
Data Processing
Architectures and Techniques
Applied to CubeSat Missions

Anatoly Ilin

Te
ch
ni
sc
he
U
ni
ve
rs
ite
it
D
el
ft

Data Processing
Architectures and Techniques
Applied to CubeSat Missions

by

Anatoly Ilin

in partial fulfillment of the requirements for the degree of

Master of Science
in Aerospace Engineering

at the Delft University of Technology,
to be defended publicly on Tuesday July 17, 2018 at 13:00 AM.

Supervisor: Dr. ir. S. Sperettta
Thesis committee: Dr. ir. A. Cervone, TU Delft

Dr. ir. B. C. Root, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Contents

1 Introduction 1

2 Project Methodology 5
2.1 Theory . 5

2.1.1 Determine Objectives . 5
2.1.2 Identify & Resolve the Risks . 5
2.1.3 Development & Testing . 5
2.1.4 Plan the Next Phase . 6

2.2 The Application . 6
2.2.1 First Iteration . 6
2.2.2 Second Iteration . 7
2.2.3 Third Iteration . 7
2.2.4 Forth Iteration . 8

2.3 Additional Aid . 8
2.4 Project and System Requirements Structure . 9

I Foundations 11

3 Project Context 13
3.1 The Space Mission Segments. 13
3.2 Ground Segment: a geographical view . 14
3.3 Telemetry . 15

3.3.1 Telemetry Generation . 15
3.3.2 Telemetry Protocol: AX.25 . 18

3.4 Client Application: telemetry parsing . 20
3.4.1 Telemetry Encoding Schema . 20

3.5 Server Side Application: data processing. 21
3.6 Data Volumes . 23
3.7 Discussion and Requirements Refinement . 26
3.8 Conclusion and Preparation of the Next Project Iteration 28

4 Data Storage 29
4.1 Categorisation. 29
4.2 File System . 30
4.3 Object Storage . 31
4.4 Database Storage. 31

4.4.1 Relational Database Management Systems (RDBMS) 31
4.4.2 NoSQL Data Stores. 36

4.5 Conclusion . 40
4.5.1 Query. 41
4.5.2 CAP and BASE . 41
4.5.3 Storage Volume . 41

4.6 Preparation of the next iteration phase . 42

5 Telemetry processing 43
5.1 Rationale. 43
5.2 Unified Processing . 43
5.3 Processing Frameworks . 44
5.4 Kaitai Framework . 45

5.4.1 Kaitai DSL or Kaitai Struct (KS) . 45
5.4.2 Kaitai Compiler . 45

iii

iv Contents

5.4.3 Kaitai Runtime Object . 46
5.5 Processing Application: Delfi-n3Xt Example. 46
5.6 Processing Application: generic deployment . 48
5.7 Conclusion . 49

6 Software Engineering Tools 51
6.1 Separation of Concerns . 51
6.2 Clean Architecture . 52
6.3 Conclusion . 53

II Application 55

7 Architectures 57

8 Client Leveraged System 61
8.1 Architecture . 61
8.2 Architecture: Tools . 63

8.2.1 Browser Application: feasibility . 63
8.2.2 Client Applications: considerations . 64

8.3 Implementation . 67
8.3.1 CouchDB . 68
8.3.2 PouchDB. 69

8.4 Distributed, Centralized System . 69
8.4.1 Document Design . 69

8.5 The Software Design . 71
8.5.1 User Based Description . 72
8.5.2 System Components . 73
8.5.3 Considerations . 75

8.6 Proof of Concept and Requirements Overview . 76
8.6.1 Experiment Hardware and Software Setup. 76
8.6.2 Experiments and Results . 76
8.6.3 Experiment Conclusion . 78

8.7 Lessons Learned . 85
8.7.1 PouchCouch Implementation Flaws. 85
8.7.2 Why not Client Based Applications . 86

8.8 Conclusion and the Next Project Phase. 87

9 Server side processing 89
9.1 Introduction . 89

9.1.1 Client application function . 89
9.1.2 System Scalability: key for the architecture 89
9.1.3 The approach . 90

9.2 Problem analysis . 90
9.2.1 Data transformation . 90
9.2.2 Data analysis . 91
9.2.3 Data characteristics . 91
9.2.4 Architecture assessment . 92

9.3 Related work . 93
9.3.1 Abstraction . 93
9.3.2 Microservices / Service orientated architecture 93
9.3.3 Lambda and Kappa architectures . 94

9.4 Stream Processing: Feasibility assessment . 97
9.4.1 Stream, Log and Table. 97
9.4.2 Stream processing native deduplication methods. 97
9.4.3 Data de-duplication by sorting . 98
9.4.4 Data de-duplication in the delivery layer . 99

9.5 Architecture discussion and requirements Assessment 99

Contents v

III Results 103

10Proposed Architecture 105
10.1Processing system Components .105

10.1.1PTS global requirements .105
10.1.2Ingestion System .106
10.1.3Stream Layer .107
10.1.4Batch Layer .109
10.1.5Presentation Layer .109

10.2Used Technologies .110
10.2.1Kafka .110
10.2.2Immutable Storage .115
10.2.3Hadoop Distributed File System .117
10.2.4Apache Spark .118
10.2.5Apache YARN .120
10.2.6Zookeeper .120

10.3Architecture .120

11Experiment and Research Questions discussion 123
11.1Scope of System Testing. .123

11.1.1System Robustness Assessment .123
11.1.2System Reliability Assessment .123

11.2Research Question evaluation .124
11.2.1Errors originating form client application .125
11.2.2Effects of unstable networking and loss of nodes on Ingestion Layer125
11.2.3Reliability in Operations and effects of Maintainability126

11.3Hardware Experiment Setup .126
11.4Limitations .128
11.5Experiments. .128

11.5.1Kafka .128
11.5.2Spark Streaming .130

11.6Experiment Results Discussion .137

12Conclusion 143

13Recommendation 147

A Requirements 149
A.1 Introduction .149
A.2 Product Description .149

A.2.1 Product Perspective .149
A.2.2 Product Functions .149
A.2.3 Product Constraints .149
A.2.4 Dependencies .149
A.2.5 Assumptions .149

A.3 External Interface Requirements. .150
A.3.1 User Interface .150
A.3.2 Hardware Interface. .151
A.3.3 Software Interface .151
A.3.4 Communication Interface .151

A.4 System Features .151
A.4.1 Data Ingestion .151
A.4.2 Data Processing. .152
A.4.3 Data Storage .153
A.4.4 Data Querying .153
A.4.5 Data Delivery .153

vi Contents

A.5 Non-functional Requirements .154
A.5.1 Performance Requirements .154
A.5.2 Safety Requirements .154
A.5.3 Security Requirements .154
A.5.4 Quality Attributes .154
A.5.5 Business Rules .155

A.6 Other Requirements .155
A.6.1 Documentation Requirements .155
A.6.2 Licensing Requirements .155
A.6.3 Legal, Copyright, and Other Notices. .155

A.7 Requirements Validation .155

B Spark Streaming Experiment Addendum 161

C Literature Study 165

D The International Astronautical Congress (IAC) Paper 207

Bibliography 221

Nomenclature
2PC Two-Phase Commit
A Availability
AC Availability-Consistency
ACK Acknowledgment
ADC Analog to Digital Conversion
AP Availability-Partition Tolerance
API Application Programming Interface
AVG Average
AX.25 AX.25 protocol
BER Bit Error Rate
C Consistency
CAP Consistency, Availability, Partition Tolerance
COTS Commercial off-the-shelf
CP Consistency-Partition Tolerance
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CRUD Create, Read, Update, Delete operations
DAO Data access object
DAS Directed Attached Storage
DB Database
DDOS Distributed Denial of Service
DF Data Frame and Telemetry Frame
DGS Delfi Ground Station
DLSAP Data-Link Service Access Point
DOM Document Object Model
DOS Denial of Service
ECA External Client Application
ELK ElasticSearch , LogStach, Kibana stack
ES ElasticSearch
FlexTLM Flexible telemetry frame defintion (standard)
GC Galera Cluster
GDS Graph data store
GENSO Global Educational Network for Satellite Operations
GS Ground Station
HA High-Availability
HDFS Hadoop Distributed File System
HK House-keeping Transceiver mode
I AX.25 Information Frame
ISR In-Sync Replica
ITRX Secondary, ISIS Transceiver
JVM Java Virtual Machine
KS Kaitai Struct
KV Key-value
LoC Lines of Code
LSB Least significant bit
MM Multi-Master
MS Master-Slave
NAS Network Attached Storage
NDC Near-data computing
NIC Networking Interface Controller

vii

viii Contents

OBC On-board Computer
OOP Object-Oriented Programming
OOS Out of Scope
OS Operating system
OSI Open Systems Interconnection
P Partition Tolerance
PIF Partially incorrect frames
PL Payload Transceiver mode
PoC Proof of Concept
PTRX Primary Transceiver
R Read Operations
RA Radio Amateur
RAM Radom Access Memory
RCE Remote code execution
RDBMS Relational DataBase Management Systems
RDD resilient distributed dataset
RF Replication Factor
RPI Raspberry Pi
RW Read-Write Operations
S AX.25 Supervisory Frame
S/C Spacecraft
SAN Storage Area Network
SDR Software Defined Radio
SE Software Engineering
SOA Service-Oriented Architecture
SoC Separation of Concerns
SQL Structured Query Language
STD Standard Deviation
STX S-band Transceiver
TBD To be determined
TLE Two Line Elements
TPS Telemetry Processing System
TU Technische Universiteit
TUD Delft Univerisity of Technology
U AX.25 Unnumbered Frame
UHF Ultra High Frequency
UI AX.25 Unnumbered Information Frame
UI User Interface
VHF Very High Frequency
VPN Virtual Private Network
W Write Operations
WOD Whole-orbit data
XID AX.25 Exchange Information Frame
XML eXtensible Markup Language
XTCE Telemetry and Command Exchange Protocol
YAML Ain’t Markup Language
YARN Yet Another Resource Negotiator

1
Introduction

This master thesis addresses the need for a telemetry processing for Delfi Space spacecraft operations,
a nano-satellite program of the Delft University of Technology. It lays the groundwork for the telemetry
processing system (TPS) implementation and explores the design guidelines for a highly scalable but
robust and adaptive architecture.

Brief history
The history of the nano- and pico-satellites, artificial satellites with a mass below 10kg, and in particular
the CubeSats, cube-shaped pico-satellites, started with a conceptual introduction in 1999 by California
Polytechnic State University [1] as an attempt to reduce cost and development time. Although not
designed as such, the proposal became a standard over time [2]. From 2009 up to early 2013, research
in the nano-satellite industry was primarily driven by the civil market, which can be mostly attributed to
research institutions and universities [3]. In 2013, the nano-satellite technology matured to the level
where the commercial stakeholders stepped in, rapidly increasing the market share from 8 to 56 %.
At this point, the majority of the launched spacecraft were no longer technology demonstrators, but
remote sensing and earth observation missions [3]. This growth affected the availability of commercial
off-the-shelve products and services (e.g. launch and operations services). However, due to the historic
risk-mitigating nature of the commercial applications [4], the Commercial off-the-shelf (COTS) solutions
are less affordable for the non-commercial and educational markets. The cost of the ground segment
has lead to collaborative solutions. The Global Educational Network for Satellite Operations (GENSO)
[5] and SwissCube EPFL [6] network, expand the satellite coverage by connecting the participating
ground stations to their networks. Delfi Space [7] utilizes a drastically different approach by involving
the radio amateur (RA) community for telemetry reception.

Satellite telemetry processing software is provided to all participating RA, allowing received teleme-
try frames to be transferred to the central Delfi server for processing and visualization in form of a
website. With participating radio amateurs all around the world, a larger downlink budget can be
achieved allowing for more scientific data to be transferred to earth.

Problem statement
The need for a robust, adaptive and low-cost solution for spacecraft operations, and thus telemetry
processing originates from research institutions and universities in the civil part of the market [8].
Academia seeks collaboration with radio amateurs to increase the coverage while maintaining low
operational costs. This results in a unique ground segment infrastructure, often not supported by the
commercially off-the-shelve solutions.

While the need for telemetry processing was solved in the legacy missions, common flaws are
observed in both C3 and n3Xt software applications leading to their lack of re-usability. First, both
systems are tailored to specific missions, failing to (timely) accommodate for newmissions and changing
requirements. Secondly, the processing errors present in both systems [9] and telemetry frames loss
in Delfi-n3Xt TPS directly affected data quality and reliability.

1

2 1. Introduction

Focusing on generic CubeSat mission requirements instead of a specific Delfi mission would allow
for a system with wider applications, thus facilitating reusability for future missions. While possible
in theory, key requirements can be missed leading to a sub-optimal solution. Thus, implementing all
foreseeable features, i.e. future-proofing the system, is a futile attempt.

The aforementioned challenges open the door to a different approach to the problem, by which
the PTS can be designed to provide intuitive interfaces for functionality extension and modifications
instead of future-proofing and locking system development.

The recent popularity of CubeSat and nano-satellite [10] swarm and constellation missions driven
by decreasing hardware and launch costs have started a shift in the perspective of the ground segment
design. The new infrastructure ought to support multiple spacecraft, technologically superior and
capable of generating more data than ever before, leading to the need to collect, transfer and process
potentially large amounts of data in quasi-real-time. The trends in Big-Data have accelerated the shift of
the processing paradigm from ’cleaning and decoding’ towards data mining with the goal of identifying
hidden trends (such as, possible failures) at satellite level. [11]

The PTS should therefore not only support multiple satellite missions but consequently be able to
process and store large data sets, such as imagery data. With RA participation follows the general
rule of ”more participants, more data”, but suffers from unpredictable participation and therefore large
variations of data reception are to be expected. Due to the distributed nature of the ground segment,
data duplication due to RAs reception overlap is inevitable, driving the ingestion rate even further.

The Delfi team require a system that is not only capable of providing a platform to facilitate new
missions but can also accommodate for changing data ingestion and processing rates while maintaining
the flexibility to incorporate new functionalities in limited periods of time (typically linked to the duration
of a thesis or internship).

Research Question
How should a telemetry processing system that acts as a bridge between satellite ground stations
and the end users operate to ensure robustness and reliability, while meeting the necessary system
requirements and without limiting the (future) missions and satellite design?

Due to ambiguity and the complexity of this problem, it is divided into the following subtasks:

1. Aggregate and define system requirements based on the legacy Delfi missions

2. Study and define the suitable server architecture(s)

3. Asses the impact of the future missions on the telemetry server requirements and chosen archi-
tecture (scalability and adaptability)

4. How can the robustness and reliability of the system be ensured?

5. How should the telemetry server framework operate to meet the requirements?

6. How can architecture benefit the data science?

7. How to ensure that the implementation is feasible within a thesis/internship period?

Expected outcome
The expected outcome of this thesis project is a framework architecture and design for a telemetry
processing system. The proposed data processing architecture should be flexible and pose no require-
ments on the satellite and Radio Amateur community. The implemented proof of concept of PTS will
be tested on the data from the Delfi-n3Xt missions.

The process that led to the solution for the complex problem is presented in chapter 2 and covers the
methodology and chronological steps of this MSc thesis. The remainder of the document is divided into
three parts: Foundations, Application and Results. The first part focuses on the requirement definition
of the system and start with the high-level analysis of the Delfi mission segment, and the legacy
system in chapter 3. The analysis showed two major areas of improvement for overall robustness and
reusability of the system: data storage and data processing, that are further studied in chapters 4 and
5. Chapter 6 aggregates the applied concepts for the system architecture design and does not follow
the chronological order of this document.

3

The second part of the document, focuses on the application of the study performed in part one and
presents the possible architectures in chapter Architectures. The discussion leads towards two feasible
architectures, the client leveraged and server based. The former is presented in chapter 8 and operates
on the hypothesis that by harvesting the available computational resources of the RA the computational
requirements of the central server can be reduced. The proof of concept disproved the hypothesis and
lead to requirement refinement that led to the Server-based processing architecture. Due to scalability
and reliability requirements, distributed server-based processing will be further studied and discussed
in chapter 9.

Part three contains the design of the proposed architecture in chapter 10 and experiments in chapter
11 aiming at the investigation of robustness, reliability and reusability of the system.

The discoveries, requirements acceptance and results of the experiments are finally combined in
the section 12 providing the conclusion for the project.

2
Project Methodology

This chapter focuses on the project methodology and aims to provide the background on the long-term
decision process which leads to the system presented in chapter 9. The project consisted of numerous
steps (which were required to build up the knowledge base), understanding of the available system,
and comprehend the stakeholders’ needs. The process will be discussed in section 2.1, followed by
application in section 2.2 linking the process to the material presented in the document. Section 2.3
provides an overview of the tools utilized during the project and discuss the usability and contributions
to the project outcome.

2.1. Theory
The system discussed in chapter 9 has a strong emphasis on modularity required for the redundant
deployment. The skills necessary to achieve the level of design and understanding of the available
system, as well the scope of data processing, were not available at the start of the project.

To facilitate the learning process and to prevent the premature sub-optimal decisions affecting the
complete design, an interactive process was required. With a strong emphasis on a reusable system,
a strong emphasis was laid on the demonstration of separate elements. To facilitate the necessity of
iterations and requirement for intermediary prototyping, spiral development was selected.

The iterative process is applied both on the high level of the project, leading to the high-level proof
of concepts (PoC), such as PouchCouch and Lambda system, as well as on the low level, for example,
the iterative experimentation.

Proposed by Boehm [12], spiral model structures an interactive process into four distinct categories:
Determine Objectives, Identify & Resolve the risks, Development & Testing and Plan for the next
iteration. The portion of the project is run sequentially, allowing further refinement of the system and
(re-)discovery of the requirements at any stage of the project. Figure 2.1 provides a simplified overview
of the iterations, while the individual components will be discussed in the following chapters.

2.1.1. Determine Objectives
The first activity of each iteration focuses on the discovery of the objective: requirements, alternatives
and potential constraints. The objectives aim to broaden the scope of the available technologies and
when applied iteratively increases the understanding of the problem scope.

2.1.2. Identify & Resolve the Risks
The second activity focuses on the evaluation of the alternatives and observes the design of the high-
level design. Although there is an overlap in iteration with the first phase; the second phase shifts into
the technical and hands-on spectrum of the project, and ultimately leading to the prototype phase.

2.1.3. Development & Testing
During this phase, the Proof of Concept is developed and tested.

5

6 2. Project Methodology

Determine Objectives Identify & Resolve the Risks

Plan next iteration Development & Testing

 L
ite

ra
tu

re study NoSQ
L

Po

uc

hC
ouch

 C
lea

rA
rch

itecture

Figure 2.1: Thesis iterative process

2.1.4. Plan the Next Phase
The final phase concludes the previous iteration and provides the guidelines for the next. In practice,
the planning overlaps the initial phase in the first two iterations, as a literature study and research was
required.

2.2. The Application
With the theory explained in section 2.1, this sections aims to apply it on the project and aims as a guide
to this document. The structure of this document follows the iterative process, placing the chapters
in the sequence of iterations. Furthermore, each chapter is contains a conclusion summarising the
findings, further redefining the system requirements.

2.2.1. First Iteration
The starting point of the project is the literature study aimed to understand the global scope of satellite
telemetry processing and identify the available solutions (COTS). In conclusion, a in-house system was
developed to comply with the requirements and associated risks.

With direction set towards an in-house developed system, a deeper look at the existing software
to better understand the software operations, requirements and the needs of the stakeholders was
required. The legacy systems is discussed in chapter 3 and complied with a preliminary list of require-
ments, this is expanded on each iteration of the project, in appendix A.

One of the significant weakness associated with the in-house developed software was the storage
system. To ensure robustness; the storage system was built for single frame definition (as found
in case of Delfi-software) or required following strict vendor specifications in case of COTS [13]. To
circumvent this limitation, alternative systems were considered, leading to research in data storage
systems presented in Chapter 4 in the second phase of the iteration. In retrospect, it can be argued
that an error was made in this phase, this shifted the focus towards the data storage solutions, instead
of recognizing a more widespread problem of the system inflexibility.

In the third phase, albeit not explicitly included in the report, NoSQL systems were assessed, lead-
ing to the further research into deployment mechanisms. This identified the weakness of single node
database deployment with regards to hardware failures and increased chance of data loss. Further-
more, a brief study of a typical system availability was performed, leading to requirement updates.
The study identified that a single database node operation has a higher potential for data loss than
previously expected.

The fourth phase concluded the first iteration. It was determined that the NoSQL was a valid
approach for data storage and provided extremely flexible and robust alternative for SQL systems.
Secondly, the need for a distributed, multi-node database system was found necessary for the redun-
dancy of operations and prevention of data loss. Historic Delfi-n3Xt and Delfi-C3 data study lead to
two conclusions. First, the database system was not properly sized in terms of hardware. Second, the

2.2. The Application 7

load on the system was found to be proportional to the number of users ingesting the data. This in
combination with the need for multi-node deployment, with nodes preferably spread geographic, lead
to the concept of scaling over the client application, rather than scaling of database nodes on the Delft
premises.

2.2.2. Second Iteration
The second iteration represents the work done in chapters 4 and 8. The first phase aimed to research
the feasibility of client-side deployment, and impact on the existing architecture. Second, alternatives
for deployment were assessed. With a wide range of available hardware and OS on the market, devel-
opment of an application capable of running on the majority of available machines (RA’s end) was not
trivial. At the time of writing, two systems were available, Java virtual machine (JVM) and browsers.
Java applications, such as DuDe client, is a well known and well-tested way of achieving this. Albeit
and JVM approach was discarded due to additional requirements on the client, e.g. installation of JVM,
memory use.
The research instead focused on the browser deployment vector. As discussed in section 8.2.1,
browsers are available on a broad range of equipment and provide high capabilities at a low develop-
ment cost. No comparable systems were previously attempted in browser deployment. At the time of
writing„ no similar academic research was found on the database scaling over the client machines. The
system promised a distributed storage and compute cluster over heterogeneous hardware, distributed
over client applications.

The second phase, covering the capabilities, opportunities and possibilities is aggregated in chapter
8. A partial PoC was implemented, covering critical components: server-client data replication and
processing. Brief research on Delfi-n3Xt dataset was conducted to determine data quality, errors and
possible loss. The results are presented in the aggregation chapter 3 and lead to the conclusion that
the majority of data quality degradation is due to human errors, primarily, in the processing. The
investigation of the Delfi-n3X client and server software lead to the conclusion that these errors can
be resolved with the use of unified processing. The research is left out of the report due to time
constraints, on focuses on the most applicable Kaitai framework 5.

The third phase provided a broad and critical look at the proposed PouchCouch system. As pre-
sented in chapter 8 numerous weakness were identified. For sake of argument, phase three will be
presented here. First, client applications could not be trusted; hence data provided by client applica-
tions needed to be verified. Second, the browser deployment is an insecure platform. To address the
issue, data has to be re-computed on three nodes to be validated. Furthermore, the re-computation is
magnitudes faster than the intra-node data replication. Hence, moving data to clients for computations
is magnitudes slower than the computations themselves. Finally, analysis of the long-term support re-
vealed high complexity regions with the architecture in the most critical parts; hence, the most vital
system components are the easiest to make mistakes in.

The fourth phase consumed the work of the third phase - acting on the conclusion and findings,
leading to the abrupt decision to discontinue client application use. The in-depth look at PouchCouch
system triggered the need for refinement of the requirements and lay focus on the long-term use of
the system, rather than an optimization of a single component: storage.

2.2.3. Third Iteration
The third iteration focused solely on the software design methodology. Albeit, not explicitly contained
in this report, research was done on the available architecture design tools. Separation of Concerns
was studied early on in the project but was applied incorrectly and insufficiently in the PouchCouch
system. With no specific high-level tools applicable to the project scope, classicly low-level tools were
studied.
Clean Architecture was discovered early in the project but was initially discarded due to popularity driven
semantics and cult-like following, rather than scientific reasoning. Later, with a better understanding
of available techniques, the core concept of Clean Architecture was extracted and applied on the high
level to the Delfi project, presented in chapter 6.

The second phase of this iteration focused on the application of modified Clean Architecture on
the Delfi mission, with emphasis on the ground software. The history of software development in Delfi
projects revealed parallels with work presented in 1995 by Berczuk [14], and lead to the conclusion that
the most suitable solution of the problem is a strong decomposition of the system components. This

8 2. Project Methodology

is required since insufficient knowledge is passed between developers of the legacy systems, primarily
limited to software and minimalistic documentation. The students required to build system components
are likely inexperienced, and have a lack understanding of broader system architecture. This lead to
the existing systems to be discarded in favour of newer systems, development of which cannot be
completed fully within a timeframe of the masters’ thesis. A vicious circle.

By following the Clean Architecture principles, thus by abstracting all system components, the scope
of the (sub)-system to be designed can be greatly reduced. Early on in the iteration, there was a
strong emphasis on freedom of choice on the programming language to be used for the component.
This reduced the start-up time and increases the quality, as developer most likely has a preference and
experience with one.
In the third phase, this assessment lead to the conclusion that choice of programming language does
not guarantee anything, and that even higher level of abstraction should be applied. This lead to the
conclusion that Delfi telemetry processing system should consist of discrete, well-defined components
that can be exchanged and replaced with ease.

The concluding phase of the iteration focused on the available tooling and feasibility of the approach.
The findings are appended to 3 chapter and lead to the conclusion that Delfi project is unpredictable
from telemetry system point of view. This is best illustrated with ”last minute” adjustments in Delfi-
n3Xt telemetry processing system that lead to virtual data loss on the processing side. To address this
problem on architecture level, the system should be adjustable to the extent that is not observed in
the general software development world. However, one field of computer science was showed to share
the same level of volatility: BigData.

2.2.4. Forth Iteration
The first phase of the project aimed to understand the scope and the needs that lead to the design of
BigData systems. The popular definition of BigData, referring to a system containing a volume of data
that cannot be stored on a single machine, showed a remarkable disconnect from the actual needs and
applications. Similar to the Delfi needs, these systems aim to ingest data, without prior data (schema)
definition that is not only unknown at the time of design but will most likely change frequently in
time. Data processing is often extremely extendable, and easily adjustable in production allowing old
processing code to be executed in parallel with the new algorithms.

In the second phase of the project, viable architectures were considered, lead to the material
presented in 9 chapter. The process was driven by the SoC/Clean Architecture principles and lead to
the architecture presented in chapter 10.

The third phase focused on the experimentation with the test setup to identify the required skills to
maintain the cluster and aimed to explore the system capabilities. The experiments were performed on
under-powered hardware to illustrate that a) no expensive equipment was required to run and execute
such systems and b) that any hardware devices better than a credit card sized computer would be
capable of supporting the designed architecture.

The fourth and the final phase of the project concluded the research in the form of this report.
Logically, following the iterative design methodology, the next possible steps are presented in the 12
chapter.

2.3. Additional Aid
In the software industry, software engineering plays a vital role to keep development speed constant.
This along with risk mitigation, makes product delivery timeframe predictable. The major risk in soft-
ware project is change of requirements. There are two major methodologies: ensure perfectly defined
requirements or embrace the change. This along with a clear, predefined set of steps as a guidance,
makes the product delivery timeframe predictable. As described in section 2.1, globally, a spiral model
was selected. While being very useful on the high level of the project, model did not provide any
support for the day-to-day activities. Later the project, an additional tool was selected to assist with
keeping track of progress, actively acting as a motivator. Due to incremental design philosophy, the
selection was limited to the agile techniques. The incremental development is deeply embedded in
techniques such as Kanban, Scrum, Prince2 and many other. Having worked with Kanban and Scrum
in internship settling, Scrum was directly discarded due its overhead with regards to team participation
that is not applicable to an one-man team. The second issue with scrum are the fixed sprints: an

2.4. Project and System Requirements Structure 9

abstract entity of the work performed in a fixed period of time. Due to the limiting experience with
system architecture and utilised tools, reducing the certainty in the estimation of work load and run-
time of the sprints. In professional and team setting, sprint provide a clear deadline for a given task, a
clear separation of work with clean interfaces to the rest of the system, allocated by the experienced
project manager. Additionally, daily stand-ups serve as a motivator and assist in knowledge sharing
between team members. One-man-team, lacking both brilliant parts of the Scrum, makes it unusable,
leading to extended duration of the sprints and eventually to abandoning the system. The visual aid,
provided by the framework such as Jira, provide set of charts showing the completeness, but often
based on the number of sprints and not the total work package. To accommodate for the former,
and reduce the effect of insufficient planning, Kanban was considered, as in its core, the framework
is designed to deal with uncertainty by not placing emphasis on planning. Within the framework, the
work is divided by requirements in smaller, manageable chunks. Each chunk is prioritised, and divided
in groups: backlog[”far”, ”soon”, ”next”], ”in progress” and ”done”. This ensures a clear overview of
all tasks. Similar to Scrum provides a visual representation of work-done. The additional Cumulative
Flow Chart can be utilised to visualise the progress in groups, with the idea that any sudden changes
in visual composition is an indicator of issues with the project. Therefore Kanban is the most suited for
projects with unknown and unstable nature.

In profession setting, Kanban contains a set of rules, often designed for team interaction in mind.
This integration was unnecessary in the one-man-team, and where reduce to:

1. Keep track of ’chunks’

2. Two ’chunks’ to do at the same time

In practice, for the final prototypes Kanban ’pull’-nature was maintained. The connected ’chunks’
very prioritised in sequence, focusing the completion of interdependable components first. Consider the
data ingestion system of the lambda architecture as an example. The implementation of the processing
system: Spark, was not commenced until data ingestion system: Kafka was functional. This sequential
approach was required to adhere to the global spiral model to evaluate the prototypes.

2.4. Project and System Requirements Structure
The iterative design lead to a growing set of requirements. The initial project requirements are derived
in chapter 3 and are expanded overtime. To provide a better overview, the requirements are struc-
tured hierarchically starting with major system, followed by system or component, a modifier and a
counter: GN-<MAJOR>-<MINOR/Modifier>. All requirements presented in this document start with
GN, denoting Ground Network, encapsulating both the server and client systems.

The list of the major requirement grouping:
UI - User Interface
NET - Network and communications
ING - Data ingestion
PR - Data processing
DS - Data storage
DD - Data delivery
DQ - Data Query
PERF - Perforance related
SAFE - Safety related
QA - Quality (Attributes) related
BR - Business rules
AUX - Auxiliary requirements

The list of the minour grouping and optional modifiers:
GEN - Generic
RA - Radio Amateur usergroup related
OPS - Spacecraft Operator usergroup related
ADMIN - System administrator usergroup related
RAW - Related to unprocessed, raw data

10 2. Project Methodology

INT - Related to integration with external system or component
ADMIN - System administrator usergroup related
STAT - Data Statistics
CL - Cluster, related the queries exectured on cluster, based on the complete dataset
SEC - Security related
REL - Reliability related
AVAIL - Availability related
MAIN - Maintainability related
DATA - Data related
DOC - Documentation related
LIC - Licensing related
LEG - Related to legal aspects of the project

I
Foundations

11

3
Project Context

The Delfi Space program is the development line of CubeSat and Pico-satellites at Delft University of
Technology, with the goal to provide hands-on education and training for students, while serving a
technology demonstrator for the Space Industry. [15]

Delfi missions utilized innovative space technology applications emerging from within TU Delft and
external partners from the space sectors [15], often as a secundary system component or the spacecraft
payload. To demonstrate the technical capabilities, various system parameters are gathered over the
mission lifetime and analyzed on earth by the team of experts. To deliver the gathered data, or
telemetry, to the stakeholders a reliable connection between satellite and ground segment has to
be established. Historically, the Delfispace ground segment is set up as a collaborative effort from
various stakeholders: TU Delft, TU Eindhoven, ISIS BV and others. However, to achieve the worldwide
coverage, Delfi team relies on the assistance from a global radio amateur community to cover the blind
spots [15].

This research thesis focuses on the permanent telemetry storage, processing and delivery of the
processed data to the various mission stakeholders. This chapter serves as introduction to the past
missions, architectures and implementations, and is used to kickstart the discussions contained in the
following chapters by presenting the intial system requirements.

The discussion starts with establishing the high-level system components in section 3.1, followed
by the discussion on the need for, and the results of Radio Amateur participation in section 3.2. The
subsequent sections follow the data flow through the system, focusing on the aspects of telemetry
generation onboard the spacecraft in section 3.3.1 as well the encoding of the data to the data frames
in section 3.3.2. Section 3.4 provides an functional overview of data ingestion on the client side from
telemetry perspective, defining the AX.25 protocol in section. 3.4.1. Section 3.5 focuses on the server
side processing system, with section 3.6 defining the data budgets of the previous missions. Finally,
the section 3.7 aggregates the gathered information and provides a preliminary analysis, a springboard
for the discussion in the consecutive chapters.

3.1. The Space Mission Segments
The segment of Delfi-C3 and Delfi-n3Xt missions, applied to the telemetry processing system shown in
the figure 3.1. Within the provided system breakdown, the space segment consists of the spacecraft
generating the telemetry data and the communications interfaces. The ground segment is built up
from three elements: managed Delfi Ground station, the semi-managed Backup Ground station at
Eindhoven and ISIS B.V and an unmanaged network of Radio Amateurs. Delfi Ground station (DGS)
element contains the TU Delft ground station hardware as well the systems responsible for Data storage
and processing. The User Segment consists of the end-users of the mission: Payload stakeholders,
Data scientists, Radio Amateurs and General Public.

For the scope of the project, the space segment is considered a black-box system, generating
telemetry data and accepting telecommands. However, an exception will be made in this chapter, in
order to understand and quantify the possible changes that may affect telemetry processing system.

The interface between Space and Ground segment are the radio transmissions, the downlink via very

13

14 3. Project Context

Figure 3.1: Delfi mission segment

high frequency (VHF) (and S-band), and uplink over ultra high frequency (UHF) bands [15]. It should be
noted that the Radio Amateur community offer higher support for UHF/VHF bands, and a limited S-band
coverage, therefore restricting the high data rate transmissions to the more sophisticated, and often
professional ground stations [15]. Initially, the Space-Ground interface was segregated into low and
high bandwidth channels, with high bandwidth available at the managed portion of the ground segment.
With the recent efforts to lower the hardware costs, enabling a broader S-band acceptance within the
community in form of the software defined radio’s, BladeRF [16] and HackRF [17] in particular, retailing
for a fraction of the profession all-in-one unit price, providing an acceptable alternative at the cost of
limited bandwidth capabilities. The adoption rate and S-band capabilities require further research, the
interface is, therefore assumed feasible [GN-AS-1].

In both Delfi-n3Xt and Delfi-D3 missions the interface between Space and Ground Segment is
established by use of a client application DuDe/Rascal, discussed further in section 3.4. Collected
data is stored centrally on Delfi server, providing interface tailored for mission operators and data
scientists. It should be noted that the client application serves a dual purpose by performing decoded
telemetry visualisations, on-premises of the ground stations (DGS and RA) acting as Ground-User
Segment interface. Historically, client application used by Radio Amateurs and spacecraft operations,
for direct telemetry processing, due to the server lag. It should be noted that server is the primarily
data source for s/c operations when satellite is outside the direct communications links. For the future
missions, the situation is unlikely to change due to numerous considerations, e.g. processing and
visualisation redundancy, performance, local data access and many others.

3.2. Ground Segment: a geographical view
The Delfi telemetry reception system leverages the radio amateur community for data collection. Shown
in the figure 3.2, the coverage is biased with some regions more densely covered than the others. One
would, therefore, expect to see extensive data duplications for the densely covered areas, as multiple
radio amateurs would receive the same telemetry frames. This is partly true, with roughly 33% of
received data being duplicate. The presence of RA’s in the area, however, does not guarantee the
reception. This is illustrated in figure 3.3, where two consecutive Delfi-n3Xt passes on 28-11-2013
were recorded by three stations only. The bias is dynamic, as RA’s participation rate changed over
time, as can be seen in figure 3.4.

To visualize the impact of the duplicates, consider figure 3.5 showing the number of duplicate

3.3. Telemetry 15

Figure 3.2: Radio amateur locations

frames received per day. Figure 3.6 provides a better metric, showing the normalized count of the
data duplication. The high data inflow does not necessarily correlate with the high percentage of data
duplication. To bring the regional duplication in perspective, figure 3.7 shows the number of non-unique
frames received for each geographical location. The high number of duplicates in the European region
is mainly driven by one radio amateur contribution, located in ‘ close proximity to the Delft GSN.

3.3. Telemetry
The telemetry frame generated by the spacecraft consists of the payload data, such as onboard mea-
surements, along with the status parameters, i.e. housekeeping data of the satellite. Former is required
for the science aspect of the mission, while the latter is instrumental for correct spacecraft operations.
Additionally, missions, such as Delfi-n3Xt, can contain payload, requiring data to be accessible via client
defined interfaces, leading to the requirement GN-DS-14.

3.3.1. Telemetry Generation
Deviating from black-box view of Space Segment, this section focuses on telemetry generation onboard
the spacecraft.

The focus lays on the Delfi-n3Xt implementation [18], for being the most recent, most researched
and understood by the author. Delfi-n3Xt supports multiple operational modes, as depicted in the
figure 3.8 [18], with use cases for each of the primary Transceiver (PTRX), secondary ISIS Transceiver
(ITRX) and S-band (STX) radios. The experimental operations are out of scope of the project, as all
modes, except ”transmit” PRTX: HK + PL (housekeeping + payload) and ITRX: HK+PL, are ignored by
the client application.

Early in the project, this raised the question whether the future ground segment could be required
to support other communications modes. For example, considering the linear transponder experiment,
with the spacecraft relaying the RA communications, monitoring could be required to perform spacecraft
debugging or to quantify the feature use. This is, of course, best achieved with a worldwide coverage,
requiring support by the client application.

Speculating on the future missions, one will quickly realize that the operational modes are only one

16 3. Project Context

Figure 3.3: Groundtracks and
reception points

20
13

-1
1-

22

20
13

-1
1-

29

20
13

-1
2-

06

20
13

-1
2-

13

20
13

-1
2-

20

20
13

-1
2-

27

20
14

-0
1-

03

20
14

-0
1-

10

20
14

-0
1-

17

20
14

-0
1-

24

20
14

-0
1-

31

20
14

-0
2-

07

Reception date and time

0

5

10

15

20

25

Co
un

t

Figure 3.4: Radio Amateur
contribution

20
13

-1
1-

21

20
13

-1
1-

28

20
13

-1
2-

05

20
13

-1
2-

12

20
13

-1
2-

19

20
13

-1
2-

26

20
14

-0
1-

02

20
14

-0
1-

09

20
14

-0
1-

16

20
14

-0
1-

23

20
14

-0
1-

30

20
14

-0
2-

06

Reception date and time

0

200

400

600

800

1000

1200

1400

1600

Du
pl

ica
te

 fr
am

es
 c

ou
nt

Figure 3.5: Duplicate telemetry
frames counts per day

20
13

-1
1-

21

20
13

-1
1-

28

20
13

-1
2-

05

20
13

-1
2-

12

20
13

-1
2-

19

20
13

-1
2-

26

20
14

-0
1-

02

20
14

-0
1-

09

20
14

-0
1-

16

20
14

-0
1-

23

20
14

-0
1-

30

20
14

-0
2-

06

Reception date and time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ad
ju

st
ed

 d
up

lic
at

e
fra

m
e

co
un

te
r

Figure 3.6: Normalized
duplicate telemetry frames
counter to total number of

receptions [%]

Figure 3.7: Unique telemetry frames received per region

3.3. Telemetry 17

Figure 3.8: Delfi-n3Xt radio
operational modes [19]

Figure 3.9: Simplified onboard
dataflow model [19]

a small part of the picture since the space-system requires a wider downlink strategy. For the sake
of completeness and as a measure to foresee the possible system changes, the summary data flow
onboard a Delfi-n3Xt spacecraft has been complied in figure 3.9

Clearly, in this approach, the radios are operating in a continuous mode, broadcasting live satellite
data, without ’long-term’ onboard telemetry storage. This relative simplicity comes at cost of data
sparsity, as only the spacecraft parameters measured during pass are captured. A number of different
strategies can be defined. For example, the QB50 mission required whole-orbit data: an aggregation of
payload data between the ground station passes. The choice of the downlink strategy will influence the
telemetry reception rates and volumes, possibly placing processing requirements due to the duration of
the pass limitations. System may, furthermore, be required to support alternative modes of operations,
requiring a flexible storage and processing solution (requirement GN-PR-2, GN-DS-12).

In case of Delfi-n3Xt, 34% of the received frames were determined duplicate. The amount of
rejected frames is not explicitly stored, but can be estimated. The frequency of frames sent by the
radio is determined by the on-board computer (OBC), therefore the reception packets frequency can
be estimated as:

𝑓፫፞ = 𝑓፬፞፧፭ + Δ𝑓 ፫፫፨፫
With 𝑓፫፞ the perceived telemetry frame reception frequency, 𝑓፬፞፧፭ the send-frequency of the OBC and
Δ𝑓 ፫፫፨፫ term responsible for the frequency deviation due to medium interaction. The deviation can be
caused by drift secondary effects such as onboard clock drift or radio signal scatter perceived by the
receiving radio, and it is assumed that 𝑓፬፞፧፭ > Δ𝑓 ፫፫፨፫, therefore Δ𝑓 ፫፫፨፫ can be ignored. By observing
the telemetry packets received by a single RA on a single pass, can be estimated as:

𝑁፭፡፞፨፫፲ᑣᑖᑔᑖᑚᑧᑖᑕ =
ፓᑓᑖᑘᑚᑟዅፓᑖᑟᑕ

ᑤ፟ᑖᑟᑥ

With 𝑁፭፡፞፨፫፲ᑣᑖᑔᑖᑚᑧᑖᑕ defined as the number of theoretically receivable telemetry frames between start
𝑇፞፠።፧ and the end 𝑇 ፧፝ of the satellite pass. Therefore the number of frames lost 𝑁፥፨፬፭ due to errors
can be estimated as:

𝑁፥፨፬፭ = 𝑁፭፡፞፨፫፲ᑣᑖᑔᑖᑚᑧᑖᑕ − 𝑁፫፞፞።፯፞፝
With 𝑁፫፞፞።፯፞፝ defined as number of received frames per pass for each receiver.

Due to all-or-nothing Cyclic Redundancy Check (CRC) validity check algorithm, the packet loss is
directly related to the environment noise. Previous work by Milano [19] and Hartano [18] suggest
that error correction is not required for Delfi-n3Xt operations due to limited frame size. Figure 3.10
illustrates the ratio of lost-to-recieved telemetry frame per satellite pass aggregated per day for the top
15 Delfi-n3Xt receivers (RAs and GSs). It should be noted that the graph indicates the lost telemetry
frames per radio amateur, and does not necessarily mean that the frame are not received from another
source. On average during a satellite pass, 50 telemetry frames are received per receiver, then, by
selecting the passes with above average telemetry reception rate, the calculated telemetry frame loss

18 3. Project Context

received
lost

Radio Amateur Identifier

Fram
e Lost/Received

Da
te
of
the
 tra
ns
mi
ss
ion

Figure 3.10: Change of the ratio of received to missed telemetry frames in time during intial 3
months of Delfi-n3Xt operation

aggregated over all clients is determined to be 49 %. Which is inherently biased, since the passes
meeting the 50 frames threshold accounts for 22.6 % of all the passes (450 of the total 1539 recorded
passes). Normalising the threshold to accommodate for the half of all passes, results in threshold of
22 frames, resulting in a packet loss of 88 %. Which is comparable to 78% loss rate found in the ex-
perimental results published by McGuire [20]. The high frame loss can be explained by DuDe software
malfunctions and bugs.

3.3.2. Telemetry Protocol: AX.25
To provide the background and the need of the telemetry data transformations, this section will focus on
data encapsulation and transfer protocols. As shown in figure 3.9, the telemetry data is encapsulated
twice. First as a data frame (DF): an aggregate of the payload and system parameters. Second as a
telemetry frame with AX.25 encapsulation.

The schema of DF frame, albeit constrained in length, follows a custom protocol, determined during
the design phase of the spacecraft. In case of Delfi-C3, the amount of data encodable in the DF frame
fit the available data (link) budget, allowing a single DF type to be utilised. For Delfi-n3Xt mission, two
DF frames were required.

In case of Delfi-n3Xt, the data serialization follows a custom protocol, which is merely a predefined
sequence of spacecraft and payload parameters. The software switches, as well a variety of hardware

3.3. Telemetry 19

Table 3.1: AX.25 model for single link [22]

Data Link
Segmenter

Management Data Link
Data Link

Link Multiplexer

Physical
Physical

Silicon/Radio

Table 3.2: U and S frames schema [22]

Flag Address Control Info FCS Flag
0111 1110 112/224 bits 8/16 bits N*8 bits 16 bits 0111 1110

metrics, like deployment status, translate natively into binary ”1” - ”0”, while all floating point values
ought to be serialised.

Each floating point parameter is defined based on the position within the sequence and bit-length
dictated by the measurement precision. The serialization is merely a mapping of the floating point
value to an integer using a set of predefined formulas. The resulting (rounded-off) integer, is then
natively converted to a binary value. As an example, consider main bus voltage metric with 12 bits
allocation and serialization formula:

𝑈፬፮፬፲፬፭፞፦ = 𝑉𝑎𝑙𝑢𝑒፬፞፫።ፚ፥።፳፞፝ ⋅ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

With a constant set to 0.0034 V the subsystem voltage is the range of 0 to 14 volts. The position
of the individual values within DF frame sequence is theoretically free to choose, however, in practice
the parameters are grouped per subsystem to ease the data aggregation onboard the spacecraft.

The telemetry frames are structured in accordance with AX.25 protocol, to ensure the data-link
layer compatibility with available ground stations and radio amateur community. The data-link layer,
as defined by the Open Systems Interconnection (OSI) model [21], is the second layer of the com-
munications stack [22]. The layer provides functional as procedural means for data transport between
network entities: establishing connection parameters and connecting the clients. And in theory, also
being responsible for error detection and correction. With the radio amateurs as the end users, the
protocol is designed to deliver the data between two computer terminals regardless the communication
link, the physical layer, making the protocol extremely versatile.

As defined by the OSI specification [21], every layer serves the layer above and is served by the layer
below. In practice, the communication between OSI layers is achieved by Data-Link Service Access
Point (DLSAP). Management Data Link is responsible for the connection and negotiation of operational
parameters between the stations. Furthermore, the Data Link logic is responsible for establishing and
releasing the connections between the stations. The link Multiplexer is the layer between data link logic
and transmitter/receiver: the physical layer. Data from layer three is provided to layer two via DLSAP.
When data volume of the frame (UI/I) definition is exceeded, the payload is split into multiple frames
by the segmenter.

The payload, or the transferred data, is encapsulated in frames. The AX.25 protocol defines three
general frame types, Information (I), Supervisory (S) and Unnumbered frame (U). Information and
Unnumbered frames are further refined into Exchange Information Frame (XID) and Unnumbered in-
formation frames (UI) respectively. Each AX.25 frame has a specific function, for example, to comply
with OSI model or required for establishing the connections. However, in its current setup, the Cube-
Sat cannot establish two-way communication. This leads to a modified, reduced AX.25 specification
used for the majority of CubeSat missions today. The broadcast telemetry is based on an unnumbered
information frame (UI) with the schema presented in table 3.4 .

Table 3.3: I (information) frame schema [22]

Flag Address Control PID Info FCS Flag
0111 1110 112/224 bits 8/16 bits 8 bits N*8 bits 16 bits 0111 1110

20 3. Project Context

Table 3.4: AX.25 UI frame definition used in Delfi missions [22]

Flag The start and the end flag of the frame. Used to locate the radio transmission.
Address Originally intended for the source and the destination address of the frame, the RA call

signs. In case of the CubeSat operations used to identify the spacecraft. Since the one-
to-many type of the operation, the address field is invariant throughout the mission.

Control Contains the information of the frame, such as frame type and the sequence set by seg-
menter. For CubeSat operations field is set statically to 0b00000011.

PID Defines the third layer protocol. In case of CubeSat operations, the protocol is undefined
and therefore set to 0xF0.

Info Contains the spacecraft telemetry data.
FCS Frame-check-sequence, a sixteen-bit integer recomputed by the receiver to assess the

data validity. The Frame-Check Sequence is computed following ISO 3309 [22]

The AX.25 specification is not fully utilized. The telemetry parameters transmitted within the info
field of each frame, follow a predefined sequence. Without encoding embedded in the Info field, a
lookup table is required to extract the information. The AX.25 frames are transmitted in one-to-many
fashion (one S/C to many receivers), without frame reception acknowledgement (QoS 0 strategy) no
guarantees can be provided for the consecutive frames to be received. Thus, the segmenter cannot
be implemented (assumption GN-AS-4). Therefore, the data cannot be sent arbitrarily relying on the
AX.25 protocol functionality. Furthermore, due to one-way communication between the satellite and
the receiver, any errors in the transmission are irrecoverable. Presence of bit-flips due to a noisy
environment, cause CRC checks to fail, rendering the received frame invalid. [23]

3.4. Client Application: telemetry parsing
The client application, i.e. Dude or Rascal, executed on both GCS’s and RA’s premises, is responsible
for data extraction from the radio signal, decoding and transfer to the database. The frame sampling
is the initial part of the client based data processing [24]. The Analag to Digital Conversion (ADC)
is handled by the hardware, while the application is scanning the incoming sequence continuously,
performing the following actions:

1. Scan for the frame flag (01111110)
2. Extracting the data between flags, and dropping if allowed frame length is exceeded

Once AX.25 frame has been extracted, the CRC-check is performed to check for data corruption.
The AX.25 protocol provides no means to correct for errors in data transmission. Furthermore, the CRC
does not provide a degree of ”incorrectness” of the data: the frame is either valid or invalid.

3.4.1. Telemetry Encoding Schema
As stated in the Telemetry protocol 3.3.2, the AX.25 opposes a requirement on the maximum allowed
length of the frame, therefore limiting the permitted bit-length of the Info field containing the data.
However, in the legacy missions, the frame length was limited by the utilised hardware, rather than the
software specificaitons. In case of Delfi-n3Xt, the data link budget could not be met with a single DF
frame definition, requiring data to be split into two frames, broadcast consecutively. The consequence
of this rigid design is that information, e.g. satellite and payload parameters, sent over the lifetime of
the mission are immutable. For example, deployment status of the solar panel is sent throughout the
entire mission. While being vital on the initial spacecraft contact, the value need diminishes in time
and serves only as a very basic check of the OBC and radio operations.

To resolve the exceeding the data budget, one may consider to:

1. Break the AX.25 length requirement
2. Compress the telemetry data within the frame
3. Split data into multiple frames
4. Apply the re-configurable frame (FlexTLM) definition [25]

In the design phase of the Delfi-n3Xt mission, a custom DelfiX [19] protocol was considered, al-
lowing 10-20% saving but dropping support for Radio-Amateur community [19], rendering the option

3.5. Server Side Application: data processing 21

Figure 3.11: Delfi-C3 server application overview

unsatisfactory. The main consideration against the flexibility of the reconfigurable frames as well the
telemetry data compression is the required fault-tolerance onboard of the spacecraft. Any errors in
telemetry encoding corrupt the data and the downlink capability. Schoemaker [25] argued that recon-
figurable telemetry risks can be mitigated by not allowing fully custom on-demand encoding schemes,
but by predefining metrics and metrics groups and selecting them based on the scenarios:

Time defined frame identifiers
The frame definition sequence depends on the time of the onboard real-time clock. To decode the
frame, encoding is selected based on the time value embedded in the frame. This is required, as a
onboard clock will drift. (Bias + linear)

Unique frame identifiers
Each frame definition has an unique id. Each frame can be decoded, by mapping the frame id to the
accompanying decoding scheme. (Similar to Delfi-n3xt)

Packet group identifiers
The concept is based on the grouping of similar parameters or subsystems and identifying data bundles
by an id. Processing identifies the id, and the predefined map of parameters within each group and
position of the groups within the payload.

The final solution proposed by Schoemaker is based on a sequence control, defining the next
transmitted (or received) frames. The specifics of the approaches are less relevant within bounds of
the discussion and serve merely as a proof that each satellite mission may require drastically different
approach with respect to the frame definitions to balance the overhead, robustness and the flexibility.
This leads to the GN-PR-15 and GN-PR-14 requiring processing software to identify the DF encoding in
a flexible manner.

Analysis of the Delfi-n3Xt data showed a consistent pattern of data reception: a significant number
of consecutive frames received in succession.

3.5. Server Side Application: data processing
The need for the server-side application stems from three elements: persistent data storage, telemetry
data handling, e.g. processing and data distribution to the project stakeholders. System exposes an
interface, a central data ingestion point, that serves as an entry point for all DuDe/Rascal clients. The
telemetry handling consists of data verification, binary operations, e.g. bitstuffing and least-significant-
bit (LSB) re-shuffling, validity checks and is ulimately responsible for duplicates mitigation, i.e. filtering
and discarding. The data distribution portion of the application is responsible for data visualisation,a
web based dashboard, as data export options such as Excel spreadsheets.

Albeit serving the same purpose, the actual implementation of Delfi-n3Xt and Delfi-C3 servers differ,
as shown by the functional data flow diagrams in figures 3.12 and 3.11. Please keep in mind that the
figures are simplified, with all of the secondary tasks such as users management and client-application
authentication removed.

Based on the prior analysis of the documentation and source code [7] [9], a list of points of interests

22 3. Project Context

Figure 3.12: Delfi-n3Xt server application overview

has been compiled, shown in a reduced from below.

• Multiple databases

• Database exposed to the internet

• Batch processing via Cron-daemon

• Quasi-hardcoded frame processing specification

• Telemetry is decoded only if both frames are available

• Binary data is stored in base-2 format as String object

• Data parsing is based on base-2 String representation

• The system is built on assumption of immutable DF schema definition

• DF schema definition is not exchangeable with the client application

• No standardized Application Programming Interface (API). Modifications to the database (DB)
require changes of the client and server applications.

The prior effort in form of a literature study added in appendix C both Delfi-n3Xt and Delif-C3 imple-
mentations were marked as undesired for the future missions under their current form. The decision
is to a high degree the consequence of the subsequent assumption:

Satellite broadcast telemetry data with a single schema that is fixed and immutable

During the design phase of the Delfi-n3Xt mission, the telemetry budget was exceeded. To comply
with the RA community by not breaking the AX.25 length requirement, the telemetry data was split
into two data-frames, transmitted consecutively. The designed telemetry processing software was,
however, not intended to support multiple definitions.
In theory, the most logical processing approach is based on the decoding telemetry frames indepen-
dently per frame type, as shown in figure 3.13 (option A in the figure). However, in the Delfi-n3Xt
implementation option B in the figure was utilized, where the consecutive telemetry data frames were
merged based on frame counter and type, and processed as a single entity.
Consider a use case where one of the matching telemetry frames was not received. This caused the
other matched part of the data frame, that was received correctly, to be discarded.

The choice for solution B, is a classic manifestation of a monolithic architecture. Frequently observed
in the industry [26], the system flexibility is achieved by suboptimal software adjustments, since the
proper adjustment would require a complete system overhaul.
Globally, the shortcomings of a software application can be accounted by the insufficiently defined
requirements at the initial stage of the project, or change of the requirements throughout the mission
or the project lifespan. An example of former, are the missing user interface (UI) elements on the
dashboard of spacecraft operators, such as operational limits of the satellite parameters and lack of
the logging functionality for the telecommands sent to the spacecraft [9].
The monolith design manifests in other parts of the systems too, for example the telemetry frame
processing component accepts one single frame definition. As the direct consequence, the application
is unable to facilitate the changes in the processing and accommodating for 44.5% of dataloss.

3.6. Data Volumes 23

Figure 3.13: Delfi-n3Xt telemetry frame processing alternatives

Analysing the decision process behind options A and B show that the amount of work required
to implement the option A outweighs the added benefit. This decision ultimately lead to a purpose-
designed labour-intensive to adjust Delfi-n3Xt system.

In theory, the purpose designed systems shine in the trade-off by the high mark for the applicability
(appendix C). However, in practice, as illustrated above, this is not the case, as implementation of new
features and functionality is cost-ineffective. The designed system ought to allow addition of custom
and potentially advanced processing scripts [GN-PR-21].

3.6. Data Volumes
This section focuses on the usage statistics of Delfi-n3Xt to serve as a baseline for data throughput
and storage requirements.
The computation of the system throughput is based on the timestamp given to each received frame by
the server storage system upon ingestion. Illustrated by the figure 3.14, the throughput or the data
ingestion rate, varies significantly in time. Comparison of the storage system and client application
timestamps provides a metric for latency, illustrated in the figure 3.15 and described by equation 3.1.

𝛿𝑇 = 𝑇፫፞፞።፯፞፝_፬፞፫፯፞፫ − 𝑇፫፞፞።፯፞፝_፥።፞፧፭ (3.1)

The average value of the latency is 1.0s with a standard deviation of 1.5 s. Practically, 75% of all
data is ingested by server within 1s of reception by the client application. The previously established
latency metric is proven to be unreliable and potentially biased, as a difference between server and
client clocks has been determined. Figure 3.16 provides an overview of faulty timestampted frames
per client, where based on the timestamps values, the frame was received by server prior to the client
application. This analysis leads to the requirement GN-PERF-1 and GN-PERF-4.

With client application performing writes directly to server hosted MySQL server, the queueing and
write locks, e.g. caused by the multiple concurrent writes, would results in a correlation between
observed latency and data ingestion rates. The analysis did not reveal any significant correlation.

Figure 3.17 illustrates the data ingestion rates, expressed in frames per hour. Looking at a higher
precision metric of frames per minute, identified two global peak load occurrences on December 25th
and January 19th, plotted in figures 3.18 and 3.19. Finally, the figure 3.20 illustrates the highest peak
load measured: 7 frames/s on January 19th at 10AM.

Notably, the measured peak load of December 25th, does not correlate with a peak in radio amateur
participation rate as shown in figure 3.4, nor a high duplication count as shown in figure 3.5, while the
January 19th does. This lead to the requirement GN-PERF-2, pushing for minimum ingestion rate of
10 frames per second.

To express the data storage system requirements, one should convert the frame count to memory
based unit system. This is achieved by multiplication of the frame count metrics by the object repre-
senting the telemetry frame with the encapsulated metadata size. The metadata, such as reception
timestamp and RA’s information, is magnitude smaller in size that the actual telemetry data and will
be ignored for the further analysis.

24 3. Project Context

20
13

-1
1-

21

20
13

-1
1-

26

20
13

-1
2-

01

20
13

-1
2-

06

20
13

-1
2-

11

20
13

-1
2-

16

20
13

-1
2-

21

20
13

-1
2-

26

20
13

-1
2-

31

20
14

-0
1-

05

20
14

-0
1-

10

20
14

-0
1-

15

20
14

-0
1-

20

20
14

-0
1-

25

20
14

-0
1-

30

20
14

-0
2-

04

20
14

-0
2-

09

Date

0

1000

2000

3000

4000

5000

6000

7000
Fr

am
es

/d
ay

Figure 3.14: Delfi-n3Xt reception rate

0 25 50 75 100 125 150
Latency [s]

0

20000

40000

60000

80000

100000

120000

140000

160000

Fr
am

e
co

un
t [

-]

Figure 3.15: Latency histogram

10 20 30 40 50 60
Radio Amateur (obfuscated ID) [-]

0

5000

10000

15000

20000

25000

Co
un

ts
 [-

]

Figure 3.16: Count of frames
with Server reception time
prior to the client reception
timestamp (error) per radio

amateur

3.6. Data Volumes 25

20
13

-1
1-

21
20

13
-1

1-
25

20
13

-1
1-

29
20

13
-1

2-
03

20
13

-1
2-

07
20

13
-1

2-
11

20
13

-1
2-

15
20

13
-1

2-
19

20
13

-1
2-

23
20

13
-1

2-
27

20
13

-1
2-

31
20

14
-0

1-
04

20
14

-0
1-

08
20

14
-0

1-
12

20
14

-0
1-

16
20

14
-0

1-
20

20
14

-0
1-

24
20

14
-0

1-
28

20
14

-0
2-

01
20

14
-0

2-
05

20
14

-0
2-

09

Date

0

500

1000

1500

2000

2500

Fr
am

es
/h

Figure 3.17: System throughput throughout the mission

20
13

-1
2-

25
 0

9:
07

:0
0

20
13

-1
2-

25
 0

9:
37

:0
0

20
13

-1
2-

25
 1

0:
07

:0
0

20
13

-1
2-

25
 1

0:
37

:0
0

20
13

-1
2-

25
 1

1:
07

:0
0

20
13

-1
2-

25
 1

1:
37

:0
0

20
13

-1
2-

25
 1

2:
07

:0
0

20
13

-1
2-

25
 1

2:
37

:0
0

Date

0

50

100

150

200

Fr
am

es
/m

in

Figure 3.18: Peak throughput:
december

20
14

-0
1-

19
 0

8:
33

:0
0

20
14

-0
1-

19
 0

9:
03

:0
0

20
14

-0
1-

19
 0

9:
33

:0
0

20
14

-0
1-

19
 1

0:
03

:0
0

20
14

-0
1-

19
 1

0:
33

:0
0

20
14

-0
1-

19
 1

1:
03

:0
0

20
14

-0
1-

19
 1

1:
33

:0
0

Date

0

100

200

300

Fr
am

es
/m

in

Figure 3.19: Peak throughput:
january

26 3. Project Context

20
14

-0
1-

19
 1

0:
10

:2
2

20
14

-0
1-

19
 1

0:
10

:5
2

20
14

-0
1-

19
 1

0:
11

:2
2

20
14

-0
1-

19
 1

0:
11

:5
2

20
14

-0
1-

19
 1

0:
12

:2
2

20
14

-0
1-

19
 1

0:
12

:5
2

20
14

-0
1-

19
 1

0:
13

:2
2

20
14

-0
1-

19
 1

0:
13

:5
2

20
14

-0
1-

19
 1

0:
14

:2
2

20
14

-0
1-

19
 1

0:
14

:5
2

20
14

-0
1-

19
 1

0:
15

:2
2

20
14

-0
1-

19
 1

0:
15

:5
2

20
14

-0
1-

19
 1

0:
16

:2
2

20
14

-0
1-

19
 1

0:
16

:5
2

20
14

-0
1-

19
 1

0:
17

:2
2

20
14

-0
1-

19
 1

0:
17

:5
2

20
14

-0
1-

19
 1

0:
18

:2
2

20
14

-0
1-

19
 1

0:
18

:5
2

20
14

-0
1-

19
 1

0:
19

:2
2

20
14

-0
1-

19
 1

0:
19

:5
2

20
14

-0
1-

19
 1

0:
20

:2
2

20
14

-0
1-

19
 1

0:
20

:5
2

20
14

-0
1-

19
 1

0:
21

:2
2

20
14

-0
1-

19
 1

0:
21

:5
2

20
14

-0
1-

19
 1

0:
22

:2
2

20
14

-0
1-

19
 1

0:
22

:5
2

20
14

-0
1-

19
 1

0:
23

:2
2

20
14

-0
1-

19
 1

0:
23

:5
2

20
14

-0
1-

19
 1

0:
24

:2
2

20
14

-0
1-

19
 1

0:
24

:5
2

20
14

-0
1-

19
 1

0:
25

:2
2

20
14

-0
1-

19
 1

0:
25

:5
2

Date

0

2

4

6

8

Fr
am

es
/s

Figure 3.20: Peak load january

A single AX.25 frame as utilized in the past missions [25] is 2400 bits long, or 300 bytes or 0.0003
MB in size. With the previously determined peak load of 8 frames/s, resulting in 0.0024 MB/s or with
peak load of 300 frames/min 0.09 MB/min for Delfi-n3Xt mission with generation rate of one frame per
second.

