02i0 avoided crossing.

The function associated with the external phase applied to QH is :

jext
H (t) =

8
>><

>>:

jext
AC/2 · (1 � cos(pt

tR
)) if 0  t < tR

jext
AC if tR  t < tR + tI

jext
AC/2 · (1 + cos(p(t�tR�tI)

tR
)) if tR + tI  t < 2tR + tI

(2.86)

Here tR is the time during which the pulse moves from the parking frequency to
the operating point of the CPHASE gate, jext

AC. It corresponds to the avoided crossing
point between |11i0 and |02i0. The pulse stays at jext

AC during tI and then moves back
to the parking frequency during tR.
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Chapter 3

Two transmon qubits

In this chapter we start by analyzing a system of two transmons capacitively coupled in
Subsec. 3.1. More specifically, we compare the exact solution, in the Cooper-pair basis,
with the different approximations from the eigenmode approach, presented in Subsec.
2.2.2. This analysis allows us to validate which approximations are accurate as well
as to propose a model for CPHASE simulation in presence of ZZ crosstalk in Subsecs.
3.1.3 and 3.1.4, respectively. Subsequently, CPHASE simulations without crosstalk are
carried out in Subsec. 3.2 and finally, we question in Subsec. 3.3 whether the CPHASE
simulations with the two capacitively coupled transmons considered in Subsec. 3.2
would be significantly modified for a system of two transmons coupled via a resonator.

3.1 Two capacitively coupled transmons analysis

Figure 3.1.1: Circuit of two capacitively coupled transmons. The fluxes across the transmons
are denoted with FPM and FPH . The transmon on the left (right) is associated with the medium
(high) frequency qubit QM (QH) in the CPHASE gate. The Josephson junction of the high fre-
quency qubit is tunable by means of an external flux and is indicated by EJH (Fext

H ).
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We would like to apply the eigenmode approach, derived in Subsec. 2.2.1, on the circuit
of two capacitively coupled transmons depicted in Fig. 3.1.1. The latter is characterized
by the capacitance matrix

C =

 
CM + Cc �Cc

�Cc CH + Cc

!
, (3.1)

where Ci with i = M, H are the capacitances of the shunting transmons and Cc is the
coupling capacitance. The inverse of the charging energy matrix is given by

E�1
c =

2
e2 C. (3.2)

We assume that the qubit with the highest frequency, QH, is tunable by means of an
external flux, Fext

H (t). The subscript H is used here in order to have the same notation
as in the CPHASE analysis. The Josephson junction in Fig. 3.1.1 is replaced by a SQUID
loop as explained in Subsec. 2.1.3. The inductances of the transmons are given by LM

and LH(Fext
H ), respectively. We define the inverse of the inductance matrix as

L�1 =

 
L�1

M 0
0 L�1

H (Fext
H )

!
(3.3)

and the inductance energy matrix as

EL =
h2

16e2p2 L�1 =

 
EJM 0

0 EJH (Fext
H )

!
. (3.4)

The fluxes across the Josephson junctions at the ports are independent flux variables
and we gather them into the vector eF

PI

= {FPM, FPH}T. Then the Lagrangian of the
circuit in Fig. 3.1.1 is

L =
1
2
ėF

T
PIC ėFPI + EJM cos

✓
2p

F0
FPM

◆
+ EJH (Fext

H ) cos
✓

2p

F0
FPH

◆
. (3.5)

In terms of phase variables the Lagrangian can be rewritten as

L =
1
2

e2

2
F2

0
(2p)2

˙ejT
PI

E�1

c
˙ej

PI

+
H

Â
n=M

EJn cos(jPn)

=
h̄2

16
˙ejT

PI

E�1

c
˙ej

PI

+
H

Â
n=M

EJn cos(jPn).

(3.6)
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In order to derive the Hamiltonian, we introduce the vector of canonical conjugate vari-
ables and directly divide it by h̄ as follows:

en
PI

=
1
h̄

dL
d ˙ejPI

=
h̄
8

E�1

c
˙ejPI. (3.7)

These variables are the number of Cooper-pairs. We perform the Legendre transforma-
tion and obtain the Hamiltonian

Ĥ =

✓
dL

d ˙ejPI

◆T
˙ejPI � L = 8enT

PI

EcenPI

� 4enT
PI

(Ec)
T E�1

c EcenPI

�
H

Â
n=M

EJn cos(jPn). (3.8)

The energy capacitance matrix is symmetric and thus

Ĥ = 4enT
PI

EcenPI

�
H

Â
n=M

EJn cos(jPn). (3.9)

The variables are promoted to quantum operators by imposing the canonical quantiza-
tion. If we express the capacitance energy matrix, defined as the inverse of the matrix
in Eq. (3.2), as

Ec =

 
EcM

EI
2

EI
2 EcH

!
, (3.10)

then the Hamiltonian is

Ĥ = 4EcM n̂2
PM + 4EcH n̂2

PH + 4EIn̂PMn̂PH � EJM cos(ĵPM) � EJH (Fext
H ) cos(ĵPH). (3.11)

3.1.1 Exact solution

The Hamiltonian in Eq. 3.11, can be directly diagonalized in the Cooper-pair basis
denoted with {|nPMi ⌦ |nPHi} = {|nPMnPHi}. Indeed, proceeding similarly to what
was done for the Cooper-Pair Box system in Sec. 2.1.2, the Hamiltonian of the two
capacitively coupled transmons reads:

Ĥ =
•

Â
nPM=�•

•

Â
nPH=�•

✓
4EcM n2

PM + 4EcH n2
PH + 4EInPMnPH

◆
|nPMnPHi hnPMnPH|

�EJM

2

✓
|nPMi hnPM + 1| + |nPM + 1i hnPM|

◆
⌦
✓
|nPHi hnPH|

◆

�EJH (Fext
H )

2

✓
|nPMi hnPM|

◆
⌦
✓
|nPHi hnPH + 1| + |nPH + 1i hnPH|

◆
.

(3.12)
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3.1.2 Eigenmode approach applied

We now apply the eigenmode approach at the Lagrangian level. The Lagrangian in Eq.
(3.6) is split into a linear and a non-linear part by expansion of the Josephson cosine
potential as follows :

L =
h̄2

16
˙ejT

PI

E�1

c
˙ej

PI

� 1
2
ejT

PI

ELejPI

+

 H

Â
n=M

EJn cos(jPn) +
1
2
ejT

PI

ELejPI

�

= Llin + Lnonlin

(3.13)

Taking the Euler-Lagrange equations on the linear Lagrangian in Eq. (3.13), we end
up with the eigenvalue problem consisting in diagonalizing the matrix (E�1

L E�1

c )�1 =

EcEL. This problem is equivalent to diagonalizing the (LC)�1 matrix presented in Sub-
sec. 2.2.1. Thus, proceeding similarly, an effective inverse charging energy matrix,
which is diagonal, is obtained :

E�1

c,eff

= (P�1)T E�1

c P�1 =

 
Ec1,eff

�1 0
0 Ec2,eff

�1

!
. (3.14)

The linear Lagrangian in terms of the eigenmodes is

Llin =
2

Â
k=1

h̄2

16Eck,eff
j̇2

k �
1

2Eck,eff
l2

k j2
k . (3.15)

Here the l2
k with k = 1, 2 are the eigenvalues of the EcEL matrix. We apply canoni-

cal quantization by promoting the variables to operators. As expected, the resulting
Hamiltonian is the sum of two uncoupled harmonic oscillators:

Ĥlin =
2

Â
k=1

4Eck,effn̂2
k +

1
2Eck,eff

l2
k ĵ2

k (3.16)

Finally, the operators can be expressed in terms of their annihilation and creation oper-
ators as 8

><

>:

ĵk =
⇣ 2E2

ck,eff
l2

k

⌘ 1
4 �

â†
k + âk

�
= jZPFk

�
â†

k + âk
�

n̂k = i
2

⇣
l2

k
2E2

ck,eff

⌘ 1
4 �

â†
k � âk

�
= i · nZPFk

�
â†

k � âk
�
.

(3.17)

Here jZPFk and nZPFk denote the zero-point fluctuations of the phase and of the num-
ber of Cooper-pairs (of mode k), respectively [24]. When a quantum oscillator is in the
ground state, its energy cannot be zero due to the uncertainty principle. The quan-
tum ground uncertainties of the phase and of the Cooper-pair number are given by
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jZPF = h0| ĵ2 |0i and nZPF = h0| n̂2 |0i [24]. We point out that if Fext
H (t) is modified

the eigenmode approach can be applied at each value of Fext
H (t). Then, at the classical

level, the matrix P(Fext
H ) and the frequencies of the normal modes, lk(Fext

H ), become
flux-dependant. So are the operators at the quantum level, ı.e. ĵk(Fext

H ), n̂k(Fext
H ) and

âk(Fext
H ) for k = 1, 2. In this case, the linear Hamiltonian in Eq. (3.16) reads:

Ĥlin =
2

Â
k=1

q
8l2

k(Fext
H )

✓
â†

k(Fext
H )âk(Fext

H ) +
1
2

◆
(3.18)

We remark that instead of applying the eigenmode at each value of Fext
H (t), we can look

at the coupling induced by the tuning of Fext
H (t) from the perspective of the normal

modes at zero flux, ı.e. the modes associated with âk(Fext
H = 0). In this case, there is a

linear coupling induced between the normal modes as presented in Appendix A (see
Eq. (A.6)).

