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Detection of water quality failure events at treatment

works using a hybrid two-stage method with CUSUM and

random forest algorithms

Gerald Riss, Michele Romano, Fayyaz Ali Memon and Zoran Kapelan
ABSTRACT
Near-real-time event detection is crucial for water utilities to be able to detect failure events in their

water treatment works (WTW) quickly and efficiently. This paper presents a new method for an

automated, near-real-time recognition of failure events at WTWs by the application of combined

statistical process control and machine-learning techniques. The resulting novel hybrid CUSUM event

recognition system (HC-ERS) uses two distinct detection methodologies: one for fault detection at

the level of individual water quality signals and the second for the recognition of faulty processes at

the WTW level. HC-ERS was tested and validated on historical failure events at a real-life UK WTW.

The new methodology proved to be effective in the detection of failure events, achieving a high true-

detection rate of 82% combined with a low false-alarm rate (average 0.3 false alarms per week),

reaching a peak F1 score of 84% as a measure of accuracy. The new method also demonstrated

higher accuracy compared with the CANARY detection methodology. When applied to real-world

data, the HC-ERS method showed the capability to detect faulty processes at WTW automatically and

reliably, and hence potential for practical application in the water industry.

Key words | CUSUM, event recognition, online monitoring, random forest, water treatment works
HIGHLIGHTS

• The novel HC-ERS combines the conventional SPC-type method with RF advanced machine-

learning technique to ultimately detect WTW-level failure events.

• When applied on unseen data HC-ERS proved to be capable of detecting failure events in WTW

processes in near-real-time.

• HC-ERS outperformed threshold-based and CANARY event detection methods.

• HC-ERS showed potential for practical application in the water industry.
This is an Open Access article distributed under the terms of the Creative

Commons Attribution Licence (CC BY 4.0), which permits copying,

adaptation and redistribution, provided the original work is properly cited

(http://creativecommons.org/licenses/by/4.0/).
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GRAPHICAL ABSTRACT
INTRODUCTION
Water utilities around theworld face considerable challenges

in ensuring that their WTWs produce water of the required

quality and quantity. To operate at lowest expenditure,

WTWs are already heavily monitored and automated using

online sensors deployed at the different treatment stages.

Near-real-time detection of faulty sensors and/or the

WTW’s processes is essential for efficient and effective

plant operation. However, due to varying water demand,

changing influent conditions, dynamics in water treatment

processes and imperfect, missing or incorrect sensor data,

this is a difficult task to achieve. In the UK, most WTWs

use event recognition systems (ERS), which apply thresholds

to generate alarms and detect abnormal behaviour in

observed signals. Unfortunately, those threshold-based sys-

tems have the major drawback that they result in low true-

detection and high false-positive rates (Riss et al. ).

Nevertheless, more sophisticated applications for event

detection at WTWs have already been developed, such as

CANARY (Hart et al. ) released by the United States

Environmental Protection Agency (USEPA) (USEPA )

or GuardianBlue from Hach Lange (Hach Homeland

Security Technologies ). However, this first generation

of software packages still suffers from a number of short-

comings, such as insufficient real detection capability or

too many false alarms (Bernard et al. ). To overcome
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the above shortcomings, new and more efficient technol-

ogies need to be developed focusing on innovative, cost-

effective and, wherever possible, predictive near-real-time

event detection systems.

In this paper, we investigate the application of the novel

hybrid CUSUM event recognition system (HC-ERS) for the

detection of failure events at WTWs and demonstrate

improvements achieved by evaluating the detection per-

formance of the HC-ERS for real sensor data and

historical events. In addition, we compare HC-ERS’s per-

formance to the performance of (i) the threshold-based

WTWs event detection system currently used by one of the

largest water companies in the UK and (ii) the well-known

CANARY event detection algorithms.
BACKGROUND

Online monitoring of water quality to control the treatment

processes of WTWs has made considerable progress in

recent years (Storey et al. ). A broad range of fault detec-

tion techniques has already been developed (Das et al. ).

For complex systems such as treatment processes at WTWs,

where the generation of analytical models is too difficult or

not possible, the application of data-driven event detection
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methods based on statistical analyses of process data is pre-

ferred (Verron et al. ).

Most common data-driven approaches apply conven-

tional statistical techniques such as statistical process

control (SPC) or statistical classifiers to identify deviations

in the behaviour of observed process variables by compar-

ing their actual behaviour with normal operating

conditions. For example, Schraa et al. () discussed

the practical aspects of univariate Shewhart, cumulative

sum (CUSUM) and exponentially weighted moving aver-

age (EWMA) control charts and demonstrated that SPC

charts are suitable control schemes for advanced fault

detection at wastewater treatment works (WWTW),

although they are difficult to apply due to autocorrelation,

seasonality and non-constant variance of treatment plant

measurements. Aguado & Rosen () presented differ-

ent multivariate statistical approaches for detection and

diagnosis of treatment processes at WWTW using adap-

tive PCA with two complementary control charts

(Hotelling’s T2 and squared prediction error) combined

with fuzzy c-means clustering for fault diagnosis. This

study demonstrated that faster PCA model adaption to

changing process conditions results in higher detection

speeds but also causes an increased number of false

alarms. George et al. () combined PCA with Hotell-

ing’s T2 charts for fault detection at a multistage WTW.

