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Abstract— We present a 256 × 256 in-memory compute (IMC)
core designed and fabricated in 14-nm CMOS technology
with backend-integrated multi-level phase change memory
(PCM). It comprises 256 linearized current-controlled oscillator
(CCO)-based A/D converters (ADCs) at a compact 4-µm pitch
and a local digital processing unit (LDPU) performing affine
scaling and ReLU operations. A frequency-linearization tech-
nique for CCO is introduced, which increases the maximum
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CCO frequency beyond 3 GHz, while ensuring accurate on-
chip matrix–vector multiplications (MVMs). Moreover, the design
and functionality of the digital ADC calibration procedure is
described in detail and the MVM accuracy is quantified. Finally,
the measured classification accuracies of deep learning (DL)
inference applications on the MNIST and CIFAR-10 datasets,
when two IMC cores are employed, are presented. For a perfor-
mance density of 1.59 TOPS/mm2, a measured energy efficiency
of 10.5 TOPS/W, at a main clock frequency of 1 GHz, is achieved.

Index Terms— Analog computing, deep learning, in-memory
computing, phase-change memory.

I. INTRODUCTION

IN-MEMORY computing (IMC) is an emerging non-von
Neumann paradigm where computation is performed in the

memory array itself [1], [2]. Basically, the conventional mem-
ory systems are endowed with in-place computing capabilities,
thus eliminating the back and forth shuttling of data between
the memory and processing units, which costs energy and
latency. Hence, data-centric applications that predominantly
use a small set of computational operations can benefit greatly
from the novel IMC paradigm. A prominent example is AI
applications, and, in particular, deep-neural network inference,
where matrix–vector multiplications (MVMs) dominate the
workload [3].

In order to accelerate the execution of MVM operations
using IMC, the memory system must be repurposed into a sin-
gle instruction multiple data (SIMD) array of processing ele-
ments [4], where the input vector data is broadcasted across the
matrix rows and the various partial products are summed up
along a column. Standard CMOS logic-based solutions, using
multi-bit multipliers and adders, can qualify for IMC opera-
tions, but only at an area and latency penalty [5], [6]. Instead,
analog processing is used due to its scalability and its ability
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to encode multi-bit data in a single physical quantity, such
as time [7], [8], electrical current [9]–[12], charge [13]–[16],
or voltage [17], [18].

The choice of the underlying memory technology for IMC
ranges from conventional memory types, such as SRAM,
DRAM, and Flash, to emerging memristive devices, such as
metal-oxide-based resistive random access memory (ReRAM)
and chalcogenide-based phase change memory (PCM). Com-
pared to ReRAM, PCM device physics is much better under-
stood [19]. It is expected that the volumetric switching in PCM
may lead to substantially better array-level variability. PCM
has also been commercialized as storage-class memory [20]
and embedded memory [21]. Both PCM and ReRAM permit
reliable long-term storage of multi-bit quantities in the con-
ductance value of a single device. Subsequently, by employing
Ohm’s and Kirchhoff’s laws, it is possible to perform MVM
operations at O(1) time complexity. This could lead to high
throughput and highly energy-efficient systems [22], with
the only disadvantage being the time- and energy-consuming
programming procedures corresponding to these memristive
devices.

Although experimental results on ReRAM-based IMC sys-
tems have already been demonstrated [23]–[25], complete
IMC systems based on PCM crossbar arrays had been lacking
till recently [26], [27]. Prior to this, most of the demonstrations
have been based on either simulation studies based on the mea-
sured characteristics of individual devices or on experiments
based on PCM memory chips that were re-purposed for IMC
operations [28]–[30].

One of the main challenges faced during the realization of
an IMC system is that the peripheral circuits, especially data
converters that interface the crossbar array with the digital
world, carry the largest energy overhead and could even
dominate the associated latency and area footprint. In addition,
voltage-based A/D converters (ADCs) are mostly used [31]
that require a voltage to current conversion, usually employing
a large capacitor for integration [23], [32]. This has thus far
hampered the realization of large fully-parallel on-chip MVM
operations at true O(1) complexity. Besides MVM, neural
network applications require a range of other mathematical
operations to implement activation functions or to aggregate
the results from layers split across crossbar arrays.

