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Abstract: The quest for active, yet “green” non-toxic catalysts is a continuous challenge. In this work,
covalently linked hybrid porphyrin–nanodiamonds were prepared via ipso nitro substitution reaction and
characterized by X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy, infrared spectroscopy
(IR) and thermogravimetry-differential scanning calorimetry (TG-DSC). The amine-functionalized
nanodiamonds (ND@NH2) and 2-nitro-5,10,15,20-tetra(4-trifluoromethylphenyl)porphyrin covalently
linked to nanodiamonds (ND@βNH-TPPpCF3) were tested using Allium cepa as a plant model,
and showed neither phytotoxicity nor cytotoxicity. The hybrid nanodiamond–copper(II)–porphyrin
material ND@βNH-TPPpCF3-Cu(II) was also evaluated as a reusable catalyst in cyclohexene allylic
oxidation, and displayed a remarkable turnover number (TON) value of ≈265,000, using O2 as green
oxidant, in the total absence of sacrificial additives, which is the highest activity ever reported for
said allylic oxidation. Additionally, ND@βNH-TPPpCF3-Cu(II) could be easily separated from the
reaction mixture by centrifugation, and reused in three consecutive catalytic cycles without major
loss of activity.

Keywords: nanodiamonds; copper (II) porphyrin; allylic oxidation

1. Introduction

The recent advances of nanotechnology are remarkable. Nanostructured materials are part of our
lives and a driving force towards the global economy of modern society. Among the many examples
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available, the nanoallotropes of carbon are a unique family, among which nanodiamonds (NDs) are
included. These carbon nanomaterials were first prepared by detonation in the USSR in the 1960s [1],
and have been an exquisite research subject for many groups ever since, attracting tremendous interest,
given their specific optical and physical/chemical properties [2].

Along with good biomedical compatibility, high adsorption capacity and large surface area, one of
the most important characteristics of NDs is the presence of sp2 carbon atoms in their structure [3].
As a result of the production method (detonation), the sp3 diamond core is always covered with a few
layers of sp2 carbon. This allows surface functionalization, allowing the formation of electrostatic [4–6]
or covalent linkages, and facilitating the preparation of hybrid organic–nanodiamond materials [7,8].
This has greatly contributed to a widespread application of these organic–nanodiamond carbon
materials [9–14], in biomedicine [15–18], nonlinear optical materials [19,20], energy devices [21,22] and
tribology [23,24].

Among the several hybrids consisting of ND and organic materials, we highlight those bearing
tetrapyrrolic macrocycles, such as porphyrins [25] and phthalocyanines [1–6]. These are compounds
with unique properties, used in a large range of biomedical applications [26–29] and as highly efficient
catalysts in a variety of reactions [30,31].

It is expected that the synergism between ND properties, namely, biocompatibility, unique
optical features, good thermal conductivity, electrical resistivity, resistance to harsh environments,
and chemical stability [2] and the properties of tetrapyrrolic macrocycles, may pave the way for multiple
additional applications. In this regard, only a few reports have been published on the preparation
of hybrid ND–porphyrin materials, through the formation of either electrostatic bonds [32] or amide
bonds between carboxy-phenyl-porphyrin and amino-functionalized NDs [19,25] (Scheme 1).
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The relatively low stability of these linkages against pH alterations or hydrolysis prompted
us to devise and further establish an innovative synthetic strategy to immobilize porphyrins onto
aminated functionalized NDs, via ipso-nitro substitution reaction with β-nitro substituted porphyrins,
allowing the formation of much more stable covalent amine linkages. These new materials were fully
characterized by X-ray photoelectron spectroscopy (XPS), thermogravimetry-differential scanning
calorimetry (TG-DSC), fluorescence spectroscopy, infrared spectroscopy (IR) and ultraviolet–visible
spectroscopy (UV–Vis).