When applied to the time series data of 23 parameters col-

lected from sensors deployed at a real-life WTW over a 14-

day period, the method showed feasibility in detecting

abnormal process conditions and was able to identify

specific parameters which contributed to disturbances in

the process. Although the model seems to perform well

over a short period of time, its validation over a long-

term period with changing process conditions was not

demonstrated in this study. Inspired by the monEAU

vision (Rieger & Vanrolleghem ), Alferes et al.

() presented a PCA-based method for real-time moni-

toring of water systems and detection of sensor faults

aiming to achieve an advanced monitoring system with

automatic data collection, evaluation, correction and

alarm triggering. In their study, Alferes et al. used PCA

in combination with T2 and Q-statistics for sensor data

validation. Unlike previous PCA models, this approach

used sensor data pre-processing to remove outliers and
://iwaponline.com/ws/article-pdf/21/6/3011/932565/ws021063011.pdf
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perform auto-scaling (mean centring and variance scaling)

before applying the PCA model.

Several event detection systems, such as CANARY, have

been recently developed demonstrating substantial improve-

ments in detection of failure events at WTWs. The CANARY

open source software provides three algorithms for event

detection: time series increment (INC), linear prediction

coefficient filter (LPCF) and multivariate nearest-neighbour

(MVNN) algorithms (Klise & McKenna ). Although

LPCF and MVNN have proven to be the most effective

detection algorithms (USEPA ), they still generate high

false-alarm rates (USEPA ). Therefore, conventional

detection algorithms, as used by CANARY, are often criti-

cised for producing low true-positive and high false-

positive rates (Liu et al. ).

Artificial intelligence (AI), especially machine-learning

(ML) techniques, seem to be most promising to achieve

further improvements in the field of event recognition at

WTWs, because of their ability to extract useful infor-

mation for operational decisions and to deal efficiently

with imperfect sensor data collected by the supervisory

control and data acquisition systems (SCADA) commonly

used by water utilities (Romano et al. ). Although

Lennox et al. () presented the first studies on artificial

neural networks (ANNs) for monitoring and controlling fil-

tration processes at WTWs as early as 2001, most of the

ML techniques used for fault detection at WTWs have

only appeared in the last decade (e.g. Chen & Huang

; Padhee et al. ). These studies predominantly

applied approaches based on one-class support vector

machine (SVM) and ANNs. For example, an immune feed-

forward neural network (IFNN) using an ANN for fault

detection in water quality monitoring equipment was devel-

oped by Chen & Huang (). In their study Padhee et al.

() combined PCA for fault detection in a WWTW’s pro-

cesses with an ANN based on a back-propagation

algorithm as classification technique, ascertaining normal

or faulty conditions of a multistage WWTW. Page et al.

() introduced an adaptive technique to monitor

changes in water quality based on multivariate pattern

analysis using multivariate analysis and ANNs. Piciaccia

et al. () developed a data-driven approach for learning

the optimal control parameters using an SVM algorithm to

predict WWTWs’ process behaviour in terms of future



Figure 1 | Process scheme of the hybrid CUSUM event recognition system.
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plant states, estimation of optimal chemical dosage and

identification of the most influential parameters. The

study carried out by Dogo et al. () provides an over-

view of work done in anomaly detection on drinking-

water quality data focusing on recent AI and ML

approaches applied to water distribution systems, but also

presents a specific approach for detecting anomalies in

WTWs (Inoue et al. ). Fehst et al. () compared

the effect of automatic feature learning using a long

short-term memory (LSTM) recurrent neural network

(RNN), with manual feature selection with feature subset

selection for dimensionality reduction on drinking-water

quality anomaly detection. LSTM showed far better per-

formance, with an F1 score (see section ‘Detection

Performance Assessment’) of 0.8, than the statistical analysis

of variance (ANOVA) model, with an F1 score of 0.48. In

their study, Muharemi et al. () investigated the perform-

ance of SVM, ANN, LSTM, RNN, deep neural network

(DNN) and linear regression models for the detection of

water quality anomalies when applied to real-world data.

SVM outperformed all other approaches with an F1 score

of 0.98, but all models that were tested showed vulnerability

to unbalanced data and achieved much lower F1 scores, e.g.

0.36 for SVM when demonstrated on unseen data. A prob-

abilistic outlier detector implemented by a DNN for

anomaly detection at WTWs was proposed by Inoue et al.

(). In their work, Inoue et al. applied a DNN consisting

of an LSTM layer followed by feed-forward layers of mul-

tiple inputs and outputs to time series data of a testbed

treatment plant to predict engineered contamination

events. Although the proposed method demonstrated prom-

ising results with a true-detection rate of 68% and F1 score

of 0.8, further improvements in detection performance, in

particular higher true-positive rates, are required for use

in engineering practice. More importantly, the AI-based

methods presented above approach the detection problem

in a sub-optimal way by developing detection methods

that usually apply only a single multivariate classification

technique for anomaly/event detection.

