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Abstract

The amount of people and devices connected through the Internet has been growing at a rapid pace; as of
June 2019 58,8% of the world’s population and billions of devices are joined by this vast network of informa-
tion resources and services. Not every Internet user however has benign intentions. Cybercriminals use this
technology for their own personal gain, by creating malicious software with the objective to compromise and
even control the devices of unsuspecting victims. After devices have been infected with malicious software,
they will be controlled by a central networking infrastructure, or Command and Control (C&C). Numerous
studies have developed detection methods to find the commanding servers behind these attacks – which is
important for locally implemented anti-virus software – but the infrastructures behind these attacks is only
uncovered after these malicious servers have been taken down. We have collaborated with one of the largest
Tier 1 Internet Service Providers and have collected ~4Tb of global NetFlow traffic consisting of daily connec-
tions made worldwide, giving us the possibility to analyze malicious infrastructures from a new perspective.
This dataset allowed us to evaluate one of the most promising data sources to uncover and analyze adver-
sarial C&C infrastructures; open source cyber threat intelligence. After having introduced a taxonomy to
evaluate this intelligence, and having assessed the defensive advantages users will gain when adopting these
information feeds, we came to the conclusion that – even though advertised differently – this intelligence
only provides a small fragment of the total picture. For this reason we have decomposed Internet networking
infrastructures into three categories in which Internet devices can be divided, computer clients, Internet of
Things (or IoT) and routers, and use a machine learning driven methodology to paint the threat landscape of
the tactics, techniques and procedures adversaries employ within these three categories. When looking into
infections on clients, a numerous amount of different structures can be observed which cybercriminals use to
hide their infrastructure like round-robin DNS or interesting server hopping sequences. When learning these
patterns, we successfully use a combination of machine learning and statistical functions to complement
threat intelligence feeds. Where these feeds during the course of 2018 only show 1,105 malicious servers, we
find that there are more than 188,000 malicious servers in our dataset. A more recent addition to the Internet
are smart, or IoT, devices like surveillance cameras, which have proven to be incredibly vulnerable. In an
analysis we report on the scale and impact of the first IoT based malware, Mirai, and its variants during the
start of 2018. 1 in every 2,345 scanned and bruteforced devices is successfully infected with a Mirai variant.
This poses a great attack vector, taking into account that there are about 7 billion IoT devices as of 2019. For
our last analysis we have focused on a firmware vulnerability towards MikroTik routers which cybercriminals
have exploited to rewrite outgoing user traffic and embed cryptomining code in every outgoing connection.
Accordingly, for every web page visited they can use the computation power of the victims computer to mine
for the cryptocurrency Monero. We report on the tactics, techniques and procedures, and coordinating in-
frastructure of the adversaries, which had control of up to 1.4M routers over a period of 10 months, which is
approximately 70% of all global MikroTik devices. Our work shows that an entire world of possibilities emerge
in terms of network security when able to analyze NetFlow data. In the ongoing battle against cybercrime,
anti-virus companies try to outsmart adversaries by using novel device based detection techniques. This is
an evident rat-race between defenders and attackers. We have shown that ISP providers could play a big role
in this, by analyzing NetFlow data flowing through their routers to perform detection of malicious behavior
based on previous misuse and cyber threat intelligence.

T.M. Booij
Delft, September 2019
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�
Introduction

Our generation cannot imagine a world without the Internet. With the Internet’s growing role in coordinating
the structure of our daily lives, we heavily depend on it. People have grown a need for being interconnected
and alleviating tasks by automation. Filing for task returns, signing binding legal contracts or simply posting a
new photo on a social media website is all within the click of a button. In this day and age, with our reliance on
modern technologies such as personal computers and mobile phones, combined with the ease of criminals
getting their hands on malicious software, or malware, we have surpassed everything society could have
envisioned a couple of decades ago. With the global proliferation of cybercrime, we virtually broadcast our
digital presence around the world, waiting to be exploited and used by criminals or competing companies in
any way they like.

Cybercriminals are individuals or teams of people who use these technologies to commit malicious activ-
ities on digital systems or networks with the intention of stealing sensitive information, generating monetary
profit or crippling these systems. We can wonder why digital security has become a major issue over the past
years - communication and computer networks have been around quite some time. Cybercrime can be dated
back to the 1970’s [123]. In 1971 John Draper, a phone phreaker, used a toy whistle from a cereal box to break
into the AT&T phone system, allowing him to make free long-distance calls. Not much later Ian Murphy, AKA
Captain Zap, was the first person to be actually convicted of a cybercrime. Again telecommunications was
the target, as Murphy hacked into the AT&T network and changed internal clocks. This allowed him to pay off
hour costs at peak times when making phone calls, saving him a significant amount of money. Over the last 15
years, cybercriminals have become incredibly advanced and have created an ecosystem sustaining malicious
activities. It used to take great skill to, for example, steal someone’s credit card information to perform iden-
tity fraud. This has however become extremely simple with the introduction of e-commerce, as this enables
every online user to be a potential target to this kind of fraud. The introduction of these kind of technolo-
gies incentivized adversaries to adopt and misuse new technologies to perform large and global malicious
campaigns. Nowadays, the amount of impact cybercrime has on society is enormous as predictions have
shown that the resulting damage will globally cost $6 trillion annually [66]. Writing a sophisticated piece of
malware, which takes an incredible amount of skill, rarely proves to be effective for monetary gain. Instead,
cybercriminals focus on new technologies as it became much more lucrative to exploit these technologies
with emerging vulnerabilities, maximizing profit with minimal effort. They are continuously searching for
innovative opportunities to achieve their malicious goals, including developing and utilizing new forms of
malware. A wide variety of cybercriminals exist, each with different incentives and malicious goals. From
individual, and most of the time inexperienced, criminals who mainly rely on pre-made malware from third
parties, to organized cybercrime, which have the possibilities to run elaborated malicious infrastructures and
perform highly sophisticated attacks.

1.1. Organized cybercrime
Cybercrime has been on the rise for quite a while now, with no sign of slowing down any time soon. Criminals
have been able to explore different exploitation techniques for monetary or political gain. They have also
realized that it can be very effective to combine skills of like-minded people. This has even allowed cyber-
criminals to run their operations like agile and modern businesses. Illicit cyber organizations which employ
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people with varying skills, are not unheard of. From managers to programmers, from network administrators
to data miners, combining these kinds of expertise to perform harmful activities can be very effective and lu-
crative. Not only the organizational structure, but also the approach to perform and maintain misuse can be
very elaborate. The opportunities of these coordinated structures has led to emerging underground markets,
used to offer illegal services or sell new vulnerabilities for high prices.

One of the most innovative ways of performing malicious activities is by exploiting new, or reusing old,
vulnerabilities to compromise devices and subsequently gaining control. When performing this on a single
computer, not much harm can be done. The owner of the system might have fallen victim to, for example
fraud or identity theft, and thus only causing harm to the owner. However, imagine this single controlled
device turns into a network of thousands of compromised devices. The options of large scale abuse for the
administrator controlling an infrastructure this large immediately explode. Such a network is called a bot-
net, consisting of a lot of compromised devices, or bots. These botnets can be used to roll-out extensive
malicious campaigns with all sorts of attack vectors in their grasp for monetary gain or for pursuing other
goals. The attack vectors can be categorized in a lot of different activities. Spyware, which can send infor-
mation, like passwords, credit card information or other information, to its administrators about the user
controlling the infected device. The information these kinds of software gather can for example be sold in
underground markets, enabling individual cybercriminals to use this kind of information without having any
kind of technological skills. An old favorite, SPAM e-mails, are designed to trick the users into clicking on
links or downloading malicious software, or click fraud, which occurs when the user visits website to create
false traffic for commercial gain. Over the past years ransomware, or scareware, has been blooming by try-
ing to extract money from the infected victims, as well something called cryptojacking, using the combined
computational power of the infected machines to acquire cryptocurrencies. There are more of these attack
vectors, each having its unique niche or method to exploit infected devices, but the most predominant use
of botnets currently still is distributed denial-of-service, or DDoS attacks. In such an attack, a set of infected
machines is used to send a lot of requests towards a service, forcing it to overload and preventing legitimate
users to access these services. As can be imagined, the goal of taking something off the grid is not directly
used to steal data or money, however, these attacks are not going away any time soon as adversaries can
indirectly make a lot of money from them. The power of having such an infrastructure could provide op-
portunities of extortion, by threatening large companies with DDoS attacks if they do not pay them. This
can be lucrative, but technological advantages have provided more options for cybercriminals to utilize their
network. After the introduction of Infrastructure-, Platform- and Software as a Service in the cloud, adver-
saries have adopted this idea and started to rent parts of their botnets, creating DDoS as a Service. By doing
this, the incentive to infect more machines grew. These services, also called stressers or booters, lowered the
technological barrier to perform DDoS attacks as any user can anonymously sign-up and perform attacks
for just a few dollars. It turns out, not much is needed to actually rent such a botnet. Sometimes users can
even pay with well-known payment methods like PayPal. All what then is left is ill-will towards someone or a
company and the willingness to break the law. It may sound strange, but just about anybody can launch an
attack and cripple important infrastructure. Early 2018, an 18-year old Dutchman was arrested on suspicion
of being responsible for DDoS attacks on the Rabobank, the Tax Authority and a couple of other websites. All
he wanted to do was "to show that a teenager can crash all banks with a relative simple attack" as he wrote in
an e-mail towards a newspaper. This proved that to locate one of these booters or stressers, you do not have
to be skilled with any kind of malicious technologies or search underground marketplaces. As it turns out, a
simple Google search is enough.

One component all infected devices have in common; in order to be effective, they have to acquire com-
mands to perform these malicious activities. These commands are spread by means of one or multiple Com-
mand and Control, or C&C, server(s). The specific function of such a server can vary tremendously, but the
goal is always to effectively control the devices which have been infected by some kind of malware the cyber-
criminals have employed. The topology of these servers has also changed over the years. In the early years
of botnets, they were mainly centralized servers controlling all the infected devices from one machine, but
as technology has evolved so have the hiding techniques behind these servers. Instead of having one cen-
tral server to control all the infected machines, multiple servers can be used to perform load balancing or
short-lived cloud-based servers can be used to leave no trace of the commands they have sent. Early 2018,
the social media platform Twitter has even been used as a channel to provide new commands to infected ma-
chines [138]. These compromised devices were programmed to watch the updates of a specific Twitter feed
and interpreting the posted information to perform attacks. Ultimately, cybercriminals can be extremely cre-
ative in setting up these malicious infrastructures.
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1.2. Defensive measures
Cyber security naturally is an adversarial discipline; on each part of the spectrum, people are trying to find
vulnerabilities and test limitations of the ’opponents’ technology. On one side, attackers are trying to exploit
vulnerabilities, find configurational errors and essentially finding loopholes in the security of systems, and on
the other side defenders are trying to stay one step ahead of them by continuously improving the flaws in their
systems. This division can be seen throughout the entire cyber threat landscape. Most of the time, ordinary
computer users are often not aware of this and rely on the services of their antivirus provider. Companies
even have multiple levels of defenses in place; intrusion detection systems, demilitarized zones, spam traps or
other mechanisms. Again cybercriminals keep trying to adapt and keep hidden from these defenses. Security
researchers counter this by focusing on more advanced and novel detection strategies.

Detecting malicious activity most of the time happens on host level. Antivirus companies design software
which can detect when bad activity is taking place on the computer it is installed on. This industry has been
around and necessary ever since the appearance of the first computer virus called the Creeper virus. During
the years, as technology has improved, detection strategies have also improved. Traditional customer grade
software relies heavily on signature based detection. When a new type of malware is found it is analyzed by
antivirus companies, who subsequently create a fingerprint or signature of this specific malware. These sig-
natures can be used to identify malware and stop them before they can cause harm. The moment a system
tries to execute a program, its signature is compared with those of malware stored in databases of the an-
tivirus company. This approach can be very effective against sudden outbreaks of new malware, containing
the spread. The authors of malware try to stay ahead of this defense mechanism by writing adaptive ma-
licious code which can encrypt parts of itself or modify itself in such a way that it does not compare to its
original signature. Besides authors creating adaptive code, the world of cybercrime also has to deal with a lot
of copycat-behavior. These types of adversaries might reuse malware and also change it slightly to remain
hidden from antivirus software. A blogpost by Zheng Bu and Rob Rachwald, both researchers at FireEye, even
shows that most malware remain active for no more than two hours [13]. Their analysis concludes that 82%
percent of malware disappears after one hour, and maybe even more shocking, 70% percent of malware only
exists once. They say that with the half-life of malware being this short, signature-based antivirus detection
has more in common with ghost hunting instead of threat detection and prevention. Defending against mal-
ware at this level might feel like a whack-a-mole game. After identifying and stopping a new type of malware,
a similar threat pops up somewhere else and after also blocking this one, five adapted versions of the same
malware show up. This essentially has become a rat race between ’good’ and ’bad’.