The eigenmode approach approximations introduced in Subsec. 2.2.2 are applicable
to the circuit of two capacitively coupled transmons. Therefore, in what follows, we
only provide the 4th order full RWA explicit analytical formulas for:

• The anharmonicity of mode k due to junction n, with n = M, H,

dnk(Fext
H ) = �EJn(Fext

H )

8
j4

ZPFk
(Fext

H )(P�1)4
nk(Fext

H ). (3.19)

• The cross-Kerr coupling between the two modes due to junction n defined as

cn(Fext
H ) = �EJn(Fext

H )

4
(P�1)2

n1(Fext
H )(P�1)2

n2(Fext
H )j2

ZPF1
(Fext

H )j2
ZPF2

(Fext
H ).

(3.20)

• Finally, omitting the dependency on Fext
H , the diagonal Hamiltonian is

Ĥ(4)
fullRWA =

2

Â
k=1

Wk â†
k âk +

dk

2
â†

k â†
k âk âk + câ†

1 â1 â†
2 â2. (3.21)

The total anharmonicities and cross-Kerr coupling are obtained by summing over
the two Josephson junctions n as follows:

dk(Fext
H ) =

H

Â
n=M

dnk(Fext
H ), (3.22a)

c(Fext
H ) =

H

Â
n=M

cn(Fext
H ). (3.22b)
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The qubit frequencies are

Wk(Fext
H ) = wk(Fext

H ) + dk(Fext
H ) +

1
2

c(Fext
H ). (3.22c)

Again, it holds that, with the 4th full RWA approximation, the front coefficient in

c(Fext
H (t))â†

1(Fext
H )â1(Fext

H )â†
2(Fext

H )â2(Fext
H ), (3.23)

is given by
c(Fext

H (t)) = E11(Fext
H (t)) � E01(Fext

H (t)) � E10(Fext
H (t)). (3.24)

3.1.3 Validation of the approximations

In this section we evaluate the accuracy of the previous approximations, in particular
in the context of a CPHASE simulation. To validate the approximations we focus on
the circuit of two capacitively coupled transmons by comparing the results with the
exact solution in the Cooper-pair basis. We stress that in the ’exact solution’ we cut the
number of Cooper-pair states (approximations in Eqs. (2.9) and (2.10)). On the contrary,
in the eigenmode approach we work in the basis of harmonic oscillators. Thus, we
cut the number of Fock states of the Hilbert space that we consider. As presented in
Sec. 2.3, a CPHASE gate is realized by applying an external flux on the qubit with the
highest frequency in order to bring the system at the operating point, ı.e., at the avoided
crossing between the states |11i and |02i. For CPHASE simulations there are mainly
three quantities which needs to be accurate :

1. The position of the avoided crossing jext
AC = (2pFext

AC)/F0,

2. The size of the gap at the avoided crossing, DEAC = E02(jext
AC) � E11(jext

AC),

3. And the cross-Kerr coefficient as a function of the external phase c(jext
H (t)) =

E11(jext
H (t)) � E01(jext

H (t)) � E10(jext
H (t)).

For concreteness let us take back the high and medium frequency transmon in the
surface code architecture [5], whose associated eigenmodes are denoted by QH and
QM respectively. The transmons are chosen to have frequencies wH/2p = 6.7 GHz,
wM/2p = 6.0 GHz. In addition, we choose equal shunting capacitances CH = CM =

77.10 fF and coupling capacitance Cc = 0.39 fF. From now on, we give the energy levels,
the charging energy and the Josephson energy in units of h, ı.e. they are expressed in
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Hz. Then, this choice gives EcH = EcM = 250 MHz and EI = 2.5 MHz. The Josephson
energies (at zero external flux) are EJH = 22.45 GHz and EJM = 18.00 GHz.

(a) (b)

Figure 3.1.2: Energy levels of two transmons capacitively coupled as a function of the external
pulse applied to the high frequency qubit QH : jext

H /2p. Fig. a) corresponds to the energy
levels of the linear circuit. There is only one point (grey dashed vertical line) where the avoided
crossing happens. On the contrary, the energy levels obtained with the exact solution in Fig. b)

show a splitting of the avoided crossing into three points. The arrows indicate the points where
the avoided crossings associated with the CPHASE and iSWAP gates take place.

The energy levels in Fig. 3.1.2b are obtained from diagonalization of the ’exact so-
lution’ in the Cooper-pair basis. In addition to showing the CPHASE avoided crossing,
it also indicates the point where the iSWAP gate works, ı.e., at the avoided crossing
between |01i and |10i [18]. We will now study how the different approximations affect
the energy levels, and in particular in which way they influence the optimal implemen-
tation of the CPHASE gate.

We begin our analysis by considering the linear Hamiltonian Ĥlin in Eq. (3.18), thus
neglecting the non-linearity. The study of the spectrum of Ĥlin, although not interesting
from a quantum mechanical point of view, allows to understand, by comparison, in
which way the addition of the non-linearity to the Hamiltonian modifies the spectrum,
allowing for the possible implementation of CPHASE and iSWAP. The energy levels of
Ĥlin as a function of the external phase applied to the high frequency qubit is shown in
Fig. 3.1.2a. Comparing with Fig. 3.1.2b we make the following observations.

• In the linear case there is only one point (grey dashed vertical line) where the
avoided crossing happens, see Fig. 3.1.2a. This point corresponds to the point

42



where the classical frequencies of the coupled modes are equal. We refer to this
point as the classical avoided crossing.

• Considering the first six energy levels the addition of the non-linearity splits the
classical avoided crossing into three different avoided crossings as depicted in
Fig. 3.1.2b:

1. the avoided crossing associated with the iSWAP;

2. the avoided crossing associated with the CPHASE;

3. a third avoided crossing at higher external fluxes;

• The iSWAP avoided crossing is the one associated with the classical one, and,
apart from small corrections, it takes place at the same point.

We do not plot the whole spectrum for each approximation, as the only range where
there is a significant change between them is at the CPHASE avoided crossing point.
In Fig. 3.1.4 we show how the different approximations recover the energy levels close
to the avoided crossing and what position of the avoided crossing they predict. We see
that the 6th order approximation perfectly recovers the levels and the position of the
avoided crossing, while the one that performs the worst is the 6th order RWA.

Figure 3.1.3: Comparison of the energy levels of the exact diagonalization (solid lines) with the
4th order full RWA (dashed lines).
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(a)

(b)

(c)

(d)

Figure 3.1.4: Comparison of the energy levels of the exact diagonalization (solid lines) with the
4th and 6th order approximations, and their respective RWA (dashed lines). The solid vertical
line indicates the position of the exact avoided crossing, while the dashed gray line denotes the
position of the avoided crossing predicted by the respective approximation.

In Fig. 3.1.3 we also show the comparison of the exact energy levels with 4th or-
der full RWA approximation. We see that while the position of the avoided crossing is
recovered with decent accuracy, there is a striking difference of this approximation in
comparison with all those in Fig. 3.1.4. The size of the avoided crossing is completely
underestimated. This tells us that the terms neglected in the full RWA approximation,
but not in the RWA, play a fundamental role in determining the size of the avoided
crossing. An example of a term neglected by the full RWA but not by the RWA approx-
imation is â†

1(Fext
H )â1(Fext

H )â1(Fext
H )† â2(Fext

H ) as it preserves the total number of excita-
tions but not for each mode. We conclude that these terms must be taken into account
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when modelling the CPHASE gate if we want an accurate prediction of the size of the
avoided crossing. An interesting question is to understand how using the predictions
of a certain approximation influences the performances of the CPHASE gate in terms
of fidelity.

As discussed in Subsec. 2.3.1, the speed of the CPHASE gate is set by the size
of the gap, DEAC. Thus, we need to accurately predict the energy gap. We insert in
TRabi = 1/DEAC the values of DEAC in Table 3.1.1, obtained from the spectrum of the
different approximations, and estimate the duration of the gate. With each approxima-
tion, except with Ĥ(4)

fullRWA, the duration is around TRabi ⇡ 25 ns. We conclude that it is
possible to simulate a CPHASE gate lasting around 25 ns (with our diabatic pulse), with
any of the following approximations : H(6), Ĥ(6)

RWA, Ĥ(4) and Ĥ(4)
RWA. Only Ĥ(4)

fullRWA can
not be used for realistic simulations of the CPHASE gate as it underestimates the size
of the gap at the avoided crossing. By realistic we mean that it should reproduce a gate
time of the same magnitude as we would obtain with the exact solution. This result
means that, in the eigenmode approach, the coupling which drives the CPHASE gate
is captured by the RWA approximations. The difference between the approximations is
that the CPHASE gate should be placed at the avoided crossing point predicted by the
specific approximation and given in Table 3.1.1. For example, Ĥ(4) should not perform
significantly worse (in terms of fidelity and total duration) if placed at jext

AC/(2p)= 0.153
rad as H(6) when the latter is placed at jext

AC/(2p) = 0.159 rad. It would take longer as
DEAC obtained with the 4th order approximation is lower than the one obtained with
the 6th approximation and the leakage might be slightly different, but it would still be
possible to simulate a CPHASE gate with this approximation. This is especially true
in the case of a diabatic pulse. The exact solution predicts jext

AC/2p = 0.159 rad. We
see in Table 3.1.1 that if an accurate prediction of the position of the avoided crossing
is needed then at least the full 6th order is needed. Fig. 3.1.6 provides a comparison
between the points at which the CPHASE avoided crossing is predicted by the different
approximation.