This paper presents an alternative, fundamentally differ-

ent approach for near-real-time event detection capable of

classifying faults detected on individual water quality signals

into faulty/not faulty processes at WTWs. The HC-ERS

combines, i.e. hybridises, the SPC (i.e. conventional)
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method-based fault detection at individual water quality sig-

nals with the random forest (RF – i.e. machine-learning)

method to ultimately detect WTW-level failure events.
HYBRID CUSUM EVENT DETECTION
METHODOLOGY

The proposed HC-ERS method works in two stages. As

shown in Figure 1, at the first ‘CUSUM fault detection’

stage, the CUSUMmethod is used to identify abnormal devi-

ations of individual water quality and other signals from

their normal process conditions. The end result of this

stage is a set of labelled individual deviations (i.e. faults)

for all signals analysed. This output from the first stage is

then used as input for the second stage of ‘Forest Tree

event detection’ in which the RF classifier is trained to

learn what combinations of individual signal faults result

in failure events at the WTW. The output of the RF

method is an estimated probability of the presence of a fail-

ure event at the WTW. An alarm is then raised when this

probability reaches some pre-specified level.

CUSUM fault detection method

Assuming X failure events (classified into major and minor

events, see section ‘WTW Minor and Major Events’) and Y
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water quality sensors deployed at a WTW with N treatment

processes, the first fault-detection stage of the HC-ERS aims

to detect the presence of the X failure events at the WTW by

identifying relevant deviations of the Y water quality par-

ameters from normal process conditions. The detection

method itself is applied to the continuous data of Y water

quality signals utilising the data-driven SPC CUSUM control

chart technique (Page ). CUSUM control charts have

already proven their ability to perform well for the detection

of small shifts in the process mean (Montgomery ). In

general, this technique involves the monitoring of process

variables or parameters derived from process data (e.g.,

mean, range, etc.) over a period of time (in the following

also referred to as ‘window size’) by statistical control

charts. The parameters of interest were charted over time

and compared with control limits to determine whether

the process is in ‘normal state’ (Schraa et al. ) or ‘out

of control’.

Typical control charts contain a centre-line that rep-

resents the baseline (e.g. average) of a statistical measure

across all samples when the process is in control (Freund

et al. ), and two other lines, the upper control limit

(UCL) and the lower control limit (LCL) that represent

thresholds within which the measure is allowed to vary

when a process is in control. UCL and LCL are usually
Figure 2 | An example CUSUM control chart.
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quantified in numbers (n) of standard deviations above

and below the centre-line, where n is an integer equal to

or greater than 1 (1� n� 6 are typically used values). Any

observation below the LCL or above the UCL indicates

that the process is ‘out of control’.

Following the approach of Yang et al. (), the

median-based CUSUM control charting technique was

used to make the system more robust against outliers.

Using a sliding window technique, control charts were gen-

erated separately for each of the Y water quality signals by

calculating upper and lower cumulative sums of allowed

deviations from signals’ target values (median of the respect-

ive signal). Figure 2 illustrates the CUSUM charting

technique by showing an example control chart of a real-

world water quality signal. The CUSUM chart monitors

the cumulative sums of deviations of observed measures

from a target value over time and localises statistically sig-

nificant anomalies (‘out of control’ points or sequences)

relative to the ‘normal state pattern’ for each of the water

quality signals analysed. The anomalies identified this way,

shown in the middle and on the right-hand side of Figure 2,

are marked with squares and circles on the upper and lower

cumulative sum respectively. Once an ‘out of control’ point

is detected by the chart, the corresponding time step is

labelled with the binary value ‘1’. In the case of the signal’s



Figure 3 | Confusion matrix.
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normal condition, the respective time step is labelled with

‘0’. In this way, a vector containing ones or zeros at each

observed data point was generated for each of the observed

Y water quality signals as an output of the applied CUSUM

fault detection methodology.

Even though CUSUM charts are largely automated,

some parameters can be fine-tuned for an optimal adap-

tation to the specific fault detection application. In

particular, CUSUM control charts require a precise defi-

nition of the reference value K, which is often chosen as

halfway between the target value and the ‘out of control’

value of the mean. By changing the reference value, the

sensitivity of the CUSUM method can be adjusted. The

higher the K value, the less sensitive the CUSUM charting

method becomes. Therefore, a fine-tuning of the system

was conducted by adjusting the CUSUM parameters for

each of the Y water quality signals individually to investigate

the optimal control limits and K value combination, with the

aim to explore the best possible CUSUM output to serve as

input for the subsequent RF event detection method. To

achieve this, a sensitivity analysis was performed by gradu-

ally changing the K values (from 1σ to 9σ in 0.5σ

increments) for different control limits (1σ, 3σ, 6σ and

12σ) and time windows (one day and one week). This way,

new CUSUM control charts were created for each signal,

resulting in corresponding CUSUM output vectors labelled

for each observation with binary values of ‘0’ and ‘1’ for

normal and abnormal condition, respectively. For each

sensor signal, the optimised new K value and control

limits combination were then derived by selecting the

specific combination that showed the maximum number of

true detections (sum of true positives, TP, and true negatives,

TN, see Figure 3).

Random forest event detection method

The objective of the event detection methodology is to inves-

tigate possible improvements to the CUSUM fault detection

performance by moving away from applying detection rules

to individual water quality/other sensor signals only.