The analysis of the Delfi-n3Xt and DuDe applications showed use of String objects for data storage
and processing. String, an object or a data type, depending on the programming language, is repre-
sented as a sequence of characters used to store text with a known, predefined encoding, e.g. UTF-8.
Depending on the programming language, String can be overloaded as an array of characters, allowing
the array-like methods. A deeper look at the client and server source code shows the reason for this
odd decision. Data encoded in the frame is defined in terms of its position and length. For example,
extract first 12 bits of a DF stored in string format c,an be performed via frame[0:12]. While, the
binary format would require binary operations, e.g. bit-shifts. String, being an object, requires higher
memory allocation, adding unnecessary overhead and dependency on the character encoding.

The actual memory allocation is difficult to predict, as it depends on the operating system, pro-
gramming language and more. In python, the shallow command sys.getsizeof will show direct
memory taken by an object, excluding pointers, i.e. contents of the array, fortunately, using the deep
memory libraries such as pympler, the memory utilization can be assessed more reliably. In python,
the String serialization of a DF allocated 1841±8 bytes, while the digit notation, independent on the
base, only requires 264 bytes. The analysis showed that in Python version 3.6.4, the memory allocation
of a string object is 49 byte with an additional byte per stored character. The deep memory approach,
showed utilization of additional eight bytes, source of which could not be determined. In short, the
change of the data format from String to binary will decrease memory consumption seven fold. Even
with String inefficiency, the adjusted data ingestion rates are negligible low circa 0.02 MB/s and 0.2
MB/min under peak load.

3.7. Discussion and Requirements Refinement
The major lesson learn from the inital Project study, is that, albeit a product of a single institution, two
consecutive spacecraft designs, being similar in operation and offering comparable functionality with
regards to the telemetry, may require drastically different telemetry processing requirements.

Driven by tight datalink budgets, the frame definition or schema is assumed unlikely to be embedded
into the telemetry frame body. Furthermore, due to the uplink complexity considerations, it is higly
unlikely that two way communication and reception acknowledgment can be implemented reliably for
all of the clients (including RA). Combined with the missing schema of the telemetry sequence, renders

3.7. Discussion and Requirements Refinement 27

Figure 3.21: Example of data science: error correction

AX.25 segmenter prone to data loss. Aforementioned leads to the assumption that the ”arbitrary data”
approach is unlikely to be used, hence, system will be required to have a priori knowledge of the
telemetry data encoding (Assumption GN-AS-4).

Considering the future missions, with the compatibility requirements towards radio amateur com-
munity, AX.25 will likely be supported in its current form, with the info-field contains payload with
a predefined encoding. Section 3.4.1 showed that the schema within the info-field is not immutably
defined and will likely change during the design (see section 3.5) or possibly change in the operational
phase. The proposal of the flexible telemetry schemas [25], shows a variety of drastically different
approaches, requiring drastically different processing techniques, forcing the system to be easily ad-
justable, flexible in operation during the mission lifetime.

The operational testing of the forward correcting FX.25 protocol, performed by Stensat Group [20],
showed that merely 15 % of the telemetry frames received were decodable with AX.25, while with the
forward correction up to 46 % . The use of the forward error correction, due to its additional wrapper, is
often negated by the lower throughput [27], making protocol useful primarily for environments with the
noise values greater than BER 10ዅኾ [28][27]. This leads to the requirements GN-DS-15 and GN-PR-20.

Post-processing discussion
It can be argued that the lack of error correction in AX.25 can be solved with data post-processing. As
discussed in section 3.4, to distinguish frames from the background noise, the application continuously
scans for flags (01111110), followed by the CRC check. In case of CRC check failure, but an address
field match, it can be assumed that the telemetry frame is partially correct. With a known frame length,
the CRC check failure can be reduced to either arbitrary noise or bitlfips. Number of metrics such as
satellite presence with the reception range of a RA or ground station, influence the probability of frame
correctness and can be used to improve the recovery model. Although requiring further investigation
(e.g. bitflip influence on bitstuffing) the concept, in author opinion, is feasible. Looking forward,
attempt to post-process frames requires a versatile system able to cope with uncertainty in portion of
stored data, allowing classically data science tasks from the ground up (GN-PR-25, GN-PR-26).

The aforementioned lead to the concept outlined in the figure 3.21. Aimed as an attempt to inves-
tigate the needs of a post-processing system, serves as an example of a basic data science task that

28 3. Project Context

any modern data driven system ought to be capable of, ignoring the bitstuffing and SDR use effects.
The concept builds on top of the frame filtering based on the radio amateur parameters: location, time
and the validation that the satellite is within reception range. The metris are easily retrieved and are
readily available in the Delfi-n3Xt system.

The research leads to the question on the function of the client application. It can be argued
that, by utilizing the post-processing error correction technique, hence by disabling the CRC-check,
the processing can be performed solely on the client-side, due to possible high data volumes. This
claim requires further research; however, any modern distributed data processing system, is capable
of ingestion range of MB to GB per second, a far cry from 0.2MB/min peak load of Delfi-n3Xt.

3.8. Conclusion and Preparation of the Next Project Iteration
In conclusion, the legacy Delfi-C3 and Defli-n3Xt telemetry processing systems tend to show a high
dependency to the satellite mission. It can be argued that the telemetry server is purposely designed
with a single mission in sight. Theoretically, it could maximize the mission applicability C; however, after
analyzing the source code, it is clear that the applicability comes at the cost of reusability. The ability to
build on top of an existing framework is generally accepted as the most effective way to expand system
capability as well as to understand the (high-level) system operation. The effort of writing systems
from scratch and optimizing the low-level functionality will unlikely benefit, as it will come at a higher
cost. This and many other factors, stimulate the use and reuse of the software, which comes at the
cost of transparency, as the developers may be unaware of the assumptions, limitations and possible
compatibility issues. This leads to the idea of software frameworks, which by bundling libraries along
with a particular methodology stimulates developers to follow the best practices for a design particular
methodology.

Therefore a drastically new approach is required to ensure the reusability, pushing the system
capabilities, allowing the data science tasks while increasing the quality of the final product over time.

The analysis presented in this chapter, combined with more in-depth literature study in Appendix C
lead to the conclusion that the legacy system showed two major areas of interests:

1. Data Storage

2. Data Processing System

Both the Data Storage and Processing systems used in the legacy applications are rigid towards the
data schema, requiring both databases schema as code base changes to facilitate for changes in the
telemetry definition. The Processing System disallowed flexible telemetry processing and was found
error-prone in both legacy systems.

The goal of the second project iteration is to investigate possible solutions for both areas of interest
and refined the requirements for both subsystems. The Data Storage system and Processing are
presented in chapters 4 and 5 respectively.

4
Data Storage

The assessment for re-use of the legacy telemetry system for the future mission, reveals system limi-
tations towards the processing and the storage of telemetry data. The change in storage requirements
throughout the mission, has three distinct effects. The data can be seen as arbitrary or missing by the
storage system, or contain not previously defined data types, all of which inevitable leads to perfor-
mance implications [29] [30] [31].
The storage systems are developed to solve specific needs, e.g. write/insert performance, complex
data aggregations, application specific data formats, objects relationships and many others, what lead
to a large variety of systems and techniques available for use today. The section focuses on three
conventional storage options: the file system 4.2, database 4.4,and object data store 4.3 systems.

4.1. Categorisation
Prior to the study of the available storage system, the scope of the storage system has to be defined.
As illustrated in figure 4.1, globally storage systems can be separated into two broad categories: Cen-
tralized and Distributed. Centralized storage is defined as a single node system, while a distributed
system denotes multi-node system. The distributed category is further divided into homogeneous and
heterogeneous depending on the node environment similarity. The homogenous category implies the
use of identical storage software on all of the nodes. In contrast, the heterogeneous systems may be
created with the use of different software systems and rely on an additional system component re-
sponsible for integration and control of the storage functions. Both categories are further categorized
based on the mode of operation, systems requiring a coordinator to control or an aggregate/router
controller are non-autonomous and multi-system categories respectively.

The centralized storage systems are out of the scope of the project, due to lower availability and
hence lower reliability, hence implicitly failing the performance and availability requirements GN-PERF-
1, GN-PERF-2, GN-PERF-4 and GN-QA-AVAIL-3. The use of the heterogeneous system, i.e. a mix of
various storage technologies, is an opportunity to integrate with legacy and currently available on-
premise systems. The approach increases system complexity both on software as operational levels,
which is known to affect quality, i.e. maintainability, and reliability [32].

The scope is therefore limited to Homogenous Distributed Systems.

Storage System

Centralized Distributed

Homogeneous Heterogeneous

Autonomous Non-Autonomous Federated Multi-system

Figure 4.1: Distributed Storage systems

29

30 4. Data Storage

File System

Application

File System

Application

WAN Network

DAS NAS

File System

Application

SAN Network

SAN

File
System

HDFS

Disk Array Disk Array

NASNAS

Application Server

Data node
Data node

WAN Network

Master node

HDFS Namenode

Application

 HDFS

Application Server

Application Server Application Server

File SystemFile System

HDFS blocks

Data node

File System

HDFS blocks

Data node
SAN appliance /

Application server

WAN Network

Figure 4.2: File System Storage

4.2. File System
The file system storage provides a hierarchical data store in form of files placed inside a folder structure.
The file system may be local, handled by the operating system, or distributed across multiple physical
machines in form of shared drives and folders. Within an enterprise infrastructure, one can distinguish
between Directed Attached Storage (DAS), Network Attached Storage (NAS) and Storage Area Network
(SAN) systems.

In the DAS systems the storage, i.e. the disks, are attached to the application server directly
via hardware-level connection (SATA, SCSI, SAS …). Therefore, any machine with a hard-drive and
operating system is classified as DAS. Generally, DAS systems provide a cost-effective solution for
small applications and can be tuned for high data throughput. It should be noted, that in many cases
DAS stored data is accessible only to the application server. Therefore, the scalability of DAS systems
depends on the application and is primarily performed vertically by adding disks.

For the shared storage systems, one can distinguish between File Level Storage and Block Level
Storage solutions. The File Level storage, as seen in the Network Attached Storage systems, provides
a DAS-like interface over the WAN, by mounting the NAS devices as a local drive abstraction on the
application server/client. The Block Level storage, is a low level storage system, comparable in mech-
anism to the cylinders of a hard drive controlled by the (OS) file system. In Block Level storage, the
hardware devices form a SAN network, allowing SAN devices to interact with the drives directly.

While the NAS systems perform Create, Read, Update, Delete (CRUD) operations directly on the File
System spanning over the attached drives exposing the FS directly to the client applications, the SAN
systems perform low-level, block manipulations on the connected drives, exposing an unified protocol
to the client applications providing an abstraction of a file system. In practice, the NAS systems are
connected directly to the WAN networks, while the SAN’s create a storage network that is exposed to
WAN via controller node(s).

In terms of scalability, the NAS systems scale both vertically by adding storage disks, or horizontally
by adding new machines providing additional interface to the WAN networks.
Generally, the NAS systems are deployed as a cluster, with a distributed file system exposed to all client
applications, providing access to data, regardless the node client is connected to. The storage hardware
is often managed by OS that is accessible to the host node only. Any node-to-node operations require
additional logic, a backbone or WAN networking which in some cases is handled by the operating
system.

As shown in the figure 4.2, the SAN systems, form a network of storage drives, allowing a single
disk to be accessed from multiple nodes. Generally, the SAN systems are scaled horizontally, allowing
additional drives and appliences to be added to the SAN networks.

The trade-off between SAN and NAS is ultimately handled by the service providers. For sake of the
argument, from a high level, both systems provide the same functionality, i.e. the file system access
for the application, albeit with a different level of performance.

The popularity of data science, requiring significant amount of data for the prediction model ac-
curacy, gave rise to a variety of new technologies. First, due to the data volumes and redundancy
constraints, the datasets are split over multiple machines. Secondly, aggregating and moving large

4.3. Object Storage 31

datasets from the storage to the processing machine(s) is not always feasible, as large datasets cannot
be loaded into RAM and may require more disk space than locally available [33] . Additionally, moving
large datasets require fast networking, affecting any other network dependent systems, for example,
data ingestion.

The challenge is solved by reversing the process, instead of moving the data, performing the pro-
cessing closer to the storage: near-data computing (NDC) [34]. One of the popular frameworks utilizing
the NDC approach is Hadoop, with underlying Hadoop Distribured File System (HDFS) providing a re-
dundant distributed storage on a commodity hardware. HDFS operates in Master-Slave architecture,
with one Master, i.e. the namenode, controlling the CRUD operations on all Slave machines, utilized
for storage. Similar to the DAS systems, each node is a single machine with directly attached drives
running the HDFS application and, potentially, the processing jobs. Similar to the SAN systems, the
stored data is saved in form of files, split into lower-level blocks of fixed length distributed across the
data nodes. As shown in the figure 4.2, the blocks are stored directly on the OS file system, similarly
to the NAS systems. Furthermore, with every node connected to the WAN network, the stored data
can be accessed by connecting to any of the nodes via client application that exposes a programmatic
interface in form of file system abstraction.

4.3. Object Storage
The storage solutions described in the previous sections expose a file system to the applications, storing
data hierarchically as nested folder structure. In many cases, the hierarchy is not required, leading
to the data being stored in a single folder. The OS journaling performance, linking the file locations
(blocks/cylinder) to the file system, is influenced by the file counts influencing the OS performance
and all dependent applications.To avoid the situation, data has to be scattered across multiple folders,
increasing complexity without added value.
In many cases, data is machine generated, modified and used and can therefore be stored natively in
the application specific object. As hinted by its name, the object based system allows data to be stored
in the raw object form, directly on the storage medium, i.e. disks. Utilizating the low-level storage, the
storage organisation is flat, allowing objects to be stored and retrieved via an unique identifier and/or
additional metadata.

4.4. Database Storage
Database Management System is an umbrella term for software applications that handle and store
collections of data, built from the need to accommodate the varying data types, structures and relations,
as well data retrieval and querying.

The database models aim to logically structure the data, based on the application operations and
data handling. For sake of simplicity, this document will focus on the two major models: the Relational,
loosely known as RDMBS or SQL systems, and Model-less or NoSQL, databases.

4.4.1. Relational Database Management Systems (RDBMS)
The Relational DataBase Management Systems (RDBMS) are database system that store information in
accordance to the relation model based on the normalization principle, while exposing a SQL-language
based querying abstraction. The data stored in the database follows a schema with write operations
performed in accordance with ACID or BASE principles, based on the deployment model and application
logic.

Normalization
The Structured Query Language (SQL) is developed to solve data querying needs. Due to various
historic reasons, the querying of the RDBMS systems is optimised towards on-demand querying, or
random-reads. This is achieved by storing information in form of relations, that can be retrieved
by mapping of the normalised data. In practice, the normalisation is achieved by separation of the
repeating data into a set of inter-dependable data collections, or tables, allowing contents of each to
be linked using join operations on the (unique) identifiers or keys.

When applied correctly, normalisation prevents information duplication, facilitating to the overall
database consistency. For example, a client’s email address may be stored in multiple locations on the

32 4. Data Storage

database: e.g. the billing and personal information tables. When developing functionality for email ad-
dress update, it’s inherently easy to overlook one of the locations, e.g. billing, and create an anomaly.
The problem is solved with normalization, dictating the user information to be stored only in the user
information table and referenced for billing purposes via a query, i.e. JOIN operation.

Schema
The majority of the RDBMS systems require schema’s, the definitions for the tables of the database.
The schema defines the table columns, data types to be stored, as well any additional parameters such
as data uniqueness, counters, (foreign) keys and more. The schema directly influences the efficiency
of the storage medium and (random) read-write performance that is to a high degree driven by the
efficient RAM memory allocation and low level optimisations. The data type definitions are required
internally for querying, e.g. table joins as well computations and logic comparisons.

The schema enforcement is strict, allowing only the matching data to be written into the database
tables. Dictated by ACID and BASE principles, presence of errors automatically discard the entire trans-
action.

ACID
Due to historically high storage and computational costs, many of the database systems were designed
to be deployed as a single database instance. To ensure reliability and robustness of the transactions
towards possible hardware malfunctions, a number of safeguards has been designed and implemented
over the years.

Originally proposed by Haerder [35] in 1983 as a set of principles to facilitate database recovery,
ACID became an instrumental methodology to guarantee data validity under various circumstances,
ranging from software to hardware errors and malfunctions. The transaction, as defined by ACID,
consists of a set of actions, required to be performed indivisibly. According to the principle all actions
ought to be executed correctly, or the complete transaction is rolled back, bringing the database to the
pre-transaction state. The concept is based on four properties:

(A) Atomicity The transaction is either all-or-nothing: either all actions succeed or the transaction fails.
An aborted transaction does not have effect on the state of the database.

(C) Consistency By design, the transaction cannot bring database into an invalid state. The state tran-
sition, can only occur if transaction is valid in accordance to defined rules and database constraints,
therefore preventing illegal results.

(I) Isolation ACID dictates that the events of a transaction ought to be hidden from other active trans-
actions. Specifically, this means that concurrent transactions are guaranteed to return the same result
as if they would have been performed consecutively.

(D) Durability Once a transaction has been committed, the system will guarantee permanent storage
and robustness towards any subsequent failures.

BASE
Keeping data in sync across multiple machines or database instances, is a well studied problem [36]
predating the ACID principles [35]. Until recently, working with a distributed RDBMS systems due to
ACID concerns required a two-phase commit [36]. As suggested by its name, the commit is performed
in two steps. First, transaction is pre-committed to all of the database servers, if action is determined
valid by all of the nodes, the commit is agreed and finalised in the second step. If transaction is
invalidated by one of the nodes, the transaction is rolled back on all of the nodes. The invalidation can
occur due to various reasons, for example, due to an unexpected downtime of one of the database
servers. The risk of the downtime mid-commit increases with the number of servers. For example a
two server database cluster, with 99% uptime or 8.7h/year downtime per individual machine brings
the total system availability to 98.01 % or 7.2 days/year, reducing the availability in twentyfold!

4.4. Database Storage 33

In many cases, the availability is preferred over the consistency. Opposed to ACID, BASE (Basically
Available, Soft state, Eventually consistent) is optimistic towards CRUD operations and accepts tempo-
rary database inconsistencies. The availability is therefore achieved by tolerating failure.

(BA) Basically Available Basically available does not guarantee availability, but imply that portion of the
data is available with servers downtime, i.e. that losing a node will not result in complete data loss.

(S) Soft state Soft state indicate that the state of the database may change over time, even without
external inputs. The eventual consistency implies that parts of the database may be out of sync, and
can be updating at any given point of time.

(E) Eventually consistent Changes of the database state, due to clients input, are not executed directly
on all of the nodes and take time to propagate.
The applicability of the BASE approach depends primarily on the application, for example, a bank appli-
cation should not allow consecutive withdrawals exceeding an account’s funds; however, a processing
time between withdrawal from one and addition to another account is perfectly accessible.

CAP
Maintaining consistency, hence providing identical read results across multiple nodes is challenging.
ACID ensures consistency, but comes at cost of the availability. BASE tolerates networking inconsis-
tencies while maximising the availability, but loses in the consistency. Ensuring both availability and
consistency is feasible, but requires an ideal network availability [37].
Published by Brewer in 2000 [38] the trade-off between aforementioned is called CAP theorem: Con-
sistency, Availability and Partition tolerance/resilience. It should be noted that the consistency (C),
deviating from the earlier ACID definition, defined as consistency of results from reads across all nodes
rather than a consistent of the database as defined in ACID. The availability (A) implies the minimum
downtime, but also quick access to the data. The Partition Tolerance (P), is system tolerance towards
the network related malfunction between database nodes. Gilbert [39] states that ’…a network is parti-
tioned, all messages sent from nodes in one component of the partition to nodes in another component
are lost …’. Brewer and Gilbert [38] [39] argue that in a distributed system only two out of three prop-
erties can be satisfied. This leads to three types of distributed systems: Availability-Partition Tolerance
(AP), Consistency-Partition Tolerance (CP) and Availability-Consistency (AC).

The two-phase commit (2PC) follows the CP methodology, forfeiting the availability for consistency
and partition tolerance. In theory, a successful transaction will always result in a consistent state across
the cluster, regardless of the network. Specifically, any network induced issues cause partitioning, in-
validating the transactions and the partition(ed) (node(s)).
In practice, the 2PC requires a single coordinator, which for example, due split-brain can lead to in-
consistencies [40]. Split-brain is the situation where multiple database nodes are assigned primary
(Master) roles, effectively acting as two separate clusters. Additional issue of the 2PC design is the
blocking. Failure of the controller during the first phase, i.e. the pre-commit, locks the nodes until
the controller is recovered. The recovery will depend on the RDBMS system, the configuration and
the failure mode, which in some cases require manual intervention. The problem can be mitigated in
various ways, for example via three-phase commit, setting a time-out of the operations.

Deployment
Following the Moore’s law, the computational and storage costs decrease in time and reaching point
to be negligible in comparison to the value of the stored data [41] and the costs associated with the
system downtime. The mission critical systems are rarely deployed on a stand-alone machine, with the
onsensus leaning towards redundant, High-Availability (HA), Cloud hosted FaaS and other distributed
schemes.

The ability to scale a deployed database can be achieved in two ways, vertically, e.g. by adding
RAM, updating CPU and storage; or horizontally, by adding discrete machines to the cluster. The vertical
scaling does not ensure HA and serve as a band-aid solution for performance issues. The horizontal
scaling is considered a long-term maintainable strategy to facilitate both the data volume growth as
the Read-Write scalability.

34 4. Data Storage

Master Slave Slave

data replication

WRITE READ READ

Loadbalancer

Figure 4.3: BASE clustering?

In the RDBMS systems the horizontal scaling is by design optimised either for Read (R), Write (W)
or Read-Write (RW) operations, with applicability depending on the RDBMS system at hand. The fol-
lowing discussion focuses primarily on the MySQL systems, due to author’s better understanding and
experience,the MySQL active development, systems market share as well the MySQL’s use in the legacy
application.

READ-optimized scalability
This section focuses on Read-queries scaling which is applicable for systems with Read-Write ratio of
at least 60 % [42]. Regardless the ACID or BASE approach, the entire dataset has to be stored on
each nodes of the database, allowing the application(s) to connect to nodes arbitrarily. In practice,
the connection between nodes and clients is proxied via a load balancer, preventing a single node
overutilization.

With ACID, the transactions are performed synchronously ensuring consistency across the cluster
at any given time. As indicted by CAP theorem, the ACID approach, e.g. Galera Cluster (GC), trades
the availability in for consistency and partition tolerance [43]. The consistency is achieved by simulta-
neous transactions to all of the database nodes. It should be noted that any delays or queuing in the
communication layer, actively lock the entire cluster for both Read and Write operations. The phenom-
ena is mitigated by use of timeouts, forcefully removing slow nodes from the cluster, hence creating a
partitions, and by invalidating the pending transactions. The outcome depend on the selected engine
and whether the quorum (the minimum number of healthy nodes permitted) is maintained. In practice,
the servers are scaled to operate at 60 to 80 % of total capability under the peak load. Depending
on the application, the nominal off-peak utilisation is close to 10-30 % mark. The failures rarely occur
in off-peak periods; and for a three node cluster equally utilised at 60%, the re-allocation of a single
failed node theoretically brings the load of remaining two to close to 90 %. The reconfiguration of the
load balancer, recovery of the failed transactions, re-connection of failed client applications will create
a queue, increasing the load beyond the original node.

The BASE principle utilises the data replication visually shown in figure 4.3. The cluster contains a
single Master node, containing binary log, i.e. a list of pending and past transactions. In accordance
to two-(or three-)phase commit, transactions are commit to the binary log, evaluating the validity and
followed by the execution or rejection. The binary log is then synced with the slave nodes, performing
the transaction independently. Due to networking and log syncing delays, the transactions executed on
the master are not applied instantaneously, causing data inconsistencies across the nodes. According
to CAP, the system provides Availability-Partition Tolerance by forfeiting consistency. In this approach,
write operations ought to be performed on the Master node, and reads from any of the Slaves in a
load-balanced architecture. To facilitate HA write operations, or write-optimisation, a multi-master ar-
chitecture can utilised, for example Master-Master, Master-ring and many others [44]. Albeit providing
great flexibility towards multi-site deployment, the approach is vulnerable for data collisions due to
auto-increments and primary-key duplication.

Read & Write-optimized scalability
While the Read-optimisation places the complete datasets on multiple nodes, (read-)write optimisation
requires more sophisticated techniques. One can distinguish between application layer sharding, i.e.
functional scaling, proxy layer sharding, i.e. MySQL cluster and low-level database sharding, i.e. Spider
storage engine.

A measure to solve the problem is to diversify the stored data across the database cluster. With
data stored in tables in accordance to the normalization principle, tables that are unlikely to require

4.4. Database Storage 35

join operations can be placed on different databases on different nodes. Due to functional breakdown
of data, the approach is called functional scaling. Functional scaling pushes the scalability dependen-
cies from the database layer, to the application layer, requiring application to be aware of the cluster
configuration. The Functional Scaling is limited by the database schema, for example in Delfi-scenario,
only the users, payload and housekeeping data can be split.

Another disadvantage of the functional scaling is the server utilization balancing. The databases
residing on the machines should not only be operated as independent as possible, but utilized equally
for the efficiency considerations. To resolve this problem, one can opt for data sharding. Sharding
splits the dataset into parts, or shards, based on intrinsic property, e.g. reception data, and places the
shards on different nodes accordingly. With the complete dataset split in shards across multiple nodes,
aggregation queries require node-to-node operations, creating severe bottlenecks in operation. Tasks
such as shard recovery, shard incosistencies or even backups, increase the operational complexity.

An industry response to the challenges of the manual sharding (for MySQL/MariaDB) came in two
solutions: MySQL Cluster (NDB) and Spider Storage Engine. MySQL Cluster was developed as a re-
sponse to NoSQL popularity, providing auto-replication key-value (KV) storage across database nodes.
To interface with RDBMS storage, KV contains hashes of the table index(es) stored on the node. With
inherent dependency on the network latency, NDV is tuned to keep the KV in RAM, pushing the hard-
ware requirements beyond the commodity hardware. In some cases requiring the equal size of RAM
as the table size [42]. Due to key-values based indexing the query operations require per-row lookup
when boundary of single node is crossed, drastically reducing the performance per network hop (and
queuing).

Spider storage engine relies on MySQL native partitioning interface for table splitting and open-
source library for managing splits/shards across the nodes. The architecture consists of one single
Master, responsible for partitioning and Slaves nodes, containing the partitions. By utilizing the native
MySQL functionality, the ACID principle of RDBMS is partially enforced, allowing transactions roll backs.
While providing excellent INSERT performance [42], the JOIN operations across the cluster are slow
and require out-of-box thinking for optimisation.

RDBMS Conclusion
The strength of the database systems following the relational model approach is often accounted to the
ACID, the insurance of transaction and database states. The insurance comes at cost of availability, and
BASE concepts are often applied. To ease the operation and maintainability of the system, all nodes of
the cluster ought to have the complete datasets, stepping away from the sharding models. This limits
the available storage, as well the system WRITE/INSERT performance. It should be stressed that the
table alterations lock the database tables, both for read and write.

Observing telemetry processing software use, it became apparent that system ought to be as low
maintenance as possible. The processing or visualisation errors are tolerable and can be reversed; the
data storage is most definitely not. Loss of data, either historic or at data ingestion is unacceptable.
Running a single node database is a high risk, not only in terms of availability, shown to be excellent in
practice, but primarily in terms of data corruption. Regular data exports and backups are only a part
of story; resolving data corruption or data collisions, recovery, e.g. via binary log, takes hours if not
days depending on the data size and administrator experience. It can be argued that problem can be
resolved in different way, for example with a secondary node, acting as an active backup system and
not used for the processing or data delivery subsystems. Which in authors opinion is computational
and storage waste.
Analysis of Delfi-n3Xt system presented in chapter 3 required database export, utilizing the MySQL
native backup functionality pushed the server load far beyond the tolerable limits. This lead to the
conclusion that in Delfi-n3Xt model, aggregating bulk data for data science tasks via the database
cannot be performed on-demand and has to be scheduled, unless server is scalable.
Horizontal scaling of SQL servers is a complicated process, requiring fine tuning of the queries and
various data type storage considerations. Any changes to the table definitions, e.g. new columns or
data types, are costly. Prototyping with MySQL cluster in Docker showed that table alterations across
multiple nodes, while serving clients, i.e. storing and retrieving records, proved to be impossible withing
skillset of the author.

36 4. Data Storage

4.4.2. NoSQL Data Stores
Due to the inherent uncertainty of the system specifications during the design phase of the future
Delfi missions, that expose dependencies towards the frame schema, the contents and the process-
ing techniques, a more flexible data storage system is preferred. As discussed in section 4.4.1, the
relational databases require a high degree of rigidity with respect to the frame definitions. Regard-
less the format or the database schema, the uncertainty manifests is the complications with regards
to the database alteration. Albeit a minor inconvenience in the development, the alteration of a live
system may become in a time consuming process, possibly requiring redundant layover databases,
master-slave architectures, backups or a system downtime.

With the rise of social media platforms in the past decade, a shift in the data structures can be
observed. The once static webpages, made way for dynamic webpages, serving varying content asyn-
chronously. The rise of the mixed web-content, and facebook-like social platforms required flexible
storage solutions for the mixed content with a high throughput capabilities.

Another significant consequence is the change in the data interaction. The classic relational models,
designed in the early ’80 are transactional in nature. The use cases, often compared to the banking
systems, require frequent and extremely reliable data modifications. One example of the reliability, in
form of reading consistency, are the write/read ’locks’, disabling database table or row alterations or
even read’s while data is been updated.

The majority of data stored at the time of writing is immutable. This is partially accounted by the
social media and IoT devices, resulting in large amounts of user and machine generated data that is
never modified, but overwritten.

The third and the final concern to be discussed is the data throughput. The previously mentioned
mixed content contains a growing percentage of the streaming data. For example, video streaming
accounted for 74% of data traffic during peak hours in North America in 2016 [45].

The shift in the data patterns unsurprisingly lead to the variety of new data storage and management
technologies. Granted, the major share of data traffic on the web originates from a limited set of
providers,e.g. Google, Netflix and Amazon, and it can be argued that the tools aim to solve the
large storage needs solely apply to the select set of companies. Furthermore, considering the online
rankings [46] the aggregate of database system mentioning on the internet, the relational database
spans the top 4 of currently utilised storage systems. This leads to the question whether the NoSQL-
trend, originated from the social media and IoT specific needs, applies to a university grade telemetry
processing system.

The What
The concept of non-relational database storage likely predates the relational data storage models [47].
The ”innovative” aspect of NoSQL technologies is not the storage strategy, but in the performance of
the tools facilitating this behaviour. The term NoSQL dates back to 1998, introduced by Strozzi [46]
for an application capable of storing relational data without support for the SQL querying language. In
today’s terminology, the Strozzi’s applications acts as a wrapper, or an abstraction, for the underlying
file system storage, providing an API for CRUD operations. While Strozzi utilised NoSQL terminology
to emphasise the lack of SQL querying language, a computationally expensive technology at the time;
the term NoSQL used today applies to class of all non-relational databases.

The majority of the popular NoSQL systems like Cassandra, and predecessors like Dynamo and
Google Big Table date back to late 2000’s. Designed by Google (Big table), Facebook (Cassandra),
VMware (Redis), Amazing (DynamoDB), these projects have been released under an open source li-
cence, gaining popularity in early 2010’s.

The initial need for these systems can be distilled back to:

• Amount of aggregated data grows exponentially

• Reliable horizontal scaling is required

• Data does not fit into the tables and exponentially increase the database complexity

• SQL querying slow for sparse or loosely defined data

• flexiblity in scaling, e.g. the opposite of RDBMS sharding

• low operational costs, less features, less overhead result in a lower cost of operations

4.4. Database Storage 37

• less requirements on the hardware, i.e. ’commodity’. (no 128GB RAM for <100 GB of data)

The popularity of IoT devices created a new paradigm pushing the previously established needs
even further. The generated data is by design unstructured, containing anything from geo-location,
images, video streams to a variety of senor data. For example, authors simple home automation system
consisting primarily of light switches and heating device controller, generates 2MB/day worth of data.
A comparable commercial solution likely generates tenfold of that, aggregating various user data for
the commercial needs.

Datamodel Classification
With a large variety of NoSQL systems, one can identify four major data models sharing a distinct
feature: lack of any significant requirements on the stored data, i.e. schema-less. In the agile devel-
opment cycle, NoSQL allows data to be stored in a structured, semi-structure and unstructured manner,
and modified at any points, even in the production environment. Furthermore, working with OOP lan-
guages, NoSQL allows objects to be stored natively into the database. For Delfi missions, the need
for a flexible data model originates from the requirement to support flexible telemetry frame encoding,
allowing parameters to be stored without manual adjustment to the databases.

Within the realm of NoSQL systems one can identify four distinct data models:

• Key-Value stores

• Document stores

• Column stores

• Graph-databases

Key-Value store
Key-Value store is a simple storage mechanism that operates on similar principles as the object stor-
age, persisting the serialised data (value) under an unique identifier, i.e. key. The storage mechanism
supports Create, Read, Update and Delete (CRUD) operations, but a limited querying functionality. De-
viating from RDBMS schema-on-write methodology, Key-Value store assumes schema to be encoded
in the data, e.g. XML, JSON, Avro [48] or available the target application logic. Applying the right-tool-
for-the-job principle, the KV stores are applicable for situations requiring fast lookups, for example,
session information management, e.g.browser cookies. Limited to Key-lookups, store is not suited
for querying as application logic would be required to perform the (un)necessary query operations,
increasing the complexity while potentially decreasing the efficiently of the system. In case of Delfi
projects, the Key-Value data stores are not suited due to lack of query language.

Document store
Document data store is based on Key-Value principles, allowing Key lookups, but with ”Value” a query-
able document structure. The document, i.e. the data stored, follows predefined format, for example
XML, JSON or BSON, containing a series of fields and attributes allowing a hierarchical nesting. Albeit
dictating document format and syntax, documents schema is not required, allowing storage of arbitrary
fields and parameters. Similar to KV stores, documents are retrievable by key, or via an API queries,
with implementation varying capabilities.

Column store
The Column or Wide-column data model leans into direction of RDBMS systems, by using a relational
table. While RDBMS systems by design read data per row, the Column store systems retrieve data per
column drastically increases the read performance. For example, consider a query to retrieve anomalies
on Spacecraft bus voltage:

SELECT received_t ime , bus_vol tage
FROM processed .OBC
WHERE bus_vol tage < 11 OR bus_vol tage > 13

Since none of the parameters of the query can be used a secondary index, all records of the ta-
ble has to be read. Due to MySQL design the complete rows are retrieved, followed by filtering of
the required columns, i.e. received_time and bus_voltage, and evaluation of the query statement:

38 4. Data Storage

user:123:preferences

frame:1231

user:123

{width: 100, color: red ...}

{frame" 1231, received: 12312...}

{name: Jan, lastname: ...}

KEY VALUE 123

{_id: 123,
name: Jan,

lastname: Smit,
logins: [127.0.0.1, 192.168.1.1],

....
}

KEY DOCUMENT

1231

{_id: 123,
received: 1231211,

param1: 0.34,
V_curve: [127, 192.168,123],

....
}

a) b)

ID timestamp:client timestamp:
server timestamp:obc RA:uuid ...

ITRX:
doppler

ITRX"
sign. strength ... main_bus:voltage main_bus:current

3231 1231211 12312123 245 user:1234

1277.3 0.00233232 1231251 12312193 285 user:1234

12.03 286.01

Timestamp column family ITRX col. family
OBC: col. family

c)

Frame:1231

ITRX

User:123

....

received_by

timestamp:client: 1231211
timestamp:server: 12312312

name: Jan,
lastname: Smtih
...

contains

d)

User:1232

received_by

timestamp:client: 1231511
timestamp:server: 12312912

name: Steven,
lastname: Null
...

Figure 4.4: NoSQL data store types:
a) Key-Value, b) Document, c) Column-store d) Graph-data store

bus_voltage < 11 OR bus_voltage > 13. With an excess of 60 columns read per table, a substantial
performance improvement can be achieved by reading only the required columns. Unlike the RDBMS,
KV or document-stores storing the data as a complete record, Column orientated systems store the
column data separately. In contrast to RDBMS, splitting based on data relations, the Column based
system split columns based on the application use. Furthermore, by column storage, support arbitrary
number of columns, partitioned into column families. On low level, instead of partitioning data per
row, as done in RDBMS, data is additionally grouped per column family. Furthermore, the Column
Data store facilitates flexibility by allowing sparse columns.

Graph-data stores
Graph data store (GDS) provides a schemaless infromation persistence, following graph theory by
structuring data in accordance to implicit relations. While the RDBMS relations are explicit in from of
foreign keys, and serve as a constraint to to increase the dataset consistency, the (high-order) relations
in GDS serve as a source of additional information and can be used to detect hidden relationships
between entities. In its core GDS is optimised for queries that are typically complex and slow in
RDBMS systems, e.g. multi-level joins, by attempting to describe the real-world relationships instead
of information normalisation relationships leading to schema’s optimized for the application use-case
querying.

The Graph-data store is proven useful for data with high variance in implicit relations, e.g. social
networks. In case of Delfi, Graph theory can be applied to the dataset to assist with anomaly detection,
e.g. by trying to investigate illogical relations, but is not suited for the entire dataset storage.

Scalability, ACID, BASE and CAP
As discussed in section 4.4.1, the CAP theorem implies that a distributed persistent data storage by
default ought to cope with partition tolerance, focusing either on the availability (AP) or consistency
(CP) [49]. It is argued that in practice Google Spanner is only one of few systes that achieves Availability
and Consistency (AC) [37], however, a closer investigation reveals that Spanner is optimised towards C
and forfeits A and the claim of AC [37] originates from user’s believe in the availability, implying a low
down-time, implicitly ignoring the partitioning. The consistency-partition (CP) and availability-partition
(AP) resilience relate back to ACID and BASE principles, requiring system to be either consistent,
hence locking [50], or available but eventually consistent. It should be stressed that CAP states the
capabilities of the system under normal operations, rather the preference between consistency and

4.4. Database Storage 39

Table 4.1: Replication Policies [52] [51]

Eager Lazy
Master-Slave RDBMS [CP]: HBase, MongoDB
Multi-Master Megastore (google) [AP]: Dynamo, Cassandra

availability under network partitioning [51].

Replication and Sharding Classification
The CAP theorem directly relates to replication, i.e. the data synchronisation across the cluster. Gray et
al. [52] classified the replication as Synchronous or Asynchronous, nicknamed Eager and Lazy respec-
tively. The Eager approach commits the changes to all database nodes, prior to returning transaction
status to the client, effectively guarantying the consistency across the nodes. The Lazy approach,
commits data to the receiving node, passing the changes asynchronously to the remaining replicas.
Gessert and Gray [51] [52] furthermore classify replication based on update location, i.e master-slave
or multi-master (update anywhere).

Where SQL based systems may rely on shared-disk storage (SAN, NAS) to operate in a distributed
manner, the NoSQL systems are generally built upon a shared-nothing [51] architecture with the
database nodes connected via network. The scalability and throughput is therefore achieved via par-
titioning of the data across the nodes.

The data partitioning or sharding depends on data type and use by the application and can be
divided into range-sharding, hash-sharding and consistent sharding. The range-sharding is achieved
by splitting of key-space in chunks, co-allocated with data nodes, based on range of values. Any
incoming data is redirected to appropriate shard or the node via the master node operation [53]. The
hash-sharding is applicable for the look-up operations, by coordinating the location of shard based
on the primary key and is primarily used in Key-Value stores. The Consistent hashing [54] instead of
hashing to database node, hashes key to the partition that is contained within a shard, that can exist
on multiple nodes.

Next to the inter-node partitioning, i.e. hashing, and replication, the intra-node partitioning cannot
be ignored. Data store systems may operate in-memory, utilising the volatile memory, i.e. RAM, for
storage. To ensure the persistency, the data is either distributed across multiple nodes, i.e. VoltDB or
persisted to durable memory, i.e. Redis. The use of flash memory storage, i.e. SSD, allows a high
performance Random Reads, historically unavailable with use of HDDs. This lead to SSD optimised
data stores such as Aerospike [55].

Gessert [51] classifies NoSQL databases further by data access patterns, i.e. update-in-place and
append-only. Due to low performance of random writes, the disk-dependent database systems, utilize
caching and logging in form of buffer pools. The append-only systems maximize throughput by perform
write sequentially, primarily by appending data to a log. To facilitate the performance of random and
sequential reads, the log is indexed using various strategies [51]. Gessert argues that the garbage
collection, e.g. compaction or removal of deprecated data is computationally expensive.

Query Based Classification
The majority of the RDBMS systems are optimised for normalisation, often scattering the data over
multiple tables within a single node or duplicates across a cluster. The process of dissection ought
to be performed by the application prior to writing, making it computationally expensive, especially
for high-throughput scenarios. The NoSQL systems contain, by design, tend to aggregate the related
information in a single collection, increasing the performance of the write operations.

In terms of reading operations, one can distinguish two types of querying: retrieve by index and
retrieve by scan. Retrieve by index applies for RDBMS, KV and Document-based data stores, allowing
retrieval of entire object based on the object key. These systems tend to encode metadata in the
key, as shown in figure 4.4, to ease the lookups. The secondary indexes are available in some of the
systems, but maybe inaccurate and slow for cluster-wide operations.

The column based store does not support per-row retrieval as done by RDBMS systems, and requires
join operations between column families. In this case, multiple objects are addressed or scanned by
the query. With exception of CDS systems, the RDBMS due to normalization, often outperforms NoSQL
in terms of random data access. In terms of recurrent application queries, NoSQL systems are often

40 4. Data Storage

optimized for the expected application queries and are generally slow for the random querying (with
exception of Graph data stores). For example, correlating the satellite data from two collections,
user data and satellite data will grossly underperform in majority of NoSQL systems. The available
optimisations depend on NoSQL system and can in some cases be achieved via ’view’s predefined and
constantly updated queries.

Next to the scan and key lookup queries, database can perform analytical queries, either natively,
i.e. MapReduce or via external platforms, such as Hadoop, Spark, Flink …

4.5. Conclusion
As discussed in the previous sections, the RDBMS is rigid towards data ingestion and storage. For
purposes of the telemetry data storage, each telemetry field ought to be defined in the database schema
prior to be stored. It can be argued that infrequently used fields can be stored as an unstructured
JSON object; the approach that is supported by MySQL and Postgres, however, requiring a NoSQL-like
schema-on-read behaviour of the application. Furthermore, it should be stressed that unstructured
storage is not supported for the querying and does not contribute to robustness of the application.

The vertical scalability of RDBMS is excellent, however, as discussed in the section 4.4.1, scaling
horizontally introduces numerous challenges. The database utilisation has to be determined prior to the
scaling attempts, which may require partial application redesign to comply with the changes. When
stored data exceeds the single machine storage limits (either storage or RAM), sharding has to be
applied. Sharding increases the complexity exponentially, introducing secondary challenges such as
reduced the JOIN performance due network I/O limitations requiring application data query tuning,
complex back-up and schema alteration processes.

The storage should dictate any requirements on the business logic. Therefore, the business logic
of the mission, the spacecraft, should not depend or be aware of the ground segment storage. To
support this requirement, the storage subsystem should support various types of telemetry definitions,
implicitly supporting flexible telemetry frames. The mission can be performed by multiple spacecraft,
requiring storage, processing and querying of satellite specific data.

To assist with the data science tasks, the data should be stored in the same database, facilitating
the efficient querying. The little big-data approach, exporting the raw data and storing the processed
results locally on researchers machines and external drives should be avoided. Next to data loss risks,
providing long-term storage and sharing is inefficient, while te re-introduction of the results back to
the data storage can be a complex task due to schema rigidity and access rights.

The popularity of NoSQL systems in BigData and Data Science based industries is consequence of
flexibility of the storage and ease of scaling. Popularised in late 2010’s, Data Lake [56] approach facil-
itates unstructured storage of all aggregated data as an attempt to monetise data in use of analytics
in the future. The concept focuses on the storage, and aims to process only when data is required.
In contrast, Data Warehouse, often a SQL-based system, focuses on storage and processing of all
available data, increasing the setup efforts as well requiring maintenance. It should be noted that the
Data Lake approach often attempts to bridge the classically separated entities, merging the data from
various sources, e.g. departments.

Albeit limited with an expiration date set by the data retention policies, the stored data growth is po-
tentially unbound. To decrease the storage costs the commodity hardware is preferred, deviating from
RAM memory hungry SQL systems. This tendency naturally lead to horizontal scaling and AP principles
observed in the majority of NoSQL systems. Driven by unstructured and high heterogeneous datasets,
the schema’s are avoided leading towards simpler storage structures. Combined with data-throughput
optimisations, the querying is often limited and pushed to the application layer. The tendency is clearly
expressed by near-data-processing, execution of data processing scripts close to the storage.

The data storage requirements of the legacy Delfi missions both in data volume, as the ingestion
rate are magnitudes lower than any typical data processing system. The study of the aforementioned
techniques originates from the flexibility, long term support, unbound storage, ease of maintenance,
reliability aspects, classically not achievable for small system due to inherently high development or
licensing costs. Considering the legacy application use-cases, the querying is limited to application
specific tasks and ad-hoc analytics queries. Both types of queries as well the stored data types are

4.5. Conclusion 41

incompatible with the Key-Value and Graph data stores, due to lack of querying of the former, and lack
of data relations of the latter. As a side note, Graph theory may have an application in study of RA use
and satellite reception patterns, which is out of scope of the telemetry processing system.
The choice between document-based or wide-column stores, depends on many aspects of the system,
but for sake of simplicity reduced to the data types and querying needs. Document based systems are
designed for denormalisation of data: the documents should not link to each other. The PouchCouch
use case, strongly focused on Document-based store. Primarily driven by the availability of tools
supporting the data store in browser and ability to pre-compute the application queries, the Document
data store provided sufficient results, as discussed in chapter 8.

4.5.1. Query
In the legacy Delfi systems, the querying is limited to the UI and website tables and graphs. The
telemetry data analysis presented in chapter 3 is based on Python data analytics libraries: Pandas,
NumPy and SciKit. The locally hosted MySQL database was primarily used for data aggregations from
different databases and tables. It should be noted that the use of MySQL did not contribute to the ease
of the analytics. For example, to determine the earliest received version of a telemetry-frame requires
multiple dataset scans and an additional view:

CREATE VIEW temp AS
SELECT incoming . frame , min (incoming . frame_time) AS minTime
FROM incoming . incoming
GROUP BY incoming . frame ;

SELECT raw_data . r t c , temp .minTime , incoming . radio_amateur , incoming . rece ive_t ime
FROM raw_data . raw_data INNER JOIN incoming . incoming ON raw_data . counter = incoming . counter
INNER JOIN temp ON temp . frame = incoming . frame

DROP VIEW temp ;

It should be noted that the JOIN is performed on the binary, but String saved, 1793 characters long
telemetry frame. This leads to the conclusion that analytic querying will most likely be performed in
Python, Excel, Matlab or any other tool, rather than in the database native query language, as users
are likely to be more skilled in the latter.

4.5.2. CAP and BASE
The satellite telemetry data is immutable and represent the instantaneous spacecraft state in the legacy
missions. The data consistency, expressed as the time required for new data to be propagated through
the system, depends on the data delivery rate, network and system latencies. The eventual consistent
approach is acceptable for the Delfi-n3Xt and Delfi-C3 operations since sequentially received frames
have a high degree of bias. For the DelFFi type of missions, requiring the whole orbit data, a higher
degree of Consistency is required, as information is contained within the sequence rather than individual
telemetry frame.

Comparing Delfi missions to a typical high-throughput application, the Consistency can be forfeit for
the Availability, as <10s delays are found historically to be acceptable. Therefore ACID is not required
and BASE is acceptable.

4.5.3. Storage Volume
The use of per-satellite storage system is expensive in term of operations, requiring the legacy systems
to be updated to the modern security standards. Maintaining a single system allows the reuse of the
existing components as well as the further development and improvement. This, however, requires
the system to facilitate the upgrades of the components while in operation. Inherently, the support for
an unknown number of spacecraft for an unknown period of time requires a system capable of storing
an unbound volume of data.

Gessert et al. [51] argue that Databases can be selected based on Data Volume, Access type and
CAP/Consistency, and based on the proposed binary tree lead to the CouchDB or MongoDB for HDD-

42 4. Data Storage

Distributed Storage

Database File System Storage Object Storage

Partitioned Replicated

Fully replicated Horizontally Vertically

Figure 4.5: Distributed Storage systems

Size datasets and Hadoop/Spark type of systems for the unbound data growth. The applicability is
debatable, and depending on the point of view, the decision tree can be seen either as a selection
for the data model or as a selection process that ignores the data model altogether. Furthermore,
Gessert argues that the data stores with comparable data models have similar properties, which is
highly controversial. The work of Siddiqa et al. [50] is an attempt to provide an overview of NoSQL
systems, but limited to the proposed use cases and ignores the effects of, e.g. sharding or indexing
on the application.

A different approach is proposed by Martin [57] and discussed in section 6.2, stating that database
selection should not influence the (software) design. Specifically in this case, this entails the database
application should be exchangeable, therefore, selecting a less suitable data store is acceptable.

4.6. Preparation of the next iteration phase
The study of the database systems showed a wide variety of available systems. To comply with flexible
telemetry definitions, flexible data stores are preferred. Furthermore, due to unbound data storage
requirement, single node systems cannot be considered as the performance of the seek operations de-
grades with larger data volumes. This decision is additionally supported by the operational redundancy
and storage redundancy (backup) requirements.

Figure 4.5 provides an overview of the distributed data storage systems presented in this chapter.
The partitioned, but not replicated database system, as discussed in section 4.4, place the tables and
databases on nodes separating based on the function and target application. This approach fails re-
quirement GN-DS-1, requiring a replicated data store. The replicated stores can be further classified
based on the replication into three major categories. The fully replicated data stores place complete
replicas on each node, increasing the storage requirements. The vertical replication is applicable pri-
marily to table based RDBMS and Column-based stores. As introduced in section 4.4.2, the tables
are split vertically per column groups that are replicated across the cluster. The horizontal replication
splits the data collections into row-groups or shards in RDBMS and NoSQL systems. The performance
of the whole data queries is the highest for fully replicated nodes and column-based stores when no
column family aggregations are required. The sharding decreases the query performance and requires
an alternative for the frequent whole dataset queries.

The need for a distributed storage system leads to two architectural options. First, the data store
nodes can be deployed as a server cluster, a de facto approach found in the industry. Another possibility
is to deploy the database nodes on the client applications and actively creating a highly distributed
cluster spanning over both server and client systems.

The use of client leveraged system provides a unique opportunity to scale elastically with user
demand, as each user could be responsible for the data operations it requires. The client leveraged
approach is studied further in chapter 8.

5
Telemetry processing

Data processing is the primary goal of the telemetry processing system. The stored data is therefore
expected to be error-free, with a marginal tolerable error. Previous work based on the satellite data
[9] identified inconsistencies, that can be traced back to human-errors. This chapter focuses on the
techniques to reduce the chance of human-errors and mitigate the impact of these occurrences.

5.1. Rationale
As outlined in the chapter 3, the legacy Delfi systems followed distinct architectures and designs.
The processing of Delfi-n3Xt telemetry was performed redundantly on both client and the server side,
with only the raw, unprocessed data forwarded to the server. In Delfi-C3, only the processed data
was delivered to the server application [24]. Although not documented, errors were present in the
Racal, the Delfi-C3 client application, leading to the errors in the database. Furthermore, Rascal was
purpose designed, with hardcoded telemetry frame definitions in the java source code [24]. Update
of the application requires source code recompilation, and re-installation on all of the client machines.
Failing to do update all of the client applications, would results in inconsistencies in the ingested data,
reducing the degree of certainty of the changed parameters. Logically, a known error is preferred over
the uncertainty of the complete set of data.

Looking at Delfi-n3Xt, the telemetry data is sent unprocessed to the server. Therefore any client-
side processing error will not affect the server stored data. This is important, since a small portion of
users, utilized an outdated client application. Unfortunately, a number of errors have been identified
in the processing definitions of the server-side application, requiring bulk data reprocessing.

The errors in the legacy systems can be distilled to the following:

Each software component uses own proprietary telemetry processing routines, lacking an unified
telemetry schema/encoding definition

The Delfi-n3Xt frame definition contains up to 260 entries, describing the parameters present in the
telemetry frame, along with position and decoding rules. While some of the legacy applications did
not contain definition files, others require a plain text file or a GUI application. Regardless the imple-
mentation, the process is highly prone to human-errors, which inevitably lead to the inconsistencies in
the processed data across the entire ecosystem. It should be noted that the problem was recognized
by the developers and frame-simulators have been designed to perform tests to validate the decoding
part of the system (weak type of unit tests). Unfortunately, this didn’t ensure the correctness as errors
are still present in both systems.

5.2. Unified Processing
Early in the project, it was determined that to ensure the quality of the designed system, it was vital
to be able to provide consistent and reproducible results across the entire platform, both in the client
to the server applications. To truly ensure the consistency, all applications should perform the state

43

44 5. Telemetry processing

change, in this case, data transformation, identically. Ideally, this would require the use of the same
state machine: identical processing software in all of the applications.

To comply with the currently utilized systems, without limiting the future applications, the processing
software is ought to be language agnostic, and inherently cross-platform compatible. Since no true
language independent computation system exists, one can opt for two viable alternatives. The first
alternative is a stand-alone processing software, deployed in conjunction with the main application,
acting as a processing plugin. The second alternative is an external definition file that compiles into a
processing object or class in the native application language. The first alternative, in theory, provides
the highest rate of success, by truly offering an unified processing. However, this ultimately leads to the
recursion by reintroducing the original problem, as the decoding software will likely be purpose-only
designed, re-introducing the original human-errors for telemetry definitions and programming. Opting
for the second alternative still leaves the option to deploy the source code in the stand-alone fashion,
effectively mimicking the first alternative.

As introduced in the chapter 3, the telemetry processing performs four steps:

1. Binary AX.25 frame transformation

2. Payload extraction from AX.25 frame

3. Separation of the individual parameters based on the telemetry frame definition file

4. Parameter decoding in accordance to the definition file

The first step of the process, the frame transformation, is required since the telemetry frames are
least significant bit (LSB) ordered for the purpose of the cyclic redundancy checks [24]. Practically, this
means that the binary frame is reordered 8 bit pairwise.

The second step is the extraction of the AX.25 fields, such as satellite identifier, telemetry payload
and CRC values. Both CRC and satellite identifier determine whether the telemetry frame can and
should be parsed. In the third step, the telemetry payload is parsed based on the definition file
that describes the position of parameters within the telemetry frame. As described in section 3 , the
parameters are expressed as integers in the binary form, requiring further decoding to the appropriate
datatypes.

Globally, three types of processing operations are being performed. First, the complete telemetry
frame is modified. Followed by extraction operation, for example, spacecraft identifier or parameters
within the payload of the frame. And finally, the parameters are decoded based on conversion rules,
for example, the spacecraft parameters.

The definition of the initial frame transformation is immutable and is part of the protocol description
and radio operations. It was therefore decided to separate the transformation from the processing and
decoding logic as it is not determined by an external definition.

5.3. Processing Frameworks
As discussed in the previous section, the binary telemetry frame is first dissected into parts that are
then transformed into metrics via mathematical transformations. To ensure the ’unified processing’,
both parts should be done in the processing framework.

At the time of writing, two categories of binary dissector were considered. The first type operates in
a dissect-only manner with tools focusing on the parsing of the network packets (Pcap) and predefined
binary structures. The second category operates in encode-decode fashion, providing an abstraction
for data compaction with the goal to reduce the data size for network transfer or storage.

The research showed that the dissect-only category is developed primarily as plug-ins for a single
programming language. This is logical since the tools aim to ingest data structures, for example, to
analyze network packets or extract data from document files. In case of Python language, Scapy [58],
Construct [59] and Hachoir [60] are the most actively developed.

Kaitai Struct [61] is an exception on the rule an provides dissection and decoding capabilities for a
wide range of the programming languages, thus supporting ’unified processing.’

The second category, encode-decode, is utilized to encode and decode data structures to opti-
mize the transport or storage, hence linking multiple systems and tools. These tools are, therefore,
frequently multi-language compatible, for example, ProtocolBuffer [62] and MsgPack [63]. The encode-
decode tools lead to lock-in to their ecosystem, requiring the same libraries for encoding and decoding

5.4. Kaitai Framework 45

of the data as the schema is embedded in the binary structure. While some tools such as Apache Avro
[48] circumvent the problem by defining the schema externally, the schema cannot be modified to
recognize and decode AX.25 packages. This limits the applicability as telemetry frame parsing.

Therefore, only the Kaitai framework provides the flexibility and language independence required
to decode satellite generated binary telemetry data, regardless of the selected format and encoding.
It should be noted that Kaitai is explicitly developed for software reverse engineering and decompiling
and therefore cannot encode the data to binary structures.

5.4. Kaitai Framework
The Kaitai frameworks consist of three separate parts or projects: domain-specific language, compiler
and runtime object. Section 5.4.1 introduces the Kaitai programming language, followed by section
5.4.2 discussing the compilation of the KS definition file into Runtime object discussed in section 5.4.3.
Finally, the Kaitai processing is applied to the Delfi-n3Xt example in section 5.6.

5.4.1. Kaitai DSL or Kaitai Struct (KS)
Domain-specific-languages are programming languages designed for one specific domain and in con-
trast to general purpose languages, such as Python that focus solely on the domain of the application,
and are therefore inherently more expressive.
KS Language is a declarative language, designed with sole purpose of parsing the binary structures,
such as files, memory, stream and any other generic objects. The Language is, in fact YAML, a com-
mon format for configuration files. YAML, or Yet Antoher Markup Language, [64] is often compared
to XML, where XML is, in fact, a structured documentation and YAML a human-readable serialization.
YAML is therefore closely related to data structures, supporting collections and scalar contents, enabling
developers to use language native structure manipulations, without additional object models (DOM).

The data structures, expressed in KS language are stored as KSY files. Any KSY file is built from
user-defined types specification, consisting of meta, doc, seq, instances, enums and types tags.

Meta-tag provides information, for example, an id, title, intended file extension, encoding (UTF-8)
en endianness and any dependencies of the intended binary structure.

Doc-tag allows human-readable documentation for each of the entities and parameters both within
KSY files, as in docstring for the target compiled language, for example in Javadoc or Doxygen for Java.

Seq-tag contains the sequence of attribute specification of the given binary object. Each attribute
has a unique id and a type that automatically determines attributes the bit-length within the binary
object. Types can be either of a built-in type, for example, u8: an unsigned 8-octets long integer or a
custom user-defined type. Each user-defined type, recursively consists of a meta-tag and a sequence
definition, allowing reuse for different scenario’s. It should be noted that the attributes will be available
as attributes of the Kaitai decoded object in the target langue, and are parsed by default.

Instances-tag defines instance objects, that can be determined ad-hoc based on the built-in spec-
ifications. For example, contents of an instance may depend on the telemetry frame id or any other
set of parameters. Instances are available as instances of the decoded Kaitai object and parsed by
request.

Enums-tag provides a mapping between an integer to a symbolic name by key.

5.4.2. Kaitai Compiler
The goal of Kaitai is to describe a particular format in KS language only once and compile it into source
files of any of the supported programming languages. The source files include a parser that consumes
the described data structures and provides an API to parsed attributes and instances.

Being compiled in the native target languages, the source files and structures utilize language native
features and allow debugging through-out entire transformation. Latter proved itself useful as Kaitai
0.8 contained a bug in exponentiation, compiling 1 ∗10∧ (−7) to 1 ∗10∧ (−7) instead of 1 ∗10 ∗ ∗(−7)
for Python language. This lead to unexpected behaviour as 10 ∧ (−7) is evaluated as XOR operation
between 10 and -7, resulting in -13, rather than expected 1e-07.

In addition to parsing, the compiler performs additional checks based on defined types and attribute
length in the ksy, catching errors in the definition files.

46 5. Telemetry processing

5.4.3. Kaitai Runtime Object
The generated source files, as the name suggests, are C-like structs. The structs are translated into
language-native objects, allowing access to the attributes and parameters as defined sequences in
KSY file. The Struct object, resulting from Kaitai parsing, is not iterable in Python, requiring manual
parsing into the target structure. With a NoSQL as the permanent storage medium, JSON notation
was preferred due to its compatibility with document and column store systems. It should be noted
that created JSON ultimately determines the schema of the database, and potentially affecting the
visualization logic. It was, therefore, determined to keep JSON flat, without any embedded structures.

The objects, containing decoded telemetry data, can be stored as language-native objects, for
example, as Pickles in Python, without the need for JSON passing. Furthermore, the objects can be
stored in the native format in the database, allowing more fine grade access to the embedded structure,
resulting in the performance increase of both parsing and data retrieval.

5.5. Processing Application: Delfi-n3Xt Example
With unparsed and unprocessed raw data readily available, Delfi-n3Xt was the most logical testing
ground for Kaitai parsing. With frame protocols explained in chapter 3, this section solely focuses on
an overview of the KS implementation and benchmarks in Python version 3.

The Kaitai based decoder for Delfi-n3xt is build up from four files, the main Delfi-n3Xt.ksy file, and
three dependencies: obc_shared.ksy, frame1.ksy and frame2.ksy as can be seen in Figure 5.1. For
presentation purposes, the magic field as well frame1 and frame2 files have been shortened, with the
unmodified files in the appendix of this document.

The main Delfi-n3xt file is responsible for three functions: frame filtering, loading of the depen-
dencies and selecting correct frame type. Although not implemented, cyclic check functionally can
be added as required. Conversion of binary and integer values to metrics, is performed in the frame
definitions.

Frame filtering is performed by comparing the frame magic, the signature of the binary structure,
against AX.25 address field. As stated in the technical documentation [24] allDelfi-n3Xt telemetry
frames share the common and identical address field, making it ideal for the frame filtering. It should
be stressed that a mismatch in magic is a run-time error, and requires exception handling not provided
by the library.

The obc_shared type is defined in the obc_shared file, containing metrics used in both frame types.
Note the obc_shared frametype parameter use in the main file to determine the correct frame definition
file. The use of True and False boolean objects stems from one bit allocation of the frametype metric,
which is converted to boolean implicitly. Allocation of two or more bits, prevents the cast to boolean,
allowing use integer values for frame selection.

Some of the parameters, available as struct attributes, require further processing in accordance
to the conversion tables. The conversions are built into frame1 and frame2 files as instances. As
mentioned in the Struct Language section, the instances and enums, being functions, are not called
and therefore computed by default. Calling the instances require exception catching as some of the
Delfi-n3Xt frames proved to contain switch positions, for example ADCS and OBC modes not defined
in the telemetry definition documents.

