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A B S T R A C T

Predicting the trajectories of road agents is fundamental for self-driving cars. Trajectory pre-
diction contains many sources of uncertainty in data and modelling. A thorough understanding
of this uncertainty is crucial in a safety-critical task like auto-piloting a vehicle. In practice,
it is necessary to distinguish between the uncertainty caused by partial observability of all
factors that may affect a driver’s near-future decisions, the so-called aleatoric uncertainty,
and the uncertainty of deploying a model in new scenarios that are possibly not present in
the training set, the so-called epistemic uncertainty. They reflect the trade-off between data
collection and model improvement In this paper, we propose a new framework to systematically
quantify both sources of uncertainty. Specifically, to approximate the spatial distribution of an
agent’s future position, we propose a 2D histogram-based deep learning model combined with
deep ensemble techniques for measuring aleatoric and epistemic uncertainty by entropy-based
quantities. The proposed Uncertainty Quantification Network (UQnet) employs a causal part to
enhance its generalizability so rare driving behaviours can be effectively identified. Experiments
on the INTERACTION dataset show that UQnet is able to give more robust predictions in
generalizability tests compared to the correlation-based models. Further analysis presents that
high aleatoric uncertainty cases are mainly caused by heterogeneous driving behaviours and
unknown intended directions. Based on this aleatoric uncertainty component, we estimate
the lower bounds of mean-square-error and final-displacement-error as indicators for the
predictability of trajectories. Furthermore, the analysis of epistemic uncertainty illustrates that
domain knowledge of speed-dependent driving behaviour is essential for adapting a model
from low-speed to high-speed situations. Our paper contributes to motion forecasting with a
new framework, that recasts the problem of accuracy improvement in a way that focuses on
differentiating between unpredictable components and rare cases for which more and different
data should be collected.

1. Introduction

1.1. Background

Predicting human-driven vehicles’ intentions, behaviours, and trajectories is an essentially important topic for engineers and
researchers in many domains (Lefèvre et al., 2014). For example, in the context of autonomous driving, motion forecasting is
indispensable for developing safe and smooth self-driving systems (Yoon et al., 2019). Accurate and reliable trajectory prediction is
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critical for motion planning (Wang et al., 2021). Trajectory prediction is also very important for multi-scale traffic modelling. Many
phenomena in traffic flow originate from microscopic driving behaviours. For instance, heterogeneous car-following behaviours may
cause road capacity drop (Yuan et al., 2018) and improper lane-changing around an on-ramp can lead to traffic congestion (Daamen
et al., 2010; Leclercq et al., 2016). Building a reactive microscopic traffic simulator from real-world data requires high-quality
trajectory prediction in the forward simulation (Bergamini et al., 2021). Many applications, such as dynamic traffic signal
control (Chen et al., 2020) and collaborative platoon cruising (Hallé and Chaib-draa, 2005), can benefit from such a reactive
simulator, and thus improve the macroscopic efficiency of traffic networks.

Recently, emerging Artificial Intelligence (AI) techniques and public trajectory datasets, such as Waymo (Sun et al., 2020),
uScenes (Caesar et al., 2020), Argoverse (Chang et al., 2019), etc. together stimulate the fast development of trajectory
orecasting (Rudenko et al., 2020). In the literature, numerous Deep Neural Networks (DNN) have been proposed to continuously
mprove prediction performance. Significant progress has been made by applying AI to trajectory-based vehicle motion prediction.

e refer the readers to Huang et al. (2022) for a comprehensive survey.
Although trajectory data are fundamental for motion forecasting, they clearly do not disclose the full complexity of driving

ehaviours. First, observed trajectories are just the final results of the underlying interactions between vehicles and the environment
including other vehicles). Many important factors, such as driving styles, vehicle characteristics and all the factors that influence
hese (e.g. turn signals), are not observable using trajectories alone. Second, there is always a non-zero probability of encountering
are behaviours (e.g. a risky cut-in) or circumstances (e.g. a combination of high demand and signal malfunctioning) which may
ead to different resulting interactions and thus different trajectories than present in the training data set. The model faces a much
igher risk of getting it wrong in such a situation. Either way, uncertainty is unavoidable in trajectory-based motion prediction.

Ignoring uncertainty will make the self-driving system unaware of potential danger and thus lead to accidents. Uncertainty also
poses the boundary of one model’s capability and depicts the unpredictable part of the future given the recent observed data. Before
quantifying uncertainty, it is necessary to clarify different types of uncertainty and their specific roles in motion prediction.

1.2. Uncertainty in motion forecasting

From a modelling and practical perspective, the total predictive uncertainty can be categorized into two types, aleatoric
uncertainty and epistemic uncertainty (Der Kiureghian and Ditlevsen, 2009).

Aleatoric uncertainty represents the inherent randomness in the collected data and the underlying process itself. For motion
prediction, aleatoric uncertainty has two major sources. The first one, which we call endogenous interaction uncertainty, is due to
the fact that human drivers do not share all the information needed to predict the intended future behaviours of all other (relevant)
drivers. As a result, they can at best make an informed guess about the driving strategies of their surrounding drivers before the
interaction starts, and use this guess to, for example, cooperate or not (Lutteken et al., 2016). The consequence of this interaction
uncertainty is that future trajectories may be completely different even with similar starting conditions. In a lane-changing case, for
example, the following vehicle on the adjacent lane may yield to the cutting-in vehicle, or drive more aggressively and force the
other driver to abandon the lane-change (Wang et al., 2015). The second source of aleatoric uncertainty is due to the discrepancy
between the information perceived by the so-called demonstrators (in this case the human drivers) and the imitators (sensors that
observe these demonstrators), a problem which is also referred to as sensor shift (Etesami and Geiger, 2020). Restricted by perception
methods, imitators do not perceive as much or even the same information as the demonstrators. For example, if trajectories are
collected by drones, important stimuli such as traffic lights or turn signals are not observable due to the bird-eye-view position.
Without these stimuli, the uncertainty around the predicted future state is much larger, particularly at decision points on the road
(e.g. intersections). Also, datasets collected by sensors installed on vehicles, such as cameras, Lidar, Radar, etc, may be ‘‘blind’’ to
relevant signals that can potentially influence the demonstrators’ decisions, for example, sound, glare, in-vehicle information, etc.

In summary, aleatoric uncertainty is the result of limitations in observability, either from the perspective of demonstrators (the
agents whose path we aim to predict) or the imitators (the sensors partially measuring this path). We cannot distinguish between
these components from data only, and the combined aleatoric uncertainty is thus irreducible, regardless of the size of the data set.
The total aleatoric uncertainty can be understood as an upper bound of predictive accuracy for all models using the same type(s) of
data. Aleatoric uncertainty is therefore also called data uncertainty. If a model’s performance is close enough to this limit, investing
n building newer and larger models cannot bring significant accuracy improvement. The types of data must be diversified.

Epistemic uncertainty, or alternatively, knowledge uncertainty, represents the uncertainty that in principle could be reduced to
ero with the data available. Nonzero epistemic uncertainty is due to the ‘‘rareness’’ of the prevailing situation. In the case of
rajectory prediction, it measures whether enough similar samples have already been seen to support reliable trajectory prediction.
nder many circumstances, road users behave in similar ways (Makansi et al., 2021), which implies a prediction of this behaviour
an be reliable most of the time. However, rare cases typically pertain to unsafe and high-risk situations. Finding out these ‘‘corner
ases’’ by the prediction model itself is the key to building an ‘‘honest and trustworthy’’ self-driving system that can clearly tell what
t does not know. Quantifying the ‘‘rareness’’ of these samples is also important for anomaly detection (Laxhammar and Falkman,
013), continuous learning (Ebrahimi et al., 2019), and evaluating the generalizability of a model.