Figure 1.1: The Pyramid of Pain as proposed by David Bianco [10]

In 2013, David Bianco introduced a concept called the Pyramid of Pain. An illustration of this concept can be
seen in Figure 1.1 and shows the level of difficulty to detect certain types of adversarial activities [10]. Starting
at the bottom, the easiest way to detect malicious behavior is by hash values corresponding to malware, and
all the way at the top are the tactics, techniques and procedures (or TTPs). TTPs refer to the plans adversar-
ial groups conduct to orchestrate and manage attacks. Evidently the goal of antivirus companies, and other
related organizations, is to figure out these TTPs and stop cybercriminals at their source. It has become clear
that these TTPs will not be found by merely looking for malware signatures. In order to see the global pat-
terns of TTPs, it would be necessary to look at the source of the problem from a global perspective. Analyzing
such things would require network traffic directly from the backbone of the Internet, as this kind of data is
incredibly rare.
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With this in mind, we need to take one step back. Host-based detection will eventually not solve the problem,
but postpone it. Malicious traffic passes through global networks, even if it is stopped in its tracks by a host
based detection. The traffic however still travels through the Internet backbones. Analysis on actual TTPs
is scarce and even non-existing on the scale of global network traffic. New detection methods are predom-
inantly created for detection at the host level. Antivirus software and detection methods exist as front-door
safety, stopping the criminal from entering without the right key. It would however be better to stop criminals
before they even reach the front-door.

1.3. Cyber Threat Intelligence
Organizations use Cyber Threat Intelligence to better understand, predict and adapt to the behaviors of ma-
licious actors. Cyber Threat Intelligence can take many forms, including information about malware an ad-
versary uses, known C&C servers or specific techniques a group uses to steal information. By far the most
common data source is observable behavior which indicate if a host or network may be compromised. These
observations are called indicators of compromise. Organizations naturally collect a certain amount of threat
intelligence by fending off attacks or collecting spam emails. However, one organization cannot see every de-
tail of an attack. It has become wildly accepted that third-party companies provide condensed lists containing
indicators of compromise, which in turn can be used to tighten defenses. These third-party companies often
ask steep prices for their services, which customers often pay without regard. A lot of researchers or compa-
nies also provide free threat intelligence, striving for a more secure world. Where antivirus companies mainly
use malware signatures to detect adversarial behavior at the host level, Cyber Threat Intelligence can be seen
as the ’antivirus’ for detecting this behavior on a global scale.

1.4. Research question and approach
The academic world mainly aims for new detection strategies, trying to stay ahead of the cybercriminals
and trying to provide protection against emerging threats. Theory about networking infrastructures tells us
that these adversaries can apply labor division amongst infected machines, something which has not been
shown on a large scale as local administrative data does not provide this information. Global analysis on
large malicious C&C infrastructures has not yet been performed in the academic world, as this would require
access to a huge amount of Internet backbone network traffic. Where knowledge on the different families
of malware, and how to detect them, is wildly populated, analysis on the evolution of adversarial structures
or the TTPs behind them does almost not exist. Open source threat intelligence could be the solution for
this, as this provides information about current indicators of compromise used in attacks. In the spirit of a
more secure society, it would be desirable that these threat intelligence feeds provide enough information to
protect against most adversaries.

In this thesis, we will focus on these research gaps by using tier 1 ISP NetFlow data to chart the ecosystem
and analysis of global C&C infrastructures. To establish this, we will first analyze the current state of open
source threat intelligence. We set out to show that NetFlow data, when handled correctly and thoroughly,
can provide a new angle to analyze threats and attack vectors, and ultimately be the next step in fighting
cybercrime. This work will aim to answer the following research question:

What are the attack patterns and tactics, techniques and procedures of malicious
Command & Control infrastructures, how do these infrastructures evolve and how

can we track them on a global scale?

To provide a structured answer to this research question, we have created a research approach to tackle this
broad problem. To gain more insights into malicious infrastructures, indicators of compromise are needed
as a starting point. Open source threat intelligence would initially be the best source for this information,
as researchers and organizations around the globe contribute to this knowledge. Before using this kind of
information, it is imperative to know that this information will provide a clear picture global of cyber threats.
This leads to the first step in our research approach:

(1) Determine the coverage of open source threat intelligence feeds and determine if these
resources provide enough information to analyze malicious infrastructures.
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Chapter 4 will answer this step, providing a thorough analysis of 24 open source threat intelligence feeds and
will evaluate the coverage these feeds provide. This evaluation is necessary to obtain a clear picture of the
current state of threat intelligence regarding, among other attack vectors, C&C infrastructures.

After having analyzed and evaluated the publicly available threat intelligence sources, we can use these con-
clusions and information from these sources to analyze C&C infrastructures. As networking infrastructures
are a very broad concept, we will breakdown the analysis of malicious infrastructures into three different
components which most people can relate to. Personal computers, laptops, and smartphones have become
fundaments of our society, making them one of the most targeted devices of adversaries. Smart devices, re-
ferred to as Internet of Things (IoT), have also set foothold into our modern society. Finally, in the end all of
these devices have to connect to the Internet, which is always done by some kind of routing device. We will
introduce a methodology in Chapter 5 as a next step of our approach, which will be used to answer our main
research question. In this step we will elaborate on the choice for these categories and techniques used to
help answer our research problem:

(2) Define a methodology which enables us to utilize NetFlow data, combined with
additional datasets, to identify malicious infrastructures.

To thoroughly analyze malicious infrastructures we will dive into infections based on the three networking
infrastructures categories which we have defined; infections on clients, IoT devices and Internet routers, re-
sulting in the final step of our research plan:

(3) Discover attack patterns and tactics, techniques and procedures of malicious
Command & Control infrastructures and their evolutions within infections on clients,

IoT devices and routers.

This final step will be answered in the Chapters 6, 7 and 8 providing extensive analyses on adversarial infras-
tructures. These chapters will show how the methodologies used in Chapter 5 can be applied on NetFlow
data to explore the adversarial tactics, techniques and procedures used by cybercriminals, painting a more
clear picture of the cyber threat landscape.

1.5. Contributions
During our work we have analyzed dominant malicious infrastructures and activities on three different In-
ternet infrastructures; infections on clients, IoT devices and Internet routers. To do this, we initially made
an analysis of publicly available cyber threat intelligence, evaluating the timelines, sensitivity, originality and
impact this intelligence has on society. Following from this, we used a detection method to understand global
patterns of Command and Control servers and used clustering techniques to gain more insights into the dif-
ferent behaviors the infected machines controlled by these servers have. In this thesis, we make the following
contributions:

Analysis of threat intelligence feeds

• We introduce a taxonomy to evaluate the quality of cyber threat intelligence feeds, aiming to assess the
defensive advantage users will gain when adopting these feeds.

• We evaluate the indicators reported on 24 open source threat intelligence feeds across four dimensions,
and benchmark using NetFlow data and zone transfers the timeliness, sensitivity, originality and impact
of these feeds.

• We empirically analyze the impact an indicator of compromise has, which has been provided by an in-
telligence feed. This allows us to evaluate the adoption of these feeds in practice and estimate whether
a feed is in practice able to protect clients and networks from future harm.

Infections on clients

• We have analyzed adversarial tactics and unveil differences between servers in how they communicate
with their infected machines and how this activity evolves over time.

• We are the first to use a combination of learning techniques to find unknown C&C servers in anony-
mous NetFlow data and complementing data found in open source threat intelligence feeds.
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Infections on IoT

• We are the first to analyze IoT infection from the perspective that NetFlow data provides. By additionally
using scanning data, targeted at a network telescope, we can estimate the leverage of the infection.
According to our data, 1 in every 2345 scanned devices is successfully infected by the Mirai worm.

• We are the first to detect Mirai C&C servers without inspecting the actual malware binary and expand
existing knowledge by elaborating on their behavior over time. Additionally we provide two examples
of infected devices being utilized for DDoS attacks and correlate this with C&C behavior.

• We estimate the amount of revenue which can possibly be made by setting-up a DDoS booter service
based on the amount of malicious traffic flowing through these infected machines. A large botnet could
possibly earn up to ~$285,000 per year.

Infections on routers

• We are first to investigate a new type of attack that exploits Internet infrastructure for cryptomining, and
show how over a period of 10 months after the initial discovery of the vulnerability groups of criminals
launch massive campaigns to control 1.4M routers, with a peak of 460,618 simultaneously infected
routers.

• We have analyzed adversarial tactics and unveil the supporting infrastructure used within the cam-
paigns, and are able to show differences between groups in how they locate their victims, compromise
routers, and run their infrastructure.

• We demonstrate that previously reported vectors are negligibly small in number of affected users and
created revenue, compared to the reported MITM attack. We find that this attack yielded monthly rev-
enues, estimated exceeding $1,200,000 per month for the top 10 grossing accounts, a factor of 30 larger
than previously estimated cryptojacking revenues from hacked websites, malicious advertisements and
website-owner initiated mining combined.

• We have observed high levels of sophistication in three identified campaigns, of which the largest in-
volved 40 mining accounts linked to one single actor.

The work we have done resulting in our last four contributions will be presented at the 26th ACM Conference
on Computer and Communications Security - 11-15 November 2019, London, UK.

1.6. Thesis structure
The analyses presented in this thesis will work towards answering the research question and present the sci-
entific value added to the cyber threat intelligence landscape. This will be done according to the following
structure. The next chapter will provide necessary background information on previous work done on the
analysis of C&C infrastructures and on open source cyber threat intelligence. Chapter 3 will provide a de-
tailed analysis of the NetFlow dataset used to accomplish the presented goals and Chapter 4 will provide
an extensive quality analysis on open source threat intelligence feeds. Based on the conclusions from this
analysis, Chapter 5 presents methodologies which have been used for analyzing malicious infrastructures.
The following chapters will analyze malicious C&C activities found on three different Internet connectivity
infrastructures. Chapter 6 will use open source threat intelligence feeds to analyze the C&C traffic between
infected clients and the adversary, followed by an investigation of IoT devices infected by the Mirai virus in
Chapter 7. After this, Chapter 8 provides a study on a man-in-the-middle cryptojacking attack targeted on
Internet routers. Finally, Chapter 9 will present our conclusions of the results, provide limitations and discuss
possible future work.
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This chapter will provide an overview of existing academic research on adversarial infrastructures, Command
and Control (C&C) detection and clustering, and cyber threat intelligence feeds. We present prior work’s tech-
niques and principles and discuss the most important ideas we can learn from this. Section 2.1 will elaborate
on known infrastructures and patterns adversaries prevail for misuse, how these structures have emerged
throughout the years and what kind of challenges we will be facing in the near future. After this, Section 2.2
will discuss methods on detecting C&C infrastructures and corresponding analyses. As we are using pub-
licly available Cyber Threat Intelligence for the basis of our detection, previous work on this matter will be
elaborated upon in Section 2.3. Finally in Section 2.4 we will give an overview on malicious campaign anal-
ysis. Besides summarizing the work, we point to potential research gaps, forming the basis for the research
questions stated in the introduction.

2.1. Command & Control structures
The definition of C&C infrastructure is quite broad. In essence these infrastructures are controlled by a mali-
cious actor, who directs one or multiple C&C servers. These servers are computers which are capable to issue
directives to devices that have been infected with rootkits or other types of malware, such as ransomware
[110]. Adversaries can use these C&C servers to establish powerful networks of infected machines, or botnets,
and utilize these networks to perform malicious activities. It is difficult to accurately define a botnet [105].
Evidently a botnet is controlled by a malicious actor, or botmaster, which uses means of C&C to connect to
and command each of the machines it has infected, or bots. Communication plays an important role, but
the sole ability of malware to connect to other malicious instances is not a sufficient condition to classify an
infected computer as a bot. Modern malware is practically always a combination of infection, attack, conceal-
ment, adaption, and communication [14], where our focus in this thesis lies with communication. Besides
manifestation it is also interesting to know why adversaries pursue these malicious networks. Khattak et al.
performed an extensive analysis on the behavior of botnets. They elaborate on various different aspects,
including the purpose of these botnets and say that in addition to financial incentives, owners of botnets
are also driven by other goals such as stealing intellectual property, espionage and cyberwarfare [68]. In their
study they elaborate on seven prime reasons malicious actors establish malicious networks, namely informa-
tion gathering, distributed computing, cyberfraud, spreading malware, cyberwarfare, unsolicited marketing
and network service disruption. Each of these lucrative aspects can incentivize people to create and maintain
botnets.

Communication topologies
A lot of research has been done evaluating the type of C&C structures which can be encountered. A report
by Trend Micro [40] interestingly elaborates on the history of organized malicious networks. In their report
two contenders arise to have been responsible for the malware initiating the botnet waterfall: Sub7, a Trojan,
and Pretty Park, a worm. These malware both introduced the concept of connecting to an Internet Relay Chat
(IRC) channel to listen for commands. They first surfaced in 1999, which has since then led to constant botnet
innovation. Both malware made sure each infected machine would connect via IRC to a C&C server, which
entails a specific kind of structure called centralized. This centralized structure would quickly be known as
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Figure 2.1: High-level overview of centralized, decentralized and hybrid topologies

the fundament on which more advanced structures can be built. As one of the early adopters, Cooke et
al. in 2005 investigated the centralized structure and warned that more advanced structures would arise in
the near future. In their work they begin with describing how the botnet problem has evolved since 1999
and demonstrate the impact of the botnet problem by using evidence from various data collection sources.
Using this information they examined the, at that time, current IRC-based botnet communication strategies.
Besides this, they also revolutionized by introducing two other possible C&C topologies; Peer-to-peer (P2P)
and random structures [25]. Both topologies have a decentralized communication system, which is much
harder to disrupt. This means that the compromise of a single bot does not necessarily mean the loss of
the entire botnet. Finally they explained that each topology has specific advantages and drawbacks, and
the optimal topology for a botnet might be a combination of a centralized and decentralized structure. It is
interesting to see that in 2005 they already predicted this course for the future, as they were arguably accurate
which we will explain further on.

