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Abstract
Wind farm control is an area of research that looks to maximise the performance of individual but
most importantly the collective performance of wind farms. The performance of turbines located in a
wind farm is heavily dependent on the effects of turbine wakes, and improving the efficiency of wind
farms by mitigating the wake effects is an ongoing and promising field of research. Simulating the
wake effects of a turbine is generally done with computationally expensive physics based modelling
techniques like CFD simulations. The computational complexity of these models limits the scope of
optimisation that can be performed on wake mitigating controls strategies such as dynamic induction
control. A substitute engineering model like the free vortex wake model could provide better insight
into dynamic induction control by virtue of its computational efficiency allowing a wider optimisation
parameter space. In this thesis an optimisation framework based on a 2D implementation of the free
vortex wake model and genetic algorithm optimisation is used to investigate dynamic induction control
for a simple two turbine wind farm beyond the research that has been done up to this point. While
yet to be confirmed with higher fidelity simulations, initial results corroborate earlier findings for simple
dynamic induction signals and additionally indicate that dynamic induction control could benefit from
multiple harmonics. The optimisation framework achieves its goal in allowing a wider parameter space
to be searched for optimisation, even on consumer grade desktop hardware, and shows potential as a
tool for further investigation of dynamic induction control.
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1
Introduction

Global warming is one of the most important issues that threatens our world today [1], and tackling it
in time will be a major challenge. A key part in solving this challenge is the transition from fossil fuels
towards renewable energy sources to meet our ever increasing energy consumption. Even in recent
years the consumption of fossil fuels has steadily increased, despite a global increase in renewable
energy production [2][3]. Figure 1.1 below shows this trend in the composition of global electrical energy
generation since the 2000s.

Figure 1.1: Global composition of generated electrical energy. Source [3]

An increase in renewable energy alone will not suffice to stem global warming. In order to make
a meaningful impact renewable energy will need to start outpacing the growing energy demands to
combat the increase in fossil fuel usage. In addition, with the Russian invasion of Ukraine in 2022 and
the resulting energy crisis it has become clear that the energy independence of the EU from Russia is
essential for the energy security going forward.

Wind energy is one of the key contributors to renewable energy production today according to the
European Commission [4]. The European Commission has estimated that by 2030 up to 453 GW of
wind energy is needed to comply with the 2015 Paris agreement. More recently in response to the
Russia-Ukraine war the European Commission has declared that it aims to replace a large part of the
fossil energy imports from Russia with renewable energy, accelerating previous set targets and aims to
reach a target of 510 GW of wind power capacity by 2030 [5]. As of 2022 Europe has a combined total
wind power capacity of 255 GW, with 19 GW of new wind power capacity installed in 2023 [6]. This
falls significantly short of the estimated 30 GW a year needed over the period 2023-2027 to meet the
2030 targets. Figure 1.2 below shows the projected gap between the estimated current trend marked
by the central scenario and the required trend to reach the 2030 targets
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Figure 1.2: WindEurope scenario projections for newly installed wind power capacity in the EU. Source [6]

An important aspect of increasing the total wind power capacity in the EU is increasing the perfor-
mance of wind turbines and wind farms as a whole. In both onshore and offshore sectors the average
power rating of installed wind turbines have more than doubled over the last decade [6], with one of
the main driving forces behind the increasing power rating being the increase in rotor diameter [7]. In
addition the capacity factors of wind farms have been increasing due to the improvements in turbine
technology, allowing modern turbines to operate at their maximum power rating for a larger portion of
time.

The performance of turbines located in wind farm is heavily dependent on the effects of turbine
wakes [8]. Long term average power losses in wind farms due to wake effects can exceed 10% of the
total energy production [9]. Mitigating these wake effects is an ongoing field of research which shows
great potential to improve wind farm efficiency. Methods include wind farm layout optimisation or a
variety of turbine control methods which include wake steering, static induction control and dynamic
induction control [8]. Dynamic induction control in particular shows great potential in numerical studies
[8][10][11].

Dynamic induction control (DIC) involves dynamically derating turbines in such a way that down-
wind turbines are less affected by their wake in terms of power production. Derating is the process
of operating a turbine outside of its maximum potential power extraction. DIC works by giving up in-
dividual performance to benefit the collective of the wind farm. Previous research into DIC using LES
simulations [10] has identified a simple sinusoidal induction control signal with a characteristic optimal
frequency. Further research using free vortex wake methods and adjoint optimisation has found a
roughly periodic signal at around this same frequency [11].

This thesis aims to further explore DIC by building on this simple sinusoidal signal, expanding the
signal to include multiple harmonics and optimising the parameters. To this end an implementation of
a 2D free vortex wake model is used in conjunction with genetic algorithm optimisation. The effects of
inter turbine spacing and a semi-free optimisation method will also be discussed.

Chapter 2 will cover the theoretical framework that serves as the basis for the thesis. This chapter
also presents the implementation of the free vortex wake model, and provide a convergence study
for model validation. Chapter 3 will discuss the genetic algorithm optimisation method that is used.
Subsequently Chapter 4 will provide an overview and discussion of conducted simulations and their
results. Finally a conclusion is drawn based on all findings.



2
Theoretical Framework

This chapter aims to provide a theoretical framework as a basis for the thesis by providing the necessary
background knowledge and context on which the research builds. The chapter covers wind turbine
theory, previous research on wake mitigating control, the simulation framework and its implementation
as used in this study.

2.1. Basic wind turbine theory
This section introduces some basic concepts of wind turbine modelling and derives key quantities like
the coefficient of thrust, the induction factor and a relation for the power output of wind turbines that
are built upon in this thesis.

Most horizontal axis wind turbines have a three bladed rotor. As each blade is subjected to the
incoming wind its aerofoil generates a lift force along the blade that exerts a torque on the rotor shaft.
The combined torques of the blades drive the generator housed in the turbine nacelle. Modelling three
turbine blades individually introduces a lot of complexity. It is useful to represent the rotor as an ac-
tuator disk eliminating the need to individually model the blades, instead focusing on their combined
effects. The actuator disk is assumed to be a non-moving disk that is normal to the inflow direction and
over which the forces on the flow are uniformly distributed. In addition the flow is assumed to be an
incompressible, isentropic and inviscid fluid [7].

The actuator disk representation now allows for the application of conservation laws. The conser-
vation of mass, momentum and energy, and by extension the law of Bernoulli, allow the derivation of
key quantities that are useful in modelling wind turbines. The actuator disk is placed in an incoming
flow velocity U in [m/s] from which it extracts power P in [W ] while exerting a thrust force T in [N ] on
the flow itself. Due to the thrust force exerted by the rotor upon the in flowing wind a high pressure
region is created in front of the disk, while a low pressure field is created just behind it. The pressure
jump over the actuator disk itself is equal to ∆p = T

A . Figure 2.1 below shows an actuator disk in a flow
as described.

3



2.1. Basic wind turbine theory 4

Figure 2.1: Actuator Disk placed in flow.

Figure 2.1 shows the expansion of the stream-tube. With the cross sectional area of the stream
tube before and after the rotor denoted as A and Ae respectively this expansion can be expressed
as: Ae > A. The velocity after the turbine is denoted as Ue. Thus the velocity reduction in turn can
be expressed as (U > Ue), where U is the inflow velocity as stated earlier. Following the derivation
in Zaayer 2018 [7], this effect can be explained by using the conservation of mass. The mass flow is
conserved when passing through the rotor as:

ρUA = ρUeAe,

with air density ρ. This expression reduces to:

U

Ue
=

Ae

A
. (2.1)

By using the velocity deficit of the wake, U > Ue, in equation 2.1 it can be shown that the cross
sectional area of the wake has to expand to compensate for the loss of velocity in order to satisfy mass
conservation. Leading to the relation Ae > A.

By applying conservation of momentum the thrust force can be related to the loss in momentum
between the inflow and outflow. The reduction in velocity is proportional to the thrust as:

T = m(U − Ue). (2.2)

Using the principle of conservation of energy the extracted power can be expressed as:

P =
1

2
m(U2 − U2

e ). (2.3)

Since the power extraction is a result of the work done by the thrust force T , it can also be expressed
as:

P = TUr, (2.4)

where Ur is the velocity at the rotor. Combining these expressions allows the velocity at the rotor to be
written as:

Ur =
1

2
(U + Ue). (2.5)

Using these results non-dimensional performance indicators can be deduced. The induction factor
a represents the difference in velocity between the incoming flow and the speed at the rotor and is
given by:

a =
U − Ur

U
. (2.6)

Using (2.5), Ur and Ue can now be expressed as:
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Ur = U(1− a), (2.7)

Ue = U(1− 2a). (2.8)

This is useful as it allows the expressions for thrust force and power to be rewritten in terms of the
non-dimensional induction factor a. Also observe that for a ≥ 0.5, (2.8) becomes negative and thus
momentum theory only holds for a < 0.5. The thrust and power can be expressed as:

T =
1

2
ρU2A4a(1− a), (2.9)

P =
1

2
ρU3A4a(1− a)2. (2.10)

Equations 2.9 and 2.10 can be used to derive non-dimensional performance coefficients that only
depend on the induction factor a. The thrust coefficient CT and the power coefficient CP are defined
as:

CT = 4a(1− a), (2.11)

CP = 4a(1− a)2. (2.12)

The optimal power coefficient can be found at CP = 16
27 ≈ 0.59 with a = 1

3 , with the corresponding
thrust coefficient CT = 8

9 ≈ 0.89. This is the point at which the turbine reaches it maximum efficiency.
This limit is called the Betz limit.[7] Maximising the thrust force instead of the power will result in no
power generation as at that point (a = 0.5) the velocity at the rotor equals zero and thus the power, 2.4,
also equals zero.

