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FREE AND PROJECTIVE BANACH LATTICES.

B. DE PAGTER AND A.W. WICKSTEAD

Abstract. We define and prove the existence of free Banach lat-
tices in the category of Banach lattices and contractive lattice ho-
momorphisms and establish some of their fundamental properties.
We give much more detailed results about their structure in the
case that there are only a finite number of generators and give sev-
eral Banach lattice characterizations of the number of generators
being, respectively, one, finite or countable. We define a Banach
lattice P to be projective if whenever X is a Banach lattice, J a
closed ideal in X, Q : X → X/J the quotient map, T : P → X/J
a linear lattice homomorphism and ε > 0 there is a linear lattice
homomorphism T̂ : P → X such that (i) T = Q ◦ T̂ and (ii)

‖T̂‖ ≤ (1 + ε)‖T‖. We establish the connection between projective
Banach lattices and free Banach lattices and describe several fam-
ilies of Banach lattices that are projective as well as proving that
some are not.

1. Introduction.

Free and projective objects have not played anywhere near as impor-
tant a rôle in analysis as in algebra, nevertheless there has been some
work done on these objects, mainly with the results that one would ex-
pect. For example, the existence of free and projective Banach spaces
is virtually folklore but is uninteresting as both are of the form `1(I)
for an arbitrary index set I. The existence of free vector lattices over
an arbitrary number of generators is also long established and holds no
real surprises, see [1] or [3] for details. In this note we investigate free
and projective Banach lattices. Some of our results are rather surpris-
ing and although we are able to answer many questions we are forced
to leave several unanswered.

It is almost obvious that, if it exists, then the free Banach lattice
over a generators must be the completion of the free vector lattice over
a generators for some lattice norm. That the required norm actually
exists is easily proved, but describing it in concrete and readily iden-
tifiable terms is not so easy. Indeed, except in the case a = 1, it is
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2 B. DE PAGTER AND A.W. WICKSTEAD

not a classical Banach lattice norm at all. In fact it is only in the case
that a is finite that the free Banach lattice over a generators is even
isomorphic to an AM-space.
§2 is primarily devoted to establishing notation whilst §3 recapit-

ulates the existing theory of free vector lattices. We then prove the
existence of free Banach lattices in §4 and give a representation on a
compact Hausdorff space in §5. We establish some of the basic prop-
erties of free Banach lattices in §6. The finitely generated free Banach
lattices are by far the easiest ones to understand, and we investigate
their structure in §7. In §8 we give some characterizations of free Ba-
nach lattices over, respectively, one, a finite number or a countable
number of generators, amongst all free Banach lattices. Preparatory
to looking at projective Banach lattices, in §9 we investigate when dis-
joint families in quotient Banach lattices X/J can be lifted to disjoint
families in X, giving a positive result for countable families and a neg-
ative result for larger ones. We prove the connection between free and
projective Banach lattices in §10 and in §11 find some classes of Banach
lattices that are, or are not, projective. Finally, §12 contains some open
problems.

Let us emphasize at this point that this paper is set in the cate-
gory of Banach lattices and linear lattice homomorphisms. There is a
substantial theory of injective Banach lattices (and indeed we refer to
them later) but this is set in the context of Banach lattices and positive
(or regular) operators.1 Thus there is no reason to expect any kind of
duality between the two notions.

1In fact, although we can find no explicit proof in the literature, there is no non-
zero injective in the category of Banach lattices and linear lattice homomorphisms.
Indeed, suppose that F were a non-zero injective. Let a be strictly greater than
the cardinality of F ∗ and let µ be the product of a many copies of the measure
which assigns mass 1

2 to each of 0 and 1 in {0, 1}. This is a homogenous measure
space and each order interval in L1(µ) has the property that the least cardinality
of a dense subset is precisely a, see [20] §26 for details. In particular every order
interval has cardinality at least a. As µ is finite, the same is true of L∞(µ). Pick
any non-zero y ∈ F+. As F is alleged to be injective, there is a linear lattice
homomorphism T extending the map that takes the constantly one function in
L1(µ), 1, to y. The adjoint of this maps F ∗ into L1(µ)∗ = L∞(µ) and is interval
preserving, [14], Theorem 1.4.19. In particular, if f ∈ F ∗+ with f(y) > 0 then
T ∗f(1) = f(T1) = f(y) > 0, so the image of the order interval [0, f ] will be a
non-zero order interval in L∞(µ) which has cardinality at least a. This contradicts
the fact that [0, f ] has cardinality strictly less than a.
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2. Notation.

In this short section we establish the notation that we will use con-
cerning functions and function spaces. If A and X are non-empty sets
then, as usual, XA denotes the set of all maps from A into X. If
∅ 6= B ⊆ A then we let rB : XA → XB denote the restriction map with
rBξ = ξ|B for ξ ∈ XA. Clearly, rB is surjective. On occasions we will
also write ξB in place of rB(ξ).

The space of all real-valued functions on XA, RXA
, is a vector lattice

under the pointwise operations. Again, we consider the setting where B
is a non-empty subset of A and define jB : RXB → RXA

by (jBf)(ξ) =

f(ξB) for ξ ∈ XA and f ∈ RXB
. This makes jB an injective lattice

homomorphism. The following description of the image of jB is easily
verified.

Lemma 2.1. If A,B and X are non-empty sets with B ⊆ A and
f ∈ RXA

then the following are equivalent:

(1) f ∈ jB(RXB
).

(2) If ξ, η ∈ XA with ξB = ηB then f(ξ) = f(η).

We now specialize somewhat by assuming that X ⊆ R and that
0 ∈ X. This means that if ξ ∈ XA, ∅ 6= B ⊆ A and χB is the
characteristic function of B then the pointwise product ξχB ∈ XA.

Lemma 2.2. If ∅ 6= B ⊆ A and 0 ∈ X ⊆ R then the map PB : RXA →
jB
(
RXB)

defined by

(PBf)(ξ) = f(ξχB) (ξ ∈ XA, f ∈ RXA

)

is a linear lattice homomorphism and a projection onto jB
(
RXB)

. Fur-
thermore, if B1, B2 ⊆ A are non-empty sets with non-empty intersec-
tion then PB1PB2 = PB2PB1 = PB1∩B2.

Proof. It is clear that PB is a well-defined vector lattice homomorphism
of XA into itself. If ξ, η ∈ XA are such that ξB = ηB then (PBf)(ξ) =

f(ξχB) = f(ηχB) = (PBf)(η) so by Lemma 2.1 PBf ∈ jB(RXB
) for

all f ∈ RXA
. If f ∈ RXB

then for any ξ ∈ XA we have PB(jBf)(ξ) =
(jBf)(ξχB) = (jBf)(ξ) as ξ and ξχB coincide on B and using Lemma
2.1 again. Thus PB is indeed a projection.

Finally, if f ∈ RXA
and ξ ∈ XA then

PB1PB2f(ξ) = (PB2)(fχB1) = f(ξχB1χB2)

= f(ξχB1∩B2) = (PB1∩B2f)(ξ),

which shows that PB1PB2 = PB1∩B2 . Similarly PB2PB2 = PB2∩B1 =
PB1∩B2 and the proof is complete. �
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In future, we will identify RXB
with the vector sublattice jB(RXB

)

of RXA
.

If L is any vector lattice and D a non-empty subset of L then 〈D〉 will
denote the vector sublattice of L generated by D. All elements of 〈D〉
can be obtained from those of D by the application of a finite number of
multiplications, additions, suprema and infima. The following simple
consequence of this observation may also be proved directly:

Lemma 2.3. If L and M are vector lattices, T : L → M is a vector
lattice homomorphism and ∅ 6= D ⊆ L then 〈T (D)〉 = T (〈D〉).

We specialize further now to the case that X = R. On the space
RA we can consider the product topology, which is the topology of
pointwise convergence on A. By definition, this is the weakest topology
such that all the functions δa : ξ 7→ ξ(a) are continuous on RA for each
a ∈ A. As a consequence we certainly have 〈{δa : a ∈ A}〉 ⊂ C(RA).
In fact we can do rather better than this. A function f : RA → R is
homogeneous if f(tξ) = tf(ξ) for ξ ∈ RA and t ∈ [0,∞). The space
H(RA) of continuous homogeneous real-valued functions on RA is a
vector sublattice of C(RA) and clearly 〈{δa : a ∈ A}〉 ⊂ H(RA).

3. Free Vector Lattices.

In this section we recapitulate much of the theory of free vector
lattices, both to make this work as self-contained as possible and in
order to establish both our notation (which may not coincide with that
used in other papers on free vector lattices) and to point out some
properties that we will use later.

Definition 3.1. If A is a non-empty set then a free vector lattice over
A is a pair (F, ι) where F is a vector lattice and ι : A → F is a map
with the property that for any vector lattice E and any map φ : A→ E
there is a unique vector lattice homomorphism T : F → E such that
φ = T ◦ ι.

It follows immediately from this definition that the map ι must be
injective, as we can certainly choose E and φ to make φ injective.
Many of the results that follow are almost obvious, but we prefer to
make them explicit.

Proposition 3.2. If (F, ι) is a free vector lattice over A then F is
generated, as a vector lattice, by ι(A).

Proof. Let G be the vector sublattice of F generated by ι(A). Define
φ : A→ G by φ(a) = ι(a) then it follows from the definition that there



FREE AND PROJECTIVE BANACH LATTICES. 5

is a unique vector lattice homomorphism T : F → G with T
(
ι(a)

)
=

φ(a) = ι(a) for a ∈ A. If j : G → F is the inclusion map, then
j ◦ T : F → F is a vector lattice homomorphism with (j ◦ T )

(
ι(a)

)
=

j
(
ι(a)

)
= ι(a) for a ∈ A. The identity on F , IF , is also a vector

lattice homomorphism from F into itself with IF (ι(a)) = ι(a). The
uniqueness part of the definition of a free vector lattice applied to the
map a 7→ ι(a), of A into F , tells us that these two maps are equal so
that j ◦ T = IF from which we see that F ⊆ G and therefore F = G
as claimed. �

The definition of a free vector lattice make the following result easy
to prove.

Proposition 3.3. If (F, ι) and (G, κ) are free vector lattices over a
non-empty set A then there is a (unique) vector lattice isomorphism
T : F → G such that T

(
ι(a)

)
= κ(a) for a ∈ A.

In view of this we will just refer to a free vector lattice (F, ι) over a
set A as the free vector lattice over A (or sometimes as the free vector
lattice generated by A when we identify A with a subset of that free
vector lattice). We will denote it by FV L(A). It will be clear that
if A and B are sets of equal cardinality then FV L(A) and FV L(B)
are isomorphic vector lattices, so that FV L(A) depends only on the
cardinality of the set A. Thus we will also use the notation FV L(a)
for FV L(A) when a is the cardinality of A. This is the notation that
will be found elsewhere in the literature. We retain both versions so
that we can handle proper inclusions of FV L(B) into FV L(A) when
B ⊂ A even when A and B have the same cardinality.

If ι : A→ FV L(A) is the embedding of A into FV L(A) specified in
the definition then we will often write δa for ι(a) and refer to the set
{δa : a ∈ A} as the free generators of FV L(A).

A slight rewording of the definition of a free vector lattice is some-
times useful, which trades off uniqueness of the lattice homomorphism
for specifying that ι(A) is a generating set. The proof of this follows
immediately from results above.

Proposition 3.4. If A is a non-empty set then the vector lattice F is
the free vector lattice over A if and only if

(1) There is a subset {δa : a ∈ A} ⊂ F , with δa 6= δb if a 6= b, which
generates F as a vector lattice.

(2) For every vector lattice E and any family {xa : a ∈ A} ⊂ E
there is a vector lattice homomorphism T : F → E such that
T (δa) = xa for a ∈ A.
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We will find the next simple result useful later.

Proposition 3.5. Let A be a non-empty set and {δa : a ∈ A} be the
free generators of FV L(A). Let B and C be non-empty subsets of A
with B ∩ C 6= ∅.

(1) The vector sublattice of FV L(A) generated by {δb : b ∈ B} is
(isomorphic to) the free vector lattice FV L(B).

(2) There is a lattice homomorphism projection PB from FV L(A)
onto FV L(B).

(3) PCPB = PBPC = PB∩C.

Proof. (1) Let F denote the vector sublattice of FV L(A) generated
by {δb : b ∈ B}. Suppose that E is a vector lattice and π : B →
E is any map. There is a unique vector lattice homomorphism T :
FV L(A)→ E with T (δb) = π(b) for b ∈ B and T (δa) = 0 for a ∈ A\B.
The restriction S of T to F gives us a vector lattice homomorphism
S : F → E with S(δb) = π(b). It follows from Proposition 3.4 that
F = FV L(B).

(2) The free property of FV L(A) gives a (unique) lattice homomor-
phism PB : FV L(A) → FV L(A) with PB(δb) = δb if b ∈ B and
PB(δa) = 0 if a ∈ A \ B. As PB maps the generators of FV L(A) into
FV L(B), we certainly have PB

(
FV L(A)

)
⊆ FV L(B). Also, PB is the

identity on the generators of FV L(B) so is the identity linear operator
on FV L(B) so that PB is indeed a projection.

(3) If a ∈ B ∩ C then PCPBδa = PBPCδa = PB∩Cδa = δa whilst if
a /∈ B ∩ C then PCPBδa = PBPCδa = PB∩Cδa = 0. Thus the three
vector lattice homomorphisms PBPC , PCPB and PB∩C coincide on a
set of generators of FV L(A) and are therefore equal. �

So far all our discussions of free vector lattices have been rather
academic as we have not shown that they exist. However it was shown
in [1] (see also [3]) that they do exist. In essence we have:

Theorem 3.6. For any non-empty set A, FV L(A) exists and is the

vector sublattice of RRA
generated by δa (a ∈ A) where δa(ξ) = ξ(a) for

ξ ∈ RA.

