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Preface

This Master thesis is carried out in partial fulfillment of the requirements for the degree of Master of Science
in Biomedical Engineering at the Delft University of Technology. It is the goal of this student to present a
model cerebellar loop with olivary oscillators and long-term plasticity that is encoded with correlated tem-
poral information.

It is assumed throughout this work that the reader has a basic knowledge of human anatomy and is able to
understand basic explanations of mathematical models, for this report may be difficult to understand with-
out such knowledge.

This report has been written as two stand-alone parts. Part I: a paper that is the core of this thesis. Part II:
an appendix that can be read as a guide in understanding the basic knowledge of spiking neuron models in
neuroscience that is needed to fully understand the paper.

Delft, March 10, 2019
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Encoding of Correlated Temporal Information in a Model Cerebellar
Loop with Olivary Oscillators and Long-Term Plasticity

E. M. Fernández Santoro

March 10, 2019

Abstract
The olivocerebellar system plays a central role in motor learning, crucially contributing to the coordination, precision

and accurate timing of movements. The system is formed by Purkinje cells (PC), the Deep Cerebellar Nucleus (DCN) and
Inferior Olive (IO). Its input activate the PC which produces simple (SS) and complex spikes (CS). The latter induced
by the IO. The oscillatory nature of the production of CS seems to play a role in motor control and motor timing. In
addition, CS modulate the parallel fiber-Purkinje cell (PF-PC) synaptic plasticity. IO synchrony can help the system learn
timing with the PF input as the timing context. Furthermore, the level of synchronization of the coupled IO cells could
determine the function of complex spikes, implying that the olivocerebellum is capable of switching between modes of
learning by changing the level of synchronization. In this paper we introduced a novel computational model to analyze
the role of coupling of the IO and long-term plasticity at the PF-PC synapse in the response of the olivocerebellar loop.
It is a resonant system formed by a detailed IO model and Integrate-and-Fire PC and DCN models, with physiologically
observed firing frequencies. The IO cells are modeled as coupled oscillators and plasticity is incorporated through a timing
dependent specialization of Hebbian learning (Spike-Timing Dependent Plasticity or STDP). Two different simulations
are performed both for the coupled and uncoupled scenarios. The STDP is used only in the second type of simulation.
Both types of simulations use the same noisy input, which is applied twice during the second type of simulation. The
second half of the latter is interpreted as the response of a trained loop. Results show that in the presence of coupling the
correlation of the firing rates distribution decreases. This indicates that for the coupled scenario PCs are separating the
patterns, while for the uncoupled scenarios the noise is encoded more robustly. Furthermore, a drop in the noise current
(inhibiting the PC) leads to an IO spike at about 100 milliseconds later. After training, however, the loop recognizes a drop
in the noise and depresses the synapses avoiding an increase in the firing rate of the PC. This effect is more noticeable
in the coupled scenario. In conclusion, the model shows that plasticity can lead to learning, and that this process is more
efficient for a coupled system.

Index Terms—Olivocerebellar System, Purkinje Cell, Olivary
Oscillators, Long-Term Plasticity, Complex Spikes, Simple Spikes

I. INTRODUCTION

THE increasing level of understanding of the mechanisms
of the human brain has led to numerous technological

advances, including compelling pattern recognition programs,
learning algorithms and controllers of current widespread use.
In particular, these advances have led to impressive progress
in the field of robotics which, however, faces at present a
fundamental challenge. Indeed, robots are needed with the
capacity to learn complex motor behavior the same way
humans do, by learning about the body and its environment
using a mixture of unsupervised and of goal directed means.
The essential step that would make this possible is to develop
the equivalent of an artificial cerebellum, as this is the
organ playing a central role in motor learning and crucially
contributing to the coordination, precision and accurate timing
of movements.

The cerebellum is only one component of the olivocerebellar
system, which also includes the inferior olive and the
cerebellar nucleus. It occupies a central position in the
nervous system, having direct communication with the
cerebral cortex, midbrain, and spinal cord. Input is carried
to the cerebellar cortex through mossy and climbing fibers
(CF) arising from precerebellar and inferior olivary nuclei,

respectively (Kandel et al., 2000a). These fibers activate
Purkinje cells (PC) and produce simple (SS) and complex
spikes (CS). With a frequency of up to 100Hz, SS generated
by mossy fibers carry sensory information, while the rare CS
(1-3Hz), with a powerful influence on the Purkinje cell, is
responsible for long-term depression at the PF-PC synapse
(Marieb and Hoehn, 2013; Kandel et al., 2000a; Eccles et al.,
2013). Purkinje cells are highly organized with each PC
receiving one CF. The only output of the olivocerebellar
system comes from the deep cerebellar neurons (DCN). In the
inferior olivary nucleus (IO), cells oscillate at a low-frequency
rhythm (4-10 Hz) (Llinás and Negrello, 2015).

Although the major anatomic features of the cerebellum are
well known, the functions the olivocerebellum performs and
how it learns to carry out its tasks is fraught with controversy.
Researchers do not know what anatomical features allow
humans to synchronize their two arms and how different
systems are wired together. Despite many discrepancies with
physiological results, many neuroscientists have looked at the
inferior olive as being responsible of comparing intended with
achieved movements (Lang et al., 2017; Marr and Thach,
1991; Albus, 1971; Ito, 1970; Braitenberg, 1983; Tang et al.,
2016; Llinás and Negrello, 2015). Cerebellar models such
as those proposed by Marr, Albus and Ito assume that the
inferior olivary cells act independently while it has been
shown experimentally that these cells show high synchronicity
(Marr and Thach, 1991; Albus, 1971; Eccles et al., 2013).
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Such models have been successfully implemented for limited
experiments such as adaptive changes for the vestibulo-
ocular reflex and optokinetic eye movement response, or
eye blink condition. Some of these models have been
successfully employed for robotic applications. Examples
include the model by Casellato (Casellato et al., 2014), who
used probabilistic complex spikes or the model by Kawato
(Kawato and Gomi, 1992).who used a continuous error
function. However, it is not clear how an IO could produce
the required error computations for complex coordinated
tasks. Furthermore, inferior olivary models have concentrated
on the oscillation of cells or phase resets and it is not clear
how these mechanisms are integrated into the greater picture
of motor behavior. Most researchers have concentrated only
on the role of the complex spike as a teaching signal while
ignoring its oscillatory nature (Llinás and Negrello, 2015). It
seems, however, that accurately modeling of the inferior olive
is especially important to design brain-like controllers able to
learn and to abide by the attributes of a real brain.

There is an ongoing debate about the role of the complex
spike that opens an opportunity for further progress (Lang
et al., 2017). As more physiological results are found, this on-
going debate is tested and shows fragility. Nevertheless, recent
experiments and models that looked at the oscillatory nature
of the complex spike suggest that complex spike synchronicity
plays a role in the olivocerebellar loop, specifically in motor
control and motor timing (Lefler et al., 2013; Llinás and
Yarom, 1986; Ankri et al., 2015; Druol et al., 2016; Negrello
and Schutter, 2016). Models focusing on the inferior olive
and the production of complex spikes are needed to explain
why nature found oscillations necessary and what the conse-
quences of these oscillations are in the system. Most control
theories have failed to notice or integrate the rhythmicity and
synchronicity of climbing fibers arising from the subthreshold
oscillations of the inferior olive. The observed relationship
between the frequency of olivary oscillations and that of
muscular contractions leads to the conjecture that the rhythms
related to motor activity are produced by cerebellar activity
and that sophisticated motor patterns can be generated by
the cerebellar activity that control such rhythms (Braitenberg,
1987). Complex spike synchronicity could play a role in the
olivocerebellar loop, specifically in motor control and motor
timing. Due to the synchronicity, the inferior olive enables the
deep cerebellar nuclei to see differences in magnitude of the
signal and thus, to distinguish between simple and complex
spikes. Furthermore, strong couplings of the inferior olivary
cells induce quick but coarse learning while lower couplings
result in precise learning with little contribution to on-line
motor control (Sotelo et al., 1974; Schweighofer et al., 1999).
These observations imply that the function of complex spikes
is determined by the level of synchronization of the coupled
olivary cells and, as a consequence, that the cerebellum is
capable of switching between modes of learning by changing
the level of synchronization. To capture this essential attribute
of the cerebellum it is important to introduce models that
exploit the oscillatory nature of the production of complex
spikes.

In this work, a new cerebellar loop with olivary oscillators
and long-term plasticity is proposed to investigate these rela-
tionships (Fig. 1). A detailed IO compuational model that is
capable of spiking and oscillating is chosen as these are the
important features that are investigated. The main novelty is
the importance that the conductivity of the IO gap junctions
has on the olivocerebellar loop. The coupling of the cells can
be changed and the influence on the response of the loop can
be analyzed. We model the synapses of this resonant system
between the IO PC and DCN according to physiological
results. The detailed Inferior Olive model (Schweighofer et al.,
1999) is a two compartmental model that has both spiking and
oscillatory properties. A two compartmental model is chosen
as it is more biophysically accurate. The PC and DCN models
are both modified one compartmental adaptive exponential
integrate-and-fire models (AdEx) (Brette and Gerstner, 2005)
with firing frequencies similar to physiological results (Steuber
et al., 2011; Luque et al., 2018; De Schutter and Bower, 1994).
The plasticity mechanism used is the Spike-Timing Dependent
Plasticity (STDP) that looks at the sum over all pre- and post-
synaptic spike times. In this paper learning is interpreted as
a change in the response of the system. The analysis focuses
on why such a change takes place, without advancing any
conjecture as to its meaning.

Fig. 1: Model of the cerebellar loop. Input enters the PC
through the PF synapse. The PC AdEx (App. B) receives 3
types of inputs: the input from the PF INoise, an activatory
current Iapp and the input from the IO IIOPC

(App. A). The
PC projects an inhibitory signal IPC to the DCN (App. C)
which in turn, projects a signal to the IO (IIODCN

) that resets
the oscillations. The 2 compartment IO model receives the
IIODCN

and an activatory input current Iapp d on the dendritic
compartments. This is also the compartment where the IO cells
are electrically coupled (Ic). The Somatic compartment has an
input current Iapp s and projects the IIOPC

signal to the PC.
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The apriori hypothesis of this present study was that
coupling strengthens the effect of plasticity and that the
loop with both coupling and plasticity can be more sensitive
to the parameters of the input signals. To test this, two
different simulations are performed both for the coupled and
uncoupled scenarios. The STDP is used only in the second
type of simulation. Both types of simulations use the same
noisy input, which is applied twice during the second type of
simulation. The second half of the latter is interpreted as the
response of a trained loop. Results show that in the presence
of coupling the correlation of the firing rates distribution
decreases. This indicates that for the coupled scenario PCs
are separating the patterns, while for the uncoupled scenarios
the noise is encoded more robustly. Furthermore, a drop in the
noise current (inhibiting the PC) leads to an IO spike at about
100 milliseconds later. In the presence of plasticity, after
training the loop recognizes a drop in the noise and depresses
the synapses avoiding an increase in the firing rate. This
effect is more noticeable in the coupled scenario. For both
scenarios the trained loop recognizes specific characteristics
of PSC 2 (this is enhanced for the uncoupled scenario).
In conclusion, the model shows that plasticity can lead to
learning, and that this process is more efficient for a coupled
system.

The next section presents the different components of the
cerebellar loop. First, the IO model is described. Then, the two
Adaptive Exponential Integrate-and-Fire Models of the PC and
the DCN are shown. This is followed by a description of the
input noise current. The 5 different synapses are explained.
Namely, the Noise-PC synapse with and without STDP, the IO-
PC synapse, the PC-DCN synapse, and the DCN-IO synapse.

II. METHODS

A. Inferior Olive Model

The IO model is a modification of the Schweighofer model
(Schweighofer et al., 1999) as it includes a new current
IIODCN

that models the influence of the DCN on the IO
(further explanation of the original model is found in App.
A). The general cell equations for the model are shown below
and in Tab. IX. Furthermore, the parameters used for the
experiments in this model are shown in Tab. XII.

Cm
dVs
dt

= (−
∑

ISomatic + Iapps
)

Cm
dVd
dt

= (−
∑

IDendritic + Iappd
+ IIODCN

)

dIIODCN

dt
=

(I0 − IIODCN
)

τI

The dynamics of each activation or inactivation variable is
given by the differential equation:

dx

dt
=

(x∞ − x)

τx

where x indicates the variables h, k, l, n, q, r and s. Fur-
thermore, the dynamics of the calcium concentration [Ca2+]

TABLE I: Equations of the Ionic Conductances of the IO Cell

Somatic Currents Dendritic Currents

ICal
= gCal

k3l(Vs − VCa) ICah
= gCah

r2(Vd − VCa)

Ih = ghq(Vs − Vh) IKCa
= gKCa

s(Vd − Vk)

INa = gNam
3
∞h(Vs − VNa) Ild = gld(Vd − Vl)

IKdr
= gKdr

n4(Vs − Vk) Isd =

[
gint

(1 − p)

]
(Vd − Vs)

Ids =

(
gint

p

)
(Vs − Vd) Ic = gcf(Vd − Vde)(Vd − Vde)

Ils = gls(Vs − Vl)

TABLE II: Parameters of the IO Standard Cell

Conductances (mS/cm2) Reversal Potentials (mV )

gNa 80 VNa 55

gKdr
2 VK -75

gCal
1 VCa 120

gh 0.2 Vh -43

gCah
4.0 Vl 10

gKCa
35

Membrane Capacitance (µF/cm2)
gls,gld 0.016

gc 0.125 Cm 1

Cell Morphology IO-DCN Synapse

gint 0.13 I0 0 µA/cm2

p 0.20 τI 9ms

and the transjunctional voltage dependence of the gap junction
conductance f are shown below.

d[Ca2+]

dt
= −3.0ICah

− 0.075[Ca2+]

f(V ) = 0.6e−
V 2

502 + 0.4

The current flowing out into the dendritic (Ids) and into the
somatic compartments (Isd), as well as the leakage currents
for the soma (Ils) and for the dendrites (Ild) are represented
in this model (Schweighofer et al., 1999). As the window of
conductance of the calcium low-threshold current (ICal

) is
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TABLE III: Steady-state Activation/Inactivation and Time Constants of the Ionic Conductances of the IO Cell

Conductance Type Steady-State Time Constant (ms) Forward Rate Function Backward Rate Function
Activation/Inactivation α β

INa

m∞ =
αm

αm + βm
αm =

0.1(V + 41)

1 − e
−(V +41)

10

βm = 9.0e
−(V +66)

20

h∞ =
αh

αh + βh
τh =

170

αh + βh
αh = 5.0e

−(V +60)
15 βh =

(V + 50)

1 − e
−(V +50)

10

IKdr
n∞ =

αn

αn + βn
τn =

5

αn + βn
αn =

(V + 41)

1 − e
−(V +41)

10

βn = 12.5e
−(V +51)

80

ICal

k∞ =
1

1 + e
−(V +61

4.2

τk = 5

l∞ =
1

1 + e
(V +85.5)

8.5

τl =
20e

(V +160)
30

1 + e
(V +84)

7.3

+ 35

Ih q∞ =
1

1 + e
(V +75)

5.5

τq =
1

e(−0.086V−14.6) + e(0.07V−1.87)

ICah
r∞ =

αr

αr + βr
τr =

1

αr + βr
αr =

1.6

1 + e
−(V −5)

14

βr =
0.02(V + 8.5)

1 − e
(V +8.5)

5

IKCa
s∞ =

αs

αs + βs
τs =

1

αs + βs
αs = min (2 · 10−5[Ca2+], 0.01) βs = 0.015

around the resting membrane potential, the IO cell is excited
in response to hyperpolarizing currents (Llinás and Yarom,
1981). On the other hand, the calcium high-threshold current
(ICah

) is noninactivating. Thus, a depolarizing dendritic input
results in a prolonged plateau potential. As calcium enters
the dendrites, the calcium-activated potassium current (IKCa

)
is activated. This current abruptly terminates the plateau po-
tential after about 30 milliseconds (Llinás and Yarom, 1981).
Due to the long time constant (several hundred milliseconds)
of the IKCa

, there is a long afterhyperpolarization which,
in turn, deinactivates the ICal

resulting in a postinhibitory
rebound spike. The afterhyperpolarization also activates an
anomalous rectifying current Ih as it is a current that activates
at hyperpolarized potentials. This current contributes to the
subthreshold oscillations as it contributes to amplitude and
frequency (Schweighofer et al., 1999; Bal and McCormick,
1997). Furthermore, similarly to Hodgkin-Huxley type neuron
models, somatic sodium spikes are generated with the sodium
current INa. These are terminated by an outward delayed
rectifier potassium current IKdr

(Llinás and Yarom, 1981).
Finally, the electronic coupling between the cells is represented
by a current, Ic.