Although aleatoric and epistemic uncertainty quantification (UQ) has already been widely studied, especially in combination
ith deep learning models (Abdar et al., 2021 provides a comprehensive review), applying it in motion forecasting has radically
ifferent requirements.

First, a driver’s intention is rigorously restricted by arbitrary layouts of road networks. Therefore, the spatial distribution (of
2

probable trajectories) cannot always be approximated by simple priors (e.g. a 2D or mixture Gaussian) (Gilles et al., 2021).
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Fig. 1. The spatial probability distribution of the target vehicle’s future position in two different scenarios. They have different covariance matrices but the
same differential entropy.

Second, the longitudinal and lateral components of 2D coordinates can be strongly correlated, yielding inflated or deflated
uncertainty. If we use the covariance matrix as in classical UQ approaches, those non-diagonal elements are not intuitively
explainable. Further, if the prediction has strong multi-modality (multiple local maxima), those diagonal elements are not meaningful
either, regardless of the determinant of the covariance matrix. Fig. 1 illustrates the problem. The left and right scenarios in Fig. 1
represent different layouts (Fork versus T-junction) but exactly the same decision problem (left or right?) and thus the same degree of
uncertainty in motion prediction. However, the co-variance in 𝑥 and 𝑦 (Var(𝑥), Var(𝑦)), and the determinant of the covariance matrix
in the left case (the fork) are all significantly smaller than the right case (the T-junction). We thus need to use a more reasonable
scalar uncertainty metric that can exclude this artefact due to road layouts, in which the angle of two diverging or merging roads
may inflate or deflate the estimated uncertainty.

Third, we argue that epistemic uncertainty estimation is closely related to domain adaptation in motion prediction. The aim of
quantifying epistemic uncertainty is detecting rare driving behaviours (represented by trajectories). However, trajectories are strongly
correlated with the topology of lane networks. If the model cannot adapt itself to those unseen test lane networks by learning the
correct causal effects of surrounding road agents, many normal driving behaviours in new scenarios will be incorrectly recognized
as rare samples. This will lead to significant degradation in epistemic uncertainty estimation.

In summary, the 3 points above must be addressed: a suitable uncertainty metric; a non-parametric representation method; and
a generalizable model. Then we formulate the research questions central to this study:

How predictable are vehicular trajectories, especially the final point? What aspects must be considered to generalize prediction models
and uncertainty quantification methods to new cases?

1.3. Contributions and outline

Inspired by recent works on motion prediction (Gu et al., 2021; Gilles et al., 2021) and UQ method (Malinin and Gales,
2018), we propose a non-parametric approach to estimate both aleatoric and epistemic uncertainty in human drivers’ trajectory
forecasting. Instead of using a set of parameters to assimilate the closed-form distribution of future positions, our model directly
learns a mesh-grid 2D histogram (a heatmap) to approximate any distribution. This heatmap-based model is combined with
deep ensemble techniques to quantify predictive uncertainty. Scalar entropy-based quantities are used as uncertainty metrics. The
conditional differential entropy and the mutual information represent aleatoric and epistemic uncertainty respectively. To make
the estimate of epistemic uncertainty more reliable, a regularization net is added to the predictor to suppress (control for) spurious
correlations. Experiments on the INTERACTION dataset (Zhan et al., 2019) show that the proposed UQnet method indeed has better
generalizability. Based on the estimated uncertainty, we further analyse the predictability of vehicle trajectories and illustrate how
speed is a key factor in model generalization.

The major contributions of this paper are summarized below:

• Propose a deep-ensemble-based non-parametric approach for quantifying both aleatoric and epistemic uncertainty measured
by entropy quantities in single-agent trajectory prediction.

• Induce a causal regularization to enhance the generalizability and make the estimated epistemic uncertainty more reliable.
• Use quantified uncertainty for analysing the predictability of trajectory and detecting out-of-distribution cases. The results

further give insights into the role of speed in model generalization and vehicle interaction.

The paper is organized as follows. We first briefly overview the relevant works in Section 2. Next, we introduce the proposed
method and the used model UQnet in Sections 3 and 4. Section 5 shows the experimental results and the corresponding analysis.
Finally, we draw our conclusions and give several research directions in the last section.
3
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2. Overview

In this section, we will present a short overview of related studies in the literature and bring out the distinctiveness of the
roposed method.

There are different approaches to predicting vehicle trajectories. One popular approach is to apply simple physics-model-based
ethods in combination with (e.g. Kalman) filtering (Prevost et al., 2007), in which typical assumptions such as constant yaw rate

nd/or acceleration are made to simplify the problem with prior co-variance structures that model unobservable deviations (Houenou
t al., 2013; Ammoun and Nashashibi, 2009). These models describe the projected movements in explanatory terms but typically
uffer from limitations in prediction horizons and accuracy (Lefèvre et al., 2014).

On the other hand, recently-popular data-driven models, especially deep-learning models, directly assimilate the collected
ata and show better performances in many scenarios. For example, Alahi et al. (2016) proposed to model interactions between
edestrians with social pooling in a ‘‘black-box’’ way. Here ‘‘social’’ represents the common scene rules and the influence of neighbour
gents. Further studies improve the social mechanism by inducing generative adversarial networks (Gupta et al., 2018) or considering
ulti-agent dynamic features (Zhao et al., 2019). Some studies abstract agents as nodes, treat pairwise influences as edges and use

raph neural networks to model the interaction, e.g. Vemula et al. (2018), Ma et al. (2019). Huang et al. (2019) further seek ‘‘post-
oc’’ interpretation from learnt graph attention weights, saying higher attention means larger influence. Trajectron++ (Salzmann

et al., 2020) developed a modular and graph-structured recurrent model as the encoding channel to generate multi-modal predictions
from incorporated agent dynamics. VectorNet (Gao et al., 2020) proposed an alternative vector-based lightweight representation to
reduce model complexity. It has been widely used in many following works (e.g. Liang et al., 2020).

However, the models above highly rely on independent identical distribution (i.i.d.) assumption. Compared to physical models,
correlation-based DNNs are fragile when being deployed in new environments because of causal confusion (De Haan et al.,
2019), which means the model learns spurious correlations (overfits the problem). Recently some studies tried to improve DNN’s
generalizability by inducing more robust causal relationships. Chen et al. (2021) proposed to use counterfactual analysis to alleviate
the spurious (specious) correlation of environmental bias. The plug-in module consistently improves the performance of baseline
models. Hu et al. (2021) constructed a structural causal model (SCM) to learn invariant features across different scenarios, the so-
called causal-based time series domain generalization (CTSDG) model. In Liu et al. (2022), the input is decomposed into invariant
variables, style confounders, and spurious features in hidden space. By training the model to suppress spurious features, the
robustness was significantly improved. Kumor et al. (2021) came up with a theoretical criterion that determines the feasibility
of learning a demonstrator’s trajectory under sensor shift from the perspective of causal models. In brief, combining DNNs with a
causal model is expected to increase both the robustness and the transparency of data-driven trajectory prediction models.