It is reasonable to ask how this representation of FV L(A) interacts
with the properties of free vector lattices noted above. With the no-
tation of §2, if ∅ 6= B ⊆ A then the map jB : RRB → RRA

is a vector
lattice embedding of RRB

into RRA
. This corresponds precisely to the

embedding of FV L(B) into FV L(A) as indicated in Proposition 3.5.
If we use δa to denote the map ξ 7→ ξ(a) on RA and ηb for the map
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ξ 7→ ξ(b) on RB then we have, for b ∈ B and ξ ∈ RA

(jBηb)(ξ) = ηb(ξB) = ξ(b) = δb(ξ)

so that jBηb = δb. We know from §2 that jB is a vector lattice ho-
momorphism so that jB

(
FV L(B)

)
is the vector sublattice of FV L(A)

generated by {δb : b ∈ B} which is precisely what was described in
Proposition 3.5.

Also, if B ⊆ A then we may consider FV L(B) ⊆ FV L(A) ⊆ RRA
.

The projection map PB : FV L(A) → FV L(B) defined in Proposition
3.5 (2) is then precisely the restriction to FV L(A) of the projection PB :

RRA → RRB
described in Lemma 2.2. We will temporarily denote this

projection by P̃B to distinguish it from the abstract projection. Once
we establish equality that distinction will not be required and we will
omit the tilde. As PB and P̃B are both vector lattice homomorphisms
it suffices to prove this equality for the generators of FV L(A). If b ∈ B
then

(P̃Bδb)(ξ) = δb(ξχB) = (ξχB)(b) = ξ(b) = δb(ξ)

for ξ ∈ RA so that P̃Bδb = δb = PBδb. If, on the other hand, a ∈ A \B
then

(P̃Bδa)(ξ) = δa(ξχB) = 0

for ξ ∈ RA so that P̃Bδa = 0 = PBδa.
A few more observations will be of use later.

Proposition 3.7. If A is a non-empty set and F(A) denotes the col-
lection of all non-empty finite subsets of A, then

FV L(A) =
⋃

B∈F(A)

FV L(B).

Proof. Any element of FV L(A) is in the vector sublattice of FV L(A)
generated by a finite number of generators {δa1 , δa2 , . . . , δan} so lies in
FV L({a1, a2, . . . , an}). �

Proposition 3.8. If A is a finite set then
∑

a∈A |δa| is a strong order
unit for FV L(A).

Proof. Obvious as FV L(A) is generated by the set {δa : a ∈ A}. �

Lemma 3.9. The real valued vector lattice homomorphisms on FV L(A)
are precisely the evaluations at points of RA.

Proof. It is clear that if ξ ∈ RA then the map ωξ : f 7→ f(ξ) is a real

valued vector lattice homomorphism on RRA
and therefore on FV L(A).

Note, in particular, that ωξ(δa) = δa(ξ) = ξ(a). Conversely, if ω is a
real valued vector lattice homomorphism on FV L(A) then we may
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define ξ ∈ RA by ξ(a) = ω(δa) for a ∈ A. Now we see that for this
ξ, ωξ is a real valued vector lattice homomorphism on FV L(A) with
ωξ(δa) = ξ(a) = ω(δa). The two maps ω and ωξ coincide on a set
of generators of FV L(A) so, being vector lattice homomorphisms, are
equal. �

4. Free Banach Lattices.

Definition 4.1. If A is a non-empty set then a free Banach lattice
over A is a pair (X, ι) where X is a Banach lattice and ι : A→ X is a
bounded map with the property that for any Banach lattice Y and any
bounded map κ : A→ Y there is a unique vector lattice homomorphism
T : X → Y such that κ = T ◦ ι and ‖T‖ = sup{‖κ(a)‖ : a ∈ A}.

It is clear that the set {ι(a) : a ∈ A} generates X as a Banach lattice
(cf Proposition 3.2).

Remark 4.2. The definition forces each ι(a) to have norm precisely
one. For if κ(a) = 1 ∈ R for each a ∈ A then the map T that is
guaranteed to exist has norm 1, so that 1 = ‖T

(
ι(a)

)
‖ ≤ ‖ι(a)‖. On

the other hand, if we take κ = ι, then T is identity operator, with norm
1, so that sup{‖ι(a)‖ : a ∈ A} = 1.

Proposition 4.3. If (X, ι) and (Y, κ) are free Banach lattices over a
non-empty set A then there is a (unique) isometric order isomorphism
T : X → Y such that T

(
ι(a)

)
= κ(a) for a ∈ A.

Proof. As (X, ι) is free, there is a vector lattice homomorphism T :
X → Y with T

(
ι(a)

)
= κ(a) for a ∈ A with ‖T‖ = sup{‖κ(a)‖ : a ∈

A} = 1, by the preceding proposition. There is similarly a contractive
vector lattice homomorphism S : Y → X with S

(
κ(a)

)
= ι(a). By

uniqueness, the compositions S ◦ T and T ◦ S must be the identity
operators. This suffices to prove our claim. �

Similarly to the free vector lattice case, we use the notation FBL(A)
for the free Banach lattice over A if it exists (which we will shortly show
is the case.) Since we know that if A and B have the same cardinality
then FBL(A) and FBL(B) are isometrically order isomorphic, we will
also use the notation FBL(a) to denote a free Banach lattice on a set
of cardinality a. Again, we will also use the notation δa for ι(a) and
refer to {δa : a ∈ A} as the free generators of FBL(A).

Our first task is to show that free Banach lattices do indeed exist.

Definition 4.4. If A is a non-empty set then we will define a mapping
from FV L(A)∼ into the extended non-negative reals by

‖φ‖† = sup{|φ|(|δa|) : a ∈ A}.
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We define also

FV L(A)† = {φ ∈ FV L(A)∼ : ‖φ‖† <∞}

which it is clear is a vector lattice ideal in the Dedekind complete vector
lattice FV L(A)∼.

Suppose that a positive functional φ vanishes on each |δa|. Each
element x of FV L(A) lies in the sublattice of FV L(A) generated by
a finite set of generators {ak : 1 ≤ k ≤ n}. By Proposition 3.8 e =∑n

k=1 |δak | is a strong order unit for that sublattice. Thus there is λ ∈ R
with |x| ≤ λe so that |φ(x)| ≤ φ(|x|) ≤ φ(λe) = λ

∑n
k=1 φ(|δak |) = 0

and thus φ = 0. It is now clear that ‖·‖† is a lattice norm on FV L(A)†.

Given the embedding of FV L(A) in RRA
given in Theorem 3.6, if ξ ∈

RA then ωξ ∈ FV L(A)† if and only if the map ξ : A → R is bounded
and then ‖ωξ‖† = supa∈A |ξ(a)|. By Lemma 3.9, these maps are lattice
homomorphisms. Note that if A is an infinite set then there is an
unbounded ξ ∈ RA which induces ωξ ∈ FV L(A)∼ \ FV L(A)†.

Definition 4.5. For f ∈ FV L(A), where A is a non-empty set, define

‖f‖F = sup{φ(|f |) : φ ∈ FV L(A)†+, ‖φ‖† ≤ 1}.

Proposition 4.6. For any non-empty set A, ‖ · ‖F is a lattice norm
on FV L(A).

Proof. Our first step is to show that ‖·‖F is real-valued. By Proposition
3.7, any f ∈ FV L(A) actually lies in FV L(B) for some finite subset
B ⊆ A. By Proposition 3.8, FV L(B) has a strong order unit

∑
b∈B |δb|,

so there is λ with |f | ≤ λ
∑

b∈B |δb|. If φ ∈ FV L(A)†+ with ‖φ‖† ≤ 1
then

φ(|f |) ≤ φ

(
λ
∑
b∈B

|δb|

)
= λ

∑
b∈B

φ(|δb|) ≤ λ
∑
b∈B

1

so that ‖f‖F is certainly finite.

If ‖f‖F = 0 then φ(|f |) = 0 for all φ ∈ FV L(A)†+. Using the
observation above, f(ξ) = ωξ(f) = 0 for any bounded function ξ : A→
R. But there is a finite set B ⊂ A such that f ∈ FV L(B), so that
f(ξ) = f(ξχB) for all ξ ∈ RA. As each ξχB is bounded, f(ξ) = 0 for
all ξ ∈ RA and therefore f = 0.

That ‖ · ‖F is sublinear and positively homogeneous are obvious, so
that ‖ · ‖F is a norm on FV L(A), which is clearly a lattice norm. �

Note in particular that we certainly have ‖δa‖F = 1 for all a ∈ A. In
fact, this construction gives us our desired free Banach lattices.
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Theorem 4.7. For any non-empty set A, the pair consisting of the
completion of FV L(A), under the norm ‖ · ‖F , and the map ι : a→ δa,
is the free Banach lattice over A.

Proof. Suppose that Y is any Banach lattice and κ : A→ Y1, the unit
ball of Y . There is a vector lattice homomorphism T : FV L(A) → Y
with T

(
ι(a)

)
= κ(a) for all a ∈ A, as FV L(A) is free. We claim that

if f ∈ FV L(A) with ‖f‖F ≤ 1 then ‖Tf‖ =
∥∥|Tf |‖ =

∥∥T (|f |)
∥∥ ≤ 1

in Y , where we have the used that fact that the norm in Y is a lattice
norm and that T is a lattice homomorphism. If this were not the case
then we could find ψ ∈ Y ∗1+, a positive linear functional on Y with
norm at most 1, with ψ

(
T (|f |)

)
> 1. As ‖T

(
ι(a)

)
‖ = ‖κ(a)‖ ≤ 1 for

all a ∈ A, we have
∥∥|T (ι(a)|

∥∥ =
∥∥T (|ι(a)|)

∥∥ ≤ 1, using again the fact

that T is a lattice homomorphism. Thus
∣∣∣ψ(T(|ι(a)|

))∣∣∣ ≤ 1 for all

a ∈ A. Using the functional ψ ◦T in the definition of ‖f‖F , we see that
‖f‖F ≥ ψ

(
T (|f |)

)
> 1, contradicting our assumption that ‖f‖F ≤ 1.

The completion of FV L(A) is a Banach lattice and T will extend by
continuity to it whilst still taking values in Y as Y is complete. �

We will eventually need to know the relationship between different
free Banach lattices, so we record now the following result.

Proposition 4.8. If B is a non-empty subset of A then FBL(B) is
isometrically order isomorphic to the closed sublattice of FBL(A) gen-
erated by {δb : b ∈ B}. Furthermore there is a contractive lattice
homomorphic projection PB of FBL(A) onto FBL(B).

Proof. Recall from Proposition 3.5 that FV L(B) is isomorphic to the
sublattice of FV L(A) generated by {δb : b ∈ B} that there is a lattice
homomorphism projection PB of FV L(A) onto FV L(B) with PB(δb) =
δb if b ∈ B and PB(δa) = 0 if a ∈ A\B. As ‖δb‖F = 1 in both FBL(A)
and FBL(B), there are contractive lattice homomorphisms of FBL(B)
into FBL(A) and of FBL(B) onto FBL(A) which act into the same
way on the generators so extend these. The conclusion is now clear. �

There is also a simple relationship between their duals. This is a
consequence of the following result which is surely well known but for
which we can find no convenient reference, but see [21], IV.12, Problem
6 and [7], Lemma VI.3.3 for similar results.

Proposition 4.9. If P is a contractive lattice homomorphism projec-
tion from a Banach lattice X onto a closed sublattice Y then P ∗Y ∗ is
a weak∗-closed band in X∗ which is isometrically order isomorphic to
Y ∗.
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Proof. Write ker(P ) for the kernel of P , which is a lattice ideal in X,
and Z = {φ ∈ X∗ : φ| ker(P ) ≡ 0}, which is a weak∗-closed band in X∗.
It is clear that P ∗X∗ = Z.

Define J : Y ∗ → X∗ by Jφ = φ ◦ P and note that J : Y ∗ → Z
with ‖J‖ ≤ ‖P‖. If φ ∈ Z then J(φ|Y ) = φ so that J is actually an
isometry of Y ∗ onto Z. It is clear that both J and J−1 are positive.
Thus J : Y ∗ → P ∗X∗ is actually an isometric order isomorphism. �

Corollary 4.10. If B is a non-empty subset of A then FBL(B)∗ is
isometrically order isomorphic to a weak∗-closed band in FBL(A)∗.

As in the algebraic case, if B and C are two subsets of A with
B ∩ C 6= ∅ of A then PBPC = PCPB = PB∩C .

In particular, the embedding of the finitely generated free closed
sublattices are important.

Proposition 4.11. Let F(A) be the collection of all non-empty finite
subsets of A, ordered by inclusion. The net of projections {PB : B ∈
F(A)} in FBL(A) converges strongly to the identity in FBL(A).

Proof. If f ∈ FV L(A) then there is actuallyB0 ∈ F(A) with PB(f) = f
whenever B0 ⊂ B. Recall that each PB is a contraction. If ε > 0 and
f ∈ FBL(A), choose f ′ ∈ FV L(A) with ‖f − f ′‖F < ε/2 and then
B0 ∈ F(A) with PB(f ′) = f ′ for B0 ⊂ B. Then if B0 ⊂ B then

‖PBf − f‖F ≤ ‖PBf − PBf ′‖+ ‖PBf ′ − f ′‖F + ‖f ′ − f‖F < ε,

which completes the proof. �

Before looking at some properties of FBL(A) in detail, we will ask
about its normed dual.

Proposition 4.12. If A is any non-empty set then the three normed
spaces (FV L(A)†, ‖ · ‖†), (FV L(A), || · ‖F )∗ and FBL(A)∗ are isomet-
rically order isomorphic.