Indeed, it is expected that moving away from treating indi-

vidual signals independently (i.e. using a univariate

detection method) towards a more sophisticated multi-

variate event recognition system will increase the true
om http://iwaponline.com/ws/article-pdf/21/6/3011/932565/ws021063011.pdf
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detection rate and, in particular, reduce the false-alarm

rate. Once the binary output for each signal is generated

as a result of the CUSUM fault detection process, a predic-

tion about the likelihood of a WTW failure event

occurring is made by a trained RF classifier (Breiman

). It has often been shown that the RF method outper-

forms other one-class classifier methods by a significant

margin (Hempstalk et al. ), hence it was selected here.

The RF method applied in this study works by using a

set of input variables (CUSUM method outputs), which

are then passed onto each of the decision trees in the

forest. RF classifiers implement randomness in the model-

ling process, by selecting at each node of the decision tree

the variable for splitting as a randomly selected sample of

the independent input variables. Each tree gives a prediction

and the mean of these values is the prediction of the RF. In

the event detection method used here, the RF classifier esti-

mates the probability of the presence of a failure event at the

WTW. Similar to CUSUM fault detection, the RF classifi-

cation method is data-driven and learns relevant relations

from the dataset of the observed Y water quality signals,

that contains pre-labelled events, aiming to classify the

condition of WTW processes into normal or faulty, respect-

ively, to predict the presence of a failure event. For reliable

predictions of process conditions, suitable relations between

the candidate signals, i.e. across the Y water quality signals,

needed to be analysed by the classifier. To achieve this, the

fine-tuned CUSUM’s binary output of the Y analysed signals
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served as input data for the training of the classifier. RF clas-

sifiers that make use of ‘bagging’ in tandem with random

feature selection growing a combined ensemble of decision

trees to let them vote for the most popular class (Breiman

) were tested on the CUSUM output of Y water quality

signals. The optimal number of trees used for the RF classi-

fiers was explored by growing template trees and comparing

the ratio of true-positive rate (TPR) and false-discovery rate

(FDR) (see Figure 4) for the respective number of trees.

For an effective implementation of the RF classifier it is

assumed that the training database contains a sufficient

number of identified historical process faults and events.

Each tree utilised in an ensemble of decision trees was indi-

vidually trained using the data from Y water quality signals

to generate the decision rules, according to which each

tree generated its vote for the estimated class (event or no

event) for each observation. The proportion (non-weighted

average) of votes from all trees in the ensemble in favour

of a class represents the estimated probability of the class

membership. Finally, an alarm is triggered if the estimated

probability of an event is above a pre-specified threshold

value (e.g. 0.5 used in the case study here). After the training,

the classifier model was tested on unseen data and perform-

ance was evaluated by quantifying detection statistics on

observed, historical data and events. This classification pro-

cess results in triggering an alarm if a possible failure event

is predicted.

Based on the system developed so far, additional

improvements of the classifier model were investigated by

optimising the feature selection procedure for the classifi-

cation process aiming at removing redundant signals and

those signals that possibly adversely affect the performance

of a classifier. To achieve this, stepwise backward elimin-

ation using a wrapper method similar to the approach

of Kohavi & John () was used to identify and reject

the signals that have been considered as insignificant or

counterproductive for the model’s performance. This optim-

isation process resulted in a final model that was assumed to
Figure 4 | Performance statistics.
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perform best, i.e. to demonstrate the best ratio between TP

and false positives (FP) (see Figure 3) by using only a

subset of the original Y water quality signals.

Detection performance assessment

The performance assessment of all detection methods (i.e.

ERSs) used here was conducted by simulating the ERSs

using historical time series data (5 min intervals) of Y

water quality signals with X pre-labelled events contained

in the datasets. All ERS methods were first calibrated

using the data from the calibration time period. The per-

formance of calibrated ERS methods was then assessed

using unseen data of the validation time period. This was

done by creating two-by-two confusion matrices with true/

false positives/negatives, showing the distribution of poss-

ible outcomes for Y water quality signals (see Figure 3).

Performance statistics were then calculated for each of the

Y water quality signals as shown in Figure 4. The detection

performance of the overall ERS is evaluated by averaging

the detection rates and summation of FP over all Y observed

water quality signals.

The derived performance statistics (see Figure 4) con-

tain the true positive rate (TPR), also referred to

as recall or sensitivity, calculated by TPR ¼X
True positive=

X
Condition positive ¼ TP=TPþ FN

for total events (sum of major and minor events) on the one

hand and for major and minor events separately on the

other. Additionally, the positive predictive value (PPV),

also known as precision, was derived by

PPV ¼
X

True positive=
X

Predicted condition positive ¼
PPV=TPþ FP. Both TPR and PPV describe the true-

detection capabilities of the system. Instead of the more

common false-positive rate (FPR), the false-discovery rate

(FDR) calculated by FDR ¼
X

False positive=
X

Predicted

condition positive ¼ FP=TPþ FP was used to indicate

the rate of false alarms raised by the detection system.