To illustrate the use of instances, consider two subsystem metrics embedded in frame2. Since same
measurements are taken, the same KS type can be reused:

ዅ i d : obc1_dssb
type : obc_dssb_type
s i z e : 3

ዅ i d : obc2_dssb
type : obc_dssb_type
s i z e : 3

. . .
obc_dssb_type :

seq :
ዅ i d : subsystem_status
type : b1
enum: subs_status_enum

ዅ i d : ove rcu r ren t_s ta tus

5.5. Processing Application: Delfi-n3Xt Example 47

Figure 5.1: Kaitai processing Objects for Delfi-n3Xt

48 5. Telemetry processing

Figure 5.2: Kaitai processing challenge

type : b1
enum: oc_sta tus

ዅ i d : sys_c
type : b10

ዅ i d : sys_v
type : b8

ins tances :
subsystem_current :
doc : Subsystem Current [mA] 0ዅ 130
value : sys_c * 0.12708

subsystem_voltage :
doc : Subsystem Voltage [V] 0 ዅ 14.3
va lue : sys_v * 0.05608

In the runtime the current of obc1 and obc2 can be accessed as object.payload2.obc1_dssb.subsystem_current
and object.payload2.obc2_dssb.subsystem_current respectively.

The processing of the complete Delfi-n3Xt dataset from String objects to python based Kaitai de-
coded objects on average consumer-grade hardware requires 120 seconds. The parsing of the entire
dataset to JSON objects requires 300 seconds.

5.6. Processing Application: generic deployment
Kaitai framework provides a flexible processing and parsing functionality in application native language.
The proof-of-concept outlined in the previous section provides satisfactory results both on flexibility of
processing as well the performance measurements. However, before deployed in the production, one
must establish operational procedures with regards to new telemetry frames definitions as well bug
testing.

When designing the application, regardless whether the client or server side, one has to establish
the frame identification steps as well the frame update policies. To illustrate the challenge, consider
figure 5.2 with three points of interest has been identified as A, B and C.

The figure 5.2 illustrates the data transformation from a raw frame to the processed Kaitai object.
The first point of interest denoted by A, is the frame address extraction. With popularity of AX.25
protocol, it is assumed to be utilised in the future telemetry systems. Failure to do so, or deviating in
the address field length or starting position will require additional procedures, albeit possible within KS
language, preferable performed outside Kaitai programming with multiple address extractor definitions.

The second point of interest, denoted by B, is the selection of KSY decoding object. The two choices
are trivial, either performed using KSY or externally via the application logic. It should be noted that
the selection pivots on the procedure A, as expected satellite identifiers are required. Opting for the
Kaitai approach, actively merges A and B to a single unified KSY file, with imports per satellite. Adding
a new satellite, would require recompilation of the unified file, replacing the original and addition of
new processing objects for the satellite. The unified KSY file, would contain:

meta :

5.7. Conclusion 49

i d : D e l f i s a t s
imports :
ዅ d e l f i c 3
ዅ de l f i n 3 x t
ዅ de l f i p q

seq :
ዅ i d : a x s t a r t
doc : AX25 frame s t a r t f l a g
type : b8

ዅ i d : i d e n t i f i e r
doc : s a t e l l i t e i d e n t i f i e r
type : u14
. . .

ዅ i d : c3
type : d e l f i c 3
i f : i d e n t i f i e r == . . .

ዅ i d : n3xt
type : d e l f i n 3 x t
s i z e : 194
i f : i d e n t i f i e r == 3419535232481825837973782597249024

ዅ i d : pq
type : d e l f i p q
s i z e : 194
i f : i d e n t i f i e r == . . .

. . .

Opting for the application approach requires satellite identifier extraction at point A and comparison
against known definitions and application of the matching KS object. This approach would require a
procedures for the satellite definition updates next to the updates of KS files.

The final and the most important consideration is point C. Adding new frame definitions, not
only require recompilation of KSY files to target language libraries, but reloading of the libraries in
the runtime. The implication depend on the applications language, for example, python contains
imp.reload(module), that can be triggered runtime, without the need to restart the application.

The final consideration is the delivery of the source files. Whether compiled from a remote definition
repository, or simply loaded the externally pre-compiled source file, ultimately depends on the degree
of trust in the local compilation, e.g. availability of up-to-date compiler and other considerations. It is
highly advised to design and implement unit tests to the correctness of definition files as safe guard
for Kaitai compilation bugs. Unfortunately, since Kaitai is one way stream, focusing solely on decoding
of the data additional encoder or frame generator is required. The frame generator is considered out
of the scope of the project.

5.7. Conclusion
The data processing systems used in the legacy systems are purpose designed, lacking any conformity
with regards to the telemetry format and processing definition. With telemetry frame counting over 260
fields, requiring a per field transformation definition, the process is prone to human errors as observed
in both Delfi-C3 and Delfi-n3Xt missions.

The use of unified processing definition, such as Kaitai or a standard such as XML Telemetric and
Command Exchange (XTCE), facilitates the reuse of the frame definition and allows for the definition
validation.

Within the project, Kaitai framework was found most suitable due to its native support in the target
programming languages, allowing identical telemetry decoding and parsing across any application. The
processing performance is excellent, allowing the complete Delfi-n3Xt dataset parsing and decoding
within 120 seconds.

6
Software Engineering Tools

The review of the legacy telemetry processing software [13] [11][18], as well the open-source alterna-
tives [65], show a slow change in methodology towards a modular design, both on the software as the
hardware levels. Driven by the need to improve the existing system, this chapter attempts to provides
an overview of technologies and techniques addressing the limitations of the legacy telemetry systems.

6.1. Separation of Concerns
A classic example of approach focusing on the modularity is the separation of concerns (SOC) introduced
by Dijkstra in 1974 [66]. The theory behind the separation of concerns is straight-forward: a software
is divided in sections, each addressing one single concern. The ”information” of the concern, i.e. its
function, is contained within the section of code and exposed to the rest of the system via an interface.
Applying SOC helps to refine the ”what” and ”how” of the system, but does not necessarily enforce the
modularity. A more practical application of SOC is defined by Reade [67] in 1989 as a tool to:

1. Describe ’what’ has to be computed

2. Organize the computation sequence in steps

3. Organize memory management for the computation

Today, many of the tasks listed above are handled by the operating system (OS). The core of the
SOC concept is however still very much applicable, arguably on a much higher level.

To illustrate the use of SOC, consider an example of a company producing goods with the shelf life
depending on the storage facility conditions. Several metrics such as air temperature, humidity, and
other external sources like vibrations are monitored by a set of off-the-shelf IOT devices. The system
is expected to determine the remaining shelf life of the goods and serves as a pricing tool for the sales
department. Additionally, it has been decided that the system should keep track of users and use of
the system, to monitor the performance of the sales department.

Using the SOC method, the following simplified concerns can be derived:

1. receive the sensor data

2. store the sensor data

3. retrieve the historical data

4. perform the data processing and execute prediction model

5. retrieve the prediction for given product

6. serve the results (web)

7. retrieve user data (client)

8. store the (clients) data

51

52 6. Software Engineering Tools

The concerns 3 and 5, as well 2 and 8, preform same functions and are therefore called ”cross-
concerns” since the functionality has been used by different part of the software. With no obligations
opposed on the system deployment or programming language, the programmer decided to implement
the system as a single Python application. Due to missing long-term data retention requirements, with
the sensor data is stored temporarily, allowing the programmer to use local filesystem and in-memory
objects and a simple flask library for publishing data to a webpage.

Assume that at a later point data retention was enforced. The local filesystem storage is becoming
the major bottleneck, with growing log file slowing down the journaling and ultimatly OS. Migration to
a database system involves changes in the concerns managing the data storage. In this case, affecting
only the two nearest components, and not the business logic: prediction and pricing models.

In the near future, the system is required to offer services to the external clients: for example, af-
filiate sales partners. A complete overhaul of the website related concerns is requried to accommodate
for security, authentication and user access rights requirements. The developer could, for example,
select popular Django framework instead of Flask, to provide the authentication and to comply with
MVC pattern. From the high-level overview, the consequents of the re-utilization of the existing busi-
ness logic in ”model”, the existing website design in the ”view” and new authentication logic in the
”controller” of the MVC pattern.

The example may appear as a very straightforward solution, which it is, however, from the developer
point of view, the boundaries often get blurry, and SOC principles can be easily ignored in favour
of faster results. A data access object (DAO) is generally used to provide an abstraction for data
retrieval and storage logic. The developer may, for example, ”optimize,” skipping the DAO altogether
and executing SQL queries directly in-line, for example in the view of the MVC pattern. This would
save in the development time of DAO object, the amount of generated code, and may even seem an
appropriate solution.

By taking a step back and looking at the larger picture, it is apparent that the behaviour actively
mixes the business logic: computations, with storage logic: the data retrieval, and data delivery logic:
the web services. The mutual dependencies cause changes that affect the others components, for
example, a change in the storage logic affects both the business and data delivery logic directly. Fur-
thermore, any database-level runtime errors will affect the web-services directly.

A failure to separate the concerns inevitably leads to the subsystems opposing unnecessary re-
quirements towards each other. As shown in the DAO-less example, a failure to define the abstractions
scatters the data access logic throughout the application, reducing the code readability. It can be
aruged that a hard to comprehend feature leads to the programming errors and bugs. It should be
noted that testing of the interdependent elements require more complex testing procedures since the
unit tests cannot be performed reliably on interconnected elements.

Theoretically, if applied correctly, the SOC promotes the modularity and low dependency between
the components, enabling reuse and smooth exchange of the system components. In reality, the
situation is complicated, with dependency creep present even in a perfectly defined SOC. Let’s assume
that in the previous example, the business logic was developed in Python version 2.7, the default OS X
version at the time of writing. With the bugs in business logic have the highest impact on the system,
the returned value is the highest if the mission-critical, highly tested component is reused. This leads
to the decision between migration to Python 3, required for latest version of Django, or use of Python
2 with older LTS version of Django that will be maintained until 2020. Assuming that system still fullfill
the needs in 2020, may lead to use of oudated webserver version, increases the risk of vulnerabilities.
For example, a 2016 study [68] identified 7% of all web publicly accessed servers vulnerable due to
legacy version, and 29% due to lack of system updates. In 2018 the figures changed to 15% and 18%
respectively [69], with 20% of all discovered vulnerabilities to be of the High and Critical categories.

The example is meant to show that solely relying on SOC is not enough to ensure reusability and
long-term robustness. Following the SOC, guidelines assists with the (functional) separation of the
business (supporting) logic, without the tools for mitigating the interdependencies. Without a long-
term development strategy, the initial single monolith is getting replaced by mini monoliths.

6.2. Clean Architecture
The separation of concerns is a useful technique to separate the application logic, however, deceptive
for inter-dependencies. In the recent years, a number of new techniques have been proposed, e.g.

6.3. Conclusion 53

Entities

Use cases

Controllers

Devices

 WEB /
 UI

Database

Figure 6.1: Clean Architecture

Hexagonal Architecture [70] , Onion Architecture [71] and many others. In its core, the solutions tend
to apply SOC by structuring application into layers, e.g. data logic, business logic and presentation
layers. The differences between approaches is beyond the scope of the discussion, but is bundled by
Martin in 2012 [72] as Clean Architecture and is based on the established approaches as a continuation
of layered software scheme, SOC.

The choice to investigate clean architecture is not accidental and coincides with need for low cou-
pling, something that approach is well accredited for [73][74][75].

When applied to software development, the Clean Architecture focuses on the following aspects
[57]:

• Independence of frameworks

• Independence of User Interface

• Independence of Database

• Independence of Suppliers

• Testability

The clean architecture attempts to structure the application by providing a visual representation of
separation of concerns. As shown in the figure 6.1, the application is split into layers, i.e. concentric
circles, in accordance to the function, from high level functions internally to low-level functions exter-
nally, e.g. Entities, (Use Cases), Controllers and External Interfaces. Clean architecture dictates that
the dependencies may only point inwards, therefore, a software object declared in the outside the layer,
may not be referenced by any of the inner layers. For example, a database may not be directly used
by the Entities, the business logic of the application. To solve the connectivity problem, the business
logic is addressed by the Controllers, who convert the data formats from external agencies, e.g. HTTP
requests, Databases, to Entities format. It should be noted that although modifying the database data,
the layer itself is not aware of any specifics of the database. The most outer layer contains frameworks,
data storage and provides glue-code to the Controller layer [76].

The principle explores and defined intricate control flow of the application, which is irrelevant for
the high level architecture design.

6.3. Conclusion
The take away of the Clean Architecture 6.2 and SOC 6.1 study is that regardless the system view, the
architecture ought to be divided in modules in accordance to application logic (SOC function6.1). The
high level modules should not depend on the low level modules (Clean Architecture 6.2). By implicitly
following SOLID principle, Clean architecture require abstractions to be independent of details, e.g. the
Controller layer is independent of the selected database or web framework.

The review of Delfi-C3 and Delfi-n3Xt datasets revealed inconsistencies, related to the processing
errors and discrepancies between client and server generated results. In accordance to SOC, the pro-
cessing out to be abstracted from application logic, which can be labelled as Business Logic. To ensure

54 6. Software Engineering Tools

the consistency across the system the suggestion to utilise language agnostic processing subsystem
(see section 5.4), aligns with immutable Entity, the inner circle the Clean Architecture.

The inherent ambiguity of usage and mission duration, leads to the realm of the future proofing.
Gorman argues that future proofing of the system, requiring software changes without software change,
is impossible [77]. The notion of unpredictability of the future dictates that the system requirements
may change at any time, which lead to two alternative options. Either the code is untouchable and
changes are re-configurable externally, or the changed functionality is removed and replaced by the
new code. Regardless the selected solution, this means:

• Logic that changes frequently, has to be placed outside the code.

• Any module that frequently changes, has to be decoupled from the system

Reviewing the usability experience of Delfi-C3 and Delfi-n3Xt system, a conscious decision has been
made to separate the system into decoupled blocks. Inspired by Actor Model architecture and Akka
framework [78], the decomposition towards task specific tools rather than purpose coded functionality
was preferred. The rationale of the decision is inherent lack of documentation of the in-house developed
application, leading to notion of redesigning rather than re-use. Utilising purpose-designed tools,
ensure component understanding, and with Clean Architecture decomposition, easier change, satisfying
the future proof requirements.

II
Application

55

7
Architectures

Following the iterative methodology presented in chapter 2 and the background and, the problem study
summarized in chapters 3 to 4 lead to the decision moment of the system architecture.

First, the role of the client application has to be determined.
Figure 7.1 illustrates the possible split in Client to Server functionality with the use of four elements:

Data Management, Data Logic, Business Logic and Presentation. The Data Management element
contains the data storage system and as discussed in chapter 4 may require additional logic to operate.
Data Logic encapsulates the rules that apply to data but are not part of the business logic of the
application. For example the normalization and partitioning of data, load balancing, READ-WRITE
redirections. The business logic in the scope of the project contains telemetry processing logic and
data analysis. The Presentation element is responsible for data visualization to the end users, for
example as a graph or in a tabular form. The Presentation layer is highly abstracted and could consist
of multiple parts, for example, presentation logic (e.g. website) and presentation support (e.g web
browser).

As shown in figure 7.1 ten distinct cases are defined, denoted by letter A to J, each further de-
scribed in table 7.1. Areas of interest are indicated in yellow, based on the applicability characteristic.
Options A and B are not feasible due to limited functionality, lacking networking. Options F and G were
discarded due to full control of the storage on the client application. Option J requires the use of a
peer-to-peer network, completely cutting the control over the system and stored data.

Option C closely relates to the legacy Delfi-n3Xt server system (without DuDe client) relying on
static PHP web pages. Option D provides functionality on the client side allowing for data analysis
(filtering, S/C parameter selection, queries) on the client side. Option E relates to the Delfi-C3 system
that relied on client application for data processing with the exception of Data Logic component. This
is required to authenticate users and manage the access for RAs. Furthermore, the component is
ultimately responsible for data schema’s and data storage structure (e.g. tables). Options F and G
are both inapplicable due to loss of control on Data Logic component to the client. This substantially
increases the security risks as data access is managed by the client application. Furthermore, the use
of out-of-date software has a higher potential for data corruption and data loss as database schema
could be altered between software releases.

Requirements GN-UI-GEN-01 indicate that each user type has to have a distinct user interface. This
is required since each user type have different permissions for the stored historical data. For example,
RA ought to have access to own received historic data but not the complete dataset. To increase the
security of the system, the control of the UI and data access should reside on the server side of the
application.

Options H and I are based on the distributed data storage. The client applications share the entire
data set with the server application, either as a replica database or as a shard. In theory, by allocation
processing tasks to the client application, the load on the server hardware is greatly reduced, allowing
much leaner operations.

The difference between options H and I is the presence of Data Logic component. This means that
client application in option I is capable of redirecting writes, perform load balancing and operate in the

57

58 7. Architectures

Data

Data
Management

Application and
 Business

Logic

Presentation

Data Logic

Data

Data
Management

Application and
 Business

Logic

Presentation

Data Logic

Presentation

Data

Data
Management

Application and
 Business

Logic

Data Logic

Presentation

Data

Data
Management

Application and
 Business

Logic

Data Logic

Presentation

Data

Data
Management

Application and
 Business

Logic

Presentation

Data

Data
Management

Application and
 Business

Logic

Data Logic

Presentation

Data

Data
Management

Application and
 Business

Logic

Presentation

Data

Data
Management

Data

Data
Management

Application and
 Business

Logic

Data Logic

Presentation

Data

Data
Management

NETWORK

SERVER

CLIENT / SERVER

A B C E F G H I

Data

Data
Management

Application and
 Business

Logic

Data Logic

Presentation

D

Application and
 Business

Logic

Application and
 Business

Logic

Data Logic

Presentation

Data

Data
Management

J

Area of interest

Figure 7.1: Split Client to Server functionality

Peer-to-Peer configuration and more. In this configuration, the boundary between Server and Client
applications become obsolete, as identical client applications may be executed on server hardware to
perform data processing and analytics, as well on distributed clients such RAs and S/C operators.

Option J pushes the limits even further and operates distributed and decentralized fashion. This is
inadvisable for Delfi missions due to lack of central storage system, thus actively losing control of the
mission data.

Two approaches were selected for further investigation, I and D. Approach I showed the highest
novelty and potential for scientific research. The approach is further studied and discussed in chapter
8.
Approach D provides most features to the client while limiting the access to data. The approach was
initially selected as a backup alternative, but due to security concerns of I, was chosen in the end.
Approach D is further studied and discussed in chapter 9.

Different deployment methods of both architectures is shown in figure 7.2.

59

Figure 7.2: Reference Architectures

60 7. Architectures

Table
7.1:

Client
Server

separation

Letter
D
escription

Exam
ple

Applicability
A

N
o
clientapplication,the

entire
application

is
ex-

ecuted
on
the

server.
(D
ata

Logic
is
optional)

D
uD
e
client

in
offline

m
ode

not
applicable:

RA’s
are

distributed,
netw

orking
is
required

B
Presentation

logic
is
generated

on
Server

and
ported

to
Client.

(D
ata

Logic
is
optional)

Rem
ote

SSH
session

w
ith
the

server
not

applicable:
Requirem

ent
G
N
-U
I-G
EN
-03,

data
filtering

and
ad-hoc

data
quering

is
required

C
Presentation

is
done

entirely
on
the

Client.
(D
ata

Logic
is
optional)

Client:
w
eb

brow
ser

and
w
ebsite.

Server:
w
eb

server
applicable,sim

ilar
to
D
elfi-n3Xt

server

D
The

application
logic

consists
on
both

Client
and

Server
side.

(D
ata

Logic
is
optional)

D
ynam

ic
w
ebsites,

AJAX,
W
ebSockets,

W
eb-

H
ooks.

Facebook
G
raph,

M
arktplaats,

Funda
APIs..

applicable

E
The

application
logic

consists
solely

on
the

Client
side.

The
server

is
responsible

for
data

distribu-
tion,authentication,perm

ission
controletc.

Analytics
application

running
on
a
Cloud

deployed
database

(D
atabase

as
a
service

D
aaS).

Applicable:
depends

on
the

netw
ork

perfor-
m
ance

F
Sim

ilar
to
E,
but

w
ithout

any
additional

D
ata

Logic.
D
uD
e
client

and
D
elfi-n3Xt

system
w
ithout

the
w
eb
interface

not
applicable:

controlover
D
B
in
hands

of
po-

tentialluntrusted
client

application
G

Sim
ilar

to
E
and

F,
but

w
ith

D
ata

Logic
on
Client

Application.
D
ata

aggregation
system

.
D
ata

analytics
sys-

tem
s.

not
applicable:

controlover
D
B
in
hands

of
po-

tentialluntrusted
client

application
H

The
D
ata

M
anagem

entSystem
is
presenton

both
Clientand

Server,butstorage
system

is
bound

by
CAP.The

D
ata

Logic
on
Server

side
is
optional.

O
ff-site

backup
system

s.
M
ulti-site

datacenters.
not

applicable:
W
ithout

data
control

logic
all

clientapplications
have

the
sam

e
levelofaccess.

This
is
against

D
elfiuser

group
policies

w
ith

re-
gards

to
RA.

I
Sim

ilar
to
G
,
but

w
ith

D
ata

Logic
on

Client
side,

possible
Peer

to
Peer

(P2P),
m
ultidatabase

sys-
tem

s
(client)

-
Possibly

applicable:
PouuchCouch

J
Pure

P2P
applications

BitTorrent,BlockChain
not

applicable:
Loss

of
controlover

data.

8
Client Leveraged System

The analysis of the collected telemetry data from the Delfi-n3Xt mission reveals a substantial contri-
bution of Radio Amateurs in the telemetry reception. With the Dude and Rascal client applications
processing the telemetry frames on the RA’s premises, a concept has been investigated to allocate
the entire processing to the client, reducing the computational requirements of the central processing
server.

As stated by the requirement GN-DS-6, the data growth is potentially unbound, when multiple
spacecraft mission are supported. With large datasets, more processing power is required, which
is readily available on the client application of the system. Furthermore, by integrating the remote
client applications into the storage system, a higher degree of the redundancy and robustness can
be achieved. The concept researches the ability to form a cluster with (globally) distributed client
applications, rather than centralized servers. The expected observation is that an change in the data
consumption or generation, caused by a change in the number of client applicaton, will organically
change cluster size, hence facilitating the scalability.

8.1. Architecture
The Delfi-n3Xt architecture, illustrated in the figure 8.1, consists of three parts: client hardware, client
application and server application. The client hardware, i.e. the computer’s sound card, is responsible
for the sampling of the analog signal to the digital waveform. The waveform processing consists of
signal demodulation and AX-25 flags detection, and is performed within the client application.
The figure 8.1, albeit a simplified overview of the system logic, shows duplication of the frame parsing,
decoding, filtering as well the data visualization logic. This is required, since the data, i.e. the telemetry
frames, are delivered and stored in the raw binary-like form on the application server.
As an attempt to streamline the processing, one can determine that the redundant data processing
should be eliminated. Globally, this leads to two contrasting possibilities outlined by the figure 8.2.

The first option relies on the client application for telemetry processing, therefore only the ’clean’

Figure 8.1: Simplified Delfi-n3Xt data processing logic

61

62 8. Client Leveraged System

Transceiver
(filter, am

plifier, ...)

Soundcard
(AD

C
)

D
em

odulation

Fram
e filtering

Server connection
handler, authenticator

Fram
e parsing,

decoding

D
ata visualization

Filtering

D
ata visualization

internet
Data

storage
data

buffer

client application
generic server side

Transceiver
(filter, am

plifier, ...)

Soundcard
(AD

C
)

D
em

odulation

Fram
e filtering

Server connection
handler, authenticator

Data visualization

Filtering

D
ata visualization

internet
Data

storage

data
buffer

generic server side

client application

Fram
e parsing,

decoding
A

B

Figure 8.2: Alternative architecture options

and processed data is collected on the server. The concept is great in theory, but has a practical
limitation: human-errors [79]. Any bugs in the data processing, e.g. errors in the frame definition,
invalidate all of the server stored data. To resolve the processing errors reliably, the original data frames
has to be reconstructed and decoded again. Furthermore, with the application being installed on the
clients machines increases the risk of being out of date, and therefore using incorrect processing code.
Therefore, the identical telemetry frame processed by the two client applications will not necessarily
yield the same results. The uncertainty of the results and limited data reconstructions possibilities
makes the concept unacceptable.

The second option allocates the processing entirely to the server application, theoretically, ensuring
the up-to-date and error-free processing code. For the client-side data visualisation, one can opt to
utilize the client application or use other means to deliver the processed data, e.g. the browser.

According to a Delfi-n3Xt operator testimony, the DuDe client application was utilised by the satel-
lite operators during a satellite pass. Independent of the server’s status, client application provides
instantaneous access to the locally demodulated telemetry data.
In the proposed concept, any downtime or connectivity issues with the server are highly disruptive
actively cutting the information feed. The server-side data processing, theoretically, ensures update-
to-date telemetry definitions and bug-free processing, therefore, yielding results with a higher degree
of certainty.

The proposed optimisation, as seen in the figure 8.3, is an aggregate of both options of the figure
8.1. As an extension of the original Delfi-n3Xt and Delfi-C3 architectures, the architecture require both
the raw as the processed data to be transferred to the server.

Outsourcing the processing to the client applications reduces the server capabilities, allowing a
leaner operation. With a persistent raw data storage, any client application processing errors are
recovered, ensuring the ’eventual’ data integrity.

As illustrated by the figure 8.4, the radio amateurs do not update application timely, therefore, to
mitigate any computing inconsistencies, the client software requires auto-update functionality, without
user intervention.

8.2. Architecture: Tools 63

Figure 8.3: Proposed new architecture

Figure 8.4: Client application version change in time

8.2. Architecture: Tools
In the recent years, many of the classically desktop deployed applications made its way into the browser
world. Modern browsers provide a rich programming and visualisation environment consistent over
wide spectrum of the client hardware, without the need for applications to be installed on the users’
machine. Similar to Java virtual machine (JVM) running the code, browsers provide sandbox model,
promising consistent user experience with a strong emphasis on the visuals and interaction. Further-
more, with increased performance and interest in JavaScript programming language, many desktop
applications, as well server systems, have been (re-)designed in JavaScript, leading to increased relia-
bility and tools availability.

8.2.1. Browser Application: feasibility
This section studies the feasibility of a browser-based telemetry processing system, following the ar-
chitecture illustrated by the figure 8.3. The section address the major functionality elements found in
the figure, following the data flow, from left to right in the figure.

The first, and arguably the primary function of the system is the data ingestion. Following the
DuDe and Rascal methodology, the application should interface with the on-premise radio equipment
via sound card ingesting continuous stream of data into the application.

The access to the sound card is provided under HTML5 WebAudio API [80] implemented in the
majority of the browsers [81] [82]. The technology is proven in continuous operation by de Boer with
WebSDR project [83], delivering Software Defined Radio (SDR) to the web.

The second step is the radio signal demodulation. Porting java based demodulation to JavaScript
was out of scope of the project. Therefore, the audio processing capabilities have been investigated
based on the available open-source projects. Three tools, perfoming comparamble tasks have been
identified: AX.25 demodulator [84], Audio encode/decode suite [85] and a HTML5 based modem [86].
The available projects provide show a sound proof-of-concept (PoC) for browser-based demodulation,
however a further research is required to establish the performance and long term feasibility.

The third step is the raw telemetry frame processing: parsing, decoding and filtering of the telemetry
frames. The tasks are proven feasible, and explained in more detail in section 5.4.

64 8. Client Leveraged System

The fourth step is the temporary storage of the raw and processed data. Historically, browsers
offered limited storage support, leaving developers with two options: JavaScript objects, and session
storage. Former offered greater flexibility at cost of persistence, while latter allowed limited persistence
at cost of the flexibility. The initially defined storage limitations are still present today, limiting the
session storage to 4096 bytes. To address the persistent storage limitations, the 2009 HTML5 proposal
[87] [88] included a standardisation for local data storage API.
The browser storage API is provided to the client application in form an abstraction, a JavaScript object
exposing identical functions for both storage mechanisms. The sole difference is the expiration date of
the data, either session bound, deleting data after closing the tab or unlimited, in case of the persistent
storage [89].
At time of writing the persistent storage quota’s depend on the browser and operating system, requiring
user approval upon exceeding OS and browser set thresholds. A quota API [90] has been drafted
to ensure browser and OS-wide consistencies, but not universally adopted at the time of writing.
In addition to storage volumes quota’s, the browser implementations follow own internal guidelines.
Mozilla Firefox [91], for example, limits the persistent storage to 10 MB after the browser crash, even
if triggered by another application or website tab. Furthermore, the persistence is not guaranteed by
design, as users are allowed to manually delete the web storage [91] to reclaim hard disk space.
The local storage provides a simple key-value functionality, wiht support for String objects. Storing data
in this serialised form is not ideat, what lead to the implementation of alternative storage mechanisms
allowing structured data storage and querying. For example, WebSQL offered a RDBMS database and
SQL-querying capabilities for web applications [92]. Implemented only in WebKit and Chrome browser
families, the WebSQL was silently discontinued and removed from HTML5 specification in favour of
IndexedDB [93] [94]. IndexedDB is a NoSQL database implementation, operating in key-value (object)
matter, with support for object schemas and schema-based data querying [95].

Author’s previous development work with browser-based applications [96] showes HTML5 inconsis-
tencies across browsers and browser versions, which lead to a strong preference towards an additional
abstraction layer for the data storage. The decision is based on the following observations:

• Browsers are updated frequently and automatically

• Browser updates may change or deprecate API functionality and affect the application in unex-
pected ways

• The performance of the storage mechanisms varies between the browsers

• Schema update are required

• The data stored by the browser is unencrypted, accessible and modifiable by the client

The mission critical software ought to be operational thought the duration of the mission. As
demonstrated by Delfi-C3 mission, running for over ten years, the supporting software is expected to
be functional and maintainable for the same time span. By relying on an actively maintained 3rd-party
(storage) abstraction, the majority of the listed issues can be addressed with limited development effort
on the long run.

The last part of the client side system is the communication between the server and the client
application. The functionality can be split into two parts: related to data delivery and user-specific
tasks. The user-specific functionality, such as authentication, the account creation, passwords reset
and many other aspects of user management is a standard functionality for today’s websites. The data
delivery of the raw and processed telemetry frames from client to the server application can be done
trivially via HTTP methods with API or WebSockets.

Based on the aforementioned findings, the browser-based client application is determined to be
feasible.

8.2.2. Client Applications: considerations
With the browser-based application proved feasible, further research was conducted to identify tool to
satisfy the architecture proposed in the figure 8.3.

The list of requirements can be found in Appendix 2.4, with the minimal list system ought to perform:

• Processing of the locally received radio transmission

8.2. Architecture: Tools 65

Client

 RAW

 PROCESSED

Processing code

PUSH

PUSH

PULL

SERVER

Processing code
PUSH

Figure 8.5: Client-server
connectivity: original

Client

 RAW

 PROCESSED

Processing code

PUSH

PUSH

PULL

SERVER

Processing code
PUSH

 PROCESSED
PULL

PULL

 RAW

 PROCESSED

 RAW

PUSH

Figure 8.6: Client-server
connectivity: with OPS

• Visualizion of the received telemetry data

• Auto-update of the processing code base

• Ability to operate temporarily stand-alone, without server connection

The requirement to (temporarily) operate independently of the application server, requires a stand-
alone application which, classically, required a plug-in or chrome app, hence a browser-dependent
application. The rise of mobile device use, whose internet connectivity greatly affected by the spatial
effects, e.g. tunnels, gave rise to a new methodology: ’offline first’ [97]. Driven to minimise impact of
the network on UX, the offline-first aims to provide a set of features available even when connection
with the server cannot be established.

The functional connectivity between client and server application is abstracted to PUSH and PULL
requests in the figure 8.5. The raw and processed frames are PUSHed to the server, while new teleme-
try processing code is PULLed by the application. Additionally, the new processing code can be pushed
by the server to the clients.
The main consideration of the Offline-First system is the assurance of the processing software-state.
For example, while offline, the server may have issued (PUSHed) new processing code, rendering the
offline decoded data incorrect. Solved simply by providing processing code version, the problem can
be mitigated.

Security
The client browser storage as well the processing script are open and accessible to the users, which is
considered to be a security threat that should be addressed.

The encryption of the local and IndexedDB storage is supported by numerous JavaScript based
libraries. The encryption algorithms, with exception of Base64, require a key to encode and decode
the data. The key-less Base64 cipher cannot be considered as the encryption model, but rather a data
serialisation method for String based storage models.
It should be noted that not only the storage, but also the javascript runtime is accessbile and can be
debugged and modified trivially. To ensure the integrity, the decoding key should cannot be stored in
the application and should be retrieved from the server, breaking the offline-first methodology.
As an attempt to resolve the problem, the encryption key can be obfuscated, made unreadable for
humans, but accessible for the machine code. The approach is well known in the software industry
[98] as a (weak) measure against reverse-engineering of the source code. Most notably, JavaScript
library JSFuck [34] [99] provides means of obfuscation by converting Javascript code into set of strings
of 6 characters: [,], (,), !, +. The security through obscurity approach is a weak band-aid solution
that, in the author’s opinion, cannot be applied ’by design’ to the production environment.

The statistics can provide an alternative for the encryption model. With only authenticated users
having access to the data, the user’s pool is known at any given moment in time. Based on the as-
sumption that only a small percentage of users are interested and tempted to modify the code or the
processed frames, the data integrity can be validated by comparing the results processed by differ-
ent sources. Sending all of the raw data to all of the clients for reprocessing is unacceptable, due to
network and computational waste on both server as the client application,so only a few active clients

66 8. Client Leveraged System

should be selected. It should be stressed that the concept works if the received raw telemetry frame is
not modified. Which is problematic with offline-first methodology. Additionally, the approach requires
at least three active users at any point in time.

Operations Role
With the client web-based application capable to query and visualise the data lead to the question
whether the system can, and should, be applied to the Spacecraft operations. To support the spacecraft
operations, the designed client application ought to distinguish between Radio Amateurs, having access
to the locally received data, and Spacecraft Operators, potentially having access to all of the historic
data. The Spacecraft operators dataset ought to be updated in real-time, requiring real-time sync with
the processed data.
The proposed system requires a change to the previously established client-server connectivity as
shown in the figure 8.6. The proposed approach to filter out the processing inconsistencies by re-
processing the raw frames in parallel on the otherwise un-utilized client applications, goes in hand with
the required interface for spacecraft operations: data push capabilities from the server.

Next to the continuous synchronisation of data stores, Spacecraft operations require data querying.
Opposed to the simple data retrieval by key, querying allows selection of data based on time domain
and filtering based on a set of logic operations. The application executes similar, if not identical, queries
therefore a cache mechanism with a set of pre-computed metrics is required [GN-DQ-2].

Implementing the entire application from scratch, providing support for the majority of browsers is
a challenge. JavaScript is executed as a single thread, albeit sand boxed, shares the resources with
all other browser tabs; changing the browser tab or bringing the browser window out of focus halts
the JavaScript execution. Furthermore, to ensure the smooth execution, functions are preferred to be
executed asynchronously, either in form of callback or a promise.
The performance is achieved by a fine balancing of the tasks, e.g. downloading large number of small
files will massively slow down any browser rendering functions; the decoding functions should not
interfere with the for telemetry frames scanning of the radio’s bitstream.

With the main focus on the data processing, figure 8.7 shows the sequence diagram of the proposed
application. Although not explicitly indicated by the figure, the binary stream operations, such as frame
detection, ought to be run as web workers [100], facilitating (virtual) multithreading approach.
The application shows an asynchronous behaviour with regards to storage and processing, but syn-
chronicity towards processing. This is required to ensure the latest processing scripts, arguably, solv-
able by running additional webworker.

:main/worker :demodulator :kaitai Local Storage Server
Continuous
data stream
from radio

save

get processing version

stream

process

update Kaitai
codebase

return raw frame

push raw frame

return version

get source code

return version

get raw frame

return raw frame
parse raw frame

return processed frame

save

push processed frame

Figure 8.7: Simplified sequence diagram

8.3. Implementation 67

Requirements
For the storage abstraction, the system ought to:

1. Operate in-browser

2. Store structured and unstructured data

3. Provide ability to query the stored data on attributes

4. Ability to cache/pre-query results

5. Ability to execute filter/scan queries on the data

6. Data should be available, following offline-first methodology

7. System provide ability to distinguish users groups and shield data access off accordingly

8. System should be able to update the processing and visualisation source code

With the given set of requirements, only a small selection of systems, available at time of writing,
satisfy the selection criteria. The available solutions roughly fall into three categories, storage systems
that provide no native synchronisation options, systems that synchronise manually, or systems that
synchronise automatically. The non-synchronised options are often seen in the performance optimized
systems sych as LokiJS and AlaSQL, utilising in-memory storage and query engines. Due to increased
RAM footprint, these system opose limitations on volume of stored data and may disallow persistence.
The storage system allowing persistence are often combined with external data store syncronisa-
tion. Due to distributed nature and inherent unknown networking latency, the system cannot achieve
Consistency-Partition tolerance, without introducing unbound locks across all client applications. Alter-
natively, opting for Availability-Partition tolerance, bound by the networking, only lazy Slave-replication
is achievable. The eventual consistency may lead to high inconsistencies in data set across client ap-
plications. Due to append-only nature of Delfi data sets, the chance of data collision is low, but should
be addressed. Unsurprisingly, the majority of storage systems avoid active synchronisation, exposing
an API to perform CRUD operations on the server, or requesting dataset (snapshots) from the central
data store (YDN-DB, Minimongo). In contrast, PouchDB allows lazy replication, both from server to
client and client to server, hence allowing a Multi-Master Two-tear deployment.
Two-tear systems implies two types of storage systems, permanent and temporary. The permanent
systems are permanently connected to the network and contain the complete data sets, while the
temporary systems may lose connection and/or the entire data sets. The PouchDB library provides the
tools to operate the temporary node, while the permanent node is left to purpose built CouchDB data
store.
The PouchDB storage system was selected due to the hands-off data synchronisation with the server,
providing an abstraction for the PUSH and PULL requests shown in the figure 8.7, while the Multi-Master
deployment allows (eventually) consistent operation due to implicit data-collision strategies.

8.3. Implementation
Based on the architecture proposed in the sections 8.1 and 8.2, this section focuses on the high level
system design formulation. As introduced in the previous section, PouchDB allows native synchro-
nisation with remote database, introducing the client PouchDB instances into the distributed storage
cluster. Bound by the networking delays and geographical distances, the system operates in eventually
consistent, i.e. lazy replication approach. The deployment view of the architecture, illustrated by the
figure 8.10, shows two distinct types of nodes: permanent on-premise and provisional off-premise in-
frastructure. Under normal operations, the on-premise nodes are permanently available and connected
to the network, while the off-premise devices can connect and disconnect at any moment in time.
CouchDB, a Document-based data store, is utilised for the permanent on-premise data storage. With
options to be deployed both in stand-alone as in a decentralised Multi-Master (MM) manner, system is
easily scalable, preventing single point of failure. CouchDB is discussed in section 8.3.1.
The PouchDB is an in-browser implementation of CouchDB, providing access to set of the CouchDB
features. Both PouchDB as CouchDB define client permissions moderating the data access as well
CRUD operations. CouchDB natively supports a per-user database, allowing a personal data store of
each individual user or client application. PouchDB is discussed in section 8.3.2.

68 8. Client Leveraged System

8.3.1. CouchDB
The CouchDB is a ’web-inspired’ document-based data store designed to operate in a stand-alone or
in a distributed deployment [101]. The stored information, i.e. the documents are represented by
discrete objects consisting of fields and attachments. Operating in append-only mode, the documents
are sequentially written to disk-stored database file. The Update of CRUD, is achieved by adding new
versions of the document, and changing the pointer to the newest release. The process is handled
by B+Tree based engine, indexing the documents based on the unique identifier and the sequence
number. The CouchDB is subject to the ACID properties [102], but deviates from RDMBS READ locks
by redirecting the write-concurrent reads to the previous version of the document. This is achieved
by use of Mutliversion Concurrency Control that facilitates both the Consistency, by preventing the
partially written documents from been read, as well the Isolation making document Read and Writes
independent of each other. The Durability is satisfied by append only database write, that cannot be
corrupted or lost by the application during a malfunction. Any document submit to the data store
is either written or rejected, handled by the extendable Update Validation functions, ensuring the
Atomicity property.

Being a distributed system, CouchDB is bound by CAP, actively forfeiting consistency for the avail-
ability. In this case, the document updates propagate throughout the database cluster, eventually
converging to a consistent state, hence nicknamed ”eventually consistent”. CouchDB supports replica-
tion, allowing data sets or replicas, to be present on multiple database instances while ensuring their
synchronisation. The documents in the replicas can be edited on any of the nodes, leading to possible
conflicts. It should be noted that all conflicting documents are stored in the database, and left out
of the Views as long the conflict is not resolved. Due to eventual consistency, the conflicts are not
avoidable and treated as a normal occurrence in CouchDB system.
The querying of a collection containing both unstructured and semi-structured documents, each with
different set of attributes, deviates from RDMBS SQL-languages. The denormalized documents are self-
contained and cannot be queried in table-column-field manner. Due to its distributed nature, query
parallelization is important and combined with implicit per-document schema requires queries to op-
erate on per-document level. The aggregation queries combine document extracted information into
a View. The Views act similarily to the map operation and apply a javascript function sequentially to
the stored objects. The View results are stored in as an additional B-tree [103] structured file, con-
taining the references to the documents by a map (hash) function. On the initial creation, MapReduce
transverse the entire data set, while the later changes solely updates the references triggered by the
database sequence ID change. Next to JavaScript based View map functionality, CouchDB facilitates
Mango Queries, a Cloudant developed API [104] for complete data set traversal.

As illustrated in the figure 8.8, CouchDB clustering can be setup as Multi-Master (MM) or Master-
Slave (MS) with filtered replication. The Master-Slave architecture can consist of a combination of
one Write and two Read database nodes each containing the entire dataset. The deployment model
allows all databases nodes to operate independently, acting as a single stand-alone node, reducing the
complexity of the replication system. This design allows database nodes to be added and removed
without the need for resharding. In term of performance, the view queries traversing entire datasets,
are run independently and synchronously on a single node and are therefore bound by the node
performance. The load balancer regulates the node utilisation on redirects Write and Read requests to
the designated nodes.
The Multi-Master deployment is achieved using two-way replication between all of the database nodes.
In contrast to MS architecture, the dataset is split between nodes in form of replicated shards, and
typically three replicas per shard are used [105]. Where in MS deployment, the (CRUD) operations are
redirected by the load balancer based on the operation type, with a single node responsible for the
entire transaction, the MM deployment utilizes the entire cluster. The CRUD operations are handled by
the coordinator, assigned by the load balancer based on the node’s utilization, and in the contrast to
MS clusters, any node can be used. The process of data Read and Write in a MM cluster follows the
following principle [106]:

1. Client Request is registered at the load balancer

2. Loadbalancer redirects the request to a node: coordinator

3. Using the shard map, coordinator redirects the request to the nodes containing the affected
shards

8.4. Distributed, Centralized System 69

4. Coordinator awaits for two responses for Write and one response for Read requests

5. Coordinator processes the responses and passes the results back to the requestee via the load-
balancer

In contrast to MS single node operations, the MM approach, due to its distributed nature, per-
forms View mapping paralellized over all nodes containing the given shard increasing the querying
performance of the system.

The scalability of CouchDB database deployed in Multi-Master cluster depends on the number of
shards. The product of the number of shards and replicas count determines the maximum number
of the allowed nodes, hence limiting the cluster size. The sharding number is set prior to the cluster
deployment and is immutable. Change of shards number require redefinition of the existing shards and
reallocation of the existing data, unfeasible in production. This leads to the concept of oversharding,
storage of high number of shards on small number of nodes, to facilitate for future growth.

Loadbalancer
WRITE READ

READ

REPLICATION

node 1 node 2 node 3

a)

Loadbalancer
R&W R&W

R&W

REPLICATION

node 1 node 2

b)

node 3

Figure 8.8: Master-Slave a) and Multi-Master b) CouchDB clustering

8.3.2. PouchDB
The PouchDB is an in-browser data store, emulating CouchDB database via the REST API interface.
The PouchDB provides an abstraction layer for browser (or NodeJS data stores) and by default utilise
webSQL, InnoDB or LevelDB (NodeJS) storage mechanisms. Furthermore, built in a modular manner,
PouchDB allows use of custom adapters providing access to in-memory (RAM), local storage and other
mechanisms.
PouchDB provides an unified storage and querying interface, independent of the operating system,
browser or local installation (NodeJS). This increases the usability and reduces the impact of the browser
changes on the application, by abstracting the changes within the PouchDB layer. For example, the
FruitDown adapter was implemented in for PouchDB to work around Safari IndexDB bugs [107].

8.4. Distributed, Centralized System
By operating in a distributed manner, the CouchPouch system introduces new opportunities related to
the data processing, potentially allowing recovery of otherwise lost frames due to bit-flip, not recover-
able in the legacy application.

8.4.1. Document Design
Both the CouchDB and PouchDB are document-based data stores. From development point of view,
the documents are abstracted to set of JSON objects, containing an unique identifier, document version
number and a set of fields representing the stored data. Due to distributed nature of the data store, the
documents ought to be self-contained, encapsulating all necessary information for the manipulations.
This section focuses on the contents of the documents, focusing on the effects of schema-on-read
system on the application implementation.

Stricture
The document-based databases a schema-less, allowing storage of arbitrary fields in the JSON based
documents. The schema-on-read strategy provides flexibility on data insert operations, but requires

70 8. Client Leveraged System

{ "_id": n3xt0001231,
 "_rev": 001.
 ...
 "STX":
 { "temperature": 35
 },
 "ADCS":
 { "X_ON": -100,
 "Y_ON": 300.

 }
 "received": [46, 45, 2],
 "invalidated": 0
}

{ "_id": n3xt0001234,
 "_rev": 001.
 ...
 "OBC":
 { "temperature": 35
 },
 "PTRX":
 { "transmit": -100,
 "doppler": 300.

 }
 "received": [46, 45, 2],
 "invalidated": 0
}

{ "_id": n3xt0031235,
 "_rev": 003,
 ...
 "STX":
 { "temperature": 15
 },
 "ADCS":
 { "X_ON": 0,
 "Y_ON": 0,

 }
 "received": [46, 45, 2],
 "invalidated": 0
}

Known subsystems:
 STX
 ADCS
 OBC
 ...
 PTRX

Actor

Parse subsystem
fields

Selects subsystem(s)

Visualize
Select the field(s)

Return fields

{
 "_id": "n3xt1472_1",
 "_rev": "1-21472a3db731a78c142d27b92d0c98c0",
 "bootcounter": 5,
 "elapsed": 636099.3,
 ...
 "bat2_depth_of_discharge": 54.7705,
 "bat2_discharging_current": 12.0784,
 "bat2_temperature": 28.185
}

{
 "_id": "n3xt1472_2",
 "_rev": "1-21472a3db731a78c142d27b92d0c98c0",
 "bootcounter": 5,
 "elapsed": 636099.3,
 ...
 "bat2_depth_of_discharge": 54.7705,
 "bat2_discharging_current": 12.0784,
 "bat2_temperature": 28.185
}

Flat structure, known fields:
 bootcounter
 elapsed
 bat2_depth_of_dishard
 bat2_discharging_current
 ...

A)

B)

Figure 8.9: JSON encoding A) structured B) flat

the application handling the data to be aware of the documents’ structure. This requires a level of
sanitation to ensure the system compatibility. The schema synchronisation can be achieved in a variety
of ways, and in authors opinion should be directly related to the processing scripts. With the processing
code generated from Kaitai definition file that readily contains the available field structure along with
per field documentation. The proof of concept structured the stored JSON document in accordance
to the hierarchical structure of the KSY file. By storing the KSY file version, any document schema
changes are traceable and can be decoded by the application trivially. It should be noted that the
hierarchical structure can be denormalised trivially, as long the field keys are unique and descriptive.
While the automated data handling requires precise field name mapping, the data visualisation portion
of the system can leverage the user, as the keys can be easily extracted from the local collection of
documents. This allows user to dynamically filter the objects and data, as illustrated by option A in
the figure 8.9. The choice between a hierarchically subsystem structured document data and a flat
document structure ultimately depends on the system processing needs. For example, an aggregation
of spacecraft temperatures requires traversal of subsystems fields, while in flat structure it can be
performed as a single operation. Furthermore, use of external tools may oppose requirements on the
storage, for example Kibana requires a flat document structure.

The design of the document structure is flexible and can be changed ad-hoc, but requires clear
definitions to ensure long-term compatibility. Once written, the document fields containing satellite
metrics should not be changed, as the immutability of these parameters contributes to the overall sys-
tem consistency.
Where in RDMBS schema changes are handled by the database system, the CouchDB requires manual
document-per-document edits. The impact of human-introduced errors is limited as B+tree provides
version control, allowing roll back of transactions and restore of previous document versions. It should
be noted that the garbage collection, either manually initiated or triggered by storage bloating, auto-
matically repacks the stored documents, discarding all out-of-date document versions.

The design of the document should be performed at the final design stage of the system, when
the processing as well the visualisation requirements are well known and defined. The proof of con-
cept showed that both hierarchical as the flat document structure oppose no significant differences on
the decoding and storage system. It should be noted that the document schema should follow KSY
schema, to limit the amount of glue code required for the parsing. However, it should be stressed that
the KSY encoding should not dictate the document encoding, but rather follow the telemetry frame
structure set by the frame design.

8.5. The Software Design 71

Document identifier
To facilitate the data look-ups and increase the performance of the range selection queries, the docu-
ments id ought to be set either to the telemetry frame timestamp or the unique frame identifier, set
by the OBC. The choice for timestamp may lead to use of time series databases, while frame id’s are
more suitable for the document-based stores. The use of timestamps is affected by inherent on-board
clock drift. This can either be ignored, or adjusted prior to storage. Adjustment may cause a single
telemetry frame to be stored under two id’s or two different frames to be stored with the same id
causing a complex data collision mode. Next, the document id should contain the satellite identifier,
to increase the robustness of the application. Therefore, the unique document id should be set to
the satellite name followed by the telemetry frame counter, in form of ”<satellite identifier>:<frame
identifier>” or ”<mission identifier>:<satellite identifier>:<frame identifier>”.

8.5. The Software Design
The software design introduced in the section, follows the architecture proposed in section 8.2 and
software selection process discussed in section 8.3.

The designed system is characterised by the offline-first principle, requiring local storage of the
software routines and the data on the client, i.e. the browser. The concept pivots on the PouchDB sys-
tem, providing distinct purpose-driven databases for JavaScript scripts, as well for raw and processed
data. As illustrated by the physical system overview 8.10, up to six distinct use cases can be identified:
Ground Station, Radio Amateurs, Satellite Operators, Server-side Database System, Dedicated Process-
ing System and Off-site backup; and grouped in three distinct categories: Radio Amateurs, Satellite
Operators and Server-side functionality. The role of an authenticated user database defines the cate-
gory and implicit sets the access rights to the CouchDB databases, controlling the Server-to-Client and
Client-to-Server replication. The local databases, operated by the PouchDB and the browser, by design
provide R&W privileges to the client, requiring the replication control to be handled server-side.

Based on the two-way replication, and depending on the level of trust with respect to the users,
two distinct methodologies have been proposed: Compartmentalised (per-user) databases and Shared
databases. The Compartmentalised and Shared Server-side database systems are illustrated in figure
8.11 by D) and E) sub figures.

The shared database approach limits the users’ data access by filtering the replication of the central
store to the local PouchDB instances [108]. For the Delfi-satellite operations two data stores are
required: RAW and Processed, containing the unmodified received telemetry frames and the processed
parsed data respectively. With the document-based store, the use of JOIN operations in unadvised,
hence combining the RAW and Processed databases would require merging of the RAW and Processed
data, increasing the number of the document edits and information to be transferred to the client.
The filtered replication [108] is partially implemented by the CouchDB (hooks) and can be extended to
accommodate for the user role-filtering needs.

In terms of security, filtered replication is a weak measurement, allowing adversaries to flood the
database with fake telemetry data. With the ”merge” data collision strategy, the fake data may dom-
inate the correct reception, leading to potential data loss. As a measure to reduce the impact of
single-user actions, the databases can be compartmentalised via CouchDB built-in database per-user
functionality, allowing an individual RAW (and processing) database for each of the authenticated
users. Furthermore, by setting the storage quota’s, the flooding attempts will solely affect the users’
(application) local data and not the server storage.

As illustrated by figure D), compartmentalisation requires data aggregation to combine the docu-
ments from different receivers. The aggregation step can be merged with the filtering step, allowing
bit-flip recovery in conjunction. In operation, the Compartmentalised approach prevents data collision
as duplicate frames will be stored on the individual user databases.
The use of compartmentalisation increases the storage requirements, as duplicate telemetry frames
are expected to be presented in the multiple personal databases. Following the Delfi-n3Xt trend, the
expected duplication is expect to be withing 40 % mark. With impact on the RAM use, a further re-
search is required to determine the impact of per-use databases on the server performance.
Based on the increased storage requirements, as well limitation with regards to distributed processing,
the compartmentalisation approach was discarded.

72 8. Client Leveraged System

Figure 8.10: Physical system view

8.5.1. User Based Description
Following the user groups and accompanying requirements, this section researches whether the re-
quirements are met per user group and use cases.

Radio Amateurs
Dictated by the requirement GN-UI-GEN-02, the application ought to visualise the received telemetry
frames for each individual Radio Amateur. While the Dude and Rascal applications perform visualisation
in parallel with the telemetry reception, hence showing only the last received frame, the proposed
architecture allow an overview of all client’s individually received data. Furthermore, with use of shared
RAW and/or Processed databases, the newly received data can be replicated to the clients, providing
a live satellite status link. Although not required, the approach may serve as an extra incentive to
keep PouchDB website/tab active, therefore increasing the resources for the processing scripts as well
number of active nodes in the system.

Regardless the approach, the RA_DB database, containing the demodulation scripts, is ought to be
replicate as shown in the figure A 8.11. Depending on the Trust metric, the data processing scripts can
be allocated to the user, along with Processed data Write access.

Satellite Operators
Executed with Satellite Operator user privileges, the application allows access to the historic satellite
data via replications to the local database. Initially, a subset containing short-term historic data is repli-
cated from Processed database, which can be expanded via on-demand data retrieval. This operates
on the assumption that only short term data is required, and operations are visualisation-centred.
To deviate from Excel-based tooling, the front-end application allows local querying, based on PouchDB
provided MapReduce and Mango query APIs. At time of writing the required operators queries are un-
known, due to its inherent mission specific nature. The proof of concept, limited to selection and
on-demand plotting of spacecraft parameters, provided no significant information on excess computa-
tional power. This lead to uncertainty with regards to the impact of replication and on-demand queries,
that lead to the separation of (kaitai based) processing from operator nodes in the design.

Non-human users
The primary goal of the server-side application is the support of the client applications and permanent

8.5. The Software Design 73

storage/retrieval of the telemetry and user data. Due to the distributed architecture, the PouchDB or
CouchDB based nodes can be added at will, for example, to assist with computations with use of a
dedicated processing node (figure C).
The server side functionality is (or can be) split across multiple nodes, relaying on CouchDB for the
separation. The proof of concept is based on non-sharded, one-way replication between server-side
based databases. It should be stressed that the sharding is required for the scalability, specifically
for the scaling of the write operations. At time of writing and POC implementation, the system use
and the load were unknown, leading the selection process for clustering to later stage when system
requirements are better understood.

8.5.2. System Components
This section provides a brief high level overview of the system components.

Databases
The system is based on CouchDB and PouchDB synchronisation, requiring a number of task specific
databases.
System Database
In order to provide the offline-first functioanlity, the majority of the code as well the application web-
site(s) should be stored locally in the clients browser. To limit the browser dependency as well as a
measure to future-proof the application, the client application code ought to be stored in PouchDB. The
POC showed ability to load and run Database stored scripts, in form of document attachments as well
with PouchDB extension PouchDB-load.
The replication of the system database allows ad-hoc code adjustment on the server and quasi-
instantaneous code updates across the system. Additionally, with per-document set privileges custom
scripts and views can be developed for each user group.
On the high level, three types of scripts should be stored: the website related code, the demodula-
tion and the processing scripts. The website code is user-group specific and instantiates the PouchDB
databases, as well the the demodulation and processing scripts. The demodulation script is responsi-
ble for RF and low-level frame manipulations and is considered to be out of scope of the project. The
processing scripts, generated by Kaitai compiler ingest the binary encoded telemetry frame generated
by the demodulation code, and return a JavaScript object that can be stored (semi-) natively in the
PouchDB database.
Data storage databases
Regardless the selected design, two telemetry databases can be identified: RAW and Processed. The
RAW database contain the documents with received binary telemetry frame, indexed by the frame
embedded counter and satellite identifier. The processed data, consists of documents containing the
processed frame, along with receiver metadata and validation fields.
It can be argued that the separation of RAW and Processing data is not required, as raw and processed
documents can be merged to a single entity and therefore be stored in a single database. This is
unadvised due to two considerations. First, the merge action introduces additional document revisions,
bloating the storage. Second, by merging the documents, the immutable RAW data is modified, which
is unadvised due to possible human errors.
In order to support multiple spacecraft missions, the duplication of RAW and Processed databases per
spacecraft might be considered. This is in author’s opinion not necessary, since the frames are uniquely
indexed by satellite name and carry the necessary meta data to determine frame origin to perform per
satellite queries. Additionally, the use of high number of databases (500>) is unadvised, as replication
load increases non-linearly.
User database
The user database contains private user information required to operate the replication filters and over
system authentication. The latter is ignored from the discussion, as design was halted on the proof of
concept phase.

Distributed Processing
The distributed system is designed with two considerations. First and the main consideration is to
ensure system robustness. With the use of the client-side storage, i.e. allowing client applications to
form a distributed cluster, any server failure is recoverable, as data is stored on the remote nodes and

74 8. Client Leveraged System

U
####.R

AW

U
####.processed

D
em

odulation

Fram
e processing, Kaitai

W
ebsite codex

JSJSJS

R
A_D

B
R

eplication

R
eplication

R
eplication

filtered

R
AW

processed

D
em

odulation

W
ebsite code

JSJS

R
A_D

B
R

eplication

PR
O

C
ESSIN

G
JS

R
eplication

R
eplication

change feed

A)
B)

D
ATA + SC

R
IPT

PR
O

C
ESSIN

G

R
eplication

C
)

U
####.R

AW
U

####.R
AW

U
####.R

AW
U

####.R
AW

U
####.R

AW
U

####.R
AW

U
####.R

AW

AG
G

R
EG

ATO
R

+

FILTER

R
AW

U
####.processed
U

####.processed
U

####.processed
U

####.processed
U

####.processed
U

####.processed
U

####.processed
U

####.processed

AG
G

R
EG

ATO
R

+

FILTER

PR
O

C
ESSED

SC
R

IPT
+

W
EB D

B

R
EPLIC

ATIO
N

FILTER

R
EPLIC

ATIO
N

FILTER

R
EPLIC

ATIO
N

FILTER

U
SER

D

ATABASE

C
ouchD

B built-in functionality

C
ustom

 Functionality

x

W
ebsite based

visualisation and
data delivery

R
eplication

O
perators

R
eplication

O
perators

R
eplication

O
perators

R
eplication

R
eplication

D
)

R
AW

PR
O

C
ESSED

SC
R

IPT
+

W
EB D

B

R
EPLIC

ATIO
N

FILTER

R
EPLIC

ATIO
N

FILTER

R
EPLIC

ATIO
N

FILTER

U
SER

D

ATABASE

R
eplication

R
eplication

R
eplication

R
eplication

R
eplication

VALIDATOR

VALIDATOR

D
ATA + SC

R
IPT

AGGREGATOR

SC
IEN

C
E

D
ATA

VALIDATOR

(O
PTIO

N
AL) R

EPLIC
A N

O
D

E

R
eplication

Server functionality

C
lient functionality (brow

ser)

E)

Figure
8.11:

System
D
esigns

8.5. The Software Design 75

will be replicated automatically on the server recovery. Secondly, the remote nodes, i.e. the client ap-
plications, can be leveraged for the ”swarm”-processing, allowing otherwise computationally expensive
bit-flips recovery.

Client-side processing
The client-side processing is by design allocated to the RA’s (if trusted) and the automated GN’s. Further
research is required to determine the computational impact, therefore the Spacecraft Operator group
is ignored from the discussion.

The logic of the client-side processing is illustrated in the figure 8.12. The approach relies on
the shared RAW and Processed databases, allowing participants to Read and Append data to the
documents. It should be noted that the append operations are reversible, as each modification results
in an additional copy.

The processing is performed in three major steps. First, the system ought to identify whether the
telemetry frame is correct. Then, determine whether the telemetry frame is already received by the
swarm. Lastly, system ought to append the outcome of the previous steps to the database. Additionally,
the distributed system allows attempts to reverse the bit flip sequences. If multiple incorrect versions
of the frame exists (analysis showed that 40 % of data is duplicate), the required bits to brute-force
can be reduced significantly.

With a shared data store, the client application can validate whether the received, partially incorrect
dataframe is readily available in the system and determine whether error correction is required. The
approach hinges on the correctness of the frame identifier, the counter field in the housekeeping portion
of the data.
The received frames are perceived as out-of-order by the server applications.This is a consequence of
time synchronisations issues between the clients, but expected to arise more frequently due to SDR
popularity in the future. The latter is especially interesting, since it allows the client application to select
frames for bit-flip recovery based on their value. In case of Delfi-n3Xt and Delfi-C3 the frames received
during a satellite pass, broadcast the instantaneous state of the space-craft, therefore it can be argued
that the completeness of transmission sequence is not important. This is partially true, since certain
mission states require higher number of measurements, e.g. thruster experiment. The variance in a
single Delfi-n3Xt pass data is low, therefore, brute-force calculations are not necessary. Considering
the future missions, potentially broadcasting the historic and whole-orbit on-board stored data, the
complete frames sequence can be required.

Storing the partially incorrect frames (PIF), allows the brute-force a bit-error correction. With multi-
ple versions of PIF from multiple receivers, the amount of brute-force work can be potentially reduced
by aligning and comparing the bit fields of the frames, showing the frame differences. A further anal-
ysis is required to determine the correctness and feasibility of the approach, as identical bit errors can
be received by multiple stations.

8.5.3. Considerations
With the entire system depending on CouchDB-PouchDB replication, the failure modes have to be
investigated. Based on the HTTP based API, utilising HTTP GET, POST, PUT methods the PouchDB and
CouchDB are well suited for the web browser applications, and by use of non-blocked standard port
5984, the connectivity issues due to networking are unexpected. The CouchDB was formely known in
CouchApp deployment scheme, leveraging the design documents for HTML and CSS storage, delivering
JS code as attachment. The CouchApps deviate from ”the right tool for the job” approach and are
criticised by the developer community. The proposed architecture, utilizes the database as a storage
and delivery system, but Deviating from the View and Querying mechanisms used in CouchApps,
the PouchDB-CouchDB deployment, store the code base in form of documents, deviating from the
CouchDB-View based hacks.
Where the locking, the inability to perform the Read or Write transactions, was the SQL based system
limitation, the replication consistency is the CouchDB equivalent with regards to the system operation.
Due to eventual consistency methodology, any document can be edited by any of client applications,
causing data collisions. The strategy towards replication is simple: merge. As illustrated in the figure
8.12, all data manipulations can be resolved by merging the changes.

76 8. Client Leveraged System

Figure 8.12: Client-side processing

8.6. Proof of Concept and Requirements Overview
The client-based processing and storage system concept presented in this chapter is built on the hy-
pothesis that the use of remote clients will reduce the load on the central server. The PoC presented
in this document addresses the client-based storage, as the computation load of the frame processing
software is readily investigated and discussed in section 5.5.