Proof. If φ ∈ FBL(A)∗ then the restriction map φ 7→ φ|FV L(A) is an
order isomorphism, by continuity, and as ‖δa‖ = 1 we have |φ|(δa)‖ ≤
‖φ‖ so that ‖φ|FV L(A)‖† ≤ ‖φ‖. On the other hand, as each ‖δa‖ = 1
we see that

‖φ‖ =
∥∥|φ|∥∥ = sup{|φ|(f) : ‖f‖F ≤ 1}

≤ sup{|φ|(|δa|) : a ∈ A} = ‖φ|FV L(A)|‖†

so the isometric order isomorphism of the first and third spaces is
proved. The identification of the second and third follows from the
density of FV L(A) in FBL(A). �
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As we noted above, if A is infinite then FV L(A)† 6= FV L(A)∼. On
the other hand, we have:

Proposition 4.13. If n ∈ N then FBL(n)∗ is isometrically order iso-
morphic to the whole of FV L(n)∼ under the norm ‖ · ‖†.

Proof. All that remains to establish is that ‖φ‖† is finite for all φ ∈
FV L(n). Given that ‖φ‖† is, in this case, a finite supremum of real
values |φ|(|δa|), this is clear. �

5. A smaller representation space

The set ∆A = [−1, 1]A is a compact subset of RA. We call a func-
tion f : ∆A → R homogeneous if f(tξ) = tf(ξ) for ξ ∈ ∆A and
t ∈ [0, 1] (this is consistent with the definition for functions on RA).
The space of continuous homogeneous real-valued functions on ∆A is
denoted by H(∆A). If we equip C(∆A) with the supremum norm ‖·‖∞,
then H (∆A) is a closed vector sublattice of C (∆A) (and hence H (∆A)
is itself a Banach lattice with respect to this norm).

Lemma 5.1. The restriction map R : H
(
RA
)
→ H (∆A) is a injective

vector lattice homomorphism.

Proof. The only part of the proof that is not completely trivial is that
the map R is injective. Suppose that f ∈ H

(
RA
)

and Rf = 0. If ξ ∈
RA, consider the net {ξχB : B ∈ F (A)}, where F (A) is the collection
of all non-empty finite subsets of A ordered by inclusion, then we have
ξχB →F(A) ξ in RA. For any B ∈ F (A), there is t > 0 such that

tξχB ∈ [−1, 1]A, so that tf (ξχB) = f (tξχB) = 0 by homogeneity.
Hence, f (ξχB) = 0 and so f (ξ) = 0 by the continuity of f , so that
f = 0. �

It should be noted that the restriction map is not surjective unless
A is a finite set.

Example 5.2. It suffices to prove the non-surjectiveness in the case
that A = N. Define g ∈ H (∆N) by g (ξ) =

∑∞
k=1 2−kξ (k) for ξ ∈ ∆N.

Suppose that there is f ∈ H
(
RN
)

with Rf = g. Define η ∈ RN by

η (k) = 2k and let ηn = ηχ{1,...,n}, for n ∈ N, so that ηn → η in RN.
But, for each n ∈ N we have

f (ηn) = 2nf
(
2−nηn

)
= 2ng

(
2−nηn

)
= n.

As f is supposed to be continuous, this is impossible.
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Note that this example also shows that the space H
(
RA
)
, equipped

with the sup-norm over ∆A, is not complete if A is infinite. This is one
of the reasons that we shall use the space H (∆A).

In general, FV L (A) may be identified with a vector sublattice of
H
(
RA
)

(see Theorem 3.6), which in turn, courtesy of Lemma 5.1, may
be identified with a vector sublattice of H (∆A) via the restriction map
R. This identification extends to FBL (A). The proof of this turns out
to be slightly more tricky than might have been anticipated.

For sake of convenience, we denote by J = JA the restriction to
FV L (A) of the restriction mapR : H

(
RA
)
→ H (∆A). Since ‖Jδa‖∞ =

1 for all a ∈ A, it is clear that ‖J‖ = 1 and so, ‖Jf‖∞ ≤ ‖f‖F
for all f ∈ FV L (A). Since H (∆A) is a Banach lattice with re-
spect to ‖·‖∞, J extends by continuity to a lattice homomorphism
J : FBL (A) → H (∆A) with ‖J‖ = 1. Note that, by the univer-
sal property of FBL (A), J is the unique lattice homomorphism from
FBL (A) into H (∆A) satisfying Jδa = δa|∆A

, a ∈ A. This implies, in
particular, that if B is a non-empty subset of A, then JB is the restric-
tion of JA to FBL (B) (cf. Proposition 4.8). The problem is to show
that this extension J is injective.

First, we consider the situation that A is finite, in which case every-
thing is very nice indeed.

Proposition 5.3. For any non-empty finite set A, the map J : FBL (A)→
H (∆A) is a surjective norm and lattice isomorphism.

Proof. We claim that ‖f‖F ≤ n ‖Jf‖∞, f ∈ FV L (A), where n is the
cardinality of A. Indeed, if f ∈ FV L (A), then

|Jf | ≤ ‖Jf‖∞
∨

a∈A
|J(δa)|

so that

|f | ≤ ‖Jf‖∞
∨

a∈A
|δa|

and hence,

‖f‖F ≤ ‖Jf‖∞
∥∥∥∨

a∈A
|δa|
∥∥∥
F
≤ ‖Jf‖∞

∑
a∈A
‖δa‖F = n ‖Jf‖∞ .

This proves the claim. Consequently, ‖Jf‖∞ ≤ ‖f‖F ≤ n ‖Jf‖∞,
f ∈ FV L (A), which implies that J : FBL (A) → H (∆A) is a norm
and lattice isomorphism. It remains to be shown that J is surjective.
For this purpose, denote by SA the compact subset of ∆A given by
SA = {ξ ∈ ∆A : ‖ξ‖A = 1}. Since A is finite, the restriction map r :
H (∆A)→ C (SA) is a surjective norm and lattice isomorphism. Since
the functions

{
δa|SA

: a ∈ A
}

separate the points of SA, it follows via
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the Stone-Weierstrass theorem that (r ◦ J) (FBL (A)) = C (SA) and
hence J (FBL (A)) = H (∆A). The proof is complete. �

This norm isomorphism is not an isometry unless n = 1. In fact, if

a1, . . . , an ∈ A are distinct, then
∥∥∥∨n

j=1

∣∣δaj ∣∣∥∥∥
F

= n (indeed, consider

the lattice homomorphism T : FBL (A) → `n1 satisfying T
(
δaj
)

= ej,
1 ≤ j ≤ n, where ej denotes the j-th unit vector in `n1 ).

Sometimes it will be convenient to use the following, slightly weaker,
description.

Corollary 5.4. For any non-empty finite set A, FBL (A) is linearly
order isomorphic to H

(
RA
)
.

Proof. We only need to observe that the restriction map R : H
(
RA
)
→

H (∆A) is onto whenever A is finite. �

To show that the lattice homomorphism J : FBL (A) → H (∆A)
is injective in general, we will make use of real-valued linear lattice
homomorphisms on FBL (A) in the course of proving this and it will
later allow us to characterize these in general, which must be worth
knowing anyway!

Theorem 5.5. If A is a non-empty set, then ω : FBL (A) → R is a
lattice homomorphism if and only if there exists ξ ∈ ∆A and 0 ≤ λ ∈ R
such that ω (f) = λJf (ξ) for all f ∈ FBL (A).

Proof. If ω is a real valued lattice homomorphism on FBL (A), then it
follows from Lemma 3.9 that there is η ∈ RA such that ω (f) = f (η),
f ∈ FV L (A). As FBL (A) is a Banach lattice, ω is ‖·‖F -bounded
and so, supa∈A |η (a)| = supa∈A |ω (δa)| = ‖ω‖ < ∞. Hence, there is a
λ = ‖ω‖ > 0 such that ξ = λ−1η ∈ ∆A. If f ∈ FV L (A), then

ω (f) = f (η) = λf
(
λ−1η

)
= λJf (ξ) .

Given f ∈ FBL (A), choose a sequence (gn) in FV L (A) with
‖f − gn‖F → 0, so that ‖Jf − Jgn‖∞ → 0 and hence Jgn (ξ)→ Jf (ξ).
Thus,

ω (f) = lim
n→∞

ω (gn) = λ lim
n→∞

Jgn (ξ) = λJf (ξ) .

The converse is clear as if ξ ∈ ∆A and 0 ≤ λ ∈ R, then the formula
ω (f) = λJf (ξ), f ∈ FBL (A), defines a lattice homomorphism on
FBL (A). �

It is clear already that, for f ∈ FV L (A), f = 0 if and only if
Jf = 0. if and only if ω (f) = 0 for every ‖·‖F -bounded real-valued
lattice homomorphism on FV L (A). We need this equivalence for f ∈
FBL (A).



FREE AND PROJECTIVE BANACH LATTICES. 15

Corollary 5.6. For any non-empty set A and f ∈ FBL (A) the fol-
lowing are equivalent:

(i) f = 0;
(ii) ω (f) = 0 for all real-valued lattice homomorphisms on FBL (A);
(iii) Jf = 0.

Proof. Clearly, (i) implies (iii) and that (iii) implies (ii) follows directly
from Theorem 5.5.

Now assume that (ii) holds. Note firstly that it follows from Proposi-
tion 5.3 that for any non-empty finite subset B ⊆ A the restriction of J
to FBL (B) is injective. For such a set B, the map f 7−→ (JPBf) (ξ),
f ∈ FBL (A), is a real-valued lattice homomorphism on FBL (A) for
each ξ ∈ ∆A, so that JPBf = 0. As J is injective on FBL (B), this
shows that PBf = 0. It follows from Proposition 4.11 that PBf → f
for ‖·‖F , so that f = 0. This suffices to complete the proof. �

Corollary 5.7. If A is any non-empty set, then the lattice homomor-
phism J : FBL (A)→ H (∆A) is injective, so that FBL (A) is linearly
order isomorphic to a vector sublattice of H (∆A).

V. Troitsky has pointed out to the authors that there is not a similar
embedding of FBL(N) into H(RN). Note also that, although we have
no need of the fact, the image of FBL(A) is actually a lattice ideal in
H (∆A).

In the sequel, we shall identify FBL (A) with the vector sublattice
J (FBL (A)) of H (∆A).

As we have seen in Proposition 4.8, if B is a non-empty subset of A,
then FBL (B) may be identified isometrically with the closed vector
sublattice of FBL (A) generated by {δb : b ∈ B} and there is a canon-
ical contractive lattice homomorphic projection PB in FBL (A) onto
FBL (B). It should be observed that we have the following commuta-
tive diagram:

FBL(A)
JA−−−→ H(∆A)

kB

x xjB
FBL(B) −−−→

JB
H(∆B)

where jB is the restriction to H (∆B) of the injective lattice homo-
morphism jB introduced in Section 2, and kB is the isometric lattice
embedding of FBL (B) into FBL (A) guaranteed by Proposition 4.8.
Note that also jB is an isometry. The commutativity of the diagram
follows by considering the action of the maps on the free generators
of FBL (B). Consequently, the canonical embedding of FBL (B) into
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FBL (A) is compatible with the canonical embedding of H (∆B) into
H (∆A). It can similarly be seen that the following diagram also com-
mutes:

FBL(A)
JA−−−→ H(∆A)

PB

y y(jB)−1◦PB

FBL(B) −−−→
JB

H(∆B)

The next proposition describes this in terms of FBL (A) considered
as a vector sublattice of H (∆A). We consider R∆B as a subspace of
R∆A as explained in Section 2.

Recall that if B is a non-empty subset of A, then for any ξ ∈ ∆A we
denote by ξB the restriction of ξ to B, so that ξB ∈ ∆B.

Proposition 5.8. Suppose that B is a non-empty subset of A. Con-
sidering FBL (A) as a vector sublattice of H (∆A), we have:

(i) the canonical projection PB of FBL (A) onto FBL (B) is given
by PBf (ξ) = f (ξχB), ξ ∈ ∆A, for all f ∈ FBL (A);

(ii) if f ∈ FBL (A), then a necessary and sufficient condition for f
to belong to FBL (B) is that f (ξ) = f (η) whenever ξ, η ∈ ∆A

with ξB = ηB.

Proof. (i). Let PB be the canonical projection in FBL (A) onto FBL (B)
(see Proposition 4.8), so that PBδa = δa if a ∈ B and PBδa = 0 if
a ∈ A�B. If f ∈ FV L (A), then it follows from the observations pre-
ceding Proposition 3.7 that PBf (ξ) = f (ξχB), ξ ∈ ∆A. Given f ∈
FBL (A), let (fn) be a sequence in FV L (A) such that ‖f − fn‖F → 0,
which implies that ‖f − fn‖∞ → 0 and so, fn (ξ) → f (ξ), ξ ∈ ∆A.
Furthermore, ‖PBf − PBfn‖F → 0 and hence PBfn (ξ) → PBf (ξ),
ξ ∈ ∆A. Since PBfn (ξ) = fn (ξχB) → f (ξχB), we may conclude that
PBf (ξ) = f (ξχB), ξ ∈ ∆A.

(ii). Necessity. If f ∈ FBL (B) and ξ, η ∈ ∆A are such that ξB = ηB,
then ξχB = ηχB and hence it follows from (i) that

f (ξ) = PBf (ξ) = f (ξχB) = f (ηχB) = PBf (η) = f (η) .

Sufficiency. If f ∈ FBL (A) is such that f (ξ) = f (η) whenever
ξ, η ∈ ∆A with ξB = ηB, then PBf (ξ) = f (ξχB) = f (ξ), as (ξχB)B =
ξB, for all ξ ∈ ∆A and hence f = PBf ∈ FBL (B). �

Recall that a sublattice H of a lattice L is said to be regularly em-
bedded if every subset of H with a supremum (resp. infimum) in H
has the same supremum (resp. infimum) in L. If we are dealing with
vector lattices it suffices to consider only the case of a subset of H that
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is downward directed in H to 0 and check that it also has infimum 0
in L.

Proposition 5.9. If A is any non-empty set and B is a non-empty
subset of A, then FBL (B) is regularly embedded in FBL (A).