B. Other Cerebellar Neuron Models
The other cerebellar neurons (Purkinje Cell and Deep Cere-

bellar Nuclei) are simulated as adaptive exponential integrate-

and-fire models (Brette and Gerstner, 2005). The general cell
equations for the PC and DCN are described below.

dV

dt
=

1

Cm

(
gL (EL − V ) + gL∆T e

(
V −VT

∆T

)
+
∑
i

Ii − w

)

dw

dt
=
a (V − EL) − w

τw

Here, ∆T is the slope factor, VT is the the threshold potential,
w is the adaptation variable, a is the adaptation coupling factor
and τw is the adaptation time constant.

∑
i Ii is the sum of the

currents specific to the PC and the DCN (where i = PC, DCN).
When a spike happens both the membrane potential and the
adaptive variables are reset, however, while the first resets to
the resting potential, the second decays until either reaching 0
or the next spike time (Dayan and Abbott, 2005). The slope
factor ∆T is a quantification of the sharpness of the spike.
This can be seen as the sharpness of the sodium activation
curve if the activation time constant is ignored (Goodman and
Brette, 2008).

1) Purkinje Cell AdEx: For the Purkinje cell, the currents
are INoise and Iapp (further explanation of this model is found
in App. B). The former is the input from the parallel fibers
and the latter is an activation input current that may be given
to the cell.
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TABLE IV: Parameters of the AdEx Cell Types

Parameters PC DCN

C 75 pF 281 pF

gL 30 nS 30 nS

EL -70.6 mV -70.6 mV

VT -50.4 mV -50.4 mV

∆T 2 mV 2 mV

Vcut VT + 5∆T VT + 5∆T

τw 144 ms 30 ms

a 4 nS 4 nS

b 0.0805 nA 0.0805 nA

Vr -70.6 mV -65 mV

τI 30 ms

IPCmax 0 nA

IPCIntrinsic
2 nA

∑
i

IPC = INoise + Iapp

2) Deep Cerebellar Nuclei AdEx: In the case of the DCN
AdEx, IPC is the inhibitory projection from the PC (further
explanation of this model is found in App. C). IIntrinsic
defines the intrinsic firing of the cell that is inhibited by the
PC when it spikes.∑

i

IDCN = IIntrinsic − IPC

When the PC is not spiking, IPC = 0nA, however, upon
a spike of the PC, IPC is updated to a certain value (See
II-D). This means that the total current IIntrinsic − IPC will
be smaller and the DCN will spike less (inhibition from PC).

dIPC

dt
=

(IPCmax − IPC)

τI

C. Input Noise (Parallel Fiber Input)
For the parallel fiber input, a current with mean I0 and

Ornstein-Uhlenbeck noise is used. ξ is a Gaussian random
variable with mean 0 and standard deviation 1 that scales with
units of seconds−0.5. The parameters of each noise source are
randomized based on the number of sources (NNoise). This
means that each noise source will have a different I0 and σ.
If the noise is negative it is looked at as being the influence
of inhibitory interneurons on the loop.

dI

dt
=
I0 − I
τnoise

+
σξ√
τNoise

TABLE V: Noise Parameters

Parameters Values

τ 50 ms

I0 1.5± 0.1NNoise nA

σ 0.5± 0.1NNoise nA

D. Synapses Between Neurons

1) Noise-Purkinje Cell Synapse without STDP: The PC-
PF synapses are not linear in the longitudinal direction (Fig.
2a). This phenomenon is modelled by synaptic weights that
decrease with the distance between the source and the target
neurons (Fig. 2b). The weight for the synapses from the
ith presynaptic neuron (source) to the jthpostsynaptic neuron
(target) is computed as follows.

wsyni,j
= 1− |i− j|

NPC

As j increases (gets further away), wsyn decreases, lowering
the effect this presynaptic neuron has on the postsynaptic one.
For example, for PC1 its synaptic weights wsyn1,1 = 1 and
wsyn1,2 = 0.5.

(a) Top View of PC (solid lines) and PF (dashed lines). The PC are
not ordered in a linear way in the longidtudinal direction, hence,
the PF do not make synapses with all the PC in one strip of PC

(b) Distance Based Connectivity,
each source neuron is connected

to all target neurons

(c) Direct Connectivity,
each source is connected

to one target neuron

Fig. 2: Synaptic Connectivity

2) Noise-Purkinje Cell Synapse with STDP: When intro-
ducing plasticity to the model, the connectivity of the PF-PC
synapse is the same but the synaptic weights are changed.
For spike-timing dependent plasticity, the change in synaptic
weight wsyni,j

is the sum over all pre- and post-synaptice spike
times, tpre and tpost. Two new variables are defined: aSS and
aCS which are the traces of the pre- and post-synaptic activity.
These are governed by the following differential equations:

τpre
daSS

dt
= −aSS τpost

daCS

dt
= −aCS
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The traces are updated every time their respective neuron
spikes. In the case of the PC, for each SS the trace (aSS) is
updated with a constant value ASS . For the IO, aCS depends
of the amplitude of the noise (with respect to I0) and thus, is
updated by ACS · f(amplitude). Both ASS and ACS depend
on the length of the experiment. Nevertheless, the synaptic
weight is not updated in the same fashion as the traces. The
weight is updated with the trace of the PC (aSS) when there
is a CS. The weight is then updated with the trace of the
IO (aCS) when the next SS occurs. In this way, the number
of SS before the CS has an influence on the change in the
synaptic weight.

More precisely, when a CS occurs aCS = aCS +ACS and
wsyni,j = wsyni,j +aSS . When a SS occurs aSS = aSS+ASS

and wsyni,j
= wsyni,j

+ aCS . Notice that only the first SS
leads to an update, as aCS remains unchanged until the next
CS. This update of the weight from the SS can be thought of
as a potentiation of the synapse while the CS trace leads to a
depression of the synapse.

TABLE VI: STDP Parameters

Parameters Values

τpre 20 ms

τpost 20 ms

ASS 0.01/(runtime)

ACS 0.01/(runtime)

3) Inferior Olive - Purkinje Cell Synapse: The modeling of
the IO-PC synapse focuses on the pause mechanism following
a complex spike. Each PC is connected to one IO as seen in
Fig. 2c (for bigger neuronal populations each IO can connect
to up to 10 different PC). As the PC AdEX model already
has an adaptation variable that increases the interspike interval
(ISI), the synaptic modeling only requires the increase of the
adaptation variable w following a presynaptic spike (IO spike).
As w is increased to a higher value, the PC cannot spike until
w decays to a lower value.

4) Purkinje Cell - Deep Cerebellar Nuclei Synapse: The
DCN is always spiking but is inhibited by a spike of the PC.
When IPC is large, the difference IIntrinsic − IPC becomes
smaller and the DCN is inhibited. When there is a presynaptic
spike (PC), IPC is increased and until it decays back to
IPCmax

the DCN cannot fire.
5) Deep Cerebellar Nuclei - Inferior Olive Synapse: In

analogy to the PC-DCN synapse, IIODCN
increases to a high

current value when the DCN spikes. As the decay time of
IIODCN

is small (9 milliseconds) this can be seen as a large
current pulse entering the IO cell resulting in a reset of the
oscillations.

TABLE VII: Summary of the Synaptic Configurations

Synapse On Presynaptic Connection Synaptic
(Source-Target) Spike Weight

PF-PC Distance
1 − |i−j|

NPCBased

IO-PC w = 0.9nA Direct 1

PC-DCN IPC = 0.9nA Direct 1

DCN-IO IIODCN
= 9µA/cm2 Direct 1

E. Analysis

The main steps of the present analysis are the following:

1) Description of the behavior of individual cells. This
allows the study of their mutual influence and the role
of the loop.

2) Study of differences between the responses for the
coupled and uncoupled scenarios without STDP.

2.1) Describe the best PC stimulus for an IO spike.

3) Study of differences between the responses for the cound
uncoupled scenarios with STDP .

4) Comparison of the different scenarios with and without
the presence of plasticity.

4.1) Explain how the firing rates of each cell change
after STDP.

4.2) Study how the input correlate with the PC output
after STDP.

Two different simulations are performed both for the cou-
pled and uncoupled scenarios. The STDP is used only in the
second type of simulation. Both types of simulations use the
same noisy input, which is applied twice during the second
type of simulation. The second half of the latter is interpreted
as the response of a trained loop.The PC, DCN and IO firing
rates are compared for each simulation. For the IO, the spike
amplitudes and periods are also analyzed. The behavior of the
model is compared graphically and through statistical tests,
including t and F tests. The study of the simulation outcomes
involved processing almost 300 plots1, from which only the
more relevant are shown in this paper. These include raster
plots, firing rate plots, CS triggered noise averages plots, and
CS triggered PC firing rate averages. For the raster plots, a CS
is taken as an event. For each event at time ti, the PC response
is registered for the time interval (ti-600ms,ti+600ms). All of
the SS and the IO spikes found in that snippet of time are
plotted as a function of time, placing the CS event at time zero.
For the plot of the CS triggered noise averages the snippets of
time are computed in the same fashion, but averaging over all
the events of both the IO response and the noise. The same is
done for the averages of PC firing rates.

1These can be found in the repository of TU Delft, otherwise contact the
author
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III. RESULTS

A. Response of Individual Cells to Random Noise

The postsynaptic current (PSC) of each PC is shown in
Fig. 3. Fig. 5 show the responses of the PC, DCN and IO
during a 2 second window of the experiment. The mechanisms
for the cerebellar loop (as explained in Sec. II) are working
as expected as CS create PC pauses which induces a DCN
rebound spike which in turn, influences the IO.

Fig. 3: The noise current entering each PC (postsynaptic
current noise or PSC) for a duration of 50 seconds. Each
postsynaptic current is a combination of the noise sources
(presynaptic) as explained in Sec. II-D. PSC of PC1 has
both a higher variance and lower intensity than PSC of PC2
(I01

= 1nA, σ1 = 0.67 and I02
= 1.33nA, σ2 = 0.33).

Fig. 5 shows the behavior of the three cells:
• An IO spike (CS) is preceded by a drop followed by an

increase in the rate of firing of the PC.
• The IO spike is followed by a pause in the PC activity,

which gives rise to a burst of the DCN spikes.
• Both DCN cells seem to have similar membrane potential

responses. Nevertheless, the small differences in their
response are, in reality, significant when looking at the
IO response.

Fig. 4: Population firing rates (both cells) of PC and DCN.
The PC inhibits the DCN, this leads to an inverse relationship
between the firing rates. As the PC population decreases its
activity, the DCN population spikes more.

Fig. 5: The response of each cell of the cerebellar loop for a
small window of time (2 seconds). A: the PCs response, B:
the DCN response and C: the IO response of coupled cells.

We further observe the following:
• In consistency with physiological observations, Fig. 5.A

shows that PCs fire extremely frequently (at about 100Hz)
(Marieb and Hoehn, 2013; Kandel et al., 2000b).

• With a frequency of about 40Hz, the DCN is fully
inhibited by the PC and fires when there is a drop in the
PC’s activity (cf. Fig. 5.A and 5.B). This firing frequency
is also in accordance to physiological results ((Steuber,
2016)). The relationship between DCN firing rate and PC
firing rate is shown in Fig. 4.

• The DCN has a bursting response following a pause in
the PC due to a CS (see Fig. 5 at 21.1, 21.4, 21.7, 21.9,
22.1, 22.5, 22.7 and 22.9 seconds).

• The IO has a tonic spiking response with a frequency of
about 2Hz (Fig. 5).

• The DCN spiking has an effect on the IO:
– At a time of about 23.1 seconds we observe the

rebound spike of DCN 1.
– As a result of the DCN rebound, the response of IO

1 is modified when compared to IO 2 This is shown
in Fig. 5.B, where the membrane potential of IO 1
and IO 2 become different due to the DCN spiking.
This also seen at 22.1 seconds.

– The influence is better seen following the IO spike
at 21.7 seconds. The two DCN spike differently and
the effect of a longer burst is seen in the response
of IO 1 at that time.

• The effect of the IO on the PC is seen at 23.4 seconds.
There is a spike from IO 2 but IO 1 does not spike (see
Fig. 5). It is seen that only PC 2 is pausing while PC 1
is spiking.

• The PC pause at 23.6 seconds in Fig. 5.A is particularly
interesting when thinking of the STDP mechanism. While
there is a CS for PC 2 relatively close to the one at
this time, PC 1 did not pause and kept on firing. This
difference can be seen as the membrane potential of PC
1 decreases much more than the one of PC 2.
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B. Response of the Cerebellar Loop Without Plasticity
The main result is that coupling increases both the firing

rate and the period variability of the IO. This is because each
IO cell is influenced by the other. As the current from the
coupling Ic entering each cell increases due to the firing of
the other cell, more IO spikes happen. Moreover, these IO
spikes happen at arbitrary points in time, thus increasing the
variability in the period.