8.6.1. Experiment Hardware and Software Setup
The hardware setup consists of a single server node and two client nodes. The server software con-
sists of CouchDB (version 2.2.1) application, a Python built-in web server used to serve the webpage
containing the client application and a monitoring plug-in. The monitoring is based on Prometheus
project and provides a UI for data aggregation and graphing. Due to time constraints and Prometheus
limitations, the axis on the graphs could not be modified for the report and are therefore different for
each figure.

The client application is based on PouchDB (version 7.0.0) and is executed on a Windows 7 (SSD
and 16GB RAM), and OS X 10.13.5 (SSD and 8GB RAM) hosts using Google Chrome (67.0.3396), Safari
(11.1.1) and Firefox (60.0.2) browsers.

The server is connected with Windows host via a network switch, while the Unix host requires
additional network hop: network router. It should be noted that the PoC did not attempt to investigate
the networking effects, and setup is coincidental.

8.6.2. Experiments and Results
To investigate the feasibility of the data storage as a cluster with remote data nodes two phenomena
have been investigated: the effect of the number of clients and the effect of data flow rate (burst vs
continuous). Both are investigated by the series of the experiments:

1. Determine the baseline ingestion rate of CouchDB

2. Determine the replication rate of the server to remote client databases

3. Investigate the effect of simultaneously connected clients on replication speed

4. Investigate the effect of a ”burst” type of data ingestion

5. Investigate the effect of a ”burst” server to client ingestion

6. Investigate the client to the server replication rate

8.6. Proof of Concept and Requirements Overview 77

The data ingestion experiment, pushing 10,000 frames into the CouchDB at the maximum accepted
rate, increases the system load, a combined metric of the CPU, network and drives queued process,
to the value of two, as shown in the figure A 8.14 and fig:exp1fig2. The reason for the load increase
during the experiment is the consequence of the RAM caching, as can be seen by the continuous
increase in the RAM usage. The equivalent file size of 10,000 frames is 70 MB, roughly comparable to
the RAM use. At 3min 15seconds mark, the RAM usage reduces significantly, followed by a spike in
disk write operations. This is likely result of storage optimization, for example, data compression. The
measured average data ingestion rate is on average 33 frames/s.

Figures B in 8.14 and 8.15 show the server metrics during database replication from the server to
two separate clients. During the test runs, 10,000 documents containing raw telemetry frames have
been transferred. The main observation is the lack of Disk Read activity hinting towards memory-
based optimisation. High system load, but a low CPU utilization hints towards queuing and single
thread processes, as seen in the figure B 8.15.
The experimentation with limited datasets showed a preference for memory-based storage, as indicated
by < 1 Kb/s disk reads. The sudden decrease in RAM consumption at 5min50s is not an effect of the
data read operations, but a reoccurring (caching) phenomenon that can be observed both at idle and
during high load phases.
The observed network ’out’ rate is 144% higher than network ’in’ rate during the ingestion phase,
however, the time required to transfer 100,000 frames is increased by 46 %. The increased traffic is
most likely the consequence of sharding processes, requiring continuous updates of both client- and
server-based database states. This is supported by the network receive rate. No significant difference
between Chrome (3-4) and Safari (5-6) based applications could be observed during the experiment
with the exception of the execution time.
It should be noted that throughout experiments Chrome was found to be 20% faster than Firefox and
Safari. Furthermore, Safari was eager to perform memory-saving measures, reducing and temporary
terminating replication as seen at 19min20s.

The combined Safari and Chrome run illustrated in the figures A 8.16 and 8.17 show a 42 % increase
in CPU and 57 % increase in the system load. The comparison with a single connected application runs
(3-4 and 5-6) show no significant change in RAM use, proving that the replication performance is
primarily CPU and Network driven. Doubling in the number of connected clients did not increase the
network traffic linearly. Consequently, the time required to replicate 100,000 documents to two clients
applications simultaneously was increased by 20%, for example in case of Chrome from eight to ten
minutes.

To simulate a close to a real-life scenario an experiment was conducted with two ”virtual” operators
(I, II) launching the application to monitor the spacecraft, while the new telemetry data is pushed
by a radio amateur at the rate of 2 frames per second. Experimentation not presented in the report
showed that the replication to the databases added to the cluster simultaneously or within a small
(<1 minute) time window, is done with identical batches, allowing CouchDB to synchronize both either
simultaneously or with a batch-based offset. Hence allowing the system to prepare each batch once
and reuse it for each consecutive database. Therefore, to better simulate unpredictable real-life use,
at 7min mark new application (III) was introduced to prevent re-use of the replication batches. The
result is visible in the CPU and the load graphs of the figure B 8.16, showing an increase of 86 % in
CPU and 77% in the load. The queuing of the Disk and Network can theoretically explain the non-linear
change, i.e. 11% difference. However, none of both were observed, leading to the conclusion that
CPU use is the primary source.
The replication speed from CouchDB node to application III was found to steadily decrease, with an
average rate of 31.7 frames/s between measurements 11 and 12, dropping to 24.4 frames/s at point
13, and 20.5 frames/s at point 14. At measurement point 15, the data ingestion of 2 f/s was terminated,
showing that all client databases were up to date both in terms of on-screen frame count and network
(out) activity.

Figures 8.18 and 8.19 combine four different experiments. First, between the measurement points
1 and 2, a burst of data (1000 frames) is sent to PouchDB. No residual hysteresis was found in terms
of Load or CPU, and with no connected clients, as well as the networking. The increase in RAM can
be accounted to memory optimization of the database. Between point 2 and 3 no experiments were
performed, showing the idle state of the system. At measurement point 3, four clients were connected
with a time offset of two seconds. All of the clients required the complete dataset replication. During

78 8. Client Leveraged System

CouchDB
Web / File

 Server

Firefox Chrome Chrome Safari

Windows host Unix host

WebsiteWebsiteWebsiteWebsite

Switch Router

Figure 8.13: Experiment setup

the run, a steady increase in the system load can be observed hinting towards queuing. The RPi
network interface is capable of 11.5 MB/s, however, during the experiments never exceeded the 1.5
MB/s. The measurements points indicate the completion of replication by Windows hosted Chrome and
Firefox applications for points 4 and 5, and Unix based Chrome and Safari application in points 6 and
7. The application executed on the same host show similar results in replication speed, however, the
difference between Windows and Unix hosts was substantial. On average, the Unix hosted applications
lagged by 800 frames at 10min mark and increased up to 1000 frames close to measurement point
4. Furthermore, between measurement points 6 and 7 CouchDB ”lockups” were observed, temporarily
terminating the database connection. The experiment between point 3 and 7, replicated database with
11.763 frames to all of the connected clients.

The third experiment focused on the study of Client to Server replication, simulation RA contribu-
tions. At measurement point 8, the CouchDB and PouchDB databases were reformated. This removed
all previously stored data freeing the server memory. At measurement point 9, telemetry data was
placed on one of the PouchDB (500 frames) clients and replicated to the CouchDB server until mea-
surement point 10. It can be seen that the replication to the server places the documents directly on
disk, and utilizes the memory once replication is completed. In practice, this increases the performance
as replication is much faster than direct data ingestion from python clients that places data in memory
first. A similar experiment is performed between measurement points 14 and 15 with a larger dataset
of 3000 frames.

The fourth experiment investigated the query performance of the CouchDB. The initial hypothesis,
that the use of remote clients will reduce the load on the central server can be expressed mathematically
as: 𝐿𝑜𝑎𝑑፫፞፩፥።ፚ፭።፨፧ < 𝑁፪፮፞፫።፞፬ ⋅ 𝐿𝑜𝑎𝑑፪፮፞፫፲ With 𝐿𝑜𝑎𝑑፫፞፩፥።ፚ፭።፨፧ the server load due to replication to a
single client, 𝑁፪፮፞፫።፞፬ the number of expected queries throughout mission life per client and 𝐿𝑜𝑎𝑑፪፮፞፫፲
as the average server load by a query. The server load due to queries is shown on the figure 8.18 and
8.19 as measurement points 11 and 12, and executed continuously between points 12 and 13 with a
10sec interval simulating multiple connected clients. Each query pulled 3000 frames from the database
and took 2.3 seconds to make data available on the client side.

1. Determine the baseline ingestion rate of CouchDB

2. Determine the replication rate of the server to remote client databases

3. Investigate the effect of simultaneously connected clients on replication speed

4. Investigate the effect of a ”burst” type of data ingestion

5. Investigate the effect of a ”burst” server to client ingestion

6. Investigate the client to the server replication rate

8.6.3. Experiment Conclusion
The experiments did not prove the hypothesis of a reduced server load by data replication. The
instantaneous server load due to query execution is comparable to replication load but much shorter
in duration. A query pulling 3000 frames has an average runtime of 35 seconds, while replication of
similar dataset would require 2.4 minutes. It should be stressed that once replicated, the queries can

8.6. Proof of Concept and Requirements Overview 79

Figure 8.14: PouchCouch PoC experiment one and two combined

80 8. Client Leveraged System

Figure 8.15: PouchCouch PoC experiment one and two combined [cont.]

8.6. Proof of Concept and Requirements Overview 81

Figure 8.16: PouchCouch PoC experiment two and three combined

82 8. Client Leveraged System

Figure 8.17: PouchCouch PoC experiment two and three combined [contd.]

8.6. Proof of Concept and Requirements Overview 83

Figure 8.18: PouchCouch PoC experiment four

84 8. Client Leveraged System

Figure 8.19: PouchCouch PoC experiment four [contd.]

8.7. Lessons Learned 85

be performed on the client side without further impact on the server operations. Therefore ideal for the
workloads requiring frequent data transversals such as machine learning model training and analytics.

In case of Delfi missions, the processing of telemetry frames has a low computational impact. The
entire Delfi-n3Xt dataset can be decoded and processed in minutes, while replication of 220,000 frames
to a single connected client would take approximately 2.9 hours.

The experiments focused on small (182 % smaller than Delfi-n3Xt) datasets, therefore placing data
directly in memory, hence providing the best possible performance. Even under these conditions, the
performance is lacking. It can be argued that this is due to selected hardware, which is true, however,
validation runs on a high-end Windows machine did show a limited increase in the replication perfor-
mance for CouchDB system. A number of optimizations can be designed, such as data compression
to increase of the batch size for each replica shard. However, the load to performance ratio is high
and much higher than querying or frame processing. Furthermore, placing clients outside the man-
aged network, as was the case in the experiment, will degrade network performance and introduce
uncertainties, i.e. frame drops, routing errors etc.

Based on aforementioned it was concluded that bringing data to processing nodes, i.e client ma-
chines, is computationally expensive when database replication is used. Different methods of data
delivery to the client applications can be considered, however, at the end of the day, networking will
become the bottleneck and with limited computational requirements processing server side is both
faster and more robust.

8.7. Lessons Learned
With the user data stored both locally as on the server, each RA is able to review the data locally,
without server-side querying. Useful for the personal usage statistics, the technique provides an unique
insight on the user stored information that exists on the server. With minor adjustments, system can
be expanded for advanced retention policies, for example linking the personal user information to
reception frames, as long as data is stored on the user side. Therefore natively implementing the right
to be forgotten.

The client-driven architecture proposed in this chapter proved to be a complex research topic from
both the users as the system point of view. Leveraging the client applications, in theory, lessens the
computational needs for data processing of the server application. Furthermore, the PouchDB based
proof-of-concept provided a high degree of flexibility, providing required features at a low development
cost. This section aims to answer two questions: ’Why the PouchCouch based system was discontinued’
and ’Why the Client leveraged architecture was discontinued’, addressed in sections 8.7.1 and 8.7.2.

8.7.1. PouchCouch Implementation Flaws
The PoC of the client-leveraged system introduced in this chapter was found unacceptable for the
further development. This section aims to provide the reason behind the decision and to refine the
requirments for the following project iteration.

Security
Deployed as a browser application, the data store and the source code fully accessible to the end
users. The initial assessment provided in section 8.2.2 focused primarily on the data integrity, such as
users (accidentally) modifying the stored telemetry frames. However, this is only a small fraction of the
security topics that need to be addressed.

The PouchDB application requires CouchDB system to be publicly accessible over the internet. All
data, such as raw and processed telemetry frames, processing and visualization scripts, private and
public user information, is exposed to the internet. In authors’ personal opinion, the software is con-
sidered insecure unless proven otherwise. Secondly, the application security is time before adversary
is able to abuse the system. Albeit left out of the discussion, VPN-based networking was concluded as
one of the possible alternatives to resolve the problem.

The second major security threat is the PouchDB system deployed at the end users (clients). The
data stored in PouchDB is synced with the CouchDB directly. Implementing security features on front-
end is pointless, as the user is able to modify the source code at runtime. Implementing security
features on the back-end may be a lost cause since the data readily resides in the database. Filtering
can check for unexpected data types, but not the content, allowing users to submit maliciously crafted

86 8. Client Leveraged System

data sets. Deleting data from CouchDB is a complex process, any deleted file is marked for deletion first,
propagate through the nodes and deleted once the garbage collection has been triggered. Manually
wiping a CouchDB document is not enough, as it can be replicated back from any other node.

The attack vector from the point of view of an authenticated user is immense. First, the malicious
user is able to replicate large volumes of arbitrary data to CouchDB, wasting storage, causing DOS,
potentially discarding the new incoming data. The second attack is the remote code execution. With
write permissions for the CouchDB databases, the malicious user is able to replicate crafted JavaScript
object. At the time of writing, one remote code execution (RCE) vulnerability is known for CouchDB
system [109][110], allowing privilege escalation attacks on the CouchDB host server. Lastly, depending
on the server-side implementation and the acquired user privileges, the malicious user is, theoretically,
able to replicate malicious code to all clients.

All of the issues mentioned above are critical, hard to detect and potentially impossible to recover.

Implementation
The Pouch-Couch application relies on CouchDB for all of the back-end services and PouchDB for the
majority of front-end services. Once implemented, nor PouchDB nor CouchDB can be replaced, actively
locking into the CouchDB en PouchDB ecosystem. It should be noted that the commercial CouchDB
(Couchbase) alternatives are available, however, due to open-source requirement [GN-AUX-LIC-01]
cannot be considered for the production.

The application is designed around on PouchDB as primary data and source code delivery to the
client application. Changing to a different data store is possible, however, the business logic, as im-
plemented in the proof-of-concept, needs to be rewritten from scratch, as no CouchDB-compatible
browser-based data stores were found.

As a disclaimer, the available browser-based natively sync-able datastores, such YDN-DB [111] rely
on an API (REST), allowing both the client (YDN-DB) and the server-based database to be changed.
Alternatively, the database may rely on custom sync algorithm such as Loki-JS.
The use of these systems in PouchCouch deployment would require extensive customization to facilitate
the PouchDB and CouchDB database replication.

The PouchDB browser storage proved to be unreliable, as some versions of Chrome deleted the
persistent storage after closing the browser. Furthermore, offline use of data created collisions and
conflicts in document versions, unexpected due immutable nature of the telemetry data.

The PouchCouch system is limited on the storage provided by the client application. It is clear that
dataset cannot be replicated entirely to the clients, hence, limiting the data query scope. The filtered
replication allows control on the replication, however, applying on all client applications. [failure GN-
DF-06/07]

Architectural Design Flaws
The failure of the PouchCouch system can be credited to the lack of separation of concerns. Albeit
providing the required functionality and scalability, the architecture is bound to a single ecosystem
built around CouchDB. The system is responsible for the data storage, querying, delivery, client-server
communications, user authentication and security. Failure of a single of the component renders the
entire system inoperative.

The proposed advantage of the remote query execution, as an attempt to outsource computational
(e.g. data science) tasks to the remote clients, provides to be less useful than anticipated. The majority
of tasks require data aggregation, leading to complex data operations between multiple clients. The
orchestration between users is possible but limited due to unpredicted behaviour, due to unknown the
user session duration: the user may close browser window at any point in time.

Use of PouchDB and CouchDB requires the application to utilize document-based data store. Fur-
thermore, the data is eventually consistent, hence providing different query results across the clients.

The use of browser deployment requires frequent codebase update to support new browser ver-
sions. Practically, this means that the system is not future-proof and requires continuous support
throughout the mission lifetime. Meaning that PouchDB has to be updated periodically.

8.7.2. Why not Client Based Applications
The research provided by the PouchCouch application showed an implicit dependency on the user.
Having a user in the loop, not only induces the chance of human-errors but also manifests as a new

8.8. Conclusion and the Next Project Phase 87

vector of attack. The user-induced vulnerability is well popularly known as ”Don’t trust the user” [112],
generally applying to the sanitation of the input parameters such as website forms. The distributed
system requires processing validation, which on its own is a weak band-aid solution. Furthermore, use
of PouchCouch system introduces complexity, not in tooling but in the use of tools.

The PoC showed the system capabilities on a limited scale, expanding to 100s of users inevitable
cause unforeseeable secondary effects. The server-client replication proved to be computationally
expensive for the CouchDB server, therefore to benefit from a distributed, client-leveraged system, the
client processing should match the server efforts. The assumption of gain from client-processing was
disproven by the PoC, as the processing of 3-months worth of Delfi-n3Xt data could be decoded under
two minutes in Kaitai and Python on a single machine.

It was determined that a distributed system is well suited for the computationally intensive, but
data extensive applications. Which is not the case with the Delfi data sets. The data science tasks,
such as model training requires large and often complete datasets, and due to client storage limitations
(it is not possible to require contributors to provide 300GB of hard drive space), the majority of these
tasks are not feasible on the client side.

Another PouchCouch observation that applies to the entire architecture is the server load due to
data replication. Any client connecting to the cluster introduces a load on the system while the data
server and client data stores are synchronizing. The phenomena require further investigation, however,
the initial assumption that leveraging of the self-sufficient client application reduces the server node
does not hold.

8.8. Conclusion and the Next Project Phase
The chapter proved that use of client applications for the computations is not advised due to the limited
scope of the computations. Hence, replication of data has a higher load on the system in comparison
to the nominal data request.

The proposed PouchCouch system showed a weak architecture with a high level over interdepen-
dencies between critical system components. The long-term use of the system is questionable and any
systems changes are error-prone due to complex multi-database operations.

To solve and prevent the problem in the next project iteration required further research in Software
Engineering (SE). It should be stressed that the structure of the report may indicate the SE as an af-
terthought of the project, leading to the conclusion that SE tools were considered once the PouchCouch
system was determined unfeasible, this is however not the case. The Separation of Concerns (SoC)
introduced in the section 6.1, was studied and applied prior to the PouchCouch system but was placed
in the chapter to improve the readability. From the point of view of SoC, the software components are
well separated and connected via well-defined interfaces. Even more, the processing components can
be removed and tested separately, as the rest of custom written software.

9
Server side processing

9.1. Introduction
Based on the analysis presented in chapter 7 and refined requirement extracted from PoC of the
PouchCouch system, the server side processing required further investigation.

The DPS is considered to be the system connecting data ingestion API, i.e. the abstraction for
the client application to the data delivery API. The scope of the project, therefore, encapsulates the
functionality between both API’s, as illustrated in the figure 9.2.

9.1.1. Client application function
The analysis of the legacy systems use cases presented in section 3 showed two primary goals: data
acquisition and data visualization. The telemetry processing is added to reduce the latency of visual-
ization and reduce the load on the server. Furthermore, as shown in figure 8.4, historically the client
application deployed in this configuration were not updated timely by the RAs. Therefore the system
requires the ability to auto-update to ensure the correct results of visualization.

To increase the applicability of the designed software implementation for the future missions and
limit the dependency of the client system, thus reducing the possible data inconsistencies and errors as
found in the Delfi-C3 system. The proposed architecture is Delfi-n3Xt inspired and requires the client
applications to submit raw telemetry frames to the server for the processing. Whether the processing
is done in parallel on the client (DuDe) or whether the data is pulled from the server application as
shown in the figure B 8.2 requires further research.

9.1.2. System Scalability: key for the architecture
The straightforward solution to comply with the potentially-unbound data growth [GN-ING-12], and
redundancy requirements [GN-DS-1], is a multi-server deployment. With the use of multi-server sys-
tems, the scalability concerns have to be addressed. First, the use of a single satellite mission as
Delfi-C3 require fewer server resources than multi-satellite missions. While it is assumed that more
simultaneous satellite mission will be operated in the coming years, the opposite is equally feasible.
Hence, the system should be able to grow or decrease in scale, without extensive reconfiguration or
adjustments.

The PouchCouch proof of concept showed the importance of the architecture design towards the
supportability and system complexity. The limited maintainability, due to the complexity of operations
and the high risk of failure due to the PouchDB dependency is in many ways comparable to the limita-
tions of the Delfi-n3Xt implementation, the system that was initially found to be hard to maintain and
develop C.

The scalability can consequently not be added as an afterthought, as it will increase complexity (as
was the case Delfi-n3Xt frame processing that led to data loss) and reduce the ability for modifications
to facilitate new satellite missions.

89

90 9. Server side processing

9.1.3. The approach
The architecture design methodology is based on the Clean Architecture introduced in section 6.2
and applied as a system architecture tool. The tool intrinsically leads towards a high level of system
decomposition, and hence, abstraction. It can be argued that the use of highly abstracted components
leads to a reduced interdependency of the subsystems but an increases complexity due to hidden
assumptions and number of components.

Section 9.2 reiterates the requirements, data structures and requires processing. The lead to three
architectures discussed in section 9.3. The applicability of Stream based processing is then assessed
in section 9.4 which lead to conclusion to apply Lambda Architecture as described in section 9.5.

9.2. Problem analysis
This section aims to provide a brief summary of the system requirements, lessons learnt from legacy
systems and PouchCouh PoC. First, data transformation is summarized in section 9.2.1 focusing on the
conversion of the telemetry frames to data. Querying of the processed satellite data is discussed in
section 9.2.2.

9.2.1. Data transformation
The primary data transformation seen in all Delfi mission is the conversion of the received binary
satellite frames to a set of parameters describing the satellite state. The data processing is described
in section 3.5 and leads to the use of Kaitai framework introduced in section 5 as the telemetry frame
parsing and decoding tool. As discussed in section 5.4 the approach hinges on the use of Kaitai
decoded objects as the abstraction of raw telemetry frames, and wherever possible the use of one
of the following programming languages: Python, C++ /C#, Go, Java, JavaScript, Lua, Perl, PHP or
Ruby. If an alternative programming language is required, wrappers can be used, but that would not
be preferred.

As discussed in the section 3.3.1, the RAs are not allowed to broadcast telemetry frame reception
acknowledgement to the satellite. Therefore, the data cannot be split arbitrarily across multiple frames
with the use of AX.25 segmenter, as discussed in section 3.3.2. The aforementioned guarantees that
the satellite frames are autonomous and decoupled from the sent sequence.

The data transformation is to a high degree independent of the selected architecture as summarized
below and in figure 9.1A.

1. Consumes the satellite telemetry frame and receiver (RA) metadata
2. (Optional) Pre-process frame: bit ”unstuffing” (see section 3.7)
3. (Optional) Pre-process frame: byte-wise manipulations (see section 5.2)
4. Asses telemetry frame validity [GN-PR-5]
5. Decode and parse the frame ([GN-PR-4,6,7, GN-PR-RAW-1] see section 5.4)
6. Aggregate and store the data

The design of the decoding components, as illustrated by the figure 5.2 is flexible and may be
changed at any point in time.

With the reception date and time present in the metadata, the TLE method [GN-PR-RAW-2] can
be applied to allow correlation of the satellite location to the frame. It should be noted that storing
location per frame is a potential resource waste and should be re-evaluated. Furthermore, the TLE
calculations require fetching of TLE file from online resources [GN-PR-INT-1]. The fetching should be
decoupled from low latency queries, as additional processing time degrades query performance.

Analysis resented section 3.3.1 shows the presence of data duplication in the Delfi-n3Xt dataset.
Data duplication is the consequence of RA participation and is caused by the overlap in the reception
area within the European region.

The duplicates intrinsically carry information and should not be deleted. However, the requirement
[GN-PR-19] demand aggregation of the metadata. It can be argued that the aggregation is an analytics
query and ought to be discarded from the Data transformation process. However, the presence of
duplicates in the processed database is a weakness and should be avoided. The de-duplication can be
achieved by running a whole-data query, hence re-processing the telemetry frames as a batch layer,
as illustrated in the figure B 9.1.

9.2. Problem analysis 91

telemetry
frame

+
metadata

preprocess frame
+

validity check (CRC)
Extract SAT

identifier
To be

processed
parse

(sat. dependent)
sat.

parameters
+

metadata
TLE / location
determination

(optional)

NO
unknown sat.,

incorrect checksum,
...

YES

sat.
parameters

+
metadata

telemetry
frame

+
metadata

Identify duplicate
frames

Extract metadata
from duplicates

merge metadata
 from duplicates

+
remove duplicates

telemetry

frame
+

metadata sat.
parameters

+
metadata

sat.
parameters

+
metadata

sat.
parameters

+
metadata

COMPLETE DATASET
BATCH

telemetry
frame

+
metadata

telemetry
frame

+
metadata

telemetry
frame

+
metadata

telemetry
frame

+
metadata

telemetry
frame

+
metadata

telemetry
frame

+
metadata

telemetry
frame

+
metadata

telemetry
frame

+
metadata

telemetry
frame

+
metadata

telemetry
frame

+
metadata

sat.
parameters

+
metadata

sat.
parameters

+
metadata

sat.
parameters

+
metadata

sat.
parameters

+
metadata

preprocess frame
+

validity check (CRC)
Extract SAT

identifier
To be

processed
parse

(sat. dependent)

TLE / location
determination

(optional)

NO
unknown sat.,

incorrect checksum,
...

YES

A

B

Figure 9.1: Telemetry processing queries: a) Stream or Batch b) Batch

9.2.2. Data analysis
During the mission lifetime, the TPS is responsible for data storage. The system is tightly coupled
to the data ingestion system receiving data from the client applications (e.g. DuDe). Upon mission
termination, the legacy systems are solely utilized for the data storage.

In the legacy applications, database based storage was utilized, allowing for data querying which is
used directly in the web application. The use of database systems potentially allows for data analysis,
however, limited to hard-coded queries, primarily focusing on visualizing the datasets. The actual
analysis of the satellite data was performed offline on researchers local machines, using COTS software
tools (Excel/Matlab).

One can distinguish between three types of data queries. First, queries can be applied directly to
the raw incoming data. The requirement [GN-UI-RA-01] states that the system should facilitate per
Radio Amateur statistics, related to the frame reception. This can be seen as the aggregation of the
metadata, as can be seen in figure 9.1.

The second type of queries is recurrent queries. For example, UI or web application visualization.
Secondly, the requirement [GN-UI-GEN-04] can be satisfied by training a model on the past historic
data, accommodating for the RA’s geographical location, position and the equipment. Hence, not only
calculating the next pass but predicting the chance of reception and to be received frames. The model
application is, in this case, a recurrent query.

Lastly, one should consider ad-hoc, random queries. Queries originate from the user interaction
and can originate from on-demand graphs used in UI or analysis of the data.

9.2.3. Data characteristics
Study of the n3Xt dataset showed a discrepancy between frame time appended by the spacecraft and
server reception time. This was determined to be a consequence of three facts.

First, due to the distributed nature of the RA’s network, the telemetry frames are likely to be received
with a delay and out of sequence. Additionally, as discussed in section 3.7, the use of SDR (data replay)
may result in the frame submissions hours, days and possibly months after the initial reception.

Secondly, differences in server and client system time were observed, that can be accounted by
clock drift, disregard of automatic time synchronization or use of non-standard time servers.

Lastly, the distributed network RAs has an leads to an overlap in reception, leading to telemetry
frames having multiple reception timestamps.

92 9. Server side processing

9.2.4. Architecture assessment
Processing latency Applies to data transformation. The raw telemetry frames have to be processed
as soon as possible and preferably near real-time. According to requirement [GN-PERF-4], the latency
measured from ingestion by the server to become available in visualizations should be less than one
second at data ingestion rate of 10 frames/second [GN-PERF-2]. The data analytics queries latency
is driven by the client application and UI and require further investigation. The data science, as well
as analytical queries operating on the complete unprocessed dataset, have unknown performance
requirements [GN-UI-OPS-01] at time of writing.

Data size Dictated by the requirement [GN-DS-7], the system should be able to store at least 1
TB of raw, unprocessed data. The data is unbound in size with incremental growth. In theory, the
system should be able to store data from the previous missions. Optionally, the system should be able
to store and process non-satellite data, for example, generated by the test software, by Earth-based
instruments used for system testing, calibration and analytics.

Policieswith regards to flow control The minimum ingestion rate per satellite, as dictated by [GN-
PERF-2], is ten frames/second. When exceeded, the system should store incoming data continuously,
potentially, by throttling the processing scripts to mitigate the data loss.

Data duplication Data duplication in the processed database is allowed for near-real-time process-
ing, however, the duplicates should be removed and aggregated as metadata [GN-PR-19].

Out of order data The raw and unprocessed data should be stored in the order of reception by
the server. The processed data store should store the data in accordance with frame unique id, hence
ordering in terms of the sent date by the spacecraft.

Processing guarantuees Wherever possible, an effort has to be done to ensure ’exactly-once’
policy. The system should not introduce additional data duplication except that introduced by the RA
community.

Scalability and Elasticity Due to in-house deployment requirement, the scalability has to be achieved
on the locally maintained servers. The elasticity, scaling up/down is not feasible in the classical Cloud
deployment sense and requires further research.

Integration, Extensibility The system should facilitate extensibility, allowing integration with other
system components. The vendor lock-in should be avoided at all costs. In accordance with the Clean
Architecture, the major system components should be exchangeable. Moreover, the metric encapsu-
lates the easiness and ability to make system or component changes to accomodate for new mission
needs.

Accesibility The system should only rely on broadly available, open-source systems that are actively
developed and supported by the community. Furthermore, well documented and easy to use tools are
prefeed.

Hardware Failure Being deployed on-premise, the hardware failures are likely to occur. The system
should be able to tolerate failures and wherever possible to (automatically) recover from the errors.
Failures in the storage systems shall not cause data loss. The system should remain operational with
data storage node(s) failures. Failures in the data ingestion systems shall not result in data loss.
Ingestion system should operate in high availability mode and tolerate node(s) failures. Failure of data
processing subsystem should be tolerated by the system and shall not cause any subsystem faults. The
data delivery node (presentation layer) failures and requirements are considered outside the scope.

Fault tolerance The system should be recoverable from human errors in the data analytics and
data transformation. The system shall tolerate errors in telemetry such as bit flips. The system should
tolerate subsystem failures.

9.3. Related work 93

A
P
I

A
P
I

Client Application Web
 Application

DATA
INGESTION

DATA
STORAGE

DATA
PROCESSING

PROJECT SCOPE

Figure 9.2: Project Scope

Tracability The system should generate logs for debugging and problem investigation purposes. The
system should store all sent the telecommands to the satellite. The system should allow appending
extra fields to the data for traceability purposes (e.g. timestamps, user notes)

Machine Learning The system should facilitate Machine Learning and iterative query design.

9.3. Related work
9.3.1. Abstraction
The challenges in the satellite data processing in the educational institutions are not new. In 1995,
Berczuk [14] proposed a pattern-based approach to increase the software quality on organizational
and programming levels. The issues identified by Berczuk are attributed to the distributed nature of
the ground segment (the reception component), small distributed development teams and a limited
layover of the personnel between the projects [14].
On the programming level, Berczuks solution is identifiable by loose interfaces and factory-patterns
for the data parsing and interpretation subsystems. Berczuk argues that the use of software patterns
ensures the longterm compatibility, while the loose interfaces facilitate the re-use of software.

The combination of Berczuk’s method with the Clean Architecture methodology leads to a blueprint
of a system with a limited (one way) dependencies, decoupled components and standardized interfaces.
The latter two facilitate the maintainability, as system components ought to be exchangeable, allowing
for the change of the components. The stand-alone components are preferred since, in theory, they
provide the best specialization with the lowest complexity. By decoupling the system components
and providing well-defined interfaces, the system can be designed, modified, implemented and tested
independently, increasing the overall quality by reducing the individual component complexity. This
sparkled the research towards a highly decoupled and (potentially) distributed system.

9.3.2. Microservices / Service orientated architecture
One of the side effects of the PouchCouch system (see chapter 8)) was the ambiguity of the system
with regards to the server-side and client-side operations. One can, therefore, argue that the client-
application, acting on the data input is a ”service.” This is related to the service-oriented architecture
(SOA).

In SOA architecture, the functions are performed by a discrete application, i.e. services, by ingesting
the data in the form of a message and passing it through to the next service in accordance to the
established business logic. Furthermore, the microservice architecture decouples the services on the
network level by deploying them as stand-alone containers. The information and data transfer between
the services is the task of a messaging system, providing queuing of the messages and ensuring the
delivery. Figure 9.3 illustrates the possible microservice components for the data ingestion portion of
Delfi system.

It is important to realize that in the microservices architecture, all services ingest data, perform
an operation and pass data to the next service asynchronously, thus without an acknowledgement to
the sender. Due to use of the queuing/messaging system, the services can be removed and added
to the system while in operation, for example by using Docker Swarm deployment, thus promoting
the system elasticity. The service decoupling and due to the use of the defined interface, i.e. the
messaging system, makes each service fully autonomous and self-contained, thus allowing the use of
mixed languages, frameworks and data storage methods.

The microservices are in many ways comparable to the method calls in Object Oriented Programming

94 9. Server side processing

API frame validation
service

frame pre-processing
service

frame
decoding/parsing

service
(sat specific)

frame
decoding/parsing

service
(sat specific)

frame
decoding/parsing

service
(sat specific)

message
queue

docker based
service application

Figure 9.3: Frame parsing in microservices architecture

(OOP), and, therefore, provide familiarity with the subject. However, one should keep in mind that the
service calls are executed asynchronously, with limited control over execution order or time. Each
parallel service will likely execute at different rates due to server utilization, the hardware, network
distance (hops) and many other transient factors. Therefore, the microservice system is by design
following the eventual consistency principle.

The second consideration against the microservice architecture is the processing latency. Decou-
pling of all individual functions to a single microservice is not feasible, as it processing time doubles
with the number of services due to messaging queues and network latencies.

9.3.3. Lambda and Kappa architectures
As discussed in section 4, the distributed storage systems are bound by CAP, practically, limiting the
storage policies either for the Availability or the Consistency. Manifesting either in the locking of the
Read/Write operations or potential inconsistencies of the retried data due to the eventual consistency
paradigms. The primary consideration against the eventually consistent systems is the need for Read-
repair (which relates back to NoSQL schema on-read paradigm) in the form of the data collision preven-
tion and version conflict resolution. A different approach was introduced by Marz [113], audaciously
called ”How to beat the CAP theorem,” attempting to guarantee both the Availability with Consistency.
In contrary to popular belief, the proposed architecture is not new [114] and was introduced in 1983
by Lampson [115].

The Marz’s proposal is based on two assumptions. First, the data is immutable; thus any changes
or updates to the existing data, generate new data. Secondly, the data is inherently time-based. This
leads to the conclusion that the whole-dataset queries can be computed on the complete unprocessed
dataset, albeit with at high computational latency, and that any subsequent changes in the datasets
can be expressed as incremental updates of the query results. This holds true since changes are stored
as new data (immutable) and occur after (time-based) data is present and thus appended later in time.

The approach is known as the Lambda architecture, due to the resemblance of the Greek Lambda
symbol of the two-stream architecture 9.4. To facilitate the proposed dual-querying architecture, two
separate systems are required. One system for handling of the large ’batch’ datasets, responsible
for computations of the ”base” query results. And the second system for incrementally ’real-time’
update queries, to accommodate for the newly ingested data. A limitation recognized by Marz is the
reoccurrence of the eventual consistency in the increment updates, hence, a possible reintroduction of
the divergent results due to data version conflicts. The solution, however, is deeply embedded in the
methodology, requiring the batch system to perform base query recomputations regularly, overwriting
the real-time layer results. This forcing the consistency of the historical data, with limited, inconsistent
results found in the real-time data.

Marz argues that by recomputing the queries, the complexity of the storage (e.g. updates of shards,
eventual consistency of the data) can be resolved. However, the complexity is re-introduced in the
tooling as two distinct systems are required: large volume - high latency (’batch’) and a low volume-low
latency (’real-time’). Furthermore, it should be stressed that in its original form, the approach applies
to the recurrent queries, hence, queries that are predictable and feasible to be computed beforehand.

9.3. Related work 95

Figure 9.4: Typical Lambda Architecture

The popularity of the Lambda Architecture can be explained by two factors. First, at time of the in-
troduction, Hadoop was the most popular ”BigData” framework. Hadoop natively utilizes HDFS storage
system, that at time of introduction used MapReduce query system. MapReduce is excellent for the
batch query types, allowing complete dataset traversal but comes at the cost of high computational
latency. The second reason for the popularity is the presence of humans in the loop. With the increas-
ing data volumes, and high computation costs and latencies, human-introduced errors are expensive.
Marz [113] recognizes two types of human-errors: ”buggy queries” (either in streaming of batch lay-
ers), writes of bad data (batch) and general errors in the real-time layer. It can be argued that the
former types of errors are interlinkable, as both buggy queries and good queries with ”bad” writes lead
to incorrect data, thus incorrect results of the queries. However, both errors are addressed natively by
the ”overwrite” nature of the batch layer, as buggy queries and bad writes can be resolved, and the
previous (incorrect) real-time results are eventually overwritten.

It should be stressed that the data storage system is duplicated, with one system containing the raw,
unprocessed data and two separate systems containing the query results as illustrated by the figure
9.4. The query results are stored in two separate systems, requiring an additional system to select the
right data store and perform the querying. In a typical enterprise setting, the query retrieval system is
likely combined with an API, obfuscating the querying logic from the end users. This is required since
the system is likely utilized by a number of applications that should not be modified in case of datastore
changes. In case of Delfi missions, the need for an API for the query results needed to be investigated
but considered unnecessary for the proof of concept as data retrieval logic is encapsulated in the DAO
of the application.

Another major drawback of the Lambda architecture is the duplication of the processing, which
due to different requirements (throughput vs latency), leads to the use of two separate systems.
This implicitly results in the duplication of the business logic and implementation in two processing
languages (batch and stream). To address the problem, Summerbird [116] was introduced, generating
MapReduce jobs usable in both Batch as Steam layers. At the time of writing, MapReduce has been
surpassed by Apache TEZ [117] doubling the computation performance, hence rendering Summerbird
obsolete for newly designed systems.

Additionally to the code base duplication, the resource waste should be considered. The results
of the Stream layer are temporary and overwritten by the batch layer processing. This leads to the
question, whether the changes in the immutable data are frequent enough and whether stand-alone
stream processing can be utilized. To continue the Greek letter naming scheme, the stream-based
processing architecture was introduced as Kappa architecture by Kreps [118]. The decision is not
arbitrary since Kreps is one of the authors of Kafka, a system that dubbed as ”everything is a stream.”

The stream of data from the RA client applications can be seen as an append-only queue or a log.
Each frame in the log is an update of the satellite parameters, thus the satellite state, and adds new
information to the system. At any point in time, the database provides a snapshot of the satellite
state, which is updated continuously with the information added from the log. Thus with a complete
transaction log, one can reconstruct the state of the database for any point of time. This means that
removal of the batch layer, not necessarily results in historical data being lost.

96 9. Server side processing

While both Lambda and Kappa are both heavily optimized for data processing and analytics, an
analogy can be observed in Kappa and (micro) services example illustrated in figure 9.3. Applied for
the ingestion-optimized system, it is clear that microservices are no match for purpose designed Stream
processing frameworks, both in terms of scalability, but more importantly, Consistency.

The main consideration against Kappa architecture is the sensitivity towards out-of-sequence data
as well as data duplication. Most notably both issues are automatically resolved in the Batch or data
presentation layer in Lambda Archtiecture. The query or the data transformation is a function that
receives data as input and returns data as output, preferably without external looks up. This is re-
quired for scalability, i.e. to facilitate the parallel processing. Query function is not aware of other
query functions, the previous, the next or concurrent queries. Therefore, the query function cannot
determine whether the given piece of data has been processed previously. The use of ”cannot” can be
overruled, however, additional data retrieval in a query function will result in performance reduction of
the querying system. It is important to note that the Stream queries, operates on a single data object,
i.e. a single telemetry frame, while the Batch queries can span the entire (potentially in Terra-Petabyte
range) dataset.

The Delfi missions that depend on Radio Amateur participation contain a high degree of data dupli-
cation, that should not be ignored in the analytics [GN-UI-RA-01]. The aggregation or the whole-data
queries are historically the domain of batch processing and lead to complexity in the Stream layer.

In contrast to the data transformation point of view, i.e. Stream and Batch, Lin [114] argues that
the Lambda and Kappa architectures should be considered as ”right tool for the job” and ”one size
fits all” solutions respectively. Specifically, Lambda can be applied for the complex querying, that is
potentially unavailable in the Streaming layer, hence ’the right tool for the job.’ Lin argues that the
software development, in general, tend to (over)popularize one over the other in a repeated manner,
comparable to a ”swing of a pendulum.” The ”right tool for the job” with increase specialization comes
with an increased complexity and integration costs, while the ”one size fits all” attempt to simplify the
system, thus achieve generalization by reducing of the tooling [114]. Lin recognizes abstractions as
a plausible solution for the generalization/specialization issue, which comes at the cost of increased
complexity of the system.

At the time of writing, the BigData tool landscape is expanding rapidly, and only a limited set of
tools can be considered mature of the production. One of the industry proven tools is Apache Spark. As
discussed in detail in section 10.1.4 Spark is designed for the Batch layer and can be utilized in Stream
Layer (see section 10.1.3) with Spark Streaming; thus providing an abstraction for the (day-to-day)
data processing.

The Spark capabilities hinted for a blueprint of a system with an active Streaming layer and in-
frequent batch updates. By following Clean Architecture system is allowing the Spark Streaming to
be replaced with any other capable systems, for example, Storm. This need originates from the on-
premise deployment constraint, and therefore, it should be investigated whether the Spark (batch) and
Spark Streaming can reside on the same cluster, hence reducing the server requirements (number).

Table 9.1: Summary

Microservices Lambda Kappa
Processing latency + + +

Data size ? + +/–
Flow control ? ? ?

Data deduplication – + ?
Out of order data ? + +

Processing guarantees – + +
Scalability and Elasticity + + +

Integration and Extensibility ? + +/–
Hardware failure + / – + +/–
Fault tolerance – – + -
Tracability ? / – + +

Machine Learning – – + ? / +

The content presented in the section is visually combined and applied to the assessment criteria in

9.4. Stream Processing: Feasibility assessment 97

table 9.1. The microservice architecture was concluded undesired due to increased risks regarding the
system reliability. Furthermore, the research focused further on Lambda and Kappa architectures.

9.4. Stream Processing: Feasibility assessment
The section focuses on the applicability of Kappa architecture to the Delfi mission. The Kappa, begin
a subset of Lambda architecture, requires Stream processing and limits the set of operations that can
be performed to the dataset. As discussed in section 9.2.2, the data processing primary function is
telemetry frame transformation into a set of telemetry parameters. With the use of mutually indepen-
dent telemetry frames, it can be argued that the processing Stream processing is applicable without
the need for batch processing.

9.4.1. Stream, Log and Table
The Stream, in the scope of stream processing, is defined as an unbound sequence of the messages:
telemetry frames. Where the entirety of the received stream messages is the log. As a rule, the log is
immutable and append-only.

Looking on the stream from another perspective, Helland [119] argues that a stream of changes
and updates to the database generates a transaction log, with the instantaneous state of a database
table merely a cache of all previous states changes. With a transaction log at hand, the state of the
database can be computed for any given point in time. Thus the transaction log is the ground truth of
the system.

The use of transactional log is deeply embedded in many database systems, for example, MySQL.
As discussed in section 4.4.1, two-phase commit operates on the transactional log which is consumed
by the database tables.

In the case of Kappa architecture, the Stream processing operates on the log and performs analytical
operations directly on the sequence of data rather than using the cached version (= database table).

The second feature of Stream processing is the decoupling of the processing units, allowing multiple
executors to operate on the log independently. This allows a high level of parallelism as executors
require no synchronization.

The use of a single log of Telemetry processing for Delfi mission is advised. As any data operation
would require re-processing of each individual frame in the log. Therefore, the stream has to be
converted to another log. The second log would contain all processed frames in the sequence of
processing. Further research is required to investigate the effects of parallel executors with asymmetric
performance on the sequence of data in the log. In case a single executor is used, deduplication of
ingested data may still have an effect and should be studied.

9.4.2. Stream processing native deduplication methods
The distributed network of RA and the use of SDR inevitably leads to out-of-order frames in the log.
The problem is not unique for Delfi missions, and within the stream processing, one can distinguish be-
tween following (standardized) strategies: Session, Time-agnostic, Approximation, (fixed) Windowing
by processing time and Windowing by the event time.

It should be noted that discussion assumes that the uniqueness of the telemetry frame can be
assessed, for example, by the frame-counter or frame-time appended by the OBC of the satellite.

Time-agnostic
Time-agnosticism implies processing of data without taking the event or the processing time into con-
sideration. Hence, ignoring the reception time by the RA, the frame OBC time and the time when the
server system observed the event. This means that the frames are processed and aggregated based
on the reception sequence. It should be noted that the approach is applicable only if the target system,
handling the output of the stream processing system, handles the duplicate and out-of-order entries.

Fixed Window and Sliding Window
Within the framework of windowing, one can distinguish between two strategies: Fixed and Sliding. In
fixed windowing, each log entry is contained in one segment and is therefore processed and retrieved
once. The Sliding windowing retrieves log entries in the sequence of segments, as illustrated in the
figure 9.5. The sliding windowing is defined by a length (number of entries) and period parameters.

98 9. Server side processing

WINDOW 1 WINDOW 2 WINDOW 3

WINDOW 1 WINDOW 2 WINDOW 3 WINDOW 4
duplicate frames

A)

B)

Figure 9.5: Fixed (A) and Sliding Windowing (B)

With the sliding window period larger than the processing time, the windows overlap, mimicking a
sliding motion. The overlap depends on the ratio of the frequency of execution and the size of the
window.

As illustrated in the figure 9.5, the out-of-sequence entries are not guaranteed to be contained in a
single window and de-duplication may fail. Furthermore, the data duplication is likely to change over
time, as it is to a higher degree dependent on the client application, the behaviour of RAs and other
uncontrollable characteristics of the system. Leading to a need for the continuous tune of the windows.

It can be argued that to prevent de-duplication failure the information on the sequence of the mes-
sages has to be retained between the windows, requiring the system to store the state of each window.
Due to parallelism, the windows are not guaranteed to be read sequentially or run on the same node.
Therefore, syncing the information between nodes increases the complexity and introduces additional
failure modes.

Windowing by Event and Processing time
The event time can be defined either as the satellite time or the reception time by the RA. As discussed
in the chapter 3, the time of the reception by the client applications is an unreliable parameter due to
errors in time and timezones. Furthermore, the onboard satellite clock is unreliable too due to clock
drift. Additionally, the future missions may implement features to adjust or update the onboard clock,
leading to inconsistencies in data sets.

In the case of Delfi, the processing time is defined as the reception time by the processing system.
The reception time is affected by the client application, use of SDR or recovery from a network failure
will cause out of sequence messages. Therefore, nor the Event, nor the Processing time Windowing
provide reliable means of de-duplication.

Data de-duplication and sorting at the API
Since de-duplication and sorting are not feasible in the stored log, it can be argued that frames have
to be verified before being added to the log. This will actively filter out duplicates and out-of-sequence
frames. The approach is discarded due to two reasons. First, any bugs or malfunctions in the fil-
tering will discard incoming frames. Secondly, the duplication and out-of-sequence data carry useful
information on the RA behaviour.

9.4.3. Data de-duplication by sorting
The incoming telemetry messages are stored in the sequence of reception by the server system. Due
to the immutable nature of the log, the order cannot be changed. Therefore, the sort and filter (Map
Reduce) operations are not feasible.

An alternative is illustrated in figure 9.6. The frames/log messages are exported from the log, and
with frame id extracted, exported to a mutable datastore, followed by sliding window sorting. In theory,
after few passes allowing duplicate frames, i.e. frames with the same id, to be easily identified and
removed. It should be noted that the frames stored in the log are not processed, thus requiring an
additional transformation.

There is one important observation to be made, figure 9.6 shows characteristics of a batch pro-

9.5. Architecture discussion and requirements Assessment 99

log
..010101011..
..010111011..

..010101011..

 ..100111011..
...

ID extraction

mutable datastore
id: 123. frame: 01..
id: 130, frame: 01..
id: 123, frame:..01..
id: 127, frame: 01..

...

Ordering & Filtering

mutable datastore
id: 123. frame: 01..
id: 127, frame: 01..
id: 130, frame: 01..

...

Processing

Preprocessing

Figure 9.6: De-duplication in the processing

cessing: MapReduce, rather than a stream processing. First, a large set of data is extracted (=batch),
the processed (id extraction) and transformed (ordered and de-duplicated). Secondly, the operation is
performed on the complete dataset, rather than a small subset of data.

9.4.4. Data de-duplication in the delivery layer
As discussed in section 9.4.2, the de-duplication and out-of-sequence reordering are not feasible on the
ingestion side of the application. The processing alternative, proposed in section 9.4.3 does not follow
the streaming methodology and performs batch processing. Therefore, de-duplication on the delivery
layer was considered. As a recap, the goal of telemetry processing software is to ingest, process,
store and deliver data in TBD format to a mutable datastore (ElasticSearch in the proof of concept).
Therefore, it is argued that by selecting a datastore that ignores or tolerates the duplicate values, and
orders frames by frame_id, implying idempotency on the storage level.

Use of the delivery layer for de-duplication indicates two things. First, the delivery layer opposes
requirements on the processing. Secondly, the core of the design methodology requires components
to be easily exchangeable. This means that the processing system should not rely heavily on a feature
of the delivery layer.

Furthermore, the de-duplication can be pushed further in the delivery layer into the logic of the
application, precisely against the design methodology.

Conclusion
The data ingestion de-duplication is prone to mistakes that are unrecoverable. The analysis of the log-
based deduplication showed that a large window size is required having an impact on the server memory
(RAM) sizing. The processing de-duplication showed a class MapReduce functionality, thus hinting
towards Batch processing. Lastly, the data delivery layer de-duplication was considered. Reliance on
the data store or application logic is against clean architecture principle and should be avoided as the
permanent solution.

9.5. Architecture discussion and requirements Assessment
In this chapter, the Kappa and Lambda architectures were studied. Application of Stream Processing to
Defli-n3Xt data patterns showed weakness towards out-of-order and data de-duplication opportunities.
De-duplication was found feasible with the use of an intermediate data store (topic), which when
applied to Delfi context resembles MapReduce (Batch) operation rather than stream query. As shown
in the table 9.2, on-demand querying is unfeasible as new data transformation has to be implemented.
Secondly, the log is the primary data store. While offloading data to a different data store for back up
porpuses is feasible, restoring the log from an external source is not straightforward. Furthermore, the
Stream processing components operate on the incoming data and cannot consume an external data
source.

In stark contrast to Kappa, Lambda Architecture provides significant higher applicability both in
terms of on-demand querying (Pig, Hive) as well in use of the external data sources (HDFS, PouchDB
and others). The use of incremental processing with Streaming and Batch layers ensures both high
performance (near-real-time) as well as the data reliability (de-duplication, filtering and other trans-
formations). The redundancy in terms of storage and processing decreases the efficiency of Lambda
architecture but increases robustness significantly. The functional duplication allows for extensive ex-
perimentation and system development while in operations without the risk of data loss or processing

100 9. Server side processing

Table 9.2: Kappa architecture trade-off

Advantages Disadvantages
Only one to two technologies required: Ingestion System and
Stream Processing

Cannot be used for on-demand queries

One stream processing job is sufficient for one satellite mission Application restart may require to reprocess all data in the log
The presentation layer has only one source For aggregation transformations, data has to be serialized and

written into the topic
No need for aggregations in presentation layer Log corruption has critical consequences and loss of data pro-

cessing
Potentially reusable in Lambda Architecture Possible to backup, but hard to restore (timestamps lost)

Not possible to use backup data store as the source of the pro-
cessing
Data migration (backup) requires additional processing job
All processing jobs are incremental, application restart may re-
quire to reprocess all data in the log
De-duplication not feasibile: may lead to unpredictable results
Less mature than Batch processing
The result of a stream processing is either right or wrong; results
are not corrected
Processing reacts on the incoming data (event), rather than the
query (request)
Data schema and processing changes are abrupt

errors. The results of Lambda Architectures are combined in table 9.3.

9.5. Architecture discussion and requirements Assessment 101

Table 9.3: Lambda architecture trade-off

Advantages Disadvantages
Very versatile and scalable (up to petabyte datasets) At minimum 3 technologies
Tolerance for human errors (bugs, operational mistakes, data
loss)

Originally designed for MapReduce, but can be changed for other
systems

Any types of queries possible Inefficiencies in storage and processing
Running computationally intensive queries/jobs, with long execu-
tion time, will not affect other processing jobs (live processing is
separated, application data queries are separated)

On-demand queries on small dataset can be slow. Data presen-
tation layer should be used for the application queries.

Faulty (ad-hoc) queries are unlikely to halt the system. In some cases the transformation logic is implemented twice
(queries: speed/batch), each has own different code-base

Append-only datastore ensures that all changes (where, when,
what) are encapsulated.

Stream layer processed data is overwritten

Schemamigrations are simple as data is overwritten incrementally Requires additional logic to deal with the dual data source in the
presentation layer

Database system changes are simpler, as data is overwritten in-
crementally
The RAW data is stored immutably. Should never be modified
(append-only). Provides backup
Processing can operate on backup data directly or any other data
source
Applies extremely well for the data de-duplication use-cases
Works extremely well for analytical operations (number of frames
per RA)
Batch processing can be used for Machine Learning: model train-
ing.
Machine Learning models can be applied in stream processing
More mature than Kappa
Jobs can be added and removed ad-hoc
Easy to migrate and test new technologies
Redundancy in processing and data. Ideal for novice users
Can exchange components without downtime.

III
Results

103

10
Proposed Architecture

The discussion presented in chapter 9.3 identified Lambda Architecture as the optimal solution for the
Delfi future missions.

The chapter will focuses on the selection of the components and tools required to implement the
system. Section 10.1 will address the major components of the generic Lambda architecture illustrated
in the figure 9.4, discussing the functionality, requirements and selected technology for each com-
ponent. The used technologies are further discussed in section 10.2 leading to the summary of the
interfaces and implementation discussion in section .

10.1. Processing system Components
Lambda Architecture proposed in section 10, consists of four distinct components aiming to solve the
following concerns: data ingestion and storage, real-time processing, error-recovery (de-duplication)
processing and data delivery.

As discussed in section 2 the technologies used to solve the needs are exchangeable and preferably
independent. The focus will consequently be placed on ”how” technology solves a particular need,
rather than the trade-off of the available technologies.

The PTS requirements and correlating needs derived throughout the document and MSc thesis have
been summarized in the table 10.1 and will be used in the following sections.

10.1.1. PTS global requirements
The initial project iteration presented in chapter 4 identified distributed NoSQL data storage as the
optimum trade-off between reliability and complexity. The need for a distributed storage system led
to PouchCouch system presented in chapter 8.
The PouchCouch PoC showed that distributed storage is feasible and applicable for Delfi type of oper-
ation given the that the system is self-governing, requiring no manual operations.

The study of legacy systems showed recurring errors in the processing definitions or code itself. In
the section 5 Kaitai framework was identified as the most applicable telemetry parsing and decoding
system, allowing unified telemetry definition and decoding across different platforms and programming
languages.

The complexity of the legacy system directly correlates to reduce reusability, which led to the spiral
of new PTS for each Delfi mission. Furthermore, due to the complexity of PTS, the system cannot be
implemented within the MSc Thesis allocated seven month period.

Globally, this leads to a global need for the system to be reliable and robust. Reliability can be
assured with duplication of components, allowing single component failures. In theory, this allows for
components to be added and updated, without losing processing and storage capabilities. The use of
independent components, as guided by the Clean Architecture, allows independent component devel-
opment, allowing for incremental system design.

105

106 10. Proposed Architecture

By the use of distributed systems, scalability can be achieved with lesser effort, allowing for the
system to increase capabilities and performance when required.

The major lesson learnt from the legacy and the PouchCoudh PoC is the use of contingency. The use
of new technologies increases the risk of errors in configuration and bugs in the code. The subsystems
should, therefore, be able to operate independently in case of a failure and provide the minimum viable
functionality at all times.

10.1.2. Ingestion System
In the proposed architecture, the API component is placed outside the Ingestion system. The API, in
this case, is seen as a gateway and is responsible for the clients and client applications authentication,
hosts blacklisting, and other functions that are not part of Telemetry processing. The API should not
store the data, but pass it through the ingestion system

The ingestion system is responsible for data aggregation. For example, from different API services
(API per user group Operations, RA users), API systems can be deployed on multiple machines; fur-
thermore, the ingestion system could be connected to a test setup generating telemetry frames for the
full system testing. With the ability to store and process data at a high rate, the architecture can be
used as a data acquisition system for ground-based experimentation. This allows satellite-generated
data to be used along with experimental data for example for satellite malfunction traceability [9].

Need
The need is summarised to:

1. Ingest data at a high rate from multiple data sources (parallelism)

2. Support for different data sources and programming languages

3. Create a buffer for the processing system.

4. Store data temporary, in case processing or storage system fails

5. High Availability systems are preferred

6. Should be able to scale (increased data rates possible)

Messaging and event log systems
At the time of writing, two categories can be defined: messaging and event-log based systems.
The messaging systems at its core consist of a queue where the messages are appended to by the
producers. The system either pushed the messages to the connected clients (consumers) or allows
consumers to pull data at own rate. Once pushed or pulled from the queue, the message is deleted.

The core of an event log system is the log, an append-only and immutable data store. In contrast to
messaging systems, the messages remain unchanged in the log after being read by the consumers. To
keep track of the read messages, event log systems use a reference pointer (offset) for each consumer.
By working with offsets, the system not only guarantees that message is read (and processed) but
ensures that each record is read and processed exactly once.

Selected technology: Kafka
Confluent Kafka was selected based on the best fit for the requirements, technology maturity, avail-
able documentation and ease of use. Kafka is discussed further in section 10.2.1, with the highlights
summarized below.

The use of log, instead of a queue, provides message processing guarantees. The offset is updated
only after the message is retrieved from the log, processed and stored. The process ensures that each
telemetry frame is processed and stored only once.

Secondly, log allows multiple consumers, allowing Stream Processing jobs and Batch (in this case
permanent storage) to consume the messages at their rates. As expected, the message consumption
rate of processing is lower than of the batch sink storage.

Lastly, with an immutable log, any critical failures of permanent storage, or delivery layer issues
are recoverable. The incoming will be appended and stored in the log regardless of the status of other

10.1. Processing system Components 107

systems. Furthermore, any lost data can be recovered from the log, reprocessed and placed back in
the delivery layer or even in the permanent storage.

From the non-technical point of view, both Kafka and Confluent Kafka are well maintained, delivering
three minor releases a year. The popularity of Kafka in the enterprise environment hints towards high
quality (bugs) and, theoretically, long-term support.

Furthermore, with expanding the scope of Kafka framework, utilization of the product allows further
prototyping with stream processing, which might in future provide better results than the micro-batch
based Spark Streaming.

The test of Kafka in production as will be discussed in chapter 11 proved Kafka’s reliability but
showed that intermittent hardware failures of more than the quorum might lead to data corruptions.
This is perfectly acceptable since all incoming data exported from Kafka into HDFS data store as dis-
cussed later in this section. Furthermore, hardware and node failures are less likely on server-grade
hardware than Raspberry Pi’s.

10.1.3. Stream Layer
The Stream Layer is responsible for the near-real-time telemetry frame processing. As discussed in
section 5, Kaitai framework is selected as telemetry parser and decoder. The functionality of Kaitai is
limited to parsing of the data, and additional functionality is required to retrieve data from the Ingestion
Layer and store the results in the Presentation Layer.

The Stream Layer should be able to operate on one single machine for development and testing
while being able to scale to a large cluster without code adjustments. This requires abstraction of the
processing.

The developed routines (jobs) should be modifiable, ensuring that errors and bugs are resolv-
able. Ideally, the system should facilitate multiple simultaneous jobs, allowing each satellite or mission
telemetry processing to be independent. Furthermore, parallel jobs should not pose requirements to
each other and should be able to terminate or start independently.

Need
The primary needs for Stream Processing are summarized below:

1. Able to run on a cluster and on one single node system

2. Able to utilize resources of multiple machines

3. Able to tolerate and recover from processing node failures

4. Able to add new processing routines (jobs) without downtime.

5. Support one of the Kaitai supported languages

6. Provide Job monitoring and administration interface

7. Be well documented

Selected technology: Apache Spark
One of the significant disadvantages of Lambda architecture is the complexity, hence the use of different
technologies requires expertise in various applications. With processing separated in Stream and Batch
processing, the business logic is split in two, thus twice as expensive in development, maintenance and
testing.

The use of Spark Framework allows the use of the same processing code in both systems, hence
cutting the complexity in half. The micro-batch processing approach is also operationally tested in
the Delfi-n3Xt server application, that relies on fixed interval running processing jobs. With Apache
Spark used in the batch processing, the use of Apache Spark Streaming allows re-use of business logic:
telemetry processing. This minimizes the amount of programming effort and allows better testing for
software defects.

The Spark Streaming is best perceived as micro-batch processing, treating the incoming stream as
micro-batches: small sets of data. The micro-batches are executed at fixed time intervals, for example,
every second. The process of data filtering and transformation performed by the micro batches is called
Spark Job. Spark Jobs contain a programming interface API for a number of programming languages,

108 10. Proposed Architecture

Table 10.1: System requirements summary

Tolerate Uncertainty
GN-PR-09 Inconsistencies in data should be resolvable (i.e. Stream errors fixed in Batch)
GN-PR-08, GN-PR-21 Ability to add new functionality while in operation
GN-PR-08, GN-PR-21 Ability to add/remove components while in operation (load data from MySQL or other sources)
GN-PR-01 Ability to use any data source for processing (backup data)
GN-QA-MAIN-04, GN-QA-MAIN-05 Ability to export data or migrate to another implementation if needed

Ensure Reliability
GN-PR-01, GN-QA-MAIN-01 Do not rely on a single framework/system
GN-SAFE-03 Error recovery (node failures, network failures)
GN-SAFE-01 Data loss recovery (disk failures)
GN-QA-REL-02, GN-QA-REL-03, A Designed with subsystem/node/server failure in mind
GN-ING-15 Back pressure should only affect data ingestion system
GN-QA-MAIN-02 Proven and further developed technologies
GN-PR-09 Reliable results (de-duplication, adjustments of clock drifts)
GN-QA-REL-04 Ability to test the system (replay data, each component is testable)
GN-AVAIL-3 The more parallel machines, the lower the risk of the complete system failure

Ensure Robustness
Errors tolerance
– Human error tolerance

GN-PR-8, GN-SAFE-2, GN-PR-21 Allow processing jobs errors to be resolved
GN-SAFE-2, GN-PR-25, GN-PR-26 Allow incorrect data to be overwritten
GN-AVAIL-3, GN-QA-AVAIL-01 Ensure that subsystem adjustments are not disruptive for the system
GN-AVAIL-3, GN-QA-AVAIL-01, GN-PR-1, GN-QA-REL-03 Tolerate errors in configuration: single subsystem should not terminate the entire system
GN-SAFE-1, GN-ING-16, GN-DS-01, GN-QA-AVAIL-01 Prevent data loss (human mistakes)
GN-QA-AVAIL-03, GN-SAFE-03 Auto-recover whenever possible (no 24/7 support)
GN-AUX-DOC-1 Documentation should be sufficient for further development
GN-PR-12-rev1 Re-usable business logic is necessary
GN-QA-MAIN-3 Well-structured programs (abstractions) are preferred
GN-QA-MAIN-3 Comprehendible system design
GN-QA-MAIN-3 A more functionality with less code
GN-QA-MAIN-3 A ability to run processing locally (Acceptance tests before deployment, debugging)

– Hardware failure tolerance
GN-SAFE-03, GN-QA-AVAIL-01, GN-QA-REL-03 tolerance to server(s) loss
GN-SAFE-03 tolerance to disk loss
GN-SAFE-03, GN-QA-AVAIL-01 tolerance to network loss
A – Use software to prevent errors (IDE)
A – The easier the tool to use, the less error-prone
A – Use widely known programming languages
GN-QA-MAIN-3 Does not require in-depth system knowledge to operate
GN-QA-MAIN-3 Can scale up and out to increase performance

Ensure reusability
GN-QA-MAIN-3 Does not require in-depth knowledge to implement new jobs
A One way dependencies (limit scope of modifications when changing components)
GN-PERF-12-rev1 Re-use existing components (business logic)
GN-QA-MAIN-2 Community supported projects preferred (re-use of code, free support)
GN-QA-REL-04 Allow parallel development (add functionality without removing old ones)
GN-QA-MAIN-3 Ability to pre-test and debug
GN-QA-MAIN-3 Provide an overview of the running tasks, components, system status
GN-PR-1, GN-QA-MAIN-4, GN-QA-MAIN-5 System components are decoupled and replaceable. I.e. use more applicable or better-understood

technologies
B Advanced use cases: machine learning
C Tasks, components implementable in less than seven months

Ensure Scalability
D Easily scaled up and out, when needed
D Redeployment possibility to hosted cloud systems
D All components should be designed with scalability in mind
D The performance increase is predictable (i.e. linear scaling)
D No code changes required for scaling, only configurations (operations)

10.1. Processing system Components 109

such as Scala, Java and Python. Within the framework of the project, Python has been selected due
to direct compatibility with Kaitai decoding framework.