Proof. Suppose that (fγ)γ∈Γ is a downward directed net in FBL (B)

such that fγ ↓γ 0 in FBL (B) and suppose that g ∈ FBL (A) satisfies
0 < g ≤ fγ for all γ ∈ Γ. Let ξ0 ∈ ∆A be such that g (ξ0) > 0. We
claim that we may assume that ξ0χB 6= 0. If our chosen ξ0 is such
that ξ0χB = 0, i.e. ξ0 = ξ0χA\B, then consider ξε = ξ0 + εξB. Since
ξε → ξ0 in ∆A as ε ↓ 0 and g is continuous we may choose ε ∈ (0, 1]
with g(ξε) > 0 and then replace ξ0 by this ξε. Given b ∈ B, define
h ∈ H (∆A) by setting

h (ξ) = g

(
ξχB +

|ξ (b)|
‖ξ0χB‖∞

ξ0χA�B

)
, ξ ∈ ∆A.

We claim that h ∈ FBL (A). Indeed, define the lattice homomorphism
T : H (∆A)→ H (∆A) by setting

Tf (ξ) = f

(
ξχB +

|ξ (b)|
‖ξ0χB‖∞

ξ0χA�B

)
, ξ ∈ ∆A,

for all f ∈ H (∆A). Observing that

Tδa = δaχB (a) +
|δb|

‖ξ0χB‖∞
δa (ξ0)χA�B (a) ,

it follows that Tδa ∈ FV L (A) for all a ∈ A and that supa∈A ‖Tδa‖F <
∞. Consequently, there exists a unique lattice homomorphism S :
FBL (A) → FBL (A) such that Sδa = Tδa for all a ∈ A. Evidently,
Tf = Sf for all f ∈ FV L (A). Given f ∈ FBL (A), we may ap-
proximate f with a sequence (fn) with respect to ‖·‖F . Using that
convergence with respect to ‖·‖F implies pointwise convergence on ∆A,
it follows that Sf = Tf (cf. the proof of Proposition 5.8). This im-
plies, in particular, that h = Tg = Sg ∈ FBL (A), by which our claim
is proved.

If ξ, η ∈ ∆A are such that ξB = ηB, then h (ξ) = h (η) and so,
by Proposition 5.8 and Lemma 2.1, it follows that h ∈ FBL (B). If
ξ ∈ ∆A, then

ξB =

(
ξχB +

|ξ (b)|
‖ξ0χB‖∞

ξ0χA�B

)
B
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(recall that the subscriptB indicates taking the restriction to the subset
B) and hence

fγ (ξ) = fγ

(
ξχB +

|ξ (b)|
‖ξ0χB‖∞

ξ0χA�B

)
≥ g

(
ξχB +

|ξ (b)|
‖ξ0χB‖∞

ξ0χA�B

)
= h (ξ) , ξ ∈ ∆A,

that is, fγ ≥ h ≥ 0 for all γ ∈ Γ. We may conclude that h = 0.
It follows, in particular, that

g

(
ξ0χB +

|ξ0 (b)|
‖ξ0χB‖∞

ξ0χA�B

)
= 0, b ∈ B.

Applying this to b = bn, where (bn) is a sequence in B satisfying
|ξ0 (bn)| → ‖ξ0χB‖∞, the continuity of g implies that

g (ξ0) = g (ξ0χB + ξ0χA�B) = 0,

which is a contradiction. The proof is complete. �

6. Some Properties of Free Banach lattices.

If X is a non-empty set and f : X → R then we let Of = {x ∈
X : f(x) 6= 0} and if W is a non-empty subset of RX then we define
OW =

⋃
{Of : f ∈ W}. Although probably well known we know of no

convenient reference for the following result.

Proposition 6.1. If X is a Hausdorff topological space, L a vector
sublattice of C(X) and the open set OL is connected then the only
projection bands in L are {0} and L.

Proof. Suppose that B is a projection band in L, so that L = B ⊕Bd.
If f ∈ B and g ∈ Bd then f ⊥ g and hence Of ∩Og = ∅ and therefore
OB ∩ OBd = ∅. Given x ∈ OL there is 0 6= f ∈ L+ with f(x) > 0. We
may write f = f1 ⊕ f2 with 0 ≤ f1 ∈ B and 0 ≤ f2 ∈ Bd. Clearly,
either f1(x) > 0 or f2(x) > 0. I.e. x ∈ Of1 ∪ Of2 ⊂ OB ∪ OBd . Hence
OL ⊂ OB ∪ OBd and therefore OL = OB ∪ OBd . The sets OB and OBd

are both open and disjoint and OL is, by hypothesis, connected. This
is only possible if either OB or OBd is empty which says that either
L = Bd or L = B. �

Corollary 6.2. If |A| ≥ 2 then the only projection bands in FBL(A)
are {0} and FBL(A).
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Proof. By Corollary 5.7 we may identify FBL(A) with a vector sub-
lattice of H(∆A) ⊂ C(∆A). Observe that

OFBL(A) ⊃
⋃
a∈A

Oδa =
⋃
a∈A

{ξ ∈ ∆A : ξ(a) 6= 0} = ∆A \ {0}.

Clearly, OFBL(A) ⊂ ∆A \ {0} so that OFBL(A) = ∆A \ {0} which, pro-
vided |A| ≥ 2, is (pathwise) connected. �

Corollary 6.3. If |A| ≥ 2 then FBL(A) is not Dedekind σ-complete.

Corollary 6.4. If |A| ≥ 2 then FBL(A) has no atoms.

Proof. The linear span of an atom is always a projection band. �

Corollary 6.5. If a ∈ A then |δa| is a weak order unit for FBL(A).

Proof. If f ∈ FBL(A) and f ⊥ |δa| then Of ⊂ {ξ ∈ ∆A : ξ(a) = 0},
and the latter set has an empty interior so that Of = ∅ and hence
f = 0. �

Corollary 6.6. Every disjoint system in FBL(A) is at most countable.

Proof. If {ui : i ∈ I} is a disjoint family of strictly positive elements of
FBL(A) then the corresponding sets Oui are non-empty disjoint open
subsets of ∆A. As ∆A = [−1, 1]A is a product of separable spaces,
Theorem 2 of [19] tells us that ∆A can contain only countably many
disjoint non-empty open sets so that the families of all Oui and of all
ui are indeed countable. �

The same result is true for FV L(A), being first proved by Weinberg
in [25]. It can also be found, with essentially the current proof, in [1].

Recall that an Archimedean vector lattice is order separable if every
subset D ⊂ L contains an at most countable subset with the same up-
per bounds in L as D has. This is equivalent to every order bounded
disjoint family of non-zero elements being at most countable, [13], The-
orem 29.3. Corollary 6.6 thus actually tells us that the universal com-
pletion of FBL(A), [13], Definition 50.4, is always order separable.

Every Banach lattice is a quotient of a free Banach lattice. We can
actually make this statement quite precise. The following lemma is
well known dating back, in the case that a = ℵ0, to a result of Banach
and Mazur [2]. A more accessible proof, again in the case that a = ℵ0

(although the modifications needed for the general case are minor), are
given as part of the proof of Theorem 5 of Chapter VII of [6].

Lemma 6.7. Let X be a Banach space and D a dense subset of the
unit ball of X. If x ∈ X and ‖x‖ < 1 then there are sequences (xn) in
D and (αn) in R such that

∑∞
n=1 |αn| < 1 and x =

∑∞
n=1 αnxn.
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Proposition 6.8. Let X be a Banach lattice. If D is a dense subset
of the unit ball of X of cardinality a, then there is a closed ideal J in
FBL(a) such that X is isometrically order isomorphic to FBL(a)/J .

Proof. Let D = {xa : a ∈ a}. By the definition of a free Banach lattice
there is a unique contractive lattice homomorphism T : FBL(a) → X
with T (δa) = xa for each a ∈ a. If x ∈ X with ‖x‖ < 1 then Lemma 6.7
gives us sequences (xan) in D and (αn) in R with

∑∞
n=1 |αn| < 1 and

x =
∑∞

n=1 αnxan . If we define f ∈ FBL(a) by f =
∑∞

n=1 αnδan , noting
that this series converges absolutely, then ‖f‖F < 1 and Tf = x. This
shows that T maps the open unit ball in FBL(a) onto the open unit
ball in X. In particular, T is surjective.

Take J to be the kernel of T and let Q : FBL(a) → FBL(a)/J be
the quotient map. Let U : FBL(a)/J → X be defined by U(Qf) = Tf
for f ∈ FBL(a), which is clearly well-defined. It is also clear that U
is a contractive lattice isomorphism. As T maps the open unit ball of
FBL(a) onto the open unit ball of X and Q maps the open unit ball of
FBL(a) onto the open unit ball of FBL(a)/J , it follows that U maps
the open unit ball of FBL(a)/J onto the open unit ball of X so that
U is an isometry. �

Corollary 6.9. Let X be a Banach lattice. If D is a dense subset of the
unit ball of X of cardinality a, then FBL(a)∗ contains a weak∗-closed
band which is isometrically order isomorphic to X∗.

Proof. If T : FBL(a) → X is the quotient map from Proposition
6.8 then T ∗ : X∗ → FBL(a)∗ is an isometry and its range, which
is ker(T )⊥, is a weak∗-closed band. As T is a surjective lattice homo-
morphism, T ∗ is actually a lattice isomorphism. �

In particular note:

Corollary 6.10. If a is any cardinal then there is a weak∗-closed band
in FBL(a)∗ which is isometrically order isomorphic to `∞(a).

Proof. If a is infinite then we need merely note that the unit ball of `1(a)
has a dense subset of cardinality a and that `∞(a) may be identified
with `1(a)∗.

Suppose that card(A) = a is finite. For a ∈ A we will write ξa for
that element of ∆A = [−1, 1]A with ξa(a) = 1 and ξa(b) = 0 if a 6= b.
If b ∈ A then |δb|(ξa) = |δb(ξa)| = 1 if a = b and is zero if a 6= b. It
follows from the Theorem 5.5 that the functional f 7→ f(ξa) is a lattice
homomorphism on FBL(A), and therefore an atom of FBL(A)∗, of
norm one. Finite sums of such maps also have norm one. This embeds
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a copy of `∞(A) isometrically onto an order ideal in FBL(A)∗ which,
as it is finite dimensional, is certainly a weak∗-closed band. �

Corollary 6.11. If X is a separable Banach lattice then X is isometri-
cally order isomorphic to a Banach lattice quotient of FBL(ℵ0) and X∗

is isometrically order isomorphic to a weak∗-closed band in FBL(ℵ0)∗.

This illustrates quite effectively what a rich structure free Banach
lattices and their duals have. For example if X and Y are separable
Banach lattices such that no two non-zero bands in X∗ and Y ∗ are
isometrically isomorphic then the isometrically order isomorphic bands
in FBL(ℵ0)∗ must be disjoint in the lattice theoretical sense. So, for
example, we have:

Corollary 6.12. In FBL(ℵ0)∗ there are mutually disjoint weak∗-closed
bands A and Bp (p ∈ (1,∞]) with Bp isometrically order isomorphic
to Lp([0, 1]) and A to `∞.

This gives continuum many disjoint non-zero elements in FBL(ℵ0)∗,
which should be contrasted with Corollary 6.6.

7. The Structure of Finitely Generated Free Banach
Lattices.

We will see shortly that FBL(n) is not an AM-space unless n = 1,
but it does have a lot of AM-structure provided that n is finite.

If we have only a finite number of generators, n, say then we may
identify FBL(n) with H(∆n), where ∆n is now a product of n copies
of [−1, 1]. In this setting, it might be more useful to consider the
restriction of these homogeneous functions to the union of all the proper
faces of ∆n, which we will denote by Fn. An alternative description
of this set is that it is the points in Rn with supremum norm equal to
1. Each of the generators δk (1 ≤ k ≤ n) takes the value +1 on one
maximal proper face of Fn of dimension n− 1 and the value −1 on the
complementary face. These faces exhaust the maximal proper faces of
∆n. The restriction map from H(∆n) to C(Fn) is a surjective vector
lattice isomorphism and an isometry from the supremum norm over
∆n to the supremum norm over Fn. We know also that these norms
are equivalent to the free norm. Thus when we identify FBL(n) with
C(Fn), even though the norms are not the same, the closed ideals, band,
quotients etc remain the same so that we can read many structural
results off from those for C(K) spaces. Whenever we refer to the free
norm on C(Fn) we refer to the free norm generated using the generators
which take value ±1 on the maximal proper faces.
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In particular, we may identify the dual of FBL(n) with the space
of regular Borel measures on Fn, M(Fn). We will see in Theorem 8.1
that unless n = 1 the dual of the free norm, ‖ · ‖† is definitely not the
usual norm, ‖ · ‖1, under which M(Fn) is an AL-space. However, there
remains a lot of AL-structure in this dual.

Proposition 7.1. If µ ∈M(Fn) is supported by a maximal proper face
of ∆n then ‖µ‖† = ‖µ‖1.

Proof. Suppose first that µ ≥ 0. Let the free generators be denoted
by δ1, δ2, . . . , δn. If G is the maximal proper face in question, we may
suppose that G ⊂ δ−1

1 (1). As |δk| ≤ 1 on Fn, for 1 ≤ k ≤ n, we have∫
|δk| dµ ≤

∫
1 dµ = ‖µ‖1,

and on taking the maximum we have ‖µ‖† ≤ ‖µ‖1. On the other have,
|δ1| ≡ 1 on G so that

‖µ‖† ≥
∫
|δ1| dµ = ‖µ‖1,

so we have equality. Both ‖ · ‖1 and ‖ · ‖† are lattice norms, so in the
general case we have

‖µ‖† =
∥∥|µ|∥∥† =

∥∥|µ|∥∥
1

= ‖µ‖1

and the proof is complete. �

Corollary 7.2. If f ∈ C(Fn) and there is a maximal proper face G
such that f vanishes off G then ‖f‖F = ‖f‖∞.