In this article, we present a more detailed description of
the PCM-based HERMES core which was presented at the
VLSI symposium [26]. A schematic overview of HERMES
core is presented in Fig. 1. It comprises compact, low-latency,
and energy-efficient current-controlled oscillator (CCO)-based
ADCs, digital readout blocks, and a local digital processing
unit (LDPU) performing affine scaling and ReLU operations.

The remainder of the article is organized as follows.
In Section II, we present a new unit-cell design and a crossbar
array of such unit cells that supports the storage of signed
weights, parallel programming at O(N) complexity, and the
execution of signed MVM in one step. Section III discusses the
proposed CCO-based ADC design that employs a linearization
technique for the output frequency and that supports built-
in shift-and-add operations. Furthermore, the LDPU archi-
tecture and implementation is presented. In Section IV, the

Fig. 1. System overview of the HERMES core. The memory element
array (yellow) in the center consists of 256 × 256 8T4R PCM unit cells.
The cells are initialized via the programming circuitry (gray), located on top.
During an MVM, the input vector is applied as a read voltage pulse via the
input modulator (orange) on the vertical bit-lines (VBLs) of the crossbar,
while the 256 ADC (blue) digitize the flowing current. The generated ADC
outputs arrive via two 24-bit tri-state buses at the local digital processing unit
(LDPU), where they are post-processed.

performance of the analog IMC MVM operation is analyzed
for different input modulation schemes. Section V describes
the inference applications on the MNIST and CIFAR-10
datasets, hardware-aware training and the experimental results
thereof. It also presents a comparison of the proposed PCM-
based core with other state-of-the-art IMC designs. Finally,
Section VI concludes the article.

II. UNIT CELL AND ARRAY DESIGN

A single PCM core is capable of performing a fully parallel
analog MVM with 256 8-bit digital inputs at O(1)-complexity.
Central to its architecture is an array of 256 × 256 8T4R unit
cells. As shown in Fig. 2(a), positive weights are represented
by the combined conductance value of two mushroom-type
PCM devices G+

1 and G+
2 , whereas negative weights are

represented by the other two PCM devices G−
1 and G−

2 .
To support the high voltages beyond 2.5 V that are required
for PCM programming, a pair of stacked nMOS devices is
used as a selector. The selection signals SEL1 and SEL2 are
routed diagonally across the array, to ensure uniform current
distributions across the horizontal (HBL) and vertical (VBL)
bit-lines during parallel write operations [33]. The read proce-
dure for MVMs that involves the parallel read of all the unit
cells is executed as shown in Fig. 2(b). Initially, all selection
signals are enabled, since the full matrix needs to be active.
Also, the HBLs are pulled to the common-mode voltage Vcm.
Then, based on the input vector signs, the different VBLs are
connected to either

V− = Vcm − Vread (1)

when current from the respective columns is to be added, or

V+ = Vcm + Vread (2)



KHADDAM-ALJAMEH et al.: HERMES-CORE—1.59-TOPS/mm2 PCM ON 14-nm CMOS IN-MEMORY COMPUTE CORE 1029

Fig. 2. (a) 8T4R unit-cell schematic. Devices G+
1 and G+

2 encode positive
weight values and G−

1 and G−
2 negative values. (b) Full array read procedure

during MVM for one full row. (c) PCM device insertion point in the upper part
of the back-end-of-the-line (BEOL) stack. (d) Cells’ storage characteristics
obtained from all 256×256×4 PCM devices when encoding 16 representative
levels. Note that the number of programmable levels is not limited but instead,
a level-dependent standard-deviation of the programming error is encountered.

to subtract current, by applying a negative �V across the
PCM device. This allows all four combinations of ±inputs
and ±weights to be taken into account in a single MVM-step
without the need for negative voltages. Fig. 2(c) illustrates the
insertion point of the PCM device in the upper part of the back-
end-of-the-line (BEOL) metal stack. Therefore, the obtained
cell footprint does not yet demonstrate the full potential of
the PCM on 14-nm CMOS technology, which will materialize
when the insertion point is placed in immediate proximity
of the transistors, as done in past technologies [34]. Repre-
sentative storage characteristics of the employed mushroom
PCM device are shown in Fig. 2(d) for 16 distinct levels. The
analog nature of the device, however, allows the encoding of
more levels, the only limit being ADC precision and allowable
programming time [35], [36].