In the same year, Dagon et al. built upon their research and introduced a set of metrics to utilize this
taxonomy even further. They spent attention to key discriminators that could compare important attributes
of botnets. In their research they identified three important measures of botnets: size, network diameter, and
redundancy. Their analysis shows that decentralized network models give botnets considerable resilience
and that these kind of formations resist both targeted and random responses. Finally their analysis suggest
that by removing the C&C node, scale-free botnets will diminish after a while [27]. This however seems to
contradict the purpose of a decentralized model.

A few years later, Zeidanloo et al. summarized all the work that has previously been done on C&C in-
frastructure analysis [142]. In their work they have defined a classification for greater understanding of C&C
structures which entails centralized, decentralized, and hybrid models as depicted in Figure 2.1. They elab-
orate upon each of these topologies, starting with the centralized model. All connections happen by means
of the C&C server, making this a critical point in this model. In other words, C&C server is the weakest link in
this model. If somebody manages to discover and hijack the C&C server, the entire botnet will be worthless
and ineffective. This could also happen by discovering a bot belonging to this structure and finding out to
where it beckons. Considering this disadvantage, adversaries started to build alternative C&C systems which
are harder to discover. Hence, a model was created in which the communication system does not heavily
depend on a few selected servers or on one specific bot. They argue that understanding these topologies is
essential to precisely identify, detect, and mitigate the increasing botnet threat.

At this point in time it has become clear that these adversarial infrastructures have become increasingly com-
plex and with this harder to uncover, as we have seen them moving away from detectable IRC communication
to complex privacy preserving P2P communication. A hybrid model of partially centralized and decentralized
communication seems key. Following these researchers, a huge amount of work has been done on botnets
and their malicious infrastructures, most of them trying to complement each other’s work in the format of
a survey of taxonomy. With respect to this, in 2009 Bailey et al. continues the exploration by diving deeper
into the intersection between existing botnet research, the evolution of botnets themselves, and the goals and
perspectives of various malicious infrastructures [5]. They provide, like others before them, a survey about
these infrastructures, however they add novelty by providing a first look into possibilities for understanding
these networks and initial techniques to detect various infrastructures. One of their conclusions is that all
aspects of the botnet’s life cycle, from propagation, to C&C, and attack vectors are all continuously evolving.



2.1. Command & Control structures 9

It therefore does not make sense to try and frame everything adversarial infrastructure entails in one picture.
With this conclusion in mind, in [33] Eslahi et al. again presents an overview of malicious botnet infrastruc-
tures, but also provide a first insight into a few detection techniques used in the field. They explain detection
by signature, which refers to the known patterns or characteristics of threats, Honeypot and Honeynet, which
are tools that are used as traps to collect malicious activities and analyses for detect, detection by DNS traffic
monitoring, and finally behavioral analysis detection referring to anomaly detection on malicious patterns.
The latter is a technique which will endorse a lot of methods in detecting botnet behavior and will be more
thoroughly discussed in the next section.

After the work of [33] more surveys and taxonomies arose, with each one elaborating one different adver-
sarial techniques they have encountered. Khattak et al. for example provides a comprehensive framework,
based on three taxonomies, which could be utilized to understand the botnet problem and its solution space.
These three taxonomies aim to expose the adversary by exploring behavioral features, detection and defense
[68]. They also provide insights into botnet trends to come in the next years; botnets based on cloud com-
puting and smartphones. Botnets can utilize cloud services by hosting the C&C servers in the cloud [75] or
by initializing bots in the cloud instead of infecting user machines [24]. It is an attractive option to host C&C
servers in the cloud because of its on demand and pay-as-you-go nature.

In 2015, Amini et al. tried to summarize previous publications and point out their limitations. They
correctly state that most of these surveys each provide different taxonomies and interpretations. However,
they also state that there are no previous studies on defense mechanisms [2]. This is incorrect, as we have
seen in related work elaborated on in previous paragraphs. More recently Vormayr et al. presented their work
on an in-depth analysis of botnet communication, and is by far one of the most comprehensive studies to date
[132]. Their main contribution is a novel taxonomy of botnet C&C network communication patterns which
was derived from the analysis of a diverse set of botnets. In this taxonomy they present the C&C patterns
divided scenarios, propagation, data download, data upload, forward proxy, reverse proxy, and instruction.
These communication patterns cover every possible botnet task of the networks they have analyzed.

Diversification can be seen in work being produced over the last couple of years. This is probably due
to the fact that the threat landscape of botnets and their C&C infrastructure has been growing out of pro-
portions, and more specified work is needed to understand the inner workings and impacts of these threats.
For example, Khan et al. have investigated the most recent solutions proposed regarding detection of botnet
generated email spam and tried to categorize these botnets based on methods of defense [67]. They conclude
that traditional content based filtering and IP Blacklisting solutions are rendered ineffective, something that
is caused by the increasing complexity these networks operate in. Another example of extensive and specific
work is done by Hoque et al. who delved into Distributed Denial of Service (DDoS) attacks and how the pri-
mary facilitator of modern DDoS attacks are botnets. Currently DDoS attacks are one of the most harmful
attack types [94]. They also provide discussion on mobile botnets compared with traditional PC-based bot-
nets, something which was foreseen by [68]. Besides this, the researchers also provide a detailed discussion of
defense approaches and methods against botnet-based DDoS, and propose novel solutions to counter these
kind of attacks [62].

Communication techniques
In the previous section we have elaborated on the most important topological evolutions regarding C&C in-
frastructure. Concurrently a few technological means of communication were mentioned. However, to fully
understand the increasing complexity of C&C structures it is important to also grasp these popular commu-
nication techniques. To give an impression of what techniques have been used and how these have evolved,
we have to journey back to the first botnet-like structures in 1999. The first ever malicious infrastructures,
Sub7 [35] and Pretty Park [34], based their communication on Internet Relay Chat (IRC) as mentioned in the
report from Trend Micro by Furgeson [40]. This protocol was designed to allow several forms of communica-
tion (one-to-one, one-to-many and many-to-many) and therefore allow command distribution over a large
number of clients. With these features in mind, this protocol was initially designed in 1988 for chat purposes
across multiple devices, and could be used as an open protocol which normally runs on TCP ports 6660-7000.
The inherent flexibility of this protocol enabled third parties to extend it anyway they preferred which made
the protocol a good choice for botmasters, simplifying the botnet implementation [104]. One of the draw-
backs of this protocol showed up fairly quickly; blocking C&C traffic of IRC was fairly easy, as connections to
and from these fairly unusual TCP ports could simply be blocked.

To overcome this problem, adversaries shifted towards a more distributed organization by creating a bot-
net based on the principles of peer-to-peer (P2P) networks. In such a network any node in the topology can
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act as both a server and a client. A P2P botnet has the same objectives as a centralized botnet; infecting more
devices, dispersing commands and harvesting data. The advantage of a P2P architecture, is the lack of tight
C&C infrastructure. The origin of these kind of structures is the most difficult to trace, as the commands could
be given to merely one infected machine, which can in its turn disperse it to all peers in its network. Phatbot
[36] was arguably one of the first to switch to a P2P based topology. At this point, malware was increasing in
complexity as Phatbot was able to change its encryption for each new infection making it close to impossible
to detect automatically at the time. P2P seems like an ideal solution for this kind of malicious activity, how-
ever maintaining, utilizing and dividing such a network is deemed to be very challenging. Wang et al. in their
work even said that the general understanding "P2P botnet is much more robust against defense" is misleading
[134].

For this reason, adversaries turned to other solutions, trying to fall back to centralized structures as this
gives the botmaster more options and freedom. With this in mind, adversaries started to explore the use of
command and control communication through the Hypertext Transfer Protocol (HTTP). The HTTP protocol
operates as a request–response protocol in the client to server model [8] and is currently the most popular
protocol for Internet traffic as we will see in Section 3.3. The main advantage of using this protocol for C&C
traffic is that it can blend into benign traffic, bypassing basic firewall rules with port-based filtering. Usually
firewalls or Intrusion Detection Systems (IDS) block incoming and outgoing traffic to unusual ports, for ex-
ample IRC ports. However the architecture of the HTTP and IRC protocol is the same, Gu et. al. pointed out
that the HTTP protocol uses a pull style architecture, where IRC uses a push style [50]. Some early adopting
botnets using the HTTP protocol include Bobax [122], ClickBot [28] and Rustock [19].

The innovation of using HTTP as base for C&C, opened the gates to more sophisticated structures which
would eventually provide more anonymity for adversaries. One method of facilitating resilience to both de-
tection and reverse engineering of the botnet is the use of Domain Generation Algorithms (DGAs). The goal
of DGA is to dynamically produce and registering a large number of random domain names, and selecting a
small subset for actual C&C use [3]. Only a small subset is used, as the C&C domain is randomly generated
and only used for a very short period of time, meaning that simple detection methods which rely on static do-
main lists are left ineffective. Most of these algorithms use the current time as input, requiring every infected
machine to have a synchronized time. A simple example of such an algorithm can be examined in Listing 2.1.
Vormayr et al said that for most algorithms it was sufficient to be accurate to the nearest hour or day [132].
If this were not the case, solid communication with the C&C server would be close to impossible, seeing that
every infected machine would generate a different domain. A lot of clever options can be thought of to over-
come this problem, for example the malware can change the systems time on the machines or something
more advanced by probing a popular website for its date and time [141]. As can be imagined, the most ben-
eficial characteristic of such an algorithm is the amount of freedom in terms of C&C traffic. As the life cycle
of each C&C server is short, it does not matter if one of these servers is detected and taken offline as a new
one will pop-up in a short amount of time. A good example of this is the Conficker malware, which generated
250 domain names every three hours [46] [101]. This malware would provide a lookup on each domain which
has been generated and attempts to contact each IP address which it finds to download malicious binaries.
Taking control over a malicious infrastructure which has been created by a DGA has proven to be very difficult
[141]. The only way of dissecting such a network would be to find and reverse the algorithm generating the
domains and register all of these to take control of the botnet, which is precisely what researchers have done
with the Torpig botnet [102].

A more recent technique used for C&C, often glossed over by literature, is the use of the Domain Name
System (DNS). DNS is a decentralized and hierarchical system for devices, applications, or other resources

def generate_domain(year , month , day):
domain = ""

for i in range (16):
year = ((year ^ 8 * year) >> 11) ^ ((year & 0xFFFFFFF0) << 17)
month = (( month ^ 4 * month) >> 25) ^ 16 * (month & 0xFFFFFFF8)
day = ((day ^ (day << 13)) >> 19) ^ ((day & 0xFFFFFFFE) << 12)
domain += chr((( year ^ month ^ day) % 25) + 97)

return domain + ".nl"

Listing 2.1: Example of a basic domain generation algorithm
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connected to the Internet. This system is basically a large address book, as it can direct a machine querying a
specific domain name to the IP address it belongs to [85]. Dietrich et al. belong to one of the first researchers
uncovering this C&C technique by dismantling a specific type of malware, Feederbot, that showed strange
behavior as it seemingly did not use any obvious C&C protocol. They reverse engineered the sample they
obtained, and found out that the bot was abusing DNS as a communication channel for receiving commands,
by resolving a specific domain name in the malware and using the corresponding IP address to communicate.
The primary purpose of DNS is being able to use multiple servers around the world enabling a user access
to content closest to them. Dietrich et al. explains that, because of this fact, it is also useful to perform load
balancing and provide extra redundancy in case of one C&C server failing. A nifty approach for DNS C&C
activity is the use of a Fast-Flux network [46]. In such a network the C&C server is protected by a wall of
infected machines which are often part of a botnet. These machines will in this case act as a proxy to the C&C
server, meaning that each request they get for the server will be forwarded to the C&C server and returns the
replies to the original requester. The clever thing about these Fast-Flux networks is that they can grow as large
as tens of thousands of IP addresses and that each of the infected machines protecting the C&C server has a
unique IP address which then all point to the C&C server [59]. A host wishing to make contact with the C&C
server makes a request for the domain name and is returned a set of IP addresses, forcing it to connect to
one of them. The returned IP addresses are however not the C&C server itself, but on the infected machines
protecting the server. Besides this, the IP address which are returned have a very short time-to-live (TTL),
forcing a second request to the same domain name to result in a completely different set of IP addresses [46].
Exactly this behavior is what makes Fast-Flux networks extremely difficult to catch.

Besides these evolutions in terms of C&C techniques, botmasters are continuously looking for new means
of command and control through infrastructures which preserve privacy even more. An example of this is the
option to use ever growing cloud solutions for their adversarial behavior. Already in 2009 an article was writ-
ten explaining the uses of Amazon EC2 as Command and Control structure. On the morning of 10 December,
2009, Dan Morrill elaborated on how the Zeus Trojan had nestled itself in some of these virtual computers,
caused by users not updating an application [86]. Another innovation in terms of more complex infrastruc-
tures involves publicly available social networks like Twitter, Facebook or LinkedIn. Traffic analysis on pop-
ular platforms are very challenging if the bots seem like normal everyday users. Nagaraja et al. in their work
showed it is trivial to set-up a social media botnet, and using steganographic techniques to hide command
and control communication in images shared on social networks [90]. More recently Lenny Zeltner published
a blog post about malware using Twitter as command and control infrastructure [143].

For the last couple of years an increasing trend in smart devices has been observed. More and more
devices are designed to have Internet access; mobile phones, watches, cameras and lots more. For these
devices the term Internet Of Things (IoT) has been introduced. For consumer markets this may seem like
one of the best innovations of the last decade, however in terms of security this has become one of the most
worrying attack vectors. Securing these devices has proven to be fairly difficult, as most rely on continues
updates by the user [147]. In September 2016 the Mirai malware spread and possibly created the largest
botnet ever recorded [71]. Mirai was surprisingly not one of the most complex malware ever found, it basically
uses a list of 62 common default usernames and passwords to gain access to private routers, cameras and
video recorders [9].
Adversaries can choose from a lot of different topologies and techniques to utilize C&C for infected machines.
A lot of different tactics have been elaborated upon in this section, however it must be said that everybody
with malicious intentions can possibly figure out new means of command distribution. This thesis will how-
ever focus on detecting and analyzing known structures in our dataset and elaborate on the evolution of
adversarial behavior.