Furthermore, the new hybrid nanodiamond–copper(II)–porphyrin ND@βNH-TPPpCF3-Cu(II)
was used as a catalyst in the oxidation of cyclohexene, using O2 as a green oxidant. The oxidation of
cyclohexene is of great interest, as its products (key C6 chemicals) are largely used as intermediates
in the pharmaceutical/chemical industries [33,34]. A wide variety of catalysts have been used for the
oxidation of cyclohexene with O2 as an oxidant, such as ionic liquids; metal complexes, including
metalloporphyrins; noble metals; and metal complexes immobilized on solid supports (carbon nanotubes,
magnetic nanoparticles, titanium dioxide), as reported in a recent review [35]. However, controllable
oxidation reactions that can selectively yield 7-oxabicyclo [4.1.0] heptane, trans/cis-cyclohexane-1,2-diol,
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cyclohex-2-en-1-ol, cyclohex-2-en-1-one and adipic acid, using O2 as a green oxidant, in solvent-free
conditions, and using a stable, reusable and non-toxic catalyst, are still a challenge.

In this regard, the development of more sustainable practices is imperative in chemistry. Catalytic
systems with negligible effects on the surrounding environments are desirable, but attention is usually
paid to the substrate–product binomial, leaving catalysts out of the ecological concerns. Despite the
increasing applications of NDs in bio- and nanomedicine [11,36], studies regarding their ecotoxic
and genotoxic effects are still limited [37–41]. Herein, we also present a study on the cytotoxic
and genotoxic evaluation of amine-functionalized nanodiamonds (ND@NH2) and 2-nitro-5,10,15,20-
tetra(4-trifluoromethylphenyl)porphyrin covalently linked to nanodiamonds (ND@βNH-TPPpCF3)
using Allium cepa as a plant model, as we aimed to obtain non-fitotoxic “green” catalysts—that is,
materials that will not harm the environment (even if, accidentally, not properly discarded). A. cepa is
largely used in genotoxicity studies, since it has a reduced number of large chromosomes, where changes
are easy to detect. Additionally, the effects observed in its cells show good correlations with those of
mammal (including human) cells [42].

2. Results

2.1. Synthesis and Characterization of Porphyrin-Functionalized Nanodiamonds (ND@βNH-TPPpCF3-Cu(II)
and ND@βNH-TPPpCF3)

The porphyrins 1 and 2 were prepared by a previously reported methodology [30], using the
nitrobenzene method [43], followed by nitration reaction with copper(II) nitrate to obtain porphyrin
1 and further demetallation with TFA to yield porphyrin 2. The hybrid nanomaterials ND@βNH-
TPPpCF3-Cu(II) and ND@βNH-TPPpCF3 involved the covalent grafting of the previously prepared
nitro-porphyrins 1 and 2 onto (commercial) amine-functionalized nanodiamonds (ND@NH2), via a
typical ipso-nitro-aromatic nucleophilic substitution, where the presence of the strong electron
withdrawing nitro group allows a direct nucleophilic substitution by amines [44–47], using Cs2CO3 as
base and DME as solvent (Scheme 2). Further details can be found in the experimental section.
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Scheme 2. Preparation of porphyrin-functionalized nanodiamonds (ND@βNH-TPPpCF3-Cu(II) and
ND@βNH-TPPpCF3).

The hybrid materials were fully characterized by XPS, UV–Vis, fluorescence spectroscopy, Fourier
transform infrared spectroscopy (FT-IR) and thermogravimetry-differential scanning calorimetry
(TG-DSC). The quantification of immobilized-nitro porphyrin (1 and 2) on the functionalized NDs
(primary average particle size of 5 nm) was done by XPS. The atomic percentages (%) of carbon, nitrogen,
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oxygen, fluorine and copper are presented in Table 1. Results for pristine—i.e., non-functionalized—ND
are shown for comparison, together with ND@NH2.

Figures S1 and S2 of Supplementary Information show the XPS results for the samples
ND@βNH-TPPpCF3-Cu(II) and ND@βNH-TPPpCF3, respectively. The C1s, N1s, O1s and F1s XPS
spectra were similar for both samples.

Table 1. Surface atomic percentages of the elements for pristine ND, ND@NH2, ND@βNH-TPPpCF3-
Cu(II) and ND@βNH-TPPpCF3 obtained from XPS.

Sample C 1s N 1s O 1s F 1s Cu 2p

Pristine NDs 1 91.6 2.1 6.3 - -

ND@NH2
1 96.0 2.1 1.9 - -

ND@βNH-TPPpCF3-Cu(II) 94.7 2.0 1.4 1.8 0.06

ND@βNH-TPPpCF3 91.2 2.2 3.4 3.2 -
1 Data from [40].