For purposes of simulation it is useful to express the thrust coefficient in terms of the local rotor
velocity Ur. This allows the rotor velocity at the rotor in the simulation to be directly used for calculation
of turbine power. The coefficient of thrust expressed in the rotor velocity is denoted as C

′

T can be
derived as follows:

C
′

T =
CT

(1− a)2
=

4a

1− a
(2.13)

Now the maximum efficiency can again be obtained by maximising the power coefficient. The
corresponding thrust coefficient is then C

′

T = 2. The turbine power can be expressed in terms of Ur

and C
′

T as:

P = TUr =
1

2
ρAU3

rC
′

T . (2.14)

This formulation will prove useful for use with dynamic induction control signals expressed in the
local coefficient of thrust. This motivates the use of the local coefficient of thrust definition for this thesis.

2.2. Wind farm control
Wind turbines are continuously controlled in order to ensure optimal operation. This can be to achieve
different, sometimes conflicting, objectives such as power production optimisation or load mitigation.
This section will provide a short overview of relevant contemporary wind farm control methods and
introduces the concept of dynamic induction control and previous research into this topic.

Greedy control
The simplest and most common control strategy for a wind farm is called greedy control. In this con-
figuration every turbine in the wind farm tries to extract as much energy from the incoming wind as
possible. This is called maximum power point tracking (MPPT) [8], and is done by keeping the power
coefficient as high as possible, in other words as close as possible to the Betz limit. As the objective
for each turbine is to produce as much energy as possible, the wake effects on other turbines down-
wind are not taken into account. Therefor while each turbine is operating at or near its optimal power
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production given its respective incoming wind, the power production of the entire farm as a whole is
likely not optimal due to the wake effects reducing the available energy for downwind turbines. Greedy
control can be seen as a baseline performance to which wake management control strategies can be
compared.

Wind farms are usually orientated such that wake interactions are minimised under the prevailing
wind direction[12]. Therefor wake management with the aim of increasing power production is mainly
beneficial when the incoming wind direction is off-design, which is when the wake interactions are most
prevalent[8]. In addition if an implementation of wake mixing achieves faster wake recovery it could be
used to make more compactly designed wind farms viable. More compact wind farms would lead to
a lower levelized cost of energy (LCOE), by increasing either the density of turbines in- or decreasing
the total required surface area of a plot of land or sea.

Wake steering
Wake steering is a method to improve the power production of a wind farm by steering the wake of a
turbine in such a way that it has less of an effect on downstream turbines. The wake can be steered
by yawing the rotor, sacrificing some of the effectiveness of the yawed turbine. Since the thrust force is
now no longer parallel with the flow it induces a perpendicular component on it. This perpendicular force
component will push the wake sideways when compared to the flow direction. Figure 2.2 illustrates this
concept. Wake steering can improve the power production but it could also help with load mitigation
for downstream turbines. While wake steering does increase the loads on the yawed turbine itself, it
could also reduce the load on downwind turbines as turbines under a waked inflow experience greater
fatigue loads due to the turbulence introduced by the wake [8][13]. However, since downwind turbines
that are now no longer either fully or partially covered by a wake experience greater inflow velocities,
the experienced loads could also increase, ultimately leading to a trade-off.

Figure 2.2: Wake steering illustrated.

Induction control
Induction control regulates the induction factor of a wind turbine by either altering the rotor blade pitch
or using the generator to produce less power, thereby leaving more energy in the wake for the down-
stream turbine. The induction factor represents the decrease in speed of the wind flowing through
the actuator disk that represents the turbine blades. Both over and under induction compared to the
optimal induction factor can be used to derate the turbine. Over induction has been found to be more
effective than under induction at improving wake recovery [14]. By incrementally derating each succes-
sive downstream turbine less allows for a more even energy distribution over the total wind farm and
in theory yielding an overall higher energy output. The induction factor can be changed independent
of time or with a very low frequency leading to almost static behaviour. This is called Static Induction
Control (SIC).
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However, research into the application of SIC has not yielded significant benefits. The theoretical
larger benefits of SIC could have been a result of the wake models used. While SIC has been studied
using higher fidelity CFD models, and even in wind tunnel and field tests, the majority of models used
are low fidelity which could skew the results [8]. In addition Annoni et al [15] showed that while SIC
does leave more kinetic energy in the wake of a turbine, the conserved kinetic energy in the wake is
mainly concentrated at the edges of the wake. Due to wake expansion and meandering the additional
kinetic energy concentrated at the wake edges is not entirely captured by a second downwind turbine
and thus the downwind turbine is not able to benefit, leading to a net energy loss. Considering all of
this, the benefits of SIC appear to be limited, and unproven.

Active wake control
Active wake control (AWC) is a term used to describe a dynamic wake control approach where the
turbine is actively controlled in order to influence the wake as opposed to a static approach. Dynamic
Induction Control (DIC) is an extension on the SIC method discussed earlier. In this case the turbines
are derated in a dynamic, time-varying manner allowing the farm to adapt to changing inflow conditions
and each turbine to adjust its configuration to the wake effects of upstream turbines and to the benefit
of donwstream turbines. However, in addition the periodic induction changes of AWC can be used to
make the wake mix and break-up faster. Leading to more energy being recovered into the wake before
it reaches the next downwind turbine. AWC can be achieved by dynamically adjusting the yaw, pitch
or torque of the turbine.

In [16] Munters and Meyers studied DIC with the aim of experimentally identifying the characteris-
tics of an optimal DIC input signal using LES simulations on a wind farm. Gradient based optimisation
of these LES simulations with the goal of maximising aggregate wind farm power production lead to
optimal input signals that had a somewhat erratic and seemingly periodic nature. Munters and Meyers
also made a few observations pertaining to the effects of DIC in larger wind farms. The first row of a
wind farm with respect to the incoming wind direction has the most potential in improving wind farm
efficiency, which intuitively makes sense as the first row produces the most power and its wake affects
all downstream turbines in the wind farm. In addition self optimisation of turbines proved to be limited
to non existent leading to a almost greedy control case for the last row of turbines. Since there are no
significant wake effects propagating upstream, and there are no turbines in the wake of the last row
again it is logical that these turbines would resort to greedy control to maximise their power output.

In order to mimic the found optimal input signals form the gradient based optimisation Munters and
Meyers[16] used a sine in order to replicate the thrust coefficient variations that are the driving factor in
triggering vortex shedding and therefor wake mixing. This sinusoidal input signal was parameterised
in terms of its amplitude A and the non-dimensional Strouhal number St as:

C
′

T = 2 +Asin

(
2πSt

tU∞

D

)
(2.15)

Where in order to characterise the frequency of excitation independent of turbine size and inflow
conditions the dimensionless Strouhal number (St) is defined as:

St =
fD

u∞
. (2.16)

Note that the base level or mean of the sinusoidal signal in Equation 2.15 was not parameterised
and instead fixed at the Betz optimum thrust coefficient of 2. The remaining parameters were opti-
mised using a parameters sweep to avoid the computationally expensive gradient based optimisation
otherwise required [16]. While sufficient for the optimisation of the input signal as defined in Equation
2.15, this optimisation method does not lend itself well for optimisation of larger sets of parameters,
especially with a computationally expensive model like used in an LES Simulation. The final identified
parameters for turbines at spacing of 5 times the rotor diameter, or 5D, resulting from the parameter
sweep were chosen as (St,A) = (0.25, 1.50) [16]. It should be noted that both the Strouhal number and
amplitude were chosen at points interpolated from larger well performing ranges for these parameters.
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More recently, and in parallel to this thesis, van den Broek et. al. [11] implemented both a 2D
and a 3D free vortex wake model (FVWM) as surrogate models to simulate turbine wakes. Using the
2D model and adjoint optimisation for a two turbine setup at 5D spacing and optimising for maximum
power production they found an almost sinusoidal signal with a Strouhal number of 0.2, slightly lower
than Munters and Meyers but close to the earlier discussed range of well performing parameters in
their parameter sweep. The signal found by van den Broek et. al. much more closely resembles
a single sinusoidal signal than what Munters and Meyers originally observed in their gradient based
optimisation using LES. Taking into account themuch greater complexity of modelling involved with LES
when compared to free vortex methods a simpler optimal signal is to be expected, as mechanisms like
turbulence are not present. Van den Broek et. al. found that the mean value of the induction signal was
slightly derated when compared to greedy control at C ′

T = 1.75, and an amplitude of A = 0.8 which is
significantly lower than the amplitude determined Munters and Meyers at A = 1.5. The derating could
be related to the derating that occurs more frequently in low fidelity models when looking at SIC.

Munters and Meyers [10] also investigated the effectiveness of multiple AWC control strategies us-
ing large eddy simulations on a 4x4 wind farm and found that significant improvements to the baseline
greedy control could be achieved using both DIC and dynamic yawing of the turbine, with especially
promising results for combined dynamic (over) induction and yaw control. Yawing at a frequency that
corresponds to a Strouhal number in the range of St = 0.1−0.3 was found to trigger wake meandering
[17]. For the tested configuration of turbines dynamic yaw control was found to be more effective than
dynamic induction control. It has to be noted though that the effectiveness of dymanic yawing and wake
steering in general is likely dependant on the wind farm size as for larger farms the turbines are more
likely to be in the (steered) wake of another turbine. In such farms DIC might become the more effective
mechanism for increasing power extraction. Van den Broek et. al. also investigated the combination
of DIC and yaw control using a 3D implementation of the FVWM, again using adjoint optimisation but
noted that the optimiser struggles with overcoming local optima. Other optimisation methods may be
required to study the DIC and Yaw control problem in this case.

2.3. Wake simulation
In order to effectively investigate wakemanagement and control techniques to improve the performance
of a wind farm a sufficiently accurate wake model needs to be used that can capture the complex
behaviour of turbine wakes, while also being efficient enough to allow fast simulation and optimisation.
In the previous section both LES and FVWM are mentioned as being used for this goal. This section
will discuss wake simulation models and the choice for a FVWM implementation in this thesis.