Fig. 6: Raster Plots of IO cell 1 for each scenario without
STDP (A and B) and with STDP (C and D). Fig. A and C
are the coupled scenarios, and B and D are the uncoupled
scenarios. The uncoupled scenario has a lower variability in
the period. There is no change after STDP.

More precisely, we observe the following:
1) Period Variability

• The raster plots (Fig. 6) show that there is a higher
variability in the period of CS when the cells are
coupled than when uncoupled.

• The average period of the IO spikes of the coupled
cells is 298.06 ms for cell 1 and 294.45 ms for cell
2 (with standard deviations of 81.93 ms and 80.40
ms).

• In the case of the uncoupled cells, the mean period
for cell 1 is 369.53 ms with a standard deviation of
47.80 ms and 354.13 ms with standard deviation of
40.38 ms for cell 2.

• The average period of IO spikes is significantly
different between coupled and uncoupled cells
(p=5.9855e-35 for cells 1 and p=9.3597e-29 for
cells 2).

• Fig. 7 shows that the variability in the period for the
coupled scenario is higher than for the uncoupled.

2) Firing rate
• When looking at the firing rates of the IO cells, it

is seen that coupled cells have a higher firing rate
than uncoupled cells (Fig. 8).

• The average IO firing rate for the coupled scenario
is 1.21 Hz.

• The average IO firing rate for the uncoupled sce-
nario is 0.78 Hz.

3) Amplitude of the IO spikes
• Both cells have similar amplitude averages of the

IO spikes.
• The average amplitude of the IO spikes for coupled

cells 1 and 2 is of 50.17 mV and 50.69 mV
with standard deviations 5.60 mV and 0.90 mV,
respectively.

• For the uncoupled cells, IO cell 1 has an amplitude
average of 48.56 mV with a standard deviation of
9.39 mV and IO cell 2 has 50.18 mV amplitude
average with 0.46 mV standard deviation.

Fig. 7: Histograms of Periods of IO population (both cells) for
each scenario before STDP (A and B) and after STDP (C and
D). Fig. A and C are the coupled scenarios, and B and D are
the uncoupled scenarios. The uncoupled scenario has a lower
variability in the period. There is no change after STDP.

Fig. 8: IO Firing rates between coupled and uncoupled sce-
narios before STDP. The firing rate for the uncoupled scenario
is lower than for the coupled one.

Further observations are found for the DCN and PC:
1) PC response:

• The mean PC population firing rate is of 91.77 Hz
for coupled cells and 96.42 Hz for the uncoupled
scenario.

• According to physiological results, the PC fires
regularly whether it is in the coupled or uncoupled
scenario (F=0.4382 for coupled and F=0.3620 for
uncoupled).

• The results are consistent: uncoupled IO cells have
a lower population firing rate and the PC for that
scenario have a higher firing rate. This shows that
there are less pauses happening as there are less CS.
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2) DCN response:
• The mean DCN population firing rate is of 33.43 Hz

for coupled and 29.22 Hz for uncoupled scenarios.
• As there is a higher PC firing rate in the uncoupled

scenario, it follows that the DCN firing rate for that
scenario will be smaller. This relationship is shown
in Fig. 4.

C. What is the Preferred PC Stimulus for an IO Spike?

We find in Fig. 9 that for both coupled and uncoupled
scenarios a drop in the noise current (inhibiting the PC) leads
to an IO spike at about 100 milliseconds later. The noise
decreases and then increases leading to an increase in the PC
firing rate (see Fig. 10). These figures show that an increase
in the PC firing rate about 50 ms before the IO spike is
ideal to find a CS. Following the IO spike, the average PC
firing rate decreases indicating a PC pause. Furthermore, the
figures also show that the variability in the IO spikes for the
uncoupled scenario affects the PC firing rates. We see in Fig.
10 that this small variability is translated to a higher overlap of
the different IO spikes. In turn, the average of the membrane
potential is higher and the PC firing rate average is decreased.
This is shown for the firing rate of PC 2 in the uncoupled
scenario.

D. What are the Main Differences After Training Between
Coupled and Uncoupled?

1) IO Period Variability
• The average period of the IO spikes of the coupled

scenario is 312.99 ms for cell 1 and 311.57 ms for
cell 2 (with standard deviations of 88.23 ms and
83.13 ms, respectively).

• For the uncoupled scenario, the mean period for cell
1 is 391.13 ms with a standard deviation of 52.38
ms and 372.75 ms with standard deviation of 48.13
ms for cell 2.

• The average period of IO spikes is significantly
different between coupled and uncoupled cells
(p=1.1148e-14 for cells 1 and p=1.2205e-25 for
cells 2).

• There is a significant difference in variability of
the periods between both scenarios (p=0.2921 for
coupled cells and p=0.1753 for uncoupled cells).

• There is not a significant difference in the variability
between before and after STDP for each scenario
(p= 0.1849 for cells 1 and p=0.1421 for cells 2).

2) IO Firing rate
• The firing rates of the IO cells is higher for the

coupled scenario than for the uncoupled cell one
(1.82 Hz and 0.83 Hz respectively).

• The firing rates of the IO are higher after plasticity
(p = 2.7495e-115 for coupled, p = 0 for uncoupled).

Fig. 9: CS Triggered Noise Averages for coupled (A and C) and uncoupled (B and D) scenarios for both before (A and B)
and after (C and D) STDP. The left vertical axis shows the current of the PSC of PC 1 and the right axis the membrane
potential of IO 1. The upper and lower black lines represent the confidence interval of the average PSC. A lower variability
in CS period is seen for the uncoupled scenario (B and D) as the average shows membrane potential peaks before and after
the CS. The coupled scenario (A and C) is seen to have less variability in the PSC preceeding the drop at 100ms. This relates
to the higher variability in CS period for this scenario.
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Fig. 10: CS Triggered PC Firing Averages for coupled (A and C) and uncoupled (B and D) scenarios for both before (A and
B) and after (C and D) STDP. The left vertical axis shows the population firing rate of the PC with confidence intervals. The
right axis the membrane potential of IO 1. The firing rate increases at about 50ms prior to a CS. It then starts to decreases
and keeps decreasing more pronouncedly after the CS occurs. This decrease in firing rate following the CS is lower for the
uncoupled scenario (C and D). Moreover, after STDP (B and D) the firing rate decreases less than before STDP. It is also
seen that, for the coupled scenario (A and C), following a CS the firing rate increases until about 100ms after the CS. Then,
the rate decreases until reaching a plateau. This is not seen in the uncoupled scenario (B and D). The firing rate reaches the
plateau at about 100ms and does not decrease before reaching it. This is in relation to the lower variability in CS period in
the uncoupled scenario.

3) Amplitude of the IO spikes
• We also find larger amplitude of the spikes in IO 1

than in IO 2.
• The average amplitude of the IO spikes for coupled

cells 1 and 2 is of 50.83 mV and 50.66 mV
with standard deviations 4.20 mV and 0.98 mV,
respectively.

• For the uncoupled cells, IO cell 1 has an amplitude
average of 48.46 mV with a standard deviation of
10.56 mV and IO cell 2 has 50.27 mV amplitude
average with 0.52 mV standard deviation.

• There are no significant differences in spike ampli-
tudes before and after STDP (for cell 1 p = 0.2257
for coupled and p = 0.9349 for uncoupled, and for
cell 2 p = 0.7794 for the coupled scenario and p =
0.1362 for the uncoupled one).

4) PC response:
• The mean PC population firing rate after STDP is

of 96.67 Hz for coupled cells and 101.33 Hz for the
uncoupled IO cells scenario.

• For both coupled and uncoupled scenarios, the PC
fires more after STDP.

5) DCN response:
• The mean DCN population firing rate is of 36.21

Hz for coupled cells and 32.19 Hz for uncoupled
cells.

• As expected from the higher PC firing rates, the
DCN firing rates are decreased with Plasticity.

E. What are the Main Differences in the Cerebellar Loop
Response After Training?

When plasticity is added to the cerebellar loop, the response
changes significantly. This can be seen in Fig. 9. The postsy-
naptic current of the PC is modified. The synapse is depressed
when the noise decreases at about 100 ms prior to a CS.
Following the drop in PSC, the current does not increase as
much as it does when there is no STDP. It stays closer to 1nA
and then increases instantaneously when the IO spike happens.
In Fig. 10 it is shown that the variability in the PC firing rate is
decreased. Moreover, the PC firing rate increases less prior to
the IO spike as than when there is no plasticity. This indicates
that the synapse has been modified and recognizes that an IO
spike is arriving.
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F. How Do the Firing Rates of Each Cell Change After STDP?

Fig. 11.A shows that there is a high level of cross-correlation
of the IO firing rates before and after training for the uncoupled
scenario. This indicates that training leads to little change in
the uncoupled IO firing rates. On the other hand, in the coupled
scenario the IO have significantly different firing rates. For
the PC, the correlation is also lower for the coupled than
the uncoupled scenarios (see Fig. 11.B). Nevertheless, it is
still a relatively high correlation (peak at 0.58). Moreover, the
peak amplitude of the uncoupled is larger than the coupled
correlation, indicating that for the coupled scenario the PC
response is modified. Namely, in the coupled scenario the
firing rate distribution of the PC is different after training.
The difference in the peaks of the correlation between the two
scenarios is significantly larger for the DCN plot (Fig. 11.C).
In the coupled scenario learning lead to significant changes in
the DCN firing rates.

Fig. 11: Cross-Correlation plots between the population firing
rates before and after STDP for each scenario (coupled and
uncoupled). A: IO cell cross correlation. B: PC cross correla-
tion. C: DCN cross correlation. In the coupled scenario (blue),
the three cells have lower correlation.

G. How Does the Input Correlate with the PC Output After
Training?

In the coupled scenario (Fig. 12.A) the cross correlation of
the membrane potential of PC 1 with the PSC of PC 1 indicates
that, before training, the PSC affects what will happen to the
membrane potential. On the other hand, after training, what
happened earlier has less effect on the membrane potential.
A similar phenomenon is found for the cross correlation of
the membrane potential of PC 2 and PSC of PC 2 (see Fig.
12.D). However, the peak appears with a delay of 100ms. This
indicates that after STDP seems to predict the current. An
analogous delay is found for the cross correlations of PC 1
PSC 2, and for PC 2 and PSC 1. This indicates that the main
actors are both PSC 2 and PC 2. In contrast, for the uncoupled
scenario, we do not see after training an effect of the PSC prior

on the PC response (see Fig. 13). Nevertheless, we see that
learning leads to a decrease in the sidelobes, indicating a lower
response of the PC to the PSC. Overall, Fig. 12 and 13 show
that plasticity plays a larger role in the coupled scenario.

Fig. 12: PC PSC Cross-Correlation coupled scenario. A: PC 1-
PSC 1 cross correlation. Before training there is an increasing
correlation starting 200 ms prior. After training, a sharpened
response and higher peak is found. B: PC 1-PSC 2 cross
correlation. After STDP there is less correlation and the
response prior has less effect. C: PC 2-PSC 1 cross correlation.
After STDP the prior correlation is lower and the peak is now
at a 100ms delay. D: PC 2-PSC 2 cross correlation. The peak
correlation increases after STDP.

Fig. 13: PC PSC Cross-Correlation uncoupled scenario. A: PC
1-PSC 1 cross correlation. After STDP the peak is higher..
B: PC 1-PSC 2 cross correlation. After STDP there is less
correlation. C: PC 2-PSC 1 cross correlation. After STDP the
prior correlation is lower and the peak is now at a 100ms
delay. The sidelobes found before STDP at 0.5 seconds are
lowered after STDP. D: PC 2-PSC 2 cross correlation. The
center peak correlation increases after STDP and the sidelobes
are decresed.

Looking closer at the PSC 2 (see Fig. 14), we find that, for
this simulation, after training the correlation has oscillatory
components. This means that (especially for the uncoupled
scenario) PC 2 learns specific characteristics of the noise by
acquiring this oscillatory response.
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Fig. 14: Auto Correlation Of the PSC 2 for both coupled
(A) and uncoupled (B) scenarios. After STDP (red) the auto
correlation shows oscillatory components which are enhanced
in the uncoupled scenario (B).

IV. DISCUSSION

This cerebellar loop is a simplified model of the olivo-
cerebellar system. It is missing various components such as
inhibitory interneurons or basket and stellate cells. Neverthe-
less, the study of this model enables a vast range of questions
with regards to the control of the musculoskeletal system as
well as sensorimotor feedback. The importance of IO coupling
is shown for a small amount of cells. Increasing the cell
population opens the possibility for both a further research in
the effect that coupling has, as well as a study in the properties
of subthreshold oscillations of the IO. The significance of this
work and its importance in the understanding of the function
of the olivocerebellum becomes clear when looking at its
position in motorcontrol. Boahen proposes that IO neurons
use their subthreshold oscillations to mirror joint dynamics to
implement an inverse controller (Boahen and Alvarez-Icaza,
2012). On the other hand, Higgins proposes that, in motor
control, the discharge of antagonist motor neurons is regulated
in concert with that of agonist muscles (Higgins, 1986) and the
olivocerebellum is a modulator. The idea that IO neurons can
express the dynamics required to mirror biomechanical joints
and that motor control is regulated by discharges of antagonist
and agonist muscle neurons could be investigated using the
current cerebellar loop. The signals from the antagonist and
agonist muscles are correlated temporal information that enter
the loop through the PF-PC synapse. Moreover, injecting a
current into the IO allows us to affect overall motor output
performance and the joint’s natural dynamics with amplitude
proportional to the amount of current can be found (Boahen
and Alvarez-Icaza, 2012).

V. CONCLUSION

The present model exhibits an interesting interplay between
coupling and plasticity. In the presence of coupling, there is
a significant decrease in the correlation of the distribution of
firing rates before and after training. Furthermore, the firing
distribution of the PCs is similar in the uncoupled scenario.