Detailed analysis of the XPS spectra is given in the SI. The results confirm the anchoring of
the complexes.

From the compositional analysis shown in Table 1, a Cu percentage of 0.06 at.% in ND@βNH-
TPPpCF3-Cu(II) and a F percentage of 3.2 at.% at in ND@βNH-TPPpCF3 were determined. These results
indicate that amine groups from ND materials reacted with the nitro-porphyrin derivatives, displaying
0.050 mmol of metalloporphyrin 1 per gram of ND@βNH-TPPpCF3-Cu(II) and 0.215 mmol of porphyrin
2 per gram of ND@βNH-TPPpCF3.

In Figure 1, the normalized fluorescence emission spectra of ND@βNH-TPPpCF3 (blue line),
nitro-porphyrin 2 (black line) and ND@NH2 (grey line) are displayed, with excitation at 420 nm
using N,N-dimethylformamide (DMF) as solvent. The fluorescence spectrum of nitro-porphyrin
2-immobilized nanodiamonds (ND@βNH-TPPpCF3) is similar to that of the non-immobilized
nitro-porphyrin 2 over the whole emission wavelength range (575 to 775 nm). In particular, two strong
emission bands at 650 and 720 nm are present. Thus, qualitative analysis of the fluorescence emission
spectrum of ND@βNH-TPPpCF3 evidences that the energy of the excited state of porphyrin 2 is not
changed by the presence of the material, probably due to the presence of a non-conjugated linker.
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The normalized UV–Vis absorption spectra of ND@NH2 (grey line), ND@βNH-TPPpCF3 (blue line)
and nitro-porphyrin 2 (black line) dispersed in N,N-dimethylformamide are presented in Figure 2.
ND@βNH-TPPpCF3 clearly shows the typical Soret band at 425 nm with a blue shift of 14 nm relatively
to the nitro-porphyrin 2 free base. This blue shift is an unequivocal confirmation that the ipso-nitro
substitution reaction occurred and an amine covalent linkage between the porphyrin and the NDs
is present.
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1460 cm−1 (C–H bending) and 1350–1330 cm−1 (C–F stretching), validating the anchoring of the
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Additionally, the quantification of the nitro-porphyrin (1 and 2) content for all three different
functionalized NDs was performed using TG-DSC measurements between 30 and 800 ◦C (Figure S4a–c).
By analysis and comparison with the TG-DSC curves of ND@NH2, calculated weight losses of
ND@βNH-TPPpCF3-Cu(II) and ND@βNH-TPPpCF3 were 5.6% and 6.3%, respectively, corresponding
to 0.059 mmol/g ND of metalloporphyrin 1 and 0.071 mmol/g ND of porphyrin 2.

2.2. Cytotoxic and Genotoxic Evaluation of Porphyrin-Functionalized Nanodiamonds in Allium Cepa Assay

Despite previous findings that NDs are non-cytotoxic for different types of cells and have higher
biocompatibility when compared with all other nanocarbon-based materials (for instance, carbon
nanotubes, fullerenes, graphene oxide, etc.) [36,48,49], recent studies showed that the cytotoxicity
activity of NDs is correlated with their surface functionalities [50–52]. As an example, Marcon et al.
demonstrated that ND functionalized with –COOH was highly toxic to Xenopus frog embryos, even at
a low concentration (2 mg/L), in comparison to the embryotoxicity potential of ND with –OH or –NH2 [50].

Our results, described in Supplementary Information, showed that the cytotoxicity and
genotoxic potential of ND were not impacted by functionalizing them with the TPPpCF3 porphyrin,
and consequently, a non-phytotoxic porphyrin–nanodiamond hybrid nanomaterial was successfully
prepared (Figure S5a–e).

2.3. Catalytic Oxidation Experiments

As stated above, cyclohexene oxidation products are of great interest in industry [33,34]. Therefore,
to assess the application of copper-based ND@βNH-TPPpCF3-Cu(II) as potential reusable catalysts,
this new ND hybrid material was evaluated as catalyst in cyclohexene oxidation, using O2 as a green
oxidant (Scheme 3).
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epoxycyclohexane; B = cyclohexen-1-one; C = 2-cyclohexen-1-ol).