III. LINEARIZED CCO-BASED ADC

Unlike the more commonly used voltage ADCs for IMC,
time-based current ADCs eliminate the need for additional
conversion cycles and are amenable to trading off precision
with latency. Furthermore, since large current integration
capacitors are avoided and mostly digital circuits are used,
this approach facilitates having one converter per column of
the crossbar, thus minimizing the overall latency as no resource
sharing will be required.

A. CCO-Based ADC Structure

Fig. 3 shows the ADC structure which has been imple-
mented in the HERMES core. While the input D/A con-
verter (DAC) is applying the input data to the VBLs, the
generated crossbar currents arrive via the HBL wires first to
Class-AB read voltage regulators, as depicted in Fig. 3(a).
This type of regulator [37] can keep the HBL potentials

on common-mode Vcm irrespective of the current polarity.
By connecting to a Schmitt trigger, this polarity information
is captured in the signal D.

The mirrored HBL current is then fed into the second part
of the ADC, which is the CCO [see Fig. 3(b)], to generate
a proportional time-encoded signal. Fig. 3(d) illustrates the
waveforms of the various signals within the CCO for different
amplitudes of iHBL as well as different polarities. The oscilla-
tion is controlled by two small capacitors C1 and C2 that are
alternately charged or discharged until either of their voltages
VC1 or VC2 reaches the threshold voltage vth of the connected
cross-coupled inverter pair. Its flipping also toggles the latch
state signal A and thus ultimately digitizes the flow of a fixed
amount of charge Qunit into the circuit. Based on the signal
A, either the first or the second of the two symmetric slices in
the oscillator operates, which ensures that always the correct
side of the latch toggles. Furthermore, based on the polarity
of the incoming HBL current, the signal D controls whether
the integration capacitors C1 and C2 are discharged until the
threshold of pMOSs P1 or P2 is reached, or are charged until
the nMOSs N1 or N2 become active.

Finally, the oscillating signal A is forwarded to the last
stage of the ADC, which is the dual 12-bit ripple-counter
[see Fig. 3(c)], serving as an integrator for the time-encoded
current information. Thus, the frequency fCCO of signal A is
captured by the positive and negative counter outputs ADCP

and ADCN , which are incremented at a rate proportional to
the current iHBL.

B. Linearization Technique

A known issue in this CCO circuit is the limited linearity
of the output frequency fCCO at high input currents [38]–[40].
This is due to the constant gate delay, tdelay, between the
time instance when the latch toggles up to the time instance
when the current integration proceeds on a second capacitor.
tdelay is added to the inverse of the oscillator output frequency,
which is the time period TCCO, thus interfering with the linear
relationship between frequency fCCO and current iHBL

TCCO = 1/ fCCO = C1 · vth

α · iHBL
+ tdelay. (3)

The solutions proposed in literature range from restriction to
low-frequency operation, where the delay is not dominant [40],
to extensive digital post-processing using look-up tables [41],
digital filters, or other feedback structures [39]. In an IMC
system, these solutions would not be ideal, as they incur
either significant area or latency penalties. Moreover, the post-
processing operations aimed at compensating the nonlinearity
only work for dc current measurements and would fail when
working with time-varying currents that are integrated over
a period of time. In this article, feed-forward compensation
is proposed as a solution for the delay-induced nonlinearity
issue in CCOs. The underlying idea consists of adapting the
threshold voltage to compensate for the delay. This approach
is different from the solution presented in [38], which modifies
the reference voltage of an attached comparator circuit. Here,
the trip-point vth,c of the cross-coupled latch is reduced based