Which, according to theory, corresponds to a more robust
encoding of the noise. In contrast, in the coupled scenario,
the PCs are separating the patterns (Negrello and Schutter,
2016; Sotelo et al., 1974; Schweighofer et al., 1999).
Plasticity has also a significant effect in the characteristics
of the signal response of the network. Indeed, after training
the IO, PC and DCN firing rates are higher. In addition, the
trained system recognizes the drop in noise preceding a CS
and depresses the synapses avoiding an increase in the firing
rate of the PC (see Fig. 11).
The observed difference in the cross-correlation between the
membrane potential and PSC of PC (Fig. 12 and 13) shows
that the network responds or recognizes the parameters of
each noise source. For both scenarios (coupled and uncoupled)
the trained loop recognizes specific characteristics of PSC 2,
namely the noise with higher intensity and smaller variance.
This preference is enhanced for IO gap junctions with lower
conductances (lower coupling).
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APPENDIX A
MODELING SCHWEIGHOFER’S INFERIOR OLIVE NEURON

MODEL WITH THE Brian 2 SIMULATOR

This appendix presents how to implement
Schweighofer’s two compartmental model of the Inferior
Olive. This model consists of the soma and dendrites
compartments and a gap junction in which cells are
connected. Sec. A-A introduces the model by explaining
the role of each ionic current. Sec. A-B shows how to
implement the general cell model in Brian2. Sec. A-B3
defines the parameters of the standard cell and how to
implement them. The results are shown in Sec. A-C and
the gap junction between two cells is shown in subsection
A-C1.

A. Introducing Schweighofer’s Model

In the original model introduced by Schweighofer
(Schweighofer et al., 1999) it is discussed how IO cells have
a rhythmic activity with a frequency of 4-8 Hz, that takes
the form of either rhythmic generation of sodium spikes or
subthreshold sinusoid-like oscillations (Bal and McCormick,
1997; Bernardo and Foster, 1986; Llinás and Yarom, 1986).
Spontaneous oscillations occur for about 10% of these IO
cells (Schweighofer et al., 1999). Moreover, IO cells generate
dendritic spikes as a result to an injection of depolarizing
currents, whereas somatic spikes are generated due to release
from hyperpolarization (Llinás and Yarom, 1981). Further-
more, IO cells are electronically coupled by a gap junction
at the dendrites (Sotelo et al., 1974). This coupling, added
to the underlying rhythmicity, suggests that the inferior olive
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is a network of damped oscillators. When these are coupled,
sustained oscillations can be achieved (Schweighofer et al.,
1999). Inferior olivary cells receive three types of inputs.
There is one excitatory dendritic input and two inhibitory
inputs: one affecting the excitability of the cell and the other
one modulating the coupling strength between the cells (Lang
et al., 1996).

Fig. 15: Original model of inferior olive (IO) neurons
(Schweighofer et al., 1999).
A: 2-compartment biophysical model of an IO cell. B: 2 cells
electronically coupled by a single hypothetical gap junction.

Somatic Currents Dendritic Currents

Ids

Current flowing out
into the dendritic
compartment

Isd

Current flowing
into the somatic
compartment

Ils
Somatic leakage
current Ild

Dendritic leakage
current

ICal

Low-threshold
calcium inward
current

ICah

High-threshold
calcium inward
current

Ih
Anomalous inward
rectifier current IKCa

Calcium-activated
potassium current

INa

Hodgkin-Huxley type
inward sodium
current

Ic

Electronic coupling
current between
the cells

IKdr

Hodgkin-Huxley type
outward delayed
rectifier potassium
current

TABLE VIII: Summary of Ionic Conductances in the soma
and dendrites

Based on previous studies, Schweighofer developed a model
that includes the membrane currents of the IO neurons (as
show in Fig. 15). Table VIII summarizes these currents and
shows which ones are in the soma and and which are in the
dendrites of the IO cell. Current is exchanged between the
two compartments, this is represented by Ids and Isd as the
current flowing out into the dendritic compartment and the
current flowing into the somatic compartment respectively.
Both compartments also have leakage currents: Ils for the

soma and Ild for the dendrites (Schweighofer et al., 1999).
Two types of calcium currents are present in the IO: the low-
and high- threshold currents (ICal

and ICah
respectively).

While the former is in the soma, the latter is in the dendrites
(Llinás and Yarom, 1981). The IO cell is excited in response
to hyperpolarizing currents as a consequence of the ICal

’s
window of conductance being around the resting membrane
potential. On the other hand, ICah

is noninactivating thus, a
depolarizing dendritic input results in a prolonged plateau po-
tential. As calcium enters the dendrites, the calcium-activated
potassium current, IKCa

is activated. This current abruptly
terminates the plateau potential after about 30 milliseconds
(Llinás and Yarom, 1981). Due to the IKCa

’s long time con-
stant of several hundred milliseconds, there is a long afterhy-
perpolarization which, in turn, deinactivates the ICal

, resulting
in a postinhibitory rebound spike. The afterhyperpolarization
also activates an anomalous rectifying current Ih as it is a
current that activates at hyperpolarized potentials. This current
contributes to the subthreshold oscillations as it contributes to
amplitude and frequency (Schweighofer et al., 1999; Bal and
McCormick, 1997). Furthermore, similarly to Hodgkin-Huxley
type neuron models, somatic sodium spikes are generated with
the sodium current INa. These are terminated by an outward
delayed rectifier potassium current IKdr

(Llinás and Yarom,
1981). Finally, the electronic coupling between the cells is
represented by a current, Ic. All the currents are used in the
next section but the coupling between cells is shown in Sec.
A-C1.

In the next sections the Inferior Olive neuron model
developed by Schweighofer (Schweighofer et al., 1999) is
presented. The approach for modeling in Brian2 is shown
subsequently.

B. Implementing the General Cell Model

This model’s electrotonic properties are based on two mor-
phological parameters: the ratio of the somatic to total surface
areas p and the electrotonic coupling conductance of the
compartments gint. For each compartment of Schweighofer’s
model, the membrane potential is defined by the following
equation (Eq. (8)).

Cm
dV

dt
= −

∑
i

Ii + Iapp (1)

where Cm is the membrane capacitance, Iapp is the applied
current (common to both compartments) and

∑
i Ii represent

the sum of the ionic currents, the current flowing in between
the comparments and the current flowing through the gap
junctions. In Brian the general equations are shown bellow.
The applied current for the soma and the dendrites are Iapp s

and Iapp d. This is useful when looking at the response to
dendritic or somatic pulses. Ic is the coupling between the
cells and is defined in the synapse created in Sec. A-C1.

1 eqs IO V = ’ ’ ’
2 dVs / d t = (−( I d s + I l s + I Na + I Ca l + I K dr +

I h ) + I a p p s ) /Cm : v o l t
3 dVd / d t = (−( I s d + I l d + I Ca h + I K Ca + I c ) +

Iapp d ) /Cm : v o l t
4 I c : me t re **−2*amp
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Somatic Currents Dendritic Currents

∑

i

Ii = ICal
+ Ih + INa + IKdr

+ Ids + Ils
∑

i

Ii = ICah
+ IKCa

+ Isd + Ild + Ic

ICal
= gCal

k3l(Vs − VCa) ICah
= gCah

r2(Vd − VCa)

Ih = ghq(Vs − Vh) IKCa
= gKCa

s(Vd − Vk)

INa = gNam
3
∞h(Vs − VNa) Ild = gld(Vd − Vl)

IKdr
= gKdr

n4(Vs − Vk) Isd =

[
gint

(1 − p)

]
(Vd − Vs)

Ids =

(
gint

p

)
(Vs − Vd) Ic = gcf(Vd − Vde)(Vd − Vde)

Ils = gls(Vs − Vl)

TABLE IX: Equations of the Ionic Conductances

5 I a p p s : me t r e **−2*amp
6 I app d : me t re **−2*amp
7 ’ ’ ’

Listing 1: General Cell Model

1) Somatic and Dendritic Currents: The equations to the
different ionic currents discussed in Sec. A-A are shown in
Tab. IX. Their implementation in Brian is shown next. The unit
of these currents is µamp/cm2. However, since Brian is unit
consistent, these are defined as amp/meter2 (the multiplication
of the conductances (mS/cm2) and voltage difference (mvolt)
result in µamp/cm2, hence, the unit is consistent).

1 eqs IO Isom = ’ ’ ’
2 I l s = g l s * ( Vs−V l ) : me t r e **−2*amp
3 I d s = ( g i n t / p ) * ( Vs−Vd ) : me t re **−2*amp
4 I Na = g Na* m inf **3* h *( Vs−V Na ) : me t re **−2*amp
5 I Ca l = g Ca l *k*k*k* l * ( Vs−V Ca ) : me t re **−2*amp
6 I K dr = g Kdr*n*n*n*n *( Vs−V K) : me t re **−2*amp
7 I h = g h *q *( Vs−V h ) : me t re **−2*amp
8 ’ ’ ’
9 eqs IO Iden = ’ ’ ’

10 I s d = ( g i n t /(1−p ) ) * (Vd−Vs ) : me t re **−2*amp
11 I l d = g ld * (Vd−V l ) : me t r e **−2*amp
12 I Ca h = g Ca h* r * r * (Vd−V Ca ) : me t re **−2*amp
13 I K Ca = g K Ca* s * (Vd−V K) : me t re **−2*amp
14 ’ ’ ’

Listing 2: Somatic and Dendritic Currents

2) Activation/Inactivation Equations: The dynamics of
each activation or inactivation variable is given by the dif-
ferential equation:

dx

dt
=

(x∞ − x)

τx
(2)

where x indicates the variables h, k, l, n, q, r and s. Tab. X
shows the equations of the steady-state activation/inactivation
variables, as well as their time constant (except for the
instantaneous m∞. Their implementation in Brian is shown
in the next page.

1 e q s I O a c t i v a t i o n = ’ ’ ’
2 dh / d t = ( h i n f − h ) / t a u h : 1
3 dk / d t = ( k i n f − k ) / t a u k : 1
4 d l / d t = ( l i n f − l ) / t a u l : 1
5 dn / d t = ( n i n f − n ) / t a u n : 1
6 dq / d t = ( q i n f − q ) / t a u q : 1
7 dr / d t = ( r i n f − r ) / t a u r : 1
8 ds / d t = ( s i n f − s ) / t a u s : 1
9 ’ ’ ’

10 e q s I O i n f = ’ ’ ’
11 m inf = alpha m / ( alpha m+beta m ) : 1
12 h i n f = a l p h a h / ( a l p h a h + b e t a h ) : 1
13 k i n f = 1 / ( 1 + e **(−(Vs / mvol t +61) / 4 . 2 ) ) : 1
14 l i n f = 1 / ( 1 + e * * ( ( Vs / mvol t + 8 5 . 5 ) / 8 . 5 ) ) : 1
15 n i n f = a l p h a n / ( a l p h a n + b e t a n ) : 1
16 q i n f = 1 / ( 1 + e * * ( ( Vs / mvol t +75) / ( 5 . 5 ) ) ) : 1
17 r i n f = a l p h a r / ( a l p h a r + b e t a r ) : 1
18 s i n f = a l p h a s / ( a l p h a s + b e t a s ) : 1
19 ’ ’ ’
20 e q s I O t a u = ’ ’ ’
21 t a u h = 170* msecond / ( a l p h a h + b e t a h ) : second
22 t a u k = 5* msecond : second
23 t a u l = 1* msecond *(35+(20* e * * ( ( Vs / mvol t +160) / 3 0 / ( 1 + e

* * ( ( Vs / mvol t +84) / 7 . 3 ) ) ) ) ) : second
24 t a u n = 5* msecond / ( a l p h a n + b e t a n ) : second
25 t a u q = 1* msecond / ( e **(( −0.086* Vs / mvolt −14.6) ) +e

* * ( ( 0 . 0 7 * Vs / mvolt −1.87) ) ) : second
26 t a u r = 5* msecond / ( a l p h a r + b e t a r ) : second
27 t a u s = 1* msecond / ( a l p h a s + b e t a s ) : second
28 ’ ’ ’

Listing 3: Activation/Inactivation Equations

The time constants τ are in milliseconds, this means that
the equations are defined as being in second but the constants
are given in milliseconds. Moreover, as the potentials are in
millivolts, those potentials have to be divided by mvolt as the
constants in the equations are all in millivolt. Furthermore, the
Forward and Backward rates α and β respectively, for each
conductance type are defined in Tab. XI. In the next page,
these are implemented in Brian, analogously to the previouse
equations.
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Conductance Type Steady-State Time Constant (ms)Activation/Inactivation

INa

m∞ =
αm

αm + βm

h∞ =
αh

αh + βh
τh =

170

αh + βh

IKdr
n∞ =

αn

αn + βn
τn =

5

αn + βn

ICal

k∞ =
1

1 + e
−(V +61

4.2

τk = 5

l∞ =
1

1 + e
(V +85.5)

8.5

τl =
20e

(V +160)
30

1 + e
(V +84)

7.3

+ 35

Ih q∞ =
1

1 + e
(V +75)

5.5

τq =
1

e(−0.086V−14.6) + e(0.07V−1.87)

ICah
r∞ =

αr

αr + βr
τr =

1

αr + βr

IKCa
s∞ =

αs

αs + βs
τs =

1

αs + βs

TABLE X: Steady-state Activation/Inactivation and Time Constants of the Ionic Conductances

Conductance Type Forward Rate Function α Backward Rate Function β

INa

αm =
0.1(V + 41)

1 − e
−(V +41)

10

βm = 9.0e
−(V +66)

20

αh = 5.0e
−(V +60)

15 βh =
(V + 50)

1 − e
−(V +50)

10

IKdr
αn =

(V + 41)

1 − e
−(V +41)

10

βn = 12.5e
−(V +51)

80

ICah
αr =

1.6

1 + e
−(V −5)

14

βr =
0.02(V + 8.5)

1 − e
(V +8.5)

5

IKCa
αs = min (2 · 10−5[Ca2+], 0.01) βs = 0.015

TABLE XI: Forward and Backward rates α and β of the Ionic Conductances

1 e q s I O a l p h a = ’ ’ ’
2 alpha m = ( 0 . 1 * ( Vs / mvol t + 41) ) /(1− e **(−(Vs / mvol t

+41) / 1 0 ) ) : 1
3 a l p h a h = 5 . 0 * e **(−(Vs / mvol t +60) / 1 5 ) : 1
4 a l p h a n = ( Vs / mvol t + 41) /(1− e **(−(Vs / mvol t +41) / 1 0 ) )

: 1
5 a l p h a r = 1 . 7 / ( 1 + e **(−(Vd / mvol t − 5) / 1 3 . 9 ) ) : 1
6 a l p h a s = ( ( 0 . 0 0 0 0 2 * Ca /mM) * i n t ( ( 0 . 0 0 0 0 2 * Ca /mM) <0.01)

+ 0 .01 * i n t ( ( 0 . 0 0 0 0 2 * Ca /mM) >=0.01) ) : 1

7 ’ ’ ’
8 e q s I O b e t a = ’ ’ ’
9 beta m = 9 . 0 * e **(−(Vs / mvol t +60) / 2 0 )

: 1
10 b e t a h = ( Vs / mvol t +50) /(1− e **(−(Vs / mvol t +50) / 1 0 ) )

: 1
11 b e t a n = 12 .5 * e **(−(Vs / mvol t +51) / 8 0 )

: 1
12 b e t a r = 0 . 0 2 * ( Vd / mvol t + 8 . 5 ) / ( e * * ( ( Vd / mvol t + 8 . 5 )
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/ 5 ) −1) : 1
13 b e t a s = 0 .015

: 1
14 ’ ’ ’

Listing 4: Forward and Backward rates α and β

Finally, the calcium concentration is calculated following
Eq. (3) and implemented in the code. The unit for molar
concentration in Brian is mmolar (1mM = 1mol/m3) and not
molar (103 mol/m3).

d[Ca2+]

dt
= −3.0ICah

− 0.075[Ca2+] (3)

1 eqs IO Ca = ’ ’ ’
2 dCa / d t = (−3* I Ca h * ( ( uamp / cm**2) **−1)*mM − 0 .075*

Ca ) / ms : mM
3 ’ ’ ’

Listing 5: Calcium Concentration

In the definition of the equations, the neuron-dependent
parameters are defined as vector. Then, all the equations are
added to one equation: (eqs IO). The neuron group can be
created using the equation NeuronGroup as shown below. The
time step for the clock is chosen to be 0.025 milliseconds and
the Euler method as the integration method. The number of
cells modelled can be defined in N Cells IO and a threshold
can be given, for instance: spiking occurs after a certain
calcium concentration is reached (Ca > 2mM ).