Engineering models
There are different approaches to model turbine wakes. In general, there are two types of models; low
fidelity or surrogate/engineering models, and high fidelity models. The free vortex wake model can be
categorised as a low fidelity model whereas LES is a high fidelity model. Engineering models are often
simplified representations of a process or behaviour. These models can be very useful when used to
describe the behaviour of the system they are intended to represent, especially when the physics of the
real system are complex and require a lot of computational power to compute. Engineering models can
be derived from experimental data or by using physical laws and applying the necessary assumptions in
order to simplify the system to an appropriate level of complexity. Using an engineering model instead
of a more complex higher fidelity model for the purpose of wind farm optimisation applications can allow
conventional control techniques to be applied more easily by reducing the computational complexity
enough for the model to be used in varying control methods in real time, whereas conventional fluid
simulations cannot.

The Jensen model [18] was one of the first wake models to be developed and is based on the
conservation of mass principle. The Jensen model is relatively simple and is sufficient to calculate the
steady state wind velocity profile in the wake of a turbine. But it lacks the complex dynamic behaviours
that are required to model the mechanisms and interactions in wakes. This is a result of its steady
state nature and the use of assumptions and simplifications in its derivation. The Jensen model for
example doesn’t enforce conservation of both energy and momentum, and assumes the wake to retain
a cone-like shape where in reality the cone tapers off over distance.
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The FLORIDyn model by Gebraad and Van Wingerden [19] is an example of a dynamic engineer-
ing model that is simple enough in terms of computational complexity to be used in real time control
applications and describes the wake interactions between the turbines in a wind farm. The FLORIDyn
model is an extension on the earlier steady state FLORIS model, also by Gebraad, which itself is based
on the Jensen model.

Free vortex wake model
In order to develop a controller that enhances wake mixing while also being efficient enough for real
time simulation an engineering model is needed that can represent the dynamic behaviour in a wake
to a sufficiently accurate level. For yaw controlled wake steering it has been experimentally found
that the vortices that are released from the rotor tips drive the wake deformation in dynamic cases
[20]. An important limitation in many engineering models is that they do not describe the aerodynamic
mechanisms governing wake effects.

An alternative to resorting to LES simulations to model dynamic wake deformation is to use a free
vortex wake model (FVWM) approach. This allows the impact of the tip vortices to be investigated sep-
arately as a key mechanism that drives wake deformation and mixing. Free vortex wake methods have
been used in previous research to study the effects of yawing the rotor and originate in the modelling
of helicopter rotors [21]. Troldborg et al. [22] compared the results of a 3D free vortex wake model of a
turbine to CFD simulations and concluded that the free vortex wake model gave an accurate represen-
tation of the wake for a wide range of yaw angles except for higher angles. The relative simplicity of
the model provides opportunity to develop real time control methods based around wake mixing. The
advantages of the free vortex wake model have also been recognised by van den Broek et. al. in [11]
and [23]. In their research they empahsised that the FVWM allows simulations and optimisations to
be run on basic consumer grade hardware, in contrast to the hardware needed to perform complex
LES simulations. This is a distinct advantage of using free vortex methods as they allow much more
expansive search and optimisation of the control signal parameters. For the goal of this thesis the free
vortex wake model is the most suitable model for expanding the search for the optimal DIC control
signal for a two turbine system.

The free vortex wake model models the wake of a turbine as a set of discrete points representing
vortices shed by the rotor tips and their interactions. For simplicity a 2 dimensional FVWM will be con-
cidered. The rotor is represented by an actuator disk that is assumed to be under a uniform load. The
rotor diameter D and the inflow velocity V∞ are normalised to equal 1. The flow itself is assumed to be
incompressible and inviscid and assumed to be always perpendicular to the actuator disk i.e. aligned
with the x axis. At each time step a point is shed from each rotor tip as shown in Figure 2.3.

Figure 2.3: Vortex Points shed from the edges of the 2D actuator disk.

Each of the shed vortex points has three states consisting of x and y coordinates and the vortex
strengthΓ. The strength of the vortices at each point is derived from the vorticity equation in combination
with momentum theory and can be expressed as in equation 2.17. It is assumed that the vortex strength
is constant in time.
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Γ =
1

2
V 2
∞CT∆t (2.17)

The points move in space under the influence of the local velocity at their location, which is composed
of the incoming wind speed V∞ and the contribution of all other vortices by means of induced velocities
v as: [

Vx

Vy

]
=

[
V∞
0

]
+

[∑N
j ̸=i vx(i, j)∑N
j ̸=i vy(i, j)

]
. (2.18)

The induced velocity components vx and vy can be calculated for each pair (i, j) as:

vx =
Γj

2π

yj − yi
ri,j

(
1− e−

ri,j

c2

)
, (2.19)

vy =
Γj

2π

xj − xi

ri,j

(
1− e−

ri,j

c2

)
. (2.20)

Where c is the characteristic core size with the distance between points i and j. The exponential term
containing the core size is required because without it, as ri,j becomes smaller the induced velocity will
increase boundlessly. The core size is taken constant for simplicity here, but there are also variants of
the free vortex wake model where core growth is taken into account [21]. The distance between point
i and j is given by ri,j as in equation 2.21 below:

ri,j =
√

(yj − yi)2 + (xj − xi)2. (2.21)

Figure 2.4 illustrates for the point at index 1, denoted by a green point, the relative distance vectors
ri,j to all of the other vortex points. In this example only six points are used. One can imagine that
as the amount of simulated points increases the amount interactions also increases dramatically. The
orange circles represent the characteristic core size c. A balance between the simulation fidelity and
simulation speed has to be found in order to achieve efficient simulations.

y

x

V∞

(x1, y1,Γ1)

(x3, y3,Γ3)
(x5, y5,Γ5)

(x2, y2,Γ2)

(x4, y4,Γ4)
(x6, y6,Γ6)

�r13

�r12

�r14

�r16

�r15

c

Figure 2.4: Vortex Points shed from the edges of the 2D actuator disk



2.3. Wake simulation 11

Because each point moves as a result of its local velocity as denoted by equation 2.18, the simulation
can calculate the new position of each point in discrete time iteratively. For example the vortex point at
index 1 will move to index 3 and its new position can be calculated as:[

x3

y3

]
=

[
x1

y1

]
+

[
Vx

Vy

]
∆t. (2.22)

A state vector z can be chosen that contains all x, y and Γ states for each point of the simulation.
Since at every time step k a new point is shed from the rotor, the amount of states would increase over
time. In order to have a constant amount of states the model is initialised with all states present in a
grid pattern, and zero vortex strength. By reassigning the states for every point at every time step, and
re-initialising the first points a constant amount of points is retained. Essentially the points are being
continuously recycled. The FVWM can now be described as an update equation of the form:



x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

...
xn(k + 1)
y1(k + 1)
y2(k + 1)
y3(k + 1)
y4(k + 1)

...
yn(k + 1)
Γ1(k + 1)
Γ2(k + 1)
Γ3(k + 1)
Γ4(k + 1)

...
Γn(k + 1)


︸ ︷︷ ︸

z(k+1)

=

 P 0n×n 0n×n

0n×n P 0n×n

0n×n 0n×n P


︸ ︷︷ ︸

R



x1(k)
x2(k)
x3(k)
x4(k)
...

xn(k)
y1(k)
y2(k)
y3(k)
y4(k)
...

yn(k)
Γ1(k)
Γ2(k)
Γ3(k)
Γ4(k)

...
Γn(k)


︸ ︷︷ ︸

z(k)

+



0
0

vx,1
vx,2
...

vx,n
0
0

vy,1
vy,2
...

vy,n
0
0
0
0
...
0


︸ ︷︷ ︸

v(k)

∆t+



0
0
V∞
V∞
...

V∞
0
0
0
0
...
0
0
0
0
0
...
0



∆t+



x1

x2

0
0
...
0
y1
y2
0
0
...
0
Γk

Γk

0
0
...
0


︸ ︷︷ ︸
zI(k)

. (2.23)

with the number of points denoted as n, m = n− 2 and matrix P as:

P =

[
02×m 02×2

Im×m 0m×2

]
=



0 0 0 0 0 . . . 0 0
0 0 0 0 0 . . . 0 0
1 0 0 0 0 . . . 0 0
0 1 0 0 0 . . . 0 0

. . . . . . . . .
...

...
0 0 0 1 0 . . . 0 0


(2.24)

The vector zI(k) contains the x, y and Γ values of the points being initialised at the rotor tips. The
coordinates x1, y1 and x2, y2 are constants and Γk = 1

2V
2
∞C

′

T (k)∆t is dependent on C
′

T (k). The in-
duced velocity vector v(k) is nonlinear as the induced velocities depend non linearly on xn, yn as per
equations 2.19, 2.20 and 2.21. The matrix P is stacked diagonally in a reassignment matrix R such
that it is multiplied with each of the sets of states xk, yk and Γk. Multiplication by R of the states in
combination with the addition of vector zI(k) handles the recycling and initialisation of the points with
index 1. Additionally, it handles the reassignment of all states for the next iteration k, clipping the now
redundant final states.
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Implementation
A 2D free vortex wake model of a two turbine system was implemented in MATLAB in order to allow it
to be used in numerical optimisation. To this end the model was formulated as having the input signal
C

′

T (k) as sole input and a performance metric as sole output. This output was chosen to be combined
power output of a theoretical two turbine system, as maximisation of this value is desired. In addition
the implementation has a set of environment parameters that are determined by the experimental setup
and a set of model parameters pertaining to the implementation of the free vortex wake model itself.