1030 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 4, APRIL 2022

Fig. 3. Circuit diagram and layout of the CCO-based ADC that is used in the HERMES core. (a) Class-AB regulation stage that keeps the HBL on Vcm
independent of the current polarity. In (b), CCO is shown. It consists of a cross-coupled latch, two pMOS and nMOS current mirrors, and two capacitive
integrator stages. Control inputs per ADC for the main pMOS/nMOS current mirror gains (αP/N,i ), the feed-forward compensation current mirror gains
(βP/N,i ), and the trimmed local read voltage (ṽread,i ) are underlined. The output signal Ā is fed into an edge-to-pulse converter and forwarded to the last stage,
that is, (c) dual 12-bit ripple counter. (d) Waveforms during the operation of the CCO are shown for different HBL current amplitudes (iHBL = iHBL,P +iHBL,N ).

on the instantaneous current amplitude by using a second
current mirror (see Fig. 3(b) in blue)

vth,c(iHBL) ≈ v∗
th − tdelay · α · iHBL

C1
. (4)

As a result, the latch flips by a predefined amount of time
earlier, which can be adjusted to compensate for the delay.
In this case, the current to frequency relation remains linear
even for high current amplitudes

TCCO = 1/ fCCO = (
vth = vth,c

) ≈ C1 · v∗
th

α · iHBL
. (5)

Furthermore, this feed-forward compensation technique allows
counteracting other saturation effects that appear at the peak
oscillator frequency by tweaking the transfer curve through
active overcompensation. Such effects include, for example,
the read voltage drop due to limited interconnection resis-
tance and regulator output impedance. The drawbacks of this
approach include an increased energy consumption and an
initial calibration overhead, as the correct compensation gain
needs to be set. Moreover, there is an increased area penalty,
albeit moderate.

Each ADC measures the outputs of a multi-input–single-
output (MISO) system, that is the result of a dot-product
between a weight vector and an input vector. Therefore, the
adjusted metrics of weight- and input-integral nonlinearity
(INL)/differential nonlinearity (DNL) are adopted as proposed
in [16]. The measured transfer curves that are shown in
Fig. 4 are obtained by fixing one quantity (weight or input)
while sweeping the other. Both curves remain bounded within
±1 LSB, thus indicating the absence of significant deter-
ministic errors. Moreover, these INL/DNL plots illustrate the
efficacy of the compensation technique. The linear region of
the transfer curve in Fig. 4(a) is increased, and the maximum
oscillation frequency can exceed 3 GHz.

Fig. 4. Measured CCO frequency sweeps. (a) Weight-integral nonlinear-
ity (INL) that is obtained by fixing the input value and varying the number
of activated unit cells from 0 to a maximum of 256, such that full designated
current range is covered. (b) Contains the input-INL measured for a sweep of
the input value while all weights are active. The insets in both graphs contain
the differential nonlinearity (DNL).

C. Counter With Variable Increment Size

In the last stage of the CCO-based ADC, the oscillat-
ing signal A is integrated in the digital domain using a
ripple counter. By selecting the appropriate D flip-flop that
receives A, the increment size of the counter can be made
variable. This allows the execution of shift-and-add operations
within the ADC at a minimal overhead, avoiding dedicated
multi-bit adders [42]–[44]. Hence, we enabled bit-serial input
modulation in addition to the conventional multi-bit pulsewidth
modulation (PWM). The negative ADC output ADCN that is
read from the counter after one integration period Tint can be
formulated as

ADCN =
⌊

1

Qunit

∫ Tint

0
f (iHBL(t))dt

⌋
(6)

f (iHBL(t)) =
{

|iHBL(t)|, if iHBL(t) ≤ 0

0, otherwise.
(7)

For the positive output ADCP , it is vice versa.
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D. ADC Calibration Procedure

In order to ensure the best accuracy possible for applications
using IMC cores, the errors introduced by gain and mismatch
variations are to be kept as small as possible. Given the
large number of ADCs that are involved in a large-scale IMC
system, an accurate and robust calibration procedure is of high
importance.