In addition to limits in generalizability, uncertainty is another important topic in motion forecasting, but it has not drawn as
much attention as developing prediction models. Arnez et al. (2020) reviewed different UQ approaches that potentially can be used
for autonomous vehicle applications. For example, Makansi et al. (2019) proposed a sampling-fitting two-stage strategy to learn
the mixture Gaussian distribution of a vehicle’s future position, which can naturally represent aleatoric uncertainty. In Pang et al.
(2021), a Bayesian neural network is used to quantify the total uncertainty brought by weather for trajectory forecasting. Djuric et al.
(2020) directly give estimates of both aleatoric and epistemic uncertainties measured by marginal variance for each prediction step
in vehicle trajectory forecasting. The model was also deployed in a real-world autonomous vehicle test. Tang et al. (2022) further
consider the prediction uncertainty for safer decision-making and motion planning in high-risk scenarios. The authors assume that
the predicted position obeys a Gaussian distribution and use Deep Ensembles to explicitly quantify both aleatoric and epistemic
uncertainty measured by the covariance matrix. The studies above pioneered this domain. They are all parametric approaches,
which means the prior form of spatial distribution must be closed-form (such as Gaussian, Laplace, or Mixture Density). However, this
assumption does not always hold. For example, vehicles tend to drive along the lane centrelines so the form of its spatial distribution
highly depends on the road layouts and lane connectivity. Recently, heatmap-based models pave a path to non-parametric UQ.
Based on the vectorized representation, DenseTNT (Gu et al., 2021) converts the 2D regression problem to a classification task
and directly learns the probability that the target vehicle will appear in each small mesh unit. This method is anchor-free and it
can approximate any 2D distribution. GoHome (Gilles et al., 2021), similarly, generates lane-centralized heatmap from high-definite
maps and trajectories. The authors explicitly point out that this approach can be used to quantify aleatoric and epistemic uncertainty.
In summary, we believe that there are already enough tools towards more reasonable UQ in motion prediction.

From the overview above, we find there are 3 key gaps in the literature. First, most papers use a variance/covariance matrix
to quantify uncertainty, which is not reasonable for a 2D distribution with multiple local maxima (multi-modal). Second, domain
adaptation and uncertainty quantification are regarded as two separate topics. We argue that they are highly entangled, especially
for quantifying epistemic uncertainty. Third, the predictability of trajectories hidden in the heatmap-based representation is barely
discussed. Most studies focus on accuracy improvement instead of the limit of this improvement. Our method tries to overcome
the first drawback by using entropy-based metrics for heatmap outputs and to bridge the second gap by inducing causation in
deep-learning models. Then the quantified aleatoric and epistemic uncertainty will be used to answer the predictability question.

3. Method

This section describes the proposed method in detail. We will sequentially introduce the 2D histogram and the Deep-Ensemble-
based uncertainty quantification method and how to combine this technique with Granger causality.
4



Transportation Research Part C 163 (2024) 104659G. Li et al.
Fig. 2. A 1D example of aleatoric and epistemic uncertainty. Here we learn 𝑦 = 𝑓 (𝑥) from noisy data. Both the magnitude of noise and the number of samples
are higher in the middle but decay with |𝑥|.

3.1. Uncertainty quantification

Suppose that the input and the output of a model are two random variables, respectively noted as 𝑿 and 𝒀 . The training dataset
contains 𝑁 collected input–output samples, noted as 𝑁 = {(𝒙𝑖, 𝒚𝑖)}𝑁𝑖=1. 𝑁 is used to train a prediction model with inner random
variables 𝜣 ∼ 𝑝𝛩(𝜽), noted as 𝑝𝑌 (𝒚) = (𝒙,𝜽). Now given a test input 𝒙∗, we aim to quantify the uncertainty of the output
distribution 𝑝𝑌 (𝒚|𝑿 = 𝒙∗) (briefly denoted as 𝑝(𝒚∗) and the specific random variable is noted as 𝒀 ∗ from now on). In this study we
use differential entropy 𝐻(𝒀 ∗), which is a scalar metric, to represent the total prediction uncertainty. It is defined by:

𝐻(𝒀 ∗) = −∫
𝑝(𝒚∗) ln 𝑝(𝒚∗)𝑑𝒚∗ (1)

For the multi-modal distributions shown in Fig. 1, the two local maxima are separated by road boundaries so apparently both cases
have the same entropy. This metric can exclude the influence of road layouts. The unit of differential entropy is ‘‘nats’’. Amini et al.
(2020) derive that the total entropy can be decomposed into the following terms:

𝐻(𝒀 ∗) = E𝑝𝛩(𝜽)[𝐻(𝒀 ∗
|𝛩 = 𝜽)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
aleatoric

+E𝑝𝛩(𝜽)[𝐷𝐾𝐿(𝑝(𝒚∗|𝛩 = 𝜽) ∥ 𝑝(𝒚∗))]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

epistemic

(2)

Here 𝑝(𝒚∗) is the posterior distribution marginalized by 𝜽, given as follows:

𝑝(𝒚∗) = E𝑝𝛩(𝜽)[𝑝(𝒚
∗
|𝛩 = 𝜽)] (3)

And 𝐷𝐾𝐿(𝑝 ∥ 𝑞) is the Kullback–Leibler divergence that measures the directed ‘‘distance’’ from distribution 𝑝 to 𝑞, which is
non-negative. The definition is:

𝐷𝐾𝐿(𝑝(𝒚∗|𝛩 = 𝜽) ∥ 𝑝(𝒚∗)) = ∫
𝑝(𝒚∗|𝛩 = 𝜽) ln

𝑝(𝒚∗|𝛩 = 𝜽)
𝑝(𝒚∗)

𝑑𝒚∗ (4)

So (2) can be interpreted as follows. The first aleatoric term is the conditional entropy that measures the average entropy
(uncertainty) across an ensemble of distributions. The second epistemic term is the mutual information that measures the average
distance from each distribution to the average (posterior) distribution, which reflects how diverse the ensemble of distributions
is. During inference, if the model has already seen similar inputs enough times in training, then the output distributions will be
consistent for different model parameters 𝜽. If the input is a rare or new case, different 𝜽 will give diverse distributions because it
contributes little or even zero to the training loss. This can be illustrated by the simple 1D example in Fig. 2. Different models will
give consistent predictions at 𝑥 = 0 but diverse outputs at 𝑥 = −3.5. Here we also point out one special property: Different from
covariance measures, the epistemic term in (2) is scale-independent. It is independent of the mean or variance of each distribution,
which makes it naturally convenient to represent ‘‘rareness’’ objectively.

The discussion above shows the principle of UQ, that is learning 𝑝𝛩(𝜽) that gives consistent predictions when enough samples are
provided but diverse outputs for rare samples. The existing methods in the literature include Bayesian neural networks, Monte-Carlo
dropout (Kendall and Gal, 2017), and Deep Ensemble (DE) (Lakshminarayanan et al., 2017), etc. Among these UQ methods, the
deep ensemble is still the most robust approach and it is state-of-the-art in many uncertainty quantification tasks (e.g. monocular
depth estimation (Poggi et al., 2020)). An ensemble of randomly-initialized models are trained independently. During inference, the
input is passed into the trained models in parallel to get their corresponding output distributions. Fort et al. (2019) interpret the
5
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advantage of DE from the perspective of loss landscape. The authors show that deep ensembles can explore different local minima
of the loss while other methods usually fall into only one. In this study, we also choose the deep ensemble strategy.