The free vortex wake model requires the induced velocity vector v(x) to be calculated at each time
step. Since the distance between each set of points rij is needed for the calculation of the induced
velocity of each point in the simulation the computational complexity is O(n2) if implemented with a
nested for loop over all points 1, 2, ..., n. Alternatively, a method was implemented that utilises matrix
operations instead.

For the convenience of the calculation of the induced velocities the coordinates of points 1, 2, ..., n
are stored in two matrices with odd numbered points in the top row, and even numbered points in the
bottom row as:

Cx =

[
x1 x3 ... xn−1

x2 x4 ... xn

]

Cy =

[
y1 y3 ... yn−1

y2 y4 ... yn

]
In order to calculate the induced velocities the differences between the individual coordinates of

all points need to be calculated. These differences can be subdivided into four parts: Top-Top, Top-
Bottom, Bottom-Top and Bottom-Bottom differences.

The Top-Top differences in x, (TTx), can be calculated from the top row of Cx:

TTx =


x1 x1 . . . x1

x3 x3 . . . x3

...
...

. . .
...

xn−1 xn−1 . . . xn−1

−


x1 x3 . . . xn−1

x1 x3 . . . xn−1

...
...

. . .
...

x1 x3 . . . xn−1



=


x1 − x1 x1 − x3 . . . x1 − xn−1

x3 − x1 x3 − x3 . . . x3 − xn−1

...
...

. . .
...

xn−1 − x1 xn−1 − x3 . . . xn−1 − xn−1


The Top-Bottom differences in x, (TBx), can be calculated from the top and bottom rows of Cx as:

TBx =


x2 x2 . . . x2

x4 x4 . . . x4

...
...

. . .
...

xN xN . . . xN

−


x1 x3 . . . xn−1

x1 x3 . . . xn−1

...
...

. . .
...

x1 x3 . . . xn−1



=


x2 − x1 x2 − x3 . . . x2 − xn−1

x4 − x1 x4 − x3 . . . x4 − xn−1

...
...

. . .
...

xN − x1 xN − x3 . . . xN − xn−1


The Bottom-Top and Bottom-Bottom differences can be calculated from Cx in the same fashion.
By grouping the calculated differences in a matrix of the form:

Dx =

[
TTx BTx

TBx BBx

]
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We obtain the following matrix:

Dx =



x1 − x1 x1 − x3 . . . x1 − xn−1 x1 − x2 x1 − x4 . . . x1 − xn

x3 − x1 x3 − x3 . . . x3 − xn−1 x3 − x2 x3 − x4 . . . x3 − xn

...
...

. . .
...

...
...

. . .
...

xn−1 − x1 xn−1 − x3 . . . xn−1 − xn−1 xn−1 − x2 xn−1 − x4 . . . xn−1 − xn

x2 − x1 x2 − x3 . . . x2 − xn−1 x2 − x2 x2 − x4 . . . x2 − xn

x4 − x1 x4 − x3 . . . x4 − xn−1 x4 − x2 x4 − x4 . . . x4 − xn

...
...

. . .
...

...
... . . .

...
xn − x1 xn − x3 . . . xN − xn−1 xn − x2 xn − x4 . . . xn − xn


The columns of Dx each contain the differences at point i to all points j with i = j equal to 0. This

will prove useful when calculating the sum of the induced velocities for each point i. The difference
matrix for y, Dy, is analogous to Dx. And a matrix containing the distances between all points, R can
be calculated from Dx and Dy as D2

x + D2
y where the squares are the element wise squares (.^2 in

MATLAB). The induced velocites for x and y can then be calculated by applying equation 2.19 and 2.20
to each element in Dx and Dy respectively in combination with R. If we then sum the elements per
each column we obtain the sum of all induced velocities in x and y per point.

The model parameters require tuning as they have a large effect on the model output, to this end a
convergence study has been performed and will be discussed later in this chapter.

Input signal Environment parameters Model parameters
Thrust coefficient: C ′

T (k) Inflow velocity: V∞ Time step: ∆t
Turbine diameter: D Core size: c
Turbine spacing: S Vortex Points: P

Air density: ρ Grid spacing dgrid
Simulation time: tsim

Performance delay: tdelay

Table 2.1: Free vortex wake model parameters.

Wind farm implementation
Now that the model itself has been discussed, the two turbine wind farm setup itself will be discussed.
The two turbines are assumed to be of the same specification and are represented in the model in
terms of a set of parameters as found in Table 2.1. The turbine dimensions are expressed in terms of
rotor diameters in order to scale the problem. Because the goal is to study wake mixing, the relative
positioning of the turbines is simplified to be inline of each other with respect to the incoming flow
direction as illustrated in Figure 2.5. This setup represents the worst case scenario in terms of off
design wind direction for such a two turbine system.

Figure 2.5: Two Turbine configuration.
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In order to model the wake effects of the upstream turbine on the downstream turbine two distinct
free vortex wake models were implemented. The models operate separately with an interface layer
to model their interactions. This interface layer works by first calculating the intermediate average in-
duced rotor velocity around the downstream turbine rotor and then using this as a velocity input for the
free vortex wake model of the second turbine. In this way the effects of the velocity in the wake of
the upstream turbine are propagated to the downstream turbine, while direct interaction between the
sets of vortex points of the two models is avoided. Direct interaction between points of the two models
would drastically increase the computational complexity, as for every point in both models the induced
velocity from every other point will have to be calculated.

The velocity fields in the simulation can be extracted by calculating the induced velocities at every
point in a 2D grid spanning the simulation environment. Figure 2.6 below shows an example of an
isolated flow field for the wake of turbine 1 under a static C

′

T generated as a result of the implemented
free vortex wake model. As can be clearly seen in Figure 2.6, the simulated wake shows a significant
reduction in axial velocity compared to undisturbed air. In addition the wake also shows known charac-
teristics like a sharp boundary layer in the near wake, with a more turbulent boundary layer as the wake
propagates downstream and wake mixing starts to occur. In the case of the FVWM however this tur-
bulence is not the result of any modelled wake mechanism but the result of instability of the model itself.

Figure 2.6: Turbine 1 flow field visualisation under a static coefficient of thrust signal.

When a sinusoidal signal is applied to the thrust coefficient the flow field now exhibits a curling up of
the boundary layer and its subsequent breakup and thus wake mixing. The periodic nature of the curls
causes high and low velocity regions propagating down the wake. In this case in terms of velocity it is
not clear visually whether the average velocity in the wake has increased compared to a static thrust
coefficient. The effectiveness of such an input signal will be investigated later in Chapter 4.

Figure 2.7: Turbine 1 flow field visualisation under a sinusoidal coefficient of thrust signal.
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Power output
For use in optimisation, and more specifically the maximisation of the power output of the two turbine
system, the power output needs to be extracted from the model. Since the velocity in the simulation
can be determined at every time step and the local coefficient of thrust is an input to the model, an
expression can be derived for the the total instantaneous power output. Equation 2.25 is the sum of
the two individual turbines and is based on Equation 2.14.

P (k) =

2∑
i=1

1

2
ρ
π

4
D2C

′

T,i(k)Vrot,i
3∆t (2.25)

At each time step the power P (k) is only dependent on the thrust coefficients, C ′

T,i(k), and the air
velocity at the rotors Vrot,i(k). All other terms are constant in time. As the second turbine does not
have another turbine in its wake it does not need to take any wake mitigating measures. Therefor the
thrust coefficient for turbine 2, C ′

T,2(k), can be fixed at the Betz optimum, extracting as much energy
from the incoming flow as possible i.e. operating under greedy control. Additionally the area of the
actuator disk is now expressed in turbine diameter D.

The currently implemented model requires a certain amount of time before the first points that are
shed from the edges of the actuator disk reach and pass the second turbine. Therefor, the velocity
field around the second actuator disk can only accurately be calculated after the wake has developed
to cover the simulation space. To account for this the simulation does not initially track performance
until a time tdelay has passed. This time is chosen such that the simulation has enough time to develop
the wake to reach the second turbine with some margin. Additionally the simulation time tSim repre-
sents the total simulation time over which the performance is tracked.

The expression for turbine power output, Equation 2.25, is based on the axial flow velocity at the
rotors of the turbines Vrot,i. Thus the computation of the combined power output over time interval ∆t
requires the computation of the velocity at the rotors of both turbines. Since it is not computationally
efficient to calculate the entire velocity field in the simulation environment when only the rotor velocities
are required for the result, the rotor velocity is taken as the average velocity in a small area around the
actuator disk that represents the rotor. By placing a grid in a small area around the actuator disks and
averaging the calculated induced velocity over each point in this grid as a result of the vortex points
released by the rotor, an approximation of the axial rotor velocities can be found. Figure 2.8 illustrates
the grids around both rotors. Note that in the current implementation the rotor velocity of the second
rotor is calculated from FVWM representing the second turbine, which is fed the velocity calculated at
the second turbine from the first FVWM using the same grid.

Figure 2.8: Rotor velocity grid layout in the simulation.

Power output correction
As mentioned in Section 2.1, the maximum theoretical power output is achieved at C ′

T = 2 and the
power output follows Equation 2.13. From the theory in Section 2.1 we know that the maximum power
production should be achieved at C ′

T = 2. In order to verify that the power output of the free vortex
wake model follows this expected trend a set of simulations was conducted with static input signal over
a range of C ′

T between 1 and 3 for D = U∞ = 1. As can be seen in Figure 2.9 the unmodified instan-
taneous power output not only severely overestimates the power produced, but also has its optimum
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around values of C ′

T that are significantly larger than those of the theoretical model. In order to avoid
the results of the future optimisations being skewed by this power output behaviour a correction func-
tion was applied, bringing the calculated power from actual rotor velocities in line with the theoretical
model. The correction function is a simple linear function that is multiplied with the power output calcu-
lated by the FVWM from the rotor velocities to counteract the overestimation at larger C ′

T values. The
correction function can be parameterised as: CAC

′

T + CB , with CA = −0.0676 and CB = 0.899. Note
that the optimum of the corrected power output function is now much closer to C

′

T = 2, at C ′

T = 1.96.
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Figure 2.9: Power output plots for theoretical, corrected and original model.