Besides inaccurate MVM results, the absence of mismatch
calibration can also lead to an increased power consumption,
due to currents flowing in between ADCs. This happens when
the various Class-AB read-voltage regulators settle on different
Vread values. If the HBLs are on different potentials, then
given the crossbar topology, current will flow between them,
which manifests itself in an ADC offset and in a decreased
energy efficiency. If this is added to the original CCO trans-
fer function (3), a simplified equation for the current-to-
frequency relation can be formulated that models all relevant
effects

fCCO(iHBL) = Adc × iHBL

1 + BNL × iHBL
+ Coffset. (8)

Therein, the three variables Adc, BNL, and Coffset character-
ize static gain, nonlinearity, and offset for each ADC. In the
employed design, they can be adjusted through three separate
types of control inputs [see Fig. 3(a) and (b)]. Main current-
mirror gains αP,i , αN,i set the static gain Adc. The nonlinearity-
related term BNL is reduced by increasing the feed-forward
gains βP,i , βN,i , and, finally, any read-voltage variation-related
offset is compensated using ṽread,i , which is varied by selecting
a different tap from a resistor ladder.

Moreover, there is some interrelation between the differ-
ent parameters. For example, the read-voltage setting ṽread,i

impacts the static gain and the two current mirrors for static
gain and feed-forward compensation also exhibit some cor-
relation. The calibration algorithm therefore commences with
fixing the offset, then proceeds to setting the static gain, and
finally enables and adjusts the feed-forward compensation.

Equation (8) contains three unknown variables that change
depending on the calibration settings. They are calculated
by generating iHBL currents of three different amplitudes and
storing of the measured counter values. To accurately capture
the complete transfer curve characteristics, the three current
values are chosen so that they include one low and one medium
current point as well as one measurement at the largest
relevant current amplitude that can be realistically expected
in the crossbar. In this case, a value of IHBL,max = 100 μA
was chosen. The obtained equation system is then solved to
obtain the three parameters Adc, BNL, and Coffset. By averaging
over several measurements, non-systematic disturbances like
thermal noise can be filtered out. Note that this process of
calculating the three parameters needs to be repeated following
each control input change in order to closely monitor the
calibration progress. Moreover, positive and negative current
mirrors must be calibrated separately.

The course of a measured calibration procedure is shown in
Fig. 5. Initially, the individual read voltage values ṽread,i are
continuously adjusted [see Fig. 5(a)] until the relative offset
errors of all ADCs are reduced to almost 0% [see Fig. 5(b)].

Fig. 5. Calibration procedure for the 256 CCO-based ADCs per HERMES
core. (a) Evolution of the per ADC adjustable read-voltage ṽread,i during
calibration until the relative offset errors between the ADCs are eliminated,
as shown in (b). In (c), adjustment of the static ADC gain is shown and in (d),
nonlinearity-related coefficient BNL is minimized.

Afterward, the static gain Adc is set to ca. 35 (MHz/μA)
[see Fig. 5(c)]. Despite the 4-bit gain adjustment circuitry,
there is a residual spread of σ = 2.48 (MHz/μA), correspond-
ing to 7.09% of the static gain reference value. Finally, the
nonlinearity-related term BNL that originates from switching
delays and voltage drop is reduced to the lowest value possible
[see Fig. 5(d)].

E. Local Digital Processing Unit (LDPU)

At the end of the ADC calibration process, the offset
differences of the 256 ADCs are effectively eliminated, while
the static gain variations are still distributed within ±21% of
the reference value. Equalization of the remaining difference,
which in the analog domain would require significant silicon
area, is performed digitally in the LDPU, which is efficiently
combined with any deep learning (DL) inference-required
affine scaling. This is done after the left and right blocks
of 128 ADCs pass their raw 12-bit positive (ADCP ) and 12-bit
negative (ADCN ) output data via two separate 24-bit tri-state
buses to the LDPU [see Fig. 6(a)].