Most studies in the literature assume that the prior form of the output distribution can be described by a set of parameters
= (𝒙∗,𝜽), such as mean 𝝁 and covariance 𝜮 for Gaussian (Makansi et al., 2019), or concentration 𝜶 for Dirichlet distribution,

etc. However, the output distribution can be much more complex due to arbitrary road layouts. To alleviate this restriction, we
directly approximate a 2D spatial distribution by a mesh-grid heatmap �̂� ℎ×𝑤 = (𝒙∗,𝜽). The value at a pixel 𝑌𝑖,𝑗 represents the
robability that the vehicle will be present within that specific square. So the regression problem is converted to a dense multi-class
lassification problem. An ensemble of 𝑁 models give 𝑁 2D distributions {�̂� 𝑛}𝑁𝑛=1 for one input 𝒙∗. Then the posterior distribution
(𝒚∗) can be approximated by the element-wise average distribution:

𝑝(𝒚∗) ≈ 𝒀 𝑚 = 1
𝑁

𝑁
∑

𝑛=1
�̂� 𝑛 (5)

And the conditional differential entropy of each heatmap can be approximated by (here 𝑥 and 𝑦 are coordinates):

𝐻𝑛 = −∫ ,
𝑌𝑛(𝑥, 𝑦) ln 𝑌𝑛(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (6)

he KL divergence between each distribution to the posterior distribution can be approximated by:

𝐷𝐾𝐿(�̂� 𝑛∥𝒀 𝑚) = ∫
𝑌𝑛(𝑠) ln

𝑌𝑛(𝑠)
𝑌𝑚(𝑠)

𝑑𝑠 (7)

Where  is the non-zero support set of 𝒀 𝑚 (to avoid 0 division). Therefore, according to (2), the aleatoric term can be approximated
by the average of conditional differential entropy:

E𝑝𝛩(𝜽)[𝐻(𝒀 ∗
|𝛩 = 𝜽)] ≈ 1

𝑁

𝑁
∑

𝑛=1
𝐻𝑛 (8)

And the epistemic term can be approximated by the average of KL divergence:

E𝑝𝛩(𝜽)[𝐷𝐾𝐿(𝑝(𝒚∗|𝛩 = 𝜽) ‖ 𝑝(𝒚∗))] ≈ 1
𝑁

𝑁
∑

𝑛=1
𝐷𝐾𝐿(𝒀 𝑛‖𝒀 𝑚) (9)

In summary, (8) and (9) give the estimates of aleatoric and epistemic uncertainty from deep ensembles respectively. For the 2D
integrals in (6) and (7), we use Simpson’s rule to calculate them numerically. We refer the readers to Cruz-Uribe and Neugebauer
(2002) for the approximation error bound of this method. Besides the numerical error of integral, the accuracy of epistemic term
estimation (9) largely depends on the size of deep ensembles 𝑁 . If 𝑁 is not large enough, the absolute error can be high due to the
bad approximation of Eq. (5). However, if we are only interested in the relative rareness of samples, this approach works well with
a smaller ensemble size.

3.2. Causal regularization

The UQ method introduced above completely ignores what assumptions are used in the model. Considering 𝑿 and 𝒀 as two
correlated random variables works well when the identical independent distribution assumption holds but becomes fragile for out-
of-distribution (OOD) samples. This is especially problematic for model generalization and epistemic uncertainty quantification.
Specific to microscopic traffic modelling, the input 𝑿 can be decomposed into three variables:

(1) 𝑴 : Maps information, including the geometries of lanes and their connectivity, traffic rules, etc.
(2) 𝑬: The observed trajectory of the target vehicle.
(3) 𝑺: The observed trajectories of the surrounding agents (including vehicles and pedestrians).

One of the most significant spurious correlations is between 𝑴 and 𝑺 (shown in Fig. 3(a)). For example, in the training scenario
shown in Fig. 3(b), a driver simply follows the surrounding vehicles OR follows the lane centreline works perfectly fine most of
the time. This may cause severe over-fitting to the scenario biases. When deploying the trained model in a new merging where two
roads are not parallel, this correlation does not exist anymore. For the specific case on the right figure, we observed that different
deep learning models will give two separate groups of predictions: follow the other vehicles (off-road black star) or follow the lane
(in-road green star). It means that the DE will unreasonably identify this case as ‘‘rare’’. In Bahari et al. (2022), the authors also
show that most state-of-the-art motion forecasting models can be confused by new road layouts and give off-road outputs.

Inducing causation is one plausible solution. Because 𝑴 , 𝑬, and 𝑺 are given for each specific prediction, we formulate the
relationship as Granger causality (Granger, 1980). We say a variable ‘‘Granger-causes’’ 𝒀 if involving this variable can reduce the
uncertainty of 𝒀 (‘‘narrow down’’ the expected occupied area). Maps information and the past trajectory of the target vehicle must be
given otherwise we can predict nothing. So here we aim to learn the correct causal effect of 𝑺. We induce an additional regularization
net which only takes 𝑴 and 𝑬 as inputs, noted as 𝒀 = rg(𝑴 ,𝑬|𝑴). The output of the normal predictor net (including 𝑺) is noted
as �̂� . The causal effect of inducing 𝑺 should make the output distribution (1) equally or more concentrated and (2) stay within the
drivable area given by excluding surrounding agents. Mathematically we can quantify the causal effect by:

̂ ̂ ̃
6

argmin𝐿1(𝒀 01,min(𝒀 01, 𝒀 01)) (10)
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Fig. 3. (a) The causal model of trajectory prediction. Solid lines are causation and dotted lines are spurious correlations. (b) In the training set scenario, the
driving direction and the average traffic flow are highly correlated. But the correlation does not hold in the test scenario so a correlation-based model may fail.

Fig. 4. 1D example of the causal regularization. (a) is a normal case and (b) breaks the correlation of 𝑺 and 𝑴 .

𝐿1 is L1 norm, and the subscript ‘‘01’’ means re-normalizing the initial distribution linearly between 0 and 1. min here is the
element-wise minimum.

During training, only some driving behaviours, like lane-changing, U-turning etc., may break the correlation between 𝑺 and 𝑴
and allow learning the effect of Eq. (10) (If these driving behaviours do not exist at all in the training set, theoretically, correlation
and causation are indistinguishable by any means). So, the contributions of these samples must be larger in the total loss. Assume
that the loss function between the ground-truth and the prediction is 𝐿(�̂� , 𝒀 ). We apply a prediction-dependent weight for each
specific sample. The weight increases with the effect given in (10). So the total loss function is constructed as follows:

𝐿total(𝒀 , �̂� , 𝒀 ) = (1 + 𝜆𝐿1(�̂� 01,min(�̂� 01, 𝒀 01))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

regularization

) 𝐿(�̂� , 𝒀 )
⏟⏟⏟

predictor loss

+ 𝐿(𝒀 , 𝒀 )
⏟⏟⏟

regularization loss

(11)

Now we intuitively explain the regularization term by using the 1-D example in Fig. 4. The regularization net is trained
independently. Without information about surrounding agents (but the label indeed considers the surrounding vehicles), it will give
an equally or more uncertain output 𝒀 that covers all possibilities (the blue distribution). If the normal prediction that considers
surrounding vehicles �̂� is within this area, then the regularization term (10) is 0 (see case-(a) in Fig. 4), which means all variables
are correlated in this sample. Nothing can be done. When the correlation between 𝑺 and 𝑴 is broken in a training sample, and �̂�
is partly or completely out of 𝒀 (as shown in case-(b) in Fig. 4), the regularization term (shaded area) will assign a higher weight
to 𝐿(�̂� , 𝒀 ). In this way, the model is forced to focus on learning the correct effect of 𝑺 so the two groups of predictions shown in
Fig. 3 will reduce to one. Here 𝜆 is a hyper-parameter. A lower percentage of correlation-broken samples in the training set requires
a larger 𝜆. In Appendix A, a Bayesian explanation is also presented. We refer the readers there for details.