The 6th order approximation predicts that, at the avoided crossing, the cross-Kerr
is worth |cAC| = 19.4 MHz and that DEAC/2= 20.3 MHz. The exact solution gives |cAC|
= 20.16 MHz and DEAC/2= 20.25 MHz. Thus we observe that the relation

DEAC

2
⇡ |cAC| = |E11(jext

AC) � E01(jext
AC) � E10(jext

AC)| (3.25)

holds up to 4% with the approximation at 6th order and up to 0.4% with the exact
solution. We conclude from the relation in Eq. (3.25) that the speed of the CPHASE gate
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Exact Ĥ(4) Ĥ(4)
RWA Ĥ(4)

fullRWA Ĥ(6) Ĥ(6)
RWA

jext
AC/2p 0.159 0.153 0.164 0.165 0.159 0.168

DEAC [MHz] 40.5 40.5 40.7 1.6 40.6 40.7
|cAC| [MHz] 20.16 19.6 19.2 3.0 19.4 20.2
|c0| [MHz] 0.6 0.7 0.5 0.5 0.6 0.5

Table 3.1.1: Predictions of the position and of the magnitude of the CPHASE avoided crossing
for the exact diagonalization and the different approximations. The cross-Kerr coefficient at the
avoided crossing and at the parking frequency are also reported. They are denoted with cAC

and c0, respectively.

realized with a diabatic pulse, is limited by the cross-Kerr at the avoided crossing. We
emphasize the definition of cAC in terms of the energy levels in Eq. (3.25).

At this point it is important to understand in which regime the 4th order full RWA
approximation can be used and which parameters it can accurately predict. In archi-
tectures such as the ones used for the Surface-7 or Surface-17 [5] we are also interested
in determining the value of the ZZ, ı.e., cross-Kerr couplings when the qubits are at
their parking frequency. In this case nearest-neighbour qubits as QH and QM would
be sufficiently detuned from each other, and so we expect the full RWA to work in this
case. This is confirmed in Fig. 3.1.5 which compares the full RWA with exact cross-Kerr
between the 2 qubit modes, c0, and in the Table 3.1.1. Indeed, at zero flux (qubits far-
detuned), the values agree with an accuracy of 10%. While the full RWA approximation
fails when the qubits approach resonance, which is visible on the right in Fig. 3.1.5.
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Figure 3.1.5: Comparison of the cross-Kerr for the exact solution and the 4th order full RWA.
We observe that the 4th full RWA is a good approximation at parking frequencies, that is when
jext

H = 0. While the 4th full RWA approximation fails when QH and QM are in resonance, that
is at jext

AC.

Figure 3.1.6: Comparison between the exact and the different eigenmodes approximations at
the CPHASE avoided crossing. The figure plots the values (E02 + E11)/2 at this point.

In summary, the prediction about how long and at which point the CPHASE gate
takes place is modified in two ways by the choice of a specific approximation. Indeed,
the estimations of the Rabi frequency, DEAC, and of the point at which the avoided
crossing is predicted, jext

AC, depend on the approximation. We have shown that Ĥ(6)

predicts accurately jext
AC and the energy level differences, while Ĥ(4)

fullRWA gives a good
estimation of the cross-Kerr (error of 10%), when the qubits are detuned. The latter
could thus be used to characterize crosstalk between neighbouring qubits when they
are at their parking frequency.
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3.1.4 CPHASE model proposal

The ultimate goal is to provide an accurate CPHASE analysis, in presence of ZZ crosstalk
in a ’scalable way’. Now, based on the conclusions drawn in the previous section, we
make a proposal for a CPHASE model in which the interactions between :

1. The two-interacting qubits is described using the 6th order approximation, Ĥ(6),
or a higher order approximation.

2. The crosstalk from neighbouring qubits would be described in the 4th full RWA
approximation, that is with Ĥ(4)

fullRWA. This approximation can be used because the
neighbouring qubits are off-resonant with the two qubits involved in the CPHASE
gate.

For example, a CPHASE gate between the qubits D2 and X on the Surface-7 layout
could be simulated modeling the crosstalk from neighbouring qubits D1, D3, D4, Z1

and Z2 on X and D2 with Ĥ(4)
fullRWA, as is depicted in Fig. 3.1.7.

The advantage of this approximation is that we have an analytical expression for the
diagonal Hamiltonian Ĥ(4)

fullRWA. Thus, no further diagonalization in the Hilbert space is
involved. It is in that sense that this approach can be seen as a scalable implementation
of ZZ crosstalk.

Figure 3.1.7: Example of CPHASE model with crosstalk for Qubit D2 and X : the interaction
between qubits D2 and X, involved in the CPHASE gate, is simulated using Ĥ(6). In contrast,
the crosstalk from neighbouring qubits D1, D3, D4, Z1 and Z2 on X and D2 which is included
using the Ĥ(4)

fullRWA.
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3.2 CPHASE simulation without crosstalk

In this subsection, CPHASE gate simulations without crosstalk are carried out using the
two capacitively coupled transmons and the eigenmode approach. We compute the fi-
delities of the CPHASE gate under a diabatic pulse. The theory about the CPHASE gate
and the implementation used in these simulations are presented in Sec. 2.3. The Hamil-
tonian we consider is the 6th order Taylor expansion approximation, Ĥ(6), introduced
in Subsec. 2.2.2. The computational basis is the eigenmode basis at zero flux, { |iji0},
which results from diagonalizing the linear part of the Hamiltonian when Fext

H (t) = 0,
see Subsec. 2.2.1. We also simulate the CPHASE gate using the Hamiltonian of the
two capacitively coupled transmons expressed in the Cooper-pair basis in Eq. (3.12).
This allows us to compare the performances of the CPHASE gate in terms of fidelity
obtained with the eigenmode method and in the Cooper-pair basis.

3.2.1 Simulations

The external pulse that we use is given in Eq. (2.86) and it has three parameters. jext
AC

is the operating point of the CPHASE gate. In what follows, the parameter jext
AC is fixed

at 0.15945 ⇥ 2p rad. It corresponds to the avoided crossing point between |11i0 and
|02i0. tR is the time during which the pulse moves from the parking frequency to the
operating point jext

AC (and then backwards), while tI is the time during which the pulse
stays at jext

AC. In what follows, we focus on the simpler diabatic case since it should cap-
ture the main effects of crosstalk. We fix tR to 0.6 ns and then maximize the fidelity by
varying tI . We optimize the pulse with the simulations of the CPHASE gate done with
the 6th order approximation in the eigenmode approach, Ĥ(6). We obtain the optimal
parameter tI = 25.15 ns. Then, we simulate the CPHASE gate with the Hamiltonian
in Eq. (3.12), expressed in the Cooper-pair basis, and we use the pulse with the same
parameters as done with Ĥ(6). The computational basis, in this case, is spanned by the
four states with lowest energy obtained by diagonalizing the Hamiltonian in Eq. (3.12).
For simplicity, we denote the computational states associated with the ’exact solution’
in the Cooper-pair basis with { |iji} where i and j run from 0 to 1. Finally, we compare
the fidelities and conditional phases obtained with the simulations done in the differ-
ent basis. We point out that optimization was not the main target of this thesis. We
include 9 Fock states per qubit in the simulations with Ĥ(6) and 31 Cooper-pair states
in the simulations with the exact solution. The computational states can interact with
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these levels during the simulations and are then projected in the computational basis
as explained in Subsec. 2.3.2. The simulations in this subsection are diabatic and it is
confirmed by plotting p ⇠

02
(t), ı.e. the probability of a state to overlap with the instanta-

neous eigenstate
⇠

|02i(t). As discussed in Subsec. 2.3.1, p ⇠
02

(t) is an indicator about how
much adiabatic or diabatic the evolution is. Diabatic evolutions of the CPHASE gate
involve Rabi oscillation in the computational basis between the states |11i0 and |02i0

(|11i and |02i with the exact solution). Figs. 3.2.1 show these Rabi oscillations. In Fig.
3.2.1a we initialize a state in |11i0 and we use Ĥ(6), while in Fig. 3.2.1b we initialize
a state in |11i and we use the Hamiltonian of the exact solution. Fig. 3.2.2 shows the
probability p ⇠

02
(t) corresponding to the evolution in Fig. 3.2.1a. In Table 3.2.1 we com-

pare the fidelities and conditional phases obtained with the 6th order approximation
and with the exact solution. In the simulations with the 6th order approximation, we
initialize a state sequentially in the four computational states, ı.e. |iji0 (t = 0), and look
at the final probability of leakage out of the computational basis at the end of the gate,
ı.e. at T = T2Q + T1Q. These values are given in Table 3.2.2.

Fidelity F f2Q [rad]
Ĥ(6) 0.994 3.12
Exact solution 0.997 3.03

Table 3.2.1: Fidelity and associated conditional phase f2Q obtained with the optimized pulse
characterized by the parameters (tR, tI)=(0.6, 25.15) [ns]. We compare simulations done using
the approximate Hamiltonian Ĥ(6) in the eigenmode approach with simulations done using the
Hamiltonian of the ’exact solution’ in Eq. (3.12), ı.e. done in the Cooper-pair basis. The fidelity
in the simulations done with the Cooper-pair basis is 0.3% higher than with Ĥ(6), though the
pulse is optimized with Ĥ(6). f2Q is closer to p with Ĥ(6) and is worth 3.12 rad.