The corrected system power output can now be denoted as:

P (k) =

2∑
i=1

1

2
ρ
π

4
D2C

′

T,i(k)Vrot,i
3∆t

(
CAC

′

T,i(k) + CB

)
(2.26)
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Convergence Study
The input and environment parameters in Table 2.1 are physical parameters that are set for a specific
problem. The remaining model parameters do not directly relate to set physical properties of a given
turbine set up and have to be chosen before an optimisation can be performed. The simulation time
tsim and performance delay tdelay can be chosen in such a way that the wakes in the simulation have
time to develop before performance is tracked and such that the performance is tracked over a long
enough time period to capture a realistic picture of the performance of the applied input signal. If the
simulation time is taken too short bias will occur when the input signal will not contain enough full pe-
riods, shifting the mean C

′

T . The time step, core size, amount of vortex points and the grid spacing of
the two grids around both turbines are parameters that need to be tuned in order to find a good bal-
ance between computational complexity and accuracy. To this end a convergence study is performed
on these parameters to determine around what value the increase in precision no longer justifies the
added performance cost.

The convergence study was performed on the implemented FVWM with a performance metric as
output. This performance metric is the corrected aggregate power output of the two turbine system
as defined by Equation 2.26. The power output is the value that needs to converge in order to have
confidence in the precision of the FVWM when applying it for the identification of induction signals later
in this thesis. The convergence of the power output was studied relative to the maximum power output
result in the set of studied parameter values for each parameter. In this way the differences between
the results can be viewed independently of the absolute values giving a more clear picture of the con-
vergence.

The amount of vortex points and the time step can not be studied for convergence independently.
Because at each time step a set of vortex points is released from the rotor tips and the number of vortex
points is limited, decreasing the time step will lead to a situation where there are not enough points in
the simulation to cover the wake to the downstream turbine. Therefor for each time step a separate
study for the number of vortex points is needed.

For each∆t the convergence of the number of points was studied first. For a∆t of 0.1 Figure 2.10a
below shows the model outputs as a function of the amount of points used in the simulation, and Fig-
ure 2.10b shows the associated required simulation time. Increasing the number of vortex points will
increase the distance the wake will span behind the first rotor, but also drastically increase simulation
time. The number of vortex points was chosen as P = 300 as any increases in the number of points
beyond that point no longer justifies the added computation time.
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(a) Relative Power convergence.
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Figure 2.10: Convergence study for number of vortex points for ∆t = 0.1.

The grid around the actuator disks in the implementedmodel is defined by a set extents with variable
resolution. This resolution determines the amount of points that make up the grid, and in this case was
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defined by the spacing between grid points. As with the vortex points, increasing the amount of points
will lead to greater accuracy of the rotor velocities that are essential for calculating the power output,
but at the cost of increasing computational time. Figure 2.11a shows the convergence of the model
output for different grid spacing settings, and Figure 2.11b shows the associated simulation time. The
grid spacing was chosen at dgrid = 0.1 as decreasing the spacing further does not provide any signifi-
cant improvements to the convergence of the output, but does dramatically increase the simulation time.
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Figure 2.11: Convergence study for grid spacing for ∆t = 0.1.

The characteristic core size was also studied for convergence. Decreasing the core size will not
lead to the model performing additional calculations every time step, but it does impact how the vortex
points interact with each other through the induced velocities as governed by equations 2.19 and 2.20.
Figure 2.12b confirms the core size did not have a significant impact on simulation time as expected.
Figure 2.12a shows that the core size itself also has minimal effect on the model output, as the relative
power remains within 2% of the largest tested value, but does seem to converge slightly below c = 0.01,
motivating the choice for the core size at this value.
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Figure 2.12: Convergence study for core size for ∆t = 0.1.



3
Genetic Algorithm optimisation

In this chapter the genetic algorithm optimisation method and why it is well suited for the optimisation
problem of finding DIC control signals by simulating with the FVWM will be discussed.

3.1. Origins
Genetic algorithms are part of a field in technology generally referred to as evolutionary computing.
The algorithms involved with evolutionary computing in turn are referred to as evolutionary algorithms.
Evolutionary computing is based on the Darwinian principles of evolution which centers around survival
of the fittest as a way of solving problems [24]. The algorithms mirror how in biology the genetic diver-
sity of a population in combination with mutations allows adaptation of the genome to environmental
circumstances through evolution. The insight that these principles could be used in automated problem
solving can be traced back to as early as the 1940s [24]. Unlike conventional convex optimisation tech-
niques GA optimisation is not based on model characteristics like the gradient or hessian and is only
dependent on the model output. This allows genetic algorithms to be used in problems where gradient
based optimisation methods generally struggle, for example problems that have multiple local maxima
or minima. The two main applications of genetic algorithms are in the optimisation of the performance
of a certain system, and the fitting of quantitative models [25]. The first and most well known method
is the version of GA that this chapter will focus on.

3.2. Main Principle
In GA optimisation the optimisation problem is approached as an evolutionary process, where model
parameters fill the role of genes. A set of genes can be combined in the evolutionary equivalent, namely
a chromosome. Each chromosome is a possible optimal parameter set that will be tested for fitness
against a large set of other chromosomes that make up the population. The GA then simulates repro-
duction between the fittest chromosomes within the population in order to generate a new population
that can be tested for fitness. This reproduction part is usually performed with a crossover step and a
mutation step. In the crossover step chromosomes of the best performing parents (elite parents) are
split and recombined into new chromosomes called children. The mutation step generates additional
children by randomly mutating the genes of elite parents into new children. These newly generated
children along with a set of the elite parents then make up the new population. By performing both
crossover and mutation the new population contains a set of chromosomes that are genetically differ-
ent but based upon their parents thereby allowing the next iteration to search a new part of the param-
eter space that is availible to the GA. Thus with every generation the GA aims to iteratively improve
the fitness of the population. Because between every generation a set of elite parents are maintained
each generation will at least contain an equal performing chromosome to the best of the last generation.

19
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Parameter definition
Historically the optimisation variables in genetic algorithms are defined in binary form, i.e. the optimi-
sation parameters are encoded in binary and these methods are sometimes referred to as classic GAs
[25][26]. In this case each optimisation parameter uses one or multiple genes to encode a numerical
value. An example of a binary encoded chromosome that encodes three parameters with values 1, 2, 3
can be seen in Figure 3.1. x = 1 for example is encoded in binary as 01. Note that in this case it takes
six genes to encode three integer parameters with values xi < 3. Optimising a larger set of parame-
ters, or problems that require a higher level precision will require encoding of their numerical values
in binary with a larger amount of genes thereby making the search space increasingly bigger causing
inefficiencies [25]. In addition the conversion between real and binary representation for testing the
fitness of the parameters at each step requires extra computational power [25].

Figure 3.1: Binary coded chromosome encoding x = [0, 1, 2, 3].

Encoding the parameter values in real numbers allows the chromosomes to consist of a single gene
for each parameter. This representation is simpler to implement and use since it avoids any conversion
and potential issues with binary representations like bias [26].

Figure 3.2: Real value coded chromosome encoding x = [0, 1, 2, 3].

Initial population generation
First the initial population of chromosomes is generated. This population is usually simply generated
randomly within the given set constraints [26], but depending on the specific optimisation problem could
also involve more complicated generation methods [24]. The size of the population is an important
parameter in the GA optimization problem as it determines the gene pool size. A larger population size
will allow more distinct genes to be evaluated, but also increase the computational cost of evaluating
a single generation for fitness. Introducing previously found solutions into the initial population is also
possible and could aid the optimisation by adding well performing genes to the population early.

Selection
At every generation each chromosome is tested using a fitness function which outputs a fitness score
that is used to compare the performance of the competing chromosomes. Next the score is scaled
according to a specified method which is called the fitness scaling function, resulting in what are called
expectation values. In practice the fitness function represents the performance of the system that is
being optimised. With each chromosome scored they can be ranked from best to worst performing. In
order to generate next generations children from the current population parents need to be selected
for crossover. The choice of parents can follow differing methods but in general better performing
chromosomes are more likely to become parents for the next generation. This is essential in driving
the evolutionary process that is the basis for GA optimisation [26].
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Crossover
In the crossover phase the genes of two selected parents are combined in a certain way as to produce
genetically unique children. By performing crossover with top performing parents, the genes of the
generated children will consist of a mix of successful genes from the previous generation. Crossover
can be performed in a multitude of ways. The most basic crossover method is single point crossover.
In single point crossover a random crossover point is selected where the chromosomes of the par-
ents are both cut and the genes past the crossover point are swapped to create two unique children
chromosomes. Figure 3.3 below illustrates this process for chromosomes with 8 genes.

Figure 3.3: Example of crossover.

Crossover could also be performed using multiple crossover points or even on a per gene based
swapping approach like uniform crossover. Again a real coded genetic algorithm avoids some of the
issues that occur when performing crossover on binary coded chromosomes [26]. One of these issues
is that multiple genes are needed for each parameter in binary encoded GAs leading to crossover
occurring within the genetic material of a parameter value instead of crossing over whole parameters
with real valued GAs. Crossover is however not limited to just swapping genes, it can also involve any
method merging or blending genes by averaging for example. Crossover functions can be customised
or even combined with other crossover functions in order to include extra selection steps or other
adaptations in order to suit specific problems [24].