Appropriate amounts of cyclohexene and ND@βNH-TPPpCF3-Cu(II) catalyst were added in
a reactor. After reaction at 100 ◦C, with O2 (4 bar), for 24 h, cyclohexene conversion and product
selectivity were determined by gas chromatography (GC) and gas chromatography-mass spectrometry
(GC-MS), using aliquots from the reaction mixture. The results of conversion of cyclohexene and
product selectivity are shown in Figure 4.

A cyclohexene conversion of 53% was obtained, with major products being 2-cyclohexen-1-one
(B—39%) and 2-cyclohexen-1-ol (C—56%). This trend may be attributed to cyclohexene allylic
products [53,54]. It is also worth mentioning the remarkable turnover number (TON) ≈ 265,000
achieved, using O2 as green oxidant, in the total absence of sacrificial additives, whereas in the
literature only TONs from 1210 to ≈200,000 were reported for the same oxidation reaction [55–57].
The ≈200,000 TON value refers to a previous publication of Pereira and co-workers, also using a copper
metalloporphyrin but immobilized in magnetic nanoparticles [55]. A larger value was reported by other
authors, but for the epoxidation reaction [58]. In this work, we obtained mainly the double bond products
2-cyclohexen-1-one and 2-cyclohexen-1-ol, as referred to above—that is, allylic oxidation products.
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Figure 4. Conversion of cyclohexene (%) and product selectivity (%) (A = 1,2-epoxycyclohexane;
B = cyclohexen-1-one; C = 2-cyclohexen-1-ol) when using ND@βNH-TPPpCF3-Cu(II) as catalyst.

Additionally, nanodiamond-immobilized porphyrin (ND@βNH-TPPpCF3-Cu(II)) could be
separated from the reaction mixtures by centrifugation, and its recyclability was evaluated. The solid
materials (ND@βNH-TPPpCF3-Cu(II)) were washed three times with CH2Cl2 and three times with
CH3CN, then dried at 60 ◦C for 4 h and reused in the next catalytic cycle. The results are presented in
Figure 5. The recycling experiments revealed good stability of the catalyst up to three cycles. Given the
high catalyst dispersibility in cyclohexene, the observed slight decrease in the activity over the three
cycles may be attributed to catalyst loss after decantation in each run.
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Figure 5. Recycling experiments of ND@βNH-TPPpCF3-Cu(II) in the oxidation of cyclohexene.
Data represent the mean ± standard error (n = 3).

3. Materials and Methods

3.1. Characterization of Chemicals and Materials

Reagents and solvents were purchased from Fluorochem (Derbyshire, UK) and/or Sigma-Aldrich
(Lisbon, Portugal). All solvents and chemicals were purified and/or dried by methods from
literature [59]. Amine functionalized nanodiamonds (ND@NH2, UDiamond, Amine P) were purchased
from Carbodeon, Finland. Nanodiamonds (NDs) with a primary average particle size of 5 nm
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were obtained through detonation synthesis using a mixture of 2,4,6-trinitrotoluene (TNT) and
1,3,5-trinitroperhydro-1,3,5-triazine (RDX) high explosives as precursors. Boiling acid treatment was
used to remove the amorphous carbon and impurities from the detonation soot to create the purified
ND powder. Amine functionalization was subsequently done by heating the ND material for several
hours in a gas atmosphere comprising ammonia gas.

XPS analyses were carried out in a Kratos AXIS Ultra HSA spectrometer (CEMUP, Porto, Portugal).
All analysis was performed using the following conditions: monochromatic AlKα X-ray source
(1486.7 eV), at 15 kV (90 W), in fixed analyzer transmission mode. Data acquisition was carried out
using a pressure lower than 1 × 10−6 Pa. Survey and multi-region spectra were obtained at C 1s, O 1s,
N 1s, F 1s and Cu 2p (this one only for the Cu containing sample) photoelectron peaks. The modelling
of the spectra was performed using the CASA XPS program (Clearwater, FL, United States).