Therein, the 2 × 12 bit data pass through the convert-
and-scale blocks [see Fig. 6(b)] that each contains two FP16
multiply–add units. These units apply the scaling and offset
factors and also subtract positive and negative ADC values.
Moreover, the LDPU supports the combination of results from
layers split across multiple crossbars and can also perform
residual input additions that are needed for executing ResNets.
The INT8 outputs of the LDPU can be transferred to other
cores.
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Fig. 6. (a) Block diagram of the LDPU, which receives the output data from
the 256 ADCs and post-processes them in the dedicated ADC scale&convert
blocks, that are shown in (b). There, remaining gain and offset variations
between the different ADCs are equalized. The LDPU can furthermore apply
the ReLu activation function and combine results from different HERMES
cores.

IV. MVM OPERATION

We propose a hardware-centric approach to characterize the
quality of the analog MVM operation. Using the crossbar’s
duality of being an MVM engine as well as a cascaded
D/A and A/D system, a statistical accuracy metric can be
created. First, a set of ideal fixed-point MAC results �y is
defined that spans the full output range. In a second step,
random FP32 weight ( �w) and INT8 input vectors (�x) are
created, as indicated in Fig. 7(a), using a uniform multinomial
distribution, so that their dot-products �w × �x yield �y. The
weights �w are then programmed into the crossbar by means
of iterative programming [35]. Next, the inputs �x can be
applied as read-voltage pulses using either multi-bit or bit-
serial modulation with shift-and-add. Thus, the analog MVM
is performed and the resulting HBL currents are digitized in
the CCO and finally post-processed in the LDPU, yielding the
hardware-obtained MVM-results �yHW. These INT8 results are
then compared against the FP32 reference values, as shown
in Fig. 7(b) and (c). Finally, the computational accuracy can
be characterized by calculating the standard deviation of the
error [see Fig. 7(d) and (e)].

A. Multi-Bit and Bit-Serial Input Modulation

Using the HERMES core, the two supported modulation
schemes are examined by comparing their respective INT8
LDPU outputs against the ideal FP32 results. The MVM
results shown in Fig. 7(b) are obtained by using conventional
8-bit PWM. Following a brief VBL pre-charge procedure, the
CCO-based ADCs are activated and continuously integrate the
time-varying current while the modulator is active.

Fig. 7. (a) Experimental flow diagram that is used to determine the MVM
accuracy. The measured results are shown in (b) for conventional multi-bit
PWM and in (c) for bit-serial input modulation with shift-and-add. Both
±weights and inputs are used to cover all four quadrants. The probability
density function (PDF) of the normalized MVM error for both modulation
schemes is plotted in (d) and (e).

In the bit-serial case, however, only static currents are
measured. Therein, the modulator applies the seven magnitude
bits of each entry in the read-voltage vector �x from LSB to
MSB to the crossbar, so that dc currents develop. After a
defined settling time, these currents are measured by enabling
the ADCs for a constant time period and integration of the
CCO output in the attached counter. The significance of the
applied input-bit is taken into account by selecting which of
the first seven counter bits to increment. Thus, a shift and add
operation is realized in the counter. The obtained MVM results
are shown in Fig. 7(c).

In the employed conventional multi-bit modulation scheme,
an integration time of 128 ns is used, given by the 1-GHz
operation frequency of the modulator and the 7-bit input
magnitude. Due to the peak CCO frequency of ca. 3.3 GHz,
more than 420 different charge levels can be quantized and,
thus, a resulting resolution of more than 8 bit is ensured. The
measured MVM results in Fig. 7(b) and (d) do not show
any significant systematic errors and the error distribution,
if modeled as a random normal distributed Gaussian, yields
a σ = 1.94%.
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Fig. 8. Implemented network applications. (a) Two-layer MLP that is used
for MNIST image classification and (b) ResNet-9 network used for CIFAR-10
image classification. (c) Layer map of MNIST and ResNet-9 networks within
two HERMES cores each. (d) PDF of the relative weight programming error
for the MNIST and ResNet-9 networks.