1 e q s v e c t o r = ’ ’ ’
2 V Na : v o l t
3 V K : v o l t
4 V Ca : v o l t
5 V l : v o l t
6 V h : v o l t
7 Cm : f a r a d * mete r **−2
8 g Na : s i emens / me te r **2
9 g Kdr : s i emens / me te r **2

10 g Ca l : s i emens / me te r **2
11 g h : s i emens / me te r **2
12 g Ca h : s i emens / me te r **2
13 g K Ca : s i emens / me te r **2
14 g l s : s i emens / me te r **2
15 g ld : s i emens / me te r **2
16 g i n t : s i emens / me te r **2
17 p : 1
18 ’ ’ ’
19 eqs IO = e q s I O b e t a
20 eqs IO += e q s I O a l p h a
21 eqs IO += e q s I O t a u
22 eqs IO += e q s I O i n f
23 eqs IO += e q s I O a c t i v a t i o n
24 eqs IO += eqs IO Iden
25 eqs IO += eqs IO Isom
26 eqs IO += eqs IO Ca
27 eqs IO += eqs IO V
28 eqs IO += e q s v e c t o r
29

30 IO Sing leNeuron = NeuronGroup ( N Cells IO , model =
eqs IO , t h r e s h o l d = ’Ca>2*mM’ , method = ’ e u l e r ’ ,
name = ’ S c h w e i g h o f e r O l i v e ’ , d t =0 .025* msecond )

Listing 6: Creating the Neuron Group

3) Modeling a ”Standard” Cell: The parameters used by
Schweighofer to model the ”standard cell” are shown in Tab.
XII. These are implemented in the code following the neuron
group created previously. The parameters are implemented for

Conductances (mS/cm2) Reversal Potentials (mV )

gNa 70 VNa 55

gKdr
18 VK -75

gCal
1.0 VCa 120

gh 1.5 Vh -43

gCah
4.0 Vl -10

gKCa
35

Membrane Capacitance (µF/cm2)
gls 0.015

gld 0.015 Cm 1

Cell Morphology

gint 0.13 p 0.20

TABLE XII: Parameters of the Standard Cell

a neuron group of size N Cells IO and thus, a forloop is
created.

1 IO Sing leNeuron = NeuronGroup ( N Cells IO , model =
eqs IO , t h r e s h o l d = ’Ca>2*mM’ , method = ’ e u l e r ’ ,
name = ’ S c h w e i g h o f e r O l i v e ’ , d t = d t t )

2

3 f o r i i i n r a n g e ( 0 , N Cells IO , 1 ) :
4 IO Sing leNeuron . V Na [ i i ] = 55* mvol t
5 IO Sing leNeuron . V K[ i i ] = −75*mvol t
6 IO Sing leNeuron . V Ca [ i i ] = 120* mvol t
7 IO Sing leNeuron . V l [ i i ] = −10*mvol t
8 IO Sing leNeuron . V h [ i i ] = −43*mvol t
9 IO Sing leNeuron .Cm[ i i ] = 1*uF*cm**−2

10 IO Sing leNeuron . g Na [ i i ] = 70*mS/ cm**2
11 IO Sing leNeuron . g Kdr [ i i ] = 18*mS/ cm**2
12 IO Sing leNeuron . g Ca l [ i i ] = 1 . 0 *mS/ cm**2
13 IO Sing leNeuron . g h [ i i ] = 1 . 5 *mS/ cm**2
14 IO Sing leNeuron . g Ca h [ i i ] = 4 . 0 *mS/ cm**2
15 IO Sing leNeuron . g K Ca [ i i ] = 35*mS/ cm**2
16 IO Sing leNeuron . g l s [ i i ] = 0 .015*mS/ cm**2
17 IO Sing leNeuron . g ld [ i i ] = 0 .015*mS/ cm**2
18 IO Sing leNeuron . g i n t [ i i ] = 0 .13 *mS/ cm**2
19 IO Sing leNeuron . p [ i i ] = 0 . 2 0

Listing 7: Parameters of the Standard Cell

C. Results

The standard cell is defined and the neuron group is created.
To reproduce Figure 2 of the paper (seen in Fig. 16a, 16c and
16e), a dendritic current pulse of 50 milliseconds duration and
an intensity of 8 µamp/cm2 needs to be given to the cell.
This is shown in the next page. There is a transient of 1200
milliseconds so that the cell reaches its equilibrium before the
current pulse is given. Nevertheless, the plots start at 1000
milliseconds to show the response of the somatic membrane
potential Vs to the current pulse. Fig. 16b, 16d and 16f show
the response of the cell as modelled in Brian.

1 t r a n s i e n t = 1200* msecond
2 s t e p d u r a t i o n = 50* msecond
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(a) Somatic membrane potential
(Fig 2A from paper)

(b) Somatic membrane potential
as modelled in Brian

(c) Somatic currents (Fig 2B
from paper)

(d) Somatic currents as modelled
in Brian

(e) Dendritic currents (Fig 2C
from paper)

(f) Dendritic currents as modelled
in Brian

Fig. 16: Comparing Fig.2 of Schweighofer’s paper with the
results obtained from the Brian reproduction

3 i n t e r s t i m u l u s i n t e r v a l = t r a n s i e n t −s t e p d u r a t i o n
+2000* msecond

4 N Cel ls IO = 1
5 I a p p i n i t i a l = 0*uA / cm**2
6 P u l s e i n t e n s i t y = I a p p i n i t i a l + (8*uA / cm**2)
7 IO Sing leNeuron . I a p p s = [ I a p p i n i t i a l ]
8 IO Sing leNeuron . Iapp d = [ I a p p i n i t i a l ]
9 run ( t r a n s i e n t )

10 IO Sing leNeuron . Iapp d = [ P u l s e i n t e n s i t y ]
11 run ( s t e p d u r a t i o n )
12 IO Sing leNeuron . Iapp d = [ I a p p i n i t i a l ]
13 run ( i n t e r s t i m u l u s i n t e r v a l )

Listing 8: Recreating Figure 3 of Paper

1) Coupling Two Cells: The equations for the electronic
coupling of two cells is shown in Eq. (4). In Brian the
number of cells N Cells IO is now updated to 2. The synaptic
equations are given and defined in the Synapses. Fig. 17 and
18 show the response of the somatic membrane potentials
of two cells. The first cell does not receive any current
input and the second cell receives two current pulses of
magnitude 1 µamp/cm2 and duration 50 milliseconds. The
first pusle is depolarizing and 1000 milliseconds later a second
hyperpolarizing pulse is given to the second cell. For the cell
to be more excitable the following parameters are changed: Vl
= 10mV, gKdr = 9mS/cm2, gCal

= 1.2*mS/cm2, and gls = gld
= 0.016*mS/cm2.

Ic = gcf(Vd − Vde)(Vd − Vde)

f(V ) = 0.6e−
V 2

502 + 0.4
(4)

1 # Synapse
2 eqs IO syn = ’ ’ ’
3 I c p r e = ( g c ) * ( 0 . 6 * e **( −(( Vd pre / mvolt−Vd post

/ mvol t ) / 5 0 ) **2) + 0 . 4 ) * ( Vd pre−Vd post ) : me t re
**−2*amp ( summed )

4 g c : s i emens / me te r **2
5 ’ ’ ’
6 IO synapse = Synapses ( IO SingleNeuron ,

IO SingleNeuron , eqs IO syn , name = ’ IO Synapse ’
)

7 IO synapse g c = 0 .18*mS/ cm**2
8 IO synapse . c o n n e c t ( i = [ 0 , 1 ] , j = [ 1 , 0 ] )

Listing 9: Coupling Two Cells

Fig. 17: Response of somatic membrane potentials of two
coupled cells to applied current to cell 2

Fig. 18: Dendritic and somatic current pulse for cell 2
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APPENDIX B
MODELING SYNAPSES OF AN ADEX PURKINJE CELL

MODEL FOR STDP AND COMPLEX SPIKE PAUSE

A single compartment Purkinje Cell is considered using
an adaptive exponential integrate-and-fire model (Sec.
B-A). The PC and PF inputs are linked by an STDP
synapse (Sec. B-B1), and a pause mechanism is generated
after each complex spike by modeling the synapse between
the PC and an IO cell (Schweighofer et al., 1999), (sec.
B-B2).

A. Generall Cell

The membrane potential of the AdEx model is defined by
Eq. (Eq. 5). It has two current inputs INoise and Iapp which
represent the current input from the noise (parallel fiber input)
and the external pulse current.

dV

dt
=

1

Cm

(
gL (EL − V ) + gL∆T e

(
V −VT
∆T

)
+ INoise + Iapp − w

)
dw

dt
=
a (V − EL)− w

τw
(5)

Here, ∆T is the slope factor, VT is the the threshold potential,
w is the adaptation variable, a is the adaptation coupling factor
and τw is the adaptation time constant.

1 PC Equat ions = ”””
2 dv / d t = ( gL *(EL − v ) + gL* Del taT * exp ( ( v − VT) /

De l t aT ) + I N o i s e + I app −w) / C : v o l t
3 dw / d t = ( a * ( v − EL ) − w) / ( tauw ) : amp
4

5 I app : amp
6 I N o i s e : amp
7

8 C : f a r a d
9 gL : s i emens

10 EL : v o l t
11 VT : v o l t
12 Del taT : v o l t
13 Vcut : v o l t
14 tauw : second
15 a : s i emens
16 b : ampere
17 Vr : v o l t
18 ”””

Listing 10: General Cell Model

Tab. XIII shows the cell parameters. These parameters were
taken from various sources (De Schutter and Bower, 1994;
Brette and Gerstner, 2005; Badura et al., 2013; Herzfeld et al.,
2015).

In the definition of the equations, the neuron-dependent
parameters are defined as vector and the neuron is generated
using the equation NeuronGroup as shown below. The time
step for the clock is chosen to be 0.025 milliseconds and the
euler method as the integration method. The number of cells
modelled can be defined in N Cells PC and a threshold can be
given, for instance: spiking occurs after a certain potential Vcut
is reached. When a spike happens both the membrane potential
and the adaptive variables are reset. Nevertheless, while the
first resets to the resting potential, the second decays until

Parameters Values

C 75 pF

gL 30 nS

EL -70.6 mV

VT -50.4 mV

∆T 2 mV

Vcut VT + 5∆T

τw 144 ms

a 4 nS

b 0.0805 nA

Vr -70.6 mV

TABLE XIII: PC Parameters

either reaching 0 or the next spike time (Dayan and Abbott,
2005). This is also included in the neuron group as the reset
variable.

1 PC SingleNeuron = NeuronGroup ( N Cells PC , model=
PC Equat ions , t h r e s h o l d = ’v>Vcut ’ , r e s e t =” v=Vr ; w
+=b ” , method= ’ e u l e r ’ , name = ’PC ’ , d t =0 .025*ms )

2

3 f o r j j i n r a n g e ( 0 , N Cells PC , 1 ) :
4 PC SingleNeuron . C[ j j ] = 75*pF
5 PC SingleNeuron . gL [ j j ] = 30 * nS
6 PC SingleNeuron . EL [ j j ] = −70.6 * mV
7 PC SingleNeuron . VT[ j j ] = −50.4 * mV
8 PC SingleNeuron . De l t aT [ j j ] = 2 * mV
9 PC SingleNeuron . Vcut [ j j ] = PC SingleNeuron . VT[ j j

] + 5* PC SingleNeuron . De l t aT [ j j ]
10 PC SingleNeuron . tauw [ j j ] = 144*ms
11 PC SingleNeuron . a [ j j ] = 4*nS
12 PC SingleNeuron . b [ j j ] = 0 .0805*nA
13 PC SingleNeuron . Vr [ j j ] = −70.6*mV
14

15 PC Statemon = S t a t e M o n i t o r ( PC SingleNeuron , [ ’ v ’ , ’w
’ , ’ I N o i s e ’ , ’ I app ’ , ’ tauw ’ , ’ I IO PC ’ ] , r e c o r d =
True , d t =0 .025*ms )

16 PC Spikemon = S p i k e M o n i t o r ( PC SingleNeuron )

Listing 11: Neuron Group and Parameters

B. Results

Simple spikes have a frequency that can reach 100 spikes
per second Kandel et al. (2000a). Thus, it is useful to plot the
f -I curve to find the input current that is needed to find such
a spiking frequency.