In the simulations using the 6th order approximation, the fidelity F is worth 0.994.
The fidelity in the simulations done with the Cooper-pair basis is 0.3% higher and is
worth 0.997. The definition of fidelity in Eq. (2.83) takes into account both leakage out of
the computational basis at the end of the gate and the phases of the states. Maximizing
the fidelity is thus a trade-off between minimizing the leakage, and having f2Q close
to p. This explains why the conditional f2Q are not perfectly p. They are worth 3.12
in the simulations using the 6th order approximation and 3.03 in the simulations in
the Cooper-pair basis, see Table 3.2.1. The difficulty is to match the parameters of the
pulse such that the duration of the Rabi oscillation of the state |11i0 to the level |02i0
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and back on |11i0 coincides with the duration it takes to acquire f2Q = p. Otherwise
leakage of this state is large. We see in Table 3.2.2 that the probability of leakage of a
state initialized in |11i0 is worth 0.006. The probability of leakage for the state |00i0

is of the order of 10�4 and for |10i0 and |01i0 they are worth 0.002. The state |11i0

leaks the most out of the computational basis mainly because it is not perfectly back
after the Rabi oscillation with |02i0. It may also interact with higher excited states.
The important message is that, though further pulse-shape optimization could result
in higher fidelity, we have verified that it is possible to accurately model the CPHASE
gate using the eigenmode approach. Indeed, the fidelity obtained with the approximate
Hamiltonian Ĥ(6) is up to 0.3% in agreement with the simulations done with the exact
solution in the Cooper-pair basis.

(a)

0 5 10 15 20 25

t [ns]

0.0

0.2

0.4
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0.8
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P
i,
j

.
Exact
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in charge
basis

P11

P02

(b)

Figure 3.2.1: Fig. a) shows the evolution of a state initialized in |11i0 and corresponds to a
simulation done with the 6th order approximation from the eigenmode approach. Pi,j(t) are the
probabilities to be found in the state |iji0 at time t, defined in Eq. (2.85). Fig. b) corresponds
to a simulation in the Cooper-pair basis and shows the evolution of the state |11i. The states
perform Rabi oscillations as we use a diabatic pulse, whose parameters are (tr, tI)= (0.6, 25.15)
ns.
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Figure 3.2.2: Probability of a state initialized in |11i0 to overlap with the instantaneous eigen-

state
⇠

|02i(t). The simulation is done with the Hamiltonian Ĥ(6). As p ⇠
02

(t) 6= 0 for all t, this
means that the simulation is diabatic. This simulation corresponds to the evolution of the state
|11i0 in Fig. 3.2.1a.

p(T) |00i0 |10i0 |01i0 |11i0

(0.6, 25.15) [ns] 5⇥10�4 0.002 0.002 0.006
Table 3.2.2: Final probabilities of leakage at the end of the gate, ı.e. at T = T2Q + T1Q, of the
four computational states, |iji0 (t = 0). The simulations are done using Ĥ(6). The state |11i0
leaks the most mainly because it is not perfectly back after the Rabi oscillation with |02i0.
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3.3 Analysis of two transmon coupled via a resonator

Figure 3.3.1: Two transmons coupled via a far-detuned resonator of bare frequency wR/(2p) =
22 GHz. The two fluxes defined across the Josephson junctions of the transmons at the ports are
denoted with FPM and FPH , and the flux across the resonator is denoted with FIR. The equal
coupling capacitance Cc are worth 3.3 fF.

In this thesis, CPHASE simulations are performed using two transmons which are ca-
pacitively coupled, while generally transmons are coupled via bus resonators as in Fig.
3.3.1. Therefore, we want to determine whether the CPHASE simulations with the two
capacitively coupled transmons considered in Subsec. 3.2 would be significantly mod-
ified for a system of two transmons coupled via a resonator. More precisely, we want
to investigate whether we need to take into account the resonator mode in the simula-
tions or not. We do not expect this to be the case, when the resonator frequency is far
detuned from those of the qubit modes. In order to confirm this intuition, we perform a
test consisting in applying the eigenmode approach to the circuit depicted in Fig. 3.3.1.
This circuit has three independent flux variables: the two fluxes defined across the
Josephson junctions of the transmons at the ports, FPM and FPH, and the flux across
the resonator, FIR. Notice that the flux across the resonator is an internal flux degree of
freedom. We apply the eigenmode approach presented in Subsec. 2.2.1, get the matrix
P�1 of size 3⇥3 and the three eigenmodes Fk with k = 1, 2, 3. Then, we build two
Hamiltonians using the 6th order approximation, Ĥ(6), introduced in Subsec. 2.2.2. In
the first Hamiltonian we keep the resonator mode F3 after applying the eigenmode ap-
proach to the circuit in Fig. 3.3.1. This means that the linear Hamiltonian consists of the
two qubit modes and of the resonator mode and that the non-linearities of the trans-
mons are expressed as a linear combination of the three normal modes, ı.e. F1, F2 and
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F3. In contrast, in the second Hamiltonian the resonator mode F3 is disregarded, ı.e.,
the linear Hamiltonian has two modes and the non-linearities are expressed as a linear
combination of the normal modes associated with the two qubit only, ı.e. F1 and F2.
Subsequently, we compare the lowest energy levels obtained with these two Hamiltoni-
ans and analyze whether removing the resonator mode affects significantly the energy
levels. More precisely, we compare the energy levels of the following Hamiltonians:

1. The Hamiltonian including the resonator mode, F3:

Ĥ(6)
with =

3

Â
k=1

wk â†
k âk +

H

Â
n=M

EJn

✓
�F4

Pn
4!

+
F6

Pn
6!

◆
. (3.26)

Here
FPM = (P�1)00F1 + (P�1)01F2 + (P�1)02F3 (3.27)

and
FPH = (P�1)10F1 + (P�1)11F2 + (P�1)12F3. (3.28)

2. The Hamiltonian without the resonator mode (eigenmode F3 is disregarded):

Ĥ(6)
without =

2

Â
k=1

wk â†
k âk +

H

Â
n=M

EJn

✓
�F4

Pn
4!

+
F6

Pn
6!

◆
. (3.29)

Here
FPM = (P�1)00F1 + (P�1)01F2 (3.30)

and
FPH = (P�1)10F1 + (P�1)11F2. (3.31)

We emphasize that in both cases P�1 is a 3⇥3 matrix as it corresponds to the circuit in
Fig. 3.3.1, where there are three independent flux variables. For this analysis, the bare
frequencies are set to wM/(2p) = 5.875 GHz, wH/(2p) = 6.253 GHz and wR/(2p) = 22
GHz, respectively. The coupling capacitances, indicated in Fig. 3.3.1, are Cc = 3.3 fF.
The capacitance of the resonator is set to 100 fF and the capacitances of the transmons
are worth 77.5 fF. The latter correspond to the charging energy Ect = -250 MHz. Thus, in
a first approximation the anharmonicities are d ⇡ Ect = -250 MHz. Moreover we choose
the inductance of the resonator in order that the resonator has an impedance of 50 W
and a bare frequency of wR/(2p) = 22 GHz. We apply the eigenmode approach, and
the frequencies of the normal modes associated with the qubits and with the resonator
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modes are worth w1/(2p) = 5.75 GHz, w2/(2p) = 6.12 GHz and w3/(2p) = 21.34
GHz, respectively.

DE10 DE01 DE20 DE11 DE02 DE02 DE30

[MHz] 0.11 0.12 0.24 0.23 0.26 0.36 0.36
Table 3.3.1: The 6 lowest energy level differences, DEij = Ewithout

ij �Ewith
ij , are obtained by taking

the difference between the energy levels of the qubits after excluding the resonator mode and
the ones obtained keeping the three modes.

We compute the eigenvalues of Ĥ(6)
with and Ĥ(6)

without and take the difference between
the lowest energy levels, DEij = Ewithout

ij � Ewith
ij . They are listed in table 3.3.1 and range

from 0.11 to 0.36 MHz, thus proving that the energy levels obtained with and without
the resonator mode, are in good agreement. This implies that, if the system is excited
in a regime involving only the lowest energy levels (applying a signal with frequency
in the qubit range for example), the resonator mode is not essential for CPHASE sim-
ulations and can be removed. We point out that, more generally, the test suggests that
after the applying the classical eigenmode approach on the full system, we can get rid
of the resonator modes even before performing canonical quantization, and still recover
similar behaviour.

We point out that the elimination of some modes in the normal mode approach
does not require any Schrieffer Wolff transformation as the elimination is done at the
classical level. If we consider multi-qubit and multi-resonator systems, the elimination
done with the eigenmode approach is greatly simplified compared to a Schrieffer-Wolff
transformation.
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Chapter 4

Three transmon qubits

In this chapter, we start with CPHASE simulations including crosstalk from a spectator
qubit with a simplified model in Sec. 4.1. In order to go beyond the limits of this model,
CPHASE simulations in presence of crosstalk from a spectator qubit are carried out
more realistically in Sec. 4.2 using a system of three capacitively coupled transmons.

4.1 CPHASE simulation with a simplified model

In this section, a simplified model is used to quantify crosstalk effects on the CPHASE
gate fidelity. Imagine that a third transmon is capacitively connected to one (or both) of
the two capacitively coupled transmons of the circuit introduced in Sec. 3.1. Its main
effect is to shift the frequency of its neighbouring qubit depending on its state. We
insist on the fact that we simulate the circuit of the two transmons capacitively coupled
in Fig. 3.1.1 and artificially add a shift from a potential ’spectator’ qubit, QS. In order
to keep things simple, we assume that QS only brings diagonal terms to the linear part
of the Hamiltonian. We further asssume that the cross-Kerr from QS on QM and/or on
QH, denoted by c, is independent of the external phase applied to QH. In what follows
the parameter for c is kept constant and set to 2.6 MHz.