Proof. If µ ∈M(Fn) then we may write µ = µG+µFn\G, where µA(X) =
µ(A ∩X), and note that

∫
f dµ =

∫
f dµG. If ‖µ‖† ≤ 1 then ‖µG‖† =

‖µG‖1 ≤ 1 as |µG| ≤ |µ|. Thus

‖f‖F = sup{
∫
|f | d|µ| : ‖µ‖† ≤ 1}

≤ sup{
∫
|f | d|µ| : ‖µ‖1 ≤ 1} = ‖f‖∞

and the embedding of FBL(n) into H(∆n) is a contraction so that
‖f‖F ≥ ‖f‖∞. �

This means that certain closed ideals in FBL(n) are actually AM-
spaces, namely those that may be identified with functions on Fn which
vanish on a closed set A whose complement is contained in a single
proper face of Fn. Rather more interesting is an analogous result for
quotients.
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In general, if J is a closed ideal in a Banach lattice X then (X/J)∗

may be identified, both in terms of order and norm, with the ideal J◦ =
{f ∈ X∗ : f|J ≡ 0}. We know that if A is a closed subset of a compact
Hausdorff space K and JA denotes the closed ideal JA = {f ∈ C(K) :
f|A ≡ 0} then when C(K) is given the supremum norm the normed
quotient C(K)/JA is isometrically order isomorphic to C(A) under its
supremum norm and its dual is isometrically order isomorphic to the
space of measures on K which are supported by A. In the particular
case that K = Fn we may still identify quotients algebraically in the
same way, but the description of the quotient norm has to be modified
slightly. That means that the quotient norm may be described in a
similar manner to our original description of the free norm:

Proposition 7.3. If A is a closed subset of Fn and C(Fn) is normed
by its canonical free norm then C(Fn)/JA is isometrically order iso-
morphic to C(A), where C(A) is normed by

‖f‖A = sup{
∫
|f |d|µA| : ‖µ‖† ≤ 1}.

In this supremum we may restrict to measures µ supported by A.

In particular we have, using Proposition 7.1:

Corollary 7.4. If A is a closed subset of a proper face of Fn and C(Fn)
is normed by its canonical free norm then C(Fn)/JA is isometrically
order isomorphic to C(A) under its supremum norm.

The free vector lattices over a finite number of generators exhibit a
lot of symmetry. For example it is not difficult to see that FV L(n) is
invariant under rotations. In studying symmetry of FBL(n) it makes
things clearer to identify FBL(n) with the space C(Sn−1) rather than
C(Fn), where Sn−1 is the Euclidean unit sphere in Rn, even though the
description of the free norm is made slightly more difficult. In the case
n = 2, we are looking at continuous functions on the unit circle and
the dual free norm is given by

‖µ‖† =

∫
S1

| sin(t)| d|µ|(t) ∨
∫
S1

| cos(t)| d|µ|(t).

In particular, if ηx denotes the unit measure concentrated at x then

‖ηx‖† = | sin(x)| ∨ | cos(x)|

which is certainly not rotation invariant. Note also that

‖ηx+ηx+π/2‖† =
(
| sin(x)|+| sin(x+π/2)|

)
∨
(
| cos(x)|+| cos(x+π/2)|

)
.
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In fact only rotations through multiples of π/2 are isometries on C(S1)
for the free norm. Of course, all rotations of FBL(n) will be isomor-
phisms.

There is an obvious procedure for obtaining a rotation invariant norm
from the free norm, namely to take the average, with respect to Haar
measure on the group of rotations, of the free norms of rotations of a
given element. Although this will certainly not be the free norm, given
that it is derived in a canonical manner from the free norm we might
expect that either it is a familiar norm or else is of some independent
interest. It turns out not to be familiar. This is again easiest to see in
the dual.

If we denote this symmetric free norm by ‖ · ‖S and its dual norm by
‖ · ‖S then we have

‖ηx‖S = ‖ηx+π/2‖S =
1

2π

∫ 2π

0

| sin(t)| ∨ | cos(t)| dt =
2
√

2

π

and

‖ηx + ηx+π/2‖S

=
1

2π

∫ 2π

0

(
| sin(x)|+ | sin(x+ π/2)|

)
∨
(
| cos(x)|+ | cos(xπ/2)|

)
dt

=
4

π

so that the symmetric free norm is not an AL-norm, which is the natural
symmetric norm on C(S1)∗, nor an AM-norm. In fact ‖ηx+ηx+t‖S can

take any value between 4
π

and 4
√

2
π

so the symmetric free norm cannot
be any Lp norm either, implausible though that would be anyway.

8. Characterizing the Number of Generators.

Apart from wanting to understand how the number of generators
affects the Banach lattice structure of FBL(A), we would like to know
when FBL(A) is a classical Banach lattice or has various properties
generally considered desirable. The answer to this is “not very often”!
It turns out that such properties can be used to characterize the number
of generators, at least in a rather coarse manner.

In fact several properties that are normally considered “good” are
only possessed by a free Banach lattice if it has only one generator. We
gather several of these into our first result. We know that in the finitely
generated case, both FBL(n) and its dual have a certain amount of
AM-structure. There is another area of Banach lattice theory where
the same is true, namely in injective Banach lattices in the category
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of Banach lattices and contractive positive operators, see [10]. As
injective Banach lattices are certainly Dedekind complete we cannot
have FBL(n) being injective if n > 1. It might be thought possible
that FBL(A)∗ was injective, but that also turns out to be false unless
|A| = 1.

Theorem 8.1. If A is a non-empty set then the following are equiva-
lent:

(1) |A| = 1.
(2) FBL(A) is isometrically an AM-space.
(3) FBL(A) is isomorphic to an AL-space.
(4) Every bounded linear functional on FBL(A) is order continu-

ous.
(5) There is a non-zero order continuous linear functional on FBL(A).
(6) FBL(A)∗ is an injective Banach lattice.

Proof. If A is a singleton then ∆A = [−1, 1] and FBL(A) may be
identified with H(∆A) which in turn may be identified with R2. The
generator is the pair g = (−1, 1). The positive linear functionals φ
such that φ(|g|) ≤ 1 are those described by pairs of reals (φ1, φ2) with
|φ1| + |φ2| ≤ 1. The free norm that they induce on R2 is precisely the
supremum norm.

If |A| > 1 then by Corollary 6.10 FBL(A)∗ contains an order iso-
metric copy of `∞(A) so is not an AL-space and therefore FBL(A) is
not an AM-space. This establishes that (1)⇔ (2).

It is clear that (1) ⇒ (3) although even in this case it is clear that
FBL(1) is not isometrically an AL-space. FBL(2), on the other hand
is isomorphic to continuous functions on a square so is certainly not
isomorphic to an AL-space. In view of Proposition 4.8 and the fact
that every closed sublattice of an AL-space is itself an AL-space we see
that (3)⇒ (1).

It is clear that (1) ⇒ (4) ⇒ (5). To show that (5) ⇒ (1), suppose
that |A| > 1 and that φ is a non-zero order continuous linear functional
on FBL(A). By continuity of φ and density of FV L(A) in FBL(A),
φ|FV L(A) 6= 0. Similarly, as FV L(A) =

⋃
{FV L(F ) : F ⊆ A, |F | <∞}

we may choose a finite subset F ⊆ A with φ|FV L(F ) 6= 0 so certainly
φ|FBL(F ) 6= 0. Without loss of generality, as long as |A| > 1 we may
assume that |F | > 1. As FBL(F ) is regularly embedded in FBL(A),
by Proposition 5.9, φ|FBL(F ) is order continuous. As a vector lattice, we
may identify FBL(F ) with C(SF ), where SF is the `∞ unit sphere in
∆F . Certainly SF is a dense in itself, metrizable (and hence separable)
compact Hausdorff space so it follows from Proposition 19.9.4 of [20]
that φ|FBL(F ) = 0, contradicting our original claim.
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Certainly FBL(1)∗, being an AL-space, is injective, [12] Proposition
3.2. We know from Corollary 4.10 that if |A| > 1 then FBL(2)∗ is
isometrically order isomorphic to a (projection) band in FBL(A)∗. If
FBL(A)∗ were injective then certainly FBL(2)∗ would also be injec-
tive. Recall that Proposition 3G of [10] tells us that an injective Banach
lattice either contains a sublattice isometric to `∞, or else is isomet-
rically isomorphic to a finite AM-direct sum of AL-spaces. We know
that FBL(2) is order and norm isomorphic to continuous functions on
the square F2 so that FBL(2)∗ is norm and order isomorphic to the
space of measures on F2 so certainly has an order continuous norm.
Thus it does not contain even an isomorphic copy of `∞ by Corollary
2.4.3 of [14], so it certainly suffices to show that FBL(2)∗ cannot be
decomposed into a non-trivial finite AM-direct sum of bands of any
nature.

The dual of FBL(2) can be identified, as a vector lattice, with
the regular Borel measures on F2. The dual free norm amounts to
‖µ‖ = max{

∫
|δ1| d|µ|,

∫
|δ2| d|µ|}, where δi is the projection onto

the i’th coordinate. It is clear that
∫
|δ1| d|µ| = 0 if and only if µ

is supported by S1 = {〈0,−1〉, 〈0, 1〉} whilst
∫
|δ2| d|µ| = 0 if and

only if µ is supported by S2 = {〈−1, 0〉, 〈1, 0〉}. If any non-trivial AM-
decomposition of FBL(2)∗ were possible, into J⊕K (say), then we can
pick 0 6= µ ∈ J+ and 0 6= ν ∈ K+. We may assume that ‖µ‖ = ‖ν‖ = 1
and therefore ‖µ+ ν‖ = 1. The fact that ‖µ‖ = ‖ν‖ = 1 means that∫

|δ1| dµ ∨
∫
|δ2| dµ =

∫
|δ1| dν ∨

∫
|δ2| dν = 1.

Suppose that
∫
|δ1| dµ =

∫
|δ1| dν = 1, then we have 1 = ‖µ+ ν‖ ≥∫

|δ1| d(µ+ν) =
∫
|δ1| dµ+

∫
|δ1| dν = 2, which is impossible. Similarly,

we cannot have
∫
|δ2| dµ =

∫
|δ2| dν = 1. If

∫
|δ1| dµ =

∫
|δ2| dν = 1

then the fact that 1 = ‖µ+ν‖ ≤
∫
|δ1| d(µ+ν) tells us that

∫
|δ1| dν = 0

so that ν is supported by S1. Similarly we see that
∫
|δ2| dµ = 0 so

that µ is supported by S2. This implies that FBL(2)∗ is supported by
S1∪S2 which is impossible. A similar contradiction arises if

∫
|δ2| dµ =∫

|δ1| dν = 1.
�

It is already clear that free Banach lattices on more than one gen-
erator are not going to be amongst the classical Banach lattices. Iso-
morphism with AM-spaces is still possible and turns out to determine
whether or not the number of generators is finite.

Theorem 8.2. If A is any non-empty set then the following are equiv-
alent:
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(1) A is finite.
(2) FBL(A) is isomorphic to H(∆A) under the supremum norm.
(3) FBL(A) has a strong order unit.
(4) FBL(A) is isomorphic to an AM-space.
(5) FBL(A)∗ has an order continuous norm.

Proof. We have already seen that (1)⇒(2)⇒(3). It is well known and
simple to prove that (3)⇒(4). That (4)⇒(5) is because the dual of an
AM-space is an AL-space which has an order continuous norm and the
fact that order continuity of the norm is preserved under (not neces-
sarily isometric) isomorphisms. In order to complete the proof we need
only prove that (5)⇒(1).

If A is infinite then FBL(A)∗ contains a weak∗-closed band that
is isometrically order isomorphic to `∞, by Corollary 6.10. By Theo-
rem 2.4.14 of [14] this is equivalent to FBL(a)∗ not having an order
continuous norm (and to many other conditions as well.) �

In a similar vein, we can characterize, amongst free Banach lattices,
those with a countable number of generators. Before doing so, though,
we note that once there are infinitely many generators then there is
an immediate connection between the number of generators and the
cardinality of dense subsets. Perhaps not entirely unexpectedly, given
Corollary 6.6, the same result holds for order intervals. Recall that the
density character of a topological space is the least cardinal of a dense
subset.

Theorem 8.3. If a is an infinite cardinal then the following conditions
on a set A are equivalent:

(1) card(A) = a.
(2) FBL(A) has density character a.
(3) The smallest cardinal b such that every order interval in FBL(A)

has density character at most b is a.

Proof. Let a = card(A), b be the density character of FBL(A) and c
the smallest cardinal which is at least as large as the density character
of every order interval in FBL(A). We need to show that a = b = c.

The free vector lattice over Q with a many generators has cardinality
precisely a, given that a is infinite. That is dense in FV L(A) and hence
in FBL(A) for the free norm, so b ≤ a. Clearly c ≤ b. let K be a
compact Hausdorff space such that the smallest cardinality of a dense
subset of C(K), and hence of the unit ball in C(K), is a. For example
we could take K = [0, 1]a. There is a bounded lattice homomorphism
T : FBL(A) → C(K) which maps the generators of A onto a dense
subset of the unit ball of C(K). The proof of Proposition 6.8 shows that
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T is onto. Let 1K denote the constantly one function on K. The order
interval [−T−11K , T

−11K ] has a dense subset of cardinality at most
c. As T is a surjective lattice homomorphism, T ([−T−11K , T

−11K ]) =
[−1K ,1K ], and this will have a dense subset of cardinality at most c.
Hence a ≤ c. This establishes that a = b = c. �

For the statement of the next result which characterizes a free Ba-
nach lattice having countably many generators, we need to recall some
definitions. A topological order unit e of a Banach lattice E is an ele-
ment of the positive cone such that the closed order ideal generated by
e is the whole of E. These are also referred to as quasi-interior points.
Separable Banach lattices always possess topological order units. The
centre of E, Z(E), is the space of all linear operators on E lying between
two real multiples of the identity. The centre is termed topologically
full if whenever x, y ∈ E with 0 ≤ x ≤ y here is a sequence (Tn) in
Z(E) with Tny → x in norm. If E has a topological order unit then its
centre is topologically full. At the other extreme there are AM-spaces
in which the centre is trivial, i.e. it consists only of multiples of the
identity.

