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Abstract

Spaces of discrete differential forms can be applied to numerically solve the partial differential equations that govern
henomena such as electromagnetics and fluid mechanics. Robustness of the resulting numerical methods is complemented by
ointwise satisfaction of conservation laws (e.g., mass conservation) in the discrete setting. Here we present the construction of
sogeometric discrete differential forms, i.e., differential form spaces built using smooth splines. We first present an algorithm
or computing Bézier extraction operators for univariate spline differential forms that allow local degree elevation. Then,
sing tensor-products of the univariate splines, a complex of discrete differential forms is built on meshes that contain
olar singularities, i.e., edges that are singularly mapped onto points. We prove that the spline complexes share the same
ohomological structure as the de Rham complex. Several examples are presented to demonstrate the applicability of the
roposed methodology. In particular, the splines spaces derived are used to simulate generalized Stokes flow on arbitrarily
urved smooth surfaces and to numerically demonstrate (a) optimal approximation and inf–sup stability of the spline spaces;
b) pointwise incompressible flows; and (c) flows on deforming surfaces.
c 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Smooth splines; Singularly parametrized surfaces; The de Rham complex; Surface flows; Optimal approximation; Pointwise
ncompressibility

1. Introduction

Partial differential equations (PDEs) describing physical phenomena are built on a rich differential and geometric
oundation of conservation laws, topological constraints, symmetries and invariants. The reliability of numerical
lgorithms that are used to discretize and approximately solve these equations is of the utmost importance for
ountless scientific and engineering applications, and this is intimately connected to the differential and geometric
tructure underlying the PDEs. Specifically, for physical problems such as electromagnetism and incompressible
uid flows, consistent, stable and accurate numerical methods that ensure physical fidelity of the discrete solutions
an be built by mimicking the structure underlying the continuous problem (e.g., the identities div–curl= 0 and

curl-grad= 0) at the discrete level. The formulation of such numerical methods is our focus in this article, with a
special attention towards high-order accurate discretizations of PDEs defined on surfaces in R3.
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The development of discretization methods that aim to mimic symmetries and invariants at the continuous
evel is an active area of research. Some of the significant contributions in this area have come in the form of

imetic finite difference methods [1,2], mimetic spectral element methods [3,4], discrete exterior calculus [5,6],
nite element exterior calculus [7,8], and physics-compatible or structure-preserving isogeometric analysis [9–12].
hese methods have one thing in common: they are driven by geometric interpretations of the solution fields. In
articular, the solution fields are interpreted as differential forms [13], which are objects that are naturally associated
o geometric objects of different dimensions. For example, for fluid flow on an d-dimensional domain, velocities

may be interpreted as fluxes that flow through codimension-1 geometries (i.e., as differential forms of order d− 1)
and their divergence as the mass being lost or produced in d-dimensional geometries (i.e., as differential forms of
order d).

Differential forms provide a compact, clear and intuitive language for discussing both PDEs as well as their
discretization. They are particularly helpful in identifying which parts of the PDE are conservation laws that do not
depend on any notion of a metric, and which parts are constitutive laws — the discretizations are then constructed
to exactly satisfy the former and accurately approximate the latter. The framework of finite element exterior
calculus [7,8] is based on precisely this formalism. It has led to a unified approach for developing accurate finite
element differential form spaces and analysing stability and well-posedness of the discrete problems. This article
focuses on the methods that belong to the extension of finite element exterior calculus to isogeometric analysis.

Isogeometric analysis [14] relies on the use of smooth splines, i.e., smooth piecewise-polynomial functions, for
building both the geometry on which the problem is defined, as well as the discrete finite element spaces used to
solve the problem. The last decades have seen the extensive use of splines for numerical solutions of challenging
problems such as the design and optimization of wind turbines [15], development of cardiac devices [16], and
multiphase flows [17–19] and fracture dynamics [20,21] governed by high-order phase field theories. Several recent
developments [22–24] have provided the theory supporting the large body of numerical evidence that smooth
splines demonstrate better approximation behaviour per degree of freedom than less smooth or non-smooth spline
spaces (e.g., traditional C0 finite element spaces). The extensions of finite element exterior calculus to isogeometric
analysis have come via the development of isogeometric discrete differential form spaces, i.e., discrete differential
form spaces built using smooth splines. These isogeometric discrete differential forms are used to solve PDEs on
domains that are also built using smooth splines. Examples include discrete differential forms on rectangular or
cuboidal domains built using tensor-product splines [10,11,25,26] and adaptively-refined splines [12,27,28], with
applications to electromagnetism and incompressible flows being common.

The above represents the state of the art on spline differential forms and the existing literature does not address
the problem of simulating PDEs on arbitrary surfaces with smooth spline-based differential forms. While significant
advances have been made in the understanding of spline differential forms on (locally refined) quadrilateral meshes,
unstructured meshes are needed for building arbitrary surfaces. In particular, there are two types of unstructured
meshes that need to be studied — ones where the number of quadrilaterals meeting at an interior vertex is not equal
to 4 (excluding T-junctions), and ones where the quadrilaterals degenerate into triangles. One of the contributions
of this article is taking the first steps that address the latter class of unstructured meshes; such meshes are called
polar meshes and the splines built on them are called polar splines.

More broadly, the motivation for this article is construction of isogeometric discrete
differential forms for numerical approximation of (scalar and vector) solutions to PDEs.
We focus on discrete differential form spaces built using two particular classes of non-
standard spline spaces — univariate multi-degree splines and bivariate polar splines.
Multi-degree splines [29–31] are splines that allow local polynomial degree adaptivity, and
polar splines [29,32] are non-tensor-product splines that allow the construction of singularly
parametrized, genus 0 surfaces that are nevertheless Ck smooth. For instance, the geometry
on the right is a C1 polar spline surface that is singularly parametrized — it is built from a
rectangular domain by collapsing a pair of opposite edges to points.

Solving PDEs on such surfaces has many applications; e.g., numerical weather prediction [33]. Of particular
nterest to us is the study of biological fluidic membranes such as lipid bilayers [34–36]. These membranes can
2
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be thought of as the envelopes for eukaryotic cell contents. These are versatile structures that behave as in-plane
viscous fluids and out-of-plane solids. Computationally studying the behaviour of such structures requires the ability
to simulate two-dimensional viscous fluid flow on a curved, evolving surface. Several recent methods have been
proposed to solve such problems; e.g., using discrete exterior calculus [37], trace finite elements [38,39] and surface
finite elements [40–43]. These methods are built using functions of low-regularity that are either C0 or discontinuous.

he methods in [37–39] are low-order methods that use piecewise polynomials of degree at most 1, and the methods
n [38,39] are for surfaces defined implicitly on a background mesh. The method in [41] is high-order accurate but
eeds Lagrange multipliers to impose tangentiality of the fluid velocity on a curved surface; penalties are used to
pproximately achieve the same or to enforce approximate conservation in [38,39,43].

In this paper, we develop novel isogeometric discrete differential forms that, in particular,
ffer a high-order alternative to the above methods for simulation of flows on smooth surfaces
ithout any recourse to Lagrange multipliers or penalties for enforcing tangentiality of

he flow. Section 2 presents the mathematical preliminaries needed for our approach. We
ubsequently discuss the theoretical and algorithmic aspects behind the construction of multi-
egree spline differential forms ( Sections 4 and 3.2 ), and their application to building polar
pline differential forms (Section 5). In particular, we show how this enables us to mimic
he cohomological structure of the de Rham complex at the discrete level. We demonstrate

the high-order accuracy, stability and applicability of the discrete differential form spaces by simulating, in particular,
generalized Stokes flow on fixed and deforming smooth surfaces (Section 6). The spaces also allow us to simulate
pointwise incompressible tangential flows on surfaces. See an example of such pointwise incompressible tangen-
tial flow on the right where streamfunction contours and tangential velocities are displayed; see Section 6.3 for
details.

2. Mathematical preliminaries

Let us start by presenting some exterior calculus preliminaries and, in particular, introduce the L2 de Rham
complex. We follow the presentation of [8] in an abbreviated form. Moreover, since we are interested in building
spline differential forms on smooth 2-manifolds, Ω , we restrict the following discussion to the two-dimensional
setting. Note that we only present the most basic relations in this section; other necessary notation and material
will be presented when needed.

2.1. Outlook

As mentioned in Section 1, the motivation for this article is the construction of stable and high-order accurate
spline-based finite element methods for numerical approximation of (scalar and vector) solutions to PDEs on smooth
2-manifolds Ω . We do so within the conceptual framework of finite element exterior calculus [7,8] and its spline-
based counterparts [10,11,26]. As shown in [8], for instance, well-posed problems can be formulated at the discrete
level if the finite element spaces form a subcomplex (Section 2.2) of the de Rham complex of differential forms
(Section 2.3). The scalar and vector fields that solve the desired PDEs can be thought of as proxies for differential
forms, and well-posedness of the continuous problems is implied by properties of the de Rham complex. Then, a
first step in the construction of stable methods is the construction of a finite element subcomplex that mimics the
properties of the continuous de Rham complex. The next two subsections introduces Hilbert cochain complexes and
the de Rham complex of differential forms.

2.2. Hilbert cochain complexes

Let V denote a sequence of Hilbert spaces
{

V (i)
}2

i=0, and let d denote a sequence
{
d (i)
}1

i=0 of connecting closed,
linear maps of degree +1, d (i)

: V (i)
→ V (i+1). If d (1)

◦ d (0)
= 0, V and d together form a Hilbert complex

V := (V, d),

V : V (0) V (1) V (2) .
d(0) d(1)

(1)
3
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The connecting maps d (i) are called the differentials of the complex V. Moreover, V is called bounded if its
differentials are bounded linear operators, and it is called closed if the image of d (i) is closed in V (i+1) for all i .

The composition property of the differentials implies that the following containment holds,

im d (i−1)
⊆ ker d (i) . (2)

embers of V (i) in ker d (i) are called i-cocycles or closed, and the members of V (i) in im d (i−1) are called i-
oboundaries or exact. The i-th cohomology space associated to the complex V, H i (V), is defined as the following

quotient,

H i (V) = ker d (i)/ im d (i−1) . (3)

ote that, for defining H 0(V) and H 1(V), the beginning and the end of the complex are automatically augmented
ith zero maps d (−1)

:= 0 =: d (2). The cohomology space H i (V) measures the extent to which the equality in Eq. (2)
ails to hold.

Given two complexes V = (V, dV ) and W = (W, dW ), linear maps f (i)
: V (i)

→ W (i) of degree 0 are called
ochain maps if they commute with the differentials for all i ,

d (i)
W ◦ f (i)

= f (i+1)
◦ d (i)

V . (4)

ochain maps preserve closed and exact forms and, consequently, induce maps between cohomology spaces of
he two complexes, f ∗,(i)

: H i (V) → H i (W). Additionally, for i = 0, 1, 2, if W (i)
⊆ V (i) and all differentials

(i)
W are obtained from d (i)

V by restriction, then the complex W is called a subcomplex of V. In this case, the
nclusion ι(i) : W (i)

→ V (i) is a cochain map from W to V and induces a natural map between their cohomologies.
f, additionally, there exists a cochain projection map from V to W, it induces a surjection of cohomologies. In
articular, the dimensions of H i (W) are then bounded from above by those of H i (V) for all i .

emark 2.1. In the following, to unburden the notation, we will drop the superscripts of all differentials as it will
lways be clear from the context which differential is being used.

.3. The de Rham complex of differential forms

Given a (sufficiently) smooth 2-manifold Ω ⊂ Rd, d = 2, 3, let TyΩ denote the 2-dimensional tangent space
at y ∈ Ω . A smooth differential i-form f , i = 0, 1, 2, on Ω is a smooth field such that f y is a real-valued
skew-symmetric i-linear form on TyΩ ×· · ·× TyΩ . Let Λ(i)(Ω ) denote the space of all smooth i-forms, i = 0, 1, 2.

For i = 0, 1, 2, and f ∈ Λ(i)(Ω ), the exterior derivative is a linear map of degree +1, d : Λ(i)(Ω )→ Λ(i+1)(Ω ),
such that d ◦ d = 0. In local (curvilinear) coordinates x = (x1, x2) on Ω such that y = y(x), the differential forms
nd the action of d are simply

Λ(0)(Ω )∋ f : f (x)
d
↦−→

∂ f
∂x i

dx i , (5)

Λ(1)(Ω )∋ f : fi (x) dx i d
↦−→

(
∂ f2

∂x1 −
∂ f1

∂x2

)
dx1
∧ dx2 , (6)

Λ(2)(Ω )∋ f : f12(x) dx1
∧ dx2 d

↦−→ 0 . (7)

where dx1 and dx2 are a covector basis that span the cotangent spaces of Ω . In the above and the following, we
assume Einstein’s summation convention unless indicated otherwise. Finally, ∧ : Λ(i)(Ω )×Λ( j)(Ω )→ Λ(i+ j)(Ω ) is
the product operator for differential forms. It is antisymmetric, associative and anti-commutative and, in particular,
in our 2-dimensional setting we have

dx1
∧ dx2

= −dx2
∧ dx1 . (8)

An i-form, f ∈ Λ(i)(Ω ), can be naturally integrated on any i-dimensional sub-manifold Ω̃ of Ω , i.e., without
any need for a metric. Moreover, if f is exact, i.e., f = dg, g ∈ Λ(i−1)(Ω ), then the Stokes’ theorem holds,∫

f =
∫

g , (9)

Ω ∂Ω

4
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where ∂ denotes the boundary operator. In other words, the exterior derivative can be thought of as the dual of the
oundary operator with respect to the natural duality pairing of i-forms with i-dimensional submanifolds.

With L2Λ(i)(Ω ) denoting the completion of Λ(i)(Ω ) with respect to the L2 inner product of i-forms (·, ·)L2Λ(i)(Ω),
e define HΛ(i)(Ω ) as

HΛ(i)(Ω ) :=
{

f ∈ L2Λ(i)(Ω ) : d f ∈ L2Λ(i+1)(Ω )
}
. (10)

ith (·, ·)Ω := (·, ·)L2Λ(i)(Ω), we equip HΛ(i)(Ω ) with the following graph norm-induced inner-product,

( f, g)HΛ(i)(Ω) := ( f, g)Ω + (d f, dg)Ω . (11)

Note that HΛ(2)(Ω ) = L2Λ(2)(Ω ) from Eq. (7). Then, the L2 de Rham complex on Ω is the closed and bounded
ilbert complex defined as

R : HΛ(0)(Ω ) HΛ(1)(Ω ) HΛ(2)(Ω ) .d d (12)

hen Ω is contractible and has a single-connected component, we have H 0(R) = R and H 1(R) = 0. Moreover,
f Ω is a closed manifold, then H 2(R) = R; else, H 2(R) = 0.

3. The univariate spline complex

In this section we present preliminary concepts about smooth polynomial splines defined on a partition of an
interval, Ω := [a, b] ⊂ R. In particular, we will allow the spline pieces to have different polynomial degrees,
hereby introducing the concept of multi-degree spline spaces. We also present a set of basis functions for such
paces called multi-degree B-splines (or MDB-splines) and list some of their properties. Classical B-splines are a
pecial case of MDB-splines.