Fluorescence spectra were acquired on a Horiba-Jobin-Ivon Fluorolog 322 spectrofluorometer,
using a quartz cuvette and N,N-dimethylformamide as solvent. All fluorescence emission spectra
were normalized according to maximum intensity (from 0 to 1). FT-IR spectra were recorded on
a Cary 630 FT-IR spectrometer using ≈20–25 mg of each sample, with Microlab PC software
and ATR sampling unit with a resolution of 8 cm−1 and scan range of 4000 to 700 cm−1.
Gas chromatography (GC) analysis was carried out on a HP-Agilent 6890 chromatograph with
Agilent GC software (Santa Clara, CA, United States), equipped with ionization detector (FID)
(Santa Clara, CA, United States), and a HP-5 chromatographic column, non-polar (5% diphenyl,
95% dimethylpolysiloxane (30 m × 0.32 mm). GC-MS analysis was performed on a Hewlett-Packard
5973 MSD spectrometer (Santa Clara, CA, United States) (using EI = 70 eV), coupled to a
Hewlett-Packard Agilent 6890 chromatograph (Santa Clara, CA, United States), and equipped with
a HP-5 MS chromatographic column (30 m × 0.25 mm). The analyses were performed using the
following chromatographic conditions: initial temperature 40 ◦C, rate 10 ◦C min−1, final temperature
200 ◦C and gas flow of 1.41 mL.min−1. Conversion and selectivity were calculated based on peak areas
of GC. The identification and qualification of the peaks was confirmed by comparison of the mass
spectra and retention times against p-xylene as external standard. Thermogravimetric analyses were
performed on a Perkin-Elmer STA 6000 (Shelton, CT, United States) simultaneous TG-DSC instrument
in a range between 25 ◦C and 800 ◦C.

3.2. Synthesis of Porphyrin Precursors and Metalloporphyrins

The synthesis of 2-nitro-5,10,15,20-tetra(4-trifluoromethylphenyl) porphyrinato copper(II)
(1) and 2-nitro-5,10,15,20-tetra(4-trifluoromethylphenyl)porphyrin (2) was reported elsewhere [30].
Their synthesis was repeated at least three times and characterization data (1H nuclear magnetic
resonance (NMR) signals and mass spectra) are in agreement with the literature [30].

3.3. Immobilization of Nitro-Functionalized Porphyrins 1 and 2 onto ND@NH2

ND@NH2 (0.5 g) with the desired porphyrin 1 or porphyrin 2 (0.0825 mmol) and cesium carbonate
(Cs2CO3) (0.165 mmol; 54 mg) in dry dimethoxyethane (DME) (50 mL) were stirred at 85 ◦C for
24 h. The resulting materials were filtered and washed three times with each of the following
solvents—dimethoxyethane, dichloromethane, ethyl acetate and acetonitrile, to rinse away non-reacted
porphyrin 1 or 2. The obtained materials, ND@βNH-TPPpCF3-Cu(II) and ND@βNH-TPPpCF3, were then
dried for 24 h.

3.4. Cytotoxic and Genotoxic Evaluation of Porphyrin-Functionalized Nanodiamonds in Allium Cepa Assays

Pesticide-free A. cepa seeds were purchased from Isla (Isla Sementes Ltd.a., Porto Alegre, RS, Brazil).
The A. cepa assays were carried out according to literature [42,60]. The seeds were placed to germinate
at 23 ± 2 ◦C under a photoperiod of 12 h light/12 h dark for 96 h. 30 seeds were continuously exposed
to an aqueous solution (pure or containing NDs at 10, 50 and 100 mg.L−1). All tests were performed
in triplicate, totaling 90 seeds per group. The germination index (GI) was calculated after 96 h.
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The root length index (RLI) was measured using a digital caliper (Digimess, São Paulo, SP, Brazil)
after 96 h of the germination. Then, the roots were collected and prepared for the mitotic index (MI),
nuclear abnormality index (NAI) and micronucleus index (MNI) determination. After the collection,
the roots were fixed in Carnoy Solution 3:1 (alcohol/acetic acid) during 8 h and then stored at 4 ◦C.
After that, the fixed roots were washed with tap water and hydrolyzed in 1 N HCl at 60 ◦C for
10 min. Next, they were washed again and stained with Schiff’s reagent for 2 h. Subsequently, the root
meristems were slightly smashed in a drop of 45% acetic carmine. Finally, 5 slides were prepared
per group and imaged using an optical microscope (Nikon, Tokyo, Japan) at a 400× magnification.
1000 cells were evaluated per slide, resulting in 5000 cells checked per treatment. All experiments were
performed in triplicate and the GI, REI, MI, NAI, and MNI values were submitted to Paired Sample
t Test (p ≤ 0.05) for comparison of pairs of means.