Theorem 8.4. If A is a non-empty set, then the following are equiv-
alent:

(1) A is finite or countably infinite.
(2) FBL(A) is separable.
(3) Every order interval in FBL(A) is separable.
(4) FBL(A) has a topological order unit.
(5) Z

(
FBL(A)

)
is topologically full.

(6) Z
(
FBL(A)

)
is non-trivial.

Proof. If A is finite then it follows from the isomorphism seen in The-
orem 8.2 that FBL(A), and hence its order intervals, is separable.
Combining this observation with the preceding theorem shows that
(1), (2) and (3) are equivalent.

We noted earlier that separable Banach lattices always have a topo-
logical order unit. The fact that Banach lattices with a topological
order unit have a topologically full centre is also widely known, but
finding a complete proof in the literature is not easy. The earliest is in
Example 1 of [16], but that proof is more complicated than it need be.
A simpler version is in Proposition 1.1 of [28] and see also Lemma 1 of
[17].

Even if a = 1, FBL(a) is not one-dimensional so that if the centre is
topologically full then it cannot be trivial.
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We know from Proposition 5.7 that we may identify FBL(A) with
a sublattice of H(∆A). It is clear, as it contains the coordinate pro-
jections, that it separates points of ∆A. If |A| is uncountable then {0}
is not a Gδ subset of ∆A. It follows from Theorem 3.1 of [26] that the
centre of this sublattice, and therefore of FBL(a), is then trivial. �

Corollary 8.5. If A is an uncountable set then FBL(A) has trivial
centre.

Note that this would seem to be the first “natural” example of a
Banach lattice with a trivial centre. If a > 1 then FV L(A) always has
trivial centre. The details are left to the interested reader.

9. Lifting Disjoint Families in Quotient Banach Lattices.

In [24], Weinberg asked what were the projective objects in the cat-
egory of abelian `-groups, pointing out, for example, that a summand
of a free `-group was projective. Topping studied projective vector lat-
tices in [23] but the reader should be warned that Theorem 8, claiming
that countable positive disjoint families in quotients L/J of vector lat-
tices L lift to positive disjoint families in L, is false. In fact that is only
possible for an Archimedean Riesz space if the space is a direct sum of
copies of the reals, see [5] and [15].

Later in this paper we will study projective Banach lattices, which
are intimately connected with quotient spaces. We will need to know
when disjoint families in a quotient Banach lattice X/J can be lifted
to disjoint families in X. As this is a question of considerable interest
in its own right and also because the results that we need do not seem
to be in the literature already, we present them in a separate section
here.

It is well-known, although we know of no explicit reference, that any
finite disjoint family (yk)

n
k=1 in a quotient Riesz space X/J can be lifted

to a disjoint family (xk)
n
k=1 in X with Qxk = yk, where Q : X → X/J

is the quotient map.

Proposition 9.1. If X is a vector lattice, J a vector lattice ideal in
X, Q : X → X/J the quotient map and (yk)

n
k=1 is a disjoint family

in X/J then there is a disjoint family (xk)
n
k=1 in X with Qxk = yk for

1 ≤ k ≤ n.

Proof. It suffices to consider the case that each yk ≥ 0. The proof will
be by induction, the case n = 1 being trivial. Assume the result is
true for n = m and we verify it for n = m+ 1. If (yk)

m+1
k=1 is a disjoint

non-negative family in X/J we may find (x̃k)
m+1
k=1 in X with Qx̃k = yk

(1 ≤ k ≤ m + 1) and x̃j ⊥ x̃k for j 6= k and 1 ≤ j, k ≤ m. Let



30 B. DE PAGTER AND A.W. WICKSTEAD

xk = x̃k = x̃k ∧ x̃m+1, for 1 ≤ k ≤ m, and xm+1 = x̃m+1. Then for
i ≤ k ≤ m we have

Qxk = Qx̃k −Qx̃k ∧Q(x̃m+1 = yk − yk ∧ ym+1 = yk.

Clearly if 1 ≤ k ≤ m then xk ⊥ xm+1 whilst if j 6= k and 1 ≤ j, k ≤ m
then 0 ≤ xj ∧ xk ≤ x̃jx̃k = 0. This establishes the result for n =
m+ 1. �

If we restrict attention to norm closed ideals in Banach lattices then,
unlike the vector lattice case, we can handle countably infinite disjoint
liftings, but not larger ones. This does not contradict the vector lattice
result cited above as there are many non-closed ideals in a Banach
lattice.

Theorem 9.2. If X is a Banach lattice, J a closed ideal in X, Q :
X → X/J the quotient map and (yk)

∞
k=1 is a disjoint sequence in X/J

then there is a disjoint sequence (xk) in X with Qxk = yk for all k ∈ N.

Proof. It suffices to consider the case that each yn ≥ 0 and ‖
∑∞

k=1 ‖yk‖ <
∞. Define zn =

∑∞
k=n+1 yk ∈ X/J and note that zn is disjoint from

y1, . . . , yn. The sequence (xn) will be constructed inductively.
For n = 1 we start by choosing x1, u1 ∈ X with x1 ⊥ u1, Qx1 = y1

and Qu1 = z1 using the Proposition 9.1.
Now suppose that we have constructed a disjoint system {x1, . . . , xn, un}

with Qxj = yj(1 ≤ j ≤ n) and Qun = zn. As 0 ≤ yn+1 ⊥ zn+1, There
are disjoint x̃n+1, ũn+1 ∈ X+ with Qx̃n+1 = yn+1 and qũn+1 = zn+1. Let
xn+1 = x̃n+1 ∧ un and un+1 = ũn+1 ∧ un so that, for example, Qxn+1 =
Qx̃n+1 ∧ Qun = yn+1 ∧ zn = yn+1. Obviously, xn+1 ⊥ un+1 whilst if
1 ≤ k ≤ n we have, for example, 0 ≤ xk ∧ un+1 ≤ xk ∧ un = 0. �

Even in Banach lattices, Theorem 9.2 is as far as we can go.

Example 9.3. Given any uncountable disjoint family in a Banach lat-
tice X, we know from Proposition 6.8 that there is a free Banach lattice
FBL(a) and a closed ideal J in FBL(a) such that X is isometrically
order isomorphic to FBL(a)/J . As a disjoint family in a free Banach
lattice has to be countable, Corollary 6.6, the disjoint family cannot
possibly be lifted to FBL(a).

A slightly more concrete example may be found using Problem 6S
of [9] where it is shown that βN \N contains continuum many disjoint
non-empty open and closed subsets. I.e. `∞/c0 contains continuum
many non-zero disjoint positive elements. As `∞ contains only count-
ably many disjoint elements, we cannot possibly lift each of this con-
tinuum of disjoint elements in `∞/c0 to disjoint elements in `∞. The
same will be true of any uncountable subset of these disjoint positive
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elements of `∞/c0, so this shows that lifting of disjoint positive families
of cardinality ℵ1 is not possible.

An apparently simpler problem is to start with two subsets A and
B in X/J with A ⊥ B and seek subsets A′, B′ of X with A′ ⊥ B′,
Q(A′) = A and Q(B′) = B. Again countability is vital to the success
of this attempt, in fact it allows us to do much more.

Proposition 9.4. If X is a Banach lattice, J a closed ideal in X,
Q : X → X/J the quotient map and (An)∞n=1 be a sequence of countable
subsets of X/J with Am ⊥ An if m 6= n then there are subsets (Bn) of
X, with Bm ⊥ Bn if m 6= n and Q(Bn) = An for each n ∈ N.

Proof. As above, there is no loss of generality in assuming that each
An ⊂ (X/J)+. Enumerate each set as An = {ank : k ∈ N} (there is no
difference, apart from notation, if one or both set is finite). Let vn =∑∞

k=1 a
n
k/(2

k‖ak‖) so that vm ⊥ vn if m 6= n and 0 ≤ ank ≤ 2k‖ak‖vn for
k, n ∈ N. We know from Theorem 9.2 that there is a disjoint sequence
(un) in X+ with Q(un) = vn. For any ank ∈ An we can find cnk ∈ X+

with Q(cnk) = ank . Now set bnk = cnk ∧ (2k‖ak‖un) so that we still have

Q(bnk) = Q(cnk) ∧
(
2k‖ak‖Q(un)

)
= ank ∧ (2k‖ak‖vn) = ank .

Also each bnk ∈ u⊥⊥n so that if m 6= n then for any choice of j and k we
see that bmj ⊥ bnk as um ⊥ un. Now defining Bn = {bnk : k ∈ N} gives
the required sets. �

Considering the case of singleton sets, the example above shows that
we cannot allow an uncountable number of disjoint families. Nor can
we allow even one of the families to be uncountable.

In the case that X = C(K), for K a compact Hausdorff space, a
closed ideal J is of the form F = {f ∈ C(K) : f|A ≡ 0} for some closed
subset A ⊂ K and the quotient X/J may be identified with C(A) in
the obvious manner. For two elements f, g ∈ C(K), f ⊥ g if and only
if the two sets f−1(R \ {0}) and g−1(R \ {0}) are disjoint.

Example 9.5. The Tychonoff plank K is the topological space [0, ω]×
[0, ω1] \ {(ω, ω1)} where ω is the first infinite ordinal and ω1 the first
uncountable ordinal. This is renowned as an example of a non-normal
Hausdorff space. The sets U = [0, ω) × {ω1} and V = {ω} × [0, ω1)
are disjoint closed subsets which cannot be separated by disjoint open
sets. See for example §8.20 of [9]. If we add back in the removed corner
point, and define A = U ∪ V ∪ {(ω, ω1)} then U and V become open
subsets of A.

Each point of U is isolated so their characteristic functions lie in C(A)
giving a (countable) family F with U =

⋃
{f−1(R \ {0}) : f ∈ F}. Let
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G be a family of functions in C(A) such that V =
⋃
{g−1(R\{0}) : g ∈

G}, which is certainly possible using Urysohn’s lemma. If these could
be lifted to disjoint families L and M in C(K) then

⋃
{f−1(R \ {0}) :

f ∈ L} and
⋃
{f−1(R \ {0}) : f ∈ M} would be disjoint open subsets

of K which intersected A in the disjoint open sets U and V .
But any disjoint open subsets of the whole product space which

intersected A in U and V respectively would, with the corner point
removed if necessary, separate the closed sets U and V in the plank.
This contradiction shows that the lifting is not possible.

10. Projective Banach Lattices.

Definition 10.1. A Banach lattice P is projective if whenever X is a
Banach lattice, J a closed ideal in X and Q : X → X/J the quotient
map then for every linear lattice homomorphism T : P → X/J and

ε > 0 there is a linear lattice homomorphism T̂ : P → X such that

(1) T = Q ◦ T̂ ,

(2) ‖T̂‖ ≤ (1 + ε)‖T‖.

Even if we take P = R, which is easily seen to be projective given
this definition, it is clear that we cannot replace 1 + ε by 1 as the
quotient norm is an infimum which need not be attained. There are
projective Banach lattices, because:

Proposition 10.2. A free Banach lattice is projective.

Proof. Let (δa)a∈a be the generators of the free Banach lattice F . Sup-
pose that X is a Banach lattice, J a closed ideal in X, Q;X → X/J the
quotient map, T : F → X/J a lattice homomorphism and ε > 0. For
each α ∈ a, there is xa ∈ X with Qxa = Tδa and ‖xa‖ ≤ (1+ε)‖Tδa‖ ≤
(1+ε)‖T‖, using the definition of the quotient norm. As F is free there

is a linear lattice homomorphism T̂ : F → X with T̂ δa = xa for all
a ∈ a and ‖T̂‖ ≤ sup{‖xa‖ : a ∈ a} ≤ (1 + ε)‖T‖. As (Q ◦ T̂ )δa = Tδa
for all a ∈ a and both Q ◦ T̂ and T are linear lattice homomorphisms
they must coincide on the vector lattice generated by the δa and, by
continuity, on F . �

We can characterize projective Banach lattices in a reasonably fa-
miliar manner.

Theorem 10.3. The following conditions on a Banach lattice P are
equivalent.

(1) P is projective.
(2) For all ε > 0 there are:
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(a) a free Banach lattice F ,
(b) a closed sublattice H of F and a lattice isomorphism I :

H → P with ‖I‖, ‖I−1‖ ≤ 1 + ε, and
(c) a lattice homomorphism projection R : F → H with ‖R‖ ≤

1 + ε.
(3) For all ε > 0 there are:

(a) a projective Banach lattice F ,
(b) a closed sublattice H of F and a lattice isomorphism I :

H → P with ‖I‖, ‖I−1‖ ≤ 1 + ε, and
(c) a lattice homomorphism projection R : F → H with ‖R‖ ≤

1 + ε.