.1. The polynomial complex

.1.1. Definition of the complex
In this preliminary section, we recall the simplest univariate spline complex on Ω that we can consider. For

p ∈ N, let Pp be the vector space of polynomials of degree ≤ p. Then, the simplest spline space on Ω consists
nly of global polynomials,

S−1
p :=

{
Ω

f
−→ R : f ∈ Pp

}
.

hoosing S−1
p as the space of 0-forms and S−1

p−1 as the space of 1-forms,

Λ(0)
P := S−1

p , Λ(1)
P :=

{
f dx : f ∈ S−1

p−1

}
,

he univariate polynomial complex is defined as

G : Λ(0)
P Λ(1)

P . (13)

t can be easily verified that the exterior derivative is a surjection from Λ(0)
P onto Λ(1)

P , thereby yielding H 1 (G) = 0.
n the other hand, H 0 (G) or the nullspace of d is one dimensional and contains constants, i.e., H 0 (G) = R.

.1.2. Basis for discrete differential forms
We choose the Bernstein–Bézier polynomials Bi,p, i = 0, . . . , p, as the preferred basis for 0-forms; these are

efined as

Bi,p(x) =
(

p
i

)(
x − a
b − a

)i (b − x
b − a

)p−i

, (14)

nd they span S−1
p . Therefore, f ∈ Λ(0)

P can be represented as a linear combination of the Bi,p with some coefficients
fi ∈ R,

f =
p∑

fi Bi,p .
i=0

5
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Furthermore, if f ∈ Λ(0)
P is a 0-form, then the 1-form g := d f ∈ Λ(1)

P has the representation

g =
p∑

i=0

fi d Bi,p =

p−1∑
i=0

( fi+1 − fi )Bi,p dx =:
p−1∑
i=0

gi Bi,p dx , (15)

here the Bi , i = 0, . . . , p − 1, are scaled Bernstein–Bézier polynomials of degree p − 1,

Bi,p :=
p

b − a
Bi,p−1 . (16)

hese are chosen as the preferred basis for discrete 1-forms. Doing so helps us define a discrete representation of
he exterior derivative d in the form of the sparse matrix D(0)

k of size k × (k + 1), k ≥ 2,

D(0)
k :=

⎡⎢⎢⎢⎣
−1 1

− 1 1
. . .

. . .

−1 1

⎤⎥⎥⎥⎦ . (17)

ndeed, following Eq. (15) and arranging the coefficients gi and fi in column vectors g and f , respectively, we see
hat D(0)

p acts on the coefficients of the 0-form (with respect to the 0-form basis Bi,p) and yields the coefficients of
ts exterior derivative (with respect to the 1-form basis Bi,p),

g = D(0)
p f . (18)

.1.3. Degree of freedom interpretation
We can give a geometric interpretation to Eq. (18) using a particular one-dimensional mesh. Let 0 = γ0 < γ1 <

· · < γp = 1 partition the unit interval [0, 1], and consider the corresponding one-dimensional cell complex with
ertices γi , i = 0, . . . , p, and edges τi = γiγi+1, i = 0, . . . , p−1. We orient this complex by choosing the oriented
oundary of each edge τi to be ∂(τi ) = γi+1 − γi .

Then, we can interpret f ∈ Λ(0)
P and g ∈ Λ(1)

P as cochains, i.e., linear functionals on the edges and vertices,

f : γi ↦→ fi , g : τi ↦→ gi . (19)

oing so, we see that the preferred 1- and 0-form basis functions Bi,p and Bi,p, respectively, are cochain interpolants.
oreover, we see that our discrete representations mimic the continuous version of the Stokes theorem. Indeed,

xtending the maps in Eq. (19) to formal sums of edges and vertices via linearity, we see that

d f

( p−1∑
i=0

ciτi

)
= c · D(0)

p f =
(

D(0)
p

)T c · f ,

= f

(
∂

p−1∑
i=0

ciτi

)
,

(20)

since our choice of orientation makes
(

D(0)
p

)T
the discrete representation of the boundary operator that maps edges

to oriented sums of vertices. The correspondence with the Stokes theorem is now clear.
Thus, our choice of the preferred 1- and 0-form basis functions leads to a discrete version of the Stokes theorem.

This not only makes it easy to compute the degrees of freedom of an exact 1-form using Eq. (18), but in higher
dimensions it will also help us exactly enforce d ◦ d = 0 at the discrete level by a judicious choice of the discrete
exterior derivatives. Finally, we will graphically depict the action of the discrete exterior derivative on the degrees
of freedom as in the figure below. That is, the 0-form degrees of freedom are associated to the oriented zero-
dimensional cells of the mesh (i.e., vertices), and the action of D(0)

p yields new degrees of freedom associated to
the oriented one-dimensional cells of the mesh (i.e., edges) (see Fig. 1).

3.2. The multi-degree spline complex

3.2.1. Multi-degree splines
We start by partitioning the interval Ω into a finite number of points (called breakpoints) and subintervals (called

elements); the space of polynomial splines on Ω will be defined with respect to this partition.
6
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Fig. 1. We interpret the degrees of freedom of 0- and 1-forms in the polynomial complex G as being associated to vertices and edges of
a one-dimensional cell complex. Consequently, the discrete exterior derivative D(0)

p corresponding to the choice of the preferred bases has
a simple action as shown above.

Definition 3.1 (Breakpoints and Elements). The m+1 strictly increasing real numbers xi , such that a =: x0 < x1 <

· · · < xm := b, will be called breakpoints that partition Ω . The breakpoints define the intervals Ωi called elements,

Ωk =

{
[xk−1, xk) , k = 1, . . . ,m − 1 ,
[xm−1, xm] , k = m .

(21)

Next, we pick polynomial degrees pk ∈ N, k = 1, . . . ,m, associated to each element Ωk . We also choose a non-
negative order of smoothness rk ∈ Z≥0, k = 1, . . . ,m−1, for each breakpoint of the partition, and r0 = rm ∈ Z≥−1.
We will distinguish between the following two cases,

Non-periodic setting: r0 = rm = −1 ,
Periodic setting: r0 = rm ≥ 0 . (22)

All the pk and rk are arranged in vectors p and r , respectively. Before proceeding, we place the following mild
compatibility assumption on the chosen degrees and orders of smoothness.

Assumption 1

Each “Assumption” introduced will hold for the entirety of the document following it.

Assumption 2: Degree-smoothness compatibility

For all 1 ≤ k ≤ m − 1, we assume that

rk ≤

{
min{pm, p1} , k = 0 ,
min{pk, pk+1} , k = 1, . . . ,m − 1 .

Definition 3.2 (Multi-degree Spline Space). Given degree and smoothness distributions, we define a spline space
n Ω as

S := S r
p :=

{
Ω

f
−→ R : f

⏐⏐
Ωk
∈ Ppk , 0 < k ≤ m ,

Dr
−

f (xk) = Dr
+

f (xk) , 0 < k < m , 0 ≤ r ≤ rk

}
.

(23)

Moreover, when r0 = rm ≥ 0, a periodic spline space on Ω is defined as

Sper
:= S r,per

p :=

{
f ∈ S : Dr

−
f (xm) = Dr

+
f (x0) , 0 ≤ r ≤ r0

}
. (24)

emark 3.3. In Sections 3.2.2 and 3.2.3 , the non-periodic setting will be discussed, and the periodic setting will

e discussed in Sections 3.2.5 and 3.2.5 .

7
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The dimension formulas for S and Sper can be derived in a multitude of ways [30,31,44]. With n and nper

denoting their respective dimensions, we have

n = θ (m)− φ(m) , nper
= n − r0 − 1 , (25)

θ (k) :=
k∑

j=1

(p j + 1) , φ(k) :=
k−1∑
j=1

(r j + 1) . (26)

here an empty-sum is taken to be zero.

Assumption 3: Periodic degree-smoothness compatibility

With n and nper as defined in Eq. (25), when r0 ≥ 0 we assume that

n ≥ max
k

pk + r0 + 2⇐⇒ nper
≥ max

k
pk + 1 .

3.2.2. The non-periodic setting: Definition of the complex
To build the multi-degree spline complex, we will use the multi-degree spline spaces S and S− := S r−

p− , where
e define vectors p− and r− such that

p−k := pk − 1 , r−k := max{−1, rk − 1} . (27)

hen, the spaces of 0- and 1-forms are respectively chosen as follows,

Λ(0)
M := S , Λ(1)

M :=
{

f dx : f ∈ S−
}
,

ielding the multi-degree spline complex

M : Λ(0)
M Λ(1)

M . (28)

t can once again be easily verified (e.g., using (23)) that the exterior derivative is a surjection from Λ(0)
M onto Λ(1)

M ,
aking H 1 (M) = 0. Similarly to the polynomial complex, H 0 (M) or the nullspace of d here is one dimensional

nd only contains constants, i.e., H 0 (M) = R.

.2.3. The non-periodic setting: Basis for discrete differential forms
Here, we will choose the so-called multi-degree B-splines (MDB-splines) as the preferred basis for the 0-forms.

DB-splines are a multi-degree generalization of the classical B-splines and the properties of the former mirror
hose of the latter; e.g., see [30,44]. Let us denote the set of MDB-splines that span S with {Ni : i = 0, . . . , n−1}.

See Appendix A for a recursive definition of MDB-splines using integral relations. The following set of properties
are relevant for us; proofs of the same and other properties can be found in [30,31,44], for instance.

Proposition 3.4 (Select MDB-spline Properties). With Assumption 2 in place, the following hold.

(a) Non-negativity: Ni (x) ≥ 0 for all x ∈ Ω .
(b) Partition of unity:

∑n−1
i=0 Ni (x) = 1 for all x ∈ Ω .

(c) Basis: {Ni : i = 0, . . . , n − 1} are linearly independent and span the space S.
(d) Local linear independence: Only Nµ(k), . . . , Nµ(k)+pk are supported on Ωk , and they span Ppk , where

µ(k) :=
k−1∑
j=0

(p j+1 − r j )− pk + r0 =

k−1∑
j=0

(p j+1 − r j )− pk − 1 . (29)

(e) End-point interpolation: For any 0 ≤ r ≤ p1, only N0, . . . , Nr have non-zero r-th derivatives at x = a.
Similarly, for any 0 ≤ r ≤ pm , only Nn−r−1, . . . , Nn−1 have non-zero r-th derivatives at x = b. In particular,
N0(a) = Nn−1(b) = 1.
8
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Appendix B presents an algorithmic computation of MDB-splines that is much more efficient for computations
han the recursive definitions from Appendix A. The algorithm computes a multi-degree extraction H [29,30] that

helps express Ni on Ωk as a linear combination of Bernstein–Bézier polynomials on Ωk . We briefly explain this
construction here.

For k = 1, . . . ,m, we denote by BΩk
j,pk

, j = 0, . . . , pk , the Bernstein–Bézier polynomials of degree pk defined
n Ωk ; see Eq. (14). Then, we extend them outside of Ωk by 0 and relabel them as

Bθ (k−1)+ j := BΩk
j,pk

, j = 0, . . . , pk .

ext, arrange these relabelled basis functions in a single vector B of length θ (m). Then, the multi-degree extraction
H output by the algorithm in Appendix B [45] helps build the MDB-splines using the following expression [30],

N = H B , (30)

here N is the vector containing all MDB-splines Ni . In particular, for k = 1, . . . ,m, we call HΩk the element
xtraction; it is the square submatrix of H of size (pk + 1)× (pk + 1) such that⎡⎢⎢⎢⎣

Nµ(k)(x)
Nµ(k)+1(x)

...

Nµ(k)+pk (x)

⎤⎥⎥⎥⎦ = HΩk

⎡⎢⎢⎢⎢⎣
BΩk

0,pk
(x)

BΩk
1,pk

(x)
...

BΩk
pk ,pk (x)

⎤⎥⎥⎥⎥⎦ , x ∈ Ωk . (31)

he matrices H and HΩk have properties that mirror those of MDB-splines as presented in Proposition 3.4;
.g., see [30].

roposition 3.5 (Extraction Properties). With Assumption 2 in place, the following hold.

(a) Non-negativity: All entries of H and HΩk , k = 1, . . . ,m, lie in [0, 1].
(b) Column stochasticity: All columns of H and HΩk , k = 1, . . . ,m, sum to 1.
(c) Non-degeneracy: The matrix H has full rank.
(d) Local invertibility: The matrices HΩk , k = 1, . . . ,m, are non-singular.

With the above choice of the 0-form basis, we now outline how a preferred basis for the space of 1-forms can
e constructed. Note that, in general, this preferred basis will not be the same as the MDB-splines for the space
−. The following mimics the exposition from Section 3.1.2.

Let {N i : i = 0, . . . , n− 1} denote the set of preferred basis functions that span S−; note that Eq. (25) implies
that

n = n − 1 .

ince this is the set of preferred basis functions, it means that for a 0-form f ∈ Λ(0)
M ,

f =
n−1∑
i=0

fi Ni ,

he 1-form g = d f ∈ Λ(1)
M can be expressed as

g =
n−1∑
i=0

fi d Ni =

n−1∑
i=0

( fi+1 − fi )N i dx =:
n−1∑
i=0

gi N i dx , (32)

The following shows how the basis functions N i can be defined element-wise; its proof is presented in Appendix C.
9
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Fig. 2. A similar degree of freedom interpretation as in Section 3.1.3 can be performed for the multi-degree complex M. With the degrees
of freedom of 0- and 1-forms associated to vertices and edges of a one-dimensional cell complex, the discrete exterior derivative D(0)

n
corresponding to the choice of the preferred bases has a simple action as shown above.

Proposition 3.6. For k = 1, . . . ,m,⎡⎢⎢⎢⎣
Nµ(k)(x)

Nµ(k)+1(x)
...

Nµ(k)+pk−1(x)

⎤⎥⎥⎥⎦ = HΩk

⎡⎢⎢⎢⎢⎢⎣
B
Ωk
0,pk

(x)

B
Ωk
1,pk

(x)
...

B
Ωk
pk−1,pk

(x)

⎤⎥⎥⎥⎥⎥⎦ := C HΩk
(

D(0)
pk

)T

⎡⎢⎢⎢⎢⎢⎣
B
Ωk
0,pk

(x)

B
Ωk
1,pk

(x)
...

B
Ωk
pk−1,pk

(x)

⎤⎥⎥⎥⎥⎥⎦ , x ∈ Ωk , (33)

here C is a lower-triangular matrix of size pk × (pk + 1) with all entries equal to −1. All N i , i = 0, . . . , n − 1,
are, moreover, locally linearly independent and form a basis for S−.

3.2.4. The non-periodic setting: Degree of freedom interpretation
Similarly to the discussion in Section 3.1.3 focused on the polynomial complex, we can give a geometric

interpretation to the non-periodic multi-degree spline complex using Eq. (32). Let 0 = γ0 < γ1 < · · · < γn−1 = 1
partition the unit interval [0, 1], and consider the corresponding one-dimensional cell complex with vertices γi ,
= 0, . . . , n − 1, and edges τi = γiγi+1, i = 0, . . . , n − 1. We again orient this complex by choosing the oriented

boundary of each edge τi to be ∂(τi ) = γi+1 − γi .
Once again, we interpret 0- and 1-forms as linear functionals on the cell complex, and this leads to a discrete

representation of the Stokes theorem. The discussion is exactly as in Section 3.1.3, therefore we do not repeat here.
Instead, we only present graphical representation showing the action of the discrete exterior derivative on the 0-form
degrees of freedom (see Fig. 2).