1 N Cells PC = 100
2 PC SingleNeuron . I app = ’ 5*nA* i / N Cells PC ’
3 run (1000*ms )

Listing 12: f-I curve

Fig. 19 shows that 100Hz firing frequency is reached for
a current of 2nA. Fig.20, 21 and 22 show the response of
the Purkinje cell membrane potential V as well as the the
adaptation variable w.
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Fig. 19: Firing frequency vs. Current

Fig. 20: Purkinje Cell Response

Fig. 21: Applied Current on Purkinje Cell

Fig. 22: w from Purkinje Cell

1) STDP: Purkinje Cell - Parallel Fiber Synapse: For the
parallel fiber input, a neuron group is created with a current
with mean I0 and Ornstein-Uhlenbeck noise as shown in Eq.
(6). Based on Fig. 19, I0 is chosen to be 2nA with ±0.5nA
amplitude. This means that the σ of the OU component equals
0.25nA (shown in Fig. 23). The synapse is defined with the
PF source being the presynaptic neuron and the PC being
the postsynaptic neuron. The response of the Purkinje Cell
is shown in Fig. 24.

dI

dt
=

(I0 − I)

τNoise
+

σξ√
τNoise

(6)

1 N noise = 1
2 t a u n o i s e = 100*ms
3 e q s n o i s e = ’ ’ ’
4 dI / d t = ( I0 − I ) / t a u n o i s e + sigma * x i * t a u n o i s e

**−0.5 : amp
5 I0 : amp
6 s igma : amp
7 ’ ’ ’

8 Noise = NeuronGroup ( N noise , e q s n o i s e , t h r e s h o l d =
’ True ’ , method= ’ e u l e r ’ , name = ’ Noise ’ , d t =0 .025*
ms )

9 N o i s e s t a t e m o n = S t a t e M o n i t o r ( Noise , ’ I ’ , r e c o r d =
True , d t =0 .025*ms )

10 eqs syn = ’ ’ ’
11 we ig h t : 1 # gap j u n c t i o n c o n d u c t a n c e
12 I N o i s e p o s t = we ig h t * ( I p r e ) : amp ( summed )
13 ’ ’ ’
14 S = Synapses ( Noise , PC SingleNeuron , eqs syn , name =

’ PC Noise Synapse ’ , d t =0 .025*ms )
15 S . c o n n e c t ( j = ’ k f o r k i n r a n g e ( i−N Cells PC , i +

N Cells PC ) i f i != k−N Cells PC ’ , s k i p i f i n v a l i d
=True )

16 S . w e i gh t = ’1−( abs ( i−j ) / N Cells PC ) ’
17 Noise . I0 = 2*nA
18 Noise . I = 2*nA
19 Noise . s igma = 0*nA
20 run (100*ms )
21 Noise . s igma = 0 .25*nA
22 run (500*ms )
23 Noise . s igma = 0*nA
24 run (100*ms )

Listing 13: Parallel Fiber input

Fig. 23: A current with noise; I0=2nA and σ=0.25nA

Fig. 24: Response of Purkinje cell membrane potential to
parallel fiber noise input

2) Purkinje Cell - Inferior Olive Synapse: In the Synapses
function, at each pre-synaptic event the adaptation variable
w is updated to +0.008nA to simulate a pause following a
complex spike. This means that when there is a spike in the
IO, w increases by 0.008nA. This can be seem in Fig. 28. The
response of the membrane potentials of both the PC and IO
is shown in Fig. 25.

1 Synapse IO PC = Synapses ( IO SingleNeuron ,
PC SingleNeuron , on pre = ’w +=(0 .008*nA ) ’ , name
= ’ IO PC Synapse ’ , method = ’ e u l e r ’ , d t =0 .025*ms )

2 Synapse IO PC . c o n n e c t ( i =1 , j =0)

Listing 14: PC-IO Synapse



A MODEL CEREBELLAR LOOP WITH OLIVARY OSCILLATORS AND LONG-TERM PLASTICITY 20

Fig. 25: Purkinje Cell Response

Fig. 26: Dendritic and Somatic current pulses for IO cell 2

Fig. 27: Applied Current on Purkinje Cell

Fig. 28: w from Purkinje Cell

APPENDIX C
AN ADAPTIVE EXPONENTIAL INTEGRATE-AND-FIRE

MODEL OF THE DEEP CEREBELLAR NUCLEI

Similar to the PC, the DCN is modelled as a single com-
partment adaptive exponential integrate-and-fire model
(Sec. C-A). The PC inhibits the DCN when it spikes (Sec.
C-B), and the DCN-IO synapse resets the oscillations of
the IO after a DCN spike (Steuber, 2016) (Sec. C-C).

A. Generall Cell

The equation defining the change in membrane potential
of the AdEx model very similar to Eq. 5 (Ch. B). Instead
of INoise and Iapp, its two current inputs are IIntrinsic and
IPC . This allows to model the intrinsic firing of the cell and
to inhibit the DCN when the PC fires. The new differential
equation is needed to describe IPC is Eq. (7). When the PC
is not spiking, IPC = 0nA, however, as shown in Sec. C-B,
upon a spike of the PC, IPC is updated to a certain value. This
means that the total current IIntrinsic − IPC will be smaller
and thus, the DCN will spike less (inhibition from PC). The
corresponding listing is given in Listing 15.

dIPC

dt
=
IPCmax

− IPC

τI
(7)

1 DCN Equations = ”””
2 dv / d t = ( gL *(EL − v ) + gL* Del taT * exp ( ( v − VT) / De l t aT

) + I i n t r i n s i c − I PC − w) / C : v o l t
3 dw / d t = ( a * ( v − EL ) − w) / tauw :
4 I i n t r i n s i c : amp
5

6 dI PC / d t = (0*nA − I PC ) / t a u I : amp
7

8 C : f a r a d
9 gL : s i emens

10 EL : v o l t
11 taum : second
12 VT : v o l t
13 Del taT : v o l t
14 Vcut : v o l t
15 tauw : second
16 a : s i emens
17 b : ampere
18 Vr : v o l t
19 t a u I : second
20 I PC max : amp
21 ”””

Listing 15: General Cell Model

Tab. XIV shows the cell parameters. Most parameters are
similar to the model of the PC, except for the membrane
capacitante Cm, the adaptation time constant τw and the reset
voltage Vr (Steuber et al., 2011, 2007; Steuber, 2016).

1 DCN SingleNeuron = NeuronGroup ( N Cells DCN , model=
DCN Equations , t h r e s h o l d = ’v>Vcut ’ , r e s e t =” v=Vr ;
w+=b ” , method= ’ e u l e r ’ , name = ’DCN’ , d t =0 .025*ms )

2

3 f o r dd i n r a n g e ( 0 , N Cells DCN , 1 ) :
4 DCN SingleNeuron . C[ dd ] = 281* pF
5 DCN SingleNeuron . gL [ dd ] = 30 * nS
6 DCN SingleNeuron . EL [ dd ] = −70.6 * mV
7 DCN SingleNeuron . VT[ dd ] = −50.4 * mV
8 DCN SingleNeuron . De l t aT [ dd ] = 2 * mV
9 DCN SingleNeuron . Vcut [ dd ] = DCN SingleNeuron . VT[

dd ] + 5* DCN SingleNeuron . De l t aT [ dd ]
10 DCN SingleNeuron . tauw [ dd ] = 50*ms
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Parameters Values

C 281 pF

gL 30 nS

EL -70.6 mV

VT -50.4 mV

∆T 2 mV

Vcut VT + 5∆T

τw 144 ms

a 4 nS

b 0.0805 nA

Vr -65 mV

τI 30 ms

IPCmax 0 nA

TABLE XIV: DCN Parameters

11 DCN SingleNeuron . a [ dd ] = 4*nS
12 DCN SingleNeuron . b [ dd ] = 0 .0805*nA
13 DCN SingleNeuron . Vr [ dd ] = −65*mV
14 DCN SingleNeuron . t a u I [ dd ] = 30*ms
15 DCN SingleNeuron . I PC max [ dd ] = 0*nA
16

17 DCN Statemon = S t a t e M o n i t o r ( DCN SingleNeuron , [ ’ v ’ ,
’ I PC ’ , ’w’ ] , r e c o r d =True , d t =0 .025*ms )

18 DCN Spikemon = S p i k e M o n i t o r ( DCN SingleNeuron )

Listing 16: Parameters

Deep cerebellar nuclei cells have an intrinsic firing of about
90Hz (Person and Raman, 2012; Steuber, 2016). Looking at
Fig. 29, IIntrinsic is chosen to be 1.34nA. The response of
the DCN is shown in Fig. 30.

Fig. 29: f-I curve to find an IIntrinsic with 90Hz

B. Purkinje Cell - Deep Cerebellar Nuclei Synapse

The Purkinje cell inhibits the DCN when it is spiking, thus,
the DCN can only fire when there is a pause in the PC spiking.
The synapse is generated so that after a presynaptic spike

Fig. 30: Deep Cereballar Nuclei Intrinsic
Spiking

occurs, the IIOPC
is inceased by 0.9*nA. The response of

the DCN to a certain PC is shown in Fig. 31 and the behavior
of IIOPC

in Fig. 33.
1 DCN PC Synapse = Synapses ( PC SingleNeuron ,

DCN SingleNeuron , on pre = ’ I PC pos t = 0 . 9 *nA ’ ,
d e l a y =2*ms , name = ’ PC DCN Synapse ’ , d t =0 .025*ms )

2 DCN PC Synapse . c o n n e c t ( i = [ 0 ] , j = [ 0 ] )
3

4 PC SingleNeuron . v = −70.6 * mV
5 DCN SingleNeuron . v = −70.6 * mV
6 DCN SingleNeuron . I i n t r i n s i c = 1 .34*nA
7 run (300*ms )
8

9 PC SingleNeuron . I app = 2*nA
10 run (400*ms )
11

12 PC SingleNeuron . I app = 0*nA
13 run (300*ms )

Listing 17: PC-DCN Synapse

Fig. 31: Response of DCN to a certain PC

Fig. 32: Purkinje Cell AdEx

Fig. 33: Behavior of IIOPC

C. Deep Cerebellar Nuclei - Inferior Olive Synapse

When the DCN spikes, it resets the IO oscillation (Steuber,
2016). The generall cell equation from the IO model (Ch. A)
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is modified to include the current IIODCN
, from the DCN to

the IO. This is a current with mean 0µA/cm2 and a decay time
constant of 9 milliseconds. After spike of the DCN, IIODCN

increases by 9µA/cm2.

Cm
dV

dt
= −

∑
i

Ii + Iapp + IIODCN
(8)

1 eqs IO V = ”””
2 dVs / d t = (−( I d s + I l s + I Na + I Ca l + I K dr +

I h ) + I a p p s ) /Cm : v o l t
3 dVd / d t = (−( I s d + I l d + I Ca h + I K Ca + I c ) +

Iapp d + I IO DCN ) /Cm : v o l t
4 dI IO DCN / d t = (0*uA*cm**−2 − I IO DCN ) / ( 9 * ms ) : amp

* mete r **−2
5 I c : me t re **−2*amp
6 I a p p s : me t r e **−2*amp
7 I app d : me t re **−2*amp
8 ”””

Listing 18: Modify IO

1 IO DCN Synapse = Synapses ( DCN SingleNeuron ,
IO SingleNeuron , on pre = ’ I IO DCN post += 9*uA
*cm**−2 ’ , d e l a y =3*ms , name = ’ IO DCN Synapse ’ ,
method = ’ e u l e r ’ , d t =0 .025*ms )

2 IO DCN Synapse . c o n n e c t ( i = [ 0 , 1 ] , j = [ 0 , 1 ] )

Listing 19: DCN-IO Synapse

Fig. 34 shows the response of two IO cells as shown in Sec.
A-C1. The effect of adding the synapse between the DCN and
the IO is shown in Fig. 35. It is clear that the oscillatons of
the IO are reset due to the DCN spike.

Fig. 34: Response of somatic membrane potentials of two
coupled cells without DCN synapse

Fig. 35: Response of somatic membrane potentials of two
coupled cells with DCN synapse

Fig. 36: Response of DCN

Fig. 37: I IO DCN
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Negrello, M. and Schutter, E. D. (2016). Models of the
Cortico-cerebellar System. Springer Science.

Person, A. and Raman, I. (2012). Purkinje neuron synchrony
elicits time-locked spiking in the cerebellar nuclei. Nature,
481.

Schweighofer, N., Doya, K., and Kawato, M. (1999). Elec-
trophysiological properties of inferior olive neurons: A
compartmental model. The American Physiological Society.

Sotelo, C., Llins, R., and Baker, R. (1974). Serotonin mod-
ulation of inferior olivary oscillations and synchronicity:

a multiple-electrode study in the rat cerebellum. EuR J.
Neurosci., 7.

Steuber, V. (2016). Chapter 5 - modeling the generation of
cerebellar nuclear spike output. In Heck, D. H., editor,
The Neuronal Codes of the Cerebellum, pages 117 – 133.
Academic Press, San Diego.

Steuber, V., Mittmann, W., Hoebeek, F., Angus Silver, R.,
De Zeeuw, C., Hausser, M., and De Schutter, E. (2007).
Cerebellar ltd and pattern recognition by purkinje cells.
54:121–36.

Steuber, V., Schultheiss, N., Silver, R. A., Schutter, E. D.,
and Jaeger, D. (2011). Determinants of synaptic integration
and heterogeneity in rebound firing explored with data-
driven models of deep cerebellar nucleus cells. J. Comput.
Neurosc., 30.

Tang, T., Suh, C. Y., Blenkinsop, T. A., and Lang, E. J. (2016).
Synchrony is key: Complex spike inhibition of the deep
cerebellar nuclei. The Cerebellum, 15(1):10–13.





II

3





An Introduction Spiking Neuron Models on the Brian2
Simulator

E. M. Fernández Santoro

February 28, 2019

Abstract

Morphologically identical neurons may react differently to the same synaptic in-
put. This is due to the relationship between the electrophisiology, bifurcations and
computational properties of neurons. Understanding that cells can experience dis-
tinct bifurcations, and thus, have different neurocomputational properties has allowed
computational neuroscientists to develop a variety of neuronal models. The majority
of such models have been developed using different simulators and need specific lan-
guages to reproduce them. The Brian2 simulator has been developed as an attempt to
bridge the gap between models and mainstream simulation languages. This work intro-
duces Brian2 codes for four benchmark spiking neuron models: the Integrate-and-Fire,
Leaky Integrate-and-Fire, Hodgkin-Huxley and Adaptive Exponential Integrate-and-
Fire models.
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Introduction

1 Introduction

Neurons have historically been divided into excitatory and inhibitory types, and their elec-
trophysiological properties were neglected (Kandel, Schwartz, and Jessell, 2000). In some
cases these properties were taken to be identical to those of the Hodgkin-Huxley’s squid axon
(Izhikevich, 2007). Nevertheless, neurons with identical morphological features and with the
same synaptic input may respond differently. This is due to their electrophysiological prop-
erties (Thompson, 1993). In fact, even if two neurons have the same morphology as well
as the same electrophysiological properties, they may still respond differently to the same
synaptic input due to the cells different bifurcation dynamics (Shepherd, 2004). Hence, the
electrophysiology of individual neurons as well their dynamical properties are of paramout
importance for the understanding of neurons and neuroscience as a whole (Dayan and Ab-
bott, 2005). Through the development of biological neuron modes, current neuroscience
research is aimed at the understanding of a cell’s intrinsic neurocomputational properties
(Purves et al., 2008).