In summary, the proposed method employs heatmap-based deep ensembles to quantify predictive uncertainty. A regularization
net and a causation-based regularization term are added to enhance the model’s adaptability. Next, we will present the structure of
the proposed model.

4. UQnet model

Training an ensemble of deep-learning-based motion forecasting models is time-consuming. Running the inference also requires
higher memory and a longer time. Therefore, fast and lightweight models are preferred. In this study, we use the representation
7
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Fig. 5. Model structure of UQnet.

proposed in VectorNet (Gao et al., 2020). VectorNet abstracts map elements (such as lane centrelines, crosswalks, etc.) and agents’
trajectories into splines. Each spline is represented by a series of end-to-head connected vectors. Compared with other representation
methods, such as rasterized images, this vector-based representation significantly reduces the input size but preserves the most
important factors in motion forecasting.

The backbone of our predictor is constructed based on DenseTNT (Gu et al., 2021). Its structure is shown in Fig. 5. The predictor
and the counterfactual net share the same sub graph neural networks (encoder) to extract features from each spline separately.
Then we added a laneGCN-like (Liang et al., 2020) graph attention module (Lane-Attention) to explicitly learn the connectivity
of roads. The basic idea is that upstream/downstream, left/right adjacent lanes have different influences on the central lane. We
use an attention-based module instead of the parameter-fixed laneGCN module proposed in Liang et al. (2020) so the influence of
one lane on another depends on their own features as well. Meanwhile, a multi-layer perceptron (MLP) is used to convert each
coordinate (𝑥𝑡, 𝑦𝑡) to hidden representation 𝑯𝐶 . The extracted hidden representations of maps elements (𝑯𝑀 ), coordinates (𝑯𝐶 ),
and trajectories (𝑯𝐸 for target vehicle, 𝑯𝑆 for surrounding agents) are passed into the predictor and the regularization net.

The regularization net decoder was constructed based on the proposed causal relationship. A cross-attention layer (Map2Target)
passes map information to the target vehicle. Then another cross attention layer (Feature2Pos) generates the probability density of
each location from the concatenated output of Map2Target layer. In the predictor decoder, stacked multi-head self-attention graph
layers are employed to learn the interactions among these splines. At least two layers are needed to learn their state-dependent
dynamic relationships. Then the same decoder used in DenseTNT (Gu et al., 2021) generates the prediction heatmap �̂� . For more
details, we refer to Appendix B and the open source code.1 We name our model Uncertainty Quantification networks (UQnet).

UQnet uses Focal loss (Lin et al., 2017) as 𝐿() to measure the error between the ground-truth and the predicted distribution. It
is defined as follows:

𝐿fl(�̂� , 𝒀 ) = − 1
𝑃

∑

𝑝
(𝑌𝑝 − 𝑌𝑝)2𝑓 (𝑌𝑝, 𝑌𝑝) (12)

𝑓 (𝑌𝑝, 𝑌𝑝) =

{

ln 𝑌𝑝 if 𝑌𝑝 = 1
(1 − 𝑌𝑝)4 ln(1 − 𝑌𝑝) else

(13)

Focal loss can well address imbalanced samples. The ground-truth label is constructed by the objection detection technique
proposed in Zhou et al. (2019) and also used in GoHome (Gilles et al., 2021). For example, if the ground-truth location is (𝑥𝑔 , 𝑦𝑔).
We add an extra Gaussian noise 𝝐. Its mean is the ground-truth location and the covariance matrix has the form 𝜎2𝜖 𝑰 . For every pixel
𝑌𝑖,𝑗 of the heatmap with centre coordinate (𝑥𝑐 , 𝑦𝑐 ), its probability is determined as follows:

𝑌𝑖,𝑗 =
1

2𝜋𝜎2𝜖
exp [−

(𝑥𝑐 − 𝑥𝑔)2 + (𝑦𝑐 − 𝑦𝑔)2

2𝜎2𝜖
] (14)

This method increases the number of non-zero pixels in the heatmap and thus can significantly accelerate the training process.
However, it also induces extra errors. In this study, we choose 𝜎𝜖 = 0.7m so the Gaussian roughly covers the average length of a

1 https://github.com/RomainLITUD/UQnet-arxiv/
8
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car. It also means that we manually increase the mean-square-error (MSE) by 0.49m2 and the lower bound of differential entropy
s the entropy of this white noise, around 2.12. We need to correct this in uncertainty estimation. Replacing 𝐿 in (11) by (12), we
ave the total loss function to train UQnet. The value of 𝜆 depends on the size of the output heatmap and its spatial resolution. In
nference, the regularization net can be removed and we only keep the predictor. The lanescore module in DenseTNT decoder is
lso used to increase the convergence speed, but we do not consider lanescore in inference or uncertainty quantification.

. Evaluation

In this section, the proposed method will be evaluated on the open INTERACTION (Zhan et al., 2019) dataset. INTERACTION
ollects trajectories of road agents by drones in diverse urban traffic scenarios and high-definite maps are also provided. In the
NTERPRET single-agent track prediction challenge, all agents’ trajectories in the past 1 s are provided to predict the track of the

target vehicle in the next 3 s. The data providers split all these cases into three groups. The training set contains 47584 cases in 12
cenarios. The validation set has 11794 cases from the same scenarios. The test set has 22644 cases and around 30% of them are
ollected from new scenarios to measure the generalizability of the model. For fairness, labels of the test set are not provided.

For each case, all trajectories of agents and lane splines are centred to the target vehicle’s current position and re-oriented
ccording to its driving direction (y-axis points at the yaw angle). Each lane’s centreline is evenly split into 5 head-to-end vectors
long the driving direction. Each centreline vector has 8 features, 𝒇 𝑖 = [𝒙𝒔,𝒙𝑒, 𝑗, 𝑐, 𝑙, 𝑤]. The first two are positions of start and
nd points. The integer 𝑗 is the order of the vector. We also incorporate lane-level features. 𝑐 ∈ {0, 1} represents whether this
ane intersects with another non-connected lane. 𝑤 is 1/2 width of the lane, ranging from 1.5m to 4.5m and 𝑙 is the total length
f the lane. For trajectory vectors we use the similar representation 𝒇 𝑎 = [𝒙𝒔,𝒙𝑒, 𝒗, agent_type, 𝑡]. 𝒗 is the average speed between
sequential timestamps. The integer agent type can be a vehicle (1) or pedestrian/cyclist (−1) and 𝑡 is the timestamp. From the

escription above we can construct the input for UQnet. For example, if the current case has 𝑛𝑚 lanes and 𝑛𝑎 agents, Then the maps
nput is 𝑴 ∈ R𝑛𝑚×5×8 and the trajectories input is 𝑻 ∈ R𝑛𝑎×9×8. To generate the heatmap, we consider a rectangle area around the
arget vehicle that covers 𝑦 ∈ [−12m, 75m] and 𝑥 ∈ [−23m, 23m]. In training, we set the spatial resolution to 1m so the coordinate
nput has the shape (46× 87, 2). During training and validation, the target vehicle is randomly selected among all vehicles that have
omplete 4 s records.