Regarding the bit-serial modulation scheme, the maximum
intermediate result per input bit must be limited to 4 bit to
avoid saturation or overflow in the 12-bit counters. This is
achieved by limiting the integration time per input-magnitude
bit to ca. 5 ns. As a consequence, only the upper 4 bit of the
final result remains usable, while the remaining bits mostly
consist of quantization noise. This is also reflected in the
results shown in Fig. 7(c) and (e), which show a broader error
histogram with twice the standard deviation than for the multi-
bit case.

Therefore, in the remainder of this article, the conventional
multi-bit modulation scheme will be used for the application
studies. However, note that the encountered precision limit
of bit-serial modulation is specific to the presented design
and could be easily circumvented through adjustments to the
counter.

V. APPLICATIONS AND RESULTS

For experimental validation of the inference performance,
a two-layer MLP [see Fig. 8(a)] and a ResNet-9 network [see
Fig. 8(b)] were trained to perform MNIST or CIFAR-10 image
classification, respectively. In both cases, the networks were
designed so that the weights can be mapped onto the two
HERMES cores, which constitute the employed demo system,
as is shown in Fig. 9.

A. Hardware-Aware Training

Prior to mapping the networks onto analog IMC cores,
it is essential to perform a hardware-aware custom training
in software as described in [30]. Due to device variability and
noise, the networks need to be trained in a specific way so that
transferring the digitally trained weights to the analog PCM
devices will not result in significant loss of accuracy.

1) Two-Layer MLP: For the two-layer MLP case, the
MNIST input images were cropped to 22 × 22 and scaled
between 0 and 1. The hidden layer of the MLP network
comprises 240 neurons and employs the ReLU activation
function, while the output layer comprises ten neurons and
a softmax-operation step. Initially, the network was trained in

Fig. 9. (a) FPGA-based test board with two PCB-packaged HERMES cores
that was used to run the neural network applications. (b) Die holder sockets
and a bonded HERMES cores on holder boards with a plastic lid. (c) Chip
micrograph and snapshot from the EDA tool.

floating-point arithmetic to minimize cross entropy loss with a
batch size of 4 and initial learning rate of 0.0005 for 50 epochs.
The weights and biases were clipped at 3.5 times the standard
deviation σW of the weight distributions. The learning rate
was reduced by half after every 20 epochs. Furthermore, the
network was retrained while adding 15% noise to the weights
for 35 epochs and clipping of the weights and biases at 3 × σW

after every training batch. Following this training approach,
the network achieved a 98.6% accuracy on the 10 000 cropped
MNIST image test set.

2) ResNet-9: In the second application example, a ResNet-9
with 1 00 726 trainable parameters is used for CIFAR-10 image
classification, as shown in Fig. 8(b). The training images were
normalized to have zero mean and unit standard deviation.
In addition, the images are augmented by random cropping
to 32 × 32 squares after padding by four pixels on each
boarder and random horizontal flipping. The network was first
trained in floating-point arithmetic with a batch size of 200 and
initial learning rate of 0.5 for 300 epochs of 50 000 training
images. The learning rate was reduced to one-tenth after every
30 epochs. As for the previous application, the network was
further retrained by adding 6.67% noise to the weights for
270 epochs and clipping of the weights and biases at 2 × σW

after every training batch. Eventually, the network achieved an
88.4% accuracy on the 10 000 test images of CIFAR-10.

B. Hardware Experiment

The trained weights of all layers were then mapped on two
HERMES cores and iteratively programmed on the PCM unit-
cell arrays. Fig. 8(c) shows the layer mapping of both networks
on the two cores and Fig. 8(d) shows the resulting weight
programming error. The iterative programming convergence
rate was 100% for the MLP and 99.9% for ResNet-9. The
relative weight programming error standard deviations of 4.8%
(MLP) and 5.3% (ResNet-9) are related to the difficulty in
reading accurately the individual conductance values with
the on-chip ADC when iteratively programming them. This
could be mitigated by increasing the ADC resolution, using
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TABLE I

COMPARISON TABLE OF RECENT ANALOG IMC-BASED MVM/MULTIPLY-ACCUMULATE (MAC)-OPERATION ACCELERATORS

drift-mitigation schemes, or increasing of the maximum num-
ber of iterations during programming.