The processing can be performed on a single node, or distributed on a cluster, where the allocation
of resources and scheduling are being continuously monitored by Yarn and Spark. Failure of cluster
nodes is automatically recovered, with minimal effects on end-user experience.

From the technology and Spark framework point of view, use of Spark in Batch and Stream allows
utilization of Spark MLlib libraries allowing, machine learning in Batch layer (for example kNN for clas-
sification and outlier detection) and application for the trained model in the Streaming Layer allowing
instant results.

10.1.4. Batch Layer
The Batch Layer has the purpose of bulk data processing and retention of the immutable data set.

Permanent Storage
While log-based storage in the ingestion layer is feasible, a dedicated permanent storage system was
added to the architecture. This ensures that data is stored reliably and can be accessed via other
systems than stream based processors. Secondly, with the use of dedicated storage, the ingestion
layer can be exchanged for a different technology without a need for data migration.

The discussion and trade-off for storage technologies can be found in section 10.2.2 and lead to
the selection of the HDFS.

Batch processing
As discussed in section 9.4.2 telemetry frame de-duplication is not feasible in Stream Processing and
requires batch processing to remove data duplicates and sort out-of-sequence entries.

The batch processing is responsible for :

1. Load data from HDFS structure

2. Clean-up HDFS structure

3. Process data

TThe data is exported periodically from Kafka to HDFS storage. The frequency depends on the level
of trust placed on ingestion layer and may vary from milliseconds to hours. For PoC 15 minute interval
was selected. The process is performed as a recurrent job, storing and structuring data in HDFS folders
based on mission-satellite-year-month-day parameters.

The batch job is run every 24 hours consuming data stored in HDFS (since the last the run) com-
bining to a single per-day file. This is required since the storage of small files is ineffective in HDFS,
directly affecting HDFS performance.

The second batch processing job consumes all per-day HDFS files, extracting and decoding the bi-
nary telemetry frames with Kaitai framework, removing duplicates and storing them in the presentation
Layer (ELK).

Apache Spark was selected due to versatility in the processing, allowing the use of Python and
Kaitai framework without modifications. Spark is scalable from one node to a cluster, without the need
of code changes due to abstractions of the API. Spark Framework furthermore provides native support
for HDFS, and with use of Structured Streaming, the Pandas like syntax can be used for the analytics
queries.

10.1.5. Presentation Layer
The presentation layer consists of the data store where the processed data is written to. Following
Clean Architecture principle, the system should be replaceable, and with Layer out of the scope of the
proejct, no trade-off or selection process will be performed. These decisions stem from the fact that
the data store should be best suited for data use. For example, a web application queries and data
access patterns may prefer the use of SQL (random read queries) over NoSQL systems.

It is assumed that NoSQL provides the best fit for the problem and ElasticSearch was utilized
for the proof of concept. This was primarily driven by Kibana UI compatibility, allowing visual data
representation and easy debugging for the PoC testing.

110 10. Proposed Architecture

10.2. Used Technologies
This section provides an overview of used technologies.

10.2.1. Kafka
A popular solution for the problem is Apache Kafka. Kafka is a distributed messaging system for
log processing that provides an interface for pushing messages to and an interface to pull messages
from at arbitrary rates. Kafka is both scalable vertically, as RAM and Storage Speeds will increase
the performance, and horizontally, as incoming messages are split accross multiple brokers in a linear
fashion.

In practice, Kafka can be seen as data streaming pipeline, connecting various real-time data pro-
ducers and consumers, allowing connectivity abstractions. Due to the streaming nature, Apache Kafka
is heavily utilized in the streaming archtectures, and is some cases deployed as a complete processing
system.

Kafka Architecture and Components
Illustrated by the figure 10.1, Apache Kafka consists of three major components, Kafka Core API,
Kafka Connect API and Kafka Stream API. The Core API provides hooks for custom Producers and
Consumers, used for data ingestion and retrival respectively. Apache Connect API provides open-
source, ready to use connectors (Producers and Consumers) for data ingestion and retrieval for Kafka
Core. The Connect API can be utilized to connect database systems for data transfer and migration.
The final component, the Streaming API provides an API for data transformation, and follows the logic
and principles explained in section 9.4.

Originally designed by LinkedIn, Apache Kafka is released as an open source project and is de-
veloped by the open-source community. Additionally, lead by the original Kafka designers, Confluent
provides an enterprise-grade platform built around Apache Kafka. The Confluent platforms contains
the Kafka Core, Connect and Stream API, denoted as Kafka, and Kafka Stream Registry and Kafka Rest
API as illustrated in the figure 10.2.

The Kafka Stream Registry provides a service for AVRO schema registration, allowing schema to be
stored in a consistent and immutable manner. In this deployment form, the AVRO schema defintion
is omitted from the message, reducing the message size. The dedicated service can be used by the
Consumer API to request AVRO schema’s at will, but not required to do so.
While the Consumer and Producers utilizing the Core API are primarily developed in Java, the Kafka
REST API allows use of alternative programming languages with use of REST services. Additional
component, not part of the Confluent ecosystem is Landoop UI. This optional component consumes
the REST services and provides an user interface for Kafka monitoring, such as overview of topics, data
in the topics, and configuration interface for the connectors and more.

Basic Operation
This section provides a high-level overview of Kafka Core operation and illustrates the use of Consumer
and Producer API.

Following the concept introduced in section 9.4, Kafka acts as a ledger, storing the sequence of
messages in an immutable fashion, required to ensure the data validity for the stream processing. The
state of the system is updated by every ingested message. Where the database is the ”cache” of the
current state, in case of a streaming system, the state is expressed in the entireness of the stream.
The complete (immutable) dataset is therefore considered the ground truth of the system.
Kafka message is the means of data trasfer between the source (producer) via the Kafka broke to the
target (consumer).

Topics, Replicas and Offsets
Similar to the database systems, data is separated. In case of Kafka, the separation is done on the level
of streams, each defined as a topic. The system scalability is achieved in a manner similar to database
sharding, by splitting the topics into partitions, that are distributing across the cluster as illustrated in
the figure 10.3.
To ensure availability, the partitions are replicated. When multiple replicas of a single partition are
present, one will be elected ”leader” and will receive, store and send messages for the partition. The
in-sync replicas (ISR), will update the messages in the log and will be on standby if the leader will lose

10.2. Used Technologies 111

Kafka Core
API Producer Consumer Data producing system

(e.g. Dude Client)

Data consuming system
(E.g. Database)

Kafka Core API

Zookeeper
(Cluster)

Connect
(API)

Sink
(API)

Kafka Connect API

Custom implementation

Kafka Core API dependency

Kafka Connect API dependency
Kafka Stream

(API)

Kafka Stream API

Kafka Stream API

Figure 10.1: Apache Kafka Architecture

Kafka

Kafka
REST proxy

Java
Producer

AVRO encoded data

AVRO schema

Java
Consumer

AVRO encoded data

AVRO schema

Non-Java
Producer

Non-Java
Consumer

HTTP REST API HTTP REST API

Kafka Stream
Registry

Landoop UI

Custom implementation

Confluent Kafka

Landoop (vendor)

Figure 10.2: Confluent Kafka Architecture

112 10. Proposed Architecture

topic: n3xt
partition: 0
LEADER

topic: n3xt
partition: 1
LEADER

topic: n3xt
partition: 0

ISR

topic: n3xt
partition: 1

ISR

Kafka node 1 Kafka node 2 Kafka node 3

Figure 10.3: Kafka topic partitioning

Partition

Segment 0
offset 0 - 1012

Segment 1
offset 1012-1200

Segment 2
offset 1201- 2000

Segment 50
offset

56000-60230

Segment 51
offset

60231- ???
...

position index 51position index 3position index 2position index 1 position index 52
timestamp index 51timestamp index 3timestamp index 2timestamp index 1 timestamp index 52

deleted segments active segment

Figure 10.4: Kafka Segments and Indexes

the connection. With a replication factor of N up to N-1 Kafka nodes are allowed to fail simultaneously
without data loss or downtime. Logically, the replication factor cannot exceed the number of nodes of
the cluster.

The partition leader allocation is done by the Zookeeper. Zookeeper is responsible for configuration
management, group id and offsets tracking and many other features of Kafka. Zookeeper is deployed
as a standalone cluster, with a single elected Master node that keeps track of client nodes via a heart-
beat mechanism. Internally, Zookeeper provides a hierarchical namespace functionality, consisting of
nodes, called znodes, that are most comparable to files and folders in a filesystem [120]. When the
heartbeat is lost, a new znode branch is created of all available cluster nodes, each identified by a
sequence number. The elected leader is the node with the smallest number [121].

Segments and Indexes
Kafka topics consist of partitions, which are either unique or replicated. Similarly to the messages that
are identified by a message-offsets in a topic, each partition consists of segments containing the data
and indexes linking messages to the segments. The incoming messages are appended to the active
segment of the partition. New segment is created when previosly active segment exceeds a threshold
in size or in time (by default one week). As illustrated in the figure 10.4, the segment indexes are
defined in incremental digits as timestamp counters. The indexes are used internally by Kafka for data
cleaning up, as each message is configured with an expiration date.

Because the segments are stored as files in the file system, the segment size may require fine-
tuning. This is the consequence of the number of open files setting of the operating system. Having
a large number of files degrade the system performance, as clean-up is run on the per-segment level.
Furthermore, OS will terminate the program if the number of open files threshold is exceeded. There-
fore testing is required to determine sufficiently large segments, but not too large, so the seek time of
the messages is not affected.

The segments are stored directy on the file system. Since segment reads are sequential, it facilitates
high read speeds. It should be ntoed that Kafka relies on the OS file system caching. In practice, this
results in the frequently read segments to be copied to memory. [122] In case of Kafka failure, data
readily resides on the disk, reducing the chance of corruption.
Clean-up policy
The clean-up daemon is triggered every 15 seconds and can start message clean up if the message
is expired (retention time) or when partition volume exceeds a preset threshold. The default policy
dictates that the messages are deleted from the topic after 168hours (one week).

Alternatively, the messages can be retained indefinitely, but compacted to save the disk space. The

10.2. Used Technologies 113

broker 1 broker 2 broker 3

TOPIC A
partition 0

ISR

TOPIC A
partition 1

ISR

TOPIC A
partition 1
LEADER

TOPIC A
partition 0
LEADER

PRODUCER

Consumer..group=SPARK

Spark Streaming
JOB 1

Spark Streaming
JOB 2 Consumer

consumer.group=HDFSsink

1

2

3

4

messages sent to Kafka

1
3

2

4

2
4

1
3

2

4

1
3

1
3

2

4

Spark Streaming
JOB 3

bootstrap.broker=2

Figure 10.5: Producer and Consumer Groups

compaction policy does not compress the data, but deletes the older messages sharing the same key.
This relates to the theory covered in section 9.4, where the state of the system is presented by the
updates of the log. Hence, by keeping the last version of each key a database-like snapshot is created.

Kafka Producer
The key-less incoming messages of a topic are randomly assigned to a partition, this is required to
ensure the load balancing and to spread the load across the cluster. The producer can opt to submit
messages without acknowledgments (ACK=0), hence not knowing whether the data was delivered. To
prevent data loss, ACK=1 can be configured requiring the connected broker to acknowledge message
reception. In extreme cases, ACK=all can be configured, requiring acknowledgement from the leader
and all replica partitions. Next, to the topic of separation, Kafka facilitates key-based separation, al-
lowing messages sharing the same key to be placed in the same partitions. This can be utilized to
increase data retrieval performance, as data can be retrieved per partition.

Kafka Consumer
The messages are retrieved from the topics as a pull request, on demand by the data consumer. The
data consumers are typically aggregated into groups, called consumer groups. As illustrated by the
figure 10.5, within a group, one consumer can connect to many partitions, but a single partition can
only be connected by a single consumer from the group.

The messages within a partition are identified by an offset. The offsets are guaranteed within a
partition, but not across the topic. The consumer offsets, the last read messages, are stored in Kafka
in consumer offset topic. When a consumer group is a user, a consumer group offset will be defined.
The consumer group offset is synchronized across the cluster and prevents previously consumed mes-
sages to be accessed by the consumers of the group. This allows consumers within a group to operate
independently, as Kafka will ensure that only previously unprocessed messages will be available.

Kafka Delivery Semantics
The data duplication can occur due to duplications on the client side, for example, due to use of SDR

114 10. Proposed Architecture

with DuDe client. Another source of the duplication and data loss are the nodes failures of the cluster.
With use of ’at most once’ strategy, under normal operations, a message pulled from the Kafka topic
causes offset update of the partition, whereafter the message is processed by the consumer application.
In case of a node failure occurred after the message retrieval, the message is lost as the offset is already
updated. To resolve the data loss problem ’at least once’ strategy can be utilized. This requires the
consumer to acknowledge the message reception and processing prior to the offset update. However,
this causes a new problem, as a failure between message retrieval and offset updates will cause the
message to be processed twice, leading to duplicates. The solution to the problem is idempotent
processing, meaning that processing of the same data twice should not cause duplicate results. This
is achieved trivially by verifying whether the processed data exist in the data store prior to storage.

Message Key
As discussed in the previous section, each message sent and consume from Kafka may contain a key.
The key is optional and is represented by a String object. Unless Kafka is repartitioned, all messages
sharing the same key will be placed in the same partition. Furthermore, as illustrated in the figure 10.5,
Kafka consumers pull messages per partition, thus reading the messages per key in the sequence of
the reception. Additionally, consumers can be configured to pull data from specific partitions.

When working with multi-satellite data, the key can be set as satellite identifier, thus separating
satellite per partition. This would result in each Spark processing job (executor) pulling and processing
per satellite, in the sequence of reception. This requires fine balancing to ensure that each partition is
equally utilized. The processing job, pulling Kafka messages, should, furthermore, be satellite-agnostic
and be able to process all telemetry frame. This approach is applicable for twin (or more) satellite
constellations, with an identical set of telemetry frame definitions.

When working with multiple missions, requiring different processing logic and telemetry definitions,
multiple topics can be used. This provides separation, as each Spark job can subscribe to a specific
topic, thus, the specific mission job is designed for.

When working with a single satellite mission, one can distinguish between three alternatives. The
first alternative is key-less. When no key is present, the messages will be placed in partitions randomly.
This works for time-agnostic processing and will fail for windowing. Furthermore, when messages are
dumped into HDFS, the sink will consume partition per partition, resulting in a quasi-random sequence
of the messages.
The second alternative is an RA or GS specific identifier. This will group messages (telemetry frames)
per receiver, allowing simpler grouping and filtering, but more importantly more performant RA statistic
operations. For example, frame counter per RA can be performed on a single partition, hence by a
single job, without inter-node aggregations. Perfect in theory, this approach will fail in practice, as the
frame count per RA is vastly different.
The third alternative and the proposed solution for the single or multi-satellite missions is keying per
receiver per day. This ensures that the entire reception sequence is contained within one partition
allowing windowing while providing enough balancing between the partitions.

Deployment Kafka
The deployment of Kafka requires at minimum an assessment of the number of required nodes (bro-
kers), number of topics, partitions and replication factor (replica partitions).

The replication factor (RF) increases the disk space use and reduces the performance as more data
has to be copied. The RF can be set to 2 (minimum), allowing one broker to fail, or 3 allowing 2 brokers
failures. Depending on the failover policy, failure of a leader in RF 2 deployment may lead to corruption
of offsets of both topics. This lead to the decision of replication factor 3.

The number of partitions determines the scalability (parallelism) of the consumer groups. With 2
partitions, only two parallel spark processing jobs can be executed. On the other side of the spectrum,
a high number of partitions leads to increase in the number of open files that degrade the overall
performance of the server. Furthermore, by doubling the number of partitions, the latency increases
significantly as the amount of data to be replicated is increased six times. Further operational testing
is required, however, at minimum 3 partitions are needed to accommodate three nodes Spark Cluster.
It should be noted that the number of partitions can be changed at any time, however, requires topic
downtime. Topic repartitioning additionally resets the key-to-partition allocation.

The number of Kafka nodes and partitions is furthermore right to the data ingestion rate. By
increasing the number of nodes and partitions, higher level of parallelism can be achieved both on

10.2. Used Technologies 115

Producer as Consumer sides. Due to moderate to low data ingestion rates observed in Delfi-C3 and
Delfi-n3Xt missions, two to three node Kafka cluster is sufficient but requires operation testing for the
validation.

10.2.2. Immutable Storage
To facilitate human-error tolerance, satellite data should be stored in the original and unmodified form,
permanently. This ensures data can be reconstructed, as a means for the recovery for processing errors
or critical failure of the delivery layer storage medium. The Permanent Storage ought to be append-
only and should not be used for data modification, for example, the timestamps adjustment for clock
sync of the client. The Permanent storage is read infrequently by the Batch processing (whole-data
operations) or for Kafka replays, for example for the streaming tests. The systems are evaluated based
on the system complexity, storage guarantees (redundancy) and the flexibility.

Kafka based storage
The use of Kafka in the data ingestion layer provides a short-trem data retention. Meant as a buffer,
topics can be modified for long term storage by changing the data retention period.
At time of writing, no explicit longterm support plan for Apache Kafka has been proposed [122]. The
project follows a time based release methodology and aims at three releases a year, guarantueeing
rolling upgrade (upgrade without system downtime) for releases up to on year in the past. Each up-
dates includes new features and require system updates to faciliate newer consumers and producers.
In terms of technology, Kafka provides sufficent means for long-term storage. Data is partitioned and
replicated, which reduces the risk of dataloss. Due to OS based caching, the increase in stored data is
unlikely to affect performance.
The long term storage in Kafka is heavily advertised by Kreps (Confluent vendor) [123], however, it
has one large (and hidden) limitation. Relying on OS caching, read data will be placed in memory.
Therefore, accessing a large set of old data in a topic, will result in large memory use, as OS at runtime
cannot know the life expectation of the read dataset. The performance of the topic read operations
will degrade significantly once memory limit is reached. Therefore, the whole-data operations, such as
Batch jobs will become more expensive in terms of memory over time.

Database storage
As an alternative for Kafka storage the Database, File System and Object Storage were considered.
The databases, are the most complex systems from the list. The use of SQL system, requires struc-
tured data and schema defintion. Serving multiple spacecrafts and missions, the use of SQL systems
requires additional data management system to redirect messages to the tables in accordance to the
spacecraft, mission, or other parameters.
The NoSQL systems with schema on read behaviour are more suited for the application, but increase
the complexity by use of additional features. For example the in-memory caching is not required for
infrequent data reads but present in the majority of the systems. As discussed in section 4.4.2 achiev-
ing redundancy and scalability of database systems in terms of disk space, is not trivial. While the
performance of the write operations is not critical, the read performance is. Used for recover from
delivery layer failure, the system should be capable of replaying the recent ingested data at a high
speed. For example by pushing data back to the Kafka broker, triggering the Stream processing or by
running a Batch job with a reduced scope.
Maintaining a low footprint for write operations is preferred as a measure to reduce the operation cost.
In contrast, to ensure a high read throughput, the NoSQL system either keep reference to the data or
pre-cache in memory, which is unfavorable.

Object storage
An alternative for the Dabase systems is the Object storage. As discussed in section 4.3, the Object
storage requires a unique identifier for data retrieval. Since frames are accessed in bulk, and not nec-
essarily in one-per-one fashion, the use of object storage increases the complexity for data storage
and retrieval.

File system storage
The final considered alternative is the File System storage. To facilitate redundancy, only distributed

116 10. Proposed Architecture

system were considered. This leads to the hardware solutions such as SAN, discussed in section 4.2
and purpose designed software applications such as NAS systems, HDFS, GlusterFS, Google Filesystem
and many others. The SAN availability for the project requires further investigation, however, is gener-
ally associated with an increased cost of the hardware. The NAS solutions are considered standalone
hardware, however, in practice, NAS is simply a server running a file system.

For the purpose of proof-of-concept, HDFS file system was selected. This is driven by the best fit to
the flexibility, both in terms of deployment hardware or OS, as well the storage, i.e. files, directories,
as the database file, python file, binary blob, parquet, AVRO etc... Storage guarantee, as the use of
distributed store, replication and fault-tolerating design methodology ensure data protection.

In terms of processing, HDFS has a low write-operation footprint and high read-operation through-
put at higher latency. Simply put, HDFS requires time to prepare read operation, but once prepared,
it is done at a high rate. Additionally, HDFS provides high compatibility to Spark ecosystem, allowing
data to be loaded and processed in memory on the same node increasing the Batch processing speed
and allowing parallel Kafka producers for data replay purposes. Secondly, HDFS can be used as Spark
cache allowing fast recovery in case of Job failure.

Another feature of Lambda Architecture not previously discussed is the data replay. Kafka Connect
allows data to be read and ingested into a partition from a database or a data store. More specifically
in case of Delfi missions, a Delfi-C3 and Delfi-n3Xt datasets can be stored in HDFS and be ingested
into Kafka topic. This open doors for many applications, from Machine Learning applications, such as
model testing, To Stream and Batch Processing system verification.

Implementation
With the Hadoop Distributed File System is discussed in detail in section 10.2.3, this section provides
an overview of the data structure and funcionality to transfer data from Kafka topics to HDFS-based
files.

The message retrieved from Kafka broker contain the original payload sent by the producer, the
system API. The payload will depend on the mission and setallite and should not be edited in any way.
At minimum, the payload contains: the raw telemetry frame in TBD format, user information, recep-
tion_time_client, reception_time_server (appended by the API), and client application information.

As discussed in section 10.2.3, HDFS is designed and optimised for large files. Storing small files
impacts memory usage. Therefore, the telemetry frames contained in Kafka messages should be ag-
gregated and stored as single files. Due to inherent uncertainties in timestamps of the client reception
time and onboard clock drifts (see section 9.2.2), the aggregation is performed based on Kafka re-
ception sequence. The use of partition sequence is unadvised as it is driven by the message keying,
as discussed in section XX. Due to this reasons, Kafka ingestion timestamp is used. The ingestion
timestamp is embedded in Kafka message as ingestion.time-parameter when message.timestamp.type
is set to LogAppendTime in Kafka configuration.

As discussed earlier, storing each message in a file is feasible, but degrades performances and
increased memory use. The messages are therefore aggregated in files. Manual aggregation to txt,
xls, files is possible but is error-prone.

Three alternatives were considered, SequenceFile, AVRO and Parquet. SequenceFile is a row based
key-value data structure, generally utilized in MapReduce jobs and therefore native in the Hadoop
(HDFS) framework.
AVRO is a serialization, de-serialization framework that stores the schema and the content, the teleme-
try frame and metadata, in a compressed binary format. Storing the AVRO encoded binary, containing
the contents of the message directly in HDFS does not solve the problem. However, library AvroTools
provide Concat tool, allowing row-based multiple file aggregation. This is a multi-step process as HDFS
does not allow update operations.
Parquet is a general-purpose columnar data store. Where AVRO appends and stores data as entries
per row, Parquet stores the data per column in files. And is therefore optimized for column reads.

AVRO is the best fit for the problem, since, messages will be read sequentially per row. Secondly,
the metadata and telemetry frame can be extracted from the file directly for the Batch Processing.
AVRO is not locked in HDFS like sequence file and can be exported and ready in any other system.

10.2. Used Technologies 117

10.2.3. Hadoop Distributed File System
Hadoop Distributed File System (HDFS) is a distributed file storage designed to be deployed on com-
modity servers. The commodity servers are defined as general purpose, low-end servers that are both
cheap and easily replaceable. This directly correlates to heterogeneous hardware in term of hardware
specifications and capabilities, and software, i.e. the operating system, within a single cluster.

The HDFS cluster consists of a master NameNode and number of slaves Datanodes distributed on
a potentially high number of machines. With a large number of nodes, a higher chance of component
failure is expected [124]. With this principle in mind, HDFS is designed to tolerate hardware failure,
providing error detection and automatic recovery procedures.

In contrast to file systems like GlusterFS, HDFS does not comply with POSIX requirements. Borthakur
argues that relaxing POSIX requirements enables streaming access to the stored files [124]. The most
notable is the lack of ”Update” operations, leading to immutable storage.

The HDFS system is designed to operate on large datasets consisting of large files (> gigabyte). To
facilitate data manipulations, HDFS is optimized for high throughput but forfeits the quick data access
(seek). Furthermore, to ease massive datasets manipulations, HDFS provides API for data access from
MapReduce, Spark, and many others.

Architecture and Data Management
The HDFS is, ideally, deployed in a cluster with at least four nodes: one NameNode and three DataN-
odes. The NameNode is the central controller of the HDFS cluster and exposes the file systems names-
pace to the client applications. The provided API allows file and directory creation, name updates or
deletion. Most notably the stored files cannot be edited.

NameNode
On the NameNode, the configuration of the cluster is stored in two files: EditLog and FsImage. Edit-
Log is a transaction log, containing all changes to the files and file system. The FsImage contains the
namespace, the mappings of blocks and files and properties of the HDFS cluster. The FsImage is kept
in memory to increase the performance of the system, hence driving the server memory requirement.
The required memory directly correlates to the number of blocks, with 3GB found sufficient for storage
of 1 million blocks [125] [124]. If the file size is smaller than the block size, a complete block will be
allocated. On the DataNode, the memory footprint of a thousand kB sized files will equal to that of a
thousand 50MB sized ones. The second consequence is the performance reduction of the Read oper-
ations, as reading multiple files would require more DataNode operations, because HDFS is optimized
for block per block operations [126]. One of the available optimizations is the aggregation of small
(kB range) files to a single block. Published test runs yielded in a 45x performance increase and 3x
reduction in memory use [127] comparing to block per file storage.

On the cluster start, the NameNode reads the EditLog, and when available, combines it with the
existing EditLog (on disk) to create an in-memory FsImage object. As discussed in the streaming archi-
tecture, the EditLog is the ground truth of the system, containing all transaction, where the FsImage
is the cache (or table database) of the current system state, that in HDFS terms is called checkpoint.
In the default configuration, the NameNode is the single point of failure, requiring additional function-
ality to recover from the failure. Secondly, the EditLog and FsImage corruption is the second critical
element, requiring manual operation for cluster recovery. To resolve the problem, secondary EditLog
and FsImage can be configured, providing redundancy at the cost of performance. This is achieved
in HDFS High Availability (HA) deployment, running a secondary NameNode in sync proving direct lay-
over in case of primary NameNode failure. This feature will be discussed in the Experiment section.
Alternative to Secondary NameNode is the CheckPoint node. The checkpoint contains a snapshot of
the HDFS namespace state aggregated from EditLog and FsImage with the goal to reduce the size of
EditLog and when combined with Backup services provide additional redundancy.

File Write and Read
The files stored in HDFS, are split into blocks with a fixed preconfigured size and replicated across
DataNodes. With Federation deployment, the HDFS can be rack aware and place working and replica
blocks on different racks, facilitating higher intra-rack performance and inter-rack redundancy. The
File blocks are fixed in size and default to 64MB in size. Larger files will be split into multiple blocks
of equal size, except for the closing block that will be dynamically sized to fit. To determine the file

118 10. Proposed Architecture

size, and pre-allocate the required blocks, the HDFS client application API caches file locally on the
client machine. The cached file Write-request (DistributedFileSystem API) from the client application
is handled by the NameNode, that determines the available DataNodes for data storage and provides
information to establish RPC interface for writing (FSDataOutputStream) directly on the DataNode(s).
On the NameNode, file information is appended to the file system permanently once the file-block
was stored on the DataNode and acknowledged by the client application. The written file blocks are
replicated from the original DataNodes in accordance with the replication policy. When replication is
completed, the acknowledgement will be issued via FSDataOutputStream to the client writing the file,
which will issue the close command to the file and acknowledge the completion to the NameNode.
Failure to acknowledge file-block write will terminate the operation and discard the file. The file Read
following the same principle, the FSDataInputStream provides access to the DataNodes containing the
file blocks. The blocks are read sequentially and aggregated on the client.

DataNode
The DataNodes store blocks as files, purposefully abstracting them from the original files they refer to.
The DataNode runs as a java based application that stores and retrieves block-files from OS file system.
The block-files are stored in a tree of directories, not related to the HDFS directory, to prevent OS file
system paging bottlenecks. To keep track of block-files and directories the block-files are placed in,
DateNode relies on a Blokreport object. Similar to other storage and transport protocols, the file-blocks
contain a checksum, to ensure data integrity.

Designed to cope with hardware failure, the NameNode keeps track of active NameNodes by use
of heartbeats, status messages sent periodically (3seconds) from the DataNodes. Nodes with missing
heartbeats are considered as failed and will be removed from the HDFS cluster. This likely triggers
replication of the blocks on other nodes to maintain the initial replication factor. The deletion of files
or forced replication due to hardware failure will likely disbalance the cluster, leading to overutilization
of some of the nodes. In practice, HDFS built-in balancer ensures equal utilization or the disk capacity
across the DataNodes without consideration for block utilization (frequency of access).

Deployment in Production
As discussed in section 10.2.3, HDFS is designed to be deployed as a cluster of servers. This prevents
data loss due to hardware failure and ensures system availability. Due to the ”moving computaiton”
methodology, the data and processing framework should coincide on the same hardware. The minimum
number of nodes is driven by the replication factor, which is often set to three. This results in three
DataNodes and a single NameNode.

The HDFS should be deployed on dedicated servers, separated from Presentation Layer and Inges-
tion Layer nodes. While in PoC phase contarization provide best testing results, the HDFS container
deployment should be avoided. In accordance to Hortworks best practices, Hadoop ought to be de-
ployed on barebones hardware.

10.2.4. Apache Spark
The spark cluster consists of worker nodes and a single leader, named driver, that is elected manually.
Spark depends on the cluster manager, such as YARN for resources allocation for Jobs and ensures that
hardware resources are not exceeded. This is required since Spark is operarted in-memory, pushing the
data to nodes RAM. While in stream processing the data sizes are moderate small, in batch Spark can
operate on the entire data set that likely exceeds available RAM. The data is therefore split in smaller
sets called Resilent Distributed Datasets (RDD). Operating as a distributed application, Spark splits the
job in accordance to the required transformation and attempts to limit the intra-node operations.

The RDD are manipulated directly by the Spark API and are available programmatically. The field of
(BigData) distributed processing is not yet matured and more technologies are been interoduced. So,
version two of Spark introduced a higher level RDD API allowing SQL-like processing and structured
streaming.

Kafka Pull
Data ingested from Kafka broker, stored in Spark Resilient Distributed Dataset (RDD), which consists at
least of three parts or elements. The first is the Kafka-key. Key is not required, and if not provided, will
be set to ’null’. It is important to keep in mind that Streaming applies micro batches, pulling data from

10.2. Used Technologies 119

Figure 10.6: Kaitai

Kafka log. This means that if the log does not contain any data, an empty RDD will be placed in the
Dstream, and been executed on fixed intervals, storing and processing empty RDD has to be avoided.

The Dstream object, contains the RDD and can be both stateless, allowing RDD-per-RDD operations
or statefull, allowing aggregated operations (related to windowing principle).

The second element of the RDD is the receiver (RA, GS) metadata, for example, the reception
timestamp or client application version. It is passed directly to the storage and is ignored by processing.
Therefore it is important to encode data in an acceptable format, for exmaple JSON.

The third element is the telemetry frame. For the sake of simplicity of the PoC, data is sent in the
String format. This is enables direct Delfi-n3Xt data ingestion for the testing purposes. For the final
design and implementation, String encoding is unacceptable is a major waste of resources.

Processing
The third element of the RDD is the original, raw received satellite frame. The satellite can be seen as
a binary encoded hashmap, with predefined untagged fields. In case of Delfi-C3 and Delfi-n3xt, the
frame is adaptation of AX.25 frame definition, with loosely defined payload field and reduced header
size. The header consists of start flag, used to mark begin of the frame, address and control fields to
identify the spacecraft and PID control fields. The header is invariant, and is fixed to the spacecraft.
The payload definition depends on the mission. In case of Delfi-n3xt, the payload contains an id field
identifying the encoding of the bulk of the payload field. This should be read in order to correctly parse
the field.

Tne parsing is performed by Kaitai library. The key decision moment of the processing script lies in
the logic of the payload schema selection and be performed by the Kaitai object or python spark logic
as discussed in section 5.5 and illustrated in figure 10.6.

Delegating the frame schema detection to Kaitai requires a complete job overhal for any additional
processing frames. First, ksy file has to be adjusted to accommodate for the new definition, then new
python parser object has to be generated and transferred to the spark directory. Job has to be restarted
to take the effect. In case B, the frame type id, would require job to python read file with preallocated
names.

The conclusion is that option A is useful for missions with fixed frame definitions like Delfi-C3, where

120 10. Proposed Architecture

the frame id is invariant, and Delfi-n3xt, since no new data is been produced. In theory. Option B is
useful for active missions, as it allows frame definitions to be added dynamically. The feasibility of this
approach require further investigation, as each job is deployed as a single container.

10.2.5. Apache YARN
Apache YARN or Yet-Another-Resource-Negotiator is resource management and a scheduling tool for
a distributed system. YARN consists of two components, Resource Manager and a Node Manager per
node. Resource Manager is the bridge between the client applications requiring job scheduling and
Node Managers, responsible for node resource allocation and worker containers. The ResouceManager
is the master and ensures that deployed job can be executed on the cluster in terms of resources: CPU,
Memory, Disk and Network. The deployment, accepting of the job and allocation of resources is done by
ApplicationsManager. The Resource manager furthermore contains Scheduler, ensuring job scheduling,
but performs no monitoring or job restart.

10.2.6. Zookeeper
Where YARN ensured the ability to execute the job, Apache Zookeeper ensures that the job is com-
pleted. In essence, Zookeeper is a distributed hierarchical Key-Value store, that is used to provide
configuration, synchronization and other functionality to the part of the system.

In Kafka, Zookeeper data store is used to keep track of partition leaders as well store of the offsets
of the Consumer groups.

In HDFS Zookeeper is used to configure standby Namenode, ensuring that each DataNode is notified
on Mater change.

10.3. Architecture
The proposed architecture, with the major components defined in section 10.1 is shown in figure 10.7.
The figure shows two views of the system. A provides cluster overview, separating the technologies
per Layer. View B shows the advised server allocation.

As shown in figure B 10.1, the advised server allocation requires a minimum of four servers. Three
are required to ensure Kafka and HDFS High Availability, while only is needed for telemetry processing.
If processing speed is found insufficient, additional processing nodes can be added to the Spark cluster
at any time.

It is likely that the change in processing performance requirements, and hence the addition of extra
data processing nodes, will correlate with higher data ingestion rate. This would require migration of
HDFS systems from ingestion nodes (Kafka) to processors.

The allocation of HDFS to Spark nodes is driven by Spark memory optimizations, where the batch
jobs would load the data in the allocated RAM for processing. Separating HDFS and Spark introduce
network latency, hence adversely affecting the performance.

Placing Kafka and HDFS on the same nodes is a measure to decrease the cluster size (i.e. number
of servers required). The co-allocation increases the chance of data loss as both Kafka and HDFS are
responsible for the storage.

In the ideal scenario shown in figure A 10.1 the data ingestion Layer, Kafka can be deployed on
virtual machines. With low required specifications (± RPI performance), the cost of operation is low.
The data processing system should be deployed on hardware instances due to the use of HDFS. In
the scenario B 10.1, the use of virtualization is unadvised due to HDFS presence on all nodes of the
system.

The proof of concept introduced in section 11, and the discussion above, the requirement assess-
ment was performed. The primary needs are summarized in table 10.1, and correlate to the require-
ments presented in appendix A. As shown by the overview of PASS/FAIL of the requirements in section
A.7, all in-scope requirements have been fulfilled.

10.3. Architecture 121

HDFSSpark

YARN

Kafka ZooKeeper

Kafka ZooKeeper

Kafka ZooKeeper

Kafka Cluster

API

HDFSSpark

YARN

HDFSSpark

YARN

HDFSSpark

YARN

SPARK + HDFS

Presentation

WS

API

Kafka Cluster

API

HDFSSpark

YARN

SPARK + HDFS

Presentation

WS

API

HDFSKafka

ZooKeeper

HDFSKafka

ZooKeeper

HDFSKafka

ZooKeeper

A

B

HDFSSpark

YARN

optional

YARN

YARN

YARN

...

Figure 10.7: Telemetry processing architecture: a) Cluster b) Proposed deployment

11
Experiment and Research Questions

discussion

The chapter aims to validate the requirements, proving proposed architecture applicability to Delfi
mission, answering the research questions.

11.1. Scope of System Testing
The architectural design proposed in section 10 requires validation against the initial set of require-
ments.The functional requirements validation require proof of concept. Furthermore, to answer the
research questions defined in chapter 1 hardware experimentation is required.

11.1.1. System Robustness Assessment
Robustness is defined as run-time tolerance to errors and inconsistencies. Within the proposed archi-
tecture, the following source of errors have been considered:

• Errors in ingested data: telemetry frame errors

• Errors in ingested data: errors caused by the client application

• Errors in processing: exceptions handling and anomalies in the computing

• Errors in processing: errors in the processing code

• Errors in communication between components

• Loss of components

The errors in processing, such as faulty input data (client application bugs) can be handled with
Try-Catch exception blocks in the programming and requires no further investigation. Furthermore, the
errors in the processing code are most likely used by human errors: bugs.

The use of distributed computing increases the risk of communication loss between components
and single component failure. The experiment should therefore investigate the tolerance of the system
to component loss and recovery modes of the system.

11.1.2. System Reliability Assessment
Reliability is one of the three classic hardware quality attributes: Reliability, Availability and Service-
ability. In the scope of the software system, the reliability is a measure of the software failure rate
in terms of downtime or incorrect results and is often modelled as a probabilistic function [128] or
based on a fault-tree analysis [129]. Both approaches require the fully implemented functional system
operating on the target hardware or historical data, both of which are unachievable within the scope
of the project. Petrov argues that the reliability is affected primarily by the number of the errors in
the code, and shows a linear relation between lines of code and number of programming errors [128].
When applied to automotive applications, Petrov’s analysis indicates an exponential growth in error

123

124 11. Experiment and Research Questions discussion

Figure 11.1: Defects discovered versus time [128]

detection in the first four to seven months of operational use as illustrated in figure 11.1. Which in
case of Delfi, correlates with a typical internship and thesis duration.

Reliability is expressed as a programming error metric closely related to the robustness, and it can
be argued that both are closely related. The relation is one-sided as the error-free and hence reliable
software contributes to the robustness, but robust software on its own cannot guarantee reliability.

Monperrus suggests an inverted view on the problem by ” ... thriving and improving when facing
errors” [130]. The proposed antifragile concept relies on self-checking, self-repair and failure injection
in the production system. While self-checking and self-repair software are not feasible within the scope
of the project, the concept can be thought of as a reduction of uncertainty by introducing failures to the
system. The latter is supported by Tseitlin who argues that ”... [a] failure [in a distributed system] is not
predictable and does not occur with uniform probability and frequency”[131], and that the theoretical
prediction and probabilistic concept are not feasible [131] [132]. Both Tseitlin and Monperrus argue
that first step in the process is software testing. In practice, this is adequately achieved through the use
of unit testing or test-driven development. This correlates back to the architectural decisions, requiring
independent components testing, as it is the case in the Clean Architecture principle.

Tseitlin furthermore argues that capturing the behaviour of secondary systems, i.e. data source or
data sinks, is complex and unfeasible in practice. This leads to the concept of proactively introducing
errors into an operational system to decrease the uncertainty. Simply put: learn from the mistakes. The
concept does not support software reliability, but operational resilience, which arguably leads to the
same results: reliable system. An example of the approach is Netflix Chaos Monkey [133], a service
that actively introduces errors to the system: latency, network partitions, application outages, CPU
overutilization, disk loss, etc. Regardless of type of error introduced, the introduction of errors requires
fault-tolerance, either in the form of redundancy or robustness.

The second element to ensure the system robustness is the bus factor, a metric for the single point
of failure within a team. Simply put, how many team members can leave the project (’run over by the
bus’) before the system is no longer maintainable. Due to the limited size of the team, the reliability
will greatly depend on the quality and quantity of the available documentation of the system design,
system operations, operation checklists,” lessons learned” and implementation documentation.

The aforementioned leads to separation of Reliability into Software Reliability and Operational Re-
liability. While the Software Reliability can be seen as a measure of software quality (defects metric),
the Operation Reliability is an aggregation of software and hardware redundancy, the capacity for Er-
ror/Failure handling, and Maintainability. In this case Maintainability is expressed as a metric for the
long-term strategy with regards to handling, i.e. possible data degradation and data loss.

11.2. Research Question evaluation
The application of research questions to the proposed architecture is summarized in table 11.1. While
the majority of the metrics presented in the table are deduced from the vendor documentation and
information presented in the previous chapters, some of the attributes require further investigation.
The following sections discuss the parameters and evaluate the experiments required for the validation.

11.2. Research Question evaluation 125

11.2.1. Errors originating form client application
Use of client application for data reception introduces a wide spectrum of potential errors and inconsis-
tencies. As discussed in the chapter 9 the client application is assumed to deliver raw and unprocessed
telemetry frames. Due to error-mitigating nature of the software development observed in the past
systems, the chance of data corruption by the client application is negligible.

In case of data corruption, the Kaitai processing will throw an exception ignoring the processing
of faulty data. The recovery from extensive data corruption introduced by the client applications will
depend highly on the specifics of the error but could be resolved with custom Spark jobs.

11.2.2. Effects of unstable networking and loss of nodes on Ingestion Layer
The ingestion layer is responsible for the aggregation of data originating from ingestion API, client
applications and potentially other data sources such as data acquisition systems. Due to the separation
of system API from the Kafka System, the loss of Kafka may result in data loss, depending on API
implementation and producer semantics.

The loss of Kafka System inevitably terminates all dependant application such as Spark Streaming
jobs and require stream processing job restart.

While failing under quorum, i.e. more than two failed nodes out of the cluster of three, requires
manual intervention, the single node recovery could be performed automatically. The research on
COTS service provider availability focus on three primary failure factors: upgrades (e.g. human errors
in configuration), networking and software bugs [134]. Unfortunately, in the majority of the cases, the
source of the system failure cannot be established. Furthermore, the system does not stop working
but behaves unpredictably, exponentially degrading the performance, a process known as gray failure
[135].

The aforementioned discussion leads to the following list of points of interest:

1. Effects of configuration errors

2. Effects of networking errors

3. Effects of software bugs

4. Effects of gray-failures

With the use of the in-house hosting, the configuration errors are highly likely to occur. However,
the system load is initially low due to single satellite utilization, no operational upgrades or scaling out
operations are expected for the first year(s) of operations. This gives adequate time to prepare for the
required upgrades. The same principle applies to the software bugs, both are therefore removed from
the list.

The networking errors or network partitioning is described as a frequent source of malfunctions
[134] in a clustered environment. In case of ingestion system, Kafka documentation points to graceful
node termination (handled by OS) in overcapacity cases such as disk storage, while lacking documen-
tation on networking overcapacity effects. Finally, the gray-failures are hard to quantify and reproduce.
To investigate the network effect following experiments will be performed:

1. Effects of network oversaturation

2. Effects of network failure (connection loss)

3. Effects of network failure recovery (connection recovery)

4. Attempt to reproduce gray-failure

It should be noted that the network traffic within the Kafka cluster is larger in magnitude than
the traffic between the data source (Producer) and Kafka cluster. This is the consequence of topic
replication, as replication rate of two increases the intra-cluster data traffic two-fold. Furthermore, the
Kafka producer directs data directly to the appropriate partition leaders, efficiently splitting the traffic
between the nodes. The ability to store all incoming data, regardless of the system load, is critical,
while topic message retrieval rate is not. Therefore, the Kafka testing will focus solely on the data
ingestion for the experiments.

126 11. Experiment and Research Questions discussion

Table 11.1: Research Question evaluation summary

Item Solution

Robustness
Telemetry frame errors Exception handling (Python)
Errors originating form client application Unknown at time of writing

Anomalies in frame processing
Exception handling (Python) for parsing
Failed Spark jobs: Checkpoint & Recovery on HDFS
Stuck Spark jobs: Manual termination, Checkpoint recovery

Connection loss (network partitioning)

Kafka node loss: unknown impact for ingestion layer, no impact
on Stream processing as long quorum is maintained. Experiment
required
Kafka node loss under quorum: Kafka failure. Temporary loss of
partitions, incoming data rejected.
Spark node loss: low impact on stream layer, with higher latency
in processing; possible delay in low-latency batch jobs. Experi-
ment required
HDFS node loss: no impact on Kafka, Spark or Spark Streaming as
long quorum is maintained. Connected clients will be redirected
automatically.
HDFS node loss under quorum: No impact on Kafka, Spark batch
jobs failure, Spark Streaming jobs failure if YARN is affected.
Zookeeper node failure: no effect
Zookeeper all node failure: Kafka terminated.
YARN singe node failure: no effect
YARN all nodes failure: HDFS and Spark new jobs allocation ter-
minated

Programming errors in jobs Pre-check by Spark Batch and Spark Streaming

Reliability
Unit testing No experimentation required.
Operations Experiment required
Maintanability Experiment required
Redundancy See robustness: server node loss

11.2.3. Reliability in Operations and effects of Maintainability
In section 11.1.2 the system reliability was proposed as the team readiness for a system component
failure. To assess the reliability, in form of the ability to debug and comprehend the system failure, the
experimentation was implicitly performed during the configuration of the cluster and development of
Spark jobs. The available documentation is excellent, with the majority of encountered error messages
readily explained in online resources.

The maintainability, as a measure of the ability to modify system for changes, is excellent. Spark
streaming job used for Stream processing was adjusted to perform the Batch job with limited changes
(less than ten lines of code). The exchangeability of the code, for example, change of data stores from
ElasticSearch to HDFS require minimal code adjustments. The use of Spark Structured Streaming and
Spark SQL allows the use of Pandas syntax familiar to Python developers and SQL-like syntax used in
the legacy Delfi systems.

11.3. Hardware Experiment Setup
The proposed experiments require saturation of the server resources, for example, the network card
(NIC), to study the ingestion layer robustness. The gray-failures are hard to reproduce but are linked
to high system utilization. Running these tests on an optimized hosted cluster or even commodity level
server would require substantial datasets.

Therefore, the experiments were performed on a cluster of 4 Raspberry Pi’s (RPI), each equipped
with 1 GB of RAM and 1.2 GHz quad-core ARM based CPU running modified version Debian (Raspbian

11.3. Hardware Experiment Setup 127

 Docker

Kafka
Producer

JVM

DelfiDB container

MySQL

ELK container

ES

Kibana

Web-browser

 YARN
 Resource
 Manager HDFS

Namenode

Spark
Driver

Zookeeper
instance

HDFS
DataNode

Kafka
Broker

YARN
node

manager

Spark
Worker

Zookeeper
instance

HDFS
DataNode

Kafka
Broker

YARN
node

manager

Spark
Worker

Zookeeper
instance

HDFS
DataNode

Kafka
Broker

YARN
node

manager

Spark
Worker

Node 1

Node 2

Node 3

Node 4

Kafka
Consumer

logstash

Not used in the experiments

Virtualized/Containerized environment

Host

Cluster

Data in (raw, UTF-8 String)
Data out (processed, JSON)

Delfi-n3Xt database

ES ElasticSearch Data store

Figure 11.2: Experiment setup

Table 11.2: Typical RPI performance characteristics

CPU 1.2 Ghz (600 Mhz throttle)
Memory size 1 GB
Storage capacity 32 GB
SD card average (AVG) Write speed 21 MB/s
SD card AVG Read speed 40 MB/s
Network AVG speed 11 MB/s

Jessie) connectie via a wired 1 gigabit switch. The use of underpowered hardware allows the system
to be tested under high load conditions. Secondly, the requirement for in-house deployment requires
a level of expertise, that is not necessarily feasible in a ready-to-use cloud deployment. Use of RPI
nodes allows fast cluster reconfiguration and reinstallation. Setting up and running on underpowered
hardware allows more substantial tweaking and a better understanding of the effects settings have on
the complete system.

All four nodes are configured to run HDFS, YARN (resource manager and negotiator for HDFS),
SPARK, Zookeeper (required for Kafka) and Spark. For each experiment, only the necessary services
were enabled unless stated otherwise. The HDFS NameNode (Master in the non-HA deployment) and
Spark Master node coincide on node1 that does not contain the DataNode or the Spark executor node.

The cluster monitoring system is based on the Prometheus project, a client application submitting
node status updates and the central Prometheus server responsible for data aggregation and visual-
izations.

For PoC, the presentation layer is implemented with ELK stack, which is installed outside the cluster
and contains ElasticSearch storage and querying system and Kibana front-end application. The ELK
separation from the processing logic is two-fold. First, ELK is not necessarily part of the telemetry
processing system and therefore does not directly contribute to the research. Secondly, by following
the previously established methodology, components are easily exchangeable and should be selected
based on the system needs.

The selection of ELK stack for PoC is driven solely by the need for operational testing, requiring
data visualization and fast lookups of processed data. Hence, ELK is merely used as a tool to validate
the processed data.

128 11. Experiment and Research Questions discussion

11.4. Limitations
Use of Pi-based cluster has three significant limitations. First, the hardware has extremely limited
memory and requires fine-tuning of components. Throughout experiments, YARN prevented overuti-
lization of memory which resulted in high swap memory use. Due to use of SD-card based disks in
RPI hardware, the substantial hardware wear was observed that likely lead to cluster instability found
during last experiments.

The second limitation is the inherent sensitivity of RPI hardware to the power supply. Running
on standard 5V USB power supply, a power consumption of up to 3.5W have been observed. Under
continuous high load, power supply showed instabilities by reducing output voltage under 5V that
combined with the voltage drop in USB cables lead to RPI CPU throttling and instabilities. The effects
of power supply on RPI stability were determined late in the process and could not be resolved within
the timeframe of the project.

Lastly, the RPI is based on ARM architecture. While no conflicting dependencies were discovered,
the software may be executed in non-standard modes and may affect the results. Eventhough no
conclusive evidence was found, it increases the uncertainty of the test results.

11.5. Experiments
In the proposed architecture, the loss of the data ingestion layer has the highest impact on the system
operations. While the errors and malfunctions of any other system component may result in delay or
temporary unavailability of data in the presentation layer, the telemetry data, either processed or raw
cannot be corrupted or lost.

11.5.1. Kafka
As described in section 11.2 due to the distributed nature of the system, the networking is critical to
the system operations. Two aspects will be studied: network saturation and intermittent connection
loss.

Hypothesis : saturated network (interface) will cause a high load on the system due to queueing
of data, and subsequently reduce the data ingestion rate with potential data loss due to message
rejection.

One can identify two distinct network paths: from Producer to Kafka and networking between
Kafka-nodes. The proposed experiment is built on the assumption that Kafka’s single API node will be
used, leading to a single Kafka Producer Architecture. The API, acting as the gateway to the cluster,
is connected to the cluster network, hence guaranteeing substantially higher network speeds to the
cluster than to the client applications. This leads to the conclusion that network saturation is likely
to occur either in Client - API network or internally within the Kafka cluster. For the experiment, only
internal Kafka node-to-node network is studied. This is the consequence of the replication as each
ingested bytes in replicated, hence amplifying the network load two- or threefold.

As illustrated in figure 11.3, Kafka cluster used for experiments contains three nodes and utilizes
one single topic. The topic consists of two partitions and two replicas. The number of topic partitions
depends on the cluster size and the parallelism of data consumers. A higher number of partitions and
replicas increase the cluster load, obfuscating the results required for the experiment.

Study of node failure effects requires at least three nodes cluster, as two node cluster would limit
the replica number. More than three nodes will increase the network traffic, which is limited due to RPI
hardware, hence affecting the experiment results.

The data used in the experiment is based on Delfi-n3Xt telemetry dataset with string UTF-8 encoded
unprocessed telemetry frames as used in Delfi-n3Xt telemetry processing system. Kafka producer, the
application responsible for data ingestion, operates in burst fashion inserting 100,000 telemetry frames
with 100ms cooldown between the runs. The duration of each run is measured and presented in table
11.3.

Hypothesis validation : A high volume of data is submitted to the Kafka cluster with monitoring
of network use and metrics of all cluster nodes. Additionally, the node connection is terminated to
study the reliability and robustness of the system.

The experiment in split into two parts: A and B. The first part of experiment A establishes the
baseline of the processor (CPU) and memory (RAM) utilization, load, network and disk use metrics,
as well as the complete system throughput rate. The second part studies the effect of network loss

11.5. Experiments 129

Table 11.3: Measured ingestion rate for experiments A and B

Experiment A Experiment B
Point Run Run duration [ms] Speed [f/s] Point Run Run duration [ms] Speed [f/s]

3 - 4

1 32824.17 3047

2 - 3

1 23449.37 4264
2 29272.35 3416 2 20206.41 4949
3 25029.88 3995 3 21256.78 4704
4 17703.70 5649 4 21376.15 4678
5 15458.42 6469 5 22417.51 4461
6 16460.83 6075 6 54863.55 1823

5 - 6

1 17936.66 5575

3/4 - 5

1 17160.03 5827
2 17337.57 5768 2 16282.99 6141
3 15777.85 6338 3 15918.55 6282
4 18657.23 5360 4 16435.50 6084
5 17488.76 5718 5 15560.39 6427
6 15446.28 6474 6 18532.77 5396

7 - 8

1 16280.74 6142

6 - 7

1 14475.35 6908
2 16063.81 6225 2 13989.63 7148
3 19183.20 5213 3 14809.06 6753
4 18319.08 5459 4 14677.17 6813
5 19617.96 5097 5 14337.86 6975
6 16833.55 5941 6 14609.97 6845

9 - 11

1 44771.06 2234

8 - 9

1 13588.37 7359
2 26098.23 3832 2 15266.28 6550
3 23109.68 4327 3 14632.17 6834
4 22669.95 4411 4 15962.94 6265
5 24843.33 4025 5 14217.36 7034
6 24099.09 4150 6 14903.42 6710

Table 11.4: Measurement point description for experiments A and B

Experiment A Experiment B
Point Description Point Description
1 ZooKeeper start 1 ZooKeeper and Kafka start
2 Kafka start 2 start run 1
3 start run 1 3 end run 1
4 end run 1 4 start run 2
5 start run 2 5 end run 2
6 end run 2 6 start run 3
7 start run 3 7 end run 3
8 end run 3 8 start run 4

9
start run 4

node 2 disconnected 9 end run 4

10 end run 4
11 node 2 reconnected

of ZooKeeper and Kafka partition leaders. Experiment A is discussed in section 11.5.1. Experiment B
attempts to recreate a gray-failure of the cluster and studies the effects on performance and stability (as
metric for robustness and reliability) of the cluster under failing conditions. Experiment B is discussed
in section 11.5.1.

Experiment A: baseline and network failure
Experiment A consists of two parts. In the first phase, the baseline for data throughput is established.
The second phase focuses on the study of the network loss effects.

The first three parts of the experiment, represented by 3-4, 5-6 and 7-8 in the figures 11.4 and 11.5,
and tables 11.3 and 11.4, show a bell-shaped performance curve, with an initial increase in performance
over the first bursts (runs) and decrease towards the end of the run. A difference in ingestion speed
between first runs of experiments two and three (measurement points 5 and 7 respectively) indicate
a system hysteresis as a longer cooldown time was applied in the former (two versus one minute).
The difference is the most likely the consequence of a higher load of the node 2, as can be seen in
average load figure 11.4 measurement points 5 and 7. As illustrated in figure 11.3, the nodes 2 and
3 replicate data to node 1. Figure 11.5 supports the theory and shows inbound traffic of node 1 that
is approximately the sum of node 2 and 3 outbound data. Furthermore, the volume of data written
on node 1 is approximately the sum of data read on nodes 2 and 3. Furthermore, it can be seen
that Kafka messages are compressed in the transfer, as a disk throughput is higher than the network.

130 11. Experiment and Research Questions discussion

With the maximum network speed of 11MB/s [136], it can be seen that network interface (NIC) of RPI
node 1 is fully saturated. The load metric in figure 11.4 encapsulates the CPU, RAM, network and disk
queuing and shows a uniform load across the cluster, regardless of the ingestion rate. A positive trend
is observed for node 1, indicating increasing network congestion and latency between leading Kafka
partitions (nodes 2 and 3) and ISR on node 1. Furthermore, a 3% decrease in the ingestion rate due
to replication queuing to the redundant node (from AVG: 5872 STD: 439 to AVG: 5679 STD: 487) was
observed.

The second phase of the experiment focused on the effects of node loss in operations. In the
experiment, node 2 hosts both the ZooKeeper as Kafka partition (0) Leaders. Failure of node 2 has,
therefore, the highest impact, as both ZooKeeper as Partition elections have to take place.

As illustrated by the network figures 11.5, the replication queue to node 1 was resolved at the 15th
minute of the experiment. The node 2 was not disconnected prior to prevent data inconsistencies and
possible corruptions. While the graceful disconnect is unlikely to occur in the real world applications,
the replication latency is not representative of the real world server centers with significantly faster net-
working as well. For example, a typical 10 Gbps network is roughly 200 % faster than the experimental
setup used.

The second phase of the experiment consists of a single burst of 6 runs, as shown in the table
11.3. The node 2 is disconnected simultaneously with the burst start, delaying data ingestion at
Kafka until the new ZooKeeper and partition leaders are elected. The ZooKeeper is instrumental for
messages offset tracking, therefore delaying the data ingestion from Kafka producer, hence reducing
the performance of the initial run. Figure 11.5 show an imbalance of traffic between nodes 3 and 1,
which is the consequence of the partition 1 ISR on node 1. The outbound network and disk read activity
on node 1 show replication to node 3, pointing towards a single point of failure. This is expected as
the automatic partition rebalancing is disabled by default. As a side note, while repartitioning changes
the key partition co-allocation, the rebalancing does not, allowing recovery from a permanently failed
nodes. At measurement point 11, after the 600,000 telemetry frames ingestion (6x 100,000), the
networking to node 2 was restored. This shows that 1.5x data size of the Delfi-n3Xt mission was
replaced within 45 seconds between the nodes.

Experiment B: baseline and node failure
Experiment B focuses on intermittent node failure. The experiment is done in two phases; first data
ingestion is initiated followed by ZooKeeper and partition Leader failure. The second phase investigates
the behaviour towards lost node and while attempting to cause data corruption.

The node failure is initiated by reducing RPI input voltage close to the operational threshold (4.75V),
causing Linux kernel malfunction. While control over the node (ssh) and high-level function was lost,
the node continued to respond to network requests (ping) and submitted (faulty) heartbeat information.

Table 11.3 indicates the ”hard” failure in the 6th run of the first experiment, approximately at
3min30sec as can be seen in figures 11.6 and 11.7. The initial setup deviates from figure 11.3, with
partition 0 leader on node 1 and partition 1 leader on node 2. The loss of node 1, allocated leaders to
nodes 2 and 3 respectively and caused failure of the replication as can be seen in network activity in
figure 11.7.

Multiple anomalies can be observed in figures 11.6 and 11.7, first, the time-stamp of Kafka producer
is 15 seconds off from the cluster clock. Secondly, the measurement point 5 shows an earlier Producer
termination time-stamp than the illustrated by the network and disk activities.

During the experiment, no data loss acquired and Kafka producer, responsible for data ingestion,
did not encounter any exception or faults.

11.5.2. Spark Streaming
As discussed in section 11.2, the reliability of an application depends on the number of possible errors
in the source code. By following this logic, one can argue that a reduction in the number of lines of code
(LoC) will actively reduce the probability of bug occurrence and can potentially increase the software
reliability. This is however a feeble measure of the reliability parameter as LoC does not account for
code complexity.