UQnet learns the spatial distribution of the last position after 3 s. We can use different sampling strategies to get predicted
ositions from the heatmap. The models on the leader board are ranked by Missing Rate (MR) so here we use a naive local-maximum
ampling strategy (Gilles et al., 2021) to greedily generate the most possible 𝑘 final positions (𝑘 = 6 for the INTERPRET challenge).
R is calculated as follows. If the predicted final position of the target agent is out of a given lateral or longitudinal area of the ground

ruth, it is ‘‘missed’’. MR measures how many per cent of predictions are missed. The lateral threshold is 1m and the longitudinal
hreshold is a piece-wise function depending on the velocity of the target agent at the current moment:

th(𝑣) =
⎧

⎪

⎨

⎪

⎩

1 𝑣 < 1.4m s−1

1 + 𝑣−1.4
11−1.4 1.4m s−1 ≤ 𝑣 ≤ 11m s−1

2 𝑣 > 11m s−1

esides MR, minFDE and minADE are also used to evaluate the quality of the predicted trajectories. minFDE is the L2-squared
istance between the predicted endpoints and the ground truth, and minADE measures the average L2-squared distance between
he forecasted trajectory and the label.

An MLP with 1 hidden layer completes the trajectory from the predicted last position. For uncertainty quantification, according
o the empirical suggestion given in Kendall and Gal (2017), 7 randomly-initialized UQnets are trained in parallel (5–10 models are
roper choices). Then the method proposed in Section 3.1 is used to quantify epistemic and aleatoric uncertainty.

Table 1 compares the performances of UQnet with other models on the leaderboard. Here UQnet is the performance of the first
odel (not the best one). UQnet (predictor only) does not use the causal regularization term. We see that the generalizability MR

f UQnet is significantly improved from the previous-best 11.07% to 6.86% and the overall MR is reduced from 4.91% to 3.64%.
Qnet’s regular MR reaches the average level. If the causal regularization is not used, the regular MR is slightly better but the
eneralizability MR drops significantly.

Meanwhile, we also observe that the minFDE and minADE of UQnet are relatively worse than the state-of-the-art models. This
s restricted by the used MR minimization sampling strategy, the resolution of the heatmap, and the trajectory generation method.
he spatial resolution of UQnet is 0.5m, which means it cannot give more accurate predictions within this mesh grid. The generated
rajectory also ignores the kinematic constraints and the road layouts. Therefore, minFDE and minADE are degraded. This part can
e technically improved but it is not relevant to the objective of this paper.

Next, we will focus on analysing the estimated uncertainty.

.1. Precision–recall analysis

We first show the precision–recall curve for both aleatoric and epistemic uncertainty on the validation set. Here the precision
s represented by hitting rate HR (HR = 1-MR) and log-likelihood (LL). We only sample 2 positions from the heatmap to calculate
R2%. Fig. 6 shows how precision improves by preserving those cases with aleatoric or epistemic uncertainty lower than a specific

hreshold. For example, in Fig. 6(a), a point on the aleatoric uncertainty curve (the red line) at the 0.2 percentile depicts the hitting
ate, considering the samples with the lowest 20% aleatoric uncertainty only. We see that the estimated uncertainty is negatively
9
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Table 1
Comparison with other models.

Model Regular Generalizability Overall

Metrics minADE minFDE MR minADE minFDE MR minADE minFDE MR

UQnet 0.3919 0.6215 1.96 0.6785 0.8608 6.86 0.4903 0.7037 3.64
UQnet-
(predictor only)

0.3906 0.6190 1.84 0.7163 0.9150 10.31 0.5025 0.7206 4.75

GoHOME (Gilles et al., 2021) 0.1617 0.4578 1.37 0.2747 0.8685 11.68 0.2005 0.5988 4.91
Multimodal-
Transformer

0.1417 0.4024 2.00 0.3494 0.8356 11.07 0.2130 0.5511 5.11

HDGT (Jia et al., 2022) 0.1085 0.3361 1.42 0.2806 0.7484 13.47 0.1676 0.4775 5.56
DenseTNT (Gu et al., 2021) 0.2819 0.6371 2.80 0.7256 1.0978 12.00 0.4342 0.7952 5.96

Fig. 6. Precision–Recall curve on the test set: (a) Hitting rate and (b) log-likelihood.

correlated with precision, which means the estimated uncertainty can indeed reflect the prediction confidence (Kendall and Gal,
2017).

Next, we will analyse aleatoric and epistemic uncertainty in detail. To facilitate the discussion below, now we split the validation
set and the test set into the following three groups:

1 Validation set: All samples in the validation set are from exactly the same scenarios of the training set, including mergings,
intersections, and roundabouts. It serves as a baseline.

2 In-Distribution (ID) test cases: Those test cases that are collected from the same scenarios as the training set and validation
set.

3 Out-of-Distribution (OOD) test cases: Those test cases that are collected from new scenarios, including completely new types
of scenarios, e.g. diverging.

5.2. Aleatoric uncertainty and predictability

The distributions of estimated aleatoric uncertainty with added Gaussian noise for the three subgroups are shown in Fig. 7(a).
They have similar shapes that are highly concentrated around 2.5 nats and the value is always higher than 𝐻(𝝐) = 2.12 due to
the added noise. We must rectify this estimation error. Unfortunately, although the added noise 𝝐 is independent of the prediction,
differential entropy is not linearly additive. Note the rectified random variable of position as �̂� 𝑟 = �̂� −𝝐, then 𝐻(�̂� 𝑟) ≠ 𝐻(�̂� )−𝐻(𝝐).
We must find a roundabout to correct this. Aleatoric uncertainty is closely related to the concept of ‘‘limit of predictability’’, which
can be represented by the lower bound of accuracy for any model. In our previous study we show that the aleatoric uncertainty
measured by conditional entropy gives the lower bound of negative-log-likelihood (NLL) and from that, we can further derive the
limit of MSE (Li et al., 2022):

MSE2 = det𝜮 ≥ 1
(2𝜋𝑒)2

𝑒2𝐻 (15)

MSE is linear and additive for independent random variables. So we can use (15) to derive the lower bound of MSE for the
rectified prediction:

MSE𝑙𝑏(�̂� 𝑟) = MSE𝑙𝑏(�̂� ) − 𝜎2𝜖 = 𝑒𝐻(�̂� )

2𝜋𝑒
− 0.49 (16)

Now we can use the formula above to convert entropy measures to MSE𝑙𝑏 (noted as 𝜎2𝑙𝑏), or its square root RMSE𝑙𝑏, to represent
rectified aleatoric uncertainty equivalently. The results are shown in Fig. 7(b). The peak is now located at around 0.5m. It is necessary
to clarify that the 𝜎2𝑙𝑏 is different from prediction MSE. For the two cases shown in Fig. 1, they have the same 𝜎2𝑙𝑏 derived from the
conditional entropy but (b)’s prediction MSE is apparently higher.
10
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Fig. 7. Distributions of aleatoric uncertainty for three different groups. (a) Differential entropy metric with Gaussian noise; (b) Denoised rectified RMSE lower
bound metric.

Fig. 8. The estimated minimum FDE for one prediction and the measured FDEs of HEAT-I-R (Mo et al., 2021), ReCoG (Mo et al., 2020) and GoHome (Gilles
et al., 2021). All models are evaluated on the validation set.