The properties of neurons can be described mathematically and such biological neuron
models are used to explain the underlying mechanisms in the nervous system. Two cate-
gories of neuron models are distinguished: electrical input-output membrane voltage models,
and pharmacological input neuron models (Izhikevich, 2007). Whereas the latter category
is out of the scope of this work; the former type of models are able to predict the output
membrane potential as a function of an input electrical stimulation. The various models in
this category differ in the level of detail as well as in the relationship between input current
and output voltage (Purves et al., 2008). As a result of the difficulty in separating the
intrinsic properties of a single neuron from a measurement, as well as the high number of
experimental settings, there is a very high number of spiking neuron models.

This work presents the basic knowledge needed to simulate four benchmark spiking neu-
ron models in the Brian simulator on python. Ch. 2 presents an introduction to the Brian
simulator. Subsequently, Ch. 3, 4, 5, and 6 present the four models and how they are
simulated on Brian. Finally, Ch. 7 explains how synapses are modelled in this simulator.
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2 The Brian Simulator

Romain Brette and Dan Goodman developed the Brian simulator for spiking neural networks
as a response to the lack of hegemony between different softwares used in neural network
simulation (Goodman and Brette, 2008). As each of these softwares require learning different
scripting languages. Brian presents the following advantages:

1. As it is written on Python, it offers a tighter integration with the various tools and
libraries of Python, resulting in a lot of flexibility1.

2. Differential equations can be defined at the highest level using standard mathematical
notation.

3. For linear differential equations, exact updates are used while for non linear differential
equations, Euler and exponential Euler methods are used.

4. Contrary to other simulators, Brian is unit consistent. This reduces errors when mod-
eling.

5. Further features such as network connectivity can be easily controlled and offers a lot of
flexibility (all-to all random connectivity, specific connectivity, delays, synaptic weight
functions, among others).

2.1 An Example to Get Started with Brian

The following section is a step-by-step guide of how to get started Brian and model a simple
neuron2. In this example the neuron is modelled by the following differential equation:

dVm(t)

dt
=
I(t)

Cm
(1)

Where, Vm is the membrane potential, Cm is the membrane capacitance and I is the
current input.

2.1.1 Importing the Brian Toolbox

First, every Brian script in Python begins by importing the Brian toolbox. Other toolboxes
can also be imported, such as matplotlib for plotting tools and numpy to help for mathe-
matical computations. After importing the libraries, it is useful to invoke the start scope
function as it starts a new scope for the magic functions.

1 from brian2 import*
2 import matplotlib.pyplot as plt
3 import brian2.numpy_ as np
4 start_scope ()

Listing 1: Brian Toolbox

1While these are valid for both versions, this work concentrates on the second version of Brian.
2More information can be found in https://brian2.readthedocs.io/en/latest/index.html#
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2.1.2 Defining Parameters and Dealing with Units

Second, the parameters of the neurons are defined with the correct units. Brian accepts all
basic SI units accompanied with all standard prefixes.

1 from brian2 import*
2 import matplotlib.pyplot as plt
3 import brian2.numpy_ as np
4 start_scope ()
5 Cm = 1.0*uF/cm**2 #The membrane capacitance

Listing 2: Units

2.1.3 Defining an Equation

Equations are defined using standard mathematical notations; units also have to be defined
as shown below. In this example, the voltage of the membrane is being computed, thus the
unit is in volts. The input for this example is the current I and thus, is defined as shown
below (with unit amp/m2).

1 from brian2 import*
2 import matplotlib.pyplot as plt
3 import brian2.numpy_ as np
4 start_scope ()
5 Cm = 1.0*uF/cm**2 #The membrane capacitance
6 eqs = ’’’
7 dV/dt = I/Cm : volt
8 I : amp*meter**-2
9 ’’’

Listing 3: Defining an Equation

2.1.4 Creating a Neuron

Neuron models are generated using the NeuronGroup function, which requires the speci-
fication of the number of neurons N, the neuron equation eqs as well as the integration
method.

1 from brian2 import*
2 import matplotlib.pyplot as plt
3 import brian2.numpy_ as np
4 start_scope ()
5 Cm = 1.0*uF/cm**2 #The membrane capacitance
6 eqs = ’’’
7 dV/dt = I/Cm : volt
8 I : amp*meter**-2
9 ’’’

10 N = 1
11 Neuron = NeuronGroup(N, eqs , method = ’euler’)

Listing 4: Creating a Neuron
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2.1.5 Recording

At this point, the objective of the simulation must be specified through the StateMonitor
function. For this example, both the membrane potential V and the input current I are
measured.

1 from brian2 import*
2 import matplotlib.pyplot as plt
3 import brian2.numpy_ as np
4 start_scope ()
5 Cm = 1.0*uF/cm**2 #The membrane capacitance
6 eqs = ’’’
7 dV/dt = I/Cm : volt
8 I : amp*meter**-2
9 ’’’

10 N = 1
11 Neuron = NeuronGroup(N, eqs , method = ’euler’)
12 Neuron_statemon = StateMonitor(Neuron , variables =[’V’,’I’], record =

True)

Listing 5: Recording

2.1.6 Simulating a Neuron

To start the simulation, the runtime —100 milliseconds in this example— and the input
variables —applied current in this example— are defined. Then, the results can be plotted.
Fig. 1 shows the response of the neuron. As expected from Eq.(1), the membrane potential
increases linearly with a constant current.

1 from brian2 import*
2 import matplotlib.pyplot as plt
3 import brian2.numpy_ as np
4 start_scope ()
5 Cm = 1.0*uF/cm**2 #The membrane capacitance
6 eqs = ’’’
7 dV/dt = I/Cm : volt
8 I : amp*meter**-2
9 ’’’

10 N = 1
11 Neuron = NeuronGroup(N, eqs , method = ’euler’)
12 Neuron_statemon = StateMonitor(Neuron , variables =[’V’,’I’], record =

True)
13 runtime = 100*ms
14 Neuron.I = 1*uamp*cm**-2
15 run(runtime)
16 import matplotlib.gridspec as gridspec
17 fig = plt.figure(figsize =(20, 8))
18 gs1 = gridspec.GridSpec (10, 5)
19 gs1.update(left =0.01 , right =0.5, wspace =9)
20 ax1 = plt.subplot(gs1[:-1, :])
21 ax1.plot(Neuron_statemon.t/ms , Neuron_statemon.V[0]/ mvolt ,’C1’,lw=’2

’)
22 ylabel(’V mV’)
23 legend ();
24 ax2 = plt.subplot(gs1[-1, :])
25 ax2.plot(Neuron_statemon.t/ms , Neuron_statemon.I[0]/( uamp/cm**2),’C2

’,lw=’2’)

4



2.1 An Example to Get Started with Brian

26 xlabel(’t (msec)’)
27 ylabel(’I uamp/cm^2’)
28 legend ();
29 show()

Listing 6: Simulating a Neuron

Figure 1: Response to a constant input current of 1 µamp/cm2

2.1.7 Simulating Different Currents Over Time

To see the response of the membrane potential to a varying current input, it is only needed
to change the Neuron.I value and run the code again. For instance, a 50 millisecond current
pulse can be created as shown bellow.

1 runtime = 100*ms
2 Neuron.I = 1*uamp*cm**-2
3 run(runtime)
4 Neuron.I = 1*uamp*cm**-2
5 run (50*ms)
6 Neuron.I = 0*uamp*cm**-2
7 run (100*ms)

Listing 7: Varying Input

5



2.1 An Example to Get Started with Brian

Figure 2: Response to a 50 ms current pulse of 1 µamp/cm2

By implementing a threshold potential at which a spike occurs, the neuron model in this
example becomes a spiking neuron model known as the Integrate-and-Fire model. It is the
basis for present spiking neuron models which will be discussed in the next chapter.
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3 Integrate-and-Fire Model

In 1907, Louis Lapicque was able to mathematically represent a neuron (Eq.(2)) by taking
the time derivative of the law of capacitance (Q = CV ) (Izhikevich, 2007; Gerstner et al.,
2014).

Cm
dVm(t)

dt
= I(t) (2)

where, Cm is the membrane capacitance and Vm is the membrane potential.

It is clear that this is very similar to the example shown in Ch. 2. However, the Integrate-
and-Fire (I&F) model increases its membrane potential with time, as a result of an input cur-
rent, until a threshold potential is reached VT (Dayan and Abbott, 2005; Kandel, Schwartz,
and Jessell, 2000). When this threshold is reached a spike occurs and the membrane voltage
is reset to the resting potential VR. After the voltage is reset the model continues.

3.1 Implementing the Integrate-and-Fire Model on the Brian2
Simulator

Starting from the example in the previous chapter (Ch. 2), two parameters need to be added.
Namely, a threshold potential and a resting potential.

3.1.1 Threshold

While the threshold parameter is implemented as a string in the code, it is a condition in
the NeuronGroup function as shown bellow.

1 from brian2 import*
2 import matplotlib.pyplot as plt
3 import brian2.numpy_ as np
4 start_scope ()
5 Cm = 1.0*uF/cm**2 #The membrane capacitance
6 Vt = -40*mvolt #Threshold
7 eqs = ’’’
8 dV/dt = I/Cm : volt
9 I : amp*meter**-2

10 ’’’
11 N = 1
12 Neuron = NeuronGroup(N, eqs , threshold=’V>Vt’, method = ’euler’)
13 Neuron_statemon = StateMonitor(Neuron , variables =[’V’,’I’], record =

True)
14 runtime = 100*ms
15 Neuron.I = 1*uamp*cm**-2
16 Neuron.V = -70* mvolt
17 run(runtime)

Listing 8: Integrate-and-Fire Model

The reader can notice that the threshold as well as the Neuron.V values are negative.
This should be so in a neuron as cells have negative resting potentials.
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3.1 Implementing the Integrate-and-Fire Model on the Brian2 Simulator

3.1.2 Reset

Analogously to the threshold a reset parameter is given as shown bellow.

1 from brian2 import*
2 import matplotlib.pyplot as plt
3 import brian2.numpy_ as np
4 start_scope ()
5 Cm = 1.0*uF/cm**2 #The membrane capacitance
6 Vt = -40*mvolt #Threshold
7 Vr = -65*mvolt #Reset Voltage
8 eqs = ’’’
9 dV/dt = I/Cm : volt

10 I : amp*meter**-2
11 ’’’
12 N = 1
13 Neuron = NeuronGroup(N, eqs , threshold=’V>Vt’, reset=’V=Vr’, method

= ’euler ’)
14 Neuron_statemon = StateMonitor(Neuron , variables =[’V’,’I’], record =

True)
15

16 runtime = 100*ms
17 Neuron.V = -70* mvolt
18 Neuron.I = 1*uamp*cm**-2
19 run(runtime)

Listing 9: Integrate-and-Fire Model

Figure 3: Integrate-and-Fire Model
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3.2 Limitations of the Integrate-and-Fire Model

3.2 Limitations of the Integrate-and-Fire Model

This model can be improved by including a refractory period that prevents the neuron to
fire for a certain amount of time after the spike (Dayan and Abbott, 2005). This period can
be manually added to the NeuronGroup function as follows:

1 Neuron = NeuronGroup(N, eqs , threshold=’V>Vt’, reset=’V=Vr’,
refractory = 2*ms, method = ’euler ’)

Nevertheless, the I&F model has a big flaw: it has no time-dependent memory (Gerstner
et al., 2014). This means that if this neuron receives input current so that the membrane
voltage does not reach the threshold, it will keep this voltage forever until the next spike
(Fig. 4). To solve this memory problem, the leaky integrate-and-fire model was developed
(Izhikevich, 2007). This is the object of the next chapter.

Figure 4: Integrate-and-Fire Model: keep this voltage forever until the next spike
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Leaky Integrate-and-Fire Model

4 Leaky Integrate-and-Fire Model

This model reflects the diffusion of ions occurring through the membrane while the cell is
not in equilibrium (Dayan and Abbott, 2005). This is achieved by introducing a leak term

Il(t) = Vm(t)
Rm

. The introduction of this leak term causes the cell to fire only when I(t) is

bigger than a new threshold Ith = Vth
Rm

(Izhikevich, 2007). Hence, if the current does not
reach this new threshold current, the leak term will leak out any change in potential (Fig.
5).

Cm
dVm(t)

dt
= I(t)− Vm(t)

Rm

(3)

where Rm is the membrane resistance.

4.1 Implementing the Leaky I&F Model on the Brian2 Simulator

The membrane resistance parameter needs to be defined as well as the new leak current Il.

1 from brian2 import*
2 import matplotlib.pyplot as plt
3 import brian2.numpy_ as np
4 start_scope ()
5 Cm = 1.0*uF/cm**2 #The membrane capacitance
6 Vt = -40*mvolt #Threshold
7 Vr = -65*mvolt #Reset Voltage
8 Rm = 10* Mohm*cm**2 #Membrane resistance
9 eqs = ’’’

10 dV/dt = (I-I_l)/Cm : volt
11 I_l = V/Rm : amp*meter**-2
12 I : amp*meter**-2
13 ’’’
14 N = 1
15 Neuron = NeuronGroup(N, eqs , threshold=’V>Vt’, reset=’V=Vr’,

refractory = 2*ms, method = ’euler ’)
16 Neuron_statemon = StateMonitor(Neuron , variables =[’V’,’I’], record =

True)

Listing 10: Leaky Integrate and Fire Model

4.2 Limitations of the Leaky Integrate-and-Fire Model

The models presented in Ch. 3 and 4 are highly simplified as many aspects from neuronal
dynamics and physiology are neglected (Connors and Gutnick, 1990). Neurons have different
modes of spiking (Izhikevich, 2007). They may be regular or fast spiking as well as bursting
and stutter spiking (Connors and Gutnick, 1990; Dayan and Abbott, 2005). However, models
that do not have memory beyond the most recent spike are not able to describe bursting
modes. Moreover, adaptation is not captured by the model. As the voltage is reset following
each spike, there is no memory of the spikes before the most recent one (Connors and
Gutnick, 1990; Izhikevich, 2007). Another limitation is that, independently of the state of
the postsynaptic neuron, the input is integrated linearly (Gerstner et al., 2014). Finally,
post-inhibitory rebound (rebound spikes) behavior is also not reproduced by this model
(Dayan and Abbott, 2005).
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4.2 Limitations of the Leaky Integrate-and-Fire Model

Figure 5: Leaky Integrate-and-Fire Model and Integrate-and-Fire Model
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Hodgkin-Huxley Model

5 Hodgkin-Huxley Model

The equation developed by Lapicque (Eq.(2)) is the mathematical description of current
flowing through the lipid bilayer (Dayan and Abbott, 2005). Furthermore, when looking at
the different ion channels of the membrane, the current passing through the ith ion channel
can be described as follows:

Ii = gn(Vm − Vi) (4)

where, Vm is the membrane potential, gn is the channel conductance and Vi is the rever-
sal potential of the ion channel (Izhikevich, 2007). Furthermore, some ion channels have a
voltage gating mechanism and thus, the channel conductance in these cases are a function
of both time and voltage (Kandel, Schwartz, and Jessell, 2000). To describe these mecha-
nisms Hodgkin and Huxley, through a series of voltage clamp experiments, developed a four
dimensional model (HH Model) - described by a set of four ordinary differential equations
(ODE) (Hodgkin and Huxley, 1952).