Proof. To see that (1)⇒(2), suppose that P is projective, let F be a free
Banach lattice and J a closed ideal in F such that P is isometrically
order isomorphic to the quotient F/J via the linear lattice isomorphism
I : P → F/J , which is always possible using Proposition 6.8. Let
Q : F → F/J be the quotient map. As P is projective, for any ε > 0

there is a linear lattice homomorphism Î : P → F with Q ◦ Î = I and
‖Î‖ ≤ (1+ ε)‖I‖ = 1+ ε. As Q◦ Î is injective, Î is also injective and ÎP

is a closed sublattice of F as ‖Îp‖ ≥ ‖Q(Îp‖ = ‖Ip‖ = ‖p‖. The map

Î ◦ I−1 ◦Q is a lattice homomorphism which projects F onto Î(P ) and

‖Î ◦ I−1 ◦Q‖ ≤ ‖Î‖ ≤ 1 + ε, so (2)(b) holds. We know that ‖Î‖ ≤ 1 + ε

and Î−1 = I−1 ◦Q so that ‖Î−1‖ = 1 and (2)(c) holds.
In view of Proposition 10.2, clearly (2)⇒(3).
Suppose that (3) holds, and in particular that (a), (b) and (c) hold

for the real number η. Suppose that X is any Banach lattice, J a closed
ideal in X, Q : X → X/J the quotient map, η > 0 and that T : P →
X/J is a linear lattice homomorphism. The map T ◦ I ◦R : F → X/J
is also a linear lattice homomorphism with ‖T ◦ I◦R‖ ≤ ‖T‖‖I‖‖R‖ ≤
(1 + η)2‖T‖. As F is projective there is a linear lattice homomorphism
S : F → X with Q ◦ S = T ◦ I ◦ R and ‖S‖ ≤ (1 + η)‖T ◦ I ◦ R‖ ≤
(1 + η)3‖T‖. Now let T̂ = S ◦ I−1 : P → X, which is also a linear

lattice homomorphism, so that ‖T̂‖ ≤ ‖S‖‖I−1‖ ≤ (1 + η)4‖T‖ and

Q ◦ T̂ = Q ◦ (S ◦ I−1) = (Q ◦ S) ◦ I−1 = (T ◦ I ◦R) ◦ I−1 = T.

By choosing η small enough we can ensure that (1 + η)4 ≤ 1 + ε and
we have shown that P is projective. �

In particular, in light of Corollary 6.11, all the separable projective
Banach lattices that we produce later will (almost) embed in FBL(ℵ0)
reinforcing the richness of its structure.

Combining Theorem 10.3 with Corollary 5.6 we have:
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Corollary 10.4. The real-valued lattice homomorphisms on a projec-
tive Banach lattice separate points.

In particular this tells us that, for finite p, the Banach lattice Lp([0, 1])
is not projective.

Similarly, from Corollary 6.6 and Theorem 10.3, using the lattice
homomorphism projection from a free Banach lattice onto a projective,
we see:

Corollary 10.5. Every disjoint system in a projective Banach lattice
is at most countable.

Although, in a sense, Theorem 10.3 gives a complete description of
projective Banach lattices, given that we know little about free Banach
lattices it actually tells us very little. One immediate consequence,
given that FBL(1) may be identified with `∞(2), is:

Corollary 10.6. The one dimensional Banach lattice R is projective.

Of course, this is easy to verify directly, but it does show that there
are projective Banach lattices which are not free.

Let us note also one rather simple consequence of the characteriza-
tion of projectives in Theorem 10.3.

Corollary 10.7. If X is a projective Banach lattice, H a closed sub-
lattice of X for which there is a contractive lattice homomorphism pro-
jecting X onto H, then H is a projective Banach lattice.

11. Which Banach lattices are projective?

We will now approach matters from the other end. We try to find
out as much as we can about projective Banach lattices and deduce in-
formation about the structure of free Banach lattices. We will start by
identifying some “small” Banach lattices, apart from free ones, which
are projective. After that we will show that certain AL-sums of pro-
jectives are again projective.

Our first positive result may be slightly surprising, given that when
dealing with Banach spaces the free and projective objects are precisely
the spaces `1(I), [20], Theorem 27.4.2.

Theorem 11.1. Every finite dimensional Banach lattice is projective.

Proof. Let P be a finite dimensional Banach lattice, X an arbitrary
Banach lattice, J a closed ideal in X, Q : X → X/J the quotient map,
T : P → X/J a lattice homomorphism and 1 ≥ ε > 0. We identify
P with Rn with the pointwise order and normed by some lattice norm
‖ · ‖P . Without loss of generality we may assume that the standard
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basic vectors in Rn, ek, all have ‖ek‖P = 1. Let {pk : 1 ≤ k ≤ m}
be an ε-net for the compact set {p ∈ Rn+ : ‖p‖P = 1}. We write
pk = (p1

k, p
2
k, . . . , p

n
k).

As T is a lattice homomorphism, the family (Tek)
n
k=1 is a disjoint

family in (X/J)+ so by Proposition 9.1 there is a disjoint family (sk)
n
k=1

in X+ with Qsk = Tek for 1 ≤ k ≤ n. By the definition of the quotient
norm, for each k there is tk ∈ X withQtk = Tek and ‖tk‖ ≤ ‖Tek‖+ε ≤
‖T‖+ε. Now, let xk = sk∧ t+k , so that the family (xk) remains disjoint.
As Q is a lattice homomorphism, Qxk = Qsk∧Qt+k = (Tek)∧(Tek)

+ =
Tek. Also, we now have ‖xk‖ ≤ ‖t+k ‖ ≤ ‖tk‖ ≤ ‖T‖+ ε.

Also, for each i ∈ {1, 2, . . . ,m} there is qi ∈ X+ with Qqi = Tpi and
‖qi‖ ≤ ‖Tpi‖+ ε ≤ ‖T‖+ ε.

Define zk = xk∧
∧′m

i=1(pki )
−1qi where the ′ indicates that terms where

pki = 0 are omitted. As the family (xk) is disjoint, the same is true for
the family (zk). If pki > 0 then (pki )

−1pi ≥ ek so that (pki )
−1Qqi =

(pki )
−1Tpi ≥ Tek so that Qzk = Qxk = Tek.

Define Sek = zk and extend S linearly to a lattice homomorphism
(because the (zk) are disjoint) of Rn → X. Clearly Q◦Sk = T . As Rn is
finite dimensional, there is a constant K ∈ R+ such that ‖x‖1 ≤ K‖x‖P
for all x ∈ Rn. It follows that

∥∥∥∥∥S(
n∑
k=1

λkek

∥∥∥∥∥ ≤
n∑
k=1

|λk|‖Sek‖

=
n∑
k=1

|λk|‖zk‖

≤
n∑
k=1

|λk|‖xk‖

≤

∥∥∥∥∥
n∑
k=1

λkek

∥∥∥∥∥ (‖T‖+ 1)

≤ K(‖T‖+ 1)

∥∥∥∥∥
n∑
k=1

λkek

∥∥∥∥∥
P

so that ‖S‖ ≤ K(‖T‖ + 1). Note that this estimate is independent of
the choice of ε.
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In order better to estimate the norm of S, we write pi =
∑n

k=1 p
k
i ek

and see that

Spi =
n∑
k=1

S(pki ek)

=
n∑
k=1

pki Sek

=
n∑
k=1

pki zk.

Also, if pki = 0 then certainly pki zk ≤ qi, whilst if pki > 0 then pki zk ≤
pki (p

k
i )
−1qi = qi. As pjizj ⊥ pki zk if j 6= k we see that

∑n
k=1 p

k
i zk ≤ qi so

that Spi ≤ qi and ‖Spi‖ ≤ ‖qi‖ ≤ ‖T‖+ ε. Now if we take an arbitrary
p ∈ {P+ : ‖p‖ = 1} then we can choose i with ‖p− pi‖P < ε, so that

‖Sp‖ ≤ ‖Spi‖+ ‖S‖‖p− pi‖P
≤ ‖T‖+ ε+K(‖T‖+ 1)ε

which can be made as close to ‖T‖ as we desire. �

The spaces C(K), for K a compact Hausdorff space, play a distin-
guished rôle in the general theory of Banach lattices so it is worth
knowing which C(K) spaces are projective. We give here a partial an-
swer, which is already of substantial interest. We refer the reader to
[4] for basic concepts about retracts, but include the basic definitions
here for the convenience of the reader.

Definition 11.2. If X is a topological space and K a subset of X then

(1) K is a retract of X is there is a continuous function π : X → K
with π(k) = k for all k ∈ K.

(2) K is a neighbourhood retract of X if there is a neighbourhood U
of K in X and a continuous function σ : U → K with σ(k) = k
for all k ∈ K.

Definition 11.3. In a category C of topological spaces,

(1) A space K is an absolute retract if K is a retract of X whenever
K ⊆ X ∈ C.

(2) A space K is an absolute neighbourhood retract if K is a neigh-
bourhood retract of X whenever K ⊆ X ∈ C.

Theorem 11.4. If K is a compact subset of Rn for some n ∈ N then
the following are equivalent:

(1) C(K) is a projective Banach lattice under some norm.
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(2) C(K) is projective under the supremum norm.
(3) K is a neighbourhood retract of Rn.

Proof. Without loss of generality we may suppose that K is a subset
of the unit ball in Rn for the supremum norm. We write pk for the
restriction to K of the k’th coordinate projection in Rn and p0 for the
constantly one function on K. The vector sublattice generated by the
{pk : 0 ≤ k ≤ n} is certainly dense in C(K) by the Stone-Weierstrass
theorem. As FBL(n + 1) is free there is a bounded vector lattice
homomorphism T : FBL(n + 1) → C(K) with T (δk) = pn−1. We
know that, algebraically, we may identify FBL(n + 1) with C(Fn+1)
and that the constantly one function on Fn+1 is precisely

∨n+1
k=1 |δk|. As∨n

k=0 |pk| = p0, here is where we use the boundedness assumption on
K, we may regard T as a unital lattice homomorphism from C(Fn+1)
to C(K). Such maps are of the form f 7→ f ◦ φ where φ : K → Fn+1

is continuous. The image of C(Fn+1) is dense in C(K) and it is well
known that the image of such composition maps is closed so that T is
onto. This is equivalent to φ being injective. I.e. we have a topological
embedding of K into Fn+1 and we may regard T as simply being the
restriction map from C(Fn+1) to C(K). So far we have not used the
assumption that C(K) is projective.

If J is the kernel of T then C(Fn+1)/J is isomorphic to C(K). If
C(K) is projective (even in a purely algebraic sense) then there is a
vector lattice homomorphism U : C(K)→ C(Fn+1) with Uf|K = f for
all f ∈ C(K). But U is of the form

Uf(p) =

{
w(p)f(πp) (p ∈ U)

0 (p /∈ U)

where w is a non-negative continuous real-valued function on Fn+1 and
π : Fn+1 \ w−1(0) → K, so we must have w(p) = 1 and πp = p for
p ∈ K. Thus Fn+1 \ w−1(0) is open and contains K so that π is a
neighbourhood retract of Fn+1 onto K. If we remove any single point
from Fn+1 that is not in K then what remains is homeomorphic to Rn
so we have a neighbourhood retraction from Rn onto K. This only fails
to be possible if K = Fn+1, and that is not homeomorphic to a subset
of Rn by the Borsuk-Ulam Theorem, see for example Theorem 5.8.9 of
[22]. Thus (1) implies (3).

Clearly (2) implies (1), so we need only prove that (3) implies (2).
The blanket assumption on K tells us that it is homeomorphic to a
subset of one face G of Fn+1. By scaling it if necessary, we may assume
that it is a neighbourhood retract of G and therefore of the whole of
Fn+1. That allows us to construct a continuous w : Fn+1 → [0, 1] with
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U = {p ∈ Fn+1 : w(p) > 0} ⊂ G, K ⊂ w−1(1) and a continuous retract
π : U → K. The vector lattice homomorphism U : C(Fn+1)→ C(Fn+1)
defined by

Uf(p) =

{
w(p)f(πp) (p ∈ U)

0 (p /∈ U)

is certainly a projection. For any p ∈ Fn+1 we have, writing JK = {f ∈
C(Fn+1) : f|K ≡ 0},

‖Uf‖F = ‖Uf‖∞ (Corollary 7.2)

= sup{|w(p)f(πp)| : p ∈ U}
≤ sup{|f(πp) : p ∈ U}
=≤ sup{|f(k) : k ∈ K} = ‖f|K‖∞
= ‖f + JK‖ (Corollary 7.4)

≤ ‖f‖F
so that U is a contraction.

We claim also that the image UC(Fn+1) is isometrically order iso-
morphic to C(K) under its supremum norm. To prove this, it suffices
to prove that Uf 7→ F|K is an isometry for the free norm on Uf , which
is equal to its supremum norm, and the supremum norm on f|K . The
calculation above shows that ‖Uf‖∞ ≤ ‖f|K‖∞. We also have, for
p ∈ U , |Uf(p)| = |w(p)||f(πp)| ≤ ‖f|K‖∞ as |w(p)| ≤ 1 and πp ∈ K.
Thus ‖Uf‖∞ ≤ ‖f|K‖∞ and we have our desired isometry.

In view of Theorem 10.3, this shows that C(K) is projective. �

The reader will notice that the first implication would actually work
for an isomorphic version of projectivity. We allude further to this in
§12.

Corollary 11.5. C([0, 1]) under the usual supremum norm is a pro-
jective Banach lattice.

Notice that some C(K)-spaces can be projective for different (neces-
sarily equivalent) Banach lattice norms. E.g. C(Fn) will be projective
both under the free and supremum norms.

Recall that, as closed bounded convex subsets of Rn are absolute
retracts in the category of compact Hausdorff spaces, any compact
neighborhood retract of Rn will necessarily be an absolute neighbour-
hood retract in the category of compact Hausdorff spaces and therefore
certainly in the category of compact metric spaces.

Descriptions of absolute neighbourhood retracts in the category of
compact metric spaces may be found in Chapter V of [4]. We note two
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particular properties that they have. Firstly, absolute neighbourhood
retracts have only finitely many components ([4], V.2.7) and if K is
an absolute neighbourhood retract subset of Rn then Rn \K has only
finitely many components ([4], V.2.20).

In particular, we have

Corollary 11.6. The sequence space c is not projective.

Proof. We can identify c with C(K0) where K0 = { 1
n

: n ∈ N} ∪ {0}).
As K0 ⊂ R and K0 has infinitely many components it is not an absolute
neighbourhood retract. �

There seems little hope of removing the assumption of finite dimen-
sionality from K in Theorem 11.4. We can rescue one implication.

Proposition 11.7. If C(K) is a projective Banach lattice under the
supremum, or an equivalent, norm then K is an absolute neighbourhood
retract in the category of compact Hausdorff spaces.