Mutation
The mutation phase is essential in introducing new genes into the population, thereby creating genetic
diversity. This genetic diversity allows the GA to explore new genes and thus improves the ability to
search for the optimal solution. In the mutation phase the genes of a parent are mutated on a per gene
basis with a small probability. Like with the crossover step, the mutation methods can be chosen to
suit the specific optimisation problem. Two types of mutation are uniform and dynamic mutation [26] as
the name suggests in dynamic mutation the mutation process changes over the course of generations,
while static mutation does not. This is useful as it could be beneficial to introduce a larger diversity in
the initial generations in order to explore the parameter space but a more granular approach to refine
the genes in the later stages of the optimisation problem.

Iteration and termination
The population for the next generation is built from a combination of the children generated though
the crossover and mutation phases and a set of elite parents that remain unmodified. Therefor, the
top performing genes will remain and the genetic algorithm will not lose performance over generations.
The ratio between elite parents and new children again can be tuned to suit the specific optimisation
problem.

Termination of the GA is generally initiated when one of multiple criteria are met. These criteria can
again differ per implementation but in general these include [24]:

1. Maximum number of generations is exceeded
2. Maximum total elapsed CPU time is exceeded
3. The improvement between generations has fallen within the set threshold during a set number of

generations
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Once the algorithm is terminated the top performing chromosome of the current population is se-
lected as the solution to the GA.

Considerations
The performance of genetic algorithms is dependant on a multitude of settings, parameters and func-
tions that influence the algorithm. These options can be tuned to better suit the given optimisation
problem in order to improve the efficiency of the optimisation. The population size and number of gen-
erations are two of the most influential parameters in any GA, and choosing them appropriately impacts
the ability of the GA to find a global optimum significantly.

Genetic algorithms have some key benefits over gradient based optimisation that motivate the
choice for this optimisation method to be used with the task of optimising DIC signals. The main benefit
relevant to this work is the ability to search a vast parameter space in a relatively efficient way. As van
den Broek et. al. [11] noted, gradient based optimisation methods can be very dependent on the initial
guess in an optimisation space that has multiple local optima or is otherwise very flat, suggesting to
use multi-start optimisation in future research. Due to the nature of GA optimisation, with a selection
of elite chromosomes progressing to the next generation, the solver can simultaneously investigate
multiple local optima by retaining the genes of not just the best performing chromosome. Combined
with the initial population being distributed over the parameter space the GA should be less sensitive to
local optima affecting the result, while also being more efficient than multi-start gradient based optimi-
sation due to the parallel investigation of optima. Another benefit is that the implementation of genetic
algorithms does not require gradient information.



4
Results

This chapter will discuss the results of the different optimisation cases that were performed. First a
short recap of the general optimisation problem is given. Then sinusoidal input signals will be covered,
followed by the introduction of a semi-free optimisation method. Finally a discussion section will provide
an overview of the obtained results and put them into context.

4.1. Optimisation of the free vortex wake model
In this work a two turbine wind farm simulation setup has been implemented in a 2D free vortex wake
model in MATLAB. The turbines are placed in line with each other with respect to the incoming wind at
a spacing of 5D. The model uses the local coefficient of trust for the first turbine, C ′

T (k), at every time
step as an input. The second turbine is operated under greedy control as it does not need to take the
performance of downwind turbines into account. The input can be generated at every time step by a
parameterised function like a sine to represent the DIC signal. The goal is to optimise the parameters
of this DIC signal to maximise the power output of the FVWM. Therefor the cost function used for
evaluation of the fitness of the chromosomes in the GA will be the aggregate power output of the two
turbine system as described by Equation 2.25 in Chapter 2.3. By using multiple distinct parameterised
functions as input signals this setup allows further exploration of DIC. In addition model parameters
like turbine spacing can be varied in order to investigate their effects on the DIC optimum. The input
signal is constrained in order to prevent unrealistic solutions and define the parameter search space.
These constraints will be adapted to the specific optimisation problem and hand and will be covered in
the relevant sections.

4.2. Sinusoidal input signals
As discussed in Section 2.2 previous research into DIC input signals by Munters and Meyers [10] [16]
has identified that a sinusoidal input with a characteristic frequency of St = 0.25 is effective in triggering
wake mixing and thereby improving the performance of wind farms under waked conditions. Further
research by van den Broek et. al. [11] has corroborated this phenomenon and found similar results
for the characteristic frequency at St = 0.2. The different approach in modelling with Munters and
Meyers using LES simulations and van den Broek et. al. using a FVWM implementation suggests that
the lower fidelity FVWM could be used in order to study DIC imput signals more efficiently than LES
would allow due to the computational complexity involved. The aim of this thesis is to expand on this
previous research by investigating DIC beyond a single sine utilising the FVWM in conjunction with GA
optimisation to search the large parameter space.

4.2.1. Single Sine
First an attempt was made to recreate the findings of Munters and Meyers using the Free vortex wake
model and GA optimisation. To this end the GA was configured to optimise three parameters that
describe a sinusoidal signal:

23
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α+ βsin(ωt) (4.1)

Where α represents the base level of the signal, β represents the amplitude and ω represents the
frequency in rad/s. For this optimisation the frequency was expressed in terms of the Strouhal number
in the fitness function as:

St =
fD

V∞
=

1

2π

D

V∞
ω (4.2)

Solutions to the genetic algorithm are of the form:

x∗ =
[
α β 1

2π
D
V∞

ω
]
=

[
C

′

Tbase dC
′

T St
]

(4.3)

The optimisation parameters are constrained by an upper and lower bound in order to limit the pa-
rameter search space to a limited but realistic range and thereby improve the efficiency of the genetic
algorithm. The simulation is run for 900 time steps, where during the first 30 time steps the perfor-
mance is not tracked in order to allow the flow to develop to the quasi steady state that results from
the sinusoidal input i.e. tsim = 90, tdelay = 3 and ∆t = 0.1. The turbines are placed at a distance
of 5 rotor diameters (or 5D) apart, and it is assumed that the second turbine is operating at the Betz
optimum of C ′

T = 2, i.e. under greedy control policy. For the optimisation , the genetic algorithm is
configured to use 15 generations and a population size of 50. Choosing the population size relatively
large compared to the amount of optimisation parameters allows the GA to explore a larger parameter
space. By experimentation it was found that for this case 15 generations was enough to converge to a
solution and further generations would not lead to any significant improvements.

Derating
The genetic algorithm produces the following solution:

x∗ =
[
C

′

Tbase dC
′

T St
]
=

[
0.881 0.854 0.418

]
(4.4)

It can be observed that the base level, and thus mean, C ′

T is significantly below the Betz optimum
of C ′

T = 2. This derating of the average coefficient of thrust for the upstream turbine is notable, as this
phenomenon has also been observed in static induction control optimisation using other theoretical
models [8], and to a lesser extent in [11]. However it has been shown that operating the upstream
turbines in such a state does not provide a benefit to downstream turbines in real world applications [8].
Like in Munters and Meyers [16] the base level C ′

T can also be fixed at the Betz optimum. Their imple-
mentation is shown in Equation 2.15. Fixing the mean coefficient of thrust will eliminate the tendency
of the optimisation of the free vortex wake model to derate the first turbine, and allow optimisation of
the amplitude and frequency of the input signal.

Optimising the same problem with a C
′

T constrained to the Betz optimum yields the following result:

x∗ =
[
C

′

Tbase dC
′

T St
]
=

[
2.000 1.984 0.284

]
(4.5)

Comparison to existing research
The GA optimised input signal differs from the original Pulse signal identified by Munters and Meyers
[16]. While the base level C ′

T is the same, both the amplitude and the frequency in the GA optimum
are slightly higher. Compared to the signal found by Broek et. al. [11], the amplitude is higher, the C

′

T

is not derated and the amplitude is significantly higher. An overview of the three signals discussed so
far can be found in Table 4.1.

The mean velocities over the simulation time in the isolated wake of turbine 1 are shown in Figure
4.1 below. The plot shows the mean velocities over the wake cross section between [−0.5D, 0.5D], i.e.
over the actuator disk of turbine 2, over time and thus represent the mean wake velocity a hypothetical
second turbine might experience at that specific distance behind turbine 1. As can be seen the pulse,
the van den Broek pulse and the GA optimum show a higher average wind velocity when compared to
greedy control, with the pulse and GA optimum also exhibiting earlier wake velocity recovery starting
around 2.5D. The GA shows a higher average wake velocity near 5D than the pulse and van den



4.2. Sinusoidal input signals 25

Original Pulse Broek et. al. Pulse GA optimum
C

′

T 2 1.75 2
dC

′

T 1.5 0.87 1.98
St 0.25 0.2 0.28

Table 4.1: Sinusoidal input signal parameter comparison

Broek pulse do in these simulations. The van den Broek pulse also seems to have a later start to wake
recovery, seemingly starting around 4.5D.
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Figure 4.1: Mean velocities for the isolated wake of turbine 1.

Figure 4.2 shows the mean centerline wake velocities of the pulse, GA optimum, the van den Broek
Pulse and greedy control strategies over time. As one would expect from a wake velocity profile the
centerline velocities lie below the average wake velocities shown which in Figure 4.1. The aim of plot-
ting the centerline velocity is to illustrate the wake recovery and rollover occurring as a result of the
applied DIC. The centerline velocity is taken as the velocity on the x axis has the largest reduction in
velocity as a result of the wake, and its recovery trails all other parts of the wake cross section, therefor
recovery of centerline velocity is and indication for general wake recovery.