The code below show the PySpark source code for Kafka topic offload functionality to HDFS. The
topic messages are aggergated by 10 seconds intervals and stored in year-month-day folder structure:

spark = SparkSess ion . bu i l d e r \

11.5. Experiments 131

Kafka node 1

Kafka node 2

Kafka node 3

Par. 0

Par. 1

Par. 0 Par. 1

DATA IN

replication

Kafka node 1

Kafka node 2

Kafka node 3

Par. 0

Par. 1

Par. 0 Par. 1

DATA IN

replication

Kafka node 1

Kafka node 2

Kafka node 3

Par. 0

Par. 1

Par. 0 Par. 1

DATA IN

replication

DATA IN Kafka node 1

Kafka node 2

Kafka node 3

Par. 0

Par. 1

Par. 0 Par. 1

replication

Par. Partition Leader

Par. Partition ISR

Par. Partition Out-of-sync Replica

FAILURE MITIGATION RECOVERY START STATE

Figure 11.3: Kafka setup

. appName(” t e s t ”) . getOrCreate ()

df = spark \
. readStream \
. format (” kafka ”) \
. opt ion (” kafka . boots t rap . se rve rs ” , ” slavenode2 :9092 , slavenode3 :9092 , slavenode4 :9092”) \
. opt ion (” subsc r ibe ” , ” d e l f i 6 ”) \
. s t a r t ()

h a l l o = df . se l e c tExp r (”CAST(key AS STRING) ” , ”CAST(va lue AS STRING) ” , ” year (timestamp) as year ” ,
”month (timestamp) as month ” , ” dayofmonth (timestamp) as day ”) . wr i teStream \

. format (” csv ”) \

. opt ion (” checkpo in tLocat ion ” , ” / tmp / ”) \

. p a r t i t i o nBy ([” year ” , ”month ” , ” day ”]) \

. opt ion (” path ” , ” hdfs : / / masternode1 :9000/ s ink / sa t=n3xt ”) \

. t r i g g e r (processingTime=”10 seconds ”) \

. s t a r t ()

h a l l o . awai tTerminat ion ()

As an example of ease of code modification, consider Kafka message offload to ElasticSearch:

spark = SparkSess ion . bu i l d e r \
. appName(” t e s t ”) . getOrCreate ()

df = spark \
. readStream \
. format (” kafka ”) \
. opt ion (” kafka . boots t rap . se rve rs ” , ” slavenode2 :9092 , slavenode3 :9092 , slavenode4 :9092”) \
. opt ion (” subsc r ibe ” , ” d e l f i 6 ”) \
. s t a r t ()

h a l l o = df . se l e c tExp r (”CAST(key AS STRING) ” , ”CAST(va lue AS STRING) ” , ” year (timestamp) as year ” ,
”month (timestamp) as month ” , ” dayofmonth (timestamp) as day ”) . wr i teStream \

. format (” es ”) \

. opt ion (” checkpo in tLocat ion ” , ” / tmp / ”) \

. opt ion (” es . nodes ” , ”192.168.1 .2:9200”) \

. opt ion (” es . nodes . d i s covery ” , ” f a l s e ”) \

. opt ion (” es . nodes .wan . on ly ” , ” t rue ”) \

. s t a r t (” n3xt / frames ”)

ha l l o . awai tTerminat ion ()

As can be seen in the experiment above, Spark hides the code complexity from the developer with
use of abstraction. This is fitting to Delfi operations as TPC system is modified infrequently and no
specialized knowledge, i.e. project is required for system adjustments. Furthermore, the code is not

132 11. Experiment and Research Questions discussion

node 2
node 1

node 3

Aggreaged CPU utilization per node [%]

Memory (RAM) utilization per node [MB]

Load [-]

1 2 5 6 7 8 104 9 113

Figure 11.4: Kafka experiment A

11.5. Experiments 133

node 2
node 1

node 3

1 2 5 6 7 8 104 9 11
Network: received [MB]

Network: transmitted [MB]

Disk: write [MB]

Disk: read [MB]

3

Figure 11.5: Kafka experiment A [cont.]

134 11. Experiment and Research Questions discussion

node 2
node 1

node 3

Aggreaged CPU utilization per node [%]

Memory (RAM) utilization per node [MB]

Load [-]

1 2 5 6 7 8 9FAIL 3+4

Figure 11.6: Kafka experiment B

11.5. Experiments 135

Network: received [MB]

Network: transmitted [MB]

Disk: write [MB]

Disk: read [MB]

Figure 11.7: Kafka experiment B [cont.]

136 11. Experiment and Research Questions discussion

 Docker

DelfiDB container

MySQL

ELK container

ES

Kibana

Web-browser

logstash

Python Script

Python Script

Virtualized/Containerized environment

Host

Figure 11.8: ELK latency experiment

affected by the number of data processing nodes, and depends only on the data source and sinks
locations.

The second part of the experiment focuses on the performance of the processing. It does not
address the research questions directly but serves as a measure for acceptance testing. As discussed
in section 3, the frame processing rate (per satellite) observed in the Delfi-n3Xt mission is acceptable
for the stakeholders. The experiment therefore focuses on the low-latency streaming data processing,
as it has the highest priority of Satellite Operators.

Hypothesis: Spark system can operate at Delfi-n3Xt peak ingestion rate
The experiment setup requires the use of Kafka, and hence ZooKeeper, HDFS, and therefore YARN

and Spark components that are shown in the figure 11.2. The data source, Kafka producer, is identical to
the Kafka experiments and injects 1000 frames as a batch into Kafka topic (two partitions, two replica’s)
within 600ms. The data sink is ElasticSearch (ES) data store and Kibana UI used as a dashboard.

The cluster performance for the experiment is expressed as a measure of the delay between data
submission by Kafka Producer and processed data appearance in the Kibana UI. To determine the pro-
cessing time, the latency within ELK stack, docker virtual networking and storage has to be determined.
The precursor experiment, illustrated in figure 11.8 determined that on average 18 seconds is required
to transfer 1000 unprocessed frames from MySQL database to Kibana, which correlates to an average
ingestion rate of 55.5 frames/s.

Figures 11.10 and 11.11 show the server utilization during two phases of the experiment: Job
deployment and Frame processing. As defined in table 11.6, points 1 to 8 span the automated Spark
Job deployment to the cluster. The deployment is managed by the Spark driver (Master) on node 1.
The first step of the process is the preparation of job deployment to the cluster, that verifies the code,
builds a deployment container and validates the cluster availability illustrated by points 1 to 3. In the
experiment, sufficient resources are available and the job can be deployed, leading to the selection
of executor (4) followed by establishing of the Spark Streaming Context (5) and Kafka consumer (7)
per participating node. At point 8 the querying service is initiated, at this stage, Spark Job is ready to
accept and process new data.

It should be noted that the processing job is executed by all nodes, with exception of the driver.
However, since Kafka topic consists of two partitions, only two Spark executors can pull the data. This
is clearly visible during processing phase 9 to 19 and 19 to 27 showing node 2 inactivity of the CPU
11.10.

As discussed in section 9.3 Spark Streaming process the data in micro-batches. Due to severe
hardware limitations of the cluster in comparission to the [137], the performance of Spark is heavily
affected allowing each micro-batch to be logged. The per batch results are summarized in table 11.5
spanning both runs. The processing speed is shown in figure 11.9. The average processing speed
during the experiment is 9.4 f/s (STD 0.26s), based on the average experiments duration of 104
seconds and 1000 ingested frames. In contrast, the highest observed ingestion rate for the Delfi-n3Xt
mission is 8 f/s per second as shown in figure 3.20.

As discussed in section 9.3 , Spark is heavily memory optimized, attempting to utilize all YARN
allocated memory. This is supported by low disk transactions and increased memory utilization as

11.6. Experiment Results Discussion 137

Table 11.5: Stream Processing speed on RPI cluster

Run A Run B
Point Eq. Latency[s] Frames in Kibana Processing speed [f/s] Point Eq. Latency [s] Frames in Kibana Processing speed [f/s]
10 3 8 2.7 19 1 9 15.0
11 20 18 1.1 20 31 134 4.5
12 33 143 11.0 21 41 255 25.5
13 43 264 26.5 22 51 372 37.2
14 53 502 50.2 23 58 495 70.7
15 63 624 62.4 24 61 617 205.7
16 68 744 148.8 25 68 735 105.0
17 88 865 43.3 26 90 858 39.0
18 103 1000 66.7 27 106 1000 62.5

Table 11.6: Point description for figures 11.10 and 11.11

Point Description
1 Job submitted
2 Job container prepared
3 YARN: job accepted
4 Job allocated
5 Spark Streaming Context started
6 Spark proxy started
7 Kafka Consumer started
8 Quering started
9 Data added to Kafka topic
10 First data data in Kibana

shown in graphs 11.10 and 11.11 during data ingestion (points 9 to 18 and 21 to 27). While node
memory is not fully utilized on all nodes, the available Swap memory is zero on nodes 1 and 2. This
means that nodes 1 and 2 are out of RAM requiring OS to use the disk for memory purposes, thus
critically reducing the performance. This seemingly unlogical situation is easily explained. First, 550MB
is allocated per Spark executor for the processing job, the minimum allocatable memory for given Spark
architecture. In this case, the memory is used to load data from Kafka and perform computations.
Since the computations are memory extensive the major portion of the allocated memory is empty and
unutilized. But, since it is allocated, memory is unusable for OS or other application. The rigid memory
allocation is paramount for the robustness, as each processing job is ensured to have access to the
allocated resources. Furthermore, this prevents a malfunctioning or buggy job from crashing Spark or
other application on the server due to memory or CPU overutilization. Unfortunately, this may come at
cost of memory waste as shown in the experiment.

The experiment is continued with additional runs C and D that can be found in Appendix B. While
the processing performance and perceived batch sizes are very similar, the load trend of the cluster
is drastically different as shown in figure 11.12. Comparing the load figures 11.11 and B to the Kafka
ingestion timestamps, it is clear that the cluster load is not affected by the data ingestion, nor actual
frame processing. This is a clear indication of a severe resource shortage.

11.6. Experiment Results Discussion
The ingestion rate at worst-case scenario surpassed the expectations. (More tests will be conducted
in the next two days.)

The experiments did not prove the hypothesis of a reduced server load by data replication. The
instantaneous server load due to query execution is comparable to replication load but much shorter
in duration. A query pulling 3000 frames has an average runtime of 35 seconds, while replication of
similar dataset would require 2.4 minutes. It should be stressed that once replicated, the queries can
be performed on the client side without further impact on the server operations. Therefore it would be
ideal for the workloads requiring frequent data transversals such as machine learning model training
and analytics.

In case of Delfi missions, the processing of telemetry frames has a low computational impact. The
entire Delfi-n3Xt dataset can be decoded and processed in minutes, while replication of 220,000 frames
to a single connected client would take approximately 2.9 hours.

The experiments focused on small (182 % smaller than Delfi-n3Xt) datasets, therefore placing data
directly in memory, hence providing the best possible performance. Even under these conditions, the
performance is lacking, which can be arguably attributed to the selected hardware. However, validation

138 11. Experiment and Research Questions discussion

00

50

100

150

200

250

0 20 40 60 80 100 120

f/
s

s

A

B

C

D

Figure 11.9: Processing Speed and Latency as measured in Kibana

runs on a high-end Windows machine did show a limited increase in the replication performance for
CouchDB system. A number of optimizations can be designed, such as data compression to increase of
the batch size for each replica shard. However, the load to performance ratio is high and much higher
than querying or frame processing. Furthermore, placing clients outside the managed network, as was
the case in the experiment, will degrade network performance and introduce uncertainties, i.e. frame
drops, routing errors etc.

Based on aforementioned points, it was concluded that bringing data to processing nodes, i.e client
machines, is computationally expensive when database replication is used. Different methods of data
delivery to the client applications can be considered. Regardless, networking will become the bottleneck
and with limited computational requirements processing server side is both faster and more robust.

The experiments showed the incredible robustness of the processing system, allowing data process-
ing under heavy resource shortage with performance similar to the peak data ingestion rate observed
during the Delfi-n3Xt mission.

11.6. Experiment Results Discussion 139

Figure 11.10: Spark Streaming experiment

140 11. Experiment and Research Questions discussion

Network: received [MB]

Network: transmitted [MB]

Disk: write [MB]

Disk: read [MB]

Worker node 1 Worker node 2 Worker node 3Spark driver

1 2 3 4 56 7 8 91011121314151617 18 19 2021 25... 26 27

Figure 11.11: Spark Streaming experiment [cont.]

11.6. Experiment Results Discussion 141

Worker node 1 Worker node 2 Worker node 3

1234 5- 10 11- 17
1819

Spark driver

Figure 11.12: Cluster load during runs C and D

12
Conclusion

The telemetry processing system provides the telemetry storage and processing needs for the day-to-
date satellite operation and researchers utilizing the stored data for research purposes. The legacy
systems, as discussed in chapter 3, showed limitations on both storage and processing functionality
which combined with the increased capabilities of the next generations Micro and Pico satellites reduce
the reusability and fail the specified requirements. The research of the available COTS applications led
to a strong preference for in-house developed systems due to higher level suitability and compatibility,
discussed in the project precursor literature study(see appendix C).

At the early stage of the project, two primary areas of interest have been selected for the further
research: data storage (chapter 4) and data processing (chapter 5). In order to comply with the
operational requirements for the availability, reliability and robustness, the distributed deployment of
the storage system was identified as the most feasible solution. This, furthermore, complied with the
unbound volume of data, and ingestion data rate requirements (appendix A).
The data processing research lead to the conclusion that in the legacy applications, the processing
errors can be accredited by the lack of requirements on the telemetry definition. Primarily due to the
assumption of a single telemetry frame definition (section 3.5). Furthermore, due to lack of standard-
ization, processing errors are likely both in the client and server applications. This lead to the concept of
unified processing, a language-agnostic processing system with a high-level telemetry frame definition
introduced in section 5.2.

To facilitate the distributed deployment of the storage system, two options were considered and
discussed in chapter 7: scaling on server-side (multi-server deployment) and scaling to client applica-
tions. Due to the correlation between system load and the number of the connected client applica-
tions, chapter 8 investigated an approach to source the server-side operations to the swarm of client
applications. Unfortunately, early on, the implemented PoC showed a high degree of operational com-
plexity. More importantly, and regardless on the implementation, the networking between server and
the client affected the data replication rate which was determined unacceptable for production and
failed the established requirements. Aforementioned rendered the client-application feasible primarily
for the computationally expensive operations and data back-up purposes. Bound by the CAP theorem,
the distributed storage system is eventually consistent and affected by the client-server networking.
Therefore, a high degree of data consistency repairs is required even for the backup purposes of the
operation.

The failure of client leveraged PoC to comply with requirements led to more in-depth research into
the software engineering and further refinement of the requirements, aggregated in chapter 2. The
study led to the conclusion that the system requirements for the future mission(s) cannot be defined
precisely at this stage of the project and are, therefore, likely to change. This lead to a change in
methodology from the search for new requirements to the design of a system that can cope with the
requirements change.
Furthermore, to fit with Delfi-mission design methodology, the system should consist of highly de-

143

144 12. Conclusion

coupled components providing high-level abstractions and allowing each component to be designed,
implemented and tested independently. Thus, both allowing the future (student) developers to com-
plete implementation within the allocated time and giving the opportunity to select the best fitting tools
for the subsystem.

These requirements blueprint a distributed system consisting of highly decoupled and exchangeable
components. Two architectures have been presented in chapter 9: Streaming and Lambda. Streaming
Architecture failed to comply with data de-duplication requirement that inherently resulted in inconsis-
tencies in the data delivery logic. The proposed Lambda Architecture complies with set requirements
and solves the data de-duplication problem by splitting processing into two: batch and stream. Batch
layer ensures the consistency of the results, however at the cost of the processing latency. The stream
processing provides the near real-time processing, but at the expense of consistency. By balancing
both, Lambda Architecture implicitly ensures Consistency of the results, Availability and Partition toler-
ance (CAP).

For a system to be reliable, thus the opposite of being failure-prone, the system should accommo-
date high Availability and Testability on short-term, while facilitating the Maintainability for the duration
of the mission(s). All of which are provided by Lambda Architecture from the ground up.
The system robustness, i.e. the ability to cope with error, inconsistencies and unpredicted input, is
achieved by combining the unified processing with a high level of decomposition, allowing each com-
ponent to be tested separately in unit-test like manner.

In short, the proposed architecture (chapter 10) ensures the compliance with the existing require-
ments, and with the components interchangeability accommodates for future requirements that are
unknown at the time of writing. With the high level of abstraction and one-way dependency, each
component can be designed independently, facilitating software quality.

Furthermore, using the proposed architecture, a wide variety of queries, analytics computations and
machine learning algorithm can be deployed in conjunction, scheduled and executed independently.
With redundant data ingestion and processing components, Lambda Architecture is robust not only to
hardware failures but also to human-induced errors, both in programming bugs as to the majority of
the operational mistakes (configuration, networking) as discussed in chapter 11.

In authors personal opinion, the proposed architecture is the best fit for the current and future Delfi
operations and is most likely applicable to the other university grade cubesat missions. The use of
HDFS provides the ability to scale up to store thousands of petabytes worth of data, and ingest and
process data at tens of gigabytes per second rates, comfortably accommodating the majority, if not
all, university grade satellites. More importantly, the proof of concept on underpowered, below speci-
fications hardware, showed that the system does not require expensive, purpose-designed equipment
for operations and running inexpensive low-end servers would suffice for any form of service.
With a high level of abstraction and use of state of the art processing technologies, the architecture
allows sophisticated data mining and analytics without the need for system redesign or custom hard-
ware. If more processing is required, new (virtual) servers can be added and then removed the cluster,
without system downtime and with minimal reconfiguration.

The extreme flexibility of Lambda architecture comes at the cost of complexity. Due to distributed
deployment, additional technologies, such a Yarn and Zookeeper are utilized for cluster operations. The
complete cluster operation requires fine tuning when subsystems are deployed in parallel on the same
machines,(Kafka, HDFS + Spark, Delivery layer). A resource waste can be observed in the processing,
as each telemetry frame is processed at least twice in Stream and Batch layers. To prevent delivery layer
data duplication, the Batch should iterate large if not complete dataset on each execution. By design,
the delivery layer data is overwritten, to remove the possible processing bugs and frame duplications.

In conclusion, the proposed architecture offers flexibility in operations, providing robustness to
human errors and hardware failures. Furthermore, with use of a dedicated processing framework
(Apache Spark), the processing system is abstracted and can be scaled from one to thousands of
machines without code modifications. Multiple processing jobs can be running in parallel while being
monitored by YARN. This greatly reduces the SysAdmin responsibilities and while providing an intuitive

145

processing monitoring and debugging tool. Furthermore, due to the simplicity of data processing,
the implementation requires less than 50 lines of code and drastically reducing the risk of bugs and
increasing the readability.

13
Recommendation

The use of underpowered hardware cluster proved that BigData oriented system can be used for
SmallData applications. However, operational test on the actual hardware is required to benchmark
the expected real-world performance. More specifically, the effects of partitioning, such as number
partitions and replication factor of Kafka has to be investigated. As discussed in [Prop architecture]
chapter, the number of Kafka partitions defines the maximum number of parallel Spark executer, hence
capping the performance. It is expected that the overpartitioning, as frequently done in NoSQL sys-
tems, will reduce the performance, as more data replication will be required.
Secondly, due to the low performance of the test setup, the deployment time of Spark Jobs could not
be estimated for the target deployment. This is important since any job updates require job restart
and redeployment on the cluster, during which no processing can take place.

The proposed architecture and the proof of concept utilized a generic delivery layer as a tool to
benchmark the processing system. Further analysis and study are required to design the data visual-
ization and user interface.

The unified processing is achieved with the use of Kaitai framework, that converts YAML formatted
files to the target language executables. The use of custom YAML protocol for processing definition
is acceptable, but a more widely utilized protocol would be preferred. For example, Telemetry and
Command Exchange protocol (XTCE) [138]. XTCE is XML based, but with a number of XML-YAML
converters available, most notably YAXML [138] a YAML- XML binding, allowing YAML structures to be
expressed in XML language and vice-versa. Further research is required to investigate the conversion
feasibility.

Another aspect of processing that could not be investigated during the project are the real-time
updates of Spark Job. It is assumed that encoding auto-update functionality can modify spark Jobs by
loading the processing binaries from an external HDFS directory. This requires further investigation to
ensure the robustness.

With regards to the methodology, the use of iterative design led to inconsistencies in the develop-
ment process. More specifically, the abrupt stop of PouchCouch iteration that led to BigData inspired
architectures. While acceptable in terms of the delivered result, i.e. more applicable architecture, the
discontinuation could have been avoided with a more refined ”Objective” (the first part of the iteration).
From a larger perspective, the principle applied to the entire MSc thesis, leading the recommendation
to focus more on the planning than execution. More specifically, what is classically defined as the
Literature Study made its way into the primary work of the thesis (execution), leading to this bulky
document and a more theoretical (guidelines and design) than a practical PTS implementation. In other
words, the Literature Study topic should have been more in line with the main thesis project.

147

A
Requirements

A.1. Introduction
The purpose of this section is to provide set of software system requirements for the minimum viable
product of the Telemetry Processing System (TPS). The section is written with goal to provide the
background for design decisions and covers the scope and the functional, and non-functional software
requirements. At the time of writing no significant system level constraints have been observed.

The scope of the project is to provide a solution for the telemetry data storage, processing and
visualisation. Due to time constraints, the scope has been limited to the ingestion, processing and
querying components.

A.2. Product Description
A.2.1. Product Perspective
The TPS is a standalone system that provides functionality outlined in Product Functions section and
ought to fullfill the requirements described in teh Software Requirements sections. The TPS has inter-
faces for external client applications (ECA), the definion of requirements of which are out of scope of
the document.

A.2.2. Product Functions
The TPS provides five major functions: Data ingestion, Data storage, Data processing, Data querying
and Data visualization. The data visualization is coupled with data querying, but is out of scope of the
thesis. The five respective subsystems are considered stand-alone and ought to be designed indepently,
intefacing only in the following order: Data ingestion to Data storage, Data processing to/from Data
Storage, Data querying to Data Storage, Data visulatization to Data querying. The interfaces, detailed
definition and the architecture of the aforementioned components are discussed in the chapter 9 and
8.

A.2.3. Product Constraints
The TPS ought to be installed and maintained on-premise of TUD. This means that ready-to-use, highly
scalable and efficient FaaS services are unavailable. Furthermore, TBD version of Linux and TBD server
version of Windows Server are available.

A.2.4. Dependencies
The TPS sub-systems are components ought to comply with available operating system: Linux TBD
version.

A.2.5. Assumptions
The TPS systems relies on the participation of Radio Amateur community for satellite data reception
and processing. The designed system is designed with an assumption of higher data ingestion rates
than observed in the legacy missions. It is therefore assumed that the future missions will generate

149

150 A. Requirements

more data [GN-AS-1] due to use of the on-board S-Band transeivers [GN-AS-2], and decreased cost
of the radio-equipment [GN-AS-3] higher participation rate of the radio amateur community, will lead
to higher data ingestion rates than previously observerd. Furthermore, it is assumed that the sattelite
telemetry frames are independent, and can be processed arbitrarily out of sequence [GN-AS-4].

A.3. External Interface Requirements
A.3.1. User Interface
GN-UI-GEN-01 The user interface should provide an interface specific to the user type [RA, Operator,

Admin, Data scientist]

GN-UI-GEN-02 The user interface should visualize datasets in TBD format.

GN-UI-GEN-03 The user interface should provide functionality to filter datasets based on the space-
craft and spacecraft’s parameters.

GN-UI-GEN-04 The user interface should indicate the dates and time of the next Satellite pass for a
given location.
Rationale: Spacecraft operators require information on the next spacecraft downlink and uplink
opportunity.

GN-UI-GEN-05 The user interface should require user to authenticate using TBD method.

GN-UI-GEN-07 The user interface should allow user to change email address and the password
requiring TBD minimum complexity.

GN-UI-GEN-08 The user interface should only allow UTF-8 (ISO-8859-1 standard) characterset for
the input field.

GN-UI-RA-01 The Radio Amateur user type should be able to access the statistics of the submitted
data: total frame count, number of unique frames (received by RA only) and ranking based on
the total frame count.

GN-UI-RA-02 The user interface should allow Radio Amateur type users to review the locally received
telemetry frame.

GN-UI-RA-03 The user interface should require Radio Amateur to specify the location as latitude and
longitude in numeric format with ”.” as decimal separator.

GN-UI-RA-04 The user interface should allow Radio Amateur to specify radio call sign, only allowing
a-z, A-Z and 0-9 UTF-8 based characterset.

GN-UI-OPS-01 The user interface should allow Spacecraft Operators to review the data stream from
the satellite in GN-UI-GEN-2 format, with maximum allowed TBD seconds latency.

GN-UI-OPS-02 The user interface should allow Spacecraft Operators to retrieve the historic satellite
data on demand, with ad-hoc defined ranges.

GN-UI-OPS-03 The User interface should visually indicate the spacecraft parameters beyond ac-
cepted ranged for Spacecraft Operator user types.

GN-UI-OPS-04 The user interface should allow Spacecraft Operators to review the telecommands
sent to the spacecraft.

GN-UI-OPS-05 The application should offer TBD parts of the user interface to Spacecraft Operators
with system downtime.

GN-UI-OPS-06 The user interface should provide Spacecraft Operators with information required to
determine the on-board clock drift and provide functionality to store the clock offset.

GN-UI-OPS-07 The user interface should provide a visual aid for Spacecraft Operators to determine
the spacecraft position in orbit, with use of TLE.

GN-UI-ADMIN-01 The administrator user should have access to the user interface allowing Create,
View, Update and Delete operations for the user accounts.

GN-UI-ADMIN-02 The administrator user interface should provide password reset functionality for
all user types.

A.4. System Features 151

A.3.2. Hardware Interface
TBD hardware interface.

A.3.3. Software Interface
TBD external interface with the client application.

A.3.4. Communication Interface
GN-NET-01 Each system node must have at least one public network adapter.

Rationale: Each node of distributed system should be accessible from each other node.

GN-NET-01-rev1 Each load balanced node must have at least one private network adapter.
Rationale: Load balanced nodes are addressed via the load balancer, and should not be publicly
accessible

GN-NET-02 Each load balanced node must have at least one least one public network adapter and
at least one private network adapter.
Rationale: Load balanced nodes are addressed via the load balancer, and should not be publicly
accessible

GN-NET-01-rev2 The system nodes required for the external client application functionality should
have at least one publicly accessible network interface.

GN-NET-02-rev1 The system nodes not required for the external client application functionality
should not be accessible via the public network.

GN-NET-03 The system nodes should support TCP/IP.

GN-NET-04 10 Gigabit connection speeds is prefered for the intra-cluster node connectivity.

A.4. System Features
A.4.1. Data Ingestion
GN-ING-01 The system shall expose an REST-based API for client-server communication.

GN-ING-02 The subsystem providing API shall expose a TBD authentication interface.

GN-ING-03 The API shall allow ingestion of binary-encoded data, regardless the encoded format.

GN-ING-04 The encoding of a specific binary-encoding shall not drive API design.

GN-ING-05 The API shall facilitate concurrent data ingestion (from multiple sources).

GN-ING-06 The API shall require client application authentication prior to data ingestion.

GN-ING-07 The API shall be reusable and independent of the server or client implementation, data
storage, processing or data delivery subsystems.

GN-ING-08 The API shall utilise a stateless protocol.

GN-ING-09 The API shall be independent of the mission and mission parameters.

GN-ING-10 The API system shall provide interface for data filtering.
Rationale: Filters increase chance of human-errors, discarded frames are unrecoverable.

GN-ING-11 The ingestion system shall be scalable Rationale: Increases data inflow.
Rationale: non-functional requirement, and superseeded by GN-PERF-6

GN-ING-12 The data ingestion system shall facilitate growth in data volumes.

GN-ING-13 The API system shall provide interface for data filtering.
Rationale: duplication of GN-ING-10.

GN-ING-14 The API system shall provide ability to block communication from blacklisted hosts.

GN-ING-15 The ingestion system shall provide ability provide ability to buffer data preventing pro-
cessing system overload.

GN-ING-16 The ingestion system shall store ingested data for TBD period of time.

152 A. Requirements

A.4.2. Data Processing
GN-PR-01 The processing system shall be independent of ingestion, storage and data delivery sub-

systems.

GN-PR-02 The processing system shall be scalable, to facilitate WOD datalink
Rationale: Superseded by GN-PERF-6

GN-PR-03 The system shall provide an interface to LSB sort the incoming stream.

GN-PR-04 The system shall provide an interface to scan for the AX.25 flags.

GN-PR-05 The system shall provide an interface to perform frame validity checks (CRC).

GN-PR-06 The system shall provide processing capabilities to perform frame parameter parsing.

GN-PR-07 The system shall provide interface to perform frame decoding.

GN-PR-08 The system shall provide an interface for processing script modifications.

GN-PR-09 The system shall provide consistent results

GN-PR-10 The system shall provide ability to reprocess all historic data.

GN-PR-11 The system shall provide data collision prevention and data conflict mitigation strategies.
Rationale: vague, and replaced by GN-PR-19

GN-PR-12 he system shall utilise an unified parsing subsystem both on the client as server application(s).

GN-PR-12-rev1 The system shall utilise an unified telemetry frame parsing and decoding subsystem.

GN-PR-13 The system shall utilise identical frame definitions for client as server data processing.

GN-PR-14 The parsing subsystem shall support flexible telemetry frame definitions.

GN-PR-15 The parsing subsystem is able to identify telemetry types (satellite, frame type and ver-
sion).

GN-PR-16 The parsing system shall facilitate multi-satellite missions.

GN-PR-17 The parsing system shall facilitate satellite specific processing techniques.

GN-PR-18 The parsing system shall be extandable to support non-AX.25 based protocols.

GN-PR-19 The parsing system shall aggregate duplicate ingested data, by keeping a statistical count
of received frame as well the originating clients.

GN-PR-20 The processing system should support processing of the partially correct DF.

GN-PR-21 The processing system shall support custom processing scripts.

GN-PR-22 The data should be processed in binary matter.
Rationale: binary processing is efficient and much faster than string processing.

GN-PR-22-rev1 The data should be processed in TBD format.
Rationale: The binary telemetry data should not be stored in String format.

GN-PR-23 Processing system should be able to decode DF with directly in the frame embedded
schema.

GN-PR-24 Processing system should be able to decode DF with externally (e.g. configuration file)
defined schema.

GN-PR-25 Processing system should allow (bulk) data post-processing.

GN-PR-26 Processing system should facilitate post processing for error-correction, by combining his-
toric data.

GN-PR-RAW-01 Single raw frame to satellite parameters

GN-PR-RAW-02 Determination of satellite location based on TLE

GN-PR-RAW-03 Complete dataset scan, retrieval of list without duplicates, processing one by one
to satellite parameters

GN-PR-INT-01 Retrieve the TLE from the online store (every day, twice a day), store TLE in original
text format

GN-PR-STAT-01 Complete dataset scan, determine amount of duplicate data frames

A.4. System Features 153

GN-PR-STAT-02 Complete dataset scan, determine amount of frames per RA, dataloss per RA and
other per RA statistics

GN-PR-CL-01 Satellite parameters random-read queries

GN-PR-CL-02 Out of boundaries values queries

GN-PR-CL-03 Complete dataset scan, show the past 24h data reception statistics

A.4.3. Data Storage
GN-DS-01 The storage system shall store all incoming data redundantly.

GN-DS-02 The storage system shall facilitate for the data backup.

GN-DS-03 The storage system shall store data in a structured matter.

GN-DS-04 The storage system shall store data in an aggregated format, accessible for the data
science applications.

GN-DS-05 The storage system shall not be directly accessible via external networks.

GN-DS-06 The storage system shall facilitate unbound data growth.

GN-DS-07 The storage system shall have a storage capabilities exceeding 1 TB.

GN-DS-08 The storage medium shall be provided and managed by TUD.

GN-DS-09 The storage system shall provided dedicated storage for satellite data, separated from
user data.

GN-DS-10 The data storage format shall be exchangeable with other systems. (Use of Apache AVRO
suggested)

GN-DS-11 The storage system shall facilitate concurrent data querying.

GN-DS-12 The storage system shall allows structured and unstructured data storage.

GN-DS-13 The storage system shall facilitate querying of the unstructured data.

GN-DS-14 The storage system shall allow payload data separation for direct stakeholder access.

GN-DS-15 The storage system should be able to store and mark partially correct data.

GN-DS-16 The structure (schema) of telemetry frames is adjustable without system downtime. Pre-
fably on-write.

A.4.4. Data Querying
GN-DQ-01 The querying system shall provide random data query capabilities.

GN-DQ-02 The querying system shall execute recurrent queries capabilities with a higher perfor-
mance.

GN-DQ-03 The querying system shall provide an interface for data science querying spanning the
entire data set.

GN-DQ-04 The querying system shall expose a vendor independent querying language.

GN-DQ-05 The querying system shall utilise actively developed, supported and non-deprecated tech-
nologies.

A.4.5. Data Delivery
GN-DD-01 The delivery system shall provide a public Web interface

GN-DD-02 The delivery system shall provide a TBD privatatly accessible interface for data querying.

GN-DD-03 The processed data shall be submit to Spacecraft operators with latency < 1 sec.

GN-UI-GEN-06 The web-based portion of the interface should be delivered using HTTPS protocol
with a cipher key size larger than 128 bits.

GN-UI-GEN-06 addendum 1 The web-based portion of the interface should be delivered using
HTTPS protocol with a cipher key size larger than 128 bits. Anonymous cipher suits as well
SSL 2.0, SSL 3.0, TLS 1.0 and TLS 1.1 protocols should be blocked.

154 A. Requirements

A.5. Non-functional Requirements
A.5.1. Performance Requirements
GN-PERF-01 The system shall have response time of less than 500ms within server timezone.

GN-PERF-02 The system shall provide a minimum data ingestion throughput of 10 telemetry frames
per second per satellite.
Rationale: During Delfi-n3Xt operations maximum througput of 8 frames/second was observed.

GN-PERF-03 System should be able to reprocess the complete historic dataset in 6h period.
Rationale: Reprocessing should be agile, allowing frequent data corrections.

GN-PERF-04 The maximum allowed latency between data ingestion by the client applicaiton and
delivery to the Spacecraft Operations within one second.

GN-PERF-05 System shall facilitate both scale-up (veritcal) and scale-out to comply with GN-PERF
requirements, both server- and network-wise. Rationale removal: Implicitely defined by GN-
PERF-3, GN-PERF-6 and GN-PERF-7.

GN-PERF-06 System shall facilitate continuous growth of the stored data.

GN-PERF-07 System shall not place limiations on the data storage volume.

A.5.2. Safety Requirements
GN-SAFE-01 System shall prevent data loss. (Preferably by providing data redundancy)

GN-SAFE-02 System shall facilitate recovery from incorrectly decoded data.

GN-SAFE-03 System shall facilitate recovery from a server failure.

A.5.3. Security Requirements
GN-QA-SEC-01 The network security, such as connection availability, DOS, DDOS, flooding, network

protocol and hardware vulnerabilities will be addressed by the service provider.

GN-QA-SEC-02 The server software updates will be handled by the system administrator.

GN-QA-SEC-03 The private user data retention period will be set in accordance to the educational
GDRP law.

GN-QA-SEC-04 The private user data, as name, user location and username shall not be made
available, unless specifically agreed on, to the Spacecraft Operators and Radio Amateurs.

GN-QA-SEC-05 The system should allow private user data, such as user uuid, to be separated from
the telemetry stored information.
Rationale: each received frame contains uuid of the client, client should be able to request this
information to be removed without deleting the telemetry data itself

GN-QA-SEC-06 System shall facilitate software updates.
Rationale: System update and upgrades should not force to redesign system components.

GN-QA-SEC-07 Data sent between server and client application is encrypted.
Rationale: User password shall not be sent unencrypted.

GN-QA-SEC-08 The system should throttle API for data ingestion and retrieval.
Rationale: Limit system load and prevent DOS attack.

GN-QA-SEC-09 The system should queue API request and remove old requests.
Rationale: Required to comply with GN-PERF requirements.

A.5.4. Quality Attributes
GN-QA-REL-01 The maximum allowed mean time to repair (MTTR) of system hardware is TBD hours.

Rationale: System downtime due to hardware failure requires manual intervention.

GN-QA-REL-02 Each subsystem should tolerate single node failure.

GN-QA-REL-03 A subsystem downtime should not downtime of the complete system.

GN-QA-REL-04 A subsystem should be testable. With preference for the systems allowing for inde-
pendent testing.

A.6. Other Requirements 155

GN-QA-AVAIL-01 The system shall provide data storage capabilities, even when main storage ap-
plication is offline.

GN-QA-AVAIL-02 The system shall reamain available under hardware failure

GN-QA-AVAIL-02-rev2 The system shall provide storage functionality for the incoming data as well
TBD set of functions, provided by the client application.

GN-QA-AVAIL-03 The system shall ensure uptime of at least 99.9 %.

GN-QA-MAIN-01 The system should be maintainable with in-house available knowledge.

GN-QA-MAIN-02 The system should utilised software components with long term support policy.

GN-QA-MAIN-03 The system should be maintainable and supported at least for the expected dura-
tion of the mission.

GN-QA-MAIN-04 System components should be exchangable.

GN-QA-MAIN-05 System should be modular.
Rationale: Data science technology is not yet established and new systems becoming avialable
every day.

A.5.5. Business Rules
GN-BR-DATA-01 All system components shall utilize UTC time for timestamps and syncronise clock

with TBD interval.
Rationale: Descrepencies between local client and server time was observed in Delfi-n3Xt datasets.

GN-BR-DATA-02 All system componenets shall utilize Unix format for the timestamps.

A.6. Other Requirements
A.6.1. Documentation Requirements
GN-AUX-DOC-01 The utlized software components should be documented, either by vendor or in-

house.

GN-AUX-DOC-02 The system configuration of publically accessible components should be docu-
mented and reviewed by external commitee.

A.6.2. Licensing Requirements
GN-AUX-LIC-01 System shall utilise only Open-Standard software components.

GN-AUX-LIC-02 System components shall not limited system upgradability due to licensing agree-
ments.
Rationale: System shall not use components that prevent use of any other systems.

A.6.3. Legal, Copyright, and Other Notices
GN-AUX-LEG-01 System UI shall provide disclaimers, copyright and cookie/tracking statements and

require user acceptance.

A.7. Requirements Validation

PASS Requirement is validated or feasible in given architecture
FAIL Requirements is not feasible
OOS Out of scope
- Unknown or cannot be assessed

156 A. Requirements

Requirement:
Client
Leveraged:
Conceptual

Client
Leveraged:
PoC

Streaming
Architecture:
Conceptual

Lambda
Architecture:
Conceptual

Proposed
Architecture

GN-UI-GEN-01 PASS OOS PASS PASS OOS
GN-UI-GEN-02 PASS OOS PASS PASS OOS
GN-UI-GEN-03 PASS OOS PASS PASS OOS
GN-UI-GEN-04 PASS OOS PASS PASS OOS
GN-UI-GEN-05 PASS OOS PASS PASS OOS
GN-UI-GEN-07 PASS OOS PASS PASS OOS
GN-UI-GEN-08 PASS OOS PASS PASS OOS
GN-UI-RA-01 PASS OOS PASS PASS OOS
GN-UI-RA-02 PASS OOS PASS PASS OOS
GN-UI-RA-03 PASS OOS PASS PASS OOS
GN-UI-RA-04 PASS OOS PASS PASS OOS
GN-UI-OPS-01 PASS OOS PASS PASS OOS
GN-UI-OPS-02 PASS OOS PASS PASS OOS
GN-UI-OPS-03 PASS OOS PASS PASS OOS
GN-UI-OPS-04 PASS OOS PASS PASS OOS
GN-UI-OPS-05 PASS OOS PASS PASS OOS
GN-UI-OPS-06 PASS OOS PASS PASS OOS
GN-UI-OPS-07 PASS OOS PASS PASS OOS
GN-UI-ADMIN-01 PASS OOS PASS PASS OOS
GN-UI-ADMIN-02 PASS OOS PASS PASS OOS

GN-NET-01 PASS PASS PASS PASS PASS
GN-NET-02 PASS PASS PASS PASS PASS
GN-NET-03 PASS PASS PASS PASS PASS
GN-NET-04 FAIL FAIL PASS PASS PASS

GN-ING-01 PASS PASS PASS PASS OOS
GN-ING-02 PASS PASS PASS PASS OOS
GN-ING-03 PASS PASS PASS PASS PASS
GN-ING-04 PASS PASS PASS PASS PASS
GN-ING-05 PASS PASS PASS PASS PASS
GN-ING-06 PASS OOS PASS PASS OOS
GN-ING-07 PASS PASS PASS PASS PASS
GN-ING-08 PASS PASS PASS PASS PASS
GN-ING-09 PASS PASS PASS PASS PASS
GN-ING-10 PASS OOS N/A N/A N/A
GN-ING-11 N/A N/A N/A N/A N/A
GN-ING-12 PASS PASS PASS PASS PASS
GN-ING-13 PASS PASS PASS PASS PASS
GN-ING-14 PASS OOS PASS PASS OOS
GN-ING-15 - - PASS PASS PASS
GN-ING-16 - - PASS PASS PASS

A.7. Requirements Validation 157

Requirement:
Client
Leveraged:
Conceptual

Client
Leveraged:
PoC

Streaming
Architecture:
Conceptual

Lambda
Architecture:
Conceptual

Proposed
Architecture

GN-PR-01 PASS FAIL FAIL PASS PASS
GN-PR-02 N/A N/A N/A N/A N/A
GN-PR-03 PASS PASS PASS PASS PASS
GN-PR-04 PASS PASS PASS PASS PASS
GN-PR-05 PASS OOS PASS PASS OOS
GN-PR-06 PASS PASS PASS PASS PASS
GN-PR-07 PASS PASS PASS PASS PASS
GN-PR-08 PASS PASS PASS PASS PASS
GN-PR-09 PASS PASS PASS PASS PASS
GN-PR-10 PASS PASS PASS PASS PASS
GN-PR-11 N/A N/A N/A N/A N/A
GN-PR-12 PASS PASS PASS PASS PASS
GN-PR-13 PASS PASS PASS PASS PASS
GN-PR-14 PASS PASS PASS PASS PASS
GN-PR-15 PASS PASS PASS PASS PASS
GN-PR-16 PASS PASS PASS PASS PASS
GN-PR-17 PASS PASS PASS PASS PASS
GN-PR-18 PASS PASS PASS PASS PASS
GN-PR-19 PASS PASS FAIL PASS PASS
GN-PR-20 PASS PASS PASS PASS PASS
GN-PR-21 PASS PASS PASS PASS PASS
GN-PR-22 PASS PASS PASS PASS PASS
GN-PR-23 N/A OOS PASS PASS PASS
GN-PR-24 PASS PASS PASS PASS PASS
GN-PR-25 PASS PASS PASS PASS PASS
GN-PR-26 PASS PASS FAIL PASS PASS

GN-PR-RAW-01 PASS PASS PASS PASS PASS
GN-PR-RAW-02 PASS OOS PASS PASS PASS
GN-PR-RAW-03 N/A OOS FAIL PASS PASS

GN-PR-INT-01 N/A N/A PASS PASS PASS
GN-PR-STAT-01 PASS OOS PASS PASS PASS
GN-PR-STAT-02 PASS OOS PASS PASS OOS

GN-PR-CL-01 PASS PASS PASS PASS PASS
GN-PR-CL-02 PASS PASS PASS PASS PASS
GN-PR-CL-03 PASS PASS PASS PASS PASS

158 A. Requirements

Requirement:
Client
Leveraged:
Conceptual

Client
Leveraged:
PoC

Streaming
Architecture:
Conceptual

Lambda
Architecture:
Conceptual

Proposed
Architecture

GN-DS-01 PASS PASS PASS PASS PASS
GN-DS-02 PASS PASS PASS PASS PASS
GN-DS-03 PASS PASS FAIL PASS PASS
GN-DS-04 PASS PASS PASS PASS PASS
GN-DS-05 N/A N/A PASS PASS PASS
GN-DS-06 FAIL FAIL PASS PASS PASS
GN-DS-07 FAIL FAIL PASS PASS PASS
GN-DS-08 FAIL FAIL PASS PASS PASS
GN-DS-09 PASS PASS PASS PASS PASS
GN-DS-10 PASS FAIL PASS PASS PASS
GN-DS-11 PASS PASS PASS PASS PASS
GN-DS-12 PASS PASS PASS PASS PASS
GN-DS-13 PASS PASS PASS PASS PASS
GN-DS-14 PASS PASS PASS PASS PASS
GN-DS-15 PASS PASS PASS PASS PASS
GN-DS-16 PASS PASS PASS PASS PASS
GN-DQ-01 PASS PASS PASS PASS PASS
GN-DQ-02 PASS PASS PASS PASS OOS
GN-DQ-03 PASS PASS PASS PASS PASS
GN-DQ-04 PASS FAIL PASS PASS PASS
GN-DQ-05 PASS PASS PASS PASS PASS
GN-DD-01 PASS OOS PASS PASS OOS
GN-DD-02 PASS OOS PASS PASS OOS
GN-DD-03 FAIL FAIL PASS PASS OOS
GN-UI-GEN-06 PASS OOS PASS PASS OOS

A.7. Requirements Validation 159

Requirement:
Client
Leveraged:
Conceptual

Client
Leveraged:
PoC

Streaming
Architecture:
Conceptual

Lambda
Architecture:
Conceptual

Proposed
Architecture

GN-PERF-01 Unknown Unknown PASS PASS OOS
GN-PERF-02 PASS PASS PASS PASS PASS
GN-PERF-03 Unknown Unknown PASS PASS PASS
GN-PERF-04 PASS FAIL PASS PASS OOS
GN-PERF-05 N/A N/A N/A N/A N/A
GN-PERF-06 PASS FAIL PASS PASS PASS
GN-PERF-07 FAIL FAIL PASS/FAIL PASS PASS

GN-SAFE-01 PASS PASS PASS PASS PASS
GN-SAFE-02 PASS PASS PASS PASS PASS
GN-SAFE-03 PASS PASS PASS PASS PASS

GN-QA-SEC-01 PASS FAIL PASS PASS PASS
GN-QA-SEC-02 PASS OOS PASS PASS PASS
GN-QA-SEC-03 N/A OOS PASS PASS OOS
GN-QA-SEC-04 PASS FAIL PASS PASS OOS
GN-QA-SEC-05 PASS FAIL PASS PASS OOS
GN-QA-SEC-06 PASS PASS PASS PASS PASS
GN-QA-SEC-07 PASS FAIL PASS PASS OOS
GN-QA-SEC-08 PASS FAIL/OOS PASS PASS OOS
GN-QA-SEC-09 PASS FAIL PASS PASS PASS

GN-QA-REL-01 - - - - -
GN-QA-REL-02 - - - - PASS
GN-QA-REL-03 - - - PASS PASS
GN-QA-REL-04 - - FAIL PASS PASS

GN-QA-AVAIL-01 PASS PASS PASS PASS OOS
GN-QA-AVAIL-02 PASS PASS PASS PASS PASS
GN-QA-AVAIL-03 PASS Unknown PASS PASS OOS

GN-QA-MAIN-01 PASS FAIL PASS PASS PASS
GN-QA-MAIN-02 PASS PASS PASS PASS PASS
GN-QA-MAIN-03 PASS Unkown PASS PASS PASS
GN-QA-MAIN-04 PASS FAIL PASS/FAIL PASS PASS
GN-QA-MAIN-05 PASS FAIL PASS PASS PASS

GN-BR-DATA-01 PASS OOS PASS PASS PASS
GN-BR-DATA-02 PASS PASS PASS PASS PASS

GN-AUX-DOC-01 PASS FAIL PASS PASS PASS
GN-AUX-DOC-02 PASS OOS PASS PASS OOS

GN-AUX-LIC-01 PASS PASS PASS PASS PASS
GN-AUX-LIC-02 PASS FAIL PASS PASS PASS

GN-AUX-LEG-01 PASS OOS PASS PASS OOS

B
Spark Streaming Experiment

Addendum

Table B.1: Point description for figures B.1 and B.2

Point Description
1 Data added to Kafka topic
2-10 Run C
11 Data added to Kafka topic
12-19 Run D

161

162 B. Spark Streaming Experiment Addendum

Figure B.1: Spark Streaming experiment C and D

163

Figure B.2: Spark Streaming experiment C and D [cont.]

164 B. Spark Streaming Experiment Addendum

Table B.2: Stream Processing speed on RPI cluster: gray

Run C Run D
Point Eq. Latency[s] Frames in Kibana Processing speed [f/s] Point Eq. Latency [s] Frames in Kibana Processing speed [f/s]
2 10 9 0.9 12 8 9 1.1
2 11 17 8.0 13 31 136 5.5
2 12 18 1.0 14 42 256 10.9
3 34 143 5.7 15 52 371 11.5
4 46 264 10.1 15 53 493 122.0
5 55 379 12.8 16 64 624 11.9
6 57 502 61.5 17 70 744 20.0
7 65 624 15.3 18 89 865 6.4
8 74 744 13.3 19 105 1000 8.4
9 95 865 5.8
10 110 1000 9.0

C
Literature Study

165

Delft University of Technology

Selection of telemetry server software for
the DelFFi mission

Anatoly Ilin, 1538144

September 18, 2014

Supervisor: Jasper Bouwmeester

Contents

1 Requirements 5
1.1 Delfi-n3Xt Requirements . 5
1.2 (Preliminary) DelFFi Requirements . 5
1.3 Mission specific deviation between DelFFI and Delfi-n3Xt missions 7

2 High level functional analysis of the Delfi-n3Xt telemetry server 8

3 Third party applications 11
3.1 Swiss Space Center (EPFL) . 11
3.2 GENSO Network . 17

3.2.1 Mercury Ground Station Network project (MSGN and FGN) 18
3.2.2 UNISEC Ground Station Network (GSN) 19

3.3 Open-Source Off the shelf software . 20
3.3.1 Wireshark . 20
3.3.2 YODA++ (leave it out?) . 21

4 Delfi-n3Xt subsystem level overview and analysis 23
4.1 Data collection software . 23
4.2 Data Handling . 23

4.2.1 Error checking . 24
4.2.2 Frame merging . 24
4.2.3 Processing . 24

4.3 Data storage and general MySQL discussion . 25
4.4 Data Distribution . 26

5 Trade-off 28
5.1 COTS . 28
5.2 In house software . 28
5.3 GENSO . 29
5.4 Trade-off EPFL and Delfi-space . 29

5.4.1 Suitability . 29
5.4.2 System and Software Flexibility . 29
5.4.3 Compatibility to Future missions . 30
5.4.4 Reliability . 30
5.4.5 Documentation and system complexity . 31
5.4.6 System coverage (end-to-end) . 31

5.5 Summary of Software findings . 31
5.6 Trade-off . 32

2

List of abbreviations

AHP Analytic Hierarchy Process
API Application Programming Interface
AS Authentication Server
CLI Common Language Infrastructure
COSMIAC Configurable Space Microsystems Innovations & Applications Center
COTS Commercial Off-The-Shelf
CRC Cyclic Redundancy Check
DCGS Radio Amateurs and Delfi Central Ground Station
DEM Data Event Messages
DUDe Delft Universal Data extractor
DX Frame
EEM Error Event Messages
EGSE Electrical Ground-Support Equipment
EPFL Swiss Space Center
FGN Federated Ground Station Network
GENSO Global Educational Network for Satellite Operations
GMS Ground Station Management Service
GROWS Ground Station Remote Operation Web Service
GS Ground Station
GSML Ground Station Markup Language
GSS Ground Station Server
GUI Graphical User Interface
MCC Mission Control Client
MCS Mission Control System
MSGN Mercury Ground Station Network
P2P Peer-to-Peer
PTO Packet Type Objects
RA Radio Amateur
RAW unprocessed data
S/C Spacecraft
SCOE Special Checkout Equipment
SQL Structured Query Language
SSH Secure Shell
SSID Secondary Station Identifier
TBD To Be Defined
TM/TC Telemetry and Telecommand hardware interface
UNISEC University Space Engineering Consortium
UTC Coordinated Universal Time
VKI The von Karman Institute
WOD Whole Orbit Data
YODA Your Own Data Analysis

3

Introduction

DelFFi, the successor of the Delfi-n3Xt cubesat mission, is a twin satellite mission that makes
part of the 50 cubesat network QB50. The payload on board of both satellites, Delta and
Phi, will perform in-situ measurements of the lower thermosphere, the least explored layer of the
atmosphere. In addition to the QB50 mission objective, DelFFi will demonstrate the autonomous
formation flying of both satellites using various guidance, navigation and control technologies
[26].

During the Delfi-n3Xt mission, the data sent from the satellite, the telemetry, is collected by
a number of radio-amateurs and is delivered to the university through the DUDe client software
to the telemetry server. Whereupon the telemetry server processes and distributes data to the
stakeholders. In contrast to Delfi-n3Xt , DelFFi mission opposes requirements, not only on the
data storage and processing but as well on the functionality. So it is required to deliver the
whole orbit data (WOD) to the QB50 committee within 24 hours [QB50-SYS-1.7.9]. In order
to accommodate these new requirements, this document will answer the question whether any
updates should be performed on architecture of Delfi-n3Xt server implementation to make it
compatible for the DelFFi - mission or whether a complete new or off-the-shelf software should
be used.

From analysis it has been determined that in-house telemetry server software is more desirable,
when compared to considered software products. It adds to certain extend risk to the system,
but provides unmatched design flexibility and due to presence of the source code, contributes
to the refinement of the product on the long run. By doing so it increases the overall mission
capability and arguably the mission outcome as well.

In order to fully assess the need for telemetry adjustment the set of requirements for both
missions will be defined in Chapter 1. Once the requirements are analyzed, Chapter 2 will
present the high level functionality of the Delfi-n3Xt telemetry server. This will be used as
an introduction into the telemetry server functionality, users and data flows. Chapter 3 will
present the telemetry systems developed by 3rd party organizations. Chapter 4 will cover a more
in-depth design of the Delfi-n3Xt server, which will be followed by the trade-off in chapter 5.

4

1 Requirements

In order to justify the selection of the available software, a set of trade-off criteria is required.
Those criteria define how well software is suited to the mission needs. The software selection is a
well studied approach and a number of critical selection criteria are well defined in the literature
[20]. Therefore the challenge lies not in the selection of the criteria, but rather in understanding
and specifying how well given software solution comply with them. The first step in this process
is the definition of the ’need’ and the actual problem definition. In order to answer this question
the Systems Engineering Approach is followed. By analyzing requirements, the problem domain
and the actual software capability should be able to be assessed easily.

Sections below present the requirements used for design and implementation of the Delfi-n3Xt
telemetry server and requirements set for the DelFFi mission with relevance to the telemetry
server.

1.1 Delfi-n3Xt Requirements
Delfi-n3Xt is a single cubesat mission designed and operated by the Delft University of Technology
since XXXX. From the technical documentation such as design documentation a number of
requirements has been derived:

Delfi-n3Xt Mission Requirements

• FUNCTIONAL MIS-F.01 The mission shall facilitate payloads from external partners

• FUNCTIONAL MIS-F.02 The mission shall facilitate bus advancements w.r.t. Delfi-C3

• FUNCTIONAL MIS-F.03 The mission shall facilitate additional experiments under strict
conditions, as specified in [SLR 0263]

• GENERAL MIS-G.02 The mission shall facilitate educational objectives

Telemetry Server Requirements

• FUNCTIONAL GS.2.3-F.01 The telemetry server shall provide an end-to-end data flow;
receive data from the DUDe telemetry client, process this data, and distribute this data to
the users.

• FUNCTIONAL GS.2.3-F.02 The telemetry server shall have redundant data storage at
different location.

• PERFORMANCE GS.2.3-P.01 The telemetry server shall have data storage of at least
1150 Gbytes.

• PERFORMANCE GS.2.3-P.02 The telemetry server shall support at least 50 simultaneous
connections from telemetry software clients.

• PERFORMANCE GS.2.3-P.03 The telemetry server shall be connected to the internet with
a bandwidth of at least 4 Mbits/s.

1.2 (Preliminary) DelFFi Requirements
At the moment of writing of this document, the DelFFi, successor of the Delfi-n3Xt, is in the
design phase. Therefore, the set of the requirements as mentioned in this document may deviate
from final version.

DelFFi Mission Requirements

5

• MIS-F-03 DelFFi: The mission shall facilitate bus advancements w.r.t. Delfi-n3xt.

• MIS-F-04 DelFFi: The mission shall facilitate two identical satellites.

• MIS-C-DelFFi: A lifetime of 0.5 year of the satellites shall be taken into account in engi-
neering decisions (such as system dimensioning, solar panel, etc.).

• MIS-C-DelFFi: For project scheduling, the delivery of the satellites shall be assumed to be
no later than Feb 2015

• MIS-DelFFi: The COMMS of both satellites shall be capable of data transmission between
the two spacecraft via two different routes: direct ISL and ground-in-the-loop

QB50 requirements:

• QB50-SYS-1.7.9: The CubeSat provider shall transfer the whole orbit data and science
data to the QB50 storage server within 24 hours following reception on the ground.

• QB50-SYS-1.5.13: The CubeSat shall use the AX.25 Protocol (UI Frames). The data
type during downlink shall be specified in the Secondary Station Identifier (SSID) in the
destination address field of the AX.25 frame. Science data shall be indicated using 0b1111
and Whole Orbit Data with 0b1110.

• QB50-SYS-1.5.14: User-friendly and documented software consisting of a) CubeSat data
Frames Decoder b) CubeSat data Packet Decoder and c) Cube- Sat data Viewer that
complies with radio amateur regulations shall be made available to VKI 6 months before
the nominal launch date.

• QB50-SYS-1.7.9: The WOD shall be send by the teams to the QB50 server using provided
format

• QB50-SYS-1.5.13: The CubeSat shall use the AX.25 Protocol (UI Frames). The data
type during downlink shall be specified in the Secondary Station Identifier (SSID) in the
destination address field of the AX.25 frame. Science data shall be indicated using 0b1111
and Whole Orbit Data with 0b1110.

Telemetry Server Requirements:

• OPERATIONS: Store the commands sent to the satellite

• TIMEKEEPING: The ground segment should be able to determine the reception time in
UTC with 0.2s accuracy

• TIMEKEEPING: The telemetry processing software should be able to determine the Epoch
and drift of the onboard elapsed time counter

• ORBIT DETERMINATION: The telemetry processing software should be able to retrieve
two-line-elements automatically when there is an update and append each frame with the
relevant set.

• ORBIT DETERMINATION: The telemetry processing software should be able to calculate
the orbital position in a TBD format from the most accurate time stamp and the two-line-
elements.

• WEBSITE: Always display the latest frame, if possible by pushing the data from the server

• WEBSITE: Display live data, optionally tables/figures/graphs

• WEBSITE: Website authorization. If possible by using existing user-pool, without asking
users to create a new account.

• OPERATIONS: For real time interface, indicate when a value exceeds the given threshold

6

1.3 Mission specific deviation between DelFFI and
Delfi-n3Xt missions

Based on the requirements for both missions it can be concluded that the mismatch in require-
ments between both missions occur in the following topics:

• Number of the spacecraft, which results in number of discrepancies such as user interface,
storage etc

• Telemetry frames format (flexible frame architecture), which require different data decoding
and storage techniques

• Data transfer from Del to Phi satellite through the ground station network, which may
oppose requirements on the telemetry server

• Whole Orbit Data (WOD) requirement, which require an API for the QB50 server

Because the set of requirements for the DelFFi mission is incomplete this approach cannot provide
sufficient insight on the system. A deeper analysis is required to be able to perform a meaningful
software selection.

7

2 High level functional analysis of the
Delfi-n3Xt telemetry server

In the chapter 1, it has been determined that the telemetry software selection can not be solely
based on the documented requirements. In order to overcome this issue, the Delfi-n3Xt teleme-
try server will be analysed from functional point revealing the mission critical components and
overall functionality. The main domain of the interest is the data flow from the satellite to the
end user (operations crew and QB50) as the data processing techniques. Analysis is done on
the basis of available papers, technical notes and the source code of the Delfi-n3Xt and Delfi-C3
missions.

The functional breakdown of Delfi-n3Xt mission with the relevance to the telemetry server
can be found in figure 2.1 [8]. It can be seen that the data operations relay on three tiers: Data
Collection, Data Handling and Data Distribution. Data Collection is build up from two elements:
Data Acquisition and Data Storage. Data Handling function is performed by 3 sub-functions:
Frame Filter(ing), Frame Merger(Merging) and Frame Processor(Processing). Data Distribution
function is performed by providing a web interface for different stakeholders.

The Data Acquisition is performed by the radio amateurs using 3rd party soft- and hardware,
who transfer the Data Frames to the server by means of the DUDe-client. Data Storage is a
separate subsystem of the server that is managed by MySQL database system [25]. The data
transfered by the DUDe client is injected directly into the database.

The incoming frames, inserted into the database by DUDe, are checked by the Frame Filter,
to ensure that frames indeed originate from Delfi-n3Xt cubesat and no transmission errors has
occurred (e.g. bitflips or effect of the noise on the signal). It should be noted that the solely
purpose of the Frame Filter is to discard faulty data and no error corrections are performed.
Data sent from Delfi-n3Xt satellite is encoded into a AX.25 frame format. As the amount of
data exceeds single AX.25 frame specifications [4], telemetry data had to be split and transfered
into two separate frames. It is therefore required to merge data of the both frames on the server
side of the mission. In the next step, Frame Merger, the payload frame is extracted from the
data frames by the Frame Merger and combined with the frame payload from the other matching
frame. The reason behind this design approach, is the fact that the telemetry server software was
finalized before the decision of the frame splitting was made. By encoding frames differently and
by adding the Frame Merger it was no longer required to rewrite the existing telemetry software.
Frame Merger is followed by the Frame Processor, that decodes the combined frame-payload to
the human readable format and injects it into the server database.

The Data Distribution part assures the data flow from the server to the end user. This function
is closely tied with Server Administration, which handles the authorization and contains user
information. In order to provide access to the remote users, data is distributed using a web
interface. System identifies different users types and provide access rights accordingly [8], this
is summarized in the table 2.1. Administrator was not considered a user type by the developer
and is been added to the table below for the sake of completeness.

The physical Ground Segment architecture of the Delfi can be found in the figure 2.2, it
differs from functional overview as it only presents the physical connections between different
subsegments. The system architecture is based on a central processing unit, the telemetry server,
that relies on the clients (Radio Amateurs and Delfi Central Ground Station (DCGS)) for the
data acquisition and a web-interface for the data distribution.

8

Figure 2.1: Functional Mission Breakdown with relevance to the telemetry server

User type User description User interface
Operator Users directly involved with spacecraft

operations
Real time overview of the incoming
data (Operator Interface)

Telemetry
analyst

Users responsible for historical data
interpretation

Data archive and data mining/
exploration (Data Export Interface)

Radio Amateur Stakeholders that receive and transmit
satellite data to the server

Overview of the data frames they sent
to the server personally (Not specified
by the documentation)

General Public Stakeholders not involved in the
project

General overview of the satellite status
(Public Interface)

Administrator User responsible for server operations
and maintenance

Should have access to all user
interfaces (All Interfaces)

Table 2.1: Users types and access privileges [8]

9

Figure 2.2: Physical overview of the Delfi Ground Segment

10

3 Third party applications

The in-house software development is a costly affair in terms of man-hours that introduces an
extra risk factor to the mission. The usage of a validated third-party software may therefore be
more beneficial for the overall outcome of the mission. In the subsections below a number of
present-day and historical Ground Segments will be presented.

3.1 Swiss Space Center (EPFL)
The EPFL ground segment is used for SwissCube missions for 4 years. During this period
it provided the software interface for the two-way communication with the EPFL satellites.
Swiss Space Center (EPFL) agreed on providing a software for the ground station network to
all interested QB50 participants. In this section the functional (system logic) analysis will be
performed along with high level system architecture overview.

The logical overview of the Swiss Space Center can be found in the figure3.1.
The system is based on three elements:

• Ground Station (incl. Antenna’s, Complementary Hardware and Control Software)

• TM/TC Front End

• The Mission Control System (MCS)

Each Ground Station that participates in the EPFL network has a standardized interface on the
software side, which allows an easy expansion of the ground segment and assures compatibility
within the EPFL software. The ground station interface software is part of the software package
provided by EPFL. The second element is the TM/TC frond end, TM/TC stands for telemetry
/telecommand and forms an interface between incoming data form the GS, which is frame
based to packet-based data required by the Mission Control System[18]. Within this configura-
tion, “TM hardware performs all baseband functions from interfacing to frame synchronization,
de-scrambling, Convolutional and/or Reed-Solomon decoding / correction, time/quality tagging
and frame level transfer via the LAN interface” [33]. In other words, TM/TC is responsible for
AX.25 frame handling (storage of the raw telemetry frames and decoding of the telecommands to
AX.25 format) and repacking it to the packet structure accepted by the Mission Control System.
The last element is the Mission Control System (MCS). It forms the central part of the EPFL
ground segment architecture and is responsible for the monitoring of the space and the ground
segment for the mission, along with the (post-)processing and the storage of the spacecraft data.
Additionally, MCS provides a telecommand interface, for the telecommand encoding, sequencing
and sending to the S/C (through TM/TC for encoding and GS for actual broadcast).