Additionally, the number of FP and the false-negative rate

(FNR), which is derived by FNR ¼ P
False negative=

P
Condition positive ¼ FN=TPþ FN and indicates the miss

rate, are shown in the performance statistics. FDR, FP and

FNR refer to false detections and are therefore suitable

measures of performance for faulty predictions of the

system. In addition to the above detection statistics, the
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number of FalseAlarms per week ¼ P
False positive=

Number of weeks and the so-called F measure or F1 score,

often used in the literature (Inoue et al. ) to compare

the detection performance of different models, was calcu-

lated by F1 ¼ 2 � precision � recall=precision þ recall to

evaluate the detection performance of each ERS.
CASE STUDY

WTW description

The real WTW used for this study is situated in the north-

west of England and supplies water to around 200,000

domestic and industrial customers with a 73.5 ML/d flow

capacity. The process flow diagram of the WTW under scru-

tiny is shown in Figure 5. This WTW is heavily automated

and controlled in near real-time by using a SCADA

system. Multiple water quality parameters such as pH, tur-

bidity, iron, chlorine, etc. are monitored by online sensors

at the different treatment stages. As can be seen from

Figure 5, raw water is abstracted from different water

sources and enters the WTW at the inlet works, where it is

mixed with supernatant recycled flow from dirty backwash

water and afterwards split into two separate streams

(stream A and B). After dosing for coagulation and pH

adjustments, water from each stream is treated by dissolved

air flotation (DAF), first-stage filtration and second-stage
Figure 5 | Process flow diagram of the investigated real-life UK WTW.
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filtration processes. After filtration, treated water enters

the water holding tanks at the outlet works where both

streams are re-combined and presented for the final disinfec-

tion procedure.
WTW sensor data

The methods described in this work have been developed,

tested and validated using real data from the aforemen-

tioned WTW. Historical data from 56 sensors over three

and a half calendar years (from 01/01/2012 to 30/06/

2015), at a five-minute resolution, were provided by the rel-

evant UK water company. Initial data screening resulted in

28 water quality signals relevant for event detection. It is

well known that the quality of sensor data utilised for

event detection affects the performance of any detection

system. Indeed, low data quality may lead, in the worst

case, to wrong conclusions (Rieger et al. ). For this

reason, the quality of the provided data streams was

assessed on the basis of criteria such as data availability

and data consistency by means of a missing data analysis

and a statistical analysis, respectively. The aim of these ana-

lyses was to create a final dataset that only contains data of

sufficiently high quality, crucial for robust event detection.

As part of the first analysis, the data of individual signals

were examined to identify large numbers of missing data

over a significantly long time period (one month, used

here). If data was missing for more than one month
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continuously in some signal, that signal was considered

unreliable. This way, six signals, i.e. first-stage iron (stream

A and B), post-second-stage colour (stream A and B),

outlet contact tank chlorine and outlet contact tank pH sig-

nals were identified as unreliable and hence omitted from

further analysis due to poor data quality. As part of the

second analysis, time periods were identified in which mul-

tiple signals simultaneously showed poor data quality, i.e.

data inconsistencies such as frozen values (flat line faults).

Figure 6 shows a range of pH and turbidity signals in the

period from 02/2015 to 06/2015 where the data quality of

the pictured signals continues to decrease with progressing

time from 09/03/2015 on (i.e. increasing number of flat

line faults marked with grey bars) until all graphed signals

show frozen values on 27/05/2015.

The data validation analyses performed here resulted in

the final dataset (i.e. used for further analysis) containing 22

signals (see Figure 7) and covering the time period from

01/01/2012 to 01/03/2015. These 22 signals can be

mapped to their corresponding sensors and treatment

stages for streams A and B as shown in Figure 7. Each of

the 22 signals was then split into a dataset for the calibration
Figure 6 | Example pH and turbidity signals showing flat line faults during the time period fro
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of the detection models (time period from 01/01/2012

until 28/02/2014, i.e.∼70% of the total time period) and a

dataset for the follow-on validation of the detection

models on unseen data (time period from 01/03/2014

until 01/03/2015, i.e. ∼30% of total time period).
WTW minor and major events

As part of this study, historical events were manually ident-

ified and classified into major and minor events to enable

the computation of performance measures.

A total of five major events were reported by the water

company. These are events that resulted in unplanned shut-

downs (full or partial) of the WTW. Figure 8 shows an

example of a major event causing a shutdown of the

WTW’s stream A at 12:40 on 14/09/2013. This was the

result of an alarm triggered by stream A’s post-flotation tur-

bidity signal. The partial shutdown was followed by a drop

of the inlet flow from around 55 ML/d to approximately

35 ML/d. The inlet flow recovered to normal state after

the restart of stream A at 16:45 on 14/09/2013.
m 03/2015 until 06/2015.



Figure 7 | Basic schematic of mapped sensor locations.

Figure 8 | Example major event – shutdown and restart of WTW’s stream A.

Figure 9 | Example of minor event.
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The identification and classification of minor events, on

the other hand, was carried out by visual inspection of the

22 signals across the entire time period of analysis. Minor

events were identified by looking for simultaneous devi-

ations of more than one signal from their normal

operating process conditions (without causing a shutdown).

Specifically, the WTW’s normal operating conditions were

established first based on common statistical indicators for

minimum, maximum, mean and range. Bivariate corre-

lations between parameters were then calculated using

Spearman’s correlation coefficient to derive possible related

deviations of multiple signals from the corresponding

normal values. Following all this, abnormal conditions

were identified by visual inspection of the displayed devi-

ations by plotting all the analysed signals below each

other for the full time period analysed (01/01/2012 to
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01/03/2015). In the case of simultaneous deviations of

two or more signals, the presence of a minor event was

assumed. An example of this situation is shown in Figure 9.