2.2. Detection and Analysis
Malicious infrastructures using Command and Control to maintain and direct infected machines have been
around since the end of the 20th century. Since this time there has been an ongoing battle between re-
searchers and adversaries, each time trying to outsmart each other in terms of innovation. The detection
of botnets and their C&C infrastructure therefore also goes back to this time.

Early research
Pioneering the malicious infrastructure detection Spitzner et al. introduced the Honeynet project. This
project began in 1999 as a informational mailing list to which researchers could subscribe to learn about



12 2. Related work

various network attacks [121]. Spitzner et al. described their work as a network of machines strategically
placed on the internet, intentionally capturing unwanted and unauthorized behavior on these machines. By
utilizing this behavior they could intercept unknown attacks and the malicious software belonging to it. This
information gathering nowadays goes by the term Honeypot and is wildly implemented.

A few years later, in 2005, Cooke et al. proposed a simple mechanism to monitor activity on TCP port 6667,
which was a popular port for IRC used by adversaries for C&C activity. They however acknowledged that these
ports can be easily interchanged, and proposed a second system utilizing a honeypot which could capture
C&C traffic between the botnet and the machine [25]. The drawback of this system was that botmasters
could easily change the behavior of their bot and the C&C server, rendering the system useless. Cooke et al.
additionally said that no technique could actively detect this kind of behavior.

Two years later Gu et al. proved them wrong, developing two detection mechanisms, together called
BotHunter, to tackle this kind of behavior [48]. The first mechanism, Statistical Scan Anomaly Detection En-
gine (SCADE), monitored incoming traffic on 24 TCP and 4 UDP ports for C&C traffic associated with known
malware. Besides this it also monitored internal traffic for hosts trying to connect to an exorbitant amount
of IP Addresses. The second mechanism, Statistical Payload Anomaly Detection Engine (SPADE), inspects if
the packets entering the network are malicious by calculating the standard deviation between this traffic and
known benign traffic. Not long after this, in 2008, Gu et al. improved their previous BotHunter and built Bot-
Sniffer. This is a system which could detect IRC and HTTP C&C traffic in an internal network by using anomaly
detection [50]. By recognizing behavior hosts have after communicating with a probably C&C server, they de-
veloped algorithms which could detect C&C traffic as well as network scanning. With this system they proved
to detect 100% of IRC botnet C&C traffic with only a false positive rate of 0,16%.

In 2007 Karasaridis et al. also designed a detection technique based on anomaly detection. In their work
they could estimate the size of a malicious infrastructure and identify the C&C server belonging to it [65]. This
looked very promising however, their solution only worked on IRC and with a centralized C&C infrastructure.
In their work they also recommended future work to focus on P2P and HTTP based botnets. With this in
mind Gu et al. returned with another addition to their defense arsenal, BotMiner, which they claimed to be
versatile regarding C&C topologies. They realized that infected machines inevitably have to connect to the
C&C server at one time, regardless of the structure. BotMiner focuses on the communication between hosts
and clusters them based on their behavior [49]. Using prior knowledge of what activity was malicious it could
make a distinction between good and bad traffic.

Wang et al. followed the example of detection based on C&C traffic patterns and developed a technique
which could detect this kind of behavior irrelevant of the type of botnet. This would add significant novelty
with respect to prior work, as the rest relied on some kind of base for malicious activity. They only used
the packet size and interval time of packets entering the internal network to determine whether it was C&C
traffic [135]. This showed less promising results, as they could only detect botnets belonging to four different
malware types using centralized topologies. Up until now it has proven to be extremely difficult to find a
solution which captures all malicious traffic.

With this in mind, Nagaraja et al. focused on developing a detection technique for P2P infrastructures
by creating BotGrep. They designed an algorithm which clusters P2P communication between hosts pairing
with each other. It uses graph analysis to identify which hosts belong to a botnet. In order to be effective,
the system does need a ground truth of what these malicious infrastructures look like. This system would not
work well with detecting new emerging botnets, but with the right data it could gain more insights on known
structures [89].

All of the previous work has focused on either host or network based detection. In 2010 Zeng et al. com-
bined this and believed combining these two would provide even better detection results. For their moni-
toring system they kept track of changes on filesystems, registry changes and network stack changes on the
device it was monitoring. Next to this they provided network level detection by using NetFlow traffic traces
[144]. They extracted features from these traces, and used them to analyze the similarity or dissimilarity of
network behavior. Eventually the method they propose is effective against IRC, P2P and HTTP botnets, but
they mentioned it is unfortunately is not a scalable solution. This detection system would only work in a
controlled environment, where access to the overarching network is available for the NetFlow data. Zeng et
al. were to our knowledge the first to use NetFlow data as a detection method for botnet activity.

Advanced detection
A brief history has been given about early research in the field. From this point research diversifies a lot, and
for this reason the focus from here on out will be more towards detection close to the network itself. Around
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2010 adversaries focused their attention less on IRC and centralized C&C infrastructure, and more towards
P2P, HTTP and decentralized topologies. That is why in 2011 Francois et al. used large datasets with NetFlow
traffic to detect P2P communications, overcoming forensic limitations [42]. They have a similar approach as
[89], utilizing an algorithm which uses graph analysis to cluster behavior of these botnets. They were also
the first to adopt big data into detection, making use of Hadoop [117] to increase the speed and efficiency
of detection. Zhang et al. went to the drawing board in 2011 and also developed a technique to detect P2P
communication, but they applied statistical fingerprinting of this traffic to detect anomalies. Their approach
proved successful in local area networks (LAN) and in wide area networks (WAN). The proposed method
used a lengthy pipeline of techniques to detect malicious peer-to-peer traffic. First signatures are created for
different kinds of applications by using the length of time a P2P programs operates, as malicious programs
tend to run as long as possible [146]. After filtering they further differentiated traffic based on IP addresses
contacted by each P2P host because infected machines in a P2P botnet will each contact the same IP address.
Finally they applied a filtering which analyzed if a high percentage of these hosts ran the same protocol and
communicated with a lot of overlapping IP addresses. Zhang et al. shared their results and were able to detect
100% within the network traffic that they captured with only 0,2% false positives.

Adversaries keep innovating towards more versatile and anonymous systems. Barthakur et al. realized
this and developed a procedure for detecting encrypted P2P botnet communications. They used Support
Vector Machines (SVM) to analyze network traffic, classifying P2P traffic based on statistical differences be-
tween P2P and benign traffic. In their work they conclude that botnet P2P traffic use a lot of random ports
and keep the packet sizes to a minimum, whereas benign traffic does not do this [7]. On the other hand Han
et al. believed that adversaries also tried to avoid detection by keeping the sizes of malicious infrastructures
small and enabling multiple C&C servers. In their work they propose a system called Garlic, used to sup-
posedly effectively suppress botnets. As a real garlic, the structure of the system is distributed in cloves or
nodes. Each of the nodes collects C&C traffic of detected botnets and learns its pattern to be more effective in
detecting [54]. Their system was unfortunately only effective on IRC botnets, the amount of which have been
decreasing for a while.

Zhang et al. investigated the increase of drive by download attacks, a terminology used for downloads
which a person has authorized but without understanding the consequences. These attacks may happen
when browsing to a website, clicking on a link or opening an attachment in an email. Zhang et al. proposed
a detection technique to classify malware at the infection stage [145]. They realized that many new botnets
infected machines by sending malicious emails or using websites. By collecting HTTP traces from various
honeypots and using a web crawler to crawl domains, they tried to identify different techniques used for
drive by downloading. After this they clustered groups of domain names which shared IP addresses. By doing
this they could tackle a couple of botnets using Fast-Flux, a technique described earlier in this section. In
the same work, Zhang also proposed a system which would reduce the amount of packets needed for actual
packet inspection, by correlating NetFlow data with packet header information. This allowed deployments in
larger networks for C&C analysis [145].

In the same year Bilge et al. developed Disclosure, a botnet detection system which used NetFlow data to
identify the C&C servers instead of the infected hosts [12]. Their method extracts a large set of features from
the NetFlow data corresponding to the pattern of the C&C servers. It uses flow sizes, client access patterns
and temporal features together with a Random Forest classifier to distinguish between malicious and benign
traffic. By building a benign data set from Alexa Top lists, and mixing this with known malicious data, a
machine learning model was trained to successfully detect C&C servers in large networks. The best result they
obtained was a 65% detection rate of C&C servers with no false positives. Bilge et al. are in our knowledge the
first and only ones using NetFlow data from a large external network to perform detection. This thesis will
use and expand on their method for detection on our own dataset, as will be explained in Chapter 5.

Zhang et al. in another work also presented a process based on NetFlows described as a flow-capturing
monitor resting at the edge of large networks collecting possible botnet behavior [145]. They achieve this by
sampling the data specifically on malicious looking activities. Each packet flowing through an edge router on
a network passes through special monitoring software. This software has four components: the Counting-
Sketch, which tracks the amount of packets sent from source to destination, the Sampling-Sketch, categoriz-
ing the IP addresses flowing through the system, the Synchronized IPs Detector, which keeps track of both
external and internal hosts having similar patterns and finally the Priority-based Sampling Probability Calcu-
lation which dynamically calculates the sampling probability for each category of IPs.

Adversaries try to encrypt their C&C traffic, increasing difficulty to track it as Garant et al. elaborated on in
their work. They claim that existing techniques are ineffective against unknown botnet traffic, as they all rely
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on known structures or patterns [45]. To counter this, they crafted a botnet which fully employs encrypted
communications to test their proposed detection technique against these kind of threats. This method uses
a machine learning based decision tree classification method, using six features which are unique to C&C
traffic. The features which they extract are the amount of bytes and packets transferred, duration of the flow,
direction of the flow, and TCP flags used. They achieved results of 90% successful detection with false positive
rate of 9,9%.

Haddidi et al. also realized that innovation was required to overcome the problem of encrypted traffic.
Like Garant et al. they employed machine learning to realize a system which could detect encrypted botnet
traffic, but in contrast to Garant et al. they showed that packet analysis is not needed for this [53]. By utilizing
C4.5 and Naïve Bayes classifiers on extracted features from NetFlow data, they could detect HTTP botnet traf-
fic with detection rates varying from 7% to 88% and false positive rates between 1% and 16%. The encryption
of packets does not matter as they used NetFlow data for their work. It must however be mentioned that they
only tested on a small internal dataset and testing only on a few known botnets.

Studies performed in recent years confirm a growth regarding the popularity of flow-based anomaly detec-
tion. A lot of researchers focus on network activity to detect specific malicious infrastructures. In 2015 Grill
et al. acknowledged this by stating that packet inspection, clustering, and reverse engineering are time con-
suming approaches for anomaly detection and are unfeasible for large scale networks [47]. They present a
technique which can successfully detect malware using DGA for sizable networks. In their work they de-
scribe their method, which uses a statistical approach and models the ratio of DNS requests and visited IP
addresses for each host in the local network. More recently Homayoun et al. also propose a system which
focuses on the same problem, called Botnet Traffic Shark. Their method also avoids dealing with encrypted
payloads, and applies more advanced techniques compared to the statistical approach of Grill et al. Instead,
they identify correlations between original features and extract new features in every layer of an Autoencoder
or Convolutional Neural Network (CNN) [60]. In contrast to Grill et al. their method is capable of detecting
IRC or P2P individually. In both their work they describe the specialization of the research as limitations.

More recently, Wang et al. published a very interesting research which also used NetFlow traffic. In con-
trast to previous work, they employed actual traffic logs from a large scale University campus network totaling
376Gb. In their work they also acknowledge that prior work on detecting malicious traffic is not scalable to
large enterprise networks [133]. They however only focus on P2P botnet traffic and cluster by utilizing the
MapReduce algorithm for aggregation in their BotCluster system. It merges unidirectional NetFlows to bidi-
rectional and combines similar groups into sessions. They state that the clustered groups can be considered
malicious, as only human designed malware would generate similar patterns in network traces. The experi-
ments they ran show an average 97,58% detection rate. This number is achieved by filtering their data with
whitelists, which could create a bias and even filter malicious content as these lists might also include mali-
cious behavior. They do not elaborate on this in their discussion or conclusion. Nonetheless their approach
will most likely inspire other researchers, as using NetFlow data for research in this field could be the trend
for the coming years.

2.3. Cyber Threat Intelligence feeds
Previous sections have elaborated on prior work done on malicious infrastructures and detection solutions
presented throughout the years. Cybercriminals attack multiple industries, which at their turn do not always
have the resources to institutionalize security management [63]. A lot of companies would most likely collect
threat intelligence solely of attacks on their network or spam e-mails they repel, but a single company collect-
ing this data will only provide a small footprint of reality. For this reason, collecting threat intelligence data
has become a niche, filtering and curating quality information about current threats. Security companies or
researchers with access to information about current attack vectors on a large scale, sometimes offer this for
sale or even as open source intelligence. The latter seems like an ideal solution for creating a more protected
and safer world. Research on the quality and evaluation of such threat intelligence feeds are sparse, most
prior work has been done on interpreting and gathering threat intelligence feeds.