3.2.5. The periodic setting: Definition of the complex
In the periodic setting, i.e., with r0 ≥ 0, we identify the right endpoint of Ω with its left endpoint, a ≡ b. We

will denote this domain with Ωper and note that the end-point identification makes it a topological circle. Let us now
build the multi-degree spline complex on this periodic domain; the developments are very similar to the exposition
thus far in Sections 3.2.2 and 3.2.3.

The multi-degree spline complex in the periodic setting is built by choosing the spaces of 0- and 1-forms as

Λ(0)
M := Sper , Λ(1)

M := { f dx : f ∈ S−,per
} ,

here S−,per is the periodic analogue of S− with Cr0−1 smoothness enforced between the identified ends of Ωper.
hen, the periodic multi-degree spline complex is given by

Mper
: Λ(0)

M Λ(1)
M . (34)

nce again, H 0 (Mper) or the nullspace of the exterior derivative contains only constants in Λ(0)
M . However, H 1 (Mper)

s non-trivial and one-dimensional here, mirroring the non-trivial topology of the periodic domain Ωper. Indeed,
onstants are in Λ(1)

M but are not in the image of d . Thus, both H 0 (Mper) and H 1 (Mper) are isomorphic as vector

paces to R.

10



D. Toshniwal and T.J.R. Hughes Computer Methods in Applied Mechanics and Engineering 376 (2021) 113576

n
t

P

M

T
P

P

e
t

S

3.2.6. The periodic setting: Basis for discrete differential forms
We choose periodic MDB-splines {N per

i : i = 0, . . . , nper
− 1} as the basis for the 0-form space Λ(0)

M . These
can be computed starting from the MDB-splines for the non-periodic space S [45]. In particular, we can compute
a matrix H̃ using Algorithm 3 from Appendix D such that

Nper
= H̃ N = H̃ H B =: Hper B . (35)

Note that, when working in the periodic setting, all indices (of basis functions, elements, etc.) are treated in a
circular fashion here. That is, if we write “N per

i ”, the subscript is to be understood as below,

i ≡ i mod nper . (36)

Periodic MDB-splines have the same set of properties (except end-point interpolation unless r0 = 0) as their
on-periodic counterparts, and these are summarized in the following result; these properties can be derived from
he properties of H and the properties of H̃ as shown in Proposition D.1.

roposition 3.7 (Select Periodic MDB-spline Properties). With Assumptions 2 and 3 in place, the following hold.

(a) Non-negativity: N per
i (x) ≥ 0 for all x ∈ Ωper.

(b) Partition of unity:
∑nper

−1
i=0 N per

i (x) = 1 for all x ∈ Ωper.
(c) Basis: {N per

i : i = 0, . . . , nper
− 1} are linearly independent and span the space Sper.

(d) Local linear independence: Only N per
µ(k), . . . , N per

µ(k)+pk
are supported on Ωk , and they span Ppk , where

µ(k) :=
k−1∑
j=0

(p j+1 − r j )− pk + r0 . (37)

In particular, combining Eqs. (30), (31) and (35), we can write element-local representations of the periodic
DB-splines using element extraction operators,⎡⎢⎢⎢⎢⎣

N per
µ(k)(x)

N per
µ(k)+1(x)
...

N per
µ(k)+pk

(x)

⎤⎥⎥⎥⎥⎦ = HΩk ,per

⎡⎢⎢⎢⎢⎣
BΩk

0,pk
(x)

BΩk
1,pk

(x)
...

BΩk
pk ,pk (x)

⎤⎥⎥⎥⎥⎦ , x ∈ Ωk . (38)

he extraction matrices Hper and HΩk ,per have properties that again mirror those of the periodic MDB-splines; see
roposition D.1.

roposition 3.8 (Periodic Extraction Properties). With Assumptions 2 and 3 in place, the following hold.

(a) Non-negativity: All entries of Hper and HΩk ,per, k = 1, . . . ,m, lie in [0, 1].
(b) Column stochasticity: All columns of Hper and HΩk ,per, k = 1, . . . ,m, sum to 1.
(c) Non-degeneracy: The matrix Hper has full rank.
(d) Local invertibility: The matrices HΩk ,per, k = 1, . . . ,m, are non-singular.

The periodic MDB-splines are chosen as the preferred basis for 0-forms, and all computations are performed on
ach element via Eq. (38). For 1-forms, let {N

per
i : i = 0, . . . , nper

− 1} denote the set of preferred basis functions
hat span S−,per; note that in the non-periodic setting, the dimension of S−,per is the same as that of Sper, i.e.,

nper
= nper .

ince this is the set of preferred basis functions, it means that for 0-form f ∈ Λ(0)
M ,

f =
nper
−1∑

fi N per
i ,
i=0

11
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Fig. 3. The degree of freedom interpretation for the multi-degree complex can be extended to the periodic complex Mper. The discrete
exterior derivative D(0),per

nper corresponding to the choice of the periodic preferred bases has a simple action as shown above.

the 1-form g := d f ∈ Λ(1)
M can be expressed as

g =
nper
−1∑

i=0

fi d N per
i =

nper
−1∑

i=0

( fi+1 − fi )N
per
i dx =:

nper
−1∑

i=0

gi N
per
i dx , (39)

here the coefficients gi are now obtained from fi by the action of the periodic discrete exterior derivative D(0),per
nper ,

here D(0),per
k is defined as the following matrix of size k × k,

D(0),per
k :=

⎡⎢⎢⎢⎣
−1 1

− 1 1
. . .

. . .

1 −1

⎤⎥⎥⎥⎦ . (40)

he following shows how the basis functions N
per
i can be defined element-wise; its proof can be found in

ppendix E.

roposition 3.9. For k = 1, . . . ,m,⎡⎢⎢⎢⎢⎣
N

per
µ(k)(x)

N
per
µ(k)+1(x)
...

N
per
µ(k)+pk−1(x)

⎤⎥⎥⎥⎥⎦ = HΩk ,per

⎡⎢⎢⎢⎢⎢⎣
B
Ωk
0,pk

(x)

B
Ωk
1,pk

(x)
...

B
Ωk
pk−1,pk

(x)

⎤⎥⎥⎥⎥⎥⎦ := C HΩk ,per
(

D(0)
pk

)T

⎡⎢⎢⎢⎢⎢⎣
B
Ωk
0,pk

(x)

B
Ωk
1,pk

(x)
...

B
Ωk
pk−1,pk

(x)

⎤⎥⎥⎥⎥⎥⎦ , x ∈ Ωk , (41)

here C is a lower-triangular matrix of size pk×(pk+1) with all entries equal to −1. All N
per
i , i = 0, . . . , nper

−1,
re, moreover, locally linearly independent and form a basis for S−,per.

3.2.7. The periodic setting: Degree of freedom interpretation
Let us now give a geometric interpretation of the periodic multi-degree spline complex using Eq. (39). Let

0 = γ0 < γ1 < · · · < γn−1 = 1 partition the unit interval [0, 1], and consider the corresponding one-dimensional
cell complex with vertices γi , i = 0, . . . , nper

− 1, and edges τi = γiγi+1, i = 0, . . . , nper
− 1. We again orient this

omplex by choosing the oriented boundary of each edge τi to be ∂(τi ) = γi+1 − γi . Note that, due to periodicity,
τnper−1 = γnper−1γnper = γnper−1γ0.

Once again, we interpret 0- and 1-forms as linear functionals on the cell complex, and this leads to a discrete
representation of the Stokes theorem. The corresponding graphical representation showing the action of the discrete
exterior derivative on the 0-form degrees of freedom is presented in Fig. 3.

4. The tensor-product spline complex and mapped geometries

Using the univariate multi-degree spline complexes, we can build multivariate spline complexes via tensor-
products of the multi-degree spline spaces. Here, since we are mainly interested in surfaces in R2 or R3, we only
focus on bivariate spline complexes. First, we detail how these are built on a rectangular parametric domain Ω ,

Ω := Ω1
× Ω2

:= [a1, b1]× [a2, b2] ⊂ R2 , (42)
2 3
and then we show how they can be used to build spline complexes on mapped surfaces in R or R .

12
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4.1. Tensor-product splines

Let S i be some univariate multi-degree spline spaces built on Ω i and denote the corresponding sets of MDB-
splines with {N i

j : j = 0, . . . , ni
− 1}, i = 1, 2. Unless otherwise specified, spline spaces S i are allowed to be

on-periodic or periodic; we simply drop the superscript of “per” to simplify the notation whenever the context is
nambiguous. Moreover, let {N

i
j : j = 0, . . . , ni

− 1}, i = 1, 2, denote the respective sets of preferred 1-form
basis functions corresponding to S1 and S2; these span the spline spaces S1,− and S2,−, respectively. Using the
above univariate spline spaces, we define the following tensor-product bivariate spline spaces,

S (0,0)
:= span

⟨
N 1

i (x1)N 2
j (x2) : i = 0, . . . , n1

− 1 , j = 0, . . . , n2
− 1

⟩
, n(0,0)

:= dim
(
S (0,0))

= n1
× n2 ,

(43)

S (1,0)
:= span

⟨
N

1
i (x1)N 2

j (x2) : i = 0, . . . , n1
− 1 , j = 0, . . . , n2

− 1
⟩
, n(1,0)

:= dim
(
S (1,0))

= n1
× n2 ,

(44)

S (0,1)
:= span

⟨
N 1

i (x1)N
2
j (x

2) : i = 0, . . . , n1
− 1 , j = 0, . . . , n2

− 1
⟩
, n(0,1)

:= dim
(
S (0,1))

= n1
× n2 ,

(45)

S (1,1)
:= span

⟨
N

1
i (x1)N

2
j (x

2) : i = 0, . . . , n1
− 1 , j = 0, . . . , n2

− 1
⟩
, n(1,1)

:= dim
(
S (1,1))

= n1
× n2 .

(46)

.2. Definition of the complex

Using the above tensor-product spline spaces, we choose the spaces of 0-, 1- and 2-forms on Ω as follows,

Λ(0)
T := S (0,0) , Λ(1)

T := { fi dx i
: f1 ∈ S (1,0) , f2 ∈ S (0,1)

} , Λ(2)
T := { f dx1

∧ dx2
: f ∈ S (1,1)

} .

Then, the bivariate tensor-product spline complex on Ω is defined as

T : Λ(0)
T Λ(1)

T Λ(2)
T . (47)

heorem 4.1. The cohomology spaces of the complex T satisfy:

H 0 (T) = R ;

H 1 (T) =

⎧⎪⎨⎪⎩
0 , S1 and S2 are non-periodic ,
R , either S1 or S2 is periodic ,
R2 , both S1 and S2 are periodic ;

H 2 (T) =

{
0 , at least one of S1 and S2 is non-periodic ,
R , both S1 and S2 are periodic .

roof. It is clear that only constants in Λ(0)
T are annihilated by the exterior derivative, thus showing that H 0 (T) = R.

he proof for H 1 (T) and H 2 (T) for non-periodic spline spaces can be obtained by, for instance, following the
roof of [12, Theorem 4.1]. The cases with periodic spline spaces make Ω a topological cylinder or torus, and the
ohomology spaces can be verified to be,

H 1 (T) =

{
span

⟨
α dx i

: α ∈ R
⟩
, if only S i is periodic ,

span
⟨
αi dx i

: αi ∈ R , i = 1, 2
⟩
, both S1 and S2 are periodic ;

H 2 (T) =

{
0 , if only one of S1 and S2 is periodic ,
span

⟨
α12 dx1

∧ dx2
: α12 ∈ R

⟩
, both S1 and S2 are periodic .

■

13
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4.3. Basis for discrete differential forms

We have already chosen the preferred basis for 0-, 1- and 2-forms in Eqs. (43)–(46). Since all basis functions are
ensor-product, their element-wise computations are done by tensoring the respective element extraction matrices
rom Eqs. (31) and (38) for the splines N i

j , i = 1, 2, and using Propositions 3.6 and 3.9 for the splines N
i
j ,

= 1, 2. Therefore, it only remains to derive the discrete representations of the exterior derivatives akin to the
nivariate setting. We do so in the following.

Let f ∈ Λ(0)
T , then

f =
n1
−1∑

i=0

n2
−1∑

j=0

fi j N 1
i N 2

j = N (0,0)
· f ,

here f and N (0,0) are column vectors obtained by placing fi j and N 1
i N 2

j in the (i+ jn1)-th locations, respectively.
hen, using the univariate relations, we can write

Λ(1)
T ∋ g := d f =

n1
−1∑

i=0

n2
−1∑

j=0

fi j

(
d N 1

i

dx1 N 2
j dx1
+ N 1

i

d N 2
j

dx2 dx2

)
,

= N (1,0)
· D(1,0) f dx1

+ N (0,1)
· D(0,1) f dx2 ,

(48)

where N (1,0) and N (0,1) are column vectors obtained by placing N
1
i N 2

j and N 1
i N

2
j in the (i+ jn1)-th and (i+ jn1)-th

ocations, respectively, and the discrete exterior derivatives are given by

D(1,0)
= In2 ⊗ D(0)

n1 , D(0,1)
= D(0)

n2 ⊗ In1 . (49)

imilarly, let f ∈ Λ(1)
T , then

f =
n1
−1∑

i=0

n2
−1∑

j=0

f 1
i j N

1
i N 2

j dx1
+

n1
−1∑

i=0

n2
−1∑

j=0

f 2
i j N 1

i N
2
j dx2 ,

= N (1,0)
· f 1 dx1

+ N (0,1)
· f 2 dx2 ,

here f 1 and f 2 are column vectors obtained by placing f 1
i j and f 2

i j in the (i + jn1)-th and (i + jn1)-th locations,
espectively. Then, using the univariate relations, we can write

Λ(2)
T ∋ g := d f =

n1
−1∑

i=0

n2
−1∑

j=0

f 1
i j N

1
i

d N 2
j

dx2 dx2
∧ dx1

+

n1
−1∑

i=0

n2
−1∑

j=0

f 2
i j

d N 1
i

dx1 N
2
j dx1

∧ dx2 ,

= N (1,1)
·
(
−D(2,0) f 1

+ D(0,2) f 2) dx1
∧ dx2 ,

(50)

where N (1,1) is a column vector obtained by placing N
1
i N

2
j in the (i + jn1)-th locations, and the discrete exterior

erivatives can once again be derived to be the following sparse outer products,

D(2,0)
= D(0)

n2 ⊗ In1 , D(0,2)
= In2 ⊗ D(0)

n1 . (51)

.3.1. Degree of freedom interpretation
The geometric interpretation of the tensor-product complex follows directly from those for the univariate multi-

egree complexes; see Sections 3.2.4 and 3.2.7 . This time we consider a tensor-product partition of [0, 1]2 into
1
× n2 quadrilaterals. The zero-dimensional, horizontal and vertical one-dimensional, and two-dimensional cells

f this partition will be denoted, respectively, as

γi j , i = 0, . . . , n1
− 1 , j = 0, . . . , n2

− 1 ,

τ 1
i j , i = 0, . . . , n1

− 1 , j = 0, . . . , n2
− 1 ,

τ 2
i j , i = 0, . . . , n1

− 1 , j = 0, . . . , n2
− 1 ,

1 2
σi j , i = 0, . . . , n − 1 , j = 0, . . . , n − 1 .
14
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Then, the degrees of freedom of the 0-, 1- and 2-forms are associated to these geometric objects. We define the
oriented boundaries of the edges and the faces as

∂τ 1
i j = γ(i+1) j − γi j , ∂τ 2

i j = γi( j+1) − γi j ,

∂σi j = τ
1
i j + τ

2
(i+1) j − τ

1
i( j+1) − τ

2
i j .

hen, the discrete exterior derivatives from Eqs. (49) and (51) help us establish discrete versions of the Stokes
heorem. The action of these on the spline degrees of freedom is presented in Fig. 4. Furthermore, it can be readily
hecked that, for f ∈ Λ(0)

T , Eqs. (49) and (51) imply that d ◦ d f = 0. Alternatively, this fact is implied by the
uality of the discrete exterior derivatives with the boundary operator since

d ◦ d f

⎛⎝n1
−1∑

i=0

n2
−1∑

j=0

ci jσi j

⎞⎠ = d f

⎛⎝∂ n1
−1∑

i=0

n2
−1∑

j=0

ci jσi j

⎞⎠ = f

⎛⎝∂ ◦ ∂ n1
−1∑

i=0

n2
−1∑

j=0

ci jσi j

⎞⎠ = 0 , (52)

s the boundary of a boundary is always empty.