In most trajectory forecasting tasks, people prefer to use final-displacement-error (FDE), which is the Euclidean distance. For
given 𝜎2𝑙𝑏, 2D symmetric Laplace distribution minimizes the L2 norm (Eltoft et al., 2006) (for 1 sampled prediction), noted as
𝑝𝐿(𝑥, 𝑦|𝝁 = 𝟎,𝜮 = 𝜎2𝑙𝑏𝑰). However, the multivariate Laplace distribution contains the modified Bessel function of the second kind. Its
mean-absolute-deviation does not have a closed form. So we can only estimate the lower bound of FDE by numerically calculating
the following integral:

FDE𝑙𝑏 = ∫
√

𝑥2 + 𝑦2 ⋅ 𝑝𝐿(𝑥, 𝑦|𝟎, 𝜎2𝑙𝑏𝑰)𝑑𝑥𝑑𝑦 (17)

This estimated lower bound of average FDE (of one sampled final position) on the validation set is compared with the
performances of some models in Fig. 8. It measures the limit of predictability from the perspective of probabilistic prediction.
However, we emphasize that the analysis of predictability is only for a single prediction. In practice, we generally sample multiple
predictions for safer motion planning. This strategy can significantly increase the coverage of outputs.

Fig. 9 shows three cases that have low epistemic uncertainty but high aleatoric uncertainty. Recall that low epistemic uncertainty
means that the predicted heatmap is reliable and these cases are common. They represent three different types of missing
information. Case-(a) has strong bi-modality due to the lack of turn signal. In the real world, the driver is expected to flash the
left turn signal or do nothing. One modality would disappear. The high aleatoric uncertainty is caused by the special bird-view of
the drone. In case-(b), the target vehicle is predicted to do a U-turn following a large vehicle. The heterogeneity of this steering
manoeuvre itself is high. It highly depends on the driver’s unknown proficiency. In case-(c), the target vehicle is driving at a high
speed (79.2 kmh−1) and the leading car on its adjacent lane is significantly slower (46.8 kmh−1). Their gross longitudinal distance
headway is about 21.5m. We expect that the target vehicle will approach or even overtake the left neighbour in the next 3 s. The
interaction uncertainty is high. The same acceleration will always yield the same speed difference. However, the higher the initial
speed is, the bigger the difference in position becomes. The aleatoric uncertainty of cases-(a) can be reduced by adding turn signals,
but adding sensors cannot help case-(b) and (c).
11
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Fig. 9. Three examples of low epistemic uncertainty but high aleatoric uncertainty. The red vehicle is the target vehicle and blue vehicles are surrounding
vehicles. Green lines are their trajectories in the past 1 s. The heatmaps represent the spatial distribution of the target vehicle’s position after 3 s. Yellow stars
are the 6 most possible sampled positions. 𝑈𝑎 gives aleatoric uncertainty value (nats).

Fig. 10. The distributions of epistemic uncertainty.

5.3. Epistemic uncertainty and rareness

Fig. 10 presents the distributions of epistemic uncertainty. Different from Fig. 7, OOD’s distribution is significantly different from
the other two groups. The proposed method identifies more samples from new diverging/off-ramp scenarios as ‘‘new cases’’. But
even in OOD, most samples are located at the low-epistemic end.

We found that most of these ‘‘rare cases’’ are from one specific scenario: the target vehicle is approaching the diverging decision
point at a very high speed. Fig. 11(a) shows one example. We see that the spatial distribution disperses in a larger area because
different models in the ensemble give inconsistent predictions. Some predictions are even off-road. The result is reasonable because
the training set does not contain any diverging/off-ramp scenario. Although our model can effectively adapt to same-type scenarios,
it cannot be generalized to a completely new situation. Fig. 11(b) shows another rare case. The target vehicle stops on the right-most
lane but its leading and following vehicles are still moving. It is reasonable to infer that this is a rare abnormal case.

One may argue that, since intersections and roundabouts are composed of similar diverging and merging sub-structures, the
model might also be applied to (on/off) ramps. However, the difference in operational speeds prohibits this generalization. When
the speed is low (congested), epistemic uncertainty is small because the surrounding vehicles’ influences are more important than
geometry (the map elements). The target vehicle’s choices are largely restricted. However, when the speed is high, driving behaviours
are completely different. Human drivers will tend to keep longer distance headways and make faster and more determined decisions
to avoid collision (Toledo et al., 2009) because the braking distance is proportional to the square of speed. Fig. 12 directly shows
the relationship between the speed and epistemic uncertainty. The validation set and ID groups have very similar speed distributions
(like the training set). Most of the samples are low-speed cases. There are not many cases where the target vehicle’s speed is
12
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Fig. 11. Two examples of high epistemic cases. 𝑈𝑚 is the estimated epistemic uncertainty (nats).

higher than 10m s−1. The Pearson correlation coefficients are low (0.253 and 0.289). While the average speed of the OOD group is
significantly higher. Speed and epistemic uncertainty are apparently positively correlated for OOD (0.711). Especially, those cases
with speed higher than 20m s−1 have significantly higher epistemic uncertainty. INTERPRET challenge splits the training set, the
in-distribution test set, and the generalizability test set by scenario types, but the difference in speed is ignored and not balanced.
However, pure data-driven models are not likely to be generalizable from low-speed to high-speed cases because their driving
behaviours are substantially different. For example, the experiments in Huang et al. (2018) show that the intra-driver heterogeneity
of car-following behaviours under high-speed situations is significantly higher than in low-speed situations. When the speed is high,
even the same driver shows very different behaviours in keeping distance headways in repeated runs. Adding such extra domain
knowledge established by traffic researchers is the key to further improving the generalizability.

Below we summarize the major findings in this section as follows:

• UQnet has good prediction performance. Compared with other correlation-based models, it has better generalizability due to
the added causal regularization.

• The proposed heatmap-based UQ method gives estimates of both aleatoric and epistemic uncertainties.
• In this context,

– Aleatoric uncertainty can be understood as a (reasonable) limit of predictability for any motion forecasting model.
– Epistemic uncertainty is representative of new or rare interaction cases in the test set.

• Our results demonstrate that one of the major obstacles of domain generalization for motion forecasting is properly encoding
the speed-dependency of the (causal) relationships between variables.

6. Conclusion and perspective

In this paper, we proposed a novel non-parametric spatial uncertainty quantification method. UQnet ensembles can give accurate
predictions and reasonable measures of aleatoric and epistemic uncertainty. From aleatoric uncertainty, we estimate the lower bound
of final-displacement error, which can measure the limit of predictability for trajectories. On the other hand, epistemic uncertainty
can quantitatively identify which cases have not been seen in training. The main difficulty in improving models’ generalization
capabilities lies in improved modelling speed-dependent driving behaviours.

We offer two more tentative conclusions. First, we observed that aleatoric uncertainty is inherently high in many situations and
our results seem to suggest that current AI models already harness the maximum value in commonly available trajectory data sets.
In other words, using trajectory data and maps information only, more model sophistication is not likely to significantly improve the
prediction performance for in-distribution situations. Combining and fusing more (different) data sources offers a more promising
path to better predictions. For example, adding turn signals (blinkers) may effectively reduce much of the (aleatoric) interaction
uncertainty. Second, our results support the idea that data-driven models should be combined with extra domain knowledge to gain
better generalizability. A key example is the notion that operational speed matters for which of the available data (e.g. geometry
versus surrounding vehicle kinematics) are most informative for motion prediction, and thus for the uncertainty associated with
that prediction.