3.5. Procedure for Oxidation of Cyclohexene Using ND@βNH-TPPpCF3-Cu(II) as Catalyst

ND@βNH-TPPpCF3-Cu(II) (4 mg; 19.8 × 10−8 mol of Cu) as catalyst and cyclohexene (10 mL;
0.099 mol) as substrate were added to a reactor and then charged with oxygen (O2, 4 atm). The reaction
mixture was maintained at 100 ◦C, during 24 h, under stirring. After this time, the reactor was
depressurized and an aliquot from the crude reaction was analyzed by GC.

In the reutilization tests, after each catalytic cycle, the copper(II) porphyrin-functionalized
nanodiamonds (ND@βNH-TPPpCF3-Cu(II)) were separated from the reaction mixture by centrifugation
and the supernatant solution by decantation. Then, the nanomaterials (ND@βNH-TPPpCF3-Cu(II))
were washed using acetonitrile (three times, using 4 mL) and dichloromethane (three times, using
4 mL), dried at 60 ◦C, during 4 h, and used in the next catalytic cycle. No catalyst adjustment was
made after each run.

4. Conclusions

We demonstrated that the β-ipso-nitro-aromatic nucleophilic substitution of amine-functionalized
NDs with β-nitro substituted porphyrins is an innovative and efficient approach to prepare covalently
linked hybrid porphyrin–nanodiamond materials. The nanocomposites’ characterization by XPS,
fluorescence, UV–Vis spectroscopy, IR spectroscopy and TGA-DSC unequivocally corroborated the
effective grafting of the nitro-porphyrins (1 and 2) onto the amine-functionalized NDs. Moreover,
our study revealed the hybrid nanodiamond–copper(II)–porphyrin as the best ever reported allylic
cyclohexene oxidation catalyst (TON ≈ 265,000), using only O2 as a “green” oxidant, in the absence of
reductants/solvents. Furthermore, the material could be recovered by centrifugation and used again in
three consecutive catalytic cycles without major loss of activity. Moreover, this porphyrin–nanodiamond
catalyst, under similar reaction conditions, may be able to oxidize other substrates, namely, α-pinene,
β-pinene and thiophenol derivatives. In addition, no ecotoxic and genotoxic effects were observed for
ND@NH2 and ND@βNH-TPPpCF3 materials, using Allium cepa as the plant model.

The findings described herein allow us to foresee the significance of materials of this type in
oxidative catalysis, and their potential in biomedical applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/12/1402/s1.
Figure S1: XPS results of hybrid sample ND@βNH-TPPpCF3-Cu(II): C1s (a,b), N1s (c), O1s (d), F1s (e), Cu 2p (f).
Figure S2: XPS results of hybrid sample ND@βNH-TPPpCF3: C1s (a,b), N1s (c), O1s (d), F1s (e). Figure S3:
Survey XPS spectra of ND@βNH-TPPpCF3-Cu(II) (a) and ND@βNH-TPPpCF3 (b). Figure S4: TG-DSC curves of:
(a) ND@NH2; (b) ND@βNH-TPPpCF3-Cu(II); (c) ND@βNH-TPPpCF3; weight loss (solid line); heat flow (dashed
line). Figure S5: Effects of the ND@NH2, ND@βNH-TPPpCF3 and H2O (control group) on (a) the germination
index (GI); (b) the root elongation index (REI); (c) the mitotic index (MI); (d) the micronucleus index (MNI);
and (e) the nuclear abnormality index (NAI) of the A. cepa cells. Data represent the mean ± standard error and
different letters means significant difference among the groups (p < 0.05). Allium cepa seeds were exposed to three
concentrations (10, 50 and 100 mg/L).
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