It can be noticed that stream A’s post-second-stage chlorine,

stream B’s post-second-stage chlorine and the final water

chlorine residual dropped to zero almost simultaneously at

08:15 on 28/01/2014. Using this methodology, a total of

158 minor events were identified during the analysed time

period. Bearing this in mind, it is important to stress that a

limited number of the identified minor events were reviewed

by an expert from the water company to confirm the validity

of the method used against the water company’s records.

Once the events were identified as per the above, major

and minor events within the final dataset were labelled

accordingly.



Table 1 | E-ERS detection thresholds and persistence times

Signal Unit Low limit High limit
Persistence
[5 min]

Raw Water Turbidity NTU – 10.00 0

Raw Water pH pH 5.50 7.90 1

Pre-Flocculation pH
Stream A

pH 4.0 4.80 0

Pre-Flocculation pH
Stream B

pH 4.0 4.80 0

Post-Flotation Turbidity
Stream A

NTU 0.01 6.50 1

Post-Flotation Turbidity
Stream B

NTU 0.01 6.50 1

DAF Iron Stream A mg/l – 2.50 6

DAF Iron Stream B mg/l – 2.50 6

Pre-First-Stage pH
Stream A

pH 5.80 7.50 2

Pre-First-Stage pH pH 5.80 7.50 2
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Existing WTW detection system

The existing ERS (E-ERS) makes use of pre-defined

threshold limits for each signal and carries out default

actions (alarm/no alarm) in the case of limit violations.

Every five minutes each signal is checked against the default

low and/or high threshold(s). In addition to this, persistence

times are used. Persistence defines the time a signal has to

remain continuously above/below a threshold value before

an alarm is triggered. If two threshold values are set on a

single signal, i.e. low and high limit, the same persistence

value is used for both limits. For example, the E-ERS applies

low and high limits of 5.8 and 7.5 respectively for pre-first-

stage pH signals, both with a default persistence of ten

minutes (see Table 1). Therefore, an alarm is only raised if

the pH value goes below 5.8 or above 7.5 for longer than

ten minutes.

Stream B

Post-First-Stage Turbidity
Stream A

NTU – 0.50 2

Post-First-Stage Turbidity
Stream B

NTU – 0.50 1

Pre-Second-Stage pH
Stream A

pH 6.80 8.60 1

Pre-Second-Stage pH
Stream B

pH 6.80 8.60 2

Post-Second-Stage Turbidity
Stream A

NTU – 0.40 3

Post-Second-Stage Turbidity
Stream B

NTU – 0.25 3

Post-Second-Stage Chlorine
Stream A

mg/l 0.60 1.40 1

Post-Second-Stage Chlorine
Stream B

mg/l 0.60 1.40 1

Treated Water pH Stream A pH 6.80 8.60 0

Treated Water pH Stream B pH 6.80 8.60 0

Final Water pH pH 7.00 9.00 1

Final Water Chlorine
Residual

mg/l 0.60 1.35 0
RESULTS AND DISCUSSION

The aims of the analysis conducted are to (a) evaluate the

performance of the developed HC-ERS method in terms of

its detection capabilities and (b) to compare the perform-

ance of the HC-ERS method with the performance of the

E-ERS and the CANARY methods.

E-ERS performance assessment

The performance of the E-ERS is evaluated here by using the

final dataset with labelled major and minor events. The

results of this analysis serve as a baseline for the assessment

of the improvements achieved by the HC-ERS. The E-ERS’s

threshold and persistence values used for this analysis are

shown in Table 1.

For each signal, confusion matrices were generated and

the corresponding detection statistics were calculated

according to the formulae shown in Figure 4. The detection

statistics for the overall E-ERS were calculated by averaging

the detection rates and summation of false positives across

all the signals. The E-ERS’s detection statistics for the vali-

dation dataset are shown in Table 2. It should be noted

that, in this study, constant (over the entire time period of

analysis) limit and persistence values were used to assess
://iwaponline.com/ws/article-pdf/21/6/3011/932565/ws021063011.pdf
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the E-ERS’s performance. However, in real life those

values are frequently reviewed and, if necessary, adjusted.

Therefore, as different values may have been used for differ-

ent periods of time in real life, it is likely that fewer alarms

may have been triggered by the actual E-ERS than those

considered here to calculate the E-ERS’s detection statistics.