According to Pawliǹski and Kompanek [97] there are multiple dimensions in which the quality of a threat
intelligence feed can be measured. In their presentation, they establish eight criteria with which threat intel-
ligence feeds can be evaluated. These criteria are categorized in quality of information, which includes the
relevance, accuracy, completeness, timeliness and indigestibility of threat intelligence, and the scope of the
information source, including the detection method, vantage and volume of collected data. In 2014, Kührer
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et al. published a paper in which multiple blacklists are empirically analyzed [74]. For a number of domain
lists this work identifies differences in active, parked and sinkholed domains. In their analysis they focus on
measuring accuracy, completeness and timeliness of these blacklists. The results may be limited however,
to our knowledge they are the first to attempt analyzing threat intelligence blacklists. Furthermore a Defcon
presentation by Pinto and Maxwell [98] aims to measure the effectiveness of threat intelligence feeds in two
dimensions. In this presentation, they show evaluations for the scope and accuracy of these feeds but do not
go in depth into any analysis. Metcalf et al. focused on the volume and intersection of various IP and domain
blacklists they aggregated, but they do not provide any metrics to evaluate their results [82].

After this, several studies have examined the effectiveness of blacklists for threat intelligence. The biggest
limitation of these evaluations is that they are focused on specific types of threat intelligence and merely in-
vestigate their operational performance instead of giving an empirical evaluation. Sheng et al. for example
looked into the effectiveness of phishing blacklists, finding that they are not resilient to short phishing cam-
paigns [115]. On the other hand, Ramachandran et al. specifically studies threat intelligence regarding spam
e-mails. In their results they say that these feeds are both incomplete and slow in responding to new emerg-
ing threats [106]. In a follow-up study, Sinha et al. analyzed four large spam feeds and concludes that they
have a very high false negative rate [119].

Furthermore the work of Tounsi et al. states that there are still many limitations when it comes to threat
intelligence. One of them is that there is too much information available, with over 250 million indicators
per day. In their work they also say that threat intelligence available to enterprises is often out of data, and
therefore not always useful [128]. In a survey in 2015 [99], authors state that most intelligence was not timely
or specific enough. Additionally, 66% of respondents state that the information is not timely. This is further
backed by a follow-up survey in 2018 [100]. Ring et al. mentions that real-time threat intelligence is expensive,
and that there is a problem with sharing threat intelligence. This is why the author states that open source
threat intelligence is not effective enough, or out of date [108].

2.4. Campaign analysis
Analyzing adversaries and accordingly clustering their activities lies within the research field called campaign
analysis, which is surprisingly comparable with stylometry in the field of linguistic written language to at-
tribute authorship to anonymous or disputed documents [58]. Whilst it is important to detect new malicious
campaigns not previously known by the community based on algorithmic detection methods, it is impera-
tive to analyze current threats and thoroughly understanding their nature and behavior. Previous campaign
analyses have been done on multiple aspects of malicious behavior. About eleven years ago, Kanich et al.
were one of the first to publish work analyzing malicious campaigns. In their work they have analyzed two
spam campaigns; one designed to propagate the Storm malware and another one to market online pharma-
ceuticals [64]. To do this they analyzed about 500 million spam e-mails and looked at the number which
successfully passed through popular anti-spam filters, how many users visited the advertised sites, and an
estimation is given for the amount of sales and infections produced. They conclude that different campaigns
use different tactics and marketing methods produces huge variations in malicious spreading. They also give
an estimation that these campaigns produces a revenue of $2.731,88 over 26 days in their scope. Extrapolat-
ing this worldwide they estimate that the campaigns could have a revenue of about 3,5 million dollar on a
yearly basis.

In another study published by McGrath et al. in the same year also analyzed a lot of spam data and specif-
ically the phishing behind it [81]. Using results from detected phishing e-mails and domains, they combined
whois records and zone files to gain insights about the machines hosting the phishing sites. They conclude
that phishing domains and their URLs have different lengths compared to benign versions on the Internet.
Also most of the time the targeted website is contained in the domain name of the phishing website. One year
later, Kreibich et al. just like [64] investigated the Storm botnet and its infrastructure with the goal being able
to say something about the sophistication of this botnet and its utilization [73]. They also used spam e-mails
for the basis of their work. Interestingly, they developed software to request spamming workload from active
Storm C&C servers. In their first conclusion they identified over 90 different campaign types used in the Storm
botnet, all combined targeted over 630 million e-mail addresses and infected over 90 thousand machines to
send spam. Their second conclusion elaborated on the diversity of the campaigns and how they utilize their
infected machines to employ a high level of sophistication.

At this point it is clear that for threat analysis spam e-mails are popular amongst researchers to perform
these kind of analyses. Gao et al. innovated and focused their campaign analysis on spamming accounts
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on Open Social Networks (OSNs) like Facebook [44]. In their work they analyzed a large dataset of 187 mil-
lion public wall posts from 3,5 million Facebook users. Using automated grouping techniques they created
clusters employing similar behavior in terms of advertisement and text usage. Using these threshold-based
techniques, they identified 200 thousand malicious posts spreading 57 thousand accounts. 70% of these
posts contained phishing behavior and the majority of these accounts were not fake accounts, but benign
users which were hacked.

Besides looking at different attack vectors, researchers now also use more advanced clustering and ma-
chine learning models to aggregate and estimate malicious campaigns. Thonnard & Dacier from Symantec
showed a good example of this in their work, published in 2011 [127]. By using techniques relying on multi-
criteria decision analysis, they show that some tight relationships exist among different botnet families, but
also show some huge differences in spam campaigns performed by other infected machines. They do this
by providing an analysis of group-level behavior of spam botnets, performing feature analysis using this to
correlate infected hosts with each other. They have the advantage that at the time they worked at one of the
largest anti-virus companies, providing them with amazing data to perform these analyses. They analyzed
e-mail traffic, and the according source information, captured by their spam-trap for a period of 13 months
containing about 1 million e-mails. This may seem less than the other researchers, however they also used
locale and IP information on all of the occurring spam, something previous work could not analyze. Us-
ing the same dataset, other researchers from Symantec explored the visual options for this data [129]. They
presented a graph-based interactive visual analytics tool to assist analysts in reasoning about various attack
phenomena observed on the Internet.

More recently researchers started to use unsupervised learning, where the goal is to model underlying
structures or distributions in the data. The work of Cao et al. employed such techniques to dig through OSNs,
performing behavioral analysis on user accounts and clustering fake ones together [16]. They designed a
generic and scalable detection system, called SynchroTrap, which is able to cluster large groups of users into
specified actors. Coping with the huge amount of data on OSNs, they used Hadoop and Giraph to deal with
this problem. During one month of deployment at Instagram and Facebook, SynchroTrap unveiled 1156
large campaigns and more than two million malicious accounts which were involved in these campaigns. In
their discussion they stress that by extracting attack signatures from the malicious campaigns and accounts is
necessary to be able to use supervised learning to develop fast classifiers that can detect attacks in real time.

Another mentionable campaign analysis was performed by Fachkha et al. in 2015, where they aimed to
cluster victims targeted by the same DDoS campaign [37]. They proposed an approach to extract features
from various DDoS attacks by creating numbers on time series and fluctuation, analysis techniques, statis-
tical methods, and forecasting approaches. In their evaluation they presented three attack case studies to
demonstrate possible extracted insights and inferences. One of these case studies for example showed the
amount of unique bots involved in an attack over time. Unfortunately they do not have any interesting in-
sights on behavioral similarities or show numbers of similar campaigns. In the same year, Santanna et al.
published interesting work on DDoS Booter services, which are websites offering these DDoS attacks in ex-
change for money [111]. They were able to see which users accessed these website and used these services
to launch attacks. From their analysis they conclude that Booter services have very distinct characteristics.
They found that the majority of the users accessing the Booter services are only willing to pay less than $10
for attacks lasting about 5 minutes. This is in line with their hypothesis that Booters are used by adversaries
with little skills. On the other hand, they also found malicious users hiding behind VPNs and proxies to hide
their identities, which were willing to pay several hundreds of dollars to perform multiple attacks per day.

2.5. Research gaps
This Chapter has provided an overview of work which has previously been done in the field of malicious in-
frastructures. Both detection and analysis have been wildly adopted in published work, where detection is
the dominant subject of the two. Since the first malware utilizing some kind of C&C infrastructure emerged
in 1999, researchers have been chasing adversaries and their activities. Where IRC was popular in the early
stages [25, 48, 65], more recent threats turn to advanced techniques to hide their activities [47, 53, 60]. How-
ever, most of the novel research mainly focuses on the creation of advanced and accurate botnet or C&C
detection methods, but not on the actual threat landscape behind these adversaries.

In the 20 different studies performed on the detection and analysis of C&C infrastructure, most of them
provided knowledge on more increasing levels of detection spanning multiple threat vectors. For each of
these detection methods, not regarding the difficulty level, an evaluation has been made on the performance
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Research Year Detection Dataset Scale Analysis

Cooke et al. [25] 2005 IRC Traces of one machine Local Found two known infections
Gu et al. [48] 2007 IRC Traces 130 machines Local
Karasaridis et al. [65] 2007 IRC, C&C Internal traces Local Size estimation of a few botnets
Gu et al. [50] 2008 IRC, HTTP Traces of 130 machines Possibly scalable
Gu et al. [49] 2008 IRC, HTTP, P2P Traces of University network Possibly scalable
Wang et al. [134] 2009 C&C traffic Internal traces Local Activity of four botnets were detected
Nagaraja et al. [89] 2010 P2P Internal traces Local Host detection
Zeng et al. [144] 2010 All bot traffic Internal NetFlow Local
Francois et al. [42] 2011 P2P, HTTP Limited ISP NetFlow Not mentioned
Zhang et al. [146] 2011 P2P A few internal traces Not scalable 41 P2P hosts detected
Barthakur et al. [7] 2012 P2P Botnet flows Local Detected known P2P botnets
Han et al. [54] 2012 IRC Traces of five machines Local
Zhang et al. [145] 2012 HTTP Honeypot traces Local Drive-by downloads
Bilge et al. [12] 2012 C&C servers 2 weeks of ISP NetFlow 2x real time
Zhang et al. [145] 2012 All bot traffic Internal NetFlow Local
Garant et al. [45] 2013 All bot traffic Created own botnet Not mentioned
Haddidi et al. [53] 2014 HTTP Created NetFlow dataset Scalable Zeus traffic analysis
Grill et al. [47] 2015 DGA bots Created NetFlow dataset Local DNS usage analysis
Homayoun et al. [60] 2018 IRC, P2P Internal NetFlow Not mentioned
Wang et al. [133] 2018 P2P 376Gb University NetFlow Scalable Focused on performance analysis

Table 2.1: Summary of related work on detection and analysis

of the method. In general we can say that some sort of dataset is needed to perform such an evaluation. As
can be seen in Table 2.1, more than half of the previous work has evaluated and tested their method only for
local setups [7, 25, 47, 48, 54, 65, 134, 144–146]. These methods are mainly focused on detection on the client
level, or within a small enclosed network. This is extremely necessary to protect users against a lot of attack
vectors, regardless of the infection. These studies also performed evaluations based on the threats detected
by their methods and provide specific analyses on this. Only a few publications step out of the local setup
and observe from a more global scale [12, 133], where only Wang et al. actually provided some insights into a
large flow-based dataset. From Table 2.1 we can conclude that scalable analyses can only be done on datasets
containing more high level information like NetFlows. Bilge et al. were the only researchers which focused
on global detection of C&C infrastructures, which unfortunately only performs at 2x real time, where Wang et
al. actually showed that it is possible to deal with large NetFlow datasets but lacked the depth of analysis. In
our analysis we will overcome the problem of detecting global C&C infrastructures in our dataset containing
16 months of global NetFlows of a tier 1 ISP provider.

Besides using advanced detection techniques to shield from attack vectors, public cyber threat intelli-
gence has become an industry trying to bring the detected threats under the attention of users or companies.
Companies sell their information on malicious IP addresses or domain names, so people can protect them-
selves from them. Some companies combine their knowledge and sell it, for example for a monthly fee,
however some institutions provide open source threat intelligence in the spirit of creating a safer world. The
analysis of these publicly availably open source feeds has only been done on subsets of feeds, as we have seen
in [74, 82, 97, 106, 115, 119]. Most of these studies only provide an analysis regarding a snapshot of data. Using
a novel method of analyzing NetFlow data for threat intelligence, we can look at the evolution and timeliness
of these open source feeds, something which has not been done before.

Clustering malicious activities and identifying related actors is something which has only been done par-
tially, or in specific scenarios. In this thesis we will try to overcome research gaps in global C&C detection
by building on the work of Bilge et al. [12] and evaluating open source threat intelligence sources. Previ-
ous researchers have done campaign analysis, again more focused on specific topics like spam or phishing
[16, 44, 64, 73, 81]. This thesis will also try to provide a complete picture of how cybercriminals use and man-
age C&C infrastructures throughout the entire Internet by utilizing every available and new forms of malware.
To make this comprehendible, we propose campaign analysis on three network segments, each having their
own structural possibilities and attack vectors. Infections on respectively clients, IoT devices and routers will
be investigated for actors, utilization and quantification.
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In collaboration with a Tier 1 provider, we have collected an extensive NetFlow dataset covering the internet
backbone of this provider for a period from September 2017 up to and including December 2018, spanning
3 million binary files totaling 4 terabyte (TB). Most of the analyses which have been made in this thesis,
are based on this dataset. Any other datasets used throughout these thesis will be explained in the relevant
chapters. Also an exploration of the dataset will be provided by looking into a subset of the global data to get
a feeling of its value. Furthermore, this chapter will elaborate on the nature of this dataset, the tools which
are necessary to deal with this dataset and the importance of NetFlow data in the realm of network security
and cyber threat intelligence.