.4. Mapped geometries

Let us now transfer the spaces of spline differential forms onto a domain Ω̂ ⊂ Rd, d = 2 or 3, obtained via a
eometric mapping of Ω . In particular, sticking to the isogeometric concept, we will look at geometric mappings
uilt using tensor-product splines in S (0,0) and, moreover, assume that Ω̂ is a manifold.

For i = 0, . . . , n1
− 1, j = 0, . . . , n2

− 1, choose Gi j ∈ Rd. Then, consider a 2-manifold Ω̂ obtained as the
mage of Ω under the spline map G defined as

R2
⊃ Ω ∋ x = (x1, x2) ↦−→ G(x) := (G1(x), . . . , Gd(x)) ∈ Ω̂ ⊂ Rd ,

:=

n1
−1∑

i=0

n2
−1∑

j=0

Gi j N 1
i (x1)N 2

j (x2) .
(53)

hen Ω̂ has local, curvilinear coordinates x1, x2, and global Cartesian coordinates y1, . . . , yd. Assuming that Ω̂ is
C≥1 smooth manifold, the vectors ∂ x

i =
∂G
∂x i (x), i = 1, 2, form a basis for vectors tangent to Ω̂ at G(x). The

vectors dual to ∂ x
i are dx i , i = 1, 2, and they form a basis for the covectors tangent to Ω̂ at G(x). The 0-, 1- and

2-forms on Ω̂ can thus be denoted as f , fi dx i and f dx1
∧ dx2, respectively.

Denote the associated metric tensor, its i j-th component and its matrix determinant with g, gi j and g, respectively,
and let ∂ y

i , i = 1, . . . , d, be the canonical basis vectors in Rd. Then,

∂ x
i =

∂G j

∂x i
∂

y
j , g = gi j dx i

⊗ dx j , gi j = ∂
x
i · ∂

x
j , g := det[gi j ] . (54)

he quantity
√

g thus denotes the Jacobian determinant of the map G.
If the map Ω̂ is locally invertible, then

√
g > 0 and the components of the inverse of the 2 × 2 matrix [gi j ] are

denoted as gi j . Using the metric and its inverse, we can explicitly define the Hodge star ⋆ in the present setting,

⋆ f =
√

g f dx1
∧ dx2 ,

⋆ fi dx i
=
√

g fi gi jϵ jk dxk ,

⋆ f12 dx1
∧ dx2

=
1
√

g
f ,

(55)

here ϵi j is equal to 1 for (i, j) = (1, 2), equal to −1 for (i, j) = (2, 1), and zero otherwise. In particular, the L2

inner product of i-forms can be expressed as (also see Appendix F)

( f, g)Ω̂ =
∫

f ∧ ⋆g . (56)

Ω̂

15
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Fig. 4. The univariate degree of freedom interpretations for the multi-degree complexes directly lead to the same for the tensor-product
omplex T. The 0-, 1- and 2-forms are now associated to the vertices, edges and faces of a tensor-product cell complex, respectively; see
he figures in the first row. These figures correspond to n1

= n2
= 5. Moreover, with respect to the preferred basis, the discrete exterior

erivatives have D(1,0), D(0,1), D(2,0) and D(0,2) have a simple action as shown in the middle and bottom rows.

Finally, differential forms on Ω̂ in the canonical basis dyi , i = 1, . . . , d, can be pulled back to Ω using the map
G∗ as follows,

G∗ ( f ) = f ◦ G ,

G∗
(

fi dyi)
= ( fi ◦ G)

∂G i

∂x j
dx j ,

G∗
(

fi j dyi
∧ dy j)

=
(

fi j ◦ G
) ∂G i

∂xk

∂G j

∂xℓ
dxk
∧ dxℓ .

(57)

he map G∗ is called the pullback and it commutes with both the wedge product and the exterior derivative.
oreover, using it, we can perform integration of an i-form on an i-dimensional geometry G

(
Ω
)

as∫
f =

∫
G∗ ( f ) . (58)
G(Ω) Ω

16
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Fig. 5. A single edge or a pair of opposite edges of a tensor-product spline patch can be collapsed for creating geometries with polar
ingularities. We will refer to the two modes of collapse as Type 1 and Type 2, respectively. The collapsed edges here are shown in red,
nd the black edges are identified with each other to enforce periodicity.

sing the pullback, we also define the spaces of spline differential forms on Ω̂ as

Λ̂(i)
T :=

{
f : G∗ ( f ) ∈ Λ(i)

T

}
, i = 0, 1, 2 , (59)

nd the corresponding spline complex on Ω̂ is defined as

T̂ : Λ̂(0)
T Λ̂(1)

T Λ̂(2)
T .

The pullback commutes with the exterior derivative and, thus, forms a cochain map from the complex T̂ to T.

5. The polar spline complex

In this section, we build a spline complex on geometries Ω̂ that are obtained via a map G that collapses one or two
edges of Ω to one or two points, respectively, in Rd; see Fig. 5. These collapsed edges are called polar singularities
or poles. Fig. 6 presents a topological representations of the tensor-product degree-of-freedom complexes following
the introduction of polar singularities.

In general, the presence of poles means that Ω̂ will not be a C≥1 smooth 2-manifold. However, by restricting
each component of G to be a member of a suitable subspace of S (0,0), we will be able to ensure smoothness of
Ω̂ . In Section 5.1, we build such a suitable subspace and use it to define smooth Ω̂ ; the splines in the former will
be called polar splines. Thereafter, in Section 5.2, we build spaces of polar spline differential forms on Ω̂ and use
them to define the polar spline complex in Section 5.3.

Assumption 4: Tensor-product configuration for building polar splines

With Ω = Ω1
× Ω2, the endpoints of Ω1 have been identified. The univariate spline spaces S1 and S2 on

Ω1 and Ω2 are periodic and non-periodic, respectively, and they are used to define all tensor-product spline
spaces on Ω using Eqs. (43)–(46). Moreover,

• with r i the smoothness vector used to define S i , i = 1, 2,

r1
k ≥ 1 , k = 0, . . . ,m1 ,

r2
k ≥ 1 , k = 1, . . . ,m2

− 1 ;

• the dimension S2 is at least 5, i.e., n2
≥ 5.

5.1. C1 smooth polar B-splines

Thanks to the end-point interpolation and partition of unity properties of MDB-splines (see Proposition 3.4(d)),
he required edge collapse shown in Fig. 5 can be achieved by choosing in Eq. (53)

G = G = · · · = G ⇐⇒ ∀x1
∈ Ω1, G(x1, a2) = G ; (60)
00 10 (n1−1)0 00

17
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Fig. 6. This figure demonstrates how the tensor-product degree-of-freedom complex from Fig. 4 changes following Type 1 and Type 2
collapses from Fig. 5; also see Eqs. (60) and (61). The middle row shows the tensor-product complex for (n1, n2) = (4, 5). The rightmost
vertex and vertical edge degrees of freedom have been plotted in grey to indicate that periodicity in the first parametric direction has been
imposed; see Assumption 4. The bottom row shows the tensor-product complex following Type 1 collapse, while the top row shows the
tensor-product complex following Type 2 collapse.

G0(n2−1) = G1(n2−1) = · · · = G(n1−1)(n2−1) ⇐⇒ ∀x
1
∈ Ω1, G(x1, b2) = G0(n2−1) . (61)

However, in general, this coefficient coalescing will introduce kinks at the poles and the surface representation will
not be smooth. Nevertheless, it is possible to identify constraints on the remaining Gi j that ensure that Ω̂ is a C1

smooth 2-manifold or, equivalently, such that it has a well-defined tangent plane at all points. Such constraints were
identified in [29] for Ck smoothness, but for simplicity we restrict to the case of C1 smoothness. In this section,
we present the relevant constraints and their resolution. The discussion will be abbreviated and focused on practical
considerations since the theory has already been elaborately addressed in [29] and, more recently, [32].

A polar surface will be smooth at a polar point if it can be locally (re)parametrized in a smooth way. Such
parametrizations can be specified in a constructive manner and, for C1 smoothness, they impose simple geometric
constraints on the choice of the Gi j [29, Section 3.3]; these are presented in the following result.

1
Proposition 5.1 (C Smoothness at the Poles).
18
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(a) For the edge-collapse in Eq. (60), Ω̂ has a well-defined tangent plane at G00 if

(i) the points Gi j , i = 0, . . . , n1
− 1 , j = 0, 1, are all coplanar;

(ii) the vectors Gi1 − Gi0, i = 0, . . . , n1
− 1, are all distinct, non-zero, and form a clockwise or

counter-clockwise fan around G00.

The tangent plane at G00 is then spanned by G01 − G00 and G11 − G10.
(b) For the edge-collapse in Eq. (61), Ω̂ has a well-defined tangent plane at G0(n2−1) if

(i) the points Gi j , i = 0, . . . , n1
− 1 , j = n2

− 2, n2
− 1, are all coplanar;

(ii) the vectors Gi(n2−1) − Gi(n2−2), i = 0, . . . , n1
− 1, all distinct, non-zero, and form a clockwise or

counter-clockwise fan around G0(n2−1).

The tangent plane at G0(n2−1) is then spanned by G0(n2−1) − G0(n2−2) and G1(n2−1) − G1(n2−2).

n particular, assigning Ω a counter-clockwise orientation, G preserves the orientation in a neighbourhood of the
oles if the fans in (a) and (b) above are clockwise and counter-clockwise, respectively.

roof. See [Section 3.3][29]. ■

Depending on Type 1 or Type 2 edge collapse (see Fig. 5), we would want the satisfaction of either the conditions
n Proposition 5.1(a), or those in both Proposition 5.1(a) and (b), respectively. Then, [29] suggest the following
imple way of satisfying the above smoothness constraints at the poles. Choose triangles △1 and △2 with vertices
v1

i ∈ Rd
}

3
i=1 and {v2

i ∈ Rd
}

3
i=1, respectively. Next, require the following relations to hold,

Proposition 5.1(a) : Gi j =

3∑
k=1

χ
k,1
i j v1

k ,

3∑
k=1

χ
k,1
i j = 1 , i = 0, . . . , n1

− 1 , j = 0, 1 , (62)

Proposition 5.1(b) : Gi j =

3∑
k=1

χ
k,2
i j v2

k ,

3∑
k=1

χ
k,2
i j = 1 , i = 0, . . . , n1

− 1 , j = n2
− 2, n2

− 1 . (63)

n other words, with regard to Proposition 5.1(a) (respectively, Proposition 5.1(b)), we force Gi j to lie in the plane
f △1 (respectively, △1), and the numbers χ k,1

i j (respectively, χ k,2
i j ), k = 1, 2, 3, are its corresponding barycentric

oordinates. We will call △1 and △2 the domain triangles for the above sets of Gi j .
Next, conditions (ii) of both Proposition 5.1(a) and (b) can be satisfied equally easily by choosing the barycentric

oordinates as follows. Define θi ∈ (0, 2π ) as

θi := 2π −
(1+ 2i)π

n1 . (64)

ext, compute the required barycentric coordinates using the following two equations for i = 0, . . . , n1
− 1,

χ
j,1

i0 = χ
j,2

i(n2−1)
=

1
3
, j = 1, 2, 3 , (65)⎡⎢⎣χ

1,1
i1

χ
2,1
i1

χ
3,1
i1

⎤⎥⎦ =
⎡⎢⎢⎣
χ

1,2
(n1−1−i)(n2−2)

χ
2,2
(n1−1−i)(n2−2)

χ
3,2
(n1−1−i)(n2−2)

⎤⎥⎥⎦ =
⎡⎢⎢⎣

1
3 0 1

3

−
1
6

√
3

6
1
3

−
1
6 −

√
3

6
1
3

⎤⎥⎥⎦
⎡⎣cos(θi )

sin(θi )
1

⎤⎦ . (66)

emma 5.2. All χ k,1
i j and χ k,2

i j , as specified by Eqs. (65) and (66), are non-negative. Moreover, the corresponding
Gi j defined as in Eqs. (62) and (63) satisfy the conditions of Proposition 5.1(a) and (b), respectively.

Proof. As explained in [29], Eqs. (65) and (66) implicitly impose that the Gi j are uniformly distributed on circles
entred at the poles and, moreover, that these circles are contained within the domain triangles. Therefore, the
arycentric coordinates are all non-negative. ■

Therefore, depending on Type K collapse, K = 1, 2, the number of coefficients needed to define the
ensor-product coefficients is equal to npol,

npol
:= n(0,0)

− K (2n1
− 3) . (67)
19
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Doing so, and recalling Eq. (43), let us define the polar extraction Epol of size npol
× n(0,0) as

Epol
:=

⎡⎣E1

Inpol−6
E2

⎤⎦ , (68)

here E1 and E2 are defined as

Ek
:=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎣
χ

1,k
0 j · · · χ

1,k
(n1−1) j

χ
1,k
0( j+1) · · · χ

1,k
(n1−1)( j+1)

χ
2,k
0 j · · · χ

2,k
(n1−1) j

χ
2,k
0( j+1) · · · χ

2,k
(n1−1)( j+1)

χ
3,k
0 j · · · χ

3,k
(n1−1) j

χ
3,k
0( j+1) · · · χ

3,k
(n1−1)( j+1)

⎤⎥⎥⎥⎦ ,

( j, k) = (0, 1) and Type 1 or Type 2
or

( j, k) ∈ {(1, 1), (n2
− 2, 2)} and Type 2

,

I3 , otherwise .

(69)

roposition 5.3 (Polar Extraction Properties).

(a) Non-negativity: All entries of Epol lie in [0, 1].
(b) Column stochasticity: All columns of Epol sum to 1.
(c) Non-degeneracy: The matrix Epol has full rank.

roof. The properties follow from Lemma 5.2 and the definition of the extraction operator via Eqs. (68) and
69). ■

The properties of the polar extraction helps us define polar B-splines, N pol
i , i = 0, . . . , npol

− 1, as linear
ombinations of tensor product B-splines that span S (0,0). More precisely, we define

Npol
:= Epol N (0,0) , (70)

here Npol is a vector containing the polar B-splines N pol
i . Consequently, we define Spol as the space spanned by

he polar B-splines,

Spol
:= span

⟨
N pol

i : i = 0, . . . , npol
− 1

⟩
. (71)

he following result summarizes their relevant properties; see [29, Proposition 3.1 and 3.2].

orollary 5.4 (Select Polar B-spline Properties).

(a) Non-negativity: N pol
i (x) ≥ 0 for all x ∈ Ω .