Cm
dVm
dt

= gKn
4(Vm − VK) + gNam

3h(Vm − VNa) + gl(Vm − Vl)− I (5)

where gi is the maximal conductance, n and m are activation variables (potassium and
sodium channels respectively) and h is the inactivation variable for the sodium channel. The
activation and inactivation variables are dimensionless quantities between 0 and 1 that rep-
resent the channel conduction as a function of voltage (Gerstner et al., 2014). In other words,
these variables represent how many channels are opened. Thus, when multiplied with the
maximal conductance, the voltage-gated channel conductance is represented. While Eq.(5)
shows the equation for the total membrane potential, the ordinary differential equations for
the activation and inactivation variables are shown in Eq.(6):

dn

dt
=αn(Vm)(1− n)− βn(Vm)n

dm

dt
=αm(Vm)(1−m)− βm(Vm)m

dh

dt
=αh(Vm)(1− h)− βh(Vm)h

(6)

While in the original paper by Hodgkin and Huxley (Hodgkin and Huxley, 1952), the func-
tions of α and β are given, it is out of the scope of this project. Modern models use similar
definitions for the activation and inactivation variables as newer experimental results have
allowed to improve the functions for α and β.
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5.1 Implementing the Hodgking-Huxley Model on the Brian2 Simulator

5.1 Implementing the Hodgking-Huxley Model on the Brian2 Sim-
ulator

The parameters can be found in the original paper (Hodgkin and Huxley, 1952)3. An example
of parameters is shown bellow. When it is not defined the defaultclock is 0.25 milliseconds,
in this example a 0.025 milliseconds.

1 from brian2 import*
2 import matplotlib.pyplot as plt
3 import brian2.numpy_ as np
4 start_scope ()
5 dtt = 0.025* msecond
6 Cm = 281 * pF
7 gl = 30 * nS
8 El = -70.6 * mV
9 EK = -90*mV

10 ENa = 50*mV
11 g_na = 40.0*uS
12 g_kd = 6.0*uS
13 VT = -50.4 * mV

Listing 11: Hodking-Huxley Parameters

Eq.(5) is implemented as shown below:

1 eqs_V = ’’’
2 dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK)

+ I - Igap)/Cm : volt
3 I : amp
4 Igap : amp
5 Vcut : volt
6 ’’’

Listing 12: Main Equation

Eq.(6) is implemented as found in an example in the Brian2 Documentation.4

1 eqs_m = ’’’
2 dm/dt = 0.32*( mV**-1) *(13.*mV -v+VT)/
3 (exp ((13.*mV -v+VT)/(4.* mV)) -1.)/ms*(1-m) -0.28*(mV**-1)*(v-VT

-40.*mV)/
4 (exp((v-VT -40.*mV)/(5.* mV)) -1.)/ms*m : 1
5 ’’’
6 eqs_n = ’’’
7 dn/dt = 0.032*( mV**-1) *(15.*mV -v+VT)/
8 (exp ((15.*mV -v+VT)/(5.* mV)) -1.)/ms*(1.-n) -.5*exp ((10.*mV-v+VT)

/(40.* mV))/ms*n : 1
9 ’’’

10 eqs_h = ’’’
11 dh/dt = 0.128* exp ((17.*mV -v+VT)/(18.* mV))/ms*(1.-h) -4./(1+ exp ((40.*

mV-v+VT)/(5.* mV)))/ms*h : 1
12 ’’’

Listing 13: Activation/Inactivation Dynacmis

The four equations are added to eqs HH that is used to generate a neuron group. Finally,
the neuron is simulated and plotted.

3Examples of this model can be found in https://brian2.readthedocs.io/en/latest/index.html#
4https://brian2.readthedocs.io/en/latest/examples/IF_curve_Hodgkin_Huxley.html
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5.2 Limitations of the Hodgking-Huxley Model

1 eqs_HH = eqs_V
2 eqs_HH += eqs_m
3 eqs_HH += eqs_n
4 eqs_HH += eqs_h
5 HH = NeuronGroup(N_cells , eqs_HH , threshold=’v>Vcut’, method=’euler’

,dt=dtt)
6 HH.v = El
7 HH.Vcut = -40.4*mV
8 HH_Statemon = StateMonitor(HH, variables = [’v’,’I’], record=True ,dt

=dtt)

Listing 14: Create Neuron Group

Figure 6: Response of Hodgkin-Huxley Neuron Model

Figure 7: Applied Current

5.2 Limitations of the Hodgking-Huxley Model

The Hodgkin-Huxley model describes only three types of ion channels. However, this model
can be extended to include other ion channel types (see Ch. 7)(Gerstner et al., 2014).
Nevertheless, the Hodgkin-Huxley model is computationally expensive as there are 4 ODEs
to be solved. For research that needs the basic response of a neuron and does not particularly
need a very detailed neuron model, it is of particular interest to use a simpler model that
is able to approximate closely the response of HH model. Such a model is found in the
Adaptive Exponential Integrate-and-Fire spiking neuron model (AdEx) which is discussed
in the next chapter.
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Adaptive Exponential

6 Adaptive Exponential Integrate-and-Fire Model

This two dimensional model describes the dynamics of the membrane potential with a first
ODE that includes an exponential voltage dependence and a second ODE to which voltage
is coupled that describes adaptation of the neuron (Izhikevich, 2007).

dV

dt
=

1

Cm
gL · (EL − V ) + gL · ∆T · e

(
V −VT
∆T

)
+ Igap − w

dw

dt
=
a (V − EL)− w

τw

(7)

where ∆T is the slope factor, VT is the the threshold potential, w is the adaptation vari-
able, a is the adaptation coupling factor and τw is the adaptation time constant.

The adaptation variable w has a decay time so that a memory-like mechanism is found.
When a spike happens both the membrane potential and the adaptive variables are reset,
however, while the first resets to the resting potential, the second decays until either reaching
0 or the next spike time (Dayan and Abbott, 2005). Furthermore, one can see that when
constantly inject current without generating a spike, VT is the maximum voltage that can
be reached. The slope factor ∆T is a quantification of the sharpness of the spike. This can
be seen as the sharpness of the sodium activation curve if the activation time constant is
ignored (Goodman and Brette, 2008). In fact, this model becomes a I&F model at the limit
of zero slope factor (with a fixed threshold VT ).

6.1 Implementing the AdEx Model on the Brian2 Simulator

Implementing the parameters as found in the original paper (Goodman and Brette, 2008).

1 from brian2 import*
2 start_scope ()
3 dtt = 0.025* msecond
4 N_PC = 1
5 C = 281 * pF
6 gL = 30 * nS
7 taum = C / gL
8 EL = -70.6 * mV
9 VT = -50.4 * mV

10 DeltaT = 2 * mV
11 Vcut = VT + 5 * DeltaT
12 tauw = 144*ms
13 a = 4*nS
14 b = 0.0805* nA
15 Vr = -70.6*mV

Listing 15: Example of Adaptive Exponential Integrate and Fire Model

Eq.(7) is implemented as shown below. Then, a neuron group is generated and, finally,
the neuron is simulated and plotted.

1 eqs_PC = """
2 dv/dt = (gL*(EL - v) + gL*DeltaT*exp((v - VT)/DeltaT) I - w)/C :

volt
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6.1 Implementing the AdEx Model on the Brian2 Simulator

3 dw/dt = (a*(v - EL) - w)/tauw : amp
4 I : amp
5 """
6 PC = NeuronGroup(N_PC , model=eqs_PC , threshold=’v>Vcut’, reset="v=Vr

; w+=b", method=’euler ’, name = ’PC’,dt=dtt)
7 PC.v = EL
8 PC_statemon = StateMonitor(PC, [’v’, ’Igap’, ’I’,’w’], record=True)
9 PC_spikemon = SpikeMonitor(PC)#, ’t’, record=True)

Listing 16: Main Equation

Figure 8: Response of Adaptive Exponential Neuron Model

Figure 9: Applied Current

Figure 10: Adaptation Variable w
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6.2 Comparing with Hodgkin-Huxley Model

6.2 Comparing with Hodgkin-Huxley Model

When comparing to the Hodgkin-Huxley model, one sees that the exponential term describes
the voltage dependent activation of the sodium channel (activation is assumed instanta-
neous). The AdEx model describes almost exactly the response of the HH model as shown
in Fig. 11.

Figure 11: Comparing AdEx and Hodgkin-Huxley

Figure 12: Applied Current
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Modeling Synapses

7 Modeling Synapses

In Brian2, the Synapses function is used to create synapses between different neuron groups.
The following example uses a newly created neuron group as noise and the AdEx neuron
group used in Ch. 6. First, a neuron group is created following that represents a current
signal with stochastic noise using the Ornstein-Uhlenbeck stochastic process.

7.1 The Ornstein-Uhlenbeck Stochastic Process in Brian 2

The current created (Eq.(8)) is defined by a value I0 which represents the maximum value
that I should approach, and τNoise which represents how fast I approaches I0 (this is seen
in Fig. 13).

dI

dt
=

(I0 − I)

τNoise
(8)

1 N_noise = 1
2 tau_noise = 10*ms
3 I0 = 1.0 *nA
4

5 eqs_noise = ’’’
6 dI/dt = (I0 - I)/tau_noise : amp
7 ’’’
8 Noise = NeuronGroup(N_noise , eqs_noise , threshold = ’True’, method=’

euler’,name = ’Noise ’,dt=dtt)
9 Noise_statemon = StateMonitor(Noise , ’I’, record=True ,dt=dtt)

Listing 17: Random Noise Input

Figure 13: Effect of τ on Current Generated
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7.1 The Ornstein-Uhlenbeck Stochastic Process in Brian 2

The component from the OU stochastic process5 σξ√
τNoise

is added to the original noise

(Eq.(9)). Two new parameters are found: ξ wich is a Gaussian random variable that scales
with 1√

second
and has mean 0 and standard deviation 1; and σ that represents how much offset

or amplitude the signal has from its original position. The OU component is also affected
by τNoise. The effect of τNoise and σ on the signal is shown in Fig. 14 and 15.

dI

dt
=

(I0 − I)

τNoise
+

σξ√
τNoise

(9)

1 N_noise = 1
2 tau_noise = 10*ms
3 I0 = 1.0 *nA#amp
4 sigma = 0.5*nA#amp
5 eqs_noise = ’’’
6 dI/dt = (I0 - I)/tau_noise + sigma*xi*tau_noise **-0.5 : amp
7 ’’’
8 Noise = NeuronGroup(N_noise , eqs_noise , threshold = ’True’, method=’

euler’,name = ’Noise ’,dt=dtt)
9 Noise_statemon = StateMonitor(Noise , ’I’, record=True ,dt=dtt)

Listing 18: Random Noise Input

Figure 14: Effect of τ on Noise

Figure 15: Effect of σ on Noise

5As found in https://brian2.readthedocs.io/en/latest/user/models.html
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7.2 An Example to Get Started with Synapses

7.2 An Example to Get Started with Synapses

The synapse is created by using the Synapses function. Analogously to the NeuronGroup
function, the equation of the synapse needs to be defined. The presynaptic neuron is defined
first, followed by the postsynaptic neuron. In this case the presynaptic neuron is the Noise
and the postsynaptic one is the AdEx (called PC in this example). This example simulates
a random parallel fiber input to a Purkinje Cell (Fig. 16 and 17).

1 eqs_syn = ’’’
2 weight : 1 # gap junction conductance
3 Igap_post = weight* (I_pre) : amp (summed)
4 ’’’
5 S = Synapses(Noise , PC , eqs_syn ,name = ’PC_Noise_Synapse ’,dt=dtt)
6 S.connect(j=’i’)
7 S.weight = ’(j+2)*-1’

Listing 19: Creating the Synapse

Figure 16: Response of Adaptive Exponential Neuron Model

Figure 17: Applied Current
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7.2 An Example to Get Started with Synapses

The connection between the neurons is made. The i neurons represent the ith presynaptic
neuron while the j represent the postsynaptic neurons. In this example, the connection is
chosen to be j =′ i′ which means that each presynaptic neuron will be connected to its
postsynaptic counterpart in the same order (i = 1 with j = 1 and so on). The connectivity
can be seen (Fig. 18) by defining the following function6:

1 def visualise_connectivity(S):
2 Ns = len(S.source)
3 Nt = len(S.target)
4 figure(figsize =(10, 4))
5 subplot (121)
6 plot(zeros(Ns), arange(Ns), ’ok’, ms=10)
7 plot(ones(Nt), arange(Nt), ’ok’, ms=10)
8 for i, j in zip(S.i, S.j):
9 plot([0, 1], [i, j], ’-k’)

10 xticks ([0, 1], [’Source ’, ’Target ’])
11 ylabel(’Neuron index’)
12 xlim(-0.1, 1.1)
13 ylim(-1, max(Ns , Nt))
14 subplot (122)
15 plot(S.i, S.j, ’ok’)
16 xlim(-1, Ns)
17 ylim(-1, Nt)
18 xlabel(’Source neuron index’)
19 ylabel(’Target neuron index’)

Listing 20: Synapse Connectivity

Figure 18: Connectivity of the Synapse

6As found in: https://brian2.readthedocs.io/en/latest/resources/tutorials/2-intro-to-brian-synapses.html
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7.3 Complementary Definitions for the Synapses Function

The weight that is defined represents the synaptic weight. In other words, it is the
amount of presynaptic signal that is given to the jth postsynaptic neuron. The effect of the
synaptic weight on the postsynaptic neuron is shown in Fig. 19.

Figure 19: Effect of the synaptic weight on the postsynaptic neuron

It is clear from Fig. 19 that the neuron does not spike if the weight is lower than 0.5
(blue and yellow lines). As the synaptic weight increases, the current entering the neuron is
higher and thus, it starts to spike with higher frequency.

7.3 Complementary Definitions for the Synapses Function

More can be defined for the Synapses function. For instance, equations can be given to
describe the way each neuron react following a pre- or post- synaptic spike. For instance,
if the presynaptic neuron spikes, the adaptation variable of the AdEx postsynaptic neuron
can be updated. This means that following the spike of the presynaptic neuron, the AdEx
will take longer to get to the second spike. Analogously defining what happens after a
postsynaptic spike can be done using on post = ’...’.

1 S = Synapses(Noise , PC , eqs_syn , on_pre = ’w+=b’, name = ’
PC_Noise_Synapse ’,dt=dtt)

Listing 21: Pre- or post-synaptic spikes
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