3.1. NetFlow background

The published origins of flow export date back to 1991, when the aggregation of packets into flows by means
of packet header information was described in [83]. Subsequently, Cisco worked on its flow export technology
named NetFlow, which finds its origin in switching. Routers can use packet-based or flow-based switching,
where packet-based is the most accurate but flow-based is significantly faster. In flow-based switching, flow
information is maintained in a flow cache and forwarding decisions are only made in the control plane of
a networking device for the first packet of a flow. Subsequent packets are then switched exclusively in the
data plane [18]. The value of the information available in the flow cache was only a secondary discovery and
the next step to export this information proved to be relatively small [57]. NetFlow was patented by Cisco in
1996 and with this they aimed to make network traffic analysis easier and less resource intensive. Since its
introduction, NetFlow has been widely adopted and implemented by researchers to inspect network traffic.

NetFlow defines a data type that summarizes packets exchanged between applications of two communicat-
ing end-points. Traffic from a source IP and port towards each combination of destination IP and port is
being aggregated into separate flow records, allowing a high level analysis on all communicating processes
mobilizing minimal resources compared to saving each packet. A flow record summarizes a traffic channel
into a variety of statistics, of which the following selection is the most common: connection type, timestamp
of packets, duration of flows, total number of bytes transferred and total number of packets transferred. Ad-
ditionally, the NetFlow can contain network layer 3 header and routing information and level 4 TCP or UDP
parameters as well as the source and destination Autonomous System (AS) number or the immediate neigh-
bor AS (first AS of AS-Path) depending on the collecting setup. A typical NetFlow architectural setup can be
seen in Figure 3.1.
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Figure 3.1: Typical network architecture when working with NetFlow technology [137]

This data format can be applied in various different scenarios. It can be used to track network usage and is
thus often embraced by Internet Service Providers (ISP). NetFlow data can for example be used to calculate
the amount of resources customers or users need or give a broader view on the overall usage of the network to
see where improvements could be made. Besides this, NetFlow data can also be used to detect security vul-
nerabilities or network anomalies. For example, adversaries scanning worldwide for new vulnerabilities can
be detected by looking into the amount of traffic towards specific ports. Or a network administrator could
monitor when a machine within the internal network has been infected and is trying to contact a (known)
malicious host outside the network. Obtaining NetFlows in a network requires two main components, an ex-
porter and a collector. The exporter is a switch or a router which has NetFlow converting capabilities, whereas
the collector is a centralized host on the network which receives the NetFlow records from the exporters and
combines this. For large networks it is crucial to plan where the collectors are placed inside the network, as
the extra traffic of sending the NetFlows over the network will most likely utilize more bandwidth. It is also
important for such a setup to minimize packet loss between the exporter and the collector, as this could lead
to gaps in the collected data.

3.1.1. NetFlow v9

Since the introduction of NetFlow in 1996, Cisco has released a number of versions. The first version only in-
cluded IPv4 without IP mask and AS numbers. Version 5 is the most common one, enabled on most standard
routers however, only has IPv4 enabled. The most recent version of Cisco’s NetFlow is version 9 (v9), which
supports summarizing more protocols than the older versions. When configured v9 can summarize addi-
tional information like Multiprotocol Label Switching (MPLS) labels, IPSec, and IPv6 addresses and ports.
Each packet which is forwarded within a switch or router and has the NetFlow protocol enabled, is examined
for a set of IP packet attributes which are used to identity and create a fingerprint of the packet and deter-
mine if the packet is unique or similar to other packets. The NetFlow protocol uses these attributes, which
are listed in Table 3.1, to group all packets with the same source/destination IP address, source/destination
ports, protocol interface and class of service into a flow. Amounts of packets and bytes are tallied into this
NetFlow. A large amount of network information is condensed into a database of NetFlow, which makes this
method of fingerprinting scalable. A lot of other information is stored within the NetFlow, as for example
timestamps, next hop IP addresses, subnet masks and TCP flags. However, once packets are grouped into a
flow, this also implies some restrictions for the data. For example, for the duration of the flow, the sizes of
the packets are aggregated into one size for the entire flow. This has even more implications when the data is
sampled, multiplying this aggregated number with the sampling ratio. A network administrator configuring
the NetFlow collector can customize the attributes saved in the NetFlow data. They can, for example, choose
for comprehensive information, saving all information flowing through the network, or when in situations
with a lot of traffic they can choose for a more modest approach, sampling the flows and only saving specific
information needed for analysis.
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Attribute Description

Source address IP address of the sending host
Destination address IP address of the receiving host
Source port Port used by the sending host
Destination port Port used by the receiving host
Layer 3 protocol type Protocol used (TCP/UDP/ICMP)
Class of service Priority value that can be used by QOS
Router or switch interface Interface used on the device

Table 3.1: IP packet attributes on which NetFlows are grouped

3.1.2. Cisco tools
In order to effectively work with binary NetFlow data, Cisco has released a toolset called nfdump [51] [52]. The
goal of this toolset was to be able to analyze NetFlow data from the past as well as to track current interesting
traffic patterns. Each program in this toolset serves a specific purpose; from capturing raw network traffic
and exporting it, to filtering the NetFlows for specific traffic.

nfcapd is the NetFlow capture daemon. This reads network information from the network and stores the
data into files of, typically, 5 minutes. Each time-interval it rotates and renames the output file with the
timestamp nfcapd.YYYYMMddhhmm. For example nfcapd.201807300650 will contain data from July 30th
2018 06:50 until 06:55.
nfprofile also reads stored NetFlow data and can apply filters according to the specified filter sets and can
store the filtered data into separate files. This program is optimized specifically for the visualization software
called NfSen and can optimize the filtering for visualization purposes.
nfreplay can read NetFlows from the files stored by nfcapd and sends it over the network to another host. This
can be helpful when analyzing the behavior of a specific application or recreating a (malicious) occurrence
seen in the NetFlow data.
ft2nfdump can export flows in other formats, not defined by Cisco, into NetFlow format which can subse-
quently be processed by nfdump.
nfdump is the daemon which allows the user to read NetFlow data stored by nfcapd. It provides the user
with a variety of options to print and filter the stored NetFlow data. Smart filters can be crafted to search for
specific source or destination address/port. The name can be quite confusing, as the complete toolset is also
called nfdump. References to nfdump in this thesis will from here on refer to the deamon.

As NetFlow was designed to efficiently store huge amounts of data, the tools to use this are required to be
equally efficient. [57] discusses the speed of this toolset compared to using a DBMS for data management in
terms of network information. Their measurement results indicate that nfdump is the best solution to query
large network datasets when observing response time. This tool will be the basis of the analysis of our NetFlow
dataset. An example of custom filtered NetFlow output is shown in Listing 3.1. Note that all IP addresses are

Date first seen Proto Src IP Addr:Port Dst IP Addr:Port Bytes
2018 -09 -01 10:02:55.298 TCP 239.169.82.154 :80 -> 78.168.232.73 :38807 12.2 M
2018 -09 -01 10:03:00.655 TCP 239.169.82.154 :443 -> 78.168.205.110 :50750 12.9 M
2018 -09 -01 10:03:27.420 TCP 86.210.55.89 :443 -> 132.231.68.252 :52923 425984
2018 -09 -01 10:03:03.278 TCP 62.156.229.110 :443 -> 54.76.127.152 :49462 12.2 M
2018 -09 -01 10:03:27.315 TCP 62.156.229.110 :443 -> 54.153.90.165 :61738 24.4 M
2018 -09 -01 10:03:08.966 TCP 162.60.140.81 :443 -> 76.49.78.181 :33083 425984
2018 -09 -01 10:03:16.072 UDP 199.0.197.93 :45917 -> 207.72.183.154 :25604 630784
2018 -09 -01 10:03:40.961 TCP 187.24.207.162 :8080 -> 151.170.72.61 :7125 327680
2018 -09 -01 10:03:22.411 TCP 155.49.46.147 :80 -> 78.168.205.170 :52494 12.2 M
2018 -09 -01 10:02:49.466 UDP 193.165.247.153 :10488 -> 181.162.120.198 :41688 983040
2018 -09 -01 10:03:23.025 ESP 193.127.189.158 :0 -> 151.170.22.249 :0 1.0 M
2018 -09 -01 10:02:48.844 TCP 239.169.82.153 :80 -> 78.168.191.97 :51100 24.4 M
2018 -09 -01 10:03:33.531 TCP 187.5.239.101 :443 -> 173.126.209.248 :46601 12.3 M

Listing 3.1: Example of NetFlow traffic



22 3. ISP NetFlows

shown in italic, showing that these addresses are anonymized as will be elaborated upon in Section 3.2.4. It
is interesting to see that the sizes of the flows seem pretty large. Already some interesting information can be
observed. Some web traffic can be seen on TCP ports 80 and 443, and a flow using the ESP protocol which
is used within the IPSec for providing authentication, integrity and confidentially of packets in IPv4 and IPv6
networks. Section 3.3 will go into more detail on the protocols used, the distribution of ports and filtering
tactics for smooth analysis.

3.1.3. Sampling NetFlows
With today’s and future high-speed links, capturing every packet and recording statistics of every flow re-
quire too much processing capacity, cache memory, and I/O and network bandwidth, in order to update,
store, and export flow records. For these Internet backbone links, efficient and effective packet sampling are
not only desirable, but also increasingly becoming a necessity. To cope with this issue, Cisco introduced a
sampling method to save resources [20]. This sampling method uses only one in every n packets for comput-
ing statistics over the flows. From the subset of flows which are captured, the actual statistics are calculated
and averaged with the sampling rate. This approach has fundamental limitations due to static sampling
frequency. As the accuracy of estimation depends on the characteristics of traffic as well as the number of
samples, sampling does not always ensure the accuracy of estimation as Choi and Bhattacharyya elaborated
on in [20].

3.2. Data collection
For this research we have collaborated with a tier 1 ISP, to collect NetFlow data of their backbone. Before we
dive into the amount of data that we are dealing with for this research, we first need to bring the topology of
this ISPs network into picture to understand their coverage. This section will elaborate on the infrastructure
on which our dataset is gathered, how it was collected and what privacy preserving technologies were applied.

3.2.1. Tier 1 Internet Service Provider
When visiting a website or an application, access to the Internet is most likely required, which is provided by
an Internet Service Provider or ISP. An ISP is an organization that provides services for accessing, using, or
participating in the Internet [136]. ISPs are organized in various forms, with the largest being commercial,
but they can also be community-owned, non-profit, or otherwise privately owned. There are three levels of
ISPs; tier 1, tier 2, and tier 3 providers, which all three pose an important role in providing Internet access. A
tier 1 ISP is the largest of the three and can be best defined as a network that can reach every other network
on the internet without paying for peering or having to purchasing IP transit [131]. The combination of all
tier 1 providers in the world collectively represent the backbone of our interconnected society. All of these
providers can freely transmit traffic between their networks, where some tier 2 and all tier 3 networks must
pay to transmit traffic through these tier 1 providers.

3.2.2. Origin of our dataset
A tier 1 ISP controls a large number of routers to disperse traffic through its network and to other providers.
A few of these routers are located at the network boundary, specialized in exchanging traffic with other op-
erators, these routers are called edge routers. In total 35 of these routers are located in 26 different countries
scattered mainly throughout Europe and North America, as shown in Figure 3.2. Each of these routers are
configured to adopt the NetFlow protocol and save network traffic at a 1 to 8192 sampling rate to one central
location. The location of these routers also shows an approximation of the coverage capacity their network
has. As can be imagined, this infrastructure provides a lot of possible peering options with other providers.
Most of these peering partners belong to the largest in the world.

3.2.3. Data restrictions
As can be imagined, the possibilities for research are huge seeing that this dataset encapsulates a lot of traffic
passing through the backbone of the Internet. However, a dataset this large also comes with its restrictions.
The first, and possibly the most important restriction regards the sampling of the dataset. As explained in
Section 3.1.3, some operators may use the possibility to introduce a sampling rate for the collection. The
ISP of our dataset has also employed this tactic, introducing a random sampling ratio of 1:8192. Care must
be taken when sampling is introduced into data, however Choi et al. found that sampled NetFlows perform
correctly without significant overhead under the load of their experiment [20]. The second restriction of our
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Figure 3.2: Locations of the edge routers of the ISPs backbone

dataset implies the infrastructure on which our data is collected, which can be observed in Figure 3.2. In
this figure we can see all the edge points in the ISPs network, suggesting a location based bias. This bias is
however relative, as each dataset obtained from an ISP will encounter this problem. The only dataset which
has the same amount of richness without a bias, would be a snapshot of all traffic passing through all existing
ISPs, which is unfeasible to obtain. Another restriction is bound to the NetFlow collectors used by each edge
router in the network. Each of these routers were iteratively added to the network at some point in time.
Therefore, not all collectors have collected NetFlow data for the extended period of time, which may limit
locality information. Finally we can see that the sizes of the flows seem pretty high, as Listing 3.1 shows. This
is also due to the sampling ratio. When estimating the packet sizes throughout this thesis, we will divide the
seen flow size by 8192.

3.2.4. Anonymization
Real-world traffic traces are crucial to conduct certain research, but only a very few real world traces are made
public. The most decisive reason for companies or institutes to not make these traces publicly available, is
that privacy sensitive information may be leaked within these traces. This information may be leaked by
the IP addresses contained in these traces, which may point to the locations of users or organizations. In
order to preserve the privacy, each NetFlow trace was anonymized using the technique described in [41] and
obfuscated at the level of autonomous systems. This allowed us to quantify the activity of malicious endpoints
without learning anything of about identity of the actual users.