(b) Partition of unity:
∑npol

−1
i=0 N pol

i (x) = 1 for all x ∈ Ω .
(c) Basis: {N pol

i : i = 0, . . . , npol
− 1} are linearly independent and thus form a basis for Spol.

roof. The properties are a direct consequence of Proposition 5.3. ■

With Gpol
i ∈ Rd, i = 0, . . . , npol

− 1, let Ω̂ be obtained via the geometric map Gpol defined as

R2
⊃ Ω ∋ x = (x1, x2) ↦−→ Gpol(x) :=

npol
−1∑

i=0

Gpol
i N pol

i (x) ∈ Ω̂ . (72)

hen, the following result holds.

roposition 5.5 (Smoothness of Polar B-splines). The image of Gpol, Ω̂ , is a smooth 2-manifold. Moreover, the
unctions {N̂ pol

i : N̂ pol
i ◦ Gpol

= N pol
i } are C1 smooth on Ω̂ .

roof. The smoothness of Ω̂ is only suspect at the poles. However, the claim follows from Proposition 5.1,
1 2 1
qs. (62), (63), (68) and (70). Indeed, for Gi j , i = 0, . . . , n − 1, j = 0, . . . , n − 1, and ℓ = i + jn , define Gi j

20
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Gi j :=

npol
−1∑

k=0

Epol
kℓ Gpol

k , (73)

here Epol
kℓ is the kℓ-th entry of Epol. Then, it is clear that Gi j satisfy the constraints of Proposition 5.1. The

moothness of the pushforwards of polar B-spline functions was shown in [29] and we omit the proof here for
revity. ■

.2. Basis for discrete differential forms

Let us now describe the construction of polar spline discrete differential forms that are built with Spol chosen as
he space of 0-forms. First, let us describe the motivation behind, and an overview of, our construction.

.2.1. Motivation for the construction
The motivation for the construction presented herein is derived from the relations for mapped geometries

resented in Section 4.4. In particular, the introduction of edge-collapses implies that
√

g = 0 at the poles. This
implies that, in general, spline differential forms will not be bounded in a neighbourhood of the poles; e.g., see
Eq. (55). Equipped with the C1 smooth polar B-splines as 0-forms, we counteract this singular behaviour by
mposing “local exactness” for all 1- and 2-forms in a neighbourhood of the poles. That is, in the vicinity of
he poles, spline differential k-forms, k = 1, 2, will be restricted to be exact. Then, at the poles, C1 smoothness
f the 0-forms automatically translates to C0 and C−1 smoothness of the 1- and 2-forms and, moreover, avoids
he blowup. Note that, away from the poles, all differential forms are going to have the same smoothness as their
ensor-product counterparts.

Following the above motivation, and by the construction of the 0-form polar splines as in Eq. (70), we now
resent polar analogues of the tensor-product cell complexes from Fig. 4. These are shown in Fig. 7; c.f. Fig. 6.
ote the following about the polar degree-of-freedom complex in the top and bottom rows.

• There are three degrees of freedom for polar 0-forms near the poles.
• Imposing local exactness of polar 1-forms at the poles, there are two degrees of freedom for them near the

poles.
• Imposing local exactness of polar 2-forms at the poles, and from the above bullet, there are no degrees of

freedom for them near the poles.

Next, let us explain the different vertical and horizontal maps in Fig. 7. The left-most column of the figure
orresponds to Eq. (73), i.e., the vertical maps in that column send degrees of freedom for polar 0-forms to those
or tensor-product 0-forms. The horizontal maps in the middle row have been defined in Eqs. (49) and (51). It
emains to define the remaining vertical (i.e., from polar degrees of freedom to tensor-product degrees of freedom)
nd horizontal maps (i.e., discrete exterior derivatives that act on polar degrees of freedom). The transposes of the
ertical maps will help specify the basis functions for polar 1- and 2-forms as linear combinations of those for
ensor-product 1- and 2-forms, respectively, similarly to Eq. (70) for polar 0-forms.

A concrete discussion in the following subsections requires a numbering of the degrees of freedom for 0-, 1-
nd 2-forms in the Type 1 and Type 2 polar complexes from Fig. 7; these numberings are then shared by the basis
unctions for polar 0-, 1- and 2-forms, respectively. The total number of degrees of freedom associated to 0-, 1- and
-forms can be found using Eqs. (43)–(46). Observing that Assumption 4 implies n1

= n1, the number of degrees
f freedom are computed as below for Type K collapse, K = 1, 2,

n(0),pol
:= npol

= n(0,0)
− K (2n1

− 3) , (74)

n(1),pol
:= n(1,0)

+ n(0,1)
− K (3n1

− 2) , (75)

n(2),pol
:= n(1,1)

− K n1 . (76)
he degrees of freedom are numbered using the scheme shown in Fig. 8.
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Fig. 7. This figure demonstrates the Type 1 (bottom row) and Type 2 (top row) polar degree-of-freedom complexes corresponding to the
basis function construction in Section 5.2, and their relation to the tensor-product degree-of-freedom complex (middle row); all diagrams
correspond to (n1, n2) = (4, 5). With E(0,0),pol

:= Epol from Eq. (68), the degrees of freedom for polar 0-forms can be related to the
tensor-product degrees of freedom via Eq. (73), thus defining the left-most vertical maps in the above figure. Section 5.2 presents the
construction of polar discrete exterior derivatives D(0),pol and D(1),pol, and the corresponding polar extraction operators E(1),pol and E(2),pol

such that both the top-two and bottom-two rows form commutative diagrams. The latter polar extraction operators specify the basis for polar
1- and 2-forms as suitable linear combinations of the tensor-product 1- and 2-form basis functions. (Note that, to simplify the notation, we
use the same symbols to denote the extractions and discrete exterior derivatives for Type 1 and Type 2 polar complexes.).

5.2.2. Polar 0-forms

Define S (0),pol
:= Spol and E(0),pol

:= Epol. Then, using Eq. (70) and for any f ∈ S (0),pol,

f =
npol
−1∑

i=0

fi N pol
i = f · Npol

= f · Epol N (0,0) .
where f is a vector containing all coefficients fi .
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Fig. 8. The above figures show the degree-of-freedom indexing scheme adopted near the bottom and top poles — figures (a) and (b),
respectively. Except the degrees of freedom associated to the poles, the numbering increases first in the direction of the blue arrow, and
then along the red arrow. Furthermore, note that the indices in figure (b) are obtained by subtracting the labels from n(0),pol

− 1 for 0-forms,
from n(1),pol

− 1 for 1-forms, and from n(2),pol
− 1 for 2-forms. Also, keeping Fig. 7 in mind, the numbering near the top pole (which is

pplicable only for Type 2 collapse) assumes that we are looking down at the pole from above the degree-of-freedom complex.

.2.3. Polar 1-forms
Let f ∈ S (0),pol and apply the exterior derivative to it. Then, using Eq. (48),

g := d f = d
(

f · Epol N (0,0)) ,
= N (1,0)

· D(1,0) (Epol)T f dx1
+ N (0,1)

· D(0,1) (Epol)T f dx2 .
(77)

hen, with reference to Fig. 9, let us define two maps D(0),pol and E(1),pol. We do so by defining their actions on
the degrees of freedom, considering both regions away from the poles and near the poles.

• Fig. 9(a): Far away from the poles, the degree-of-freedom complexes locally look like their tensor-product
counterparts, i.e., the topology is that of a structured quadrilateral grid; c.f. Figs. 4, 6, 7 and 8. This is the
case shown in this figure where the degrees of freedom fi1 , . . . , fi4 for a polar 0-form lie on the vertices of
a quadrilateral. Eq. (73) maps these degrees of freedom to their tensor-product counterparts via the identity
map. Then, we define the action of the maps D(0),pol and the transpose of E(1),pol via the following equations,

fkℓ = fi1 ,

f(k+1)ℓ = fi2 ,

fk(ℓ+1) = fi3 ,

f(k+1)(ℓ+1) = fi4 .  
(0),pol T

⇒

g j1 := fi2 − fi1 ,

g j2 := fi4 − fi3 ,

g j3 := fi3 − fi1 ,

g j4 := fi4 − fi2 ;  
D(0),pol

g1
kℓ := g j1 ,

g2
kℓ := g j3 ,

g1
k(ℓ+1) := g j2 ,

g2
(k+1)ℓ := g j4 .  

(1),pol T

(78)
(E ) (E )
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Fig. 9. Eqs. (78), (84) and (100), in conjunction with the above figures, help define the polar discrete exterior derivative D(0),pol and the
polar extraction operator E(1),pol. Figure (a) considers the case when the degrees of freedom are far away from a pole; in this case the polar
degree of freedom complexes have the same topology as their tensor-product counterparts. Figure (b) instead considers the case when the
degrees of freedom are in the vicinity of a pole. As Proposition 5.6 shows, the diagrams in (a) and (b) commute.
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.

,

The relations between the different subscripts is easily deciphered from Eq. (73) and the degree-of-freedom
numbering shown in Fig. 8. More precisely, fixing k, ℓ, Fig. 8 implies the following relations between them,

i1 = k + ℓn1
+ 3 , i2 = 3+ (ℓ− 1)n1

+ [k + 1 mod n1] , i3 = i1 + n1 , i4 = i2 + n1 , (79)

j1 = k + (2ℓ− 3) n1
+ 2 , j2 = j1 + 2n1 , j3 = j1 + n1 , j4 = j3 + [k + 1 mod n1]− [k mod n1]

(80)

In the above, k, ℓ can be any values from the following ranges for Type K , K = 1, 2, collapse,

k ∈ {0, 1, . . . , n1
− 1} , ℓ ∈ {2, . . . , n2

− 2K } . (81)

• Fig. 9(b): Consider the degrees of freedom fi1 , . . . , fi5 for a polar 0-form. Then, the relations between the
indices depend on whether the pole is the bottom one or the top one.
Bottom pole: Assuming that the pole is the bottom one, let us define the actions of D(0),pol and the transpose
of E(1),pol. Given k, ℓ, the following relations between the different indices hold from Fig. 8(a),

i1 = 0 , i2 = 1 , i3 = 2 , i4 = k + 3 , i5 =
[
k + 1 mod n1]

+ 3 , (82)

j1 = 0 , j2 = 1 , j3 = k + 2 , j4 = j3 + n1 . (83)

Here, ℓ = 0 and k ∈ {0, . . . , n1
}. Recall Eq. (73) that helps map degrees of freedom for a polar 0-form onto

those for a tensor-product 0-form. Using that map, we define the actions of D(0),pol and the transpose of E(1),pol

as below,

fkℓ = f(k+1)ℓ =
∑3

s=1
fis
3 ,

fk(ℓ+1) =
∑3

s=1 χ
s,1
k(ℓ+1) fis ,

f(k+1)(ℓ+1) =
∑3

s=1 χ
s,1
(k+1)(ℓ+1) fis ,

fk(ℓ+2) = fi4 ,

f(k+1)(ℓ+2) = fi5 .  (
E(0),pol)T

⇒

g j1 := fi2 − fi1 ,

g j2 := fi3 − fi1 ,

g j4 := fi5 − fi4 ,

g j3 := fi4 −
∑3

s=1 χ
s,1
k(ℓ+1) fis ;  

D(0),pol

g1
kℓ := 0 ,

g2
kℓ :=

∑2
s=1(χ s+1,1

k(ℓ+1) − χ
s+1,1
kℓ )g js ,

g1
k(ℓ+1) :=

∑2
s=1(χ s+1,1

(k+1)(ℓ+1) − χ
s+1
k(ℓ+1))g js ,

g2
k(ℓ+1) := g j3 ,

g1
k(ℓ+2) := g j4 .  (

E(1),pol)T

(84)

Top pole: For the case of the top pole, the above relations can be analogously defined by suitable index-
relabelling; we present them here for completeness. Firstly, the following relations between the indices hold
from Fig. 8(b),

i1 = n(0),pol
− 3 , i2 = i1 + 1 , i3 = i2 + 1 , i4 = i1 + [k + 1 mod n1]− n1 , i5 = i1 + k − n1

(85)

j1 = n(1),pol
− 1 , j2 = j1 − 1 , j3 = j2 + [k + 1 mod n1]− n1 , j4 = j3 − n1

− 1 . (86)

Here, ℓ = n2
− 3 and k ∈ {0, . . . , n1

}. It is important to note here that, compared to Fig. 8(b), the edges
associated to the degrees of freedom g j3 and g j4 are oppositely oriented. Since Fig. 8 provides a simple and
global way of assigning orientations, with regards to the global operator definitions we are actually interested
in the degrees of freedom g j3 and g j4 ,

g := −g , g := −g . (87)
j3 j3 j4 j4
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P

Then, using Eq. (73), we define the actions of D(0),pol and the transpose of E(1),pol as below,

fk(ℓ+2) = f(k+1)(ℓ+2) =
∑3

s=1
fis
3 ,

fk(ℓ+1) =
∑3

s=1 χ
s,2
k(ℓ+1) fis ,

f(k+1)(ℓ+1) =
∑3

s=1 χ
s,2
(k+1)(ℓ+1) fis ,

fkℓ = fi5 ,

f(k+1)ℓ = fi4 .  (
E(0),pol)T

⇒

g j1 := fi2 − fi1 ,

g j2 := fi3 − fi1 ,

g j4 := fi4 − fi5 ,

g j3 :=
∑3

s=1 χ
s,2
(k+1)(ℓ+1) fis − fi4 ;  
D(0),pol

g1
k(ℓ+2) := 0 ,

g2
(k+1)(ℓ+1) :=

∑2
s=1(χ s+1,2

k(ℓ+2) − χ
s+1,2
k(ℓ+1))g js ,

g1
k(ℓ+1) :=

∑2
s=1(χ s+1,2

(k+1)(ℓ+1) − χ
s+2
k(ℓ+1))g js ,

g2
(k+1)ℓ := g j3 ,

g1
kℓ := g j4 .  (

E(1),pol)T
(88)

roposition 5.6. Eqs. (78), (84) and (88) imply that the diagrams in Fig. 9(a) and (b) commute.

Proof. The claim can be immediately verified using the explicit relations. For Eq. (78), the verification is trivial,
so let us look at Eq. (84). Consider the definitions of fkℓ, fk(ℓ+1) and g2

kℓ. Then, we have

fk(ℓ+1) − fkℓ =

3∑
s=1

χ
s,1
k(ℓ+1) fis −

3∑
s=1

fis

3
,

=

3∑
s=1

(
χ

s,1
k(ℓ+1) − χ

s,1
kℓ

)
fis ,

=

3∑
s=1

(
χ

s,1
k(ℓ+1) − χ

s,1
kℓ

)
fis +

3∑
s=1

(
χ

s,1
k(ℓ+1) − χ

s,1
kℓ

)
fi1 ,

=

2∑
s=1

(
χ

s+1,1
k(ℓ+1) − χ

s+1,1
kℓ

) (
fis+1 − fi1

)
,

=

2∑
s=1

(
χ

s+1,1
k(ℓ+1) − χ

s+1,1
kℓ

)
g js = g2

kℓ .

The other relations can be similarly verified. ■

Eqs. (79)–(83), (85) and (86) contain all the information for assembling the relations from Eqs. (78), (84) and
(88) into matrices E(1),pol and D(0),pol. These are matrices of size n(1),pol

× (n(1,0)
+ n(0,1)) and n(1),pol

× n(0),pol,
respectively.