Table 2 | Detection statistics of analysed event detection systems tested on the validation time period

True-Positive
Rate (TPR) Total
Events

True-Positive
Rate (TPR) Major

Events

True-Positive
Rate (TPR) Minor

Events

Positive
Predictive Value
(PPV)

False-
Discovery Rate
(FDR)

False
Positives
(FP)

False-Negative
Rate (FNR)

False
alarms per
week

F1

score

HC-ERS 82% 100% 82% 86% 14% 13 18% 0.3 0.84

Canary
(LPCF)

79% 100% 78% 69% 32% 33 21% 0.6 0.73

Canary
(MVNN)

100% 100% 100% 48% 52% 145 0% 2.8 0.65

E-ERS 22% 64% 21% 62% 38% 354 78% 6.8 0.31

Table 3 | Signals identified as most important for the detection performance of HC-ERS

Signals used by HC-ERS after stepwise elimination of redundant signals

Raw Water Turbidity Pre-First-Stage pH Stream A

Raw Water pH Post-First-Stage Turbidity
Stream A

Pre-Flocculation pH Stream A Pre-Second-Stage pH Stream A

Pre-Flocculation pH Stream B Pre-Second-Stage pH Stream B

Post-Flotation Turbidity Stream A Post-Second-Stage Turbidity
Stream B

Post-Flotation Turbidity Stream B Treated Water pH Stream A

DAF Iron Stream A Final Water pH

DAF Iron Stream B Final Water Chlorine Residual
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As can be seen from Table 2, the E-ERS is able to detect

only 22% of total events, 64% of major and 21% of minor

events respectively. The significant higher true-detection

rate for major events was expected since these events are

easier to detect than the minor ones. The E-ERS also gener-

ates a considerably high number of false alarms, as

demonstrated by the FDR of 38% and the high number of

FP events (i.e. 354) produced within the one-year validation

time period. All this resulted in approximately 6.8 false

alarms per week (derived as the ratio of 354 FP alarms

and 52 weeks). This value is just below the critical value

of seven false alarms per week after which an ERS can be

considered of ‘limited practical relevance’ (USEPA ).

Furthermore, the calculated F1 score is only 0.31, further

confirming a rather poor detection performance.
HC-ERS performance assessment

The performance of the HC-ERS is evaluated here in the

same way as it was done for the E-ERS. After stepwise elim-

ination of the redundant signals, the performance of the HC-

ERS was evaluated using the 16 signals shown in Table 3.

The HC-ERS’s detection statistics for the validation

dataset are presented in Table 2. The HC-ERS performance,

with a TPR of 82% and an FDR of 14%, demonstrated major

improvements against the threshold-based E-ERS. Com-

pared with E-ERS, the novel HC-ERS achieved 60%

higher TPR and 24% lower FDR. The resulting F1 score of

0.84 and 0.3 false alarms per week (in contrast to E-ERS’

F1 score of 0.31 and 6.8 false alarms per week) further

evidence the HC-ERS’s improved performance.
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CANARY performance assessment

The performance of the well-known CANARY method is

evaluated here in the same way as it was done for the

E-ERS and for the HC-ERS. As mentioned in the back-

ground section, CANARY makes use of three event-

detection algorithms (i.e. INC, LPCF and MVNN). Since

the LPCF and MVNN algorithms have proven to be the

most effective (USEPA ), the INC algorithm is not

used in this work. Both the LPCF and MVNN event detec-

tion algorithms require five key parameters to be defined:

(a) the length of the history window, measured in time

steps, used to calculate the baseline variability of signals,

(b) the outlier threshold, measured in units of standard devi-

ation, used for the detection of outliers, (c) the window size

of the binominal event discriminator (BED), measured in

time steps, used to provide the event probability for
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comparison against (d) the user-defined number of outliers

(NRO) required to determine an event, and (e) the event

threshold, as a probability value, used to declare a group

of outliers as an event. The LPCF and MVNN algorithms

were tested using the USEPA-recommended configuration

parameters listed in Table 4.

Since it was demonstrated that increasing the number of

data points used in the history window results in fewer

alarms, while lower values (less than 1.5 days) increase the

number of alarms (USEPA ), a history window of

2,016 data points (i.e. data from seven days with a resolution

of 5 min) was chosen for this analysis. Corresponding to the

experiments conducted by USEPA, a window size of 12 time

steps (1 hr) was selected for the BED window because, simi-

lar to above, shorter BED sizes increase the number of

alarms, while events of short duration (shorter than the

BED) will not be detected with larger BED window sizes.

The NRO used for the analyses were calculated as

NRO ¼ P2
i¼0 2=3BEDþ ið Þ. NRO can then be used to

calculate the event thresholds. The event thresholds

applied for the sensitivity analysis were defined

as Event Thresholds ¼ PNRO
i¼0 BED!=i!(BED� i!)ð Þ 1=2ð ÞBED,

and can be calculated as Event Thresholds ¼ BINODMIST

(NRO, BED, 0:5, True).

Once the configuration parameters were defined, the

sensitivity analysis was conducted by gradually increasing

the outlier threshold in increments of 0.25 standard devi-

ations from 1 to 3 and evaluating the test results for each

event threshold value. This way sensitivity tests were carried

out for both the LPCF and the MVNN detection algorithms

resulting in corresponding detection statistics and F1 scores.