If QS is in the state |0i, the linear Hamiltonian in the basis at zero flux is simply:

Ĥs0 = wMâ†
MâM + wHâ†

HâH. (4.1)

When QS is in state |1i, the frequency of the neighbouring qubit(s), to which it is
connected, is shifted by the cross-Kerr value between the modes, c. Different cases are
analyzed. In case a), the spectator qubit is connected to QM, leading to the Hamiltonian:
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Ĥs1 = (wM � c)â†
MâM + wHâ†

HâH. (4.2)

In case b), it is QH which undergoes a spectator-state dependent shift of its frequency.
Finally, in case c), both QM and QH undergo crosstalk from the spectator QS. We use
the pulse with the same parameters as in the simulations in Sec. 3.2.

The conditional phase f2Q and the fidelity F associated with these scenarios are
compared to case d), in which the spectator induces no crosstalk on the qubits. They
can be found in Table 4.1.1. The highest fidelity is obtained when there is crosstalk only
on QM as f2Q is closer to p than in the other scenarios. We should not conclude that this
comes from a physical effect. Most likely this is caused by the fact that jext

AC, obtained by
optimization and used in order to define the pulse shape, is slightly shifted compared
to the theoretical avoided crossing point. Shifting QM could move jext

AC closer to the
theoretical point by chance. At any rate, the results in Table 4.1.1 demonstrate that
there is significant CPHASE fidelity variation when crosstalk is present, given a fixed
protocol, ı.e the choice of the pulse shape. The protocol has to be fixed and jext

AC or the
total pulse duration, for example, can not be adapted to the state of the spectator of
course. This suggests to find a way to average the effect of crosstalk. But the right way
to take this average remains an open question. We also remark that the reliability of
this simplified model of crosstalk should be supported by accurate modelling. For this
reason simulations including QS in the Hamiltonian Ĥ(6) are carried out in Sec. 4.2.

ZZ crosstalk on Fidelity F f2Q [rad]
QM 0.995 3.06
QH 0.970 2.96
QM and QH 0.990 3.01
None 0.994 3.03

Table 4.1.1: Impact on F and f2Q from a simple model of crosstalk in which a spectator qubit
in state |1i affects QM and/or QH frequency, respectively.

4.2 CPHASE simulation with crosstalk from the spec-

tator

In this section, the impact of crosstalk from the spectator on CPHASE fidelity is ana-
lyzed simulating a three transmons capacitively coupled circuit depicted in Fig. 4.2.1a.
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A similar analysis is carried out in [13]. The fluxes across the spectator, the high and
the medium frequency transmons are denoted with {FPS, FPH, FPM} and we work
in this basis. The transmons are coupled with an equal capacitance of Cc = 0.39
fF. The shunting capacitances of the transmons are equally worth Ci = 77.1 fF, with
i = S, H, M. It corresponds to the charging energy Eci = 0.25 GHz, with i = S, H, M.
The CPHASE gate is performed between the modes QH and QM associated with the
high and medium transmons, while QS, which is associated with the spectator trans-
mon, induces crosstalk. The target frequencies of the transmons are wS/(2p)= 5.5 GHz,
wH/(2p)= 6.7 GHz and wM/(2p)= 6.0 GHz. Notice that the spectator frequency is
lower than its parking frequency would typically be (see X and Z2 in Fig. 2.2.1b). In
effect, while operating a CPHASE gate between QH and QM, the frequency of QS is
tuned down from 6.0 to 5.5 GHz. The Josephson energy of the transmons, EJi with
i = S, H, M, are then obtained by matching the target frequencies of the transmons,
ı.e. wi/(2p) =

p
8Eci EJi . The Josephson energy of the high frequency qubit is tunable

by means of an external flux. The capacitance matrix associated with the circuit in Fig.
4.2.1a is

C =

0

BB@

CS + Cc �Cc 0
�Cc CH + 2Cc �Cc

0 �Cc CM + Cc

1

CCA . (4.3)

We use the parameters given in Table 4.2.1 and give the numerical values of the exact
charging energy matrix:

Ec =
e2

2
C�1 =

0

BB@

0.24997 0.00125 6 ⇥ 10�6

0.00125 0.24870 0.00125
6 ⇥ 10�6 0.00125 0.24997

1

CCA . (4.4)

Here the coefficients are given in GHz as we assume that the Hamiltonian is in units of
h. The inductance energy matrix is

EL =

0

BB@

EJS 0 0
0 EJH (Fext

H ) 0
0 0 EJM

1

CCA . (4.5)
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Up to now, the energy matrices are exact. However, in the simulations we used an
approximate charging energy matrix

E
sim

=

0

BB@

EcS
EI
2 0

EI
2 EcH

EI
2

0 EI
2 EcM

1

CCA =

0

BB@

0.25 0.00125 0
0.00125 0.25 0.00125

0 0.00125 0.25

1

CCA , (4.6)

whose entries are at most e = 1.3 MHz away from the ones of the exact charging energy
matrix Ec in Eq. (4.4). In fact, we apply no approximation on the off-diagonal terms but
only on the diagonal elements. The approximation done on the diagonal elements is
equivalent to assuming that the three transmons are uncoupled. We think that it is a
reasonable assumption as the coupling between the transmons is weak, ı.e. Cc = 0.39
fF ⌧ Ci = 77.1 fF, with i = S, H, M.

EI [MHz] Eci [GHz] wS/(2p) [GHz] wM/(2p) [GHz] wH/(2p) [GHz]
2.5 0.25 5.5 6.0 6.7

Table 4.2.1: Parameters of the simulations. Here wi/(2p) are the target frequencies of the trans-
mons. Note that EJi with i = S, H, M are set such that wi/(2p) =

p
8Eci EJi .

We now present the protocol we use in order to characterize the effect of the crosstalk
from the spectator qubit. The following steps are taken in order to compute the fideli-
ties. First QS is set in state |0Si. The four computational states,

�
|0S0H0Mi , |0S0H1Mi,

|0S1H0Mi , |0S1H1Mi
 

, are initialized and let evolve in order to build the matrix U2Q

using Eq. (2.84). The parameters of the pulse are optimized in order to maximize the
fidelity defined in Eq. (2.83) and the arrow in Fig. 4.2.1 indicates the CPHASE gate
operating point at which the pulse is optimized. With the parameters we use, the pulse
is diabatic. In a second step, QS is set in state |1Si. We let the four computational states,
which are now in the set

�
|1S0H0Mi , |1S0H1Mi , |1S1H0Mi , |1S1H1Mi

 
, evolve under a

pulse with the same parameters in order to obtain U2Q and the fidelity F . We empha-
size that again simulations are carried out using Ĥ(6) obtained for the given problem.
The optimized parameters of the pulse are found to be jext

AC/(2p) = 0.159 rad, tr=1 ns
and tI = 24.7 ns leading to T = 24.7 + 2 = 26.7 ns. Additionally, the number of Fock
states per qubit is 9.
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(a) (b)

Figure 4.2.1: a) Three transmons capacitively coupled with an equal capacitance Cc. In Fig. b)

the arrow indicates the CPHASE operating point when the spectator is in |0Si, at which the
parameters of the pulse are optimized. However, when QS is in |1Si, the energy levels involved
in the avoided crossing are E1S1H1M and E1S2H0M .

cHM [MHz] cSH [MHz] cSM [MHz]
jext

H /(2p) = 0 -0.584 -0.164 -6.7⇥10�4

jext
AC/(2p)= 0.159 -19.592 -0.394 -9.6⇥10�4

Table 4.2.2: Cross-Kerr coefficients between each pair of modes at the parking frequency and
at the avoided crossing between |0S1H1Mi and |0S2H0Mi obtained using the 6th order approx-
imation, Ĥ(6).

We now analyze the cross-Kerr coefficients as they characterize the strength of the
crosstalk. The energy levels showed in Fig. 4.2.1b are obtained by diagonalizing the
Hamiltonian Ĥ(6) as a function of the external flux applied on QH, ı.e. Fext

H = jext
H F0/(2p).

We set the lowest energy level to zero, ı.e. E0S0H0M(Fext
H ) = 0. Then, the cross-Kerr co-

efficients between the pairs (QH, QM), (QS, QH) and (QS, QM) are respectively given
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by:

cHM(Fext
H ) = E0S1H1M � E0S1H0M � E0S0H1M , (4.7)

cSH(Fext
H ) = E1S1H0M � E1S0H0M � E0S1H0M , (4.8)

cSM(Fext
H ) = E1S0H1M � E1S0H0M � E0S0H1M . (4.9)

(4.10)

The values of the cross-Kerr coefficients at the parking frequency and at the avoided
crossing between |0S1H1Mi and |0S2H0Mi are given in Table 4.2.2. We see that the
cross-Kerr coefficient between QM and QH increases by a factor of 33 when the external
flux moves from the parking frequency to the avoided crossing point. This allows the
CPHASE gate to take place. At the avoided crossing, it holds that cAC

HM=-19.59 MHz.
It can be compared to cAC

HM=-19.42 MHz which corresponds to the circuits consisting
of two transmons capacitively coupled (see Table 3.1.1). We also observe in Table 4.2.2
that, at the avoided, the cross-Kerr coefficient between QS and QH is 400 times higher
than the cross-Kerr coefficient crossing between QS and QM. They are worth �0.394
MHz and �9.6 ⇥ 10�4 MHz, respectively. The latter is clearly negligible. That is be-
cause, as can be seen on the circuit in Fig. 4.2.1a, QS is a direct neigbor of QH and
a next-nearest neighbor of QM. This tells us that in our circuit, crosstalk induced by
neighbouring qubit is not negligible while crosstalk induced by next-nearest neighboor
is not a major concern. Importantly, we note that cSH and cSM get multiplied by a factor
of 2.4 and 1.4, respectively, when the external flux moves from the parking frequency
to the avoided crossing point. Thus, crosstalk from the spectator qubit on QH and QM

cannot be considered as independent of the external flux applied on QH.