For instance, with regards to Eq. (84), the j3-th row of D(0),pol contains a 1 in its i4-th column, and −χ s,1
k(ℓ+1) in

its is-th column, s = 1, 2, 3.
Then, following Proposition 5.6, Eq. (77) implies

g := d f = N (1,0)
· D(1,0) (Epol)T f dx1

+ N (0,1)
· D(0,1) (Epol)T f dx2 ,

= E(1),pol
[

N (1,0) dx1

N (0,1) dx2

]
· D(0),pol f .

(89)

Let E(1,0),pol and E(0,1),pol be matrices of size n(1),pol
× n(1,0) and n(1),pol

× n(0,1), respectively, so that

E(1),pol
=
[
E(1,0),pol , E(0,1),pol] , (90)

and define the polar B-splines Ni
(1,0),pol and Ni

(0,1),pol, i = 0, . . . , n(1),pol
− 1, as

Ni
(1,0),pol

:=

n1
−1∑ n2

−1∑
E (1,0),pol

i( j+kn1)
N

1
j N 2

k , Ni
(0,1),pol

:=

n1
−1∑ n2

−1∑
E (0,1),pol

i( j+kn1)
N 1

j N
2
k . (91)
j=0 k=0 j=0 k=0
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The space of polar 1-forms is defined as the span of these functions,

S (1),pol
:= span

⟨
Ni

(1,0),pol dx1
+ Ni

(0,1),pol dx2
: i = 0, . . . , n(1),pol

− 1
⟩
. (92)

roposition 5.7. The one-form polar B-splines Ni
(1,0),pol dx1

+ Ni
(0,1),pol dx2, i = 0, . . . , n(1),pol

− 1, form a basis
or S (1),pol. Moreover, with reference to Eq. (72), any 1-form f such that G∗,pol( f ) ∈ S (1),pol is at least C0 smooth
n Ω̂ .

roof. The linear-independence claim follows from the full rank of the extraction operator E(1),pol.

• Eq. (78) implies that, away from the poles, E(1),pol is an identity map.
• Similarly, Eqs. (84) and (88) imply that, near the bottom and top poles, respectively, the non-zero parts of the

first two rows of E(1),pol are obtained by taking differences of the columns of the matrices from Eq. (69). The
latter matrices have rank 3, and implies that the first and last two rows of E(1),pol are also linearly independent.

he smoothness of the one-form polar B-splines is implied by their local exactness at the poles (see Section 5.2.1)
nd Proposition 5.5. ■

.2.4. Polar 2-forms
Let f ∈ S (1),pol and apply the exterior derivative to it. Then, using Eq. (50),

Λ(2)
T ∋ g := d f = N (1,1)

·

(
−D(2,0) (E(1,0),pol)T

+ D(0,2) (E(0,1),pol)T
)

f ,

=:

n1
−1∑

i=0

n1
−1∑

j=0

gi j N
1
i N

2
j .

(93)

owever, by the local exactness of f at the poles (see Section 5.2.1), the above implies that gi j = 0 if

Type 1 collapse : j = 0 ,

Type 2 collapse : j = 0, n2
− 1 .

Then, with reference to Fig. 10, let us define two maps D(1),pol and E(2),pol. As in the previous section, we do so by
defining their actions on the degrees of freedom, considering both regions away from the poles and near the poles.

• Fig. 10(a): Far away from the poles, the degree-of-freedom complexes locally look like their tensor-product
counterparts, i.e., the topology is that of a structured quadrilateral grid; c.f. Figs. 4, 6, 7 and 8. This is the
case shown in this figure where the degrees of freedom fi1 , . . . , fi4 for a polar 1-form lie on the vertices of
a quadrilateral. Eq. (78) maps these degrees of freedom to their tensor-product counterparts via the identity
map. Then, we define the action of the maps D(1),pol and the transpose of E(2),pol via the following equations,

f 1
kℓ = fi1 ,

f 2
kℓ = fi3 ,

f 1
k(ℓ+1) = fi2 ,

f 2
(k+1)ℓ = fi4 .  
(E(1),pol)

T

⇒ g j := fi1 + fi4 − fi2 − fi3;  
D(1),pol

gkℓ := g j .  
(E(2),pol)

T

(94)

The relations between i1, . . . , i4 and k, ℓ follows from Eqs. (79) and (81), and j is seen from Fig. 8 to be

j = k + (ℓ− 1)n1 . (95)

• Fig. 10(b): Consider the degrees of freedom fi1 , . . . , fi5 for a polar 1-form. Then, the relations between the
indices depend on whether the pole is the bottom one or the top one.
Bottom pole: The relation between i1, . . . , i5 and k, ℓ follows from Eq. (83); the relation of k, ℓ to j is simply
j = k . (96)
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Fig. 10. Eqs. (94), (97) and (100), in conjunction with the above figures, help define the polar discrete exterior derivative D(1),pol and the
polar extraction operator E(2),pol. Figure (a) considers the case when the degrees of freedom are far away from a pole; in this case the polar
degree of freedom complexes have the same topology as their tensor-product counterparts. Figure (b) instead considers the case when the
degrees of freedom are in the vicinity of a pole. As Proposition 5.8 shows, the diagrams in (a) and (b) commute.
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Eq. (84) maps the degrees of freedom for the polar 1-form onto those for a tensor-product 1-form; using that
map, we define the actions of D(1),pol and the transpose of E(2),pol as below,

f 1
kℓ := 0 ,

f 2
k(ℓ+1) := fi3 ,

f 1
k(ℓ+2) := fi4 ,

f 2
(k+1)(ℓ+1) := fi5 ,

f 2
kℓ :=

∑2
s=1(χ s+1,1

k(ℓ+1) − χ
s+1,1
kℓ ) fis ,

f 1
k(ℓ+1) :=

∑2
s=1(χ s+1,1

(k+1)(ℓ+1) − χ
s+1,1
k(ℓ+1)) fis ,

f 2
(k+1)ℓ :=

∑2
s=1(χ s+1,1

(k+1)(ℓ+1) − χ
s+1,1
(k+1)ℓ) fis ,  (

E(1),pol)T

⇒

g j := fi5 − fi3 − fi4

+
∑2

s=1(χ s+1,1
(k+1)(ℓ+1) − χ

s+1
k(ℓ+1)) fis ;  

D(1),pol

gkℓ := 0 ,
gk(ℓ+1) := g j .  (

E(2),pol)T

(97)

Top pole: The relation between i1, . . . , i5 and k, ℓ follows from Eq. (86); the relation of k, ℓ to j is simply

j = n(2),pol
+ k − n1 . (98)

Note that, as in Eq. (87), the edge associated to the degrees of freedom fi3 , fi4 and fi5 are oppositely oriented
to their specified global orientations in Fig. 8(b). Thus, we are actually interested in the degrees of freedom
f i3 , f i4 and f i5 ,

f i3 = − fi3 , f i4 = − fi4 , f i5 = − fi5 . (99)

Eq. (88) maps the degrees of freedom for the polar 1-form onto those for a tensor-product 1-form; using that
map, we define the actions of D(1),pol and the transpose of E(2),pol as below,

f 1
k(ℓ+2) := 0 ,

f 2
k(ℓ+1) := f i5

,

f 1
kℓ := f i4

,

f 2
(k+1)(ℓ+1) := f i3

,

f 2
k(ℓ+1) :=

∑2
s=1(χ s+1,2

k(ℓ+2) − χ
s+1,2
k(ℓ+1)) fis ,

f 1
k(ℓ+1) :=

∑2
s=1(χ s+1,2

(k+1)(ℓ+1) − χ
s+1,2
k(ℓ+1)) fis ,

f 2
(k+1)(ℓ+1) :=

∑2
s=1(χ s+1,2

(k+1)(ℓ+2) − χ
s+1,2
(k+1)(ℓ+1)) fis ,  (

E(1),pol)T

⇒
g j := f i4

+ f i3
− f i5

−
∑2

s=1(χ s+1,2
(k+1)(ℓ+1) − χ

s+1,2
k(ℓ+1)) fis ;  

D(1),pol

gk(ℓ+1) := 0 ,
gkℓ := g j .  (

E(2),pol)T

(100)

Proposition 5.8. Eqs. (94), (97) and (100)imply that the diagrams in Fig. 10(a) and (b) commute.

Proof. The proof is analogous to that for Proposition 5.6. Alternatively, it can be verified that E(2),pol (E(2),pol)T
=

In(2),pol , and that the definition of D(1),pol simply amounts to

D(1),pol
=
(
E(2),pol)T [

−D(2,0) D(0,2)] (E(1),pol)T
. □

We can again assemble all the above relations from Eqs. (94), (97) and (100) into matrices E(2),pol and D(1),pol.
These are matrices of size n(2),pol

×n(1,1) and n(2),pol
×n(1),pol, respectively. Then, following Proposition 5.8, Eq. (93)

implies

g := d f = N (1,1)
·

(
−D(2,0) (E(1,0),pol)T

+ D(0,2) (E(0,1),pol)T
)

f ,
(2),pol (1,1) (1),pol 1 2

(101)

= E N · D f dx ∧ dx .
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Then, define the polar B-splines Ni
(2),pol, i = 0, . . . , n(2),pol

− 1, as

Ni
(1),pol

:=

n1
−1∑

j=0

n2
−1∑

k=0

E (2),pol
i( j+kn1)

N
1
j N

2
k . (102)

The space of polar 2-forms is defined as the span of these functions,

S (2),pol
:= span

⟨
Ni

(2),pol dx1
∧ dx2

: i = 0, . . . , n(2),pol
− 1

⟩
. (103)

Proposition 5.9. The polar B-splines Ni
(2),pol, i = 0, . . . , n(2),pol

− 1, form a basis for S (2),pol.

Proof. The linear-independence claim follows from the full rank of the extraction operator E(2),pol. Indeed,
Eqs. (94), (97) and (100) imply that n(2),pol columns of E(2),pol are the distinct columns of the identity matrix
In(2),pol ; c.f. the proof of Proposition 5.8. ■

5.3. Definition of the complex

Using the above polar spline spaces, we choose the spaces of 0-, 1- and 2-forms on Ω as follows,

Λ(0)
S := S (0),pol , Λ(1)

S := S (1),pol , Λ(2)
S := S (2),pol .

Then, the polar spline complex on Ω is defined as

S : Λ(0)
S Λ(1)

S Λ(2)
S . (104)

Theorem 5.10. S is a cochain complex, and its cohomology spaces satisfy

H 0 (S) = R , H 1 (S) = 0 , H 2 (S) ∼=

{
0 , Type 1 collapse ,
R , Type 2 collapse .

.

roof. The fact that S is a cochain complex is immediate from the construction of the polar spline spaces for 0-,
- and 2-forms. We prove the claims for each cohomology space separately.

Zeroth cohomology. Let f ∈ H 0 (S), i.e., d f = 0. Then, Eqs. (78), (84) and (88) imply the following.

• Eq. (78): In Fig. 9(a), fi1 = · · · = fi4 .
• Eqs. (84) and (88): In Fig. 9(b), fi1 = · · · = fi5 .

s a consequence, d f = 0 implies that all degrees of freedom fi are equal to some α ∈ R. Then, by the partition
of unity property of the 0-form polar B-splines,

f =
n(0),pol

−1∑
i=0

fi N (0),pol
i = α .

First cohomology. For the cochain complex S, we have the following equivalence between alternating sums
of the dimensions of the cohomologies and the dimensions of vector spaces that form the complex,

dim
(
H 0 (S)

)
− dim

(
H 1 (S)

)
+ dim

(
H 2 (S)

)
= dim

(
Λ(0)

S

)
− dim

(
Λ(1)

S

)
+ dim

(
Λ(2)

S

)
.

he right hand-side follows from Eq. (74)–(76) and is equal to K for type K collapse. Then, since the first term
n the left is equal to 1, to prove that H 1 (S) is trivial, we only need to show that the last term on the left is equal
o K − 1; this is proved in the following.

Second cohomology. Note that d f = 0 for any f ∈ Λ(2)
S . Then, let us build an h ∈ Λ(1)

S such that dh = f .
his will always be possible for Type 1 collapse, while for Type 2 collapse we will need to place one constraint on

f . The claim will thus follow. We define such an h by defining its degrees of freedom, and we start at the bottom
ole; see Fig. 8(a). In the following, unless specified otherwise, the index i runs from 0 to n1

− 1.
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First, we set h0 = h1 := 0. Next, we set h2+i := 0 and hn1+2+i := − fi . Continuing on in this manner, we set
h2 jn1+2+i := 0 and h(2 j+1)n1+2+i := h(2 j−1)n1+2+i − f jn1+i , j = 1, . . . , n2

− 2K − 1, for Type K collapse. If K = 1,
then we are done and it can be verified that dh = f .

On the other hand, if K = 2, then only hn(1),pol−n1−2, . . . , hn(1),pol−1 are undefined as yet. To be able to do so, we
need an additional constraint on the f . Specifically, we need

n(2),pol
−1∑

i=0

fi = 0 .

If this constraint is satisfied, then we can set hn(1),pol−n1−2 = hn(1),pol−2 = hn(1),pol−1 := 0 and, moreover, for
= 0, . . . , n1

− 2,

hn(1),pol−n1−1+i := −hn(1),pol−2n1−2+i + hn(1),pol−n1−2+i + fn(2),pol−n1+i .

his completes the definition of h and it can be verified that dh = f . For Type 2 collapse, such an h can be found
nly when the above constraint is satisfied, implying that the cohomology space H 2 (S) is one dimensional. ■

From the last part of the proof of Theorem 5.10, the polar 2-form
∑n(2),pol

−1
i=0 N (2),pol

i is not in the image of d
or Type 2 collapse. This polar 2-form is thus a representative element of the one dimensional cohomology space

H 2 (S). In particular, this cohomology is isomorphic to the following vector space;

h(2)
:=

⎧⎨⎩α
n(2),pol

−1∑
i=0

N (2),pol
i : α ∈ R

⎫⎬⎭ . (105)

his vector space is closely related to the idea of “discrete harmonic forms” and it will play an important part in
he numerical tests; see Section 6.3.

Finally, the polar spline complex on Ω̂ is defined as in Section 4.4. That is, we define Λ̂(i)
S as below,

Λ̂(i)
S :=

{
f : G∗,pol ( f ) ∈ Λ(i)

S

}
, i = 0, 1, 2 , (106)

nd the corresponding spline complex on Ω̂ is built using them,

Ŝ : Λ̂(0)
S Λ̂(1)

S Λ̂(2)
S ,

with the pullback again acting as a cochain map from Ŝ to S.

. Numerical tests

This section numerically investigates the approximation power and stability of the polar spline complexes by
olving problems on smooth polar geometries in Rd, d = 2, 3. In particular, we consider approximation of the
tokes flow on both fixed and deforming closed surfaces.

Our approach towards spline differential forms is well-suited for computations within the classical framework of
nite element assembly loops. Indeed, starting from element-local representations of univariate splines (Section 3.2),

ensor-product splines can be readily built. Subsequently, the tensor-product splines can themselves be combined
sing the polar extractions to build polar splines on each element of the two-dimensional parametric domain Ω .

This approach is adopted for all computations presented here.

6.1. Spline spaces and geometries

For brevity, we only present numerical tests with the polar spline spaces as they already utilize the univariate and
tensor-product splines defined in Sections 4 and 3.2 . Moreover, we only consider Type 2 collapse, i.e., closed polar
manifolds. The numerical tests presented here show that the polar spline spaces demonstrate optimal approximation;
similar results were obtained for the configurations not shown here (e.g., univariate and tensor-product spline spaces,
Type 1 collapse).