Finally, an important avenue for further research is the idea that epistemic uncertainty could be used as a tool to recognize rare
events in training sets. Instead of collecting as much data as possible to improve generalization, one could rather focus on collecting
13
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Fig. 12. (a) shows the distribution of the target vehicle’s speed in the training set. (b) (c) and (d) show both the speed distribution and the scatter density plots
of speed-epistemic uncertainty relationships for different groups. The Pearson correlation coefficient is also given.

sufficiently representative and heterogeneous data sets, in combination with applying adaptive learning techniques. This enables
models to exploit continuous and guided online learning.
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Appendix A. Explanation of the causal regularization

Assume two random variables 𝑋 and 𝑌 , Bayes’ theorem says:

𝑝𝑌 |𝑋 (𝑦|𝑥)𝑝𝑋 (𝑥) = 𝑝𝑋|𝑌 (𝑥|𝑦)𝑝𝑌 (𝑦) (A.1)

However, the left and the right sides have different meanings from the perspective of causality. For instance, if 𝑋 causes 𝑌 (denoted
as 𝑋 → 𝑌 ), then only the left side can be used. It means that we can control 𝑌 by manipulating 𝑋. The right side will fail when
independent identical distribution does not hold (For example, eating more ice cream cannot elevate the temperature).

For the trajectory prediction and uncertainty quantification problem discussed in Section 3.2, in general, a model aims to build
the following conditional probability distribution:

𝑝(𝒀 |𝑺,𝑴 ,𝑬) (A.2)
14
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Fig. A.13. From left to right: output of the predictor �̂� , of the regularization net 𝒀 , and an imaginary case where all surrounding vehicles are removed from
the inputs (drive alone). The black stars mark the most possible location after 3 s.

A correlation-based model (including most deep neural networks), directly learns this conditional distribution from (large) data
but does not consider the causal relationships, which may lead to unsatisfactory generalizability and thus damage the estimate of
epistemic uncertainty. Among the 3 input variables, 𝑬 is absolutely needed. The problem is the positions of 𝑺 and 𝑴 . We do know
that 𝑴 causes 𝑺, not inversely. No matter how surrounding vehicles drive, maps are just there. However, changing maps will change
drivers’ intentions and behaviours. For Bayes formula:

𝑝(𝒀 |𝑺,𝑴 ,𝑬) =
𝑝(𝒀 ,𝑺|𝑴 ,𝑬)
𝑝(𝑺|𝑴 ,𝑬)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐜𝐨𝐫𝐫𝐞𝐜𝐭

=
𝑝(𝒀 ,𝑴|𝑺,𝑬)
𝑝(𝑴|𝑺,𝑬)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
wrong

(A.3)

Therefore, a naive but important rule for designing uncertainty-aware motion prediction models is:

The information can only flow from 𝑴 , and agents should not pass their information to the lanes.
From this perspective, the output of the normal predictor �̂� and the regularization net 𝒀 are defined as follows:

�̂� ∼ 𝑝(𝒀 |𝑴 ,𝑬, [𝑺|𝑴 ,𝑬])

𝒀 ∼ 𝑝(𝒀 |𝑴 ,𝑬) = ∫ 𝑝(𝒀 |𝑺)𝑝(𝑺|𝑴 ,𝑬)𝑑𝑺
(A.4)

Notice that 𝒀 does not exclude the influence of 𝑺 but marginalizes it. To better show the differences, we choose a case from the
test set (No. 1791) presented in Fig. A.13. The target red vehicle is approaching the merging at a high speed and there is congestion
ahead of it. For the regularization net, because it considers all possible situations with diverse surrounding vehicles, the output
covers a larger area, including constant speed cases, and acceleration/deceleration cases. The predictor’s output is within it and,
as expected, the vehicle will decelerate due to the congestion, and change to its left lane. As for the most right case, we construct
an imaginary scenario in which all surrounding vehicles do not exist for the predictor. We see that the final location is about 13m
farther than the left case. The vehicle will simply follow the lane and keep a constant speed. This example shows that the influence
(constraints) posed by surrounding vehicles is correctly learnt.

Fig. A.14 further shows the value of the regularization term (the leakage of probability) on the validation set and the
out-of-domain test set. Most cases have low leakage due to the induced regularization term in training.

Appendix B. UQnet in detail

Many layers in UQnet are graph self-attention layers or cross-attention layers (Velickovic et al., 2017). We start from the more
general cross-attention layer. Assume that we have a query input 𝑿1 ∈ R𝑛𝑎×𝑑𝑎 and a feature input 𝑿2 ∈ R𝑛𝑏×𝑑𝑏 , and an adjacency
matrix representing the connectivity 𝑨 ∈ R𝑛𝑎×𝑛𝑏 then the output of a cross-attention layer is:

𝑸 = 𝑿1𝑾 𝑞 ,𝑲 = 𝑿2𝑾 𝑘,𝑽 = 𝑿2𝑾 𝑣 (B.1)

𝑯 = softmax(𝑸𝑲𝑇 − 1𝑒7 × (1 −𝑨)
√

)𝑽 (B.2)
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h
𝑯
a

Fig. A.14. Distributions of the values of the regularization term on the validation set (left) and the out-of-domain test set (right).

Fig. B.15. The encoder structure of UQnet.

where 𝑾 𝑞 ∈ R𝑑𝑎×𝑑ℎ , 𝑾 𝑘,𝑾 𝑣 ∈ R𝑑𝑏×𝑑ℎ are trainable parameters, the output is 𝑯 ∈ R𝑑𝑎×𝑑ℎ . It can also be extended to multi-
ead attention layers by, for example, concatenating. We briefly note such a cross-attention layer with 𝑚 attention heads as
= Attention(𝑿1,𝑿2,𝑨, 𝑑ℎ, 𝑚). If 𝑿1 = 𝑿2 = 𝑿, the cross-attention layer becomes a graph self-attention layer, briefly noted

s 𝑯 = SelfAttention(𝑿,𝑨, 𝑑ℎ, 𝑚). The input of UQnet includes (the shape of each tensor is also given):

(1) 𝑻 (26, 9, 8): trajectories of all agents in the selected rectangle. The first one is the target vehicle.
(2) 𝑴(55, 5, 8): map elements within the same range.
(3) 𝑭 (𝑁, 2): coordinates of a mesh grid. 𝑁 depends on the resolution of the 2D histogram. It can be different during training and

inference.
(4) 𝑨(81, 81): adjacency matrix that controls connectivity and information flow directions. It may vary in different layers

according to the requirements. In this paper, we need the following adjacency matrices:

(a) 𝑱 , matrix of ones.
(b) 𝑨𝑎, all agents are connected to all other agents and lanes, and lanes are connected bi-directional to each other.
(c) 𝑨𝑙∕𝑟∕𝑝∕𝑓 , each lane only receives information from their left, right, previous, or following lanes and itself.
16

(d) 𝑨𝑡, all lanes are connected bi-directionally among them and only pass information to the target vehicle.
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Fig. B.16. The decoder structure of UQnet.

The encoder and decoder structures are shown in Figs. B.15 and B.16. The DenseTNT decoder is given in DenseTNT (Gu et al.,
2021). We refer the readers to their paper and the open-source code for more details.
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