Fidelity F f2Q [rad]
Spectator in |0Si 0.991 2.99
Spectator in |1Si 0.973 3.12

Table 4.2.3: The impact of the state of the spectator is a 1.9% drop of the CPHASE fidelity. The
same parameters of the pulse are used and they are the ones optimized for the case in which QS

is in |0Si.
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pleak(t = T) |00i0 |10i0 |01i0 |11i0

|0Si 0.001 0.004 0.010 0.009
|1Si 0.012 0.015 0.015 0.022

Table 4.2.4: Comparison of the final leakage probability at the end of the gate of a state initial-
ized sequentially in the four computational states, |iji0 (t = 0), when the spectator is in |0Si or
in |1Si.

As indicated in Table 4.2.3, crosstalk from QS induces a fidelity drop of 1.9%. Indeed
the fidelities are F= 0.991 and 0.973, respectively. This proves that crosstalk induced by
neighbouring qubits has a non-negligible effect on the CPHASE gate. As discussed in
the following analysis, the reduction in fidelity when the spectator is in |1Si is domi-
nated by the leakage out of the computational basis. The conditional phase f2Q is 4%
higher when the spectator is in |1Si and is closer to p. The evolution of the computa-
tional states are plotted in Figs. 4.2.2 and Figs. 4.2.3, when the spectator is in |0Si and in
|1Si, respectively. Notice the small oscillations in Fig. 4.2.3 around the mean probabili-
ties. The Rabi oscillation performed by |11i0 is more complete when the spectator is in
|0Si than in |1Si as the probability to be found in the state |02i0 at t = T2Q/2 are given
by p02(T2Q/2) = 0.967 when the spectator is in |0Si and p02(T2Q/2) =0.958 when the
spectator is in |1Si. It is interesting to compare these values with the total probability
of leakage out of the computational basis at t = T2Q/2 of a state initialized in |11i0.
When QS is in |0Si it is worth 0.994 and is 0.998 when QS is in |1Si. Thus, when the
spectator is in |1Si, a state initialized in |11i0 leaks overall more out of the computa-
tional basis but less on |02i0. In Table 4.2.4, it can be observed that the final leakage
probabilities at the end of the gate, ı.e. T = T2Q + T1Q, of a state initialized sequentially
in the four computational states, |iji0 (t = 0), are higher when the spectator is in |1Si
than in |0Si. This is caused by the fact that higher excited states interact more with
other higher levels, thus causing more leakage. For example, when the spectator is in
|1Si the computational state |1S1H0Mi, which has two excitations, can potentially leaks
into other states having two excitations like |2S0H0Mi, |0S0H2Mi and |0S2H0Mi. These
interactions also explain why we see the oscillations in Figs. 4.2.3a, 4.2.3b and 4.2.3c
which are not observed in Figs. 4.2.2a, 4.2.3b and 4.2.3c. Additionally, it should be kept
in mind that jext

AC is the value corresponding to the avoided crossing between the states
|0S1H1Mi and |0S2H0Mi which might not coincide with the avoided crossing between
the states |1S1H1Mi and |1S2H0Mi. This also contributes to a higher fidelity when the
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spectator is in |0Si.
As a conclusion, this analysis has demonstrated that crosstalk induced by neigh-

bouring qubits has a non-negligible effect on the CPHASE fidelity. In our simulations,
a spectator qubit, which is a direct neighbor of the high frequency qubit in the CPHASE
gate, induces a drop of fidelity of 1.9%.

(a) (b)

(c) (d)

Figure 4.2.2: Evolution of states initialized sequentially in |0S0H0Mi, |0S0H1Mi, |0S1H0Mi and
|0S1H1Mi respectively. Pi,j(t) are the probabilities to be found in the state |iji0 at time t, defined
in Eq. (2.85).
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(a) (b)

(c) (d)

Figure 4.2.3: Evolution of states initialized sequentially in |1S0H0Mi, |1S0H1Mi, |1S1H0Mi and
|1S1H1Mi respectively. Pi,j(t) are the probabilities to be found in the state |iji0 at time t, defined
in Eq. (2.85).
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Chapter 5

Conclusion and Outlook

In this thesis, we have used the eigenmode approach, whose purpose is to study circuits
consisting of capacitances, inductances and Josephson junctions, which are the build-
ing blocks for transmon qubits. The eigenmode approach identifies the normal modes
of the linear part of the circuit as the qubit modes and treats the non-linearity of the
Josephson junctions as a coupling, to which approximations can be applied. We have
verified that the eigenmode approach can be used to accurately model the CPHASE
gate and that the coupling, which drives the CPHASE gate in the eigenmode approach,
is captured by the RWA approximations applied to the normal modes âk(Fext

H (t)). The
approximations, however, predict different external flux points, Fext

AC, where they ex-
pect the avoided crossing to occur. Secondly, due to the fact that the so-called full
rotating-wave approximation at 4th order estimates the cross-Kerr coefficients between
detuned qubits within 10% error, this approximation could be used to describe crosstalk
effects from neighbors on the two qubits involved in the CPHASE gate. The advantage
of including crosstalk in CPHASE simulations with Ĥ(4)

fullRWA is that this approximation
gives analytical expression for the cross-Kerr coefficients. Then, we confirmed that in
CPHASE simulations between two transmons coupled via a resonator we can get rid of
the resonator normal mode in the eigenmode approach. The tests carried out suggest
that, more generally, after applying the classical eigenmode approach on a full system,
one can get rid of the resonator mode even before performing canonical quantization,
and still recover the same behaviour.

CPHASE simulations without crosstalk are implemented using the two capacitively
coupled transmons and the eigenmode approximation Ĥ(6). We have focused on dia-
batic pulse. The highest fidelity is worth 0.994 in the problem we studied. Moreover
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we compared the fidelity obtained with Ĥ(6) with the fidelity obtained with the Hamil-
tonian of the two capacitively coupled transmons expressed in the Cooper-pair basis
given in Eq. (3.12). The fidelities agree up to 0.3%. Finally, CPHASE simulations
in presence of crosstalk from a spectator transmon, using a system of three capaci-
tively coupled transmons, reveal that the impact of crosstalk from the spectator on
the CPHASE gate is a drop of fidelity of of 1.9%. We optimize the fidelity for the case
in which the spectator qubit is in state |0Si and then apply the same pulse to the case
in which the spectator is state |1Si. The final probabilities of leakage out of the compu-
tational basis are higher when the spectator qubit is in state |1Si. As a conclusion, this
analysis has demonstrated that crosstalk induced by neighbouring qubits has a non-
negligible effect on the CPHASE fidelity. The fabrication of a quantum processor layout
with specific parameters (charging and Josephson energy essentially : Ec and EJ) is a
tough task to realize. We would like to emphasize that the derivations made in Sec. 2.2
provide predictive values useful for layout design. In particular, the eigenmode approach
describes how single transmon parameters are modified when they are interconnected
on the layout. It is useful, for example, to be able to predict the cross-Kerr coefficients
(which give rise to residual crosstalk) resulting from a specific choice of parameters of
transmons for a layout. Different targeted designs can be tested and compared with the
eigenmode method before the fabrication. However, we must bear in mind that the tar-
geted parameters are shifted due to fabrication processes and that these effects cannot
be theoretically predicted. A limitation of this thesis is that the circuits we considered
contained a small amount of transmons while crosstalk comes to light when the num-
ber of qubits is scaled up. Indeed, scalability is not tackled in this thesis. Moreover, we
decided not to focus on the optimization of the pulse and we limited ourselves to dia-
batic pulses. In order to suppress qubit crosstalk, while still achieving fast two-qubits
gates, a promising option is to use the symmetry of superconducting architecture chips,
similarly to what is done in [37]. Indeed, the suppression of ZZ crosstalk in a two-qubit,
two-coupler superconducting circuit is reported when two necessary criteria are met.
In essence, the frequency of a tunable coupler is adjusted such that the cross-Kerr inter-
action from each coupler (from each path) destructively interfere. Another approach is
discussed in [38] where they combined transmon qubits, which have negative anhar-
monicity, with a capacitively shunted flux qubit, which on the opposite have positive
anharmonicity, in order to cancel the ZZ crosstalk interaction at specific detunings be-
tween the qubits. As a closing message, we point out that the approach developed in
this thesis is also suitable for studying these alternative solutions.
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Appendix A

The simulations are done in the eigenmode basis at zero flux, ı.e.
�
|iji0}. We simulate

the circuit of the two transmons capacitively coupled presented in Subsec. 3.1. The
Hamiltonian implemented is derived with the eigenmode approach keeping the non-
linearity up to 6th order, Ĥ(6), without applying the RWA approximation, see Sec. 2.2.2.
We work in the Schrödinger picture with a time-dependant Hamiltonian. We denote the
Hamiltonian at zero flux with

Ĥ0 = w1(Fext
H = 0)â†

1(Fext
H = 0)â1(Fext

H = 0) + w2(Fext
H = 0)â†

2(Fext
H = 0)â2(Fext

H = 0),

�EJ1


1
4!

ĵ4
P1 �

1
6!

ĵ6
P1

�
� EJ2(Fext

H = 0)


1
4!

ĵ4
P2 �

1
6!

ĵ6
P2

�
.