Specifically, we consider three polar spline spaces built using Type 2 collapse. Each is built using tensor-product
spline spaces of uniformly chosen bi-degree (p, p), p = 2, 3, 4. That is, the univariate spline spaces used to build
31
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the tensor-product spline spaces are defined by choosing the polynomial degree on each element equal to p. The
breakpoints and associated orders of smoothness are defined as below.

p = 2 :

{
S1
: (x0, . . . , x3) = (0, 1, 2, 3) , (r0, . . . , r3) = (1, 1, 1, 1) ,

S2
: (x0, . . . , x3) = (0, 1, 2, 3) , (r0, . . . , r3) = (−1, 1, 1,−1) ;

(107)

p = 3 :

{
S1
: (x0, . . . , x4) = (0, 1, 2, 3, 4) , (r0, . . . , r4) = (2, 2, 2, 2, 2) ,

S2
: (x0, x1, x2) = (0, 1, 2) , (r0, r1, r2) = (−1, 2,−1) ;

(108)

p = 4 :

{
S1
: (x0, . . . , x5) = (0, 1, 2, 3, 4, 5) , (r0, . . . , r5) = (3, 3, 3, 3, 3, 3) ,

S2
: (x0, x1) = (0, 1) , (r0, r1) = (−1,−1) .

(109)

he polar manifolds built using the above spline spaces are shown in Fig. 11. The black lines delineate the
ézier elements of the mesh.

.2. L2 projection

As the most basic test of the approximation power of the individual spline spaces, we solve L2 projection
roblems. Specifically, given fex ∈ L2Λ(i)(Ω̂ ), we find f ∈ Λ̂(i)

S such that

∀g ∈ Λ̂(i)
S (g, f )Ω̂ = (g, fex)Ω̂ . (110)

he exact solutions are chosen to be

L2Λ(0)(Ω̂ ) ∋ fex = h ,

L2Λ(1)(Ω̂ ) ∋ fex = h dy1
+ h dy2

+ h dy3 ,

L2Λ(2)(Ω̂ ) ∋ fex = h dy2
∧ dy3

+ h dy3
∧ dy1

+ h dy1
∧ dy2 ,

(111)

here

h(y1, y2, y3) = sin
(

2π
(

y1
+

1
3

))
sin
(

2π
(

y2
+

1
5

))
sin
(

2π
(

y3
+

1
7

))
(112)

The L2-projection problems project the pullbacks of the above exact solutions onto the appropriate polar spline
paces; c.f. Eq. (57). With the approximation error defined as e := fex − f , the L2 norm of e and de displayed in
ig. 12. The error norms are plotted against the square root of the number of degrees of freedom. Note that the
orm of de is omitted for 2-forms since the exterior derivative maps all 2-forms to zero. To the left of each error
onvergence plot, we also show the exact solutions for each polar geometry (see the online version of this article
or high resolution pictures):

• for 0-forms, the surface is coloured by fex and the tangential vector field represents d fex;
• for 1-forms, the surface is coloured by values of d fex and the tangential vector field represents fex;
• for 2-forms, the surface is coloured by values of fex.

For optimal approximation, we expect the L2 norm of e to decrease with order p+1 for 0-forms and p otherwise.
he L2 norm of de is expected to decrease with order p for both 0- and 1-forms. As can be observed in Fig. 12,

he polar spline spaces demonstrate optimal approximation behaviour for all p.

.3. Generalized Stokes flow

We now consider generalized Stokes flow on fixed and deforming polar manifolds Ω̂ . This problem is important
hen studying, for instance, fluid flow on biological membranes such as lipid bilayers, and the problem formulation

an be derived from first principles; e.g., see [34,46] for the derivation of Stokes flow1. We express the strong form

1 Both [34,46] agree on the model for Stokes flow on surfaces. However, in the presence of inertial terms, the model derived in [34]
contains a mistake that is rectified in [46].
32



D. Toshniwal and T.J.R. Hughes Computer Methods in Applied Mechanics and Engineering 376 (2021) 113576

a
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Fig. 11. The polar manifolds used in the numerical tests are shown above. The black lines delineate the Bézier elements at the coarsest
refinement level. As can be seen, the coarsest meshes consist of 9, 8 and 5 elements for p = 2, 3 and 4, respectively. See Section 6.1 for
details about the underlying polar spline spaces.

Fig. 12. L2 projection problem: The convergence rates for L2 projections of 0-, 1- and 2-forms on the polar manifolds in Fig. 11 are shown
bove; see Section 6.2.

f the generalized Stokes problem on Ω̂ as

d⋆q + µ
(
2κu − dd⋆u

)
− αu = f + ⋆ (2µ(k − H g) · d ⋆ ν) ,

du = h + Hν .
(113)

The first equation pertains to momentum conservation on Ω̂ while the second one is the equation of mass
conservation. Here, q is the pressure (2-form), u is the velocity (1-form) and ν represents the (instantaneous) normal
velocity field of the deforming domain Ω̂ (2-form). Moreover, f is an external force (1-form) on the system, h is a
source of mass production (2-form), µ is the viscosity and α is a scalar constant. The remaining terms are related
to Ω̂ — the metric tensor, g; the second fundamental form, k = k dx i

⊗ dx j ; twice the mean curvature, H ; and
i j
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the Gaussian curvature, κ . In particular, with n denoting the unit normal vector to Ω̂ ,

ki j = ∂
x
i ·

∂n
∂x j

, H = ki j gi j , κ =
det[ki j ]
det[gi j ]

. (114)

Remark 6.1. The form of the generalized Stokes problem in Eq. (113) can be related to the usual vector calculus
notation; see [34,46], for instance. In particular, we would like to mention that the velocity 1-form is related to the
tangential fluid velocity on Ω̂ , denoted u#

= u#,i∂ x
i , as below,

u = −
√

gu#,2 dx1
+
√

gu#,1 dx2 . (115)

From Appendix F, u# is interpreted as a proxy field of −⋆u. In particular, du is proportional to the surface divergence
of u#, i.e.,

du =
√

gdivΩ̂u# dx1
∧ dx2 . (116)

Remark 6.2. Interestingly, even in the absence of mass production (h = 0) and external forcing ( f = 0),
tangential flow on Ω̂ can be produced if the surface has non-zero normal velocity, ν. This is directly related to
the interpretation of the deforming surface Ω̂ as an inextensible material. An interesting example of such materials
s lipid bilayers [34], which are envelopes for eukaryotic cell contents. These behave as in-plane fluids and out-of-
lane solids. In particular, as in Eq. (113), the out-of-plane velocities of these surfaces, governed by solid mechanics,
ead to in-plane flow. See Section 6.3.3 for examples of this phenomena.

.3.1. Manufactured solution
In order to numerically verify optimal approximation of generalized Stokes flow, we create a smooth man-

factured solution to the problem. Since Ω̂ is parametrically defined using piecewise polynomials, it does not
ave a simple implicit representation unlike other surfaces (e.g., spheres). This makes the derivation of a smooth
anufactured solution a complicated task. For instance, fixing u and h, mass conservation implies ν = (du−h)/H .
he derivatives of ν, needed for momentum conservation, therefore involve derivatives of the mean curvature H ;
ote that these derivatives will clearly have a lower regularity than that of the surface Ω̂ . Keeping these difficulties
n mind, a smooth manufactured solution can nevertheless be derived by either

• assuming that Ω̂ is a Type 1, flat polar geometry so that, in particular, both k and H are trivial;
• or, by assuming that ν = 0.

e adopt the second approach above so that we can demonstrate optimal approximation on arbitrarily curved polar
eometries.

Therefore, choosing ν = 0, the exact solutions for the different variables are chosen to be

uex = − ⋆ ( f0 dx1
+ f0 dx2) ,

qex =
√

g f0 dx1
∧ dx2 ,

here

f0(x1, x2) =
(
cos(2πx1)− 1

) (
cos(2πx2)− 1

)2
. (117)

sing the above uex and pex, we define hex = duex and fex = d⋆qex + µ (2κuex − dd⋆uex)− αuex.
For the above choice of manufactured solution, we numerically solve the generalized Stokes problem in mixed

orm by introducing w = d⋆u, the vorticity (0-form). The corresponding weak form of the discrete problem is
efined as follows. Given ( fex, hex) ∈ L2Λ(1)(Ω̂ )× L2Λ(2)(Ω̂ ), we find (w, u, q, v) ∈ Λ̂(0)

S × Λ̂(1)
S × Λ̂(2)

S × h(2) such
hat for all (z0, z1, z2, z3) ∈ Λ̂(0)

S × Λ̂(1)
S × Λ̂(2)

S × h(2),

(z0, w)Ω̂ −
(
dz0,
√
µu
)
Ω̂
= 0

(dz1, q)Ω̂ −
(
z1,
√
µdw

)
Ω̂
+ (z1, (2µκ − α)u)Ω̂ = (z1, fex)Ω̂ ,

(z2, du)Ω̂ + (z2, v)Ω̂ = (z2, hex)Ω̂ ,
(118)
(z3, q)Ω̂ = (z3, qex)Ω̂ .
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Fig. 13. Generalized Stokes flow w/ manufactured solution: The convergence rates for errors in vorticity, w, velocity, u, and pressure, q ,
are shown above; see Section 6.3.1.

For simplicity, we set µ = α = 1. For this mixed problem, we also numerically compute the inf–sup constant γS

defined as

γS = inf
q∈Λ̂(2)

S

sup
u∈Λ̂(1)

S

(q, du)Ω
∥u∥

Λ̂
(1)
S
∥q∥

Λ̂
(2)
S

. (119)

This constant can be numerical computed by solving a generalized eigenvalue problem [47]. In view of Theo-
rem 5.10 and the fact that we are looking at Type 2 polar geometries, we expect to have n(2),pol

− 1 non-zero
eigenvalues as the second cohomology space is one dimensional. The constant γS is the square-root of the smallest
non-zero eigenvalue.

Fig. 13 show the results of the numerical approximation. The following information has been presented.

• The exact solutions for wex, dwex, uex, duex, qex and d⋆qex have been plotted on the polar geometries. The
values of 0- and 2-forms are used to colour the surfaces, and the 1-forms are displayed as tangential vector
fields.
• With e□ := □−□ex, □ ∈ {w, u, q}, the L2 norms of ew, dew, eu , deu and eq have been plotted.
• Finally, the value of the inf–sup constant γS at each refinement level has been labelled in the plot where eq

has been shown.

For optimal approximation, and for polar splines built using tensor-product splines of bi-degree (p, p), we expect
the errors for all 0-forms to reduce with order p+ 1 and for all 1- and 2-forms with order p. As shown in Fig. 13,
all polar spline spaces demonstrate optimal approximation behaviour. Moreover, it can be seen that the spline spaces
are inf–sup stable, i.e., the constant γ does not deteriorate with mesh refinements.
S
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Fig. 14. Pointwise incompressible flows: The compatible spline spaces are built such that, if hex = 0 in Eq. (118), the discrete velocity
satisfies du = 0 pointwise. Equivalently, with Remark 6.1 in mind, this implies that the associated tangential fluid velocity has zero surface
divergence at each point of Ω̂ . The above numerical tests show an example of such flow; all plots are for the discrete solutions of the
generalized Stokes problem. The left plot in each row displays the vorticity, w; the middle plot shows streamfunction contours, ψ , and the
tangential vector field, u#; and the right plot displays the pressure, q. The surface of the middle plot has been coloured by the value of du;
this value is of the order of machine precision and thus the surface is uniformly coloured grey.

6.3.2. Pointwise incompressibility
Since Ŝ is a cochain complex, we know that d maps Λ̂(1)

S into Λ̂(2)
S . (From Theorem 5.10, this map is a surjection

nly for Type 1 collapse as illustrated by the vanishing cohomology.) Then, if hex ∈ Λ̂(2)
S in Eq. (118), then du is

oing to be pointwise equal to hex. In particular, if hex = 0, then the discrete velocity 1-form is going to be closed,
.e., du = 0 pointwise. Equivalently, the discrete tangential velocity u# is going to have pointwise zero surface
ivergence; see Remark 6.1. Moreover, from Theorem 5.10, du = 0 implies that there exists a streamfunction ψ
0-form)such that dψ = u.

We illustrate the above simple fact by solving the problem in Eq. (118) on the surfaces in Fig. 11 for the third
efined level. It is important to note that pointwise incompressible solutions can be obtained for any refinement
evel, no matter how coarse or fine — the choice of the third refinement level is only to ensure accuracy of the
iscrete solutions. We choose hex = 0 = νex and the forcing fex is chosen to be equal to the one in Eq. (118). The
esults are shown in Fig. 14. The left figures in each row correspond to the computed w; the middle figures to the
angential velocity vector field, u#, and contours of the streamfunction, ψ ; and the right figures correspond to the

ressures, q .
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Fig. 15. Deforming domains: The above numerical tests show the discrete solutions to the generalized Stokes problem when Ω̂ is deforming
ith a prescribed normal velocity field; see Eq. (121). The left plot in each row displays the vorticity, w; the middle plot shows the tangential
ector field, u#, in blue and the imposed normal velocity, (⋆νex)n, in red; and the right plot displays the pressure, q . The relative scaling
f the normal velocity arrows with respect to the tangential velocity arrows is 1.4 for p = 2 and 2.4 for p = 3 and 4.

.3.3. Deforming domains
As a final numerical example, we consider the case where νex ̸= 0. We choose fex = 0 = hex and

ex =
√

g f1 dx1
∧ dx2, where

f1(x1, x2) = cos(2πx1)
(
cos(2πx2)− 1

)2
. (120)

e also impose qex ⊥ h(2). The weak problem thus becomes to find (w, u, q, v) ∈ Λ̂(0)
S × Λ̂(1)

S × Λ̂(2)
S ×h(2) such that

or all (z0, z1, z2, z3) ∈ Λ̂(0)
S × Λ̂(1)

S × Λ̂(2)
S × h(2),

(z0, w)Ω̂ −
(
dz0,
√
µu
)
Ω̂
= 0

(dz1, q)Ω̂ −
(
z1,
√
µdw

)
Ω̂
+ (z1, (2µκ − α)u)Ω̂ = (z1, ⋆2µ(k − H g) · d ⋆ νex)Ω̂ ,

(z2, du)Ω̂ + (z2, v)Ω̂ = (z2, Hνex)Ω̂ ,

(z3, q)Ω̂ = 0 .

(121)

gain, for simplicity we set µ = α = 1. Fig. 15 shows the results for the polar geometries in Fig. 11. The left
gures in each row correspond to the computed w; the middle figures to the tangential fluid velocity, u#, and the

ormal velocity, (⋆νex)n = f1n; and the right figures correspond to the pressures, q .
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7. Conclusions

We have investigated the development and applications of high-order accurate, spline differential forms in
variety of settings. In the univariate setting, we provide the construction of multi-degree spline differential

orms, i.e., smooth, piecewise-polynomial differential forms that allow for local degree elevation; Section 3.2. The
onstruction is presented within the paradigm of Bézier extractions, thus making our algorithms and approach
asily implementable, particularly within element loop-based finite element software. In the bivariate setting, we
rst build spline differential forms using tensor-products of the univariate spline differential forms; Section 4. The
roperties of the univariate splines carry over to the tensor-product splines; this approach is easily extensible to
igher dimensions. Next, in the bivariate setting, we focus on the case of singularly parametrized smooth surfaces
with and without boundary) called polar surfaces, and build spline differential forms on them; Section 5. Finally,
he spline differential forms are used to solve L2 projection problems and generalized Stokes flow on smooth polar
urfaces in R3; Section 6. The results demonstrate optimal approximation and inf–sup stability of the spline spaces
or the Stokes problem, simulations of pointwise incompressible flows, and simulations of flows on deforming
nextensible surfaces.