Proof. Suppose that K is a closed subset of a compact Hausdorff space
X. We need to show that there is a continuous retraction π of U onto
K, where U is an open subset of X with K ⊂ U .

The restriction map R : C(X) → C(K) may be identified with the
canonical quotient map of C(X) onto C(X)/J where J is the closed
ideal {f ∈ X(K) : f|K ≡ 0}. If C(K) is projective then the identity
on C(K) lifts to a lattice homomorphism T : C(K) → C(X) with
R ◦ T − IC(K). There is a continuous function w from X into R+ and
a continuous map π : U = {x ∈ X : w(x) > 0} → K such that

Tf(x) =

{
w(x)f(πx) [w(x) > 0]

0 [w(x) = 0].

If k ∈ K then Tf(k) = f(k) so that πk = k and w(k) = 1 showing
that K ⊂ U and that π is a retraction of the open set U onto K. �

Without knowledge of the properties of absolute neighbourhood re-
tracts in the category of compact Hausdorff spaces, this does not tell
us a lot. There seems to be very little material in the literature on
absolute neighbourhood retracts in this setting, so we make our own
modest contribution here.

Lemma 11.8. If C is a compact convex subset of a locally convex space,
K a closed subset of C and U an open subset of C with K ⊆ U ⊂ C
then there is an open set V with K ⊆ V ⊆ U ⊆ C such that V has
finitely many components.
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Proof. As U is open, if k ∈ K there is a convex (and therefore con-
nected) open set Wk with k ∈ Wk ⊆ U , using local convexity. The
open sets Wk, for k ∈ K, cover the compact set K so there is a finite
subcover, W1,W2, . . . ,Wn. Take V =

⋃n
k=1 Wk. �

Proposition 11.9. If K is an absolute neighbourhood retract in the
category of compact Hausdorff spaces then K has only finitely many
components.

Proof. Let C = P (K), the space of probability measures on K, with the
weak∗ topology induced by C(K), which is a locally convex topology
under which C is compact as well as certainly being convex. The
mapping which takes k to the point mass at k is a homeomorphism of K
onto the set of extreme points of C. If K is an absolute neighbourhood
retract then there is a retraction π : U → K where U is an open subset
of C with K ⊆ U . By the preceding lemma, there is an open set V ,
with finitely many components, such that K ⊆ V ⊆ U . The image of
each component of V under π is connected and their union is K, so
that K has only finitely many components. �

Thus if C(K) is a projective Banach lattice under any norm then K
has only finitely many components. In particular:

Corollary 11.10. The sequence space `∞ is not a projective Banach
lattice.

In [1] Baker characterized projective vector lattices with n generators
as being quotients of FV L(n) by a principal ideal. If we embed K0

into one of the faces of F2 then we know that c is isometrically order
isomorphic to FBL(2)/JK0 . It is clear that JK0 is a principal closed
ideal of FBL(2) and that c has two generators as a Banach lattice,
so the natural analogue of Baker’s result fails in the Banach lattice
setting.

The obvious candidate for a projective Banach lattice, as in the Ba-
nach space case, is `1(I) for an arbitrary index set I, however Corollary
10.5 tells us that if I is an uncountable index set then `1(I) is definitely
not a projective Banach lattice. Similarly `p(I) (1 ≤ p <∞) and c0(I)
are not projective if I is uncountable.

Given that we can lift disjoint sequences it is not difficult to show
that `1 is projective. In fact we can show much more.

Theorem 11.11. If, for each n ∈ N, Pn is a projective Banach lat-
tice with a topological order unit then the countable sum `1(Pn), under
the coordinate-wise order and normed by ‖(pn)‖1 =

∑∞
n=1 ‖pn‖, is a

projective Banach lattice.
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Proof. Let en be a topological order unit for Pn. We will identify Pn
with the subspace of `1(Pn) in which all entries apart from the n’th
are zero and en with the corresponding member of that subspace so
that the en are all disjoint. If X is a Banach lattice, J a closed ideal
in X, Q : X → X/J the quotient map, T : ⊕1(Pn) → X/J a lattice
homomorphism and ε > 0 then we start by noting that the Ten are
disjoint, so by Theorem 9.2 we can find disjoint un in X+ with Qun =
Ten. If we write Xn for the closed ideal in X generated by un then the
family (Xn) is disjoint in X.

Note that the natural embedding of Xn/(J ∩ Xn) into X/J is an
isometry onto an ideal and that T (Pn) ⊂ Xn/(J ∩ Xn) as en is a
topological order unit for Pn and T is a lattice homomorphism. The
projectivity of Pn allows us to lift Tn to a lattice homomorphism T̂n :
Pn → Xn with ‖T̂n‖ ≤ ‖Tn‖ + ε ≤ ‖T‖ + ε with Q ◦ T̂n = Tn. Piecing
together this sequence of operators in the obvious way will give us the
desired lifting of T . �

Recall that if a is finite or countably infinite then FBL(a) has a
topological order unit as do finite dimensional Banach lattices and
C(K)-spaces. This gives us a source of building blocks to create other
projectives.

We already have some examples of Banach lattices which are not
projective. It is interesting to note that the free Banach lattices on un-
countably many generators seem to be, in some sense at least, maximal
projectives.

Example 11.12. If a is uncountable then there is no non-zero Banach
lattice X for which X ⊕ FBL(a) is projective under any norm.

Proof. Suppose that, under some norm, FBL(a) ⊕ X is projective,
where X is a Banach lattice and a is uncountable.

Consider C(K), where K = [0, ω] × [0, ω1], and (with the notation
of Example 9.5) J = {f ∈ C(K) : f|A ≡ 0} so that C(K)/J is isomet-
rically order isomorphic to C(A).

For each v ∈ V there is fv ∈ C(A) with 0 ≤ fv(a) ≤ 1 for all a ∈ V ,
fv(v) = 1 and fv identically zero on A \ V . As V has cardinality ℵ1

there will be a map of the set of generators {δa : a ∈ a} of FBL(a) onto
{fv : v ∈ V }, which extends to a lattice homomorphism of FBL(a) into
C(A). The image of every generator vanishes on U , hence the same
is true for elements of T

(
FV L(a)

)
and, by continuity, for elements of

T
(
FBL(a)

)
. Note that

⋃
f∈FBL(a){a ∈ A : f(a) 6= 0} = V .

As U is an Fσ there is g ∈ C(A) with g(u) > 0 for all u ∈ U and
with g identically zero on A \ U . If X ⊕ FBL(a) were projective and
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x0 ∈ X+ \ {0} there would be a real-valued lattice homomorphism on
X ⊕ FBL(a) with φ(x0) > 0 (and necessarily φ|FBL(a) ≡ 0.) Define
Sx = φ(x)g for x ∈ X so that S is a lattice homomorphism of X into
C(A). The disjointness of the images of S(X) and T

(
FBL(a)

)
shows

that the direct sum operator S ⊕ T : X ⊕FBL(a)→ C(A) = C(K)/J
is also a lattice homomorphism. If X ⊕ FBL(a) were projective we

could find a lattice homomorphism Ŝ⊕ T̂ : X ⊕FBL(a)→ C(K) with

Q ◦ (Ŝ ⊕ T̂ ) = S ⊕ T . The images of X ⊕ {0} and {0} ⊕ FBL(a)
will be disjoint in C(K) and their open supports will give disjoint open
sets with traces on A equal to U and V respectively, which we know is
impossible. �

The family of projective Banach lattices seems to possess very few
stability properties beyond those that we have already noted. In par-
ticular, closed sublattices of projectives need not be projective as the
non-projective c may be isometrically embedded as a closed sublattice
of the projective Banach lattice C([0, 1]), by mapping the sequence
(an) to the function that is linear on each interval [1/(n+ 1), 1/n] and
takes the value an at 1/n. Similarly, we may realize c as the quotient
of C([0, 1]) by the closed ideal {f ∈ C([0, 1]) : f(1/n) = 0 ∀n ∈ N},
showing that the class of projective Banach lattices is not closed under
quotients.

12. Some Open Problems.

We start with a few questions on free Banach lattices.

Question 12.1. Must the norm on a free Banach lattice be Fatou, or
even Nakano? See [27] for the definition of a Nakano norm. We are not
sure of the answer even when there are only finitely many generators.

The following question is rather a long shot as we have very little
evidence for it beyond the case of a finite number of generators (see
below).

Question 12.2. If the free Banach lattice FBL(a) is embedded as a
closed ideal in a Banach lattice must it be a projection band?

The reason that this holds in the case of a finite number of generators
is because this (isomorphic) property of Banach lattices is possessed by
Banach lattices with a strong order unit. The following is undoubtedly
well-known but we know of no convenient reference for it.

Proposition 12.3. Let Y be a Banach lattice with the property that
every upward directed norm bounded subset of Y+ is bounded above. If
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Y is embedded as a closed ideal in a Banach lattice X then it must be
a projection band.

Proof. It suffices to prove that if x ∈ X+ then the set B = {y ∈ Y :
0 ≤ y ≤ x} has a supremum in Y . As B is upward directed and norm
bounded, it has an upper bound u ∈ Y+. As u ∧ x ∈ Y+, since Y is an
ideal, u∧x is an upper bound for B in Y . As we also have 0 ≤ u∧x ≤ x,
u ∧ x ∈ B so it is actually the maximum element of B. �

We have seen that, unless |A| = 1, FBL(A)∗ is not an injective
Banach lattice. However, in the case of finite A, FBL(A)∗ is isomorphic
to an AL-space and therefore to an injective Banach lattice. We suspect
that the following question might lead to another characterization of
finitely generated free Banach lattices.

Question 12.4. When is FBL(a)∗ isomorphic to an injective Banach
lattice?

In Theorem 8.3 we showed that the density character of FBL(A) was
equal to the cardinality of A and related this to the density character
or order intervals in FBL(A). This is something of importance in the
study of regular operators between Banach lattices, so an answer to
the following question would have implications in that field.

Question 12.5. Does every order interval in FBL(A) have the same
density character?

In the light of Theorem 8.3 that density character would have to be
the cardinality of A.

Question 12.6. Investigate the structure of the symmetric free norm
on FBL(n).

Question 12.7. Can the construction of a free Banach lattice be gen-
eralized to give a free Banach lattice over a metric space? Here a
metric space S embeds in a “free” Banach lattice in some sense and
any isometry of the generators into a Banach lattice extends to a lat-
tice homomorphism with some restriction on the norm. See [18] for the
Banach space case.

We have seen in Corollary 6.10 that FBL(a)∗ contains a disjoint fam-
ily of cardinality a which contrasts strongly with the fact that disjoint
families in FBL(A) itself can only be at most countably infinite.

Question 12.8. How large can disjoint families of non-zero elements
in FBL(a)∗ be?
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At present we have no feel at all for what kinds of Banach lattice
are likely to be projective. Clearly, there are a lot of “small” ones,
where small means either separable or having a topological order unit.
A major and obvious question to pose is:

Question 12.9. Determine the structure of the class of projective Ba-
nach lattices.

In particular,

Question 12.10. Are separable atomic Banach lattices with an order
continuous norm projective?

In particular,

Question 12.11. Is c0, under the supremum norm, a projective Ba-
nach lattice?

Question 12.12. For what compact Hausdorff spaces K is C(K) pro-
jective under the supremum norm?

We know the answer to the preceding question for compact subsets
of Rn by Theorem 11.4.

The following two questions were posed by G. Buskes. An apparently
simple question to answer is:

Question 12.13. If Pk (1 ≤ k ≤ n) are projective Banach lattices
with topological order units then is their `∞ sum also projective?

It is not difficult to lift a lattice homomorphism T :
⊕

k=1 nPk →
Y/J to a lattice homomorphism T̂ :

⊕n
k=1 Pk → Y by lifting the images

of the topological order units first. The problem seems to be the norm
condition on T̂ .

It is clear that the Fremlin tensor product, see [8], of two projective
Banach lattices need not be projective in general. Example 11.12 shows
that this cannot be true for the product of `1 and FBL(a) when a
is uncountable. There seems no good structural reason to expect a
positive result to the next question, but a counterexample has eluded
us so far.

Question 12.14. If X and Y are projective Banach lattices with topo-
logical order units, is their Fremlin tensor product projective?

The building blocks that we can use in Theorem 11.11 to build new
projectives include finite dimensional spaces, FBL(a) for a either finite
or countably infinite and certain C(K)-spaces. Any of these, and the
space that is produced by that theorem, will be separable and hence will
have a topological order unit. Some (possibly rather rash) conjectures
that we might make are:
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Conjecture 12.15. If a projective Banach lattice has a topological
order unit then it is separable.

Conjecture 12.16. A projective Banach lattice which does not have
a topological order unit must be free.

Even if this conjecture were to fail, we can ask for an improvement
of Example 11.12 by asking:

Conjecture 12.17. If a is uncountable and a projective Banach lattice
X contains a closed ideal isomorphic to FBL(a), do we actually have
X = FBL(a)?

Question 12.18. The `1 sum of a sequence of finite dimensional Ba-
nach lattices is a Dedekind complete projective. Are these the only
Dedekind (σ-)complete projectives?

Conjecture 12.19. All order continuous functionals on a projective
Banach lattice determined by its atoms.

Question 12.20. Assuming a positive answer to Question 12.10, we
can further ask if there is a result similar to Theorem 11.11 for `p sums
(1 < p <∞) or for c0 sums.

The whole of this paper has been written in an isometric setting.
All of our results may be reproved in an isomorphic setting, where we
replace an (almost) isometric condition on operators with mere norm
boundedness. It is not difficult to see that there will automatically be
uniform bounds to the norms of operators and that isometrically free
(resp. projective) Banach lattices will be isomorphically free (resp.
projective). Isomorphically free Banach lattices will certainly be iso-
morphic to isometrically free Banach lattices. At present it does not
seem worth recording such a theory, unless there is negative answer to
the following question.

Question 12.21. Is every isomorphically projective Banach lattice iso-
morphic to an isometrically projective Banach lattice?
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