CryptoPAn
While for NetFlow datasets only a deterministic, random one-to-one mapping of original to anonymized IP
addresses is necessary to match outgoing requests with returning answers, in such blind randomization the
relationship information of networks is lost. Thus, it is not possible to preserve locality information such as
a C&C activity realized by several hosts in the same /24 subnet, as these hosts would be scattered across the
entire IPv4 space. In this thesis, we use the method proposed by Xu et al., who introduced a random one-to-
one mapping while preserving network information. If we represent network addresses in a binary tree which
each bit of the IP address when read left to right will result in a transition to the left or right subtree under a
node, an IP block under a shared prefix will be expressed as an entire subtree under one specific node. Con-
sider the example in Figure 3.3(a), all IP addresses in the prefix P1 start with the digits ”00” in their address,
while IP addresses in the adjacent address block begin with ”01”. Under each leaf node – which are marked
in grey – are then all IP addresses associated with this particular IP allocation.

In Xu et al.’s Cryptography-based Prefix-preserving Anonymization (CryptoPAn) [38, 140] scheme, the bit value
of every non-leaf node is flipped randomly. This means that if two IP addresses shared a k-bit prefix, also the
anonymized IP addresses will share an identical, but now randomized k-bit prefix. Within each netblock, IP
addresses can now be scrambled without losing information about the logical coherence of the addresses to
one provider, and prefix-preserving anonymization comes in handy for the evaluation of threat intelligence
feeds as related activity is often located in adjacent IP addresses or subnet blocks as we will show later. The
randomness in CryptoPAn is drawn from the AES block cipher, and a short encryption key is thus sufficient
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Figure 3.3: Prefix-preserving randomization after Xu et al. [140][38]

to provide an effective IP randomization function. This also allows multiple traces to be sanitized in a con-
sistent way, over time and across locations. For example, the same IP address in different traces converges
to the same anonymized address, even though the files might be anonymized separately at different times or
locations. The authors prove in [140] and in [38] that this scheme delivers semantic security.

The anonymization of NetFlows was done on site at the ISP using a secret key chosen by the operator, in such
a way that only obfuscated data was analyzed within the context of this thesis, thus preserving the identity of
Internet users. In order to match the information on malicious activity from threat intelligence feeds, or other
sources, to the traffic patterns in the NetFlow dataset, we were able to anonymize IP addresses on-site at the
Tier 1 operator to enable the analyses presented in this thesis. Furthermore it is important to notice a differ-
ence in emphasis of anonymized and actual IP addresses. Anonymized IP addresses will always be written
with italic emphasis. For example 32.56.112.32 refers to an anonymized IP addresses, where 131.180.77.82
refers to an actual IP address.

3.3. Data Exploration
The amount of traffic flowing through the backbone of an ISP provider can grow considerably, which proves to
be a problem when performing data analysis even when the data is sampled. For this research it is imperative
to gain understanding about what kind of data we are dealing with, such as the different Internet protocols
observed and distribution of traffic towards ports in this dataset. This section will first elaborate on how
to handle such a massive dataset. Filtering must be done efficiently, otherwise it could take up to months
to perform simple analyses. On the other hand exploration of the data is provided to give insights into the
richness of the dataset. For simplicity these analyses and examples will be focused on the NetFlows from
one day; the 1st of September, 2018. The traffic which passed through the network on this day will be closely
examined.

3.3.1. Filtering approach
As the total NetFlow dataset contains information about everything flowing through the backbone, it will be
necessary to be able to filter for specific parameters. It is also important to again mention that the NetFlow
files are not text-based files, but are binary files designed for efficient storage. In order to filter these binary
files, Cisco provides a toolset called nfdump as described in Section 3.1.2. The syntax of this program is
powerful, comparable to tcpdump. It gives the user the ability to filter NetFlow files for any element provided
in the v9 format and output the filtered result to either a binary file or as text, as shown in Figure 3.4.

The filter syntax is straightforward; each filter contains one or multiple expressions, which can be com-
bined by the logical operators and, or and not. The expressions consist of elements from the v9 format, for
example destination port, a value and a comparison operator to combine them. Following from this, ’dst
port = 80’ is an example of a simple filter which filters for the destination port 80, whereas a more complex
example ’inet6 and proto tcp and (src port > 1024 and dst port 80)’ will provide all IPv6 con-
nections to any web server. Next to rudimentary filtering, nfdump also has the possibility to aggregate traffic
based on any elements and produce statistics. This is especially helpful when dealing with large datasets.
Listing 3.2 shows an example of the top five IP addresses on the 1st of September, 2018, ordered by amount of
bytes sent and received. From the summary we can also learn that on this day, a total of 4129.9TB has flowed
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'(dst port = 80 or 
dst port = 443) and tcp

and src ip in [12.32.17.4,
33.213.2.2, 33.212.1.12]'

nfdumpnfcapd.2018...

nfcapd.2018...

Date first seenDuration ProtoPortFlows(%) 

2018-01-01 00:03:48.018 86504.558 any 443140.0 M(38.1)1.5 T(35.6)
1479.4 T(39.0) 17.9 M136.8 G 955

2018-01-01 00:03:48.018 86502.983 any80 75.9 M(20.6)995.4 G(22.9)
1096.6 T(28.9) 11.5 M101.4 G1101

2018-01-01 00:03:50.265 86500.736 any 04.2 M( 1.1) 74.8 G( 1.7) 47.5
T( 1.3) 8647024.4 G 635

2018-01-01 00:03:50.527 86497.468 any 405006.1 M( 1.7) 60.0 G( 1.4)
40.5 T( 1.1) 6933383.7 G 675

2018-01-01 00:03:49.256 86496.565 any 1192.0 M( 0.5) 54.6 G( 1.3)
63.8 T( 1.7) 6306925.9 G1169

2018-01-01 00:03:52.119 86493.010 any80804.0 M( 1.1) 50.3 G( 1.2)
54.2 T( 1.4) 5811055.0 G1078

.txt

binary

binary

-r -R -M

-s -a 
-A -c

-f

-w

Input OutputFilter

Figure 3.4: Flowchart for filtering NetFlow files with nfdump

through the network.

Top 5 IP Addr ordered by bytes :
Date f i r s t seen Duration Proto IP Addr Flows(%) Packets (%) Bytes (%) pps bps
2018°09°01 00:03:48.283 86499.073 any 61.68.160.114 6.0 M( 1 . 6 ) 67.7 G( 1 . 6 ) 77.8 T( 2 . 1 ) 783227 7.2 G
2018°09°01 00:03:55.266 86481.341 any 62.66.191.246 2.4 M( 0 . 6 ) 54.0 G( 1 . 2 ) 54.5 T( 1 . 4 ) 624781 5.0 G
2018°09°01 00:03:55.266 86482.490 any 62.66.191.245 2.0 M( 0 . 6 ) 48.8 G( 1 . 1 ) 49.1 T( 1 . 3 ) 564590 4.5 G
2018°09°01 00:04:15.418 86472.473 any 103.188.110.118 2.2 M( 0 . 6 ) 26.7 G( 0 . 6 ) 26.7 T( 0 . 7 ) 308541 2.5 G
2018°09°01 00:03:50.527 86495.562 any 104.134.155.9 3.5 M( 0 . 9 ) 34.8 G( 0 . 8 ) 26.7 T( 0 . 7 ) 402431 2.5 G
IP addresses anonymised
Summary: t o t a l flows : 349182574 , t o t a l bytes : 4129.9 T , t o t a l packets : 4.5 T , avg bps : 350.8 G, avg pps : 50.3 M
Time window : 2018°09°01 00:03:48 ° 2018°09°02 00:05:32
Total flows processed : 349182574 , Blocks skipped : 0 , Bytes read : 20590605736
Sys : 618.664 s flows /second : 594317.1 Wall : 629.152 s flows /second : 584409.1

Listing 3.2: Example nfdump output providing the top 5 IP addresses by bytes

3.3.2. Protocol distribution
After grasping the syntax needed for dealing with the data, we can start to dig into the data to get a feeling
of its usage and size. We will start off by looking at the network usage per protocol. These protocols are
used in the Internet Protocol (IP), which is the fundamental communications protocol and is able to send
datagrams across network boundaries. IP transfers packets from the source host to the destination using the
IP addresses in the packet headers. This is why different packet structures, or protocols, are designed which
enclose the data. When a router receives a packet destined for itself, the protocol field is used to identify what
kind of data has been sent and how the router should interpret it. The top ten protocols observed for this
exploration are shown in Table 3.2.

The first observation we make is that the TCP and UDP protocols are responsible for almost all of the
traffic. TCP, or Transmission Control Protocol, is the most commonly used protocol on the Internet. When
requesting a web page or using an application, the client sends TCP packets to the web server responsible for
that web page or application. The web server then answers with TCP packets to form the page or application.
This protocol is so popular and globally used because it is a structure based on reliability. Each of these TCP
packets if tracked in such a way that no traffic is lost. File downloads are a good example of this reliability.
When downloading a file, these documents do not get corrupted directly when a small hiccup in the network
occurs. The second most popular protocol used is UDP, or User Datagram Protocol. This protocol is basically
designed in a similar manner as TCP, but without the error checking which makes TCP reliable. UDP traffic
can be sent a lot faster across the network as there is no checking back-and-forth if a packet is received with-
out problems. When an application is using UDP, the traffic is just sent to the receiver. The sender will not
check if the packets have arrived at the destination, but instead will just send the next packets. This protocol
will therefore not be a good solution for mail traffic, but find its application more in streaming services like
online broadcasts and gaming. When packets are lost whilst watching a live video stream, it can be preferred
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Protocol Flows(%) Packets(%) Bytes(%)
TCP 73.4 75.3 85.1
UDP 25.8 23.3 13.9
ESP 0.5 1.0 0.8
GRE 0.1 0.3 0.1
ICMP 0.3 0.2 < 0.1
IPIP < 0.1 < 0.1 < 0.1
L2TP < 0.1 < 0.1 < 0.1
IPv6 < 0.1 < 0.1 < 0.1
AH < 0.1 < 0.1 < 0.1
VRRP < 0.1 < 0.1 < 0.1

Table 3.2: Top 10 protocols ordered by packets

to continue with the live broadcast instead of waiting for those lost packets.

Two other protocols which have considerable amounts of data are the ESP and GRE protocols. ESP is an
important protocol for security in our society as this, also known as IPsec, encrypts all packets sent through
this protocol. Both TCP and UDP can use this protocol, but does create significant overhead when also en-
crypting packets on other levels. GRE, or Generic Routing Encapsulation, on the other hand was developed
by Cisco as a tunneling tool to carry packets over an IP network. In essence, this protocol creates a private
point-to-point connection often used in virtual private networks (VPN). GRE often encapsulates the payload
of a packet inside another packet before sending it, where routers will not be able to read the intermediate
packet. GRE is often combined with IPsec to also make sure the inner packet is encrypted. Furthermore it is
interesting to see the adoption of IPv6 in Table 3.2. IPv6 is the newest design of the Internet Protocol, more
secure and with more options than its predecessor IPv4, waiting for embracement since its introduction in
1990. From this data we can say that is it not yet being adopted as much as the community would hope.

3.3.3. Port distribution

Each connection, or flow, passing through the NetFlow data has a source and destination pair constructed
by a pair consisting of an IP address and a port. Ports are logical constructs which identify a specific process
or a type of network service. Such a port is always combined with an IP address sending or receiving on that
port, as well as with a protocol. Combining this information gives the network address of a flow. Table 3.3 and
Table 3.4 provide the top 15 ports receiving and sending information in the NetFlow dataset for September 1,
2019. A lot of interesting information can be deducted from these tables however, we will only elaborate on a
few interesting points.