(A.1)

Here wi(Fext
H = 0)/(2p) and âi(Fext

H = 0) with i = 1, 2 are, respectively, the frequencies
and the annihilation operators of the normal modes at Fext

H = 0. We express the phases
at the ports, in terms of the normal modes at zero external flux as follows:

ĵP1 = (P�1)11(Fext
H = 0)ĵ1(Fext

H = 0) + (P�1)12(Fext
H = 0)ĵ2(Fext

H = 0) (A.2)

and

ĵP2 = (P�1)21(Fext
H = 0)ĵ1(Fext

H = 0) + (P�1)22(Fext
H = 0)ĵ2(Fext

H = 0). (A.3)

When Fext
H (t) is tuned, the normal modes of the linear part of the Hamiltonian are

modified. We can add the ’perturbative’ Hamiltonian due to the tuning of the flux on
top of Ĥ0, at time t, as follows:

Ĥ(Fext
H (t)) = Ĥ0 + Ĥpert(Fext

H (t)). (A.4)

Here

Ĥpert(Fext
H (t)) =

✓
EJ2(Fext

H (t)) � EJ2(Fext
H = 0)

◆
1
2

ĵ2
P2 �

1
4!

ĵ4
P2 +

1
6!

ĵ6
P2)

�
. (A.5)

Note that the phase at port 2, ĵP2(Fext
H = 0), is still expressed in terms of the normal

modes at zero external flux as in Eq. (A.2). A particular attention should be paid to
the linear term, ĵ2

P2, in Eq. (A.5). In the basis
�
|iji0}, it causes the additional linear

coupling:

Jlin
2 (Fext

H (t))
✓

â1(Fext
H = 0) + â†

1(Fext
H = 0)

◆✓
â2(Fext

H = 0) + â†
2(Fext

H = 0)

◆
. (A.6)
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In the following expression, we omit the dependency of P�1 on the external flux and
evaluate the matrix at Fext

H = 0. Then, the coupling coefficient is given by:

Jlin
2 (Fext

H (t)) =

✓
EJ2(Fext

H (t)) � EJ2(0)

◆
(P�1)21(P�1)22jZPF1(0)jZPF2(0)

�
. (A.7)

Moreover, the linear term in Eq. (A.5) modifies the frequencies, wi(Fext
H (t)) in Eq. (A.1).

The basic principle of the CPHASE gate can be understood with a two-level model with
the states |11i0 and |02i0 between which the avoided crossing of interest takes place
[33]. Therefore we evaluate the Hamiltonian and look at the coefficient:

h02|0 Ĥ(Fext
H (t)) |11i0 . (A.8)

This off-diagonal coefficient involves the exchange of one excitation from mode 1 to
mode 2, ı.e. the operation â1(Fext

H = 0)â†
2(Fext

H = 0) which can be combined with
an equal number of creation as annihilation operators for each mode. Clearly the lin-
ear coupling in Eq. (A.6) contributes to h02|0 Ĥ(Fext

H (t)) |11i0. In addition there is
the contribution from the non-linearity, whose strength is modified by the prefactor
EJ2(Fext

H (t)) in Eq. (A.5). We inspect now what are the terms brought by the non-
linearity at different order:

• The non-linearity at 4th order involves off-diagonal contribution. For example:

h02|0 â†
1(0)â1(0)â1(0)â†

2(0) |11i0 6= 0. (A.9)

• The non-linearity at 6th order involves additional off-diagonal contribution. For
example:

h02|0 â†
1(0)â1(0)â†

2(0)â2(0)â1(0)â†
2(0) |11i0 6= 0. (A.10)

These terms are responsible for the size of the energy gap at the avoided crossing, DEAC.
As a conclusion, the coupling which allows a CPHASE gate to take place by inducing
an avoided crossing between the states |11i0 and |02i0, comes both from the linear
coupling in Eq. (A.6) and from the increase of the strength of the non-linearity in Eq.
(A.5). This claim holds in the eigenmode at zero flux.

We would like to add two final remarks. Firstly, it is important to notice that we
can, alternatively, apply the eigenmode approach at each value of Fext

H (t) and look at
the coupling from the perspective of the changing normal modes associated with the
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operators âk(Fext
H (t)). Then, there is no linear coupling between the changing modes

âk(Fext
H (t)) as in Eq. (A.6). The coupling is purely non-linear.

The second remark is about a conclusion we did in Subsec. 3.1.3. We claimed that
we should keep the RWA terms in order to accurately reproduce the size of the avoided
crossing, DEAC, and thus the cross-Kerr at the avoided crossing, cAC. Importantly,
there, the RWA approximations are applied to the modes associated with the opera-
tors âk(Fext

H (t)) and not to the normal at zero flux, âk(Fext
H = 0). Otherwise the RWA

approximations applied to the linear term ĵ2
P2 in Eq. (A.5) might neglect some terms

which plays a crucial role in driving the CPHASE gate.

Appendix B

In this appendix we show that the matrix C�1L�1 is diagonalizable and has positive
and real eigenvalues. Moreover, we prove that the effective capacitance matrix Ceff,
defined in Eq. (2.39), is always diagonal with real and positive eigenvalues. In what
follows, we apply the definitions and theorems provided in [39] at pages 485 and 486
on the specific problem presented in Subsec. 2.2.1.

Definition 1. A square matrix that is not invertible is called singular. A square matrix is
singular if and only if its determinant is zero.

Definition 2. The set of all square matrices which are n⇥n array of real numbers is denoted by
Mn(R).

Definition 3. Let A 2 Mn(R) be a symmetric matrix. The inertia of A is the ordered triple
(i+(A), i�(A), i0(A)) where i+(A), i�(A) and i0(A) are the number of positive, negative and
zero eigenvalues, respectively. Then, the inertia matrix of A is the diagonal matrix

I(A) = i+(A) � i�(A) � i0(A). (B.1)

Definition 4. Let A and B 2Mn(R). If there 9 a nonsingular matrix S such that B = SAST .
Then B is said to be T-congruent to A.

Lemma 1. If A is symmetric, then SAST is also symmetric, even if S is singular.

Theorem 1. Each symmetric matrix is T-congruent to its inertia matrix.

Theorem 2. Symmetric matrices A and B 2 Mn(R) are T-congruent if and only if they have
the same inertia.
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Theorem 3. Let C�1 and L�1 2 Mn(R) be symmetric and positive definite matrices. Then
there exists a nonsingular matrix P 2 Mn(R) such that

L�1 = PT IP (B.2)

and
C�1 = P�1C�1

eff

(P�1)T . (B.3)

And the matrix C�1

eff

is diagonal with real and positive eigenvalues.

Proof. By assumption L�1 is positive definite, ı.e. i+(L�1) = n. The identity matrix of
the same size, ı.e. I 2 Mn(R), has the same inertia. Thus, Theorem 2 ensures that I
and L�1 are T-congruent. The Definition 4 tells us that there exists a nonsingular matrix
T 2 Mn(R) such that I = T�1L�1(T�1)T. Lemma 1 guarantees that TTC�1T is also
symmetric and thus diagonalisable by the orthogonal matrix O.

Let PT = TO. Then

(PT)�1L�1P�1 = (TO)�1L�1(OTTT)�1

= O�1T�1L�1(TT)�1(OT)�1

= O�1T�1L�1(TT)�1(OT)�1

= O�1I(OT)�1

= I

(B.4)

We recover Eq. (B.2). The matrix OT(TTC�1T)O = PC�1PT = C�1

eff

is diagonal. We
recover Eq. (B.3). Additionally, Theorem 4 tells us that C�1 is T-congruent to C�1

eff

. We
know from Theorem 2 that it implies that they have the same inertia. As C�1 is positive
definite, so is C�1

eff

. We conclude that C�1

eff

is diagonal positive definite.

Corollary 3.1. Let C�1 and L�1 2Mn(R) be symmetric and positive definite matrices. Then
C�1L�1 is diagonalizable and has real positive eigenvalues.

Proof. Use Theorem 3 in order to write C�1 = P�1C�1

eff

(P�1)T and L�1 = PT IP. Then

C�1L�1 = P�1C�1

eff

(P�1)T PT P = P�1C�1

eff

P. (B.5)

We can conclude as C�1

eff

is a diagonal matrix with real and positive eigenvalues.

We now confirm that C�1

eff

= w2. We take the definition of the the matrix w2 in Eq.
(2.32) and insert Eq. (B.5). This gives:

w2 = PC�1L�1P�1 = P(P�1C�1

eff

(P�1)T)(PT P)P�1

= C�1

eff

(P�1)T PT = C�1

eff

.
(B.6)
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We notice that with the specific choice of P such that (PT)�1L�1P�1 = I, the induc-
tances of the normal modes all worth one. We could have chosen any diagonal and
positive definite matrix Ł�1

eff , instead of I, as such a matrix is T-congruent to L�1. The
demonstrations above would still hold. In this way, we can impose the effective induc-
tances of the normal modes, ı.e. the eigenvalues of Łeff.

Appendix C

This appendix draws a connection between a N-port network and its equivalent Foster
circuit. It summarizes my understanding of existing literature ([25], [40] and [41]) and
are based on a derivation by Ciani [27].

N-port network

We consider a generic microwave network with N ports connected to the outside world
as depicted in Fig C.1. Arbitrary systems can be attached at the ports, for example
a Josephson junction (taking only the non-linear part), a voltage drive or any type of
transmission line [25]. In Laplace domain, the impedance matrix of the microwave
network, Z(s), relates voltages and currents at the ports as

V(s) = Z(s)I(s), (C.1)

Here s is a complex variable. A linear network is fully characterized by its impedance
matrix Z(s) [25]. Therefore, a microwave structure can be regarded as a ’black-box’
which absorbs all the details of the structure and which is fully characterized by Z(s).
The coefficients Zij(s) can be obtained by driving port j with the current Ij while open-
circuiting all other ports, ı.e. Ik = 0 for k 6= j, and measuring the open-circuit voltage at
port i. As defined in [25], Zij(s) is the input impedance seen looking into port i when
all other ports are open-circuited as well as the transfer impedance between ports i and
j when all other ports are open-circuited.