From the functional perspective, Ground Segment architecture of EPFL is in many ways
comparable to that of Delfi-n3Xt mission:

1. Defragmented Ground Stations with a standardized software interface

2. Separation of the RAW telemetry database from the Processed data database

3. Single Server for the (post-)Processing and Data Distribution

The main difference between EPFL and Delfi implementation is the presence of the TM/TC
Front End device for Data Processing. Instead of frame decoding and processing on the server
side, the tasks are outsourced to a dedicated hardware. The physical system architecture is
however very different, note that “star”-type configuration around EGSE Router in the figure
3.2.

11

Figure 3.1: Logical view of EPFL ground segment [18]

Figure 3.2: Physical view of EPFL ground segment [18]

12

EGSE stands for Electrical Ground-Support Equipment and is essentially a COM-based pro-
tocol (routing) developed in late ’90 by ESA/ESTEC to define interfaces within an open commu-
nications architecture. In addition, “the use of web based standards (later upgraded to TCP/IP
[18]) and technologies such as XML, SOAP and WSDL provides a significant increase in interop-
erability of the developed EGSE modules” [15]. In its core EGSE is a “central checkout system”
, software system designed to provide an interface to different instruments during pre-launch
testing of a spacecraft. Essentially, EGSE router acts as a broker and the whole communication
system is a derivative of a messaging protocol. In EPFL implementation, the data sent across
the network is ether data-frames from GS or EGSE-data packages from different network devices
(e.g. MCS to TM/TC front end). This set-up has an advantage compared to Delfi-n3Xt since
the devices (extra servers, etc) can be added to the network without any need for adjustment to
the system software (that handles routing). For example, an extra payload processing unit (as
seen in the figure 3.2).

Architecture Analysis: EGSE Router

Since the emergence of the “cloud” architectures, middelware messaging is no longer desirable
and the star-architecture is no longer a state-of-the-art setup. Instead of the complex implicit
routing roles, many of the modern messaging protocols rely on the two-way publish-subscribe
techniques and flexible (“direct”) routing. The main advantage of these new systems is reliability,
as no single point of failure is present.

It does not mean that the software is obsolete, EGSE server is widely used in Space industry
for a number of tasks. It is even considered to be the industry standard within ESA and many
of the new missions that require remote access or data/telemetry storage are based on the EGSE
Router [6]. Even the older systems are been migrated to EGSE, successfully but not as smoothly
as intended [19].

The presentation of the European Space Agency’s Herschel Space Observatory [19] describes
the transition and experiences with EGSE System. Because the EGSE server is the single
most critical element of the EPFL software, it is important to investigate the encountered is-
sues. Most problems are related to the migration issues such insufficient documentation of the
software used by Herschel, what resulted in the EGSE implementation team not be aware of
required software-pipelines. Secondly, the EGSE Components are based on the Microsoft .NET
Framework [17] which makes components not directly compatible with any other software and
programming languages. It is clear that Herschel solved some of this issues by implementing
wrappers, programs that execute a different program (or routine) when executed. Essentially, a
.NET compatible software executes a non-compatible software and acts as an interface between
both. It is considered to be a good practice to create a standardized system and utilize a single
programming language, but it may create a number of boundaries for the future development.
This is especially important in case of EPFL software (read further), as the only way to increase
system capability is to create custom plugins. The main EGSE routing system issues, relevant
to DelFFi mission, identified by Herschel is the limited documentation, very limited message
logging and lack of out-of-the-box configuration. It is unclear whether EPFL pre-configure the
software for the QB50 participants, therefore limited documentation and hard to probe network
(limited messaging logging) may become a challenge to keep system stable.

EGSE Routing Because the EPFL software is available to all QB50 participants, it is important
to investigate whether it can be used as Delfi alternative. Due to the high system complexity,
the routing of the messages will be investigated first.

Figure 3.3 shows the connection life-cycle of EGSE Router and the users. Before a client can
transmit messages, he is required to be connected to the server. First, client creates a connection
with the server and requests a register command. The request-message sent to the server (see
3.1), contains a client ID and Name. Both of them must be unique. This means that system
requires a client configuration (at least on name and ID- level), before the client can create a
connection. Furthermore, router cannot assign a temporary ID/Name to let client discover the
available ID/Names and adjust temporary to new fixed once. The network is comparable to
Static IP and MAC address: every client requires an unique IP and MAC address and can only

13

connect to the router if both prerequisites are met. This is a clear disadvantage of this system.
For a Delfi-example, a new Radio Amateur cannot transmit data after downloading and installing
the software, it requires an extra layer for ID creation. Clearly this makes configuration more
complex. Documentation indicates a possible existence of Radio Amateur interface for QB50
network. This may resolve this issue.

Every client on the network is required to register before messages can be sent. Upon the
register request, router reacts to the register command with an event, that confirms the reg-
istration. Two types of events are supported: Data Event Messages (DEM) and Error Event
Messages (EEM). A DEM passes the result of a successful command execution or the actual
data when it is sent from another Client. EEM are sent when a Command fails execution (see
3.1). For Sending the data, client transport the data to the Router who will transfer the data
to appropriate user. The destination of the message is determined by ID of the client which
is embed in the Destination field. Again, it should be noted that ID should be known before
the message is sent. Additionally, system does not (yet) support Name lookup. Therefore it
is not possible to determine ID from the Client Name. It is however possible to determine the
Client Name from clients ID. This pointless, as messages require ID’s and not Names. Another
interesting detail missing in the documentation is the source field. Because message passes the
Router, in is unknown whether the source of the message at the end of the line is the router or
the actual sender.

The Receiving of the data follows same guidelines. In order to disconnect from the network,
client send a disconnect request to the Router and receives a confirmation request. It can be
seen that by default, clients are not informed about a new clients connecting or leaving the
network. For example, if a ground station disconnects the network, MCS is not informed unless
it is implicitly programmed to do so. For example, by having “keep alive” connection with all
GS or sending regular “ping”-like messages.

The Routing of EGSE network is performed on the basis of Client ID. Specific Client ID
ranges has been predefined. For example 0xF000 is hardcoded ID of the router and range
0xF001- 0xFFFE is pre-allocated and is not usable for the clients.Furthermore, it is possible to
broadcast a message to whole network by sending the data to ID 0xFFFF. This way it is possible
to inform connected clients about a new client connecting to the network, but EGSE Router is
not programmed to do so. Theoretically, it is possible to inform clients about a disconnecting
of a client as well, but this is a suboptimal solution as a client can be timed-out or can lose
connection due to network issues.

EGSE Message As stated earlier in the document, EGSE is a messaging protocol and data
sent across the network is contained within a message. Two types of messages can be identified:
a Command Message and Event Message. A Command Message is a message that has Router as
recipient, as name suggests, it contains an instruction for Router to executer (e.g. disconnect).
Event Messages are sent as a result of certain event, such as a message from a different client of
upon command execution by the Router.

The message layout can be seen in the figure 3.4. On the first sight the protocol does not
impose any constrains on the size of the message body (the actual sent Data), but upon a closer
look, the size of the message length is limited to 4 octets (4 x 8 bit). Message Length is expressed
in octets, so maximum length of the message data is constrained to 65542 octets or 64 kB. For
example the maximum allowable length of a full AX.25 frame is 256 octets. It can be seen that
256 AX.25 frames can be fit in a single EGSE Message body.

The Message Type is required to pass a command to the Router. For example, a Type 1

message from client to the server will Unregister client from the network. The Result Code
provide information on the success of the command sent to the Router. The default value, 0,
is defined as a successful command execution. In case of a failure, client can receive one of 15
possible error codes. The Destination and Source ID identify the receiver and the sender of
the message. The Token is an identifier of the sent command, the command event will contain
identical token for the traceability purpose. It should be noted that it is the responsibility of the
client to generate unique tokens. It is not a system requirement, but if the last is neglected the
traceability will be lost. It is furthermore unclear how a new-coming client can determine the
next available token. The next field contain UNIX time stamp when the message has been sent.

14

Figure 3.3: EGSE Routing [18]

15

Figure 3.4: EGSE Message [18]

Router does not modify this field when transferring message to the next client. Theoretically, by
combining Time and Token field, the unique token issue can be solved. Spare is a 1 octet long
field unused, but allocated for future application. Spacecraft ID contains the unique identifier
of the spacecraft. Data type defines the type of data embedded in the message. EGSE Server
of EPFL allow 8 pre-configured data types (see 3.1), essentially different types of reports and
requests.

Data types In order to identify the data sent across the network, data types has to be defined.
As the name suggest, data type identifies type of data contained in the message. But it goes
further than that. In order to explain this, analogy of an email will be used. Consider a client
X who would like to know the shoe size of Client Y by sending Y an email. In order to make
email clearer he includes a title: “Shoe size”. The Client Y replies to his mail and automatically
adds “RE” to the title (“RE: Shoe size”). EGSE Router uses same technique, but instead of a
refined title, it uses 1 byte HEX. The question to different client has a Request type, answer a
Report type. EGSE Router as designed by ESA/ESTEC is preconfigured with 4 different types
of Request and hence 4 types of Reports. The data type with value below 63 are predefined by
ESA and cannot be modified, types 64 to 127 are considered to be mission specific and are freely
available.

Table 3.5 summarizes the pre-configured data types. It can be seen that first three types are
implemented to perform Special Checkout Equipment (SCOE) actions. Any network component
that can perform and execute a command is considered a SCOE: for example a ground station,
TM/TC equipment etc. Type 1 is used to send a command, which is verified upon execution
with type 2 report. Type 3, an observation report, is sent without a command request. Type
4, the Send Telecommand Packet Request, is a request containing telecommand for the satellite
sent by Mission Control System to the TM/TC front end. This type of Packet Request has
a number of settings, such as usage of Virtual Channels etc. The Verification Report, type 5,
contains the telecommand is been transmitted by the GS. It contains a traceability error-coding,
so it is possible to determine where the telecommand was rejected in case of an error.

Type 6 and Type 7, is Telemetry Packet and Frame Reports are used to transfer telemetry
packets and frames. Packets are defined in the EPFL software as reconstructed frames, essentially
it is data decoded from the frame. Furthermore it is unclear whether it is user defined. The

16

Figure 3.5: EPFL EGSE available datatypes

message-body does not contain any extra overhead like other data types and only the actual
telemetry frame is transmitted. Type 6 messages are mainly used for the packets transfer from
TM/TC to MCS, meaning that at MCS does not directly receive any information on GS the
frame originated from. In order to solve this issue type 8 has been introduced, it contains a Time
Correlation Report, essentially a message that correlates a frame to the received GS by satellite
timestamp embed in the frame. Type 8 report is generated by GS to MCS without Router
modifying the message. This way MCS can determine the GS a given frame originated from.
The data field of type 8 message contains Onboard Time Packet, satellite timestamp of data
transmission, UTC Time of data acquisition by the GS and an extra field containing internal GS
delays.

Mission Control System

EPFL Mission Control System (MCS) has three functions: processing, storage and distribution
of the data. The processing and distribution parts can be extended using custom modules.
By doing so an additional database will be created to contain data generated by the custom
modules. The MCS is build using .NET Framework, hence all modules should be conform
with CLI specification. CLI stands for Common Language Infrastructure and is a platform
that includes generic functions for exception handling, garbage collection etc. CLI is build into
.NET Framework, this way multiple programming languages are supported. List of supported
languages is limited and consist out of number of exotic languages like Boo, A# along with CLI
derivative of popular languages like Java, Python and Ruby.

Radio Amateurs Radio Amateurs are encouraged to participate in the project, therefore every
QB50 member is required to provide CubeSat Frames Decoder, Packet Decoder and data Viewer
to VKI who will distributed it inside radio amateur community.

3.2 GENSO Network
GENSO stands for Global Educational Network for Satellite Operations and is an international
initiative to form a worldwide network of the ground stations for spacecraft operations. In
order to assure flawless functionality each ground station require a standardized communication
software, which is able to transmit (uplink) and receive the data. The initial work dates back to
october 2006, with first results presented during kickoff meeting on november 2007.

17

Figure 3.6: Genso Network [23]

The system architecture of the GENSO network consist of 3 parts: a Mission Control Client
(MCC), a Ground Station Server (GSS) and an Authentication Server (AS). The Mission Control
Client provides Satellite Application to the users, a means to control and retrieve the spacecraft
data. Software consists of a standardized GUI and an interface for custom software. The Ground
Station Server is essentially a dedicated server for Antenna control and Satellite data (packets)
encapsulation to XML-format which will be networked across Genso Network. In order to increase
hardware support software is integrated with open source Radio Amateur libraries such as HAM
Radio Control (Hamlib) and GNU Radio.[23] The final element is the Authentication Server,
it contain information on all GSS and MCC, and keeps track of the network changes. GENSO
network supports different satellite communications (e.g. frequencies and keying), but because
not all GSS are compatible with all communication features, AS will provide a lists for the users
with compatible stations (location on earth globe, etc).

In contrast to EPFL ground segment, the network communication is not centralized, the data
is sent in peer-to-peer (P2P) communication type between MCC and GS (this is indicated by
red line in figure 3.6). Initially, a server request is sent to AS to obtain list of compatible ground
station. Whereupon server returns a list of compatible GS where user is eligible for. Once a
GS is selected by user, MCC is then connected to appropriate GSS directly (hence P2P). The
connection is however not properly documented, so neither communication protocol is defined,
neither the data sent. Most probably it is used to uplink the command or download the telemetry
packets. Furthermore, it is unclear whether telemetry is stored on the ground station and requires
user to download it manually, or any database is present on the MCC side.

GENSO network is a collaboration between many teams, with largest contribution of Stan-
ford University (Mercury Network) and University of Tokyo (UNISEC Network). It is clear
that GENSO is build up on the existing software of both network, therefore both Mercury and
UNISEC will be analyzed.

3.2.1 Mercury Ground Station Network project (MSGN and FGN)
Mercury Ground Station Network development started around 1999 by Stanford University as
ground segment for OPAL micro-satellite. The initial purpose of the software is controlling of
the Ground Station Hardware (Antenna and Radio) ether manually (using SSH/command line
commands) or semi-automatically by orbital prediction (with frequency tuning as the main goal).
Additionally, received data was parsed and presented to the users through a simple web interface.

After OPAL mission, the project expanded and more ground stations were added. In 2001,

18

after ground segment expansion, the project was renamed to Federated Ground Station Networks
(FGN). As project expanded, more compatibility was required along with increased reliability.
In order to comply to the last requirement, team decided to apply virtualization to all Ground
Station Servers. [9] The new, or rather improved, system design is based on the end-to-end
principle, meaning that the lower layer of systems should support the widest possible verity of
services and functions. In other words each system element can be controlled using both high
level commands (e.g. “connect to a GS”) and low level commands. Furthermore, any high level
function can be implemented in any time in future without need to adjust low level elements.

The communication systems relays on a XML messaging system for command and control.
XML is essentially a meta-language that can be adjusted to the software needs, therefore MSGN
developers created a Ground Station Markup Language (GSML). It is a set of XML “tags” that
can be interpreted by the servers and is intended for the machine-machine communications [12],
but are still readable for a human. The GS server runs on a Virtual Machines, this is one of the
most suitable solution to increase compatibility with different hardware (both PC and Antenna
control).

The server is divided into functional layers Mercury Design Team [24]. The Virtual Hardware
Level is meant as the control of low-level hardware resources. Essentially this level contains the
hardware running the VM and the hardware required to communicate with the spacecraft[11].
The Session Level provides single station automation services. Essentially it is responsible for
the scheduling, antenna high level control such as Auto Tracking and Auto Tuning etc. The
scheduling service accepts reservation for the ground system usage and keeps track of system
availability. From available documentation it seems that creation of schedule remains a non-
automated task that should be performed by satellite operators. The session Level contain
remote access server, that provides a secure and encrypted connection to the Ground Station
Control (ssh?). Along with previously mentioned functions, the data processing is performed on
the ground station side.

The network level captures the services of the federal ground station network. It makes it
possible for FGN to register services for the GS and allow users to query for the availability of
the GS. The second function of the network level is the Scheduler, which handles automated
scheduling events. It enables static an dynamic optimization of the whole system network by
controlling multiple GS and tracking the spacecraft passes.

Since the software is outdated (latest release 1.2 in 2003 Cutler [10]) and its mainly focused on
the antenna control rather dan telemetry capabilities, no further software analysis was performed.
Secondly, it should be noted that the design was never completed by the Stanford team. The
paper describes architecture and high level functions that should be performed by the software,
but the actual implementation was never completed.

It is clear that MSGN is reused in the GENSO design when functionality and documentation
is compared. Secondly, the P2P XML communication within GENSO network is most probably
the GSML of the Mercury network. Again, the scheduling and satellite tracking is undefined for
both ground segments.

3.2.2 UNISEC Ground Station Network (GSN)
The initial projects dates back to 1998 as a collaboration between multiple Japanese Universities.
UNISEC stands for University Space Engineering Consortium which is a non-profit organization
with goal to support space related activities in the universities. GSCN is a network-based ground
station system that consist mainly of Japanese universities.

According to official website [34] system architecture consists of two parts: Ground Station
Management Service (GMS), GS Remote Operation Web Service (GROWS). GMS provides
antenna control functionality and a protocol to connect and uplink data to the satellite. GROWS
is essentially a graphical user interface, based on a static website (HTTP), and a communication
protocol (XML) to communicate within the server network. Initially, [27] GSN was not meant to
be a software package, but a protocol (software specification). In the proceeding paper [28], more
attention was spent on the integration with other universities and a ground segment architecture
has been proposed. It should be noted that design mainly focuses on the antenna/GS control
and uplink, and not on the downlink and information storage. Nevertheless it is interesting to

19

Figure 3.7: UNISEC GSN [28]

investigate the overall system architecture. Two architectures has been proposed, one based on
distributed and one on centralized methodologies. In distributed system each GS Server contains
all user information and the authentication (whether user is eligible to connect or hardware
supports communication link) is done on the GS side. The selected centralized approach 3.7,
consists of a dedicated authentication server that handles all user requests along with scheduling
(who can access what server when).

Latest system update was on July 18th 2006 with organization of “The 1st International
Workshop on Ground Station Network”. From available information, no further development was
done since then. It makes sense since both GSN and FSN are predecessor of the GENSO network.
It is clear that network architecture of GENSO network is based on GSN, the presence of Central
“Authentication” Server and the overall communication scheme relates closely to UNISEC GSN.

3.3 Open-Source Off the shelf software
Instead of using complete software solutions and comply to design decision of other developers,
it is possible to combine existing separate utilities.

3.3.1 Wireshark
One of the functions of the telemetry server is processing of the incoming data. In order to
do so, the incoming frames has to be decoded to human readable data. In the Delfi-n3Xt
implementation, frames are dissected directly in the processing script. This is a robust solution
as only two types of frames were broadcasted by the satellite. As discussed in chapter ??, the
DelFFi mission could use a higher number of reconfigurable frames Schoemaker [30] making
downlink more efficient. In this case hardcoded frame dissection is no longer a feasible solution.

Wireshark is a state-of-the-art package dissector with enormous user base consisting mainly out
of IT professionals. Wireshark is designed to capture network packets and to display the captured
data as detailed as possible. A network packet consist out a number of layers, with actual data
embed in the Application layer. In order to explain the Wireshark working principle a HTTP
request packet will be used. A packet is its essence a stack of layers, each containing information
HTTP-request is stored in the Application Layer and contain actual command (request). One
level higher (Layer 4), contains TCP information. TCP is a transmission protocol is used for the
connection definition (e.g. port number etc.). Layer 3 contains IPv4 information and contains
address information (IP). Layer 2 contains Ethernet information. Ethernet protocol ensures

20

that the hardware within network can read the content of the packet. Level 1 is the actual
frame. Each layer contains information about layer below, for example Layer 3 (IPv4) contains
information that Layer 4 is TCP. In order to display packet data, Wireshark reads each layer,
select correct dissector, dissects the data and proceeds to the next layer. Wireshark contains
number of dissectors and is it possible to create a custom dissector which can read the data
within “data” field of AX.25 frame. However, this is only possible if header of AX.25 frame
defines the encoding of the data field.

The dissected data can be visualized graphically or be exported in predefined format. It is
a great tool for decoding the raw frames that can be run both on the server and client side.
Furthermore it is possible to integrate the Wireshark to the processing part of the software by
using 3rd party software such as Sharktools Awile [3].

In order to address the flexible telemetry requirement, the type of the flexible frame should be
defined in the header section, specifically in Protocol Identifier or Control bits. This is required
by Wireshark in order to be able to slice the data in the Information Field of the frame. EPFL
software and QB50 in general predefines that AX.25 frame and require both filed to be filled in
with a certain value.

3.3.2 YODA++ (leave it out?)
YODA (Your Own Data Analysis) is a semi-automated system of the data handling and analysis
developed for PAMELA space experiment which is design to measure matter and antimatter
components of the cosmic rays in space. The downlink component of the ground segment is
controlled by launch and operations provider (NTSOMZ), YODA system is therefore only re-
sponsible for data storage and processing. Raw data storage is located on the receiving side
and is read by Raw Reader. The Root files storage is a directory containing ROOT libraries.
ROOT is a object-orientated application and libraries developed by CERN for partially physics
data analysis. Package can be used to visualize the data to visualize distributions, perform curve
fitting, vector computations and statistical functions Rademakers [29]. The contents of the root
directory contains objects to perform the processing: Packet Type Objects (PTO, wrap data
of the satellite payload modules), Algorithm Type Objects, Utility Methods Class (provide an
interface between Yoda reader and the ROOT objects) etc. Since all data processing is based on
ROOT which is a very targeted processing unit, the whole design is not relevant to the DelFFi
mission and will not be discussed in detail. The design of YODA++ is however very similar to
the Delfi-n3Xt design. Note the presence of multiple storage units and separate readers.

21

Figure 3.8: YODA++ system overview Rademakers [29]

22

4 Delfi-n3Xt subsystem level overview
and analysis

Data collection, storage and visualization are single the most important telemetry server func-
tions. According to software design guidelines [13, 14] it is considered to be a good practice to
have a strong cohesion and low coupling. Both functions are therefore separated both on soft-
ware as on hardware level. According to the theory of the current software systems engineering
key components should be separated in order to reduce risk and increase safety. The Delfi-n3Xt
telemetry server is designed according to this principle, both data collection and storage are
separated as can be seen in the Figure 4.2.

Data acquisition for the Delfi-n3Xt is based on the radio amateurs. Radio amateurs are ra-
dio hobbyists that are licensed by government authorities to use allocated portions of the radio
spectrum for non-commercial activities such as technical experimentation or personal communi-
cations. During the Delfi-n3Xt operations, radio amateurs are able to decode received data using
DUDe client, while data is been transferred to the Delfi-n3Xt server. The functionality of the
DUDe client is discussed in the section 4.1. The transmitted data from DUDe client is stored
on the Delfi-n3Xt server, directly into the database. The processing of the data is discussed in
section 4.2 , while the database design is presented in section 4.3. Once data is been processed,
users can access it from the internet. More information on this subsystem can be found in section
4.4.

4.1 Data collection software
Data collection is separated from telemetry server both functionally and physically. As described
by short functional description [SLR0320] and earlier in this chapter, the data signal from Delfi-
n3Xt is received by Amateur Receivers all around the world, using DUDe (Delft Universal Data
extractor) client. The received raw data is demodulated and the processed by the client and
whereupon is displayed to the RA using Graphical User Interface (GUI).

Figure 4.1 visualizes the DUDe-client functionality. The incoming data is demodulated by
the DUDe client. The DX-frame is decoded and presented through GUI to the Radio Amateur.
Radio Amateur is able to see the received data and transfer it to Delfi server in an automated
way.

The DUDe client has a build in authentication system. Upon DUDe start up, user is required
to provide his credentials. The username and the hashed password are verified on the backend
(server side). Each user is registered in the telemetry server database, this way it is easy to
correlate telemetry data to the radio amateur, who provided the data to the server. This way
DUDe client is separated from credentials database what forms an extra security layer.

If credentials match, DUDe client will check whether offline files are present in the system.
If necessary the offline files (essentially frames received while not connected to the server) are
injected in the server database. When this process is completed, DUDe client engages the sound
card and checks for the incoming packets. The process of generation of offline files is however
very ambiguous, it is unclear how files can be created as a database connection is required in
order to engage the DUDe client.

4.2 Data Handling
Data Handling is defined as processing and migration of data within the telemetry server. The
main processing tasks are checking the data for errors, merging the matching frames and con-

23

Figure 4.1: Overview of the telemetry client (DUDe) Kuiper and Hernando Bravo [22]

version of raw data to physical quantities.

4.2.1 Error checking
In order to assure that only the correct data is processed, the incoming frames are checked for the
errors. This is done in two steps, first a frame-check sequence is performed, followed by duplicates
control. The frame check is based on Cyclic Redundancy Check on 16bit checksum. Once the
frame is verified to be a legitimate AX.25 frame, the satellite name field is read. If sender code in
the telemetry frame is identified as Delfi-n3Xt, the frame payload is read and system determines
whether data is already present in the system (raw data database). This is done on the basis of
frame counter and the timestamp. Secondly, database contains a counter for each frame, this is
used by the system to identify the latest available frame. In case a new duplicate frame is present,
the counter of given frame is automatically updated to the latest counter. Faulty frames, along
with existing duplicates are moved to the discarded database. Next to previously stated tasks,
the error checking script can place tags to increase traceability of the processing status. The
script is executed on regular basis by means of crontabs. Additionally it can be run manually to
force recheck the whole database.

4.2.2 Frame merging
As stated earlier in chapter 2, the Delfi-n3Xt telemetry data size exceeds the single frame size
limitation and is therefore sent in two separate frames. Because the decision on usage of multiple
frames was made after the database and processing software design was completed and imple-
mented, the actual software had to be adjusted. In order to solve the both matching frame parts
share the same id and aren only identifiable by content of the frame.

In order to identify already merged frames in the database, all non identified frames are
marqued with “0” tag. Essentially, tag is an extra row in the table that contains an integer.
The merging script simply selects a single frame part with “0” tag and checks all other available
records for a match. Once match is identified, tags of both records is replaced by “1”. Both
frames are then merged and passed to the merged database. The merging process simply adds
the second frame part at the end of the first frame part.

The main issue with this approach is that all non-processed frames are looped, for example
if second frame part is not received, the system will keep reading first part on every iteration.
This also means that the content of the first part will never be processed. Secondly, the frame
id was used in initial design to perform frame filtering. Because a double frame is created with
identical id, this approach can no longer be applied.

4.2.3 Processing
As the data frame is stored in binary format, it needs to be decoded to human readable and
processable format. The data part of the frame is build up from (sub-) fields, each of which can
be decoded to a decimal value which corresponds to a certain measurement of a subsystem. The

24

Figure 4.2: Top level overview of software ground segment architecture

bitwise position of each field is defined by an external file. It should be noted, that when extra field
(extra measurement) is defined, the processing database would need to be updated to facilitate
new data. This is performed automatically by the software. It is therefore important to define
all fields beforehand, otherwise whole database should be repartitioned after the adjustment.
A clear disadvantage of the Delfi-n3Xt implementation is that it does not facilitate the flexible
telemetry frames. Secondly, the software is not optimized for user experience. For example, the
adjustment of the frame layout is performed through the GUI. But adjustment of the processing
computation definitions is separated and requires user to adjust the source code.

4.3 Data storage and general MySQL discussion
As documented by [8], in the current server implementation data storage and management is
performed by MySQL database management system. SQL, structured query language, is a
declarative database language that is by design optimized to for relational databases. In the
relational databases that data is organized in tables. Each table is build up from records each
stored in a field. Fields from different databases can be joined to create a temporary (output)
database. The term relational database comes from fact that data can be brought into “relation”
to each other to combine it.

In the figure 4.2 overview of high level operations is presented. It can be seen that this im-
plementation consists of multiple databases, one for each data processing step (see section 4.2).
The usage of multiple databases with inter-database operations is seldom used due to possible
efficiency issues ([1], Cabral and Murphy [5] and Ab and Street [1]). In order to reduce the read-
time of the database, caching is applied. A small, fast to read copy of the database is created
that can be read faster than actual database even while database is been updated. Database
update is defined as a change in the database, for example as appending of new data (a new
row). Caching may become less efficient with increasing number of incoming data as a new cache
file has to be recreated on each data injection. An another way to increase the performance is

25

indexing. Each table contains a key that contains a unique identifier for each record. By creating
an index of the unique keys, MySQL is able to lookup required field faster and read only the
required record instead of whole database.

Another important tier is the storage engine used (Cabral and Murphy [5]). For example, the
older (MySQL versions 5.0 or lower) MyISAM storage engine priorities writing above reading
statements. This means that reading statements (SELECT statements) would not be executed
while writing is performed, as table would be locked up. Technically, following scenario may
render server unfunctional for extended period of time if MyISAM would be used:

1. Satellite transverse region with high number of amateur receivers, these results in a high
number of duplicate frames sent to server. Many receivers send data twice to make sure
that frame is transmitted properly.

2. Each incoming frame is stored into incoming database, without performing duplicates fil-
tering.

3. php script makes a connection with incoming database, which creates an open file on the
server. MyISAM puts read request on hold (queue), as writing process locks incoming-table.

4. php script requests read access to the RAW-database. Again, it is put on hold, after an
open-file is created. Because databases form a waterfall model, every sequential database
request is put on hold as well.

Initially, the bottleneck would be formed on the incoming database, which will gradually shift
to the final database in the database "waterfall". When maximum number of connections or
openfiles is reached, server will refuse incoming connections which will result is loss of data.

InnoDB, engine used for the most tables of the telemetry server, is more liberal in its locking
procedures but will lock the index file while cache is being updated. Scenario presented above,
would have less impact on the database as InnoDB allow simultaneous reading and writing of
the actual database. However, in some cases, such as frequent updating of the tables (hence fre-
quent rebuilding the cache and index file) may cause unexpected behavior Cabral and Murphy [5].
Next to that data is been migrated between databases as it undergoes processing, each migration
requires new database connections. On idle, with no incoming data-frames, database runs on av-
erage around 50 queries each second. These results in many connections to be (re-)opened every
second. Each connection creates an open file, number of which is limited by the operating system.

Generally, when MySQL is used, the number of stand-alone database should be kept minimal
as the increase in semantic relations is preferred. This will result in the complexity increase.
However, according to Endes [14] software should have strong cohesion and keep coupling low.
This approach is well known as Constantine law: "... reduce the complexity of programs by
dividing them into functional modules. This can make it possible to create complex systems
from simple, independent, reusable modules. Debugging and modifying programs, ... managing
large programming projects can all be greatly simplified...” (Stevens, Stevens et al. [32]). This
approach is often applied in software development and is known but modern term “modularity”. It
forms the core of the object orientated programming languages. Clearly, different strategies would
result in different outcome. In case of the telemetry server a framework is preferred above highly-
tailored design. This means that software should be easily adaptable to the future missions,
decreasing the development time. One of the consequences of this decision is requirement on the
overall system complexity. The Delfi-n3Xt waterfall database is therefore easy implementable
as structure is fairly easy. A clear disadvantage is the high amount of data duplicates and less
stable system under load.

4.4 Data Distribution
In order to deliver data to the users, system contains two interfaces. First interface, is the real
time data presented by DUDe. Second interface is the Delfispace website. As discussed earlier,

26

different users are identified by the system. Radio Amateurs upon authentication are able to see
their personal submitted telemetry and the overall telemetry statistics. The operators on other
hand are able to see current status of the satellite and graphical representation of historical data.
For processing purposes, operators can download the data in .csv (Excel) format.

The website is considered to be “static” as the data is being generated and updated on the
server side. This means that data presented in the website is only updated when server updates
information in php files. For the selection of the content in the Operator view, website relay on
the backend and only small amount of tasks are performed on the front end.

27

5 Trade-off

The Ground Segment and the telemetry server in particular, contribute to the overall to the
overall DelFFi mission outcome. For the upcoming QB50 mission, every participant has an
unique opportunity to make use of flight proven Ground Segment. Therefore in order to increase
overall mission success, a trade-off is required between available software solutions.

5.1 COTS
In order to fully assess situation, a short introduction will be given on usage of the commercial off-
the-shelf software. Usage of COTS software in its essence means that the software development
is based on requirements defined and analyzed by a 3rd party developer. The requirements are
formed on the needs from users in different environments, which may or may not change in the
future. Generally, an initial misalignment in requirements will be present, that will be solved on
long run by adjusting the user workflow of the users or addition of an extra software packages.
On other hand more generic requirements, mean that the software may contains functionality
not yet identified by the DelFFi team or addition of an extra functionality later in the project.

One of the main advantages in usage of COTS software or components is testing and valida-
tion. The overall system reliability is superior compared to in-house applications. Secondly, the
software is often available in a shorter period of time.

For large and advanced software packets and external involvement is required to achieve pos-
itive results. For example, the software configuration and fine-tuning. This is often required,
as the source code is not presented to the users or when functionality is not fully documented.
It should be noted that when the source code is edited, software can no longer be treated as
COTS and testing&validation is required. Secondly, edited software cannot be updated as easily
or even impossible. Another aspect is reliance on one company. This dependance may influence
operations in the future, for example when development is discontinued.

The developers of the SEER [16], software to predict cost of COTS product usage, identified
a great number of COTS risks and issues. Many of these issues are related to IT environment,
but some are strongly related to the EPFL software and DelFFi mission:

• Component that may not fully integrate with the architecture

• Component functionality must be modified

• The consequences of the implementation and wrappers is hard to predict.

• Vendor may cease further development and supply of the product.

• Clients may not be allowed to modify the software

5.2 In house software
Main advantage of in the house software is flexibility. By designing software from scratch, a
set of requirement is specifically set on the users needs. It is however challenging to determine
full set of requirements, some of which will only be discovered after initial implementation. The
keyword of the in-house software development is the control. Software is developed according
to the users needs and the architecture is tailored accordingly. The performance is not fixed as
in the COTS implementations and there is plenty of room for optimization. The source code is
also available and the bugs can be resolved in a shorter term.

In-house development can be seen in many cases as a re-invention of the wheel. The quality
of which is highly dependent on the skill level of the developer team. In this case, the re-usage

28

of the legacy software may seem as a good alternative. It should however be noted that re-usage
of existing software often requires redesign of certain components. Reverse engineering of which
may undo all expected time advantages.

5.3 GENSO
GENSO network is discarded from ground segment software list on the early phase. This is
mainly caused by lack of updates on the status of the GENSO system design. From the available
sources, it is clear that the development is delayed and won’t be completed before the QB50
launch. The single ground station supposed to make use of GENSO software is COSMIAC,
Configurable Space Microsystems Innovations & Applications Center at University of New Mexico
in Albuquerque, NM [7]. The mission Trailblazer, was cancelled after 2 unsuccessful launches,
and GENSO functionality was never not fully verified.

5.4 Trade-off EPFL and Delfi-space
In order to make the selection between usage of the Delfi en EPFL software, a trade-off process
should be performed. First technique is based on the assessment of the available documentation
and user experiences with the program. Second approach is based on the analysis of the source
code [2]. It should be noted that both EPFL and Delfi software are hard to evaluate equally, as no
source code is available for EPFL software (software not yet complete) and the documentation of
both software packages in incomplete. Another technique is the evaluation of the actual software.
It is performed on the basis of user cases and mission scenarios. This was however not possible
at this stage of the process.

According to ISO-9126 standards Quality of the source code is assessed on the basis of Func-
tionality, Reliability, Usability, Efficiency, Maintainability an Portability [2]. The assessment is
usually performed in 4 steps. First, Code Quality is assessed on the technical parameters such as
reliability and complexity. Second step is architecture assessment. During this step the overall
consistency, modularity and intended-to-actual architecture assessment is performed. Third step
is focused on Internet and Web Services. The main goal of this step is to check the vulnerability
of the system (stability), cross-platform compatibility and performance. Last step covers the
Databases. It focuses on integrity of the databases and model modularity.

Clearly, this approach is hardly applicable for the trade-off process due to lack of the actual
code and ambiguity of ISO-9126 concepts. Quality assessments techniques of ISO-9126 are known
to be misleading [2] and result in double count of certain parameters (for example function im-
plementation completeness - function implementation coverage). Therefore, the documentation
based trade-off is most suitable for the current situation.

5.4.1 Suitability
Before suitability of the EPFL software can be assessed, it should be noted that the processing
of the frames, such as frame decomposition should be developed by the QB50 participants.
Secondly, the user interfaces are not clearly defined and every extra processing step should be
developed by the QB50 participants. This means that the EPFL software should be extended
before it can be applied for DelFFi mission.

Both (bare-bone) EPFL and Delfi-n3Xt telemetry software does not comply with the DelFFi
Telemetry Server requirements. In case of Delfi-n3Xt, software should be updated to allow WOD
to be sent to the QB50 server. From user experiences, it was determined that the user interface
should be improved, hence the “website” requirements. The EPFL software only provides a basic
functionality. All user interfaces prescribed in the requirements should be developed.

5.4.2 System and Software Flexibility
Both software packets can be adjusted to mission specific needs. The EPFL software requires
knowledge of .NET framework developing in order to perform any adjustments. It is unknown

29

Figure 5.1: AX.25 frame

whether server source code will be provided and whether only plug-in types of the software
updates are possible. Delfi-n3Xt telemetry server implementation is less thoroughly documented,
it requires reverse engineering in order to adjust the software.

The flexible telemetry frames, as described by Schoemaker [30], will require ether an unique
identifier or header definition. This is required by the processing software, as the bit string would
not be decodable otherwise. The flexible frame layout identifier or a frame id can be written in
the Protocol Identifier field of the AX.25 frame 5.1. This way AX.25 frame utilize the unused 8
bit and frame become decodable by the Wireshark.

EPFL software require a fixed AX.25 Transfer Frame Header lay-out. Specifically, the Protocol
Identifier should be set on 0xF0. This requires the frame id to be stored in the Information Field
and waste 8 bit of frame. Another point of the ambiguity is the ground station, according to
EPFL documentation, every ground station should fulfill needs of every participant, so the GS
are scheduled and controlled by EPFL.

5.4.3 Compatibility to Future missions
Delfi-n3Xt and Delfi-C3 telemetry software are both in-house products. It can therefore be mod-
ified and reused, furthermore it provides a guideline for the future design. The data acquisition
is based on the radio amateur contribution that are unlikely to cease the collaboration in the
near future.

In case of EPFL, it is not indicated whether both software and hardware can be used after
the QB50 mission. The usage of EPFL software enables DelFFi to acquire telemetry data from
Ground Stations of other QB50 participants during the mission. This expands the coverage and
reduces the complexity of WOD downlink solution. However, because of the the complexity of
the operations such as control of GS of the participant, it is unlikely that the Ground Segment
will be usable after QB50 mission.

5.4.4 Reliability
As discussed earlier COTS is considered to be a more reliable and stable product. This is mainly
caused by more severe testing and validation requirements. It should however be noted that the
processing scripts are build and tested by the clients, rather than by EPFL, reducing the overall
reliability.

Both systems contain a single point of failure in this design. In case of EPFL this is the EGSE
Router, where in the Delfi-n3Xt it is the database and the database connector on the server
side. The connector ensures that the DUDe data is written directly into the database. In case
of connector failure, the DUDe client would not be able to communicate with the database and
Radio Amateur would not be able to login into the DUDe client and data would not be received
by the server. It is however possible for Radio Amateur to store the data and re-transmit it once
connector is up and running again. In case of the EPFL software, EGSE Router failure will cut
the communication with ground stations in both directions. It is unclear whether GS contains a
local database for the data storage, hence the consequences of EGSE Router downtime can not
be assessed.

30

5.4.5 Documentation and system complexity
The available EPFL documentation is ambiguous in many aspects, what hints towards the incom-
pleteness of the final software. This combined with a high system and architectural complexity
may results in unforeseen implementation delays. The messaging protocol used by EGSE Router
is designed for a different application and is considered to be overly complicated [19]. This
requires a in-depth protocol knowledge before be able to be applied.

EPFL is a highly integrated system, that controls the antenna, performs schedules and trans-
mits the telecommands. In case of Delfi-n3Xt and Delfi-C3 most of those functionalities are
performed by separate software systems. This reduces overall risk and ensures system flexibility.

5.4.6 System coverage (end-to-end)
Both EPFL and Delfi-n3Xt can be seen as end-to-end software solutions. EPFL software has an
overall larger geographical coverage as it both provides telecommands and GS control capabilities.
By collaborating with the GS of all participants EPFL system ensures the all GS are scheduled
automatically and WOD quota of all participants is met.

5.5 Summary of Software findings
The Delfi-n3Xt telemetry server is relatively simple in its architecture but lacks the functionality
required for the DelFFi mission. The main issue is the incompatibility with the flexible telemetry
frames. Addition of the second satellite would increase processing load on the satellite and would
double number of the databases in the system. The whole design is scalable, which is achieved
at expense of higher server load. The processing scripts are hardcoded, this requires extensive
software adjustments in order to comply with flexible telemetry frame design. The data visual-
ization is limited and contain a number of shortcomings. The overall reusability of Delfi-n3Xt
software is therefore assessed to be low, as implementation is poorly documented. Work required
to reverse engineer the software implementation and bug hunt required exceeds implementation
timeframe. Therefore, rewriting the code by containing the current architecture is considered to
be the best alternative.

The central checkout origin of EGSE Router and hence whole EPFL design is still visible in the
implementation. Arguably, the additional complexity introduced by that, is unlikely to pay off
in terms of the the system performance when it is used in for the DelFFi mission. The routing of
the data and the actual architecture is logical for the checkout systems as each client (= sensor)
is well defined before actual operations. In case of DelFFi, large share of data is contributed by
Radio Amateurs. This has 2 consequences. First, a high number of amateurs are located within
Western Europe, therefore system will receive number of duplicates from different GS. Because
the GS are correlated to frames with a type 8 report, MCS will receive number of type 8 reports
for a identical frames. It would not be possible to correlate a specific duplicate to a specific
GS, as every duplicate frame would have an identical timestamp. Secondly, it may be possible
that frame is damaged and certain amount of measurements is not accessible, again it would be
hard to determine the origin of the given frame. Because the documentation of MCS software
does not define this case, it is unknown how system would react to the duplicates. In the last
update of the documentation [31] the EPFL indicates the Radio Amateur integration into the
whole architecture. The role of Radio Amateur (RA) in the mission is rather ambiguous, as it
can be seen in the figure 5.2. According to which, Radio Amateurs are only eligible to receive
beacon data (BEA) only. Science (SD), Whole Orbit , Payload and Housekeeping data can only
be received by GSx, a Ground Station part of the EPFL network, which is not aligned with the
current policy of DelfiSpace. In order to resolve this issue the DUDe client can be reused with a
back end at TU Delft side, that injects data directly into EGSE network.

Another point of ambiguity in EPFL documentation is the lack of high level information on
the system architecture and overall system integration. The main point of ambiguity is mainly
the integration of the ground stations (of all QB50 participants) within the local EGSE networks
of each participant. Fact that it is undefined, arguably means that the design decisions are

31

Figure 5.2: VKI proposed End-to-End data flow for a QB50 CubeSat [31]

not yet made. Furthermore, the design documentation [18] suggests automatic scheduling of the
ground stations, what implies the need for the control software for the antennas and telecommand
equipment. It is unsure whether satellite is tracked automatically or user action is required. In
latter, the need for telecommands messaging is less relevant.

From all available EPFL documentation on the messaging protocol and system functions, it
is clear that the security is been neglected. The core of the EPFL software was designed as a
local network inside a secured IT environment and contains no authentication services. Because
the EPFL system is operating over the internet, for instance the data communication between
GS and EGSE router, it is most likely that the authentication services will be added later in
the project. This is required to keep system robust and prevent mis-configurations. As stated
in the ILT experience report[19], latter is rather complicated and requires a better traceability
of the messaging system. From development perspective the command tokens are developed to
increase the traceability, while the unique tokens should be generated on the client side. Extra
client side intelligence is required to solve this problem. The client side control is however limited
to plug-in scripts, so it is unknown how far traceability is present in the system.

5.6 Trade-off
The goal of this paper is to select the most optimal software solution to increase the overall
mission success. The contribution of the software to the mission success can be evaluated using
the utility tree, as it elicits and prioritizes the quality attributes that contributes to the project.
The utility tree for a generic software product can be found in the figure 5.3, it emphases the
major fields of interests and will be used as the guideline for the trade-off criteria selection.

By analyzing the mission requirements 1, a set of selection criteria has been determined that
captures the mission need..

• C1: Suitability

Suitability is in its essence measure of compliance of the software system to the mission require-
ments. Metrics of this category can be extracted from the mission technical documentation,

32

Figure 5.3: Utility tree

highlights of which are summarized in chapters 1 - 4.

• C2: System and Software Flexibility

Flexibility is a measure of adjustability of the software to a new mission requirement. Technically,
this means the ease of adjusting the telemetry-frame definitions, processing and visualization
parts. The main driver of this criteria is Maintainability.

• C3: Compatibility to the Future missions

Creating a reusable product, reduces the development time of the future missions and increases
the interest from third party developer. Engaging which may increase the overall quality of the
product and arguably the success rate of the future missions. The main metrics of this selection
criteria is Extendibility, which goes along with scalability of the final product.

• C4: Reliability and Risk

Reliability and Risk form the trustworthiness selection criteria. It involves many characteristics
such as risk in the overall design and architecture, but also metrics as the maturity of the
application and the skill of developers. The main driver of the Reliability and Risk criteria is
Availability.

• C5: Documentation and system complexity

Provides an insight on amount of work hours to adjust, install and configure the software.

• C6: System coverage

System coverage selection criteria focuses on the integration of the final product and additional
software required to make system work.

In order to perform the trade-off Analytic Hierarchy Process will be applied. AHP is selected
due to the ability of decomposition of the problem into a set of more comprehended subprob-
lems. Process contains 2 deliverables, relative ranking of the criteria and relative ranking of the
products. First, the relative ranking of the selection criteria will be determined. The table ??
combines relative ranking of each criteria set to specific reasoning. Criteria definition and coding
can be found in section 5.2. The software solutions considered as a valid alternatives are:

• S1: Adjusted Delfi-n3Xt software

33

• S2: New implementation based on Delfi-n3Xt architecture

• S3: EPFL software

As stated earlier, the selection criteria are applicable for many companies and different software
solutions. The challenge is therefore present in the field of the mutual weighting of the criteria
rather than criteria themselves. The choice of the mutual weights of the selection criteria reflect
on the priorities within the development of the current and the future missions. This is highly
related to this mission specific critical points that define the overall success of the mission. The
AHP process is well known in the literature [21] and will no be further explained in this document.
The weight selected for the mutual weighting are on scale 1 to 5, where 5 represents the highest
grade and hence highest importance.

The mutual weights can be found in the table 5.1, the rationale is summarized below:

• C1 - C2:

It is crucial to comply with the software and system requirements, when it is compared to
flexibility of the software components, it becomes apparent that latter comes on the second place.
Hence weight of 4. It should be noted that Flexibility represents ability to adjust the software
while mission is running, for example addition of an extra processing frame or adjustment of the
processing script.

• C1 - C3:

It is more important to fully comply to the current mission requirements, as the future mission
requirements are unknown at the design stage and adding extra functionalities to fulfill guesti-
mated future needs doesn’t contribute to the success of current or even the future mission. A
flexible framework usable for all future Delfi-Space missions is preferred on the long run (C3),
which still required to fully comply with actual requirements (C1). Hence weight distribution of
5 - 4.

• C1 - C4:

It is straightforward that the reliability is more important than suitability, therefore a weight of
4 has been assigned to the C4. Suitability has weight of 3, as a very stable and reliable software
still needs to perform mission required tasks.

• C1 - C5:

A less documented software may require more installation and configuration efforts, but com-
plying to requirements is still far the most important. Documentation is vital to make system
maintainable and usable for the current and future missions. In case of EPFL software, a lack
of the specific installation documentation may result in a unusable product which may result in
downtime of the ground segment. Hence weight of 4 on the C5.

• C1 - C6:

The overall coverage is less important compared to the system requirements as long as all sys-
tem requirements are met. Therefore satisfying the requirements is prioritized. Coverage was
weighted 2, as a well integrated solution is preferred.

• C2 - C3:

As C2 mainly focuses on the software adjustments (like an extra frame definition), C3 focuses on
the overall capability and compatibility. It is concluded that a long-term supported software is
more favorable as every mission would require a complete telemetry server redesign (“Reinvention
of the wheel”). Therefore an established framework (C3) is preferred, hence weight of 4.

• C2 - C4:

Reliability is a major factor in a space mission. A failure of the telemetry server would make it
impossible for the operators to receive and processes satellite data, hence weight of 3 for C4.

34

Table 5.1: Relative ranking of the selection criteria
ID1 Weight 1 ID2 Weight 2
C1 5 C2 4
C1 5 C3 4
C1 3 C4 4
C1 4 C5 3
C1 4 C6 2
C2 2 C3 4
C2 1 C4 3
C2 2 C5 2
C2 1 C6 2
C3 2 C4 5
C3 1 C5 1
C3 1 C6 1
C4 2 C5 1
C4 5 C6 1
C5 2 C6 1

• C2 - C5:

Documentation and system complexity is considered to be equally important when compared to
system flexibility, this is mainly driven by the need of the system reusability.

• C2 - C6:

System coverage is considered to be more important compared to adjustability, as less develop-
ment time is required (e.g. In case of EPFL software - control software for antenna)

• C3 - C4:

The reliability has a major impact on the overall mission outcome, therefore when it is compared
to the readiness of the software to the future mission, the latter weight as set to 2 and C4 to 5.

• C3 - C5:

Documentation and system complexity have an equal impact on the mission as C3 as they both
contribute equally to the re-usability of the software solution.

• C3 - C6:

Both are weighted equally as both contribute equally to the mission outcome.

• C4 - C5:

Reliability is more important than C5, but a complex system endues the risk significantly. There-
fore weighting factor is 2-1.

• C4 - C6:

Reliability is preferred above end-to-end software, as it has most impact on the mission outcome.

• C5 - C6:

Well documented or low complexity system is preferred over end-to-end software as it increases
the chance of the future development.

The relative ranking of software solutions can be found in the table 5.2 with rationale sum-
marized below:

• C1:

35

– S1 - S2: Both systems will comply with the requirements. A new implementation is
however more favorable due to compliance with flexible telemetry data on the database
design level.

– S1 - S3: Both systems comply with the requirements after updates. However, as
system is adapted for QB50 specifically, it has a higher score.

– S2 - S3: A new implementation is more in favor due to compliance with flexible
telemetry data design.

• C2:

– S1 - S2: Redesigned system is extremely adaptable to specific needs for the upcoming
mission.

– S1 - S3: EPFL software contains plug-in capabilities and is therefore slightly more
adjustable.

– S2 - S3: A new, well documented, design ensures that software is easily adjustable to
user specific needs on every software level.

• C3:

– S1 - S2: A well documented and redesigned system provides superior reusability as it
requires less efforts to understand and adapt the system.

– S1 - S3: Reusability of both system is limited. In case of Delfi-n3Xt system, the
adaptations require time investment in reverse-engineering the code. EPFL software
may not be available after QB50 mission.

– S2 - S3: The main issue is uncertainty whether EPFL system may be used for the
future missions.

• C4:

– S1 - S2: As both systems are designed and implemented by students, the risk of both
systems is comparable.

– S1 - S3: EPFL is professional system, hence the risk is significantly lower. However,
due to presence of multiple systems and relative short implementation time, the risk
is still present.

– S2 - S3: EPFL is professional system, hence the risk is significantly lower. However,
due to presence of multiple systems and relative short implementation time, the risk
is still present.

• C5:

– S1 - S2: Redesign and re-implementation of the system is more favorable compared
to adjustment of the existing system. This is due to reverse-engineering time delay
and time required to find and fix existing bugs (by doing so unwanted complexity will
be introduced to the system). By adding documentation on the high priority task a
great improvement can be achieved with a redesigned system.

– S1 - S3: EPFL software is more favorable as external aid can be requested. This
way the amount of work is reduced. The documentation is however ambiguous on
number of concepts and software is likely still in the development phase. The overall
complexity of the system is high and configuration is prone to the errors. Hence weight
of 2.

– S2 - S3: EPFL software is more favorable as external aid can be requested. This
way the amount of work is reduced. The documentation is however ambiguous on
number of concepts and software is likely still in the development phase. The overall
complexity of the system is high and configuration is prone to the errors. Hence
weight of 2. A freshly redesigned telemetry server requires more development time,
but requires less configuration (setting up servers, configuring and developing the
plugins etc), hence the overall weighting of both components is equal.

36

Table 5.2: Relative ranking of the software solutions
Criteria ID 1 Weight ID 2 Weight

C1
S1 1 S2 4
S1 1 S3 2
S2 3 S3 1

C2
S1 1 S2 3
S1 1 S3 2
S2 3 S3 1

C3
S1 1 S2 5
S1 1 S3 1
S2 5 S3 1

C4
S1 1 S2 1
S1 1 S3 3
S2 1 S3 3

C5
S1 1 S2 3
S1 1 S3 2
S2 1 S3 1

C6
S1 1 S2 1
S1 1 S3 3
S2 3 S3 3

Table 5.3: AHP analysis results
System Grade - Author Grade - Participant 1

S1 0.17 0.33
S2 0.44 0.35
S3 0.39 0.31

• C6:

– S1 - S2: The Delfi-n3Xt software is already present and is used for the mission, as
part of it can be reused for the DelFFi telemetry server, both systems are equally
integrated.

– S1 - S3: EPFL software is ready to be used and covers most of the essential function-
ality. The system requires plugins to be able to decode the data. Therefore weight of
3 is applied.

– S2 - S3: A finished and redesigned telemetry server covers all required functionality
and has therefore slightly higher score compared to S1-S3 combination.

From the results found in the table 5.3 it is clear that an in-house developed product is more
in favor from author point of view. In order to validate this finding and reduce the bias, the
weighting process was performed again by a different DelFFi member. Participant was unaware of
outcome and distributions found in the tables and based their decision solely on the information
presented in the technical documentations and summaries in this paper. It can be seen that the
overall result is still in favor of in-house application, but differs in magnitude. This is caused due
to more conservative selection of weights.

AHP method doesn’t provide a final answer to the question, it is rather a tool to support the
argumentation presented in the previous chapters. From available documentation and description
of the EPFL software solutions, an in-house developed software is more advisable. It adds to
certain extend risk to the system, but provides unmatched design flexibility and due to presence
of the source code, contributes to the further refinement of the product.

37

Bibliography

[1] Mysql Ab and East Street. Administrators Guide. 2005. ISBN 0672326345.

[2] Hiyam Al-kilidar, Karl Cox, and Barbara Kitchenham. The Use and Usefulness of the ISO
/ IEC 9126 Quality Standard. pages 126–132, 2005.

[3] Omar Awile. Sharktools. URL https://github.com/armenb/sharktools.

[4] William A. Beech, Douglas E. Nielsen, and Jack Taylor. AX . 25 Link Access Protocol for
Amateur Packet Radio. (July), 1998.

[5] Sheeri Cabral and Keith Murphy. MySQL Administration Bible. Wiley, 2009. ISBN 978-0-
470-41691-4.

[6] Mariarosaria Cardone, Project Manager, and Technical Project Manager. OBC INITIALI-
SATION SEQUENCE AND ATB. 2013.

[7] COSMIAC. Space Microsystems Innovations & Applications Center. URL
http://www.cosmiac.org/ground.html.

[8] Gaillen Van Craen. DNX-TUD-TN-0883 [3. 2011.

[9] James Cutler. Ground Station Virtualization. .

[10] James Cutler. Mercury Ground Station Network project, . URL
http://sourceforge.net/projects/mgsn/files/.

[11] James Cutler. Mercury Ground Station Network, . URL http://mgsn.org.

[12] J.W. Cutler. Ground station markup language. 2004 IEEE Aerospace Conference Proceed-
ings (IEEE Cat. No.04TH8720), pages 3337–3343, 2004. doi: 10.1109/AERO.2004.1368140.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1368140.

[13] John Dooley. Software Development and Professional Practice. Springer, 2011.

[14] Albert Endres and Dieter Rombach. A Handbook of Software
and Systems Engineering: Empirical Observations, Laws and Theo-
ries [Hardcover]. Addison-Wesley, 2003. ISBN 0321154207. URL
http://www.amazon.com/Handbook-Software-Systems-Engineering-Observations/dp/0321154207.

[15] ESA. EGSE Toolkit, 2007. URL http://telecom.esa.int/telecom/www/object/index.cfm?fobjectid=28574.

[16] Dan Galorath and Fred Brooks. Software Reuse and Commercial Off-the-Shelf Software.

[17] Florian George. Satellite Control Software (SCS) Mission Data Client Extensibility User
Guide. (November):1–16, 2013.

[18] Florian George and Stephane Billeter. Satellite Control Software (SCS) EGSE Router
Infrastructure ICD. (November), 2013.

[19] Steve Guest. Smooth Transition and the ILT Experience
EGSE Systems in ILT / IST as a Whole, 2013. URL
http://herschel.esac.esa.int/twiki/pub/Public/LessonsLearned2013Agenda/egse.pdf.

[20] Anil S. Jadhav and Rajendra M. Sonar. Evaluating and selecting soft-
ware packages: A review. Information and Software Technology, 51(3):555–
563, March 2009. ISSN 09505849. doi: 10.1016/j.infsof.2008.09.003. URL
http://linkinghub.elsevier.com/retrieve/pii/S0950584908001262.

38

[21] Alexander Kossiakoff, William Sweet, Samuel Seymour, and Steven Biemer. SYSTEMS
ENGINEERING PRINCIPLES AND PRACTICE. ISBN 9780470405482.

[22] M.S. Kuiper and J. Hernando Bravo. DUDe Telemetry Client Software Design. PhD thesis,
2013.

[23] Kyle Leveque, Jordi Puig-suari, and Clark Turner. Global Educational Network for Satellite
Operations (GENSO). pages 1–6.

[24] Mercury Design Team. The Mercury Ground Station Reference Model, 2004. URL
http://mgsn.sourceforge.net/docs/model.php.

[25] Misc. MySQL - open source database, 2014. URL http://www.mysql.com.

[26] Misc. Delfispace, 2014. URL http://www.delfispace.nl/delffi.

[27] Yuya Nakamura and Shinichi Nakasuka. LOW-COST AND RELIABLE GROUND STA-
TION NETWORK TO IMPROVE OPERATION EFFICIENCY FOR MICRO / NANO-
SATELLITES. IAC, pages 1–8, 2005.

[28] Yuya Nakamura and Shinichi Nakasuka. GROUND STATION NETWORK TO IMPROVE
OPERATION EFFICIENCY. 2006.

[29] F Rademakers. ROOT library. URL http://root.cern.ch/drupal/.

[30] Remco Schoemaker. Robust and Flexible Command & Data handling on board the DelFFi
Formation Flying mission, 2014.

[31] VKI Scholz, T, VKI March, G., and EPFL Richard, M. Ground Segment Definition. 2014.

[32] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design. IBM Sys-
tems Journal, 13(2):115–139, 1974. ISSN 0018-8670. doi: 10.1147/sj.132.0115. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5388187.

[33] The Spacelinkngt Tm, T C Interface, Processing Unit, T C Ipu, Ssbv Space, Ground Sys-
tems, and The Tm. TM / TC Interface & Processing Unit (TM / TC IPU).

[34] Y.Sakamoto. UNISEC Ground Station Management Service, 2007. URL
http://www.astro.mech.tohoku.ac.jp/ gsn/en/index.php.

39

D
The International Astronautical

Congress (IAC) Paper

207

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-B1.6.6

Scalable Data Processing System for Satellite Data Mining

Stefano Sperettaa*, Anatoly Ilinb

a Delft University of Technology (TU Delft), Kluyverweg 1, 2629 HS Delft, The Netherlands, s.speretta@tudelft.nl
b Delft University of Technology (TU Delft), Kluyverweg 1, 2629 HS Delft, The Netherlands, a.ilin@student.tudelft.nl
* Corresponding Author

Abstract
This paper describes the development of a new ground station infrastructure targeted towards massive swarms and
constellations. Mission trends are first analyzed to derive the design drivers for such a system and then the general
architecture is analyzed. The target architecture, based on “Big Data” processing architectures is presented, clearly
showing how to re-use current data processing state-of-the-art systems for satellite operations. This paper also describes
the ongoing developments to integrate standard data mining and artificial intelligence software frameworks in the
data acquisition system to develop a complete system capable of acquiring data from multiple sources, autonomously
process them and deliver them to users.
Keywords: CubeSat, swarm, constellation, ground station, data mining

1. Introduction

Satellite swarms and constellations are becoming more
and more widespread thanks to hardware and launch cost
reduction. Nano-satellites are proving extremely suited
for such big constellations where the single satellite has
very limited capabilities but, when combined, very pow-
erful systems could be created (capable for example of ob-
serving the whole Earth once a day). One of the problems
arising from this trend is the constant increase in data to
be transmitted to ground and the increased complexity in
running a constellation with more than 100 satellites.

Several institutions have invested consistent effort in
the development of more capable ground systems to ac-
quire and process all the data. The geographical distribu-
tion of such infrastructure is becoming critical and so does
the capability of aggregating data from multiple sources
(the spacecrafts): this infrastructure is getting more and
more similar to the one used by most web companies (like
Facebook, Google, etc...) to process analytics coming
from web pages. Both infrastructures need to swallow
big amounts of data (or “Big Data”) in quasi-real-time:
in both cases further data analysis (or mining) could help
identifying hidden trends (such as, for example, possible
failures). All these points lead to the design of this sys-
tem, trying to re-use part of the existing data processing
infrastructure and applying it to satellite data analysis. By
coupling together a data-gathering section (acquiring data
from the different ground stations) and a data analysis sec-
tion, we aim at developing a full ground system capable
of supporting massive constellation, up to the point where
human operators would have problems running it.

In the following sections we will analyze the current

trends in satellite systems (see Section 2 to justify our
attention towards massive constellations). We will then
analyze the architecture of such system by starting from
the experience gathered with nano-satellites and looking
at extending it to big constellations (see Section 3). Pro-
posed Lambda architecure will be presented (see Section
4), together with some future work (see Section 5) and
conclusions (see Section 6).

2. Space Mission trends

The steep decrease in launch cost in the past decade
lead to an increase in satellite launches per year, as also
shown in Figure 1. In particular, nano-satellites saw a
tremendous increase in launches per year (264 CubeSats
were launched in the first 3 quarters of 2017, as com-
pared to the total number satellites launched between 2015
and 2016)[2]. But unfortunately the performances of a
single satellite are still limited when compared to big-

Fig. 1: Nano/Microsatellites launch trends[1].

IAC-17-B1.6.6 Page 1 of 11

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

ger missions and this lead, together with the dramatic
launch cost reduction, to the diffusion of multi-satellite
missions[3][4], that are also being proposed for several
purposes, like climate science [5][6], atmospheric obser-
vations [7][8][9] or disaster monitoring[10]. At the same
time, constellations and swarms are becoming as big as
197 satellites for Earth observation, such as the Flock con-
stellation from Planet, whose goal is imaging the whole
Earth at coarse resolution once a day[11].

The ground infrastructure for a massive swarm needs
to handle a high number of satellite passes per day (ap-
proximately 350 with a fleet of 50 satellites[12], expected
to grow to 1400 with the full constellation of approxi-
mately 200 satellites) from different locations worldwide.
Multiple locations would be fundamental to achieve such
goal (see Figure 2, for example) and a strong and fast data
processing network will be fundamental too.