The optimal outlier and event threshold combination for

LPCF and MVNN algorithms was then derived by selecting
Table 4 | Configuration parameter values used for the sensitivity analysis

Parameter Initial configuration values

History window 2016 data points

Outlier threshold 0.5–3.0 standard deviations

BED window 12 data points

Number of outliers (NRO) 8, 9, 10

Event threshold 0.927, 0.981, 0.997

BED, binomial event discriminator
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the combination with the maximum F1 score. Detection

statistics and F1 scores of both methods using the optimised

outlier and event thresholds are shown in Table 2.
Overall performance assessment

CANARY’s LPCF algorithm, which employs an outlier

threshold of 2.75 standard deviations combined with an

event threshold of 0.981, demonstrated the best detection

performance among all configurations of the two tested

CANARY algorithms. Therefore, the detection statistics of

CANARY’s system applying the LPCF detection algorithm

were used for comparison with the E-ERS and HC-ERS

detection performances. For better comparison of all the

tested systems, a summary of the detection statistics of

each method supplemented by the number of false alarms

per week and F1 score is shown in Table 2 (sorted in order

of highest to lowest F1 scores).

From the above table it can be seen that the HC-ERS

method outperforms the other ERSs for many of the key per-

formance indicators. The good performance of HC-ERS is

illustrated by a 3% higher TPR for total events and a more-

than-halved FDR in contrast to the LPCF CANARY

system. The system shows the highest F1 score of 0.84 and,

with 0.3 false alarms per week, by far the lowest rate

among all tested event detection systems.

In addition to the above, HC-ERS is also computation-

ally efficient. Indeed, HC-ERS is capable of processing

approximately 300 observations per second, including the

sensor data validation and pre-processing procedure, while

CANARY processes around 100 observations per second.

These results were obtained on a laptop with an i5

2.2 GHz processor having 12 GB RAM.
CONCLUSION AND FUTURE WORK

The work presented in this paper introduces a new method-

ology for near-real-time detection of failure events at WTWs.

The novelHC-ERSmakes use of CUSUM-based fault detection

and RF event detection. The newmethod was tested, validated

and demonstrated using data from a real WTW. The HC-ERS

performance was compared with the E-ERS and the well-
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known CANARY event detection methods. Based on the

results obtained, the following key conclusions can be drawn:

1. The new HC-ERS detection methodology is capable of

effectively and efficiently identifying the presence of fail-

ure events in WTW processes in near-real-time by

processing signals coming from sensors deployed at a

WTW. The effectiveness of the HC-ERS method can be

seen in the obtained high true-positive detection rate of

82%, accompanied by a low false-alarm rate of only 0.3

false alarms per week, all on unseen data. This is due to

the fact that, unlike other ERSs found in the literature,

which usually deploy a single method for event detection,

either statistical-, knowledge- or machine-learning-based,

the HC-ERS follows a hybrid approach that uses two

data-driven methods, namely the SPC-type method and

the RF advanced machine-learning technique.

2. When compared with the well-known CANARY detec-

tion methods, the new HC-ERS method performed

better on unseen data. With the true-positive detection

rate of 82%, the F1 score of 0.84 and the 14% false-

alarm rate (equivalent to 0.3 false alarms per week), the

HC-ERS method demonstrated improved performance

over the CANARY method, which achieved a true-

detection rate of 79%, an F1 score of 0.73 and a false-

alarm rate of 31% (0.6 false alarms per week).

3. The E-ERS, based on flat-line thresholds and persistence

times that are pre-specified for the analysed signals, has

demonstrated only moderate detection performance.

The system achieved a modest F1 score of 0.31 with a

barely acceptable 6.8 false alarms generated per week.

This demonstrates the clear limitations of threshold-

based detection methods which, unfortunately, continue

to be predominantly used in engineering practice.

Future work should involve further validation of the new

HC-ERS method on additional real-world data collected at

different WTW sites and should also consider shifts in the

time series, since one event would have a signature at differ-

ent points in time for different measured water quality

parameters. In this work, testing and validation was done

on a single WTW due to limitations in availability of real-

world data. Tests on additionalWTWswith potentially differ-

ent sensors and failure events would not only enable a more

thorough validation and demonstration of the proposed HC-
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ERS detectionmethod, but, more importantly, would provide

an opportunity to gain additional knowledge and hence

further generalise the observations made in this paper. In

general, to ensure reliable predictions of the HC-ERS, accu-

rate sensor data from multiple water quality signals, i.e.,

data with a low level of missing data and frozen values,

should be used. The test results presented show that using

all available water quality signals with accurate data (16 sen-

sors in total) worked out well in the case study shown here.

This, of course, may not be true for other case studies and

the selection of sensors to use needs to be identified on a

case-by-case basis, via suitable preliminary analysis. Assum-

ing good quality data, the selection of sensors will depend

largely on the characteristics of events being detected and

whether and how these events manifest themselves in differ-

ent water quality signals. Regarding this, water quality signals

containing complementary information (i.e. sensors of differ-

ent type) are especially useful as this helps with the detection.

Having said this, using redundant sensor information (i.e.

multiple sensors of the same type) can be useful too, as it

enables the detection of events with higher true-detection

rates and lower false-alarm rates. Finally, when using the

HC-ERS on data from other WTWs, it is important to

ensure that a sufficiently large number of real failure events

are collected and used for the training of RF classifiers.

Again, the exact number of events and their characteristics

needs to be decided on a case-by-case basis, depending on

the nature and characteristics of events being detected.

The use of enhanced sensors that can provide the ‘health

status’ of assets should also be investigated, to examine poss-

ible options for integrating this additional metadata (asset

condition) into the detection process. Providing additional

information could be beneficial for more reliable detection

results and would likely improve the system’s overall detec-

tion performance.
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