After the weights were programmed, the inference exper-
iment was conducted by providing as input the test images
to the two-core platform. For the MNIST MLP experiment,
the test images were flattened and split over cores 1 and 2 to
process the first layer. The partial MVM output from core 1
was sent to the LDPU of core 2, added to the output of
core 2 via the LDPU circuitry, after which the ReLU was
performed on the summed output. The resulting LDPU output
from the first layer was then input to core 2 for processing
the second layer and to obtain the final classification result.
Hence, all the inference operations for processing the MNIST
test images were performed on-chip. The FPGA was used
solely for control and data propagation between the cores. The
resulting on-chip inference accuracy obtained on MNIST was
98.3%, which is only 0.3% lower than the software accuracy
obtained after training.

For the ResNet-9 inference experiment, all the MVMs
required for performing the convolutions on the CIFAR-10
images were performed on-chip. The FPGA was used to send
data from one layer to the next after each layer was processed
by the HERMES cores. The pooling operations, not supported
by the LDPU, were performed in software. The experimentally
obtained accuracy was 85.6%, which is less than 3% lower
than the software accuracy. Although this accuracy difference
is higher than that observed for the MNIST dataset, it is
expected that the ResNet-9 on CIFAR-10, with its inherent
low number of parameters, will be more sensitive to weight
programming errors and also additional errors introduced by
the ADC conversion. Reducing the weight programming errors
and the ADC nonlinearity would be needed to bridge the
accuracy gap between experiment and software. Using a larger
network in addition would improve the overall robustness to
these nonidealities.

C. System-Level Performance

At an operation frequency of 1 GHz and a supply voltage
of 0.8 V, the HERMES core shows a peak throughput of

1.008 TOPS at an efficiency of 10.5 TOPS/W, when running
the MNIST-based experiment as described above. Compared
to the state-of-the-art (shown in Table I), the measured
throughput density of 1.59 TOPS/mm2 is significantly higher
than recent non-volatile ReRAM-based designs [24], [45] and
also slightly higher than recent SRAM + capacitor-based
designs [44], when 8-bit input quantization is used. Only the
SRAM-based design in [46] shows a better throughput density,
given by its compact 8T SRAM unit-cell design employing
push-rules and the advanced manufacturing node. However,
it uses a lower precision, 4 bit-based computation mode and
offers no persistence throughout power cycling due to the
volatile SRAM cells.

VI. CONCLUSION

In this article, an IMC-based MVM accelerator is presented
that uses a novel PCM on 14-nm CMOS process. The compact
CCO-based ADCs allow the MVM operation to be executed
at O(1)-complexity, since the pitches of ADC and unit-
cell match. Through linearization of the ADC’s current-to-
frequency transfer curve, a resolution of 300 ps per LSB is
demonstrated. Thus, a system performance of 1.008 TOPS at
an energy efficiency of 10.5 TOPS/W is achieved.

Furthermore, the usage of a time-based ADC architecture
allowed efficient implementation of shift-and-add operations
within the ADC, thus obviating the need for dedicated digital
adders. In addition, this enables bit-serial input modulation
to be implemented natively. Both supported input modulation
schemes, conventional multi-bit PWM and bit-serial modu-
lation with shift-and-add, are compared with respect to the
achievable MVM operation precision. Finally, the suitability
for DNN applications is demonstrated through successful
on-chip implementation of a two-layer MLP and a ResNet-9
for MNIST and CIFAR-10 image classification, respectively.

The presented system demonstrates the feasibility of a
high-throughput IMC MVM accelerator system using non-
volatile memristive devices. Despite the integration of the
PCM element at a relatively high position in the metal
stack, a throughput density of 1.59 TOPS/mm2 is achieved,
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comparable to existing SRAM-based accelerators. It is con-
ceivable that by integrating the PCM devices closer to the
transistor-level at a denser pitch, substantially higher through-
put density can be achieved.
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