A lot of research going into massively distributed
ground systems, as can be seen in [14][15][16][17]. But
beside the pure data collection and archiving, handling
massive amounts of data poses challenges in itself (sys-
tem scalability, flexibility and fault tolerance) that are cur-
rently being addressed. Operations of such big swarms
and constellations proves also critical, having the opera-
tors a huge number of satellites to monitor and control.
All these reasons lead us to study the architecture of a
massively distributed ground infrastructure, which will be
presented in the next sections.

3. System architecture evolution

3.1 The legacy, no scalability
As a starting point of the discussion and to a famil-

iarize the reader with the core framework functionality,
consider the legacy implementation outlined in Figure 3.
Telemetry processing system has been developed for an
educational nano-satellite mission (Delfi-n3Xt): relying
on the Delft ground station, as well a set of third party
radio-amateurs submitting data through an ad-hoc client

Fig. 2: Spaceflight distributed ground station
network[13].

Fig. 3: Delfi Legacy architecture[21].

application [18]. The client application performed de-
modulation, decoding and limited data visualization [19].
Upon successful client authentication, received satellite
data (data frames[20]) is injected directly to the SQL
database on the Delfispace server. A set of processing
scripts, controlled by a scheduler, decoded binary data
frames to set of satellite metrics and store the latter in
the database. Finally, the satellite functional parameters,
filtered by client permissions, are made accessible to the
stakeholders via a simple web server[21]. The legacy sys-
tem in Figure 3 is a classic example of a “monolithic ar-
chitecture” [22]. The limited scalability expresses itself in
two ways: data processing and server scalability. Process-
ing is limited to a single data frame definition and cannot
be extended. Server scalability can achieved vertically,
by allocating more resources, or horizontally, by running
additional servers in parallel. In practice, horizontal scala-
bility is preferred due to redundancy concerns. Arguably,
aforementioned can be accomplished by deploying the
legacy database in load-balanced configuration [23], with
additional monitoring of processing scripts and load bal-
anced web servers. This effort will grossly under perform
compared to purpose built scalable systems [24][25].

3.2 Scale by leveraging clients
It should be noted, that in the case of Delfi-n3Xt mis-

sion, clients submitting data frames, simultaneously acts
as clients retrieving processed data. A possible evolu-
tion of the previous system is shown by Figure 4, where
the system relies entirely on a distributed database system
for data transport and it is based on the unique server-
side Couch DB and client-side Pouch DB ecosystem.
PouchDB is a javascript implementation of CouchDB, a
no-SQL, document database with out-of-the-box enabled
sharing and data replication capability[26][27]. Being
written in javascript, PouchDB runs in the web browser,
serving database-stored web pages and performing data
visualization, even while offline. By deploying this
ecosystem, satellite data and web pages can be replicated
to the clients, reducing the load on the central server. Any
newly received satellite data by any ground station will

IAC-17-B1.6.6 Page 2 of 11

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

Fig. 4: Proposed client cluster architecture.

be replicated to the central server and replicated to all the
clients.

To increase system stability, a load balancer is intro-
duced and configured to perform write operations only to
one node, and “read” on two dedicated nodes.

This correlates to the CAP theorem[28]: any data stor-
age system can only ensure two out of three character-
istics: Consistency, Availability or Partition Tolerance.
Originally proposed by Marz[29], as a solution to reduce
the system complexity by “the use of mutable state in
databases and the use of incremental algorithms to up-
date that state”, provides a solution to the problem. This
facilitates the partition tolerance (P) and availability (A).
CouchDB[30], like many other no-SQL databases, prefers
A and P over the Consistency (C), meaning that at a par-
ticular time after new data ingestion or data change, there
will be nodes serving different versions of the data [28].
Hence the terminology “eventual consistency”.

The choice of a single “write” and double “read” node
is not arbitrary. Architecture is by design “read” centered,
demanding a low latency for data replication to the clients.
As a bonus, this contributes to the higher availability. The
single “write” node eliminates issues with document du-
plication on the server side. To further streamline data
replication between clients, especially replication to the
new clients, peer-to-peer protocols have been studied[31].

Both CouchDB and PouchDB are document-based
database systems. In this design, documents are equiva-
lent to the row in SQL-like databases, but provide great
flexibility by not enforcing any schema. This is required
to facilitate flexible data frame design[20] and tolerate

missing or corrupt data due to bit-flips. The satellite data
frames database uses key-value pairs defined as JavaScript
objects, e.g. JSON.

As stated earlier, PouchDB can serve complete
HTML5 web pages and run JavaScript applications from
its own database. Using this technique, clients can be
configured to process the data, store in the client-specific
PouchDB database, and replicate it back to the central
server. The central server can perform a MapReduce
operation[32] on all client-processed data, eliminating
any inconsistencies, before adding to the main storage.
MapReduce is a well-studied and understood parallelized
data processing approach and literature provides numer-
ous successful applications as well challenges faced by
using this method[33][34]. The method is designed and
therefore well suited for recurring queries and data pre-
processing: batch-processing[35]. It should be stressed
that setting up mappers and reducers for an on-demand
one-time query is convoluted and performance is slower
compared to the classical SQL querying (provided that the
data fits into a single machine).

Any architecture relying heavily on client-side data
generation requires an extensive security analysis that is
beyond the scope of this paper. For the sake of argument,
running a JavaScript based database and processing scripts
makes reverse-engineering of the code and the authentica-
tion methods trivial. Additionally, the running system can
be modified by a malicious user in runtime. Losing the
edge on the data ingestion means that a single malicious
machine would be able to 1) ingest a tremendous amount
of data into the framework saturating the central database,
2) inject executables into the frame data, possibly compro-
mising the central database or other client applications via
a peer-to-peer connection.

Additional to the security threats, the architecture is a
classic example of a vendor-lock-in: shifting to a different
database system would require significant efforts reducing
the flexibility of the future system development along with
adding a set of risk factors[36][37].

3.3 Lessons learned
Merging the challenges faced with the production

grade legacy system[38] with the experimental CouchDB-
PouchDB partial implementation revealed a list of atten-
tion points to be addressed by the final system design and
listed in the following sub-sections.

3.3.1 Security
It is evident that the system security should be con-

sidered in the earliest stages of the study. Considering a
broader picture entailing data protection and recovery is
especially important. As well the quantifying and cate-
gorizing users based on data access permissions and data

IAC-17-B1.6.6 Page 3 of 11

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

querying.

3.3.2 Client-side data replication and processing
Client-side data processing introduces many variables

to the system and not necessarily pays off in the long run.
Various client environments oppose different challenges,
in case of PouchDB, the operating system and browser
contain security features interfering with operations. As
an example, the browser local storage is limited to 5Mb
on iOS devices and on Safari (MacOS) requests users to
validate the local storage permissions incrementally.

JavaScript has the capability to run in parallel, but
executing scripts negatively affects the data replication
speed. Additionally, after a browser restart, the earlier
replicated data could be invalidated, requiring a complete
re-download.

3.3.3 Data ingestion
The analysis of the historical data revealed that radio

amateurs are sparsely scattered around the world, with a
density peak in proximity to the Delft ground station, re-
sulting in data duplication. A similar result could also
happen due to the non optimal planning in a distributed
ground station network or due to redundancy in receiving
stations. Different network performances (or the tempo-
rary unavailability of network connection) could also re-
sult in out-of-order data frame ingestion on the database
side. Data processing scripts may contain errors, requir-
ing re-computation of the complete datasets.

3.4 Transition to Big Data: Lambda architecture
Looking at previously described systems exposes a

common flaw. Telemetry frames received by the teleme-
try server, are processed and added to the central server, at
which point the data distribution to the clients take place.
Running both systems revealed that next to machine-
tolerance, system should have human-tolerance, as bugs
in data processing are frequent [38] and arguably unavoid-
able. Additionally, the system faces a more general chal-
lenge: on the one hand, near-real time data processing is
required, while on the other hand, datasets are expected to
be consistent and reliable. This correlates back to the CAP
theorem [28]: any data storage system can only ensure
two out of three characteristics: Consistency, Availabil-
ity or Partition Tolerance. Originally proposed by Marz
[29], as a solution to reduce the system complexity by “the
use of mutable state in databases and the use of incremen-
tal algorithms to update that state”, provides a solution to
the problem. A common implementation is an architec-
ture consisting split into two parts, one for incremental
state update: speed layer and one containing immutable
data used for analysis: batch layer [39]. The system ar-
chitecture following this approach is commonly known as

Fig. 5: Lambda Architecture

Lambda architecture. Figure 5 provides a high level func-
tional overview. It should be noted that each node on the
diagram represents a server cluster.

3.4.1 Data consumption
As shown in figure 5 data consumption is the data

entry point to the system. Architecture does not oppose
requirements on the design of this component, however,
all incoming data has to be split into two identical streams,
one consumed by batch layer, one by speed layer.

3.4.2 Batch layer
The batch layer has two functions, appending new data

to the immutable data storage, and computing the batch
view. It should be stressed that all received data is stored
permanently, preferably without the ability to be modified,
preventing data corruption due to human interaction. Once
stored, data ought to be processed in batches, eliminat-
ing the data inconsistencies such as duplicates and out-of-
order frames.

3.4.3 Streaming layer
Running large batch jobs is both time and resources

consuming, and is therefore expected to be executed on in-
tervals. The streaming layer, designed to compensate for
the data between the batch intervals, depends on the real-
time data arriving the system and is therefore completely
independent of the immutable storage. An interesting con-
sequence of this is that the stream processing generates
own stream views, potentially containing out-of-order and
duplicate data.

3.4.4 Serving layer
Serving layer is responsible for running queries on the

collection of the streaming and batch views. As previously
stated, all historic data is present in the batch view, while
all the newly received data can be found in the stream
views. The techniques of executing the queries and re-
moving redundant stream view data upon batch comple-
tion are not enforced by the architecture and is part of the
implementation.

IAC-17-B1.6.6 Page 4 of 11

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

Fig. 6: Kappa Architecture

3.5 Transition to Big Data: Kappa architecture
When introduced, Lambda architecture relied heavily

on MapReduce as batch processor and Apache Storm
and Apache Flink for stream processing layer. With the
maturity of Spark Streaming API, a number of alternatives
architectures has been proposed, Kappa architecture as
the most popular one. As shown in Figure 6, Kappa is
a simplification of Lambda architecture, with the batch
processing and stream processing aggregated to a single
Spark cluster. Spark batch processing, sharing the code
base with Spark Streaming, can be executed on demand
to reprocess the complete historic data set. While for
the day-to-day operations system would utilize the Spark
streaming. This approach simplifies the serving layer,
removing the double views.
When working with stream processing, it is important to
keep transactions stateless whenever possible. Relying on
database reads to validate the data, to remove duplicates
or out-of-order frames, is not welcomed. In some cases
batch processing will be required to remove or update
past event states, what in its turn invalidates earlier
streaming views, requiring extra complexity to mitigate
the downtime.

4. Selected architecture

The data processing system is designed with two main
functions in mind: provide satellite monitoring function-
ality and facilitate data mining. The satellite monitoring
entails telemetry data processing and visualization. Data
mining entails identifying data sources, building and val-
idating data models iteratively, and potentially embed-
ding data model outcome in the monitoring dashboard.
From the earlier proposed architectures, only Lambda and
Kappa can be considered as viable options. For data trans-
formation and visualization purposes, Kappa architecture
proves as well suited candidate, due to its streamlined and
lean approach. However, by oposing data mining require-
ments, frequent batch jobs become a necessity for build-
ing, validating and improving of the data models. Ad-
ditionally,by regularly recalculating the complete historic

data set, ensures data consistency in the serving layer,
making data more accessible for querying by satellite op-
erators. The abstraction of the Batch layer opens oppor-
tunities to run jobs on separate (cloud compute) clusters,
cutting processing time for resource demanding computa-
tions without affecting satellite operations. This leads to
the selection of Lambda architecture for the project.

Following sections cover high-level decisions and
framework selection. The groundwork of available ap-
plications is well covered in the literature [40] [41]
[42],therefore only high-level description will be pro-
vided.

4.1 Serving layer
The serving layer is designed to aggregate and serve

data from streaming and batch layers to the client appli-
cation. This function can be fulfilled in many ways, for
example by running a single database system or a query
engine on two different database systems. The implemen-
tation depends on the user requirements, in scope of this
project, users require near-real-time graphical and tabular
views of the satellite status (dashboard). Additionally, the
user should be able to execute custom, on-demand queries
for data analysis and satellite troubleshooting.

Since the satellite telemetry is techincally time-series
data, the majority of the existing log data visualization
frameworks can be applied out of the box. Kibana and
Grafana are two most popular and powerful open-source
visualization tools [43]. Grafana is designed with a time-
series database on the backend in mind, while Kibana uti-
lizes ElasticSearch. Grafana supports multiple databases
following strict time-series schema, while Kibana, only
supports ElasticSearch but allowing more flexible schema.
Recently published work [44] proves both frameworks
comparable on the visualization aspects but requiring fur-
ther research on graphing capabilities for the actual satel-
lite telemetry. ES enables users to execute queries and
calculations within Kibana. While querying time-series
database, such as InfluxDB, requires an additional inter-
face to bind to the database API. Providing this functional-
ity to users over the internet increasing overall complexity
and requires careful design and implementation.

For the project Kibana and ElasticSearch has been se-
lected, due to its operational simplicity, features and ease
of implementation and maintenance.

Utilizing Kibana requires both Streaming as Batch
processed data to be stored in ElasticSearch. Aggregating
this data requires removal of redundant Streaming Data
upon Batch completion. This is not a unique problem [45]
and can be resolved using ElasticSearch Curator by as-
signing retention to the streaming data. Another solution
to the problem is to overwrite all data in ElasticSearch on
Batch completion, actively removing all Streaming Data.

IAC-17-B1.6.6 Page 5 of 11

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

Fig. 7: HDFS Architecture [46]

Further research is required to determine the optimal tech-
nique.

4.2 Batch layer
The batch layer is introduced to the Lambda architec-

ture with the purpose of bulk data processing and retention
of the immutable data set.

4.2.1 Immutable data
The storage of the immutable data set requires a sys-

tem that ensures file integrity while allowing access to
multiple (simultaneous) readers. This can be achieved us-
ing (distributed) file system or a database system. Hadoop
Distributed File System has been selected over databases
systems due to

• Tolerance to unstructured data: satellite data can use
different formats, from binary blobs to image and
video file(streams)

• Scalability: deployed and extended to multiple ma-
chines without configuration changes to the client ap-
plications

• Analytics: HDFS, as part of Hadoop ecosystem, is
universally supported for data processing, includes
API’s and query engines for custom data processing
systems.

Hadoop Distributed File System (HDFS) is a dis-
tributed file system designed to provide scalable, fault-
tolerant and consistent data storage across large clusters.
Ability to store files greater than server capacity, while
providing parallel access on multiple machines in a clus-
ter, makes HDFS an attractive choice for Big Data appli-
cations.

As shown in the figure 7, HDFS cluster consists of
two components: a Name Node (NN) and a set of Data
Nodes (DN). HDFS exposes a file system, allowing clients
to store files that are automatically broken up into blocks
with the predefined size (128Mb by default) and stored
redundantly on the Data Nodes. The Name Node acts
as a controller, splitting data into blocks and managing
blocks location while optimising read and write perfor-
mance. CRUD as well file open and close operations are
handled by Name Node. In this master-slave architecture,
only a single Name Node is allowed at all times, making
it a weak point of the system. To mediate this issue a sec-
ondary Name Node is assigned by Yarn containing a copy
of the edit log, reducing the recovery time of the system.

4.2.2 Batch processing: MapReduce, Apache PIG and
Apache TEZ

MapReduce is briefly covered in section 3.2 as part of
CouchDB stack. In scope of BigData MapReduce runs na-
tively within Hadoop stack, on top of the HDFS. The gen-
eral concept is similar, and processing depends on Map-
pers to transform and Reducers to filter the data. Typically,
MR batch job is controlled by Yarn (resources) and sys-
tems like Oozie for execution (time allocation). MR fol-
lows a master-slave approach , inherited from HDFS, with
a single Node Manager running MR Application Master
controlling, determining and allocating Map and Reduce
tasks over the cluster. It performs an optimization of the
job based on resources (CPU, RAM) as well the nodes lo-
cally available data to minimize the network bottlenecks.
The Application Master is monitored by Yarn and in case
of failure, will be relaunched automatically on a differ-
ent node along with required information to resume the
job. The Reduce jobs often, if not always, require ag-
gregation of data from multiple Mappers, likely executed
on different nodes, all handled by MR without being pro-
grammed in the query. The main drawback of MR is
the two-stage process limitation, that can be medicated
by chaining multiple MR operations, but decreasing the
overall efficiency. Furthermore, the intermediate Mapper
results are stored on the nodes hard drive, further degrad-
ing the performance [47]. Apache PIG is an infrastruc-
ture and a high-level language, PIG Latin, for data analy-
sis programs, evaluating directly on MapReduce and Tez.
Apache TEZ is a high-performance MapReduce alterna-
tive that relies on complex directed-acyclic-graphs (DAG)
and Hadoop Yarn [48].

MapReduce, being part of the Hadoop ecosystem, is
added automatically to the data analytics toolset by select-
ing HDFS as persistent storage. Due to limited perfor-
mance of MR and processing limitation of PIG, both sys-
tems will not be utilized for batch processing use. How-
ever, PIG in conjunction with TEZ serves purposes for

IAC-17-B1.6.6 Page 6 of 11

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

data analytics and troubleshooting of the system.

4.2.3 Data analytics: Apache Hive and HBase
While Apache PIG is designed with scripting in mind,

other abstractions have been developed to emulate a SQL
database. Apache Hive is an analytics querying frame-
work within Hadoop ecosystem. By design, Hive is opti-
mized for analytics: online analytical processing (OLAP).
In short, Hive provides a SQL-like interface (HiveQL) to
access the data stored in HDFS file while only enforcing
a schema on read. It should be noted that Hive does not
provide record-level updates, inserts or deletes.
Apache HBase, a No-SQL alternative, is designed for on-
line transaction processing (OLTP), similar to Google Big
Table. Data records, stored in HDFS, are parsed to column
and column families to mitigate missing data.
Nor Hive or HBase is required for batch processing. Hive
is part of the Hadoop ecosystem, and will be available for
the data analytics.

4.2.4 Apache Spark
Apache Spark is a popular framework used for big

data analytics. Spark is deployed as a cluster applica-
tion and can be monitored by YARN. In contrast to the
two stage MapReduce, Spark executes multi-stage jobs in-
memory, drastically improving the overall system perfor-
mance. The core of Spark relies on the resilient distributed
datasets (RDD) [49], abstraction for the partitioned collec-
tion of records. This ensures fault-tolerance and an abil-
ity to recompute damaged partition with data distributed
over the cluster. The fault-tolerance is achieved by keep-
ing all RDD’s read-only, ensuring that every transforma-
tion creates a new RDD, making each RDD traceable and
re-computable. The key to performance is DAG and the
policy of transforming the RDDs only when directly de-
pendent downstream RDDs are requested: lazy transfor-
mation.
The Spark stack consists of Spark Core, Spark Streaming,
Spark SQL, MLlib and GraphX. Spark Core exposes high-
level RDD and dataset API for batch data manipulation.
Spark API supports a number of programming languages,
Scala and Python being the most popular. Spark SQL ex-
poses a SQL-like language for interaction with RDD, uti-
lizing the structured data API. Spark MLlib is a module
for machine learning utilizing the RDD abstractions. ML-
lib provides classification functionality, for example, K-
Means clustering, providing the necessary frameworks for
basic anomaly detection.
Spark is one of the most versatile batch processing tool
available. This is required since the satellite data frame
format [20] requires additional processing or decoding
tools such as AVRO. Additionally, Spark Streaming al-
lows the majority of code (structured data API) to be

reused for both stream and batch processing.

4.3 Speed Layer
The speed layer requires fast processing while ensur-

ing fault-tolerance and reliability to deliver data timely to
the connected clients. At the time of writing, three dis-
tributed stream processing framework dominate the scene:
Apache Storm, Apache Spark and Apache Flink. The
frameworks are well studied and number of publications
are made on the trade-off and benchmarks. [50] [51] For
the purpose of this project Apache Spark has been se-
lected. The core of data frame processing is identical for
Speed and Batch layers; utilizing the same data process-
ing framework, allows reuse of the code as well cluster,
reducing the overhead.

4.4 Ingestion layer
Ingestion layer ought to provide a secured interface for

the client applications to communicate with, undepend-
able from server implementation and frameworks used.
The API design is out of the paper scope and will be ig-
nored for the discussion. The ingestion layer should be
horizontally scalable and provide (temporary) data storage
in case of immutable storage malfunctions (resilience).

4.4.1 API + HDFS
Hadoop Distributed File System (HDFS) exposes a

programming interface that can be easily connected to
the API used for client communication (data ingest), en-
abling direct data consumption by the cluster. This so-
lution, however, requires high availability HDFS deploy-
ment to cover for any malfunctions, and a system to feed
the streaming data to the Speed Layer.

4.4.2 Kafka
Defacto framework used for the ingestion layer in

lambda architecture is Apache Kafka. Designed as a
system to deliver high volume event data to subscribers,
Kafka utilizes a write-ahead commit log on persistent
storage and provides a pull-based messaging abstraction
to allow both real-time subscribers such as online services
and offline subscribers such as Hadoop and data ware-
house to read these messages at arbitrary pace. [52].

The stream of records, published by API, are cate-
gorised in topics. Topics are used to define data pipelines
and are consumed by subscribers: Speed layer and Batch
layers. In case of clustered deployment, topics are build
up from partitions, collectively called log. As shown in
the Figure 8, each partition is an immutable sequence of
received data. Offset, the unique id of each record is used
to keep track of the last retrieved record per subscriber.

IAC-17-B1.6.6 Page 7 of 11

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

Fig. 8: Kafka Log Anatomy [53]

This enables topic subscribers to consume data at differ-
ent rates. To keep track of offset and subscribers Kafka
utilizes Apache Zookeeper. Additional to the messaging
broker, Kafka contains Connect framework, an extensive
set of ready-to-use Sink and Source connectors for inte-
grating with the majority of existing databases and data
providers. The framework is optimal for data migration
from legacy system and load testing of the complete sys-
tem implementation.
The choice for Kafka is made due to the following consid-
erations:

• Horizontally scalable

• Ability to serve multiple data consumers at different
rates

• Resilient data log, redundancy for temporarily HDFS
system failures.

• Data delivery guarantee

4.5 Final Architecture
Selection process briefly outlined by previous sections,

leads to the architecture shown by the Figure 9.
Satellite telemetry data submit through client application
and API, is appended to commit log of Apache Kafka.
Log serves as a temporarily data storage, until it is con-
sumed by Spark Streaming and inserted to HDFS file sys-
tem by Apache Connect HDFS Sink. Spark batch pro-
cessing is executed on regular intervals, result of which
overwrites all entries in the ElasticSearch system. Apache
Spark Streaming is executed in micro batches with sub
minute intervals. Processed data is appended to Elastic-
Search with retention period. Kibana is configured to con-
sume ElasticSearch data.

The architecture ensures interoperability with different
components, for example an additional No-SQL database
for specific customer needs, withouh major code over-
haul. The batch layer, with aid of Spark can be used for a

Fig. 9: Proposed Architecture including frameworks

wide range of tasks, from model fitting (K-means) to full
fledged machine learning.

5. Future Work

One of the main long-term goals of the work presented
here (and still under development) is the use of satellite
data (including payload data as well as on-board teleme-
try) for data mining and autonomous operations. Data
mining is defined as the analysis of large amounts of data
to extract further information from it: a clear example
could be the analysis of performances indicators to pre-
dict system maintenance[54]. Spacecrafts could, for ex-
ample, benefit from a predictive model calibrated around
selected telemetry parameters, to predict eventual faults
and implement corrective strategies in a completely au-
tonomous way. This latter approach can be very fascinat-
ing, especially for deep-space probes that experience long
communication delays and requires complex autonomous
operations, but it would have to be ported to the satellite
hardware.

Using historic telemetry data coming from space
probes has also been exploited recently by the Mars Power
Challenge[55], where the best modeling techniques were
compared to predict 1 year worth of telemetry on the Mars
Express probe based on 3 years worth of data. Possi-
ble artificial intelligence applications in this case would
have to be integrated either on the satellite hardware or in
the ground station infrastructure, leading to further imple-
mentation work. In our case, a future implementation of
data mining algorithms will be simple to add because we
already relied on standard applications used in the artifi-
cial intelligence / data mining field to realize the database
and the data distribution system since this could be im-
plemented by the processing layer already present. This
approach will allow us to perform further research even
during normal mission operations with the clear goal of
creating an automated system to handle common anoma-
lies.

6. Conclusions

In this paper we looked at the current trends in space
missions, especially looking at nano-satellites, and fo-

IAC-17-B1.6.6 Page 8 of 11

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

cused on swarms and constellations. From these mis-
sions, we looked at the required ground segment to ful-
fill the mission requirements of handling up to thousands
of passes per day. This requires the development of a
distributed ground station system capable of scaling in a
simple way. We presented an architecture to achieve such
goals based on industry standard applications in the do-
main of data analytics and mining. We also presented
some preliminary results on the implementation of such
a system to clearly show the advantages of the selected
architecture.

We also highlighted possible future developments
making use of the described infrastructure to perform data
mining and possibly autonomous operations by adding a
data mining / artificial intelligence application to the exist-
ing distributed database. This new concept could provide
huge benefits to big constellations by heavily reducing the
operators work.

References

[1] “2017 Spaceworks Nano/Microsatellite Market
Forecast.” http://spaceworksforecast.
com. (accessed 01.09.2017).

[2] “Gunter’s space page.” http://space.
skyrocket.de. (accessed 02.09.2017).

[3] N. Crisp, K. Smith, and P. Hollingsworth, “Launch
and deployment of distributed small satellite sys-
tems,” Acta Astronautica, vol. 114, pp. 65 – 78,
2015.

[4] R. Sandau, Implications of new trends in small satel-
lite development, pp. 296–312. Vienna: Springer Vi-
enna, 2011.

[5] J. Esper, P. V. Panetta, M. Ryschkewitsch, W. Wis-
combe, and S. Neeck, “Nasa-gsfc nano-satellite
technology for earth science missions,” Acta Astro-
nautica, vol. 46, no. 2, pp. 287 – 296, 2000. 2nd
IAA International Symposium on Small Satellites
for Earth Observation.

[6] L. Dyrud, S. Slagowski, J. Fentzke, W. Wiscombe,
B. Gunter, K. Cahoy, G. Bust, A. Rogers, B. Er-
landson, L. Paxton, and S. Arnold, “Small-sat sci-
ence constellations: why and how,” in Proceedings
of the 27th Annual AIAA/USU Conference on Small
Satellites, (Lugan, UT), American Institute of Aero-
nautics and Astronautics (AIAA), 8 2013.

[7] D. J. Barnhart, T. Vladimirova, A. M. Baker, and
M. N. Sweeting, “A low-cost femtosatellite to en-
able distributed space missions,” Acta Astronautica,
vol. 64, no. 11, pp. 1123 – 1143, 2009.

[8] R. Sandau, K. Brie, and M. DErrico, “Small satel-
lites for global coverage: Potential and limits,” IS-
PRS Journal of Photogrammetry and Remote Sens-
ing, vol. 65, no. 6, pp. 492 – 504, 2010. ISPRS Cen-
tenary Celebration Issue.

[9] W. Saylor, K. Smaagard, N. Nordby, and D. Barn-
hart, “New scientific capabilities enabled by au-
tonomous constellations of smallsats,” in Proceed-
ings of the 21th Annual AIAA/USU Conference on
Small Satellites, (Lugan, UT), American Institute of
Aeronautics and Astronautics (AIAA), 8 2007.

[10] D. J. Barnhart, T. Vladimirova, and M. N. Sweet-
ing, “Very-small-satellite design for distributed
space missions,” Journal of Spacecraft and Rockets,
vol. 44, no. 6, pp. 1294 – 1306, 2007.

[11] “Planet web page.” https://www.planet.
com. (accessed 04.09.2017).

[12] K. Colton and B. Klofas, “Supporting the flock:
Building a ground station network for authonomy
and reliability,” in Proceedings of the 30th Annual
AIAA/USU Conference on Small Satellites, (Lugan,
UT), American Institute of Aeronautics and Astro-
nautics (AIAA), 8 2016.

[13] “Spaceflight web page.” http://
spaceflight.com. (accessed 04.09.2017).

[14] B. Klofas, “Planet labs ground station network.” 13th
Annual CubeSat Developers Workshop, 4 2016.

[15] C. Venturini and T. McVittie, “Current and fu-
ture ground systems for cubesats working group,”
in Ground Systems Architecture Workshop, The
Aerospace Corporation, 3 2014.

[16] E. F. Moreira, A. Ceballos, C. Estvez, , J. C. Gil,
S. Kang, J. Guiney, , and V. Ivatury, “Architect-
ing oneweb’s massive satellite constellation ground
system,” in Ground Systems Architecture Workshop,
The Aerospace Corporation, 3 2017.

[17] K. Casey, W. Al-Masyabi, and M. Nagengast, “A
visit to 2037,” in Ground Systems Architecture Work-
shop, The Aerospace Corporation, 3 2017.

[18] “Delfi Space: TU Delft Small Satellite Pro-
gram.” http://www.delfispace.nl/
operations/radio-amateurs. (accessed
02.09.2017).

[19] M. Kuiper, “DUDe Telemetry Client Software De-
sign ,” tech. rep., Delft University of Technology,
2013.

IAC-17-B1.6.6 Page 9 of 11

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

[20] R. Schoemaker, “Robust and flexible command &
data handling on board the delffi formation flying
mission,” Master’s thesis, Delft University of Tech-
nology, 2014.

[21] G. van Craen, “Design of the telemetry server,” Mas-
ter’s thesis, Delft University of Technology, 2011.

[22] J. Lewis and M. Fowler, “Microservices: a definition
of this new architectural term,” 2014.

[23] D. Haney and K. S. Madsen, “Load-balancing for
mysql,” Kobenhavns Universitet, 2003.

[24] M. Villamizar, O. Garcés, H. Castro, M. Verano,
L. Salamanca, R. Casallas, and S. Gil, “Evaluat-
ing the monolithic and the microservice architecture
pattern to deploy web applications in the cloud,” in
Computing Colombian Conference (10CCC), 2015
10th, pp. 583–590, IEEE, 2015.

[25] M. Villamizar, O. Garces, L. Ochoa, H. Castro,
L. Salamanca, M. Verano, R. Casallas, S. Gil, C. Va-
lencia, A. Zambrano, et al., “Infrastructure cost com-
parison of running web applications in the cloud us-
ing aws lambda and monolithic and microservice ar-
chitectures,” in Cluster, Cloud and Grid Computing
(CCGrid), 2016 16th IEEE/ACM International Sym-
posium on, pp. 179–182, IEEE, 2016.

[26] J. Justin and J. Jude, “Go offline,” in Learn Ionic 2,
pp. 79–97, Springer, 2017.

[27] “Pouchdb: The database that syncs.” https://
pouchdb.com. (accessed 02.09.2017).

[28] S. Gilbert and N. Lynch, “Perspectives on the cap
theorem,” Computer, vol. 45, no. 2, pp. 30–36, 2012.

[29] N. Marz, “How to beat the cap theorem,” nathan-
marz. com, 2011.

[30] “Couchdb: the definitive guide.” http://guide.
couchdb.org/draft/consistency.html.
(accessed 02.09.2017).

[31] R. Leeds, “Chrome to chrome pouchdb.” CouchDB
Conf Berlin, 2013.

[32] J. Dean and S. Ghemawat, “Mapreduce: simplified
data processing on large clusters,” Communications
of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[33] S. N. Khezr and N. J. Navimipour, “Mapreduce
and its applications, challenges, and architecture: a
comprehensive review and directions for future re-
search,” Journal of Grid Computing, pp. 1–27, 2017.

[34] S. A. Thanekar, K. Subrahmanyam, and A. Bagwan,
“A study on mapreduce: Challenges and trends,”
Indonesian Journal of Electrical Engineering and
Computer Science, vol. 4, no. 1, pp. 176–183, 2016.

[35] R. Singh and P. J. Kaur, “Analyzing performance
of apache tez and mapreduce with hadoop multin-
ode cluster on amazon cloud,” Journal of Big Data,
vol. 3, no. 1, p. 19, 2016.

[36] D. S. Kusumo, M. Staples, L. Zhu, H. Zhang, and
R. Jeffery, “Risks of off-the-shelf-based software ac-
quisition and development: A systematic mapping
study and a survey,” 2012.

[37] A. Shvets, Design Patterns Explained Simply.
Source Making, 2017.

[38] S. van Kuijk, “Delfi-n3xt forensics: A hybrid
methodology,” Master’s thesis, Delft University of
Technology, 2016.

[39] N. Marz and J. Warren, “Big data: principles and
best practices of scalable real-time data systems,”
2013.

[40] V. Chavan and R. N. Phursule, “Survey paper on big
data,” Int. J. Comput. Sci. Inf. Technol, vol. 5, no. 6,
pp. 7932–7939, 2014.

[41] D. Singh and C. K. Reddy, “A survey on platforms
for big data analytics,” Journal of Big Data, vol. 2,
no. 1, p. 8, 2015.

[42] V. B. Bobade, “Survey paper on big data and
hadoop,” Int. Res. J. Eng. Technol, vol. 3, no. 1,
pp. 861–863, 2016.

[43] A. Yigal, “Grafana vs. kibana: The key dif-
ferences to know.” https://logz.io/blog/
grafana-vs-kibana. Accessed: 2017-09-02.

[44] I. Nurgaliev, E. Karavakis, and A. Aimar, “Kibana,
grafana and zeppelin on monitoring data,” Aug.
2016.

[45] P. Kleindienst, “Building a real-world logging infras-
tructure with logstash, elasticsearch and kibana,”

[46] “Hdfs architecture guide.” https://hadoop.
apache.org/docs/r1.2.1/hdfs_
design.html.

[47] P. Kannan, “Beyond hadoop mapreduce apache
tez and apache spark,” San Jose State Uni-
versity. URL: http://www. sjsu. edu/people/robert.
chun/courses/CS259Fall2013/s3/F. pdf.

IAC-17-B1.6.6 Page 10 of 11

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

[48] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan,
A. Murthy, and C. Curino, “Apache tez: A unifying
framework for modeling and building data process-
ing applications,” in Proceedings of the 2015 ACM
SIGMOD international conference on Management
of Data, pp. 1357–1369, ACM, 2015.

[49] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in
Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pp. 2–
2, USENIX Association, 2012.

[50] A. Shukla and Y. Simmhan, “Benchmarking dis-
tributed stream processing platforms for iot ap-
plications,” in Technology Conference on Perfor-
mance Evaluation and Benchmarking, pp. 90–106,
Springer, 2016.

[51] S. Chintapalli, D. Dagit, B. Evans, R. Farivar,
T. Graves, M. Holderbaugh, Z. Liu, K. Nusbaum,
K. Patil, B. J. Peng, et al., “Benchmarking stream-
ing computation engines: Storm, flink and spark
streaming,” in Parallel and Distributed Processing
Symposium Workshops, 2016 IEEE International,
pp. 1789–1792, IEEE, 2016.

[52] G. Wang, J. Koshy, S. Subramanian, K. Paramasi-
vam, M. Zadeh, N. Narkhede, J. Rao, J. Kreps, and
J. Stein, “Building a replicated logging system with
apache kafka,” Proceedings of the VLDB Endow-
ment, vol. 8, no. 12, pp. 1654–1655, 2015.

[53] “Kafka documentation.” https://kafka.
apache.org/documentation/.

[54] P. Bastos, I. Lopes, and L. Pires, “A maintenance
prediction system using data mining techniques,”
in World Congress on Engineering 2012, vol. 3,
pp. 1448–1453, International Association of Engi-
neers, 2012.

[55] “Mars express power challenge.”
https://kelvins.esa.int/
mars-express-power-challenge. (ac-
cessed 01.09.2017).

IAC-17-B1.6.6 Page 11 of 11

Bibliography

[1] J. Puig-Suari, C. Turner, and W. Ahlgren, Development of the standard CubeSat deployer and
a CubeSat class PicoSatellite, in Aerospace Conference, 2001, IEEE Proceedings., Vol. 1 (IEEE,
2001) pp. 1–347.

[2] J. Puig-Suari and B. Twiggs, CUBESAT Design Specifications Document, Tech. Rep. (CalPoly, San
Luis Obispo, 2001).

[3] E. Buchen, 2014 Nano / Microsatellite Market Assessment, (2014).

[4] J. Straub, CubeSats: A Low-Cost, Very High-Return Space Technology, AIAA Reinventing Space
Conference (2012).

[5] V. Scholz, T, V. March, G., and E. Richard, M., Ground Segment Definition, Tech. Rep. (Von
Karman Institute for Fluid Dynamics, 2014).

[6] F. George, Satellite Control Software (SCS) Mission Data Client Extensibility User Guide, (2013).

[7] G. V. Craen, Design of Telemetry server, Master’s thesis, Delft University of Technology (2011).

[8] M. Sweeting, Modern Small Satellites - Changing the Economics of Space, Proceedings of IEEE
(2018).

[9] S. V. Kuijk, Delfi-n3Xt Forensics, Master’s thesis, Delft University of Technology (2016).

[10] E. Buchen, Nano / Microsatellite: market forecast 2018, Tech. Rep. (SpaceWorks, 2018).

[11] S. Speretta and A. Ilin, Scalable Data Processing System for Satellite Data Mining, (2017).

[12] B. Boehm, Spiral Model of Software Development and Enhancement, Computer (1987).

[13] A. Ilin, Literature Study, (2014).

[14] S. P. Berczuk, Organizational Multiplexing : Patterns for Processing Satellite Telemetry with Dis-
tributed Teams, Pattern Languages of Program Design , 1 (1996).

[15] Delft University of Technology, Delfi Space Programme, (2018).

[16] Nuand, BladeRF: USB 3.0 Software Defined Radio, (2016).

[17] M. Ossmann, HackRF One, (2018).

[18] D. Hartanto, Reliable Ground Segment Data Handling System for Delfi-n3Xt Satellite Mission,
Master’s thesis, Delft University of Technology (2009).

[19] M. d. Miliano, L. Boersma, and A. Tindemans, Delfi-n3Xt: Top-Level Design of Communication
Subsystem, Tech. Rep. (Delft University of Technology, 2012).

[20] J. McGuire, FX-25 Performance, (2007).

[21] H. Zimmermann, OSI Reference Model-The ISO Model of Architecture for Open Systems Inter-
connection, IEEE Transactions on Communications 28, 425 (1980).

[22] T. L. Fox, AX.25 Amateur Packet-Radio Link-Layer Protocol, (1984).

[23] A. M. Grønstad, Implementation of a communication protocol for CubeSTAR, Master’s thesis,
University of Oslo (2010).

221

https://works.bepress.com/jeremy_straub/37/
https://works.bepress.com/jeremy_straub/37/
http://epubs.surrey.ac.uk/845853/
http://epubs.surrey.ac.uk/845853/
http://www.delfispace.nl/general/delfi-space-program
https://www.nuand.com/bladeRF-brief.pdf
https://greatscottgadgets.com/hackrf/
http://eludium.stensat.org/mcguire/projects/FX-25/FX-25_performance.htm
http://dx.doi.org/10.1109/TCOM.1980.1094702

222 Bibliography

[24] M. Kuiper and J. Hernando Bravo, DUDe Telemetry Client Software Design, Tech. Rep. (Delft
University of Technology, 2013).

[25] R. Schoemaker, Robust and Flexible Command & Data handling on board the DelFFi Formation
Flying mission, Master’s thesis, Delft University of Technology (2014).

[26] E. Klitzke, Why Uber Engineering Switched from Postgres to MySQL _ Uber Engineering Blog,
(2016).

[27] J.-H. Le Roux, Development of a satellite network simulator tool and simulation of AX.25, FX.25
and a hybrid protocol for nano-satellite communications, Master’s thesis, Stellenbosch University
(2014).

[28] H. By and F. Of, 4th INTERNATIONAL CONFERENCE ON DESIGN, DEVELOMENT & RESEARCH
Proceedings, (2014) pp. 183–202.

[29] U. Wendel, MySQL Document Store: unstructured data, unstructured search - Ulf WendelUlf
Wendel, (2016).

[30] Oracle Corporation, MySQL 8.0 Reference Manual: 13.2.6 INSERT Syntax, (2018).

[31] J. Hayden, MySQL Performance: Stop hoarding. Drop unused MySQL databases, (2017).

[32] L. Dr. Rosenberg, T. Hammer, and J. Shaw, Software metrics and reliability, Proceedings of the
9th International Symposium on Software Reliability Engineering , 1 (1998).

[33] X. Wu, X. Zhu, and G. W. W, Data Mining with Big Data, IEEE Transactions on Knowledge and
Data Engineering 26, 97 (2014).

[34] M. Gao, G. Ayers, and C. Kozyrakis, Practical Near-Data Processing for In-Memory Analytics
Frameworks, Parallel Architectures and Compilation Techniques - Conference Proceedings, PACT
2016-March, 113 (2016).

[35] T. Haerder and A. Reuter, Principles of transaction-oriented database recovery, ACM Computing
Surveys 15, 287 (1983).

[36] K. Eswaran, N. J. Gray, R. Lorie, and I. Traiger, The Notions of Consistency and Predicate Locks
in a Database System. Comm. of the ACM 19 (1976).

[37] E. Brewer, Spanner, TrueTime & The CAP Theorem, White Papers 2015, 1 (2017).

[38] E. Brewer, Towards Robust Distributed Systems, Proceedings of the Nineteenth Annual ACM
Symposium on Principles of Distributed Computing , 7 (2000).

[39] S. Gilbert and N. Lynch, Brewer’s conjecture and the feasibility of consistent, available, partition-
tolerant web services, ACM SIGACT News 33, 51 (2002).

[40] G. Maxia, The Data Charmer: How to break MySQL InnoDB cluster, (2017).

[41] C. Perera, R. Ranjan, L. Wang, S. U. Khan, and A. Y. Zomaya, Big data privacy in the internet
of things era, IT Professional 17, 32 (2015).

[42] M. Mether, Scaling MySQL and MariaDB _ SCALE 14x, (2016).

[43] Codership Ltd., Node Failure and Recovery ঁ Galera Cluster Documentation, (2014).

[44] A. van Scheppingen, Top mistakes to avoid in MySQL replication _ Severalnines, (2017).

[45] Sandvine, 2016 - Global Internet Phenomena - Latin America \& North America, Tech. Rep.
(Sandvine, 2016).

[46] C. Strozzi, DB-Engines Ranking - popularity ranking of database management systems, (2018).

[47] N. Leavitt, Will NoSQL Databases Live Up to Their Promise? Computer 43, 12 (2010).

https://eng.uber.com/mysql-migration/
http://hdl.handle.net/10019.1/96114
http://blog.ulf-wendel.de/2016/mysql-document-store-unstructured-data-unstructured-search/
http://blog.ulf-wendel.de/2016/mysql-document-store-unstructured-data-unstructured-search/
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://haydenjames.io/mysql-performance-drop-unused-databases/
http://dx.doi.org/10.1109/PACT.2015.22
http://dx.doi.org/10.1109/PACT.2015.22
http://dx.doi.org/10.1145/289.291
http://dx.doi.org/10.1145/289.291
https://foundationdb.com/key-value-store/white-papers/the-cap-theorem
http://dx.doi.org/10.1145/343477.343502
http://dx.doi.org/10.1145/343477.343502
http://dx.doi.org/10.1145/564585.564601
http://datacharmer.blogspot.nl/2017/05/how-to-break-mysql-innodb-cluster.html
http://dx.doi.org/10.1109/MITP.2015.34
http://www.socallinuxexpo.org//scale/14x/presentations/scaling-mysql-and-mariadb
http://galeracluster.com/documentation-webpages/recovery.html
https://severalnines.com/blog/top-mistakes-avoid-mysql-replication
https://www.sandvine.com/hubfs/downloads/archive/2016-global-internet-phenomena-report-latin-america-and-north-america.pdf
https://db-engines.com/en/ranking
http://dx.doi.org/10.1109/MC.2010.58

Bibliography 223

[48] Apache Software Foundation, Apache Avroঽ 1.7.7 Specification, (2014).

[49] E. Brewer, CAP twelve years later: How the ”rules” have changed, Computer 45, 23 (2012).

[50] A. Siddiqa, A. Karim, and A. Gani, Big data storage technologies: a survey, Front Inform Technol
Electron Eng 18, 1040 (2017).

[51] F. Gessert, W. Wingerath, S. Friedrich, and N. Ritter, NoSQL database systems: a survey and
decision guidance, Computer Science - Research and Development 32, 353 (2017).

[52] J. Gray and P. Helland, The Dangers of Replication and a Solution, SIGMOD 6, 173 (1996).

[53] MongoDB, Ranged Sharding ঁ MongoDB Manual 3.6, (2018).

[54] I. DataStax, Consistent hashing _ Apache Cassandra 2.1, (2018).

[55] V. Srinivasan, B. Bulkowski, and R. Iyer, Aerospike : Architecture of a Real-Time Operational
DBMS, Pvldb 9, 1389 (2016).

[56] K. P. Phyu and W. Z. Shun, Data lake : a new ideology in big data era, ITM Web of Conferences
17 03025, 1 (2018).

[57] R. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and Design (Prentice
Hall, 2017).

[58] P. Biondi, Scapy 2.4.0documentation, (2018).

[59] A. Bulski, T. Filiba, and C. Simpson, Construct documentation, (2018).

[60] V. Stinner, Hachoir documentation, (2014).

[61] A. Herrera, A. Bulski, J. Plum, C. Leimbrock, M. Yakshin, and T. Koczka, Kaitai Struct: declarative
binary format parsing language, (2018).

[62] Google, Protocol Buffers, Google Developers , 1 (2016).

[63] Sadayuki Furuhashi, MessagePack: It’s like JSON. but fast and small. (2013).

[64] O. Ben-kiki, C. Evans, and B. Ingerson, YAML Ain ’ t Markup Language (YAML ঽ) Working
Draft 2004-12-28, Language (2004).

[65] D. J. White, I. Giannelos, A. Zissimatos, E. Kosmas, and D. Papadeas, SatNOGS: Satellite Net-
worked Open Ground Station, in Engineering Faculty Publications (2015).

[66] E. Dijkstra, On the role of scientific thought (EWD447), (1974).

[67] C. Reade, Elements of Functional Programming (Addison-Wesley, 1989).

[68] Edgescan, Edgescan, Tech. Rep. (Edgescan, 2016).

[69] Edgescan, Vulnerability Statistics Report, Tech. Rep. (Edgescan, 2018).

[70] A. Cockburn, Hexagonal Architecture, (2005).

[71] J. Palermo, The Onion Architecture, (2008).

[72] R. Martin, Clean Architecture, (2012).

[73] C. Schults, An Introduction To Clean Architecture - NDepend, (2017).

[74] W. Ul Haq, A Brief Summary of thoughts on Clean Architecture and MVP, (2018).

[75] M. Nagy, Thoughts on Clean Architecture – AndroidPub, (2017).

[76] R. Martin, The Clean Architecture, (2012).

https://avro.apache.org/ http://avro.apache.org/docs/1.7.7/spec.html
http://dx.doi.org/10.1109/MC.2012.37
http://dx.doi.org/10.1631/FITEE.1500441
http://dx.doi.org/10.1631/FITEE.1500441
http://dx.doi.org/10.1007/s00450-016-0334-3
https://docs.mongodb.com/manual/core/ranged-sharding/
https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureDataDistributeHashing_c.html
http://dx.doi.org/ 10.14778/3007263.3007276
http://dx.doi.org/10.1051/itmconf/20181703025
http://dx.doi.org/10.1051/itmconf/20181703025
https://scapy.readthedocs.io/en/latest/index.html
http://construct.readthedocs.io/en/latest/
http://hachoir.readthedocs.io/en/latest/
https://kaitai.io/
https://kaitai.io/
https://developers.google.com/protocol-buffers/
https://msgpack.org/
https://satnogs.org/
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
https://www.edgescan.com/assets/docs/reports/2016-edgescan-stats-report.pdf
http://alistair.cockburn.us/Hexagonal+architecture
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
https://www.youtube.com/watch?v=Nltqi7ODZTM&feature=youtu.be
https://blog.ndepend.com/introduction-clean-architecture/
https://dev.to/wahibhaq/a-brief-summary-of-thoughts-on-clean-architecture-and-mvp-48h9
https://android.jlelse.eu/thoughts-on-clean-architecture-b8449d9d02df
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html

224 Bibliography

[77] C. Gorman, Future Proof, (2016).

[78] M. Thurau, Akka framework, University of Lubeck (2012).

[79] S. McConnell, Code Complete: A Practical Handbook of Software Construction, Second Edition
(Pearson Education, 2004) p. 652.

[80] W3C, Web Audio API, (2015).

[81] B. Smus, Web Audio API, (2013).

[82] Fyrd, Webaudio API support, (2018).

[83] P.-T. de Boer, WebSDR: Software-Defined Radio receiver connected to the internet, (2018).

[84] J. Dolske, A JavaScript 1200 baud audio modem, (2017).

[85] B. Armstrong, QuietJS, (2018).

[86] M. Melhus, Web Audio Modem, (2017).

[87] W3C, HTML 5: Draft 2009, (2009).

[88] World Wide Web Consortium, Web Storage (Second Edition), (2009).

[89] J. Resig, DOM Storage, (2017).

[90] K. Yasuda, Quota Management API, (2015).

[91] MDN, Storage API - Web APIs _ MDN, (2017).

[92] I. Hickson, Web SQL Database, (2010).

[93] W3C, Indexed Database API (http://www.w3.org/TR/IndexedDB/), (2013).

[94] Fyrd, Can I use... Support tables for HTML5, CSS3, etc, (2013).

[95] Cykelero et al, Using IndexedDB - Web APIs _ MDN, (2018).

[96] A. Ilin, HTML5 applicaties voor Maple TA and Mobius, (2018).

[97] A. Feyerke, Say Hello to Offline First, (2013).

[98] H. Xu, Y. Zhou, Y. Kang, and M. R. Lyu, On Secure and Usable Program Obfuscation: A Survey,
arXiv preprint arXiv:1710.01139 (2017).

[99] M. Kleppe, JSFuck - Write any JavaScript with 6 Characters: []()!+, (2016).

[100] MDN, Using Web Workers, (2018).

[101] Apache, Apache CouchDB Documentation: Technical Overview, (2014).

[102] Apache, Apache CouchDB Documentation: ACID properies, (2014).

[103] Apache, Introduction to Replication ঁ Apache CouchDB Documentation, (2018).

[104] IBM, Cloudant Query - IBM Watson and Cloud Platform Learning Center, (2018).

[105] Apache, Configuring Clustering ঁ Apache CouchDB 2.1 Documentation, (2018).

[106] M. Rhodes, CouchDB 2.0’s read and write behaviour in a cluster, (2015).

[107] PouchDB, PouchDB Adapters, (2018).

[108] G. Ornaghi, Filtered replication: from Couch to Pouch and back, (2015).

[109] M. Justicz, Remote Code Execution in CouchDB, (2017).

http://kranglefant.tumblr.com/post/131808192355/future-proof
https://www.w3.org/TR/2015/WD-webaudio-20151208/
http://it-ebooks.info/book/2072/%5Cnpapers3://publication/uuid/F8F580CC-5306-47D0-BEA7-4AFDBD0F5D32
https://caniuse.com/#feat=audio-api
http://www.websdr.org
https://github.com/dolske/modem.js
https://github.com/quiet/quiet-js
https://martinmelhus.com/web-audio-modem/
https://www.w3.org/TR/2009/WD-html5-20090212/Overview.html#contents
https://www.w3.org/TR/webstorage/#the-storage-interface http://www.w3.org/TR/webstorage/
https://johnresig.com/blog/dom-storage/ https://developer.mozilla.org/en/DOM/Storage
https://www.w3.org/TR/quota-api/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API https://developer.mozilla.org/en-US/docs/Web/API/Storage_API
https://www.w3.org/TR/webdatabase/
http://www.w3.org/TR/IndexedDB/
https://caniuse.com/#search=indexe http://http//caniuse.com/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
http://hood.ie/blog/say-hello-to-offline-first.html
http://arxiv.org/abs/1710.01139
http://www.jsfuck.com/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
http://docs.couchdb.org/en/2.1.1/intro/overview.html http://docs.couchdb.org/en/latest/intro/overview.html
http://docs.couchdb.org/en/2.1.1/intro/overview.html#acid-properties
http://docs.couchdb.org/en/2.0.0/couchapp/views/intro.html http://docs.couchdb.org/en/2.0.0/replication/intro.html
https://developer.ibm.com/clouddataservices/docs/cloudant/cloudant-query/#.V55KCOaAOko
http://docs.couchdb.org/en/2.1.1/config/cluster.html
https://dx13.co.uk/articles/2015/10/19/couchdb-20s-read-and-write-behaviour-in-a-cluster.html
https://pouchdb.com/adapters.html
https://pouchdb.com/2015/04/05/filtered-replication.html
https://justi.cz/security/2017/11/14/couchdb-rce-npm.html

Bibliography 225

[110] NIST, CVE-2017-12635, (2017).

[111] YatHit Developer Network, YDN-DB javascript library, (2018).

[112] R. Munroe, Exploits of a Mom, (2018).

[113] N. Marz, How to beat the CAP theorem - thoughts from the red planet - thoughts from the red
planet, (2016).

[114] J. Lin, The Lambda and the Kappa, IEEE Internet Computing 21, 60 (2017).

[115] B. W. Lampson, Hints for computer system designs, ACM SIGOPS Operating Systems Review 17,
33 (1983).

[116] O. Boykin, S. Ritchie, I. O ’connell, and J. Lin, Summingbird: A Framework for Integrating Batch
and Online MapReduce Computations, Proc. VLDB Endow. 7, 1441 (2014).

[117] R. Singh and P. J. Kaur, Analyzing performance of Apache Tez and MapReduce with hadoop
multinode cluster on Amazon cloud, Journal of Big Data 3 (2016), 10.1186/s40537-016-0051-6.

[118] J. Kreps, Questioning the Lambda Architecture - O’Reilly Media, (2014).

[119] P. Helland, Immutability changes everything, Communications of the ACM 59, 64 (2015).

[120] Apache ZooKeeper, ZooKeeper, (2018).

[121] Apache, ZooKeeper Recipes and Solutions: Leader Election, (2018).

[122] G. Sharpira, Time Based Release Plan - Apache Kafka - Apache Software Foundation, (2018).

[123] J. Kreps, It’s Okay To Store Data In Kafka, (2017).

[124] D. Borthakur, HDFS architecture guide, Hadoop Apache Project http://hadoop apache … , 1
(2008).

[125] D. Borthakur, Maximum number of files in hadoop, (2008).

[126] G. MacKey, S. Sehrish, and J. Wang, Improving metadata management for small files in HDFS,
Proceedings - IEEE International Conference on Cluster Computing, ICCC , 1 (2009).

[127] J. Liu, L. Bing, and S. Meina, The optimization of HDFS based on small files, Proceedings -
2010 3rd IEEE International Conference on Broadband Network and Multimedia Technology,
IC-BNMT2010 , 912 (2010).

[128] N. Petrov and A. Tanev, Software reliability modelling of risk automotive system, in IFAC Pro-
ceedings Volumes (IFAC-PapersOnline), Vol. 45 (IFAC, 2012) pp. 227–230.

[129] S. S. Rao, I. N. Sahitha, G. Sireesha, and P. Manoj, Evaluating Software System Reliability
Using Architecture Based Approach, International Journal of Intelligent Information Systems 7,
1 (2018).

[130] M. Monperrus, Principles of Antifragile Software, in Companion to the first International Confer-
ence on the Art, Science and Engineering of Programming (2017).

[131] A. Tseitlin, The antifragile organization, Communications of the ACM 56, 40 (2013).

[132] T. Chandra, R. Griesemer, and J. Redstone, Paxos Made Live - An Engineering Perspective (
2006 Invited Talk), Perspective 7, 398 (2007).

[133] Y. Izrailevsky and A. Tseitlin, Netflix Chaos Monkey Upgraded – Netflix TechBlog – Medium,
(2016).

[134] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria, J. Adityatama, and K. J. Eliazar,
Why Does the Cloud Stop Computing? Proceedings of the Seventh ACM Symposium on Cloud
Computing - SoCC ’16 , 1 (2016).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=2017-12635
https://yathit.github.io/ydn-db/
https://xkcd.com/327/
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
http://dx.doi.org/10.1109/MIC.2017.3481351
http://dx.doi.org/10.1145/773379.806614
http://dx.doi.org/10.1145/773379.806614
http://dx.doi.org/ 10.14778/2733004.2733016
http://dx.doi.org/10.1186/s40537-016-0051-6
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
http://dx.doi.org/10.1145/2844112
https://zookeeper.apache.org/doc/r3.1.2/zookeeperOver.html
http://zookeeper.apache.org/doc/current/recipes.html#sc_leaderElection
https://cwiki.apache.org/confluence/display/KAFKA/Time+Based+Release+Plan
https://www.confluent.io/blog/okay-store-data-apache-kafka/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html http://archive.cloudera.com/cdh/3/hadoop-0.20.2-cdh3u6/hdfs_design.pdf%5Cnpapers3://publication/uuid/BE03DF70-D0C1-441E-A65F-1888C84992D6
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html http://archive.cloudera.com/cdh/3/hadoop-0.20.2-cdh3u6/hdfs_design.pdf%5Cnpapers3://publication/uuid/BE03DF70-D0C1-441E-A65F-1888C84992D6
https://www.mail-archive.com/core-user@hadoop.apache.org/msg02835.html
http://dx.doi.org/10.1109/CLUSTR.2009.5289133
http://dx.doi.org/10.1109/ICBNMT.2010.5705223
http://dx.doi.org/10.1109/ICBNMT.2010.5705223
http://dx.doi.org/10.1109/ICBNMT.2010.5705223
http://dx.doi.org/ 10.3182/20120912-3-BG-2031.00045
http://dx.doi.org/ 10.3182/20120912-3-BG-2031.00045
http://dx.doi.org/ 10.11648/j.ijiis.20180701.11
http://dx.doi.org/ 10.11648/j.ijiis.20180701.11
http://dx.doi.org/10.1145/3079368.3079412
http://dx.doi.org/10.1145/3079368.3079412
http://dx.doi.org/10.1145/2492007.2492022
http://dx.doi.org/ 10.1145/1281100.1281103
https://medium.com/netflix-techblog/netflix-chaos-monkey-upgraded-1d679429be5d
http://dx.doi.org/10.1145/2987550.2987583
http://dx.doi.org/10.1145/2987550.2987583

226 Bibliography

[135] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and R. Yao, Gray Failure,
Proceedings of the 16th Workshop on Hot Topics in Operating Systems - HotOS ’17 , 150 (2017).

[136] J. Geerling, Getting Gigabit Networking on a Raspberry Pi 2, 3 and B+ _ Jeff Geerling, (2017).

[137] The Apache Software Foundation, Hardware Provisioning - Spark 1.2.1 Documentation, (2018).

[138] CCSDS, XML Telemetric and Command Exchange (XTCE), Recommended Standard, Issue 1
[CCSDS 660.0-B-1], Tech. Rep. October (Consultative Committee for Space Data Systems, 2007).

http://dx.doi.org/10.1145/3102980.3103005
https://www.jeffgeerling.com/blogs/jeff-geerling/getting-gigabit-networking
https://spark.apache.org/docs/0.9.1/hardware-provisioning.html http://spark.apache.org/docs/1.2.1/hardware-provisioning.html

	Introduction
	Project Methodology
	Theory
	Determine Objectives
	Identify & Resolve the Risks
	Development & Testing
	Plan the Next Phase

	The Application
	First Iteration
	Second Iteration
	Third Iteration
	Forth Iteration

	Additional Aid
	Project and System Requirements Structure

	I Foundations
	Project Context
	The Space Mission Segments
	Ground Segment: a geographical view
	Telemetry
	Telemetry Generation
	Telemetry Protocol: AX.25

	Client Application: telemetry parsing
	Telemetry Encoding Schema

	Server Side Application: data processing
	Data Volumes
	Discussion and Requirements Refinement
	Conclusion and Preparation of the Next Project Iteration

	Data Storage
	Categorisation
	File System
	Object Storage
	Database Storage
	Relational Database Management Systems (RDBMS)
	NoSQL Data Stores

	Conclusion
	Query
	CAP and BASE
	Storage Volume

	Preparation of the next iteration phase

	Telemetry processing
	Rationale
	Unified Processing
	Processing Frameworks
	Kaitai Framework
	Kaitai DSL or Kaitai Struct (KS)
	Kaitai Compiler
	Kaitai Runtime Object

	Processing Application: Delfi-n3Xt Example
	Processing Application: generic deployment
	Conclusion

	Software Engineering Tools
	Separation of Concerns
	Clean Architecture
	Conclusion

	II Application
	Architectures
	Client Leveraged System
	Architecture
	Architecture: Tools
	Browser Application: feasibility
	Client Applications: considerations

	Implementation
	CouchDB
	PouchDB

	Distributed, Centralized System
	Document Design

	The Software Design
	User Based Description
	System Components
	Considerations

	Proof of Concept and Requirements Overview
	Experiment Hardware and Software Setup
	Experiments and Results
	Experiment Conclusion

	Lessons Learned
	PouchCouch Implementation Flaws
	Why not Client Based Applications

	Conclusion and the Next Project Phase

	Server side processing
	Introduction
	Client application function
	System Scalability: key for the architecture
	The approach

	Problem analysis
	Data transformation
	Data analysis
	Data characteristics
	Architecture assessment

	Related work
	Abstraction
	Microservices / Service orientated architecture
	Lambda and Kappa architectures

	Stream Processing: Feasibility assessment
	Stream, Log and Table
	Stream processing native deduplication methods
	Data de-duplication by sorting
	Data de-duplication in the delivery layer

	Architecture discussion and requirements Assessment

	III Results
	Proposed Architecture
	Processing system Components
	PTS global requirements
	Ingestion System
	Stream Layer
	Batch Layer
	Presentation Layer

	Used Technologies
	Kafka
	Immutable Storage
	Hadoop Distributed File System
	Apache Spark
	Apache YARN
	Zookeeper

	Architecture

	Experiment and Research Questions discussion
	Scope of System Testing
	System Robustness Assessment
	System Reliability Assessment

	Research Question evaluation
	Errors originating form client application
	Effects of unstable networking and loss of nodes on Ingestion Layer
	Reliability in Operations and effects of Maintainability

	Hardware Experiment Setup
	Limitations
	Experiments
	Kafka
	Spark Streaming

	Experiment Results Discussion

	Conclusion
	Recommendation
	Requirements
	Introduction
	Product Description
	Product Perspective
	Product Functions
	Product Constraints
	Dependencies
	Assumptions

	External Interface Requirements
	User Interface
	Hardware Interface
	Software Interface
	Communication Interface

	System Features
	Data Ingestion
	Data Processing
	Data Storage
	Data Querying
	Data Delivery

	Non-functional Requirements
	Performance Requirements
	Safety Requirements
	Security Requirements
	Quality Attributes
	Business Rules

	Other Requirements
	Documentation Requirements
	Licensing Requirements
	Legal, Copyright, and Other Notices

	Requirements Validation

	Spark Streaming Experiment Addendum
	Literature Study
	The International Astronautical Congress (IAC) Paper
	Bibliography