The differences between the DIC methods and greedy control are more apparent in these centerline
plots than they are in the average wake velocity plots as both the pulse and the GA optimum cause a
sharp drop in velocity at around 2.5D, 3D respectively, while the van den Broek Pulse has a slight drop
around 6.25D. These drops in velocity can be associated with the wakes collapsing over themselves
for the first time around these areas. Following their collapse, the wakes of the DIC methods recover
velocity quickly which is a likely result of the expected wake mixing that occurs when the wake starts
that characteristic curling effect that is in this case induced by DIC. Notably the van den Broek Pulse
experiences the rollover later than the other two DIC signals, and also behind the second turbine placed
at 5D. This might be due to the significantly lower amplitude compared to the two other DIC signals,
leading to less aggressive DIC and thus a smaller effect. Similarly to the other two DIC methods, the
wake of the van den Broek Pulse recovers velocity quickly after the rollover compared to baseline
greedy control recovery. In these simulations the GA optimum control method results in an earlier
initial roll over effect than the pulse, with the centerline velocity also recovering significantly earlier
even surpassing the centerline velocity in greedy control before reaching 5D where the 2nd turbine
was placed in the optimisation. The pulse does not recover to above greedy control centerline velocity
before this point, while the van den Broek Pulse remains higher than greedy almost entirely. It is
interesting that while the centerline velocity of the pulse is lower than the greedy control centerline
velocity at the second turbine, the Pulse still outperforms greedy control in the performed simulations.
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However considering the mean wind velocity over the actuator disk of the Pulse at 5D is higher than
that of greedy control this difference in performance does make sense.
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Figure 4.2: Centerline velocities for the isolated wake of turbine 1.

4.2.2. Additional Harmonics
The GA optimisation method allows easy expansion of the amount of optimisation parameters that
would be too costly to perform using parameter searches like those performed by Munters and Meyers
[16] and Frederik et al. [27] to study DIC. In order to give the optimisation more freedom to explore
solutions that could replicate the erratic input signal that was found to trigger wake mixing the simple
sine model proposed by Munters and Meyers in [16] is expanded to include additional harmonics. This
is achieved by superposition of multiple parameterised sine waves and the addition of the required
additional constraints.

Optimization with two sines
First an input signal with two superimposed sine waves will be investigated and compared against
the original pulse and GA optimised pulse. The parameterised input signal requires two additional
optimisation parameters and now takes the form:

C
′

T (t) = C
′

Tbase + dC
′

T,1sin

(
2πSt1

U∞

D
t

)
+ dC

′

T,2sin

(
2πSt2

U∞

D
t

)
(4.6)

where again the frequencies are expressed as St1, St2 respectively. In order to keep the input signal
within realistic bounds, a constraint was added on the amplitudes of the first and second sines such
that conjunction with the already present bound that C ′

Tbase > 0, dC ′

T,i > 0. the C
′

T (k) values remain
realistic.

C
′

Tbase − dC
′

T,1 − dC
′

T,2 > 0 (4.7)

In addition in order to ensure uniqueness of each evaluated chromosome and thereby improve
efficiency a constraint was added to the frequencies of both sines as:

St1 > St2 (4.8)

By applying this constraint the situation where two chromosomes contain two of the same superim-
posed sine waves but encoded on different genes within the chromosome is prevented.

With the added optimisation parameters for the second sine the chromosomes now have the form:

x∗ =
[
C

′

Tbase dC
′

T St dC
′

T,2 St2

]
(4.9)
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Optimising using the GA with increased population size of P = 100 and number of generations
G = 50 to reflect the increase in number of optimisation parameters the following solution was found:

x∗ =
[
C

′

Tbase dC
′

T,1 St dC
′

T,2 St2

]
=

[
2 1.71 0.24 0.24 0.26

]
(4.10)

dC
′

T,1 = 1.71 has decreased compared to the single sine optimum to reflect the addition of the
second sine with its amplitude dC

′

T,2 = 0.24 and to respect the constraints. Summing the results in a
dC

′

T,1 + dC
′

T,2 = 1.95 which is very close to the original dC ′

T . Both frequencies St1 and St2 are very
close to each other which would suggest the superposition of both sines to appear as a single sine
signal. However looking at the plot of C ′

T (t) in Figure 4.3 it can be observed that the signal appears
to have two very distinct frequencies superimposed, with the highest frequency being visually similar
to the frequency found for the single sine case. Interestingly a Fourier transform only shows the two
original frequencies. This effect of the two very close frequencies causing a signal that visually has two
very distinct frequencies could be caused by interference [28].
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Figure 4.3: Comparison of C′
T (t) plot over time for the single sine and 2 sine GA solutions.

In terms of performance the 2 sine GA optimum performs slightly better than the single sine variant
by about 4% in the implemented FVWM, indicating that there might be more complex DIC signals than
just the single sine that have potential.

Optimization with three and more sines
Given the fact that superimposing a second sine wave to the signal seems to provide a performance
boost the optimisation was extended to investigate whether more than two sines would also yield bene-
fits. To this end the optimisation parameters were once again expanded to accommodate an additional
sine signal with an amplitude and frequency term, namely dC

′

T,3 and St3. With the added parameters
the parameter space that needs to be explored expands significantly and thus the GA was adapted to
use P = 200 population size with G = 50 generations. With a resulting amplitude dC

′

T,3 = 0.005 and
a frequency of St3 = 0.08 the third sine was insignificant compared to the first two. This leads to the
conclusion that for the current implementation of the FVWM superimposing more than three sines into
the DIC signal does not lead to any performance benefits.

4.2.3. Phase offset
In addition to superimposing two sines of different amplitudes and frequencies a phase offset parameter
was introduced. The inclusion of a parameter for the phase offset between the two sine waves allows
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for further exploration of input signals that trigger wake mixing in the free vortex wake model. The extra
parameters give the input signal more degrees of freedom to replicate the erratic nature of the type of
signal that Munters and Meyers identified in [16].

The parameterised input signal now takes the form:

C
′

T (t) = C
′

Tbase + dC
′

T,1sin(2πSt1
U∞

D
t) + dC

′

T,2sin(2πSt2
U∞

D
t+ ϕ)

where ϕ represents the phase offset parameter. To reflect the added parameter in the optimisation
the population size was increased to P = 200. In this case increasing the amount of generations did
not yield any further benefits, with the GA converging to a solution before reaching G = 50.

With the phase offset added the GA reached the following solution:

x∗ =
[
C

′

Tbase dC
′

T,1 St dC
′

T,2 St2 ϕ
]
=

[
2 1.71 0.24 0.24 0.26 −0.64

]
(4.11)

The optimisation now finds the same parameter values as the optimisation without a phase offset
with the addition of a ϕ = −0.64 [rad] phase offset. Figure 4.4 shows the resulting signal compared to
the two sine GA optimum. Again the base frequency of the signal remains visually the same, which
is expected given that the frequencies of the two sines have not changed in the optimisation including
phase compared to the optimisation without. The phase offset does however change how the two
sine components interact and causes the signal to visually have a slightly higher apparent second
frequency superimposed over the base frequency. Visually being the key word as again a Fourier
transform only shows the two original frequencies, with the apparent visual frequencies likely being a
result of interference. The performance of the signal including a phase offset is almost exactly equal
to that of the signal with just the two sines with a 0.25% performance in the benefit of the latter.
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Figure 4.4: Comparison of C′
T (t) plot over time for the 2 sine and 2 sine with phase offset GA solutions.

4.2.4. Performance comparison
Gathering all results obtained in this chapter so far, Table 4.2 can be expanded to include the newly
found signals for comparison and easy reference in Table 4.2.

Figure 4.5 shows a comparison of the performance of all discussed signals ordered from least to
highest performing. In the implemented FVWM all of the signals outperform greedy control by a signif-
icant margin ranging from 11 − 21%. The van den Broek pulse is the worst performer which is most
likely caused by the amplitude being so low relative to the other signals, failing to cause the wake
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Original Pulse Broek et. al. Pulse GA 1 Sine GA 2 Sines GA 2 Sines + Phase offset
C

′

T 2 1.75 2 2 2
dC

′

T 1.5 0.87 1.98 1.71 1.71
St1 0.25 0.2 0.28 0.24 0.24
dC

′

T,2 0 0 0 0.24 0.24
St2 0 0 0 0.26 0.26
ϕ 0 0 0 0 -0.64

Table 4.2: Sinusoidal input signal parameter comparison.

rollover effect associated with faster wake recovery. The differences in found optima could be a result
of differences in the implementation of the FVWM in both simulation frameworks. The signals includ-
ing a second harmonic component appear to benefit from a significant jump in performance over the
single sine DIC signals. The additional sine causing an an apparent added low frequency oscillation
likely due to interference with the two harmonic components of similar frequency appears to accelerate
wake recovery and improve performance.
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Figure 4.5: Performance comparison relative to greedy control for all discussed signals.

4.2.5. Turbine spacing
The spacing between wind turbines is an important parameter in wind farms and thus it would be inter-
esting to study the effects of this spacing on the optimal input signal. Larger spacing between turbines
allow for more natural wake recovery and thus less overall power losses than smaller spacing would.
The benefits and characteristics of applying a sinusoidal input on the coefficient of thrust are therefor
expected to change and provide a smaller benefit to the overall power production. Interestingly Munters
and Meyers [16] found that in their simulations the parameters of their optimal input signal did not de-
pend on stream wise turbine spacing, and even for a larger spacing significant gains could be achieved
from applying DIC. Van den Broek et. al. only investigated turbines at a spacing of 5D.

Performance of DIC at different spacings
Using the free vortex wake model, simulations were performed for greedy control, the original pulse
from [16], the van den Broek pulse from [11] and the GA optimised pulse over a range of turbine spacing
values. The relative performance compared to greedy control for each combination of input signal and
turbine spacing are shown in Figure 4.6. From Figure 4.6 it is clear that the original pulse, the van den
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Broek Pulse and the GA optimised pulse perform significantly better than the greedy control case in
these simulations, with the van den Broek pulse not performing as well as the other two. In addition
it can be observed that the system of two turbines performs better for larger turbine spacings. The
GA optimised pulse is almost equivalent in performance to the original pulse, indicating that there is a
range of well performing parameter combinations like the parameter sweep that Munters and Meyers
performed in [16] already suggested. In their case Strouhal numbers between 0.2 and 0.3 seem to
perform well in combination with amplitudes between 1 and 2. Their suggested optimum of (St,A) =
(0.25, 1.5) is around the geometric centre of this approximate range. The lesser performance of the van
den Broek pulse compared to the other two might be explained by the lower amplitude not causing the
rollover effect in this implementation of the FVWM leading to less wake mixing occurring. An interesting
point of future research might be to investigate the penalisation of higher frequencies and amplitudes
in the cost function of the GA in order to arrive at an efficient Pulse variant with respect to the stresses
that are introduced on the components in the turbine by applying more aggressive DIC.
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Figure 4.6: Performance at different turbine spacings for the original pulse, the van den Broek pulse and the GA optimised
pulse relative to greedy control.