Zij(s) =
Vi(s)
Ij(s)

����
Ik=0 for k 6=j

(C.2)

The elements of Z(s) are in general complex. We now introduce the following network
properties :

• A network is linear if given an input x(t) = c1x
1

(t) + c2x
2

(t) where t generally
denotes time, with c1,2 2 R the output is w(t) = c1w

1

(t) + c2w
2

(t) where w
1,2

(t)
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is the output associated with x
1,2

(t). The same holds in Laplace domain. Cir-
cuits elements like capacitances, inductances and resistances are characterized by
a voltage-current linear relation and thus a network composed of these elements
is linear.

• A network is reciprocal if its impedance (scattering) matrix is symmetric [25].

• A network is lossless if it does not contain any elements which dissipate energy.
Dissipative elements are characterized by a non-zero real part of their impedance,
Re(Z) 6= 0, like resistances for example.

In the case of a lossless network, Zij(s) are purely imaginary [25]. We point out that the
impedance matrix of a lossless and non-reciprocal network is symmetric and purely
imaginary and that a network including capacitances and inductances but no resis-
tances, is linear, reciprocal and lossless.

Figure C.1: An arbitrary N-port microwave network. Here tn is the terminal plane at port n.
(V+

n , I+
n ) and (V�

n , I�n ) denote the equivalent voltages and currents at port n for the incident
and reflected waves, respectively. (The figure is taken from [25], page 174.).

Equivalent Foster circuit

It has been demonstrated by Cauer and Belevitch that a linear, reciprocal, lossless N-
port network can be represented by an equivalent circuit called the Foster circuit [40].
These networks are equivalent in the sense that they have the same impedance matrix
up to a scaling factor. Therefore the equivalent Foster circuit is not unique [41]. In
our context, we are interested in drawing the connection between a linear, reciprocal
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and lossless N-port network and the corresponding Foster impedance representation,
in which the circuit is represented with series of parallel LC oscillators. We show an
example in Fig. C.2 for the one-port case. Drawing this connection is useful because
the Foster circuit provides an expression for Z(s) that we derive in Sec. 5.

Figure C.2: Foster circuit. This network has one port shown on the left and can be represented
with three LC oscillators. Picture courtesy of Spinningspark at Wikipedia.

We now explain what the Foster circuit of a N-port network is. A Foster circuit
connects the currents and voltages at the ports, IPn and VPn, with those of the network
eigenmodes (drawn as LC-oscillators), ILC,k and VLC,k via ideal transformer relations.
Fig. C.3a shows a Foster circuit with the N port fluxes, FPn, on the left and the M =

N + NI eigenmodes fluxes, FLC,k on the right, where NI denotes the internal degrees
of freedom of the linear network. We introduce the voltage drop across the transformer
k of port n as Vk

Pn. An ideal transformer with current flow convention is represented in
Fig. C.3b. It follows that :

VPn =
M

Â
k=1

Vk
Pn (C.3)

We introduce further IPn as the current at port n, flowing through the ideal transform-
ers. Since an ideal transformer preserves the instantaneous power, ı.e., Vk

Pn(t)IPn(t) =

VLC,k(t)ILC,k(t), if the turns ratio of the transformer is tnk, then Vk
Pn(t) = tnkVLC,k(t) =)

IPn(t) = tnk ILC,k(t). And the same holds in Laplace domain. We have :

ILC,k

IPn
=

Vk
Pn

VLC,k
= tnk (C.4)

We can use Eq. (C.4), the flux definition in Eq. (2.26) and integrate Eq. (C.3). This leads
to the following expression: :

FPn =
M

Â
k=1

tnkFLC,k (C.5)
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Connection with the eigenmode approach

The circuits analyzed in section 2.2 are subdivided into a linear network, made out of
capacitances and inductances, and N non-linear inductive elements, i.e. the Joseph-
son junctions spiders, attached at the ports. Therefore the N-port network is linear,
reciprocal and lossless and an equivalent Foster representation can be derived for it.
We now draw the connection between the eigenmode approach presented in Sec. 2.2
and the first Foster representation. On one side, in the eigenmode approach, the port
fluxes defined across the Josephson junctions are expressed as a linear combination of
the eigenmodes, see Eq. (2.50). While on the other side, Eq. (C.5) gives the relation
between the port and the normal modes (LC-oscillators) fluxes originating from the
Foster representation. Comparing Eqs. (2.50) with (C.5), we identify the turn ratio as
the coefficient matrix (P

�1)nk multiplied by a scaling factor :

tnk = (P

�1)nk

s
C

Ck,eff
, n = 1, . . . , N, k = 1, . . . , M. (C.6)

making clear the connection between the eigenmode approach and the Foster represen-
tation.

(a) (b)

Figure C.3: a) Equivalent Foster circuit of an arbitrary lossless, reciprocal linear network. Foster
circuits relate the port and the oscillators (eigenmode) voltages and currents, in an intuitive
manner via ideal transformer relations given on Fig. b). The turn ratio tnk are to be identified
with (P�1)nk

q
C

Ck,eff
.

Electrical impedances

In this subsection a brief introduction to passive lumped element impedance in the
Laplace domain is carried out as these expressions are needed later in Sec. 5. The
impedances in the Laplace domain for the lumped passive elements can be obtained by
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applying the Laplace transform on the characteristic equation relating the voltage to the
current across the element. In effect, the impedance of a capacitor, characterized by C,
is obtained by applying the Laplace equation on C dV(t)

dt = i(t). As L( dV(t)
dt ) = sL(V(t)),

the relation becomes CsV(s) = I(s) in the Laplace domain. Thus, the impedance of a
capacitor is

Zc(s) =
1

Cs
(C.7)

Proceeding similarly for an inductance element characterized by L, for which it holds
that L di(t)

dt = V(t), we obtain its impedance as

ZL(s) = Ls (C.8)

The impedance of a parallel LC-oscillator is immediately obtained via the rule of adding
impedance in parallel:

ZLC =
1

1
Zc

+ 1
ZL

(C.9)

which gives

ZLC(s) =
1

Cs
s2

s2 + w2
LC

(C.10)

where wLC = 1/
p

LC.

Derivation of the partial fraction expansion of the impedance matrix

We will now show that this implies that the impedance matrix of a N-port network in
Laplace domain can always be expanded as a sum of LC-oscillators [40]

Z(s) =
M

Â
k=1

1
Cs

s2

s2 + w2
k

Ak, (C.11)

where Ak are N ⇥ N rank-1 matrices connected to the turns ratios in Fig. C.3a by the
relation

Ak = tktT
k , (C.12)

with
tk =

⇣
t1k t2k . . . tNk

⌘T
. (C.13)

Note that the Foster impedance representation described in Subsec. 5 provides the
expression in Eq. (C.11), see Eq. (9) in [40]. Now the idea is to start from Eq. (C.1) and
to find a way to inject the definition of the impedance of the LC oscillators in parallel
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given in Eq. (C.10). First, let us suppose to impose a generic vector of currents to the
ports

I(s) =
h

I1(s) I2(s) . . . IN(s)
iT

. (C.14)

Considering the circuit in Fig. C.3a and using the ideal transformer relation in C.4, then
the total current passing through the k-th oscillator is given by

ILC,k(s) =
N

Â
m=1

tm,k Im(s) = tT
k I(s). (C.15)

As a consequence we get the following voltage across the k-th oscillator

VLC,k(s) = ZLC,k(s)ILC,k(s) =
1

Cs
s2

s2 + w2
k

tT
k I(s). (C.16)

The voltage drop across the n-th port can now immediately be expressed as :

Vn(s) =
M

Â
k=1

tnkVLC,k(s) =
M

Â
k=1

1
Cs

s2

s2 + w2
k

tnktT
k I(s), (C.17)

and so write the vector of port voltages as

V(s) =

✓ M

Â
k=1

1
Cs

s2

s2 + w2
k

tktT
k

◆

| {z }
Z(s)

I(s), (C.18)

thus from Eq. (C.1) and using the definition Eq. (C.12) we finally obtain the expansion
of Z(s) in Eq. (C.11).

Applying the method in practice

We can envision in general two situations in which we would like to use the previous
results. First of all, the easiest case is the one in which we have already a lumped
element representation of the circuit. In this case, following the derivation in Sec. 2.2,
we can just find the normal modes and then express the fluxes across the ports as a
linear combination of them via Eq. (2.50). However, we can also consider the situation
in which we do not have explicitly a representation of the network, but we have its
impedance matrix. How do we get the circuit representation shown in Fig. with C.3a?
Suppose that we found the poles of the impedance matrix wk. In order to be able to
find the parameters of the circuit in Fig. C.3a, we need C and Ak. However, as it is clear
from the impedance expansion Eq. (C.11) what matters is only the ratio Ak/C which is
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the reason why we can take C to be arbitrary. We notice that the matrices Ak/C have
the interpretation of residue matrices. In fact, assuming non-degenerate modes,

Res(Z(s); iwk) = lim
s!wk

(s � iwk)Z(s) = lim
s!wk

(s � iwk)
Cs

s2

s2 + w2
k

Ak =
Ak

2C
. (C.19)

Fixing C arbitrarily thus gives us Ak from which one can obtain the vector of turns
ratios tk such that Ak = tktT

k . In this way, we can obtain the parameters of the Foster
representation in Fig. C.3a.
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