Immediately we can see that port 80 and 443 on both source and destination ports come out on top.
Together they contribute to 49% of all packets and 70,3% of all bytes sent through the backbone. This makes
sense, as these ports employ the HTTP and HTTPS protocols and are used to send web traffic which most
websites and applications use. Port 443 can be seen as the more secure version of port 80, as this facilitates
the HTTP protocol but over TLS/SSL and securing the traffic between source and destination. Ultimately it
would be good to see a decrease of traffic on port 80 and an increasing amount of traffic on port 443. The
ports 8080 and 8081 are mostly used as alternative ports for port 80, which explains the amount of traffic
they send. At a first glance it is odd to see that traffic originating from HTTP and HTTPS is higher compared
to the destination statistics. However, when requesting a website the packet size can be quite small, just a
message indicating the browser would like to download the necessary files to view the website. The response
on the other side would be larger, because the server would need to send the files to the user. Where port 443
provides more cryptographic security, port 4500 is mostly used for IPSec commands, needed to successfully
create a VPN-tunnel and provide a certain level of anonymity for the user. Port 1194 is another example of a
VPN protocol, OpenVPN. Port 0 is an interesting case, tailing port 80 and 443 on a third place. The interesting
part about port 0 is that it officially does not exist [26]. The designers of the original port interfaces, upon
which much of the technology and practice we use today is based, created port 0 to be used as a sort of a wild
card port. When designing the port interfaces, port zero is mostly used to "let the system choose one for me".
So port 0 was set aside and never defined or used and up until now traffic on port 0 remains a kind of no man’s
land. Finally it is interesting to mention ports 6881, 8999 and 51413, used mainly for the BitTorrent enabling
users to efficiently share documents or programs.
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Src Port Flows(%) Packets(%) Bytes(%)

443 29.7 27.6 36.9
80 15.6 21.4 33.4
0 1.0 1.6 1.1
2200 1.0 0.7 1.1
25461 0.5 0.6 1.0
8000 0.3 0.4 0.6
8080 0.3 0.4 0.5
4500 0.4 0.5 0.5
8999 0.5 0.5 0.4
51413 0.3 0.3 0.4
119 0.2 0.3 0.4
563 0.1 0.2 0.3
1935 0.3 0.3 0.2
8081 0.2 0.1 0.2
1194 0.1 0.2 0.2

Table 3.3: Top 15 source ports ordered by packets

Dst Port Flows(%) Packets(%) Bytes(%)

443 9.4 7.3 2.2
80 5.5 6.2 0.5
0 0.8 1.5 1.1
119 0.0 0.7 1.2
8999 0.4 0.5 0.4
4500 0.3 0.4 0.3
6881 0.4 0.3 0.2
40500 0.4 0.3 0.2
3074 0.4 0.3 0.1
51413 0.3 0.3 0.2
9306 0.4 0.2 0.0
25461 0.2 0.2 0.0
16393 0.1 0.2 0.2
50321 0.2 0.2 0.1
1194 0.1 0.1 0.1

Table 3.4: Top 15 destination ports ordered by packets

3.3.4. Visualizing activity
For any campaign analysis it is important to provide the reader with a wide variety of information. Visualiza-
tions are a great way to compress a lot of information. In our case, we want to be able to visualize adversarial
activity in an orderly fashion. As it takes a long time to analyze the NetFlow data, it is useful to be able to make
simple representations of data without having to iterate through each of the files each time. Precisely for this
reason we decided to created aggregated rudimental information about IP addresses and ports. For both the
IP addresses and ports we summarized flow activity passing through on a daily basis. Besides this we also ag-
gregated the unique connections and amount of different packet sizes used per day, which will be elaborated
on in Chapter 5. The aggregated flow information proved extremely helpful understanding different patterns
adversaries employ. Figure 3.5 uses the summarized flow information to provide a distribution of connec-
tions each IP address has per day, providing a visualization not seen in any previous work. As expected, most
IP addresses have little connections, suggesting clients, and few IP addresses have a lot of connections, which
are probably large applications used by lots of users. Figure 3.6 on the other hand provides a simple scatter-
plot, showing the amount of activity an IP address has over time. As we will see in the next sections, this will
prove to be very useful to understand adversarial patterns.

Figure 3.5: Distribution of connections per IP address Figure 3.6: Example visualization of IP activity

3.4. Value for research
Network traffic is a data source which is relatively easy to collect. In theory, everybody with a router at home
can capture each packet flowing through their network, or set-up the NetFlow protocol to perform superficial
traffic analysis. In terms of research, the analysis of network traffic is also widely adopted. This is also the case
for analysis using NetFlow data, as this can be used to observe high level patterns with relative ease. Since
the release of NetFlow, over 1300 publications have been made using NetFlow data in the field [30]. However,
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most of these publications have used traffic originating from internal networks. Since 2000 only 30 publi-
cations have been made with NetFlow data on an ISP or tier 1 scale. A lot of these publications also merely
have a limited amount of NetFlow data. For example [12] has two weeks of sampled NetFlow data, which
they obtained from a tier 1 ISP. We have not found a publication which has been able to perform research on
more than two weeks of unabridged NetFlow traffic of the internet backbone of a tier 1 ISP provider. This al-
lows us to follow traffic patterns for a long period of time and dive into the underlying patterns of adversarial
structures.

3.4.1. Analysis possibilities
As this thesis focuses on malicious campaigns, it is interesting to see what kind of adversarial activity can be
seen. Section 3.3 has provided a brief overview of basic activity in the NetFlow dataset, but it would be good
to dive into examples of malicious activity to evaluate how much we see. To illustrate this, we looked into two
attacks in our dataset to view the activities. First, we looked into an attack on the Android Debug Bridge active
on the vulnerable port 5555, as can be seen in Figure 3.7. An enormous spike can be seen in early July, the
same dates as [69] mentions attacks happening on their network. The article did not mention a few smaller
spikes, which could indicate zero day vulnerabilities being explored by adversaries. Secondly, Figure 3.8 on
the other hand provides insights into the port which caused the largest DDoS attack recorded until now [71].
Port 11211 was rendered vulnerable and as we can see in the Figure was exploited lots of times.

These two examples scratch the surface of the possibilities this NetFlow dataset can bring us. This Section
has provided an overview of NetFlow data, how the dataset is structured and a brief overview of the opportu-
nities which arise.

Figure 3.7: Attack on Android Debug Bridge using port 5555 Figure 3.8: Memcache activity on port 11211
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Feeds

In the introduction of this thesis, in Section 1.4, we have posed a research question towards the tracking of
malicious C&C infrastructures. In order to answer this research question we must be able to analyze specific
indicators of compromise helping us to gain a foothold of these infrastructures in our data. The most obvious
choice for this information would be specific intelligence sources which have these indicators of compromise,
for example IP addresses or domain names. These sources could point to specific IP addresses in our data,
enabling us to gain more insight into the underlying patterns and structures. Open source threat intelligence
feeds are the only publicly available resources which contain these indicators of compromise. Companies
also sell this kind of intelligence for large profits, however we will only focus on publicly available sources.

These open source intelligence feeds have multiple origins, as a variety of people and organizations con-
tribute to this knowledge. Before using these feeds as a basis for our analysis, it is imperative to evaluate to
what extent this information can be used. This chapter will provide an extensive evaluation on 24 of these
cyber threat intelligence (CTI) feeds and determine the coverage of this combined intelligence, answering
the question whether these intelligence feeds will prove to be a sufficient foothold for analyzing malicious
infrastructures.

In Section 4.2, we have developed evaluation criteria for a quality assessment of cyber threat intelligence
that will be used for this exploration. Section 4.1 describes the collected open source intelligence feeds, while
Section 4.3 describes their utility in terms of relevance, timeliness, completeness and accuracy. Section 4.4
evaluates the adoption of these sources in practice and the benefit they bring to networks, as well as summa-
rizing the findings and elaborating on the next steps.

4.1. Datasets
Goal of this exploration is to evaluate the quality of cyber threat intelligence feeds. For this purpose, we have
monitored a total of 24 open source feeds which blacklist domain names as well as IP addresses based on
detected malicious activities, annotated into major categories such as C&C server activity and usage as a
phishing domains. These feeds have been continuously monitored over a period of 7 months from August 1,
2018 until February 28, 2019, and when available also all historical records back until January 1, 2018. This
resulted in a total of 1,383,040 indicators which we have used. For our evaluation, we monitored 17 threat
intelligence feeds over a period of 14 months, and 7 feeds over a period of 7 months. In table 4.1, we have
briefly enumerated each of the feeds included in this analysis.

Active domain crawls Based on zone transfers on registered domains from ICANN and national domain
registries, we have crawled approximately 277 million unique domains across 1151 generic and country code
top level domains on a daily basis. This data shows which IP address was connected to which domain at any
day, giving our original NetFlow dataset additional depth.

29
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TI Feed Automated Months # of IPs TI Feed Automated Months # of IPs

Badips Yes 14 95 Emerging Threats No 14 10,464
Bambenek Yes 14 1,796 Greensnow No 14 116,748
Blocklist.de Hybrid 14 944,622 MalwareConfig Yes 14 19
BotScout Bot List No 14 1,564 Malwaredomainlist Yes 14 1,011
Botvrij No 14 95 Myip No 7 55,936
BruteForceBlocker No 14 4,663 Nothink Yes 7 42
CI Army IP Hybrid 14 181,439 Phishtank Yes 14 2,708
CINSscore Hybrid 14 250,153 Ransomwaretracker Hybrid 14 383
Charles the Haleys No 7 38,999 Rutgers Yes 14 112,898
Cruzit No 7 49,911 Talos Hybrid 7 2683
Danger.rulez No 7 3,099 Tech. Blogs and Reports Yes 14 6,151
Dshield No 14 106 Zeustracker Yes 7 112

Table 4.1: List of evaluated open source feeds

4.2. Criteria for Threat Intelligence
In this section, we will describe four different criteria, which we will use in to evaluate the quality of open
source threat intelligence feeds. As discussed in the related work, Pawliǹski and Kompanek [97] have pro-
posed at an industry forum a taxonomy to benchmark threat intelligence along the dimensions of (a) rele-
vance, (b) accuracy, (c) completeness, (d) timeliness, and (e) ingestibility. We find this classification however
problematic, as several of the criteria are entangled. For example, in machine learning and pattern recog-
nition domains, relevance is usually measured by precision and recall. In other words, how many of the
selected items in a dataset are correctly identified, and how many of the relevant items are found in the
dataset, respectively. Recall however also partially assesses similar aspects as completeness, so quantifica-
tion results would contain some degree of correlation. Along the same lines, accuracy is also widely used
concept in machine learning, and in binary classification measures the ratio of true results to all examined
data, or T P+T N

T P+T N+F P+F N . While threat intelligence is a classification task, classifying activity as either malicious
or non-malicious, threat intelligence feeds are not classification tasks, but should mainly contain information
from one label. Therefore, a binary accuracy characterization does not work well due to imbalance of the data
present in the feeds. For these reasons, we propose different metrics to measure the quality of these feeds.

Our Taxonomy for CTI Quality
In order to evaluate the quality of cyber threat intelligence, we propose a set of four metrics: timeliness, sen-
sitivity, originality and impact.

1. Timeliness. The goal of subscribing to a threat intelligence feed is to obtain early warning of some
emergent malicious activity, so that infections in the local area network can be stopped in time before
significant losses are incurred. Hence, the earlier indicators such as IP addresses or domain names are
flagged, the higher the utility of the feed is to the subscriber, and in turn we can also conclude the better
the quality of the provided information. One essential quality criteria of a threat intelligence feed is thus
the timeliness of the information posted, in other words how soon a domain or IP address is included in
such lists after it has started malicious activities. A high timeliness will minimize the amount of damage
that could be incurred as part of a compromise, as it shortens the time window during which hosts may
be under adversarial control and the time an adversary may for example exfiltrate data or abuse the
infected client.

2. Sensitivity. In order to be included into a feed, the threat intelligence provider has to observe some
malicious activity in the first place. This is typically done using a variety of sensors, recording network
traffic patterns, DNS lookups, as well as for example based on the forensic analysis of malware sam-
ples. If a particular malware instance, C&C server, or maliciously acting host shows only low, sporadic
activity, there is a high likelihood that it would not be seen by a provider and thereby go by unmitigated
until the problem grows above a certain threshold.

With sensitivity, we therefore assess what volume is necessary for the intelligence provider to take no-
tice of a malicious activity, in other words what is the average and typical minimum threshold at which
detection will take place. In addition to quantifying the overall per-feed threshold, we can also measure
the sensitivity of a threat intelligence feed with respect to a geographical focus: if a provider predom-
inantly has sensors in a specific region, detection will be biased against threats emerging or deployed
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in this particular area, while comparatively insensitive towards threats originating outside of the mea-
surement coverage. As Internet threats by definition operate worldwide, heavy geographical biases
therefore introduce a significant risk of getting hit unprepared.

3. Originality. In practice, an organization would likely subscribe to several threat intelligence feeds, as
CTI providers often specialize towards a particular type of threats. We also see this behavior in threat
intelligence providers themselves, who – as we have said earlier – are also often aggregating, curating
and repacking other sources to be marketed as their own service. An essential metric of a cyber threat
intelligence feed is therefore originality, in other words the amount of information that is unique to this
particular source and that could not be obtained otherwise.

While originality measure the contribution made by one specific feed, it can also be used as a metric to
quantify an ecosystem of intelligence feeds as a whole. Consider a number of k feeds which all report
malware C&C servers. If all indicators provided by these feeds are highly unique, in other words there
is no or only limited overlap between them, this also means that even their union provides only an
insufficient peak at the population of C&C servers. We can thus say that in case of high ecosystem-wide
originality each feed only draws for samples from a large problem space, and in these cases the set of
intelligence feeds is unsuited to provide sufficient defense against this particular type of threat.

4. Impact. When an organization applies the information obtained from the threat intelligence feeds,
this should lead to a mitigation of a particular threat, as connections to and from a malicious host are
suppressed and no command & control activity or an initial infection should happen anymore. Based
this positive impact, an application of the threat information can also have negative consequences,
especially if the information is not specific enough or contains false positives.

The former is particularly of concern if feeds only provide IP address information, such as the IP ad-
dress a command & control server is currently hosted at. While in times of DGAs indicators such as
domain names have an extremely short lifetime, in many circumstances an actor will not host mali-
cious infrastructure on a dedicated machine, but rather employ the services of commercial vendors as
this offer much higher flexibility and incurs no loss (expect for the forfeiture of prepaid service) such as
the seizure of own hardware. This however also means that at particular IP address that is flagged as
malicious other services may be present which are then also blocked as collateral damage.

Our metric impact measures the consequences to an organization if the information from a threat intel-
ligence feed is applied, for example by blocking IP addresses in the firewall. This can have both positive
and negative consequences, and we care whether all of the malicious activity will be suppressed given
the feed’s data, and whether it only covers malicious activity or the application will also cause harm to
benign services. For example, if a malware communicates with its C&C server using 10 IP addresses,
the blockage is only really successful and useful if all 10 addresses are included in the feed as otherwise
the activity simply continues using an alternative channel, and only these 10 addresses are blocked.

4.3. Evaluating the feeds
Based