Optimization at different spacings
The GA optimised pulse was optimised at a turbine spacing of 5D. In order to investigate the claim that
the original pulse is robust with respect to turbine spacing [16] additional optimisations were performed.
For a range of turbine spacings the genetic algorithm was run under the same parameters as the initial
5D optimisation and the resulting optimum parameters in terms of Strouhal number and Amplitude are
plotted in Figure 4.7a and Figure 4.7b respectively. The base level C ′

T is kept at 2.
Interestingly in contrast to the findings of Munters andMeyers, in these simulations both the Strouhal

number and amplitude do not seem to be robust with respect to turbine spacing. This is not a novel re-
sult as other studies into DIC have actually found a dependency between turbine spacing and Strouhal
number like Frederik et al. but did not identify any specific relation between the two [27]. In addition,
Frederik et al. performed their simulations with a fixed amplitude expressed in pitch angle of 4◦, while
Figure 4.7 shows the results of a combined optimisation for frequency and amplitude. One could argue
however that excluding D = 3 and D = 4 the results fall around the previously mentioned optimum
range or plateau of St = (0.2− 0.3), dCt = (1− 2). The results at D = 3 and D = 4 might indicate that
the turbine spacing in these cases is too short to allow DIC to trigger beneficial wake mixing. Further
research into this topic is required before a conclusion can be drawn regarding the robustness of the
Pulse with respect to turbine spacing.
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(a) Strouhal number optima.

3 4 5 6 7 8 9 10

Inter turbine distance [D]

0

0.5

1

1.5

2

d
C

t

(b) Amplitude optima.

Figure 4.7: GA optimised pulse parameters for different turbine spacings.

4.3. Periodic full freedom
In addition to limiting the optimisation to sinusoidal signals, it is also interesting to test the capabilities
of the combination of the free vortex wake model and GA optimisation in a more general setting. The
results could provide more insight into how well the results obtained using the current implementation
of the free vortex wake model correlate with findings based on other models like in the work of Munters
and Meyers, and the possibilities provided by using GA optimisation with a simple engineering model.

Basic idea
The aim is to allow the GA to have significantly more freedom in finding a DIC input signal that would
be beneficial to the two turbine setup. By broadening the search and expanding the parameters space
that the GA has to optimise the required computational power can quickly become excessive. In order
to limit this it is desirable to retain some periodicity in the input signal while giving the GA full freedom
in between the start and end of this period.

This periodic full freedom signal can be framed in a GA optimisation problem where the genes
encoded in the chromosomes represent the input signal at each time step i.e. C

′

T (t), with an equal-
ity constraint between the first and last gene in each chromosome to force periodicity. The amount
of parameters in combination with ∆t will determine the period of input signal, which should be suffi-
ciently long to allow the optimisation to explore solutions while being short enough to allow a realistic
computation time. The chromosomes in the optimisation will have the following form:

x∗ =
[
C

′

T (1) C
′

T (2) C
′

T (3) ... C
′

T (n− 1) C
′

T (1)
]

(4.12)

with n being the period of the signal. For the optimisation problem to work there needs to be a set
of constraints to keep the input signal within realistic bounds. Therefor constraints on the maximum
and minimum C

′

T (t) are implemented. Additionally a constraint was added to keep the mean C
′

T at 2 to
prevent derating. The first simulations were run with these basic settings. But the method does allow
easy addition of more detailed constraints to obtain a DIC input signal of desirable qualities.

As the amount of parameters in the optimisation has increased significantly compared to the earlier
sinusoidal optimisation cases the population size in the GA was also increased to P = 300, with the
number of generations initially being kept at G = 50. The simulation at P = 300 takes a consider-
able amount of time to run on the consumer grade hardware. Unfortunately the optimisation failed to
converge to an optimum within the 50 generations. The resulting signal is shown in Figure 4.8.

The signal exhibits some of the same erratic characteristics that Munters and Meyers found in their
initial LES simulations [16]. However without converging the signal is most likely not an optimum and
thus no real conclusions can be drawn from this figure. Given the amount of optimisation parameters it
is very likely that the population size needed is significantly larger than the P = 300 used. An attempt
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Figure 4.8: Periodic full freedom signal over time.

was made to increase the population size and the number of generations in order to facilitate more
extensive exploration of the parameter space but this lead to simulations that were so slow it became
unfeasible to run them on consumer hardware.

In further research it would be interesting to see if GA optimisation can be used with the FVWM
in a setting like periodic full freedom optimisation on more powerful hardware as it would allow more
extensive search into DIC beyond just sinusoidal signals.

4.4. Discussion
The results achieved with the current implementation of the FVWM and GA optimisation appear to
be promising. The results for single sine optimisation yielding DIC signals that lie within the optimum
plateau found by Munters and Meyers [16] add validity to the effectiveness of the FVWM in modelling
wake mixing. The results from optimising a DIC signal with multiple harmonics appear to indicate that
two superimposed sines provide better performance than single sine DIC signals. It is interesting that
the effect of a lower and higher frequency harmonic was achieved by likely interference between to very
close frequencies rather than two distinct frequencies. There might also be a well performing two sine
DIC signal that does actually have two distinct frequencies but were slightly outperformed by the found
optimum and thus did not surface during optimisation. Again further research is needed to confirm
found results preferably in higher fidelity simulations. The results from gradient based optimisation by
van den Broek et. al. [11] indicate that the optimum DIC signal for their FVWM implementation is very
similar to a single sine, not observing any additional harmonics. However as van den Broek et. al.
noted gradient based solvers are more susceptible to local optima, which could explain the difference.

The fact that the FVWM with genetic algorithm optimisation can run on consumer hardware with
a mind range processor like the AMD Ryzen R5 3600 used for this thesis illustrates the efficiency of
the model. However the results remain to be confirmed by higher fidelity simulation, and thus it would
be overzealous to draw hard conclusions. The FVWM requires many simplifications, assumptions and
constraints in order to work within the implemented framework. One example is static vortex strength
that is used in the current implementation, or the constant core size. The advantage of the FVWM
with GA optimisation is that it allows faster exploration of DIC signals and ideally the results should be
taken as pointers to investigate specific signals in more detail by means of higher fidelity simulation of
experimental testing. The developed framework also enables future research to include more specific
constraints and cost function components to add competing objectives. In the current implementation
only power production is taken into account for the fitness in the GA, however one could imagine
for example that applying DIC also has mechanical downsides such as added stress on the turbine
structure which could be taken into account by means of a term in the fitness function, for example
penalising higher frequencies and amplitudes.

With more powerful hardware more free optimisation such as the periodic full freedom attempted in
this thesis could be achieved. This would allow more insight into wheter sinusoidal signals are in fact



4.4. Discussion 33

optimal or there is another distinct signal shape that provides additional benefit. Again this is a point
for future research.



5
Conclusion

The goal of this thesis was to investigate dynamic induction control beyond the currently found sinu-
soidal signals in the work of Munters and Meyers [16] using free vortex wake methods. To this end
the free vortex wake model was implemented in MATLAB to allow a less computationally demanding
optimisation that would in turn allow a much greater parameter space to be searched. This enabled
the investigation into optimisation of DIC signals with multiple harmonics and the effects on the per-
formance of a wind farm. The implemented FVWM was tuned by means of a convergence study to
determine the model parameters before optimisation was attempted in order to have confidence in the
precision of the model. For optimisation the genetic algorithm method was chosen as it is suitable
to the problem at hand, namely the efficient investigation of large parameter spaces while being less
affected by local optima than gradient based optimisation methods.

The characteristic frequency found to trigger wake mixing in the work of Munters and Meyers [16]
and more recently corroborated by van den Broek et. al. [11] is around a non dimensional Strouhal
number of St = 0.25. From the results of Munters and Meyers a plateau of well performing DIC signals
appears to lie between St = 0.2 − 0.3 and dC

′

T = 1 − 2. Investigation of single sine DIC using the
FVWM framework developed in this thesis resulted in an optimal frequency of St = 0.28, further adding
strength to the hypothesis that the optimal DIC frequency is around this St = 0.25 number. In terms of
amplitude again the found optimum of dC ′

T = 1.98 lies within the suggested plateau.

While first observation of the results might suggest otherwise, the investigation of the robustness of
the pulse with respect to turbine spacing appears to confirm that while for different spacing the optimum
DIC signal might vary slightly, the signals are robust within the well performing plateau. But further re-
search is required on this topic to confirm this as the results are too inconclusive at this time.

Optimisation of multiple harmonics has yielded DIC signals concisting of two superimposed sines
that offer an up to 10 percent point boost in performance over traditional single sine DIC when com-
pared to greedy control in the current FVWM implementation. It was also found that the addition of
more than two sines does not provide any additional benefit. While these results need to be confirmed
in higher fidelity simulations, given that the results from the single sine optimisation were in line with
previous high fidelity work the result seems promising.

The developed optimisation framework consisting of an implementation of the FVWMandGA optimi-
sation could prove to be a useful tool that allows promising DIC signals to be found relatively efficiently
before confirming them with higher fidelity simulations.
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