Our approach here has been constructive. There are several extensions of the results and applications presented
erein that are related to topics in computational mechanics as well as several areas of mathematics, such as algebraic
opology, differential geometry and numerical analysis. As such, there are several opportunities for future research
nto theoretical and practical aspects of spline-based exterior calculus with the goal of solving PDEs on surfaces; a
ew of these are itemized below.

• For efficient computations, development of smooth polar differential forms using adaptively-refined splines,
such as hierarchical B-splines [28] is important.
• Similarly, the 0-, 1- and 2-form spline spaces developed here are H 2, H 1 and L2 conforming on polar surfaces.

Extending this construction to higher orders of regularity [29] is interesting, for instance, for the variational
multiscale framework for divergence-free flow simulations [48] where the 1- and 2-form spaces need to be
H 2 and H 1 conforming, respectively.
• Another important research question is the development of commuting projection operators that help theoret-

ically verify the stability of the spline spaces. Bounded cochain projections from the de Rham complex to
spline complexes are needed for provable well-posedness at the discrete level. The theory on such cochain
projections for adaptively refined and non-tensor-product splines is missing, even in the absence of singular
parametrizations, and is beyond the scope of this paper. Instead, the examples in Section 6 provide numerical
evidence of the well-posedness of the discrete problems.
• On the side of applications, we simulate flows on smoothly deforming surfaces with prescribed normal

velocities. Incorporating mechanics into the equations to simulate the behaviour of fluid membranes, e.g., lipid
bilayers, is a particularly interesting extension.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

ppendix A. Recursive definition of MDB-splines

Following [44,49], we define two MDB-spline knot vectors u and v as

u := [u1, u2, . . . , un] := [x0, . . . , x0  
p1−r0 times

, x1, . . . , x1  
p2−r1 times

, . . . , xm−1, . . . , xm−1  
pm−rm−1 times

] ,

v := [v1, v2, . . . , vn] := [x1, . . . , x1  
p1−r1 times

, . . . , xm−1, . . . , xm−1  
pm−1−rm−1 times

, xm, . . . , xm  
pm−rm times

] .

With p := maxi pi , the MDB-splines Ni := Ni,p are recursively defined. For q = 0, . . . , p and i = p−q, . . . , n−1,
he spline N is supported on the interval [u , v ] and can be evaluated at x ∈ [x , x ) ⊂ [u , v ] as
i,q i i−p+q j−1 j i i−p+q
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Algorithm 1 Computation of H (Appendix B)

1: H ← identity matrix (size : θ (m)× θ (m))
2: for k = 1 : m − 1 do
3: L ← H K k

4: for j = 0 : rk do
5: H ← sparse nullspace of j-th column of L (Algorithm 2)
6: H ← H H
7: L ← H L
8: return H

Algorithm 2 nullspace of ĉ (Appendix B)

1: Ĥ ← 0 (size: (q − 1)× q)
2: Ĥ(0, 0)← 1
3: for i = 0 : q − 3 do

4: Ĥ(i, i + 1)←−
ĉi Ĥ1(i, i)

ĉi+1

5: Ĥ(i + 1, i + 1)← 1− Ĥ(i, i + 1)
6: Ĥ(q − 2, q − 1) = 1
7: return Ĥ

follows:

Ni,q (x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 , q = p − p j ,∫ x
−∞

[
Ni,q−1(y)

Mi,q−1
−

Ni+1,q−1(y)
Mi+1,q−1

]
dy , q > p − p j ,

0 , otherwise ,

here

Mk,q−1 :=

∫
∞

−∞

Nk,q−1(y) dy .

n the above it is assumed that any undefined Nk,q−1 with k < p − q + 2 or k > n is equal to the zero function,
nd that if Mk,q−1 = 0 then∫ x

−∞

Nk,q−1(y)
Mk,q−1

dy :=

{
1 , x ≥ uk and k ≤ n ,
0 , otherwise .

ppendix B. Algorithmic definition of MDB-splines

For 1 ≤ k ≤ m − 1 let K k,− be a matrix of size (pk + 1)× (rk + 1), whose j-th column, j = 0, . . . , rk , is given
by, [

0 · · · 0 D j
−Bθ (k)− j−1 (xk) · · · D j

−Bθ (k)−1 (xk)

]T
, (122)

and let K k,+ be a matrix of size (pk+1 + 1)× (rk + 1), whose j-th column, j = 0, . . . , rk , is given by,[
−D j

+Bθ(k) (xk) · · · −D j
+Bθ (k)+ j (xk) 0 · · · 0

]T
. (123)
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Using these matrices, we can build the matrix K k of size θ (m) × (rk + 1) which contains all constraints required
to enforce Crk smoothness at xk . This matrix is defined row-wise in the following manner:

1. the (θ (k − 1)+ j)-th row of K k is equal to the j-th row of K k,− for j = 0, . . . , pk ,
2. the (θ (k)+ j)-th row of K k is equal to the j-th row of K k,+ for k = 0, . . . , pk+1, and,
3. all other rows of K k are identically zero.

The multi-degree extraction H is a full-rank matrix built using Algorithm 1 and its rows span the collective left-
nullspace of the matrices K k . This algorithm is a more efficient implementation of the one proposed in [29] and
has been reproduced from [45].

Appendix C. Proof of Proposition 3.6

Proof. Observe that C is the left inverse of
(

D(0)
pk

)T
. Furthermore, since HΩk is column stochastic (Proposition 3.8)

and the one dimensional nullspace of D(0)
pk

is spanned by constant vectors of the form v = [α, . . . , α]T , α ∈ R.
Then, (HΩk )T v = v is in the nullspace of D(0)

pk
. Therefore, using Lemma C.1, and choosing

A1 = C , A2 = AT
4 =

(
D(0)

pk

)T
, AT

3 = HΩk ,

we see that(
D(0)

pk

)T
C HΩk

(
D(0)

pk

)T
= HΩk

(
D(0)

pk

)T

since A2 A1 AT
3 AT

4 = AT
3 AT

4 .
Then, for f ∈ Λ(0)

M and using Eq. (31), we see that

f |Ωk =
[

fµ(k) fµ(k)+1 · · · fµ(k)+pk

]
HΩk

⎡⎢⎣ B0,pk
Ωk

...

Bpk ,pk
Ωk

⎤⎥⎦
rom Eq. (15),

d f |Ωk =
[

fµ(k) fµ(k)+1 · · · fµ(k)+pk

]
HΩk

(
D(0)

pk

)T

⎡⎢⎢⎣
B
Ωk
0,pk
...

B
Ωk
pk−1,pk

⎤⎥⎥⎦ ,

=
[

fµ(k) fµ(k)+1 · · · fµ(k)+pk

] (
D(0)

pk

)T
C HΩk

(
D(0)

pk

)T

⎡⎢⎢⎣
B
Ωk
0,pk
...

B
Ωk
pk−1,pk

⎤⎥⎥⎦ ,

=
[
gµ(k) gµ(k)+1 · · · gµ(k)+pk−1

]
C HΩk

(
D(0)

pk

)T

⎡⎢⎢⎣
B
Ωk
0,pk
...

B
Ωk
pk−1,pk

⎤⎥⎥⎦ ,

=
[
gµ(k) gµ(k)+1 · · · gµ(k)+pk−1

]⎡⎢⎣ Nµ(k)
...

Nµ(k)+pk−1

⎤⎥⎦ .

he i-th row of C takes the sum of the first i entries of the vector it acts upon (up to a minus sign). Thus, the
pline Nµ(k)+i is defined, up to a minus sign, as the sum of the derivatives of Nµ(k), . . . , Nµ(k)+i . These sums are

linearly independent; e.g., see [30]. ■

Lemma C.1. Let A be matrices of sizes j × k , i = 1, . . . , 4, such that
i i i

40



D. Toshniwal and T.J.R. Hughes Computer Methods in Applied Mechanics and Engineering 376 (2021) 113576

T

P

T

A

E
(
c

W
m

s

o

P

• j1 = k2 ≤ j2 = k1 and A1 is a left-inverse of A2,

A1 A2 = I j1 ;

• k3 = k1, j3 = k4 and A3 maps the nullspace of AT
2 to that of A4,

AT
2 v = 0⇒ A4 A3v = 0 .

hen, A4 A3 AT
1 AT

2 = A4 A3.

roof. Let AT
1 AT

2 = I k1 + A5. Then, each column of A5 must be in the nullspace of AT
2 since

AT
2 (I k1 + A5) = AT

2 AT
1 AT

2 = I T
j1

AT
2 = AT

2 .

hen, using the nullspace-preserving property of A3, the claim follows,

A4 A3 AT
1 AT

2 = A4 A3(I k1 + A5) = A4 A3 . □

ppendix D. Algorithmic definition of periodic MDB-splines

The periodic version of MDB-splines is built by starting from the non-periodic version. First, referring to
qs. (122) and (123), build the matrices Km,− and K0,+. These are matrices of sizes (pm + 1) × (r0 + 1) and
p0 + 1) × (r0 + 1), respectively. Using these matrices, we build the matrix K m of size θ (m) × (r0 + 1) which
ontains all constraints required to enforce Cr0 smoothness at x0 ≡ xm ,

K m :=

⎡⎣K 0,+
0

K m,−

⎤⎦ .

ith H the multi-degree extraction corresponding to the non-periodic spline space, let P be any row permutation
atrix such that

P H K m =

⎡⎣01

K̂
02

⎤⎦ ,

uch that

• 0i are zero matrices with the number of rows equal to ji ≥ 0, i = 1, 2 (i.e., ji = 0 implies an empty matrix
with no rows);
• K̂ has 2(r0 + 1) rows.

We can always find such a P thanks to end-point derivative property of MDB-splines [30, Proposition 2.11(c)]
and Eq. (25). Then, Algorithm 3 helps compute a matrix H̃ of size nper whose rows are in the left-nullspace of
P H K m . In addition to the above definitions, the algorithm uses the row permutation matrix Q defined as

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
1

. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The highlighted entry of Q lies in its j1-th column (with the first column having the index 0). This permutation
matrix ensures that the pk + 1 splines supported on Ωk have indices µ(k), . . . ,µ(k)+ pk ; recall the interpretation

f indices in this periodic setting from Eq. (36).

roposition D.1. With Assumptions 2 and 3 in place, the matrix H̃ has full rank.
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Algorithm 3 Computation of H̃ (Appendix D)

1: H̃ ← identity matrix (size : n × n)
2: L ← P H K m

3: for j = 0 : rm do
4: H ← sparse nullspace of j-th column of L (Algorithm 2)
5: H̃ ← H H̃
6: L ← H L
7: H̃ ← Q H̃
8: return H̃

Proof. The claim can be established by considering the spline space on a 2m-element partition of [a, 2b− a] that
is built by duplicating the original partition on Ω at its right endpoint; the degree and smoothness distributions
are also duplicated. For such a spline space, P H K m is effectively an inner constraint matrix for imposition of

r0 smoothness, and [30, Theorem 4.3] says that Algorithm 3 will build a full-rank nullspace of P H K m as the
product of bi-diagonal matrices built using Algorithm 2. In particular, this means that H̃ will have the following
block-diagonal structure up to a circular permutation of its rows,⎡⎣I

A
I

⎤⎦ ,

where I are identity matrices and A is a (r0 + 1)× (2r0 + 2) matrix with the following sparsity structure,

A =

⎡⎢⎢⎢⎢⎢⎣
a1

1 a1
2 · · · a1

r0+1 a1
r0+2

a2
1 a2

2 · · · a2
r0+1 a2

r0+2

. . .
. . . · · ·

. . .
. . .

ar0+1
1 ar0+1

2 · · · ar0+1
r0+1 ar0+1

r0+2

⎤⎥⎥⎥⎥⎥⎦
Here all a j

i are non-negative, each column of A (and thus of H̃) sums to 1 and a j
r0+2− j = a j

r0+3− j , j = 1, . . . ,
0 + 1; the last equality corresponds to the imposition of C0 smoothness at x0. ■

Appendix E. Proof of Proposition 3.9

Proof. From Eq. (38), for a zero form f ∈ Λ(0)
M ,

f |Ωk =
[

fµ(k) fµ(k)+1 · · · fµ(k)+pk

]
HΩk ,per

⎡⎢⎣ BΩk
0,pk
...

BΩk
pk ,pk

⎤⎥⎦
From the definition of µ(k) and Eqs. (17), (36) and (40), it is clear that[

gµ(k) gµ(k)+1 · · · gµ(k)+pk−1
]
=
[

fµ(k) fµ(k)+1 · · · fµ(k)+pk

] (
D(0)

pk

)T
.

hen, the claims follow immediately following the proof of Proposition 3.6 as presented in Appendix C. ■

ppendix F. Integration and proxy fields of differential forms

In this appendix we provide some relations that may help make sense of how differential forms can be
anipulated or interpreted. We focus on the integration of 2-forms and proxy fields for i-forms, i = 0, 1, 2. In

Ω is an i-dimensional subset of R2, and G maps Ω to R3.
he following,
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Integration. When implementing the approach presented herein, L2 inner products of differential forms need to be
evaluated. As in Eq. (56), the L2 inner product of two i-forms f and g, i = 0, 1, 2, can be expressed as the integral

f the 2-form f ∧ ⋆g. Thus, it is sufficient to describe how integrals of 2-forms can be computed.
Let Ω be a 2-dimensional subset of R2, and let f = f12 dx1

∧ dx2 be a 2-form in R2. We will assume that
the orientation function o is equal to +1 for domains with a counter-clockwise orientation and −1 for domains
with a clockwise orientation; this is just convention and the opposite can be chosen as well. Choose one of the two
orientations for Ω . The integral of f on Ω is then computed as∫

Ω

f := o(Ω )
∫
Ω

f12 dx1dx2 , (124)

where the right hand side is the usual two-dimensional integral of a function f12 and o(Ω ) is ±1 dependent on the
hosen orientation of Ω . Note that changing the orientation of Ω reverses the sign of the right hand side; this is

different from when the orientation-agnostic, two-dimensional integral
∫
Ω f12 dx1dx2 is computed.

When G(Ω ) is a two-dimensional subset of R3, any 2-form in R3 can be integrated on G(Ω ) using the above
and Eq. (58).

Scalar and vector proxies. On 2-manifolds, we can also relate 0-, 1- and 2-forms to proxy scalar, vector and
scalar fields, respectively, using the metric tensor. In particular, let G(Ω ) be such a 2-manifold. Then, the following
relations are used to map differential forms to their proxy fields,

f (x) ↦→ f (x) ,

fi (x) dx i
↦→ gi j f j (x) ∂ x

i ,

f12(x) dx1
∧ dx2

↦→
1
√

g
f12(x) .

(125)

Here we use the same notation as in Eq. (54). The above relations in combination with the pullback, see Eq. (57),
can be used to associate i-forms in R3, i = 0, 1, 2, to proxy fields on 2-manifolds in R3. This can be seen as a
link between our approach and the approach of, for instance, [41]; the latter approach solves for proxy fields of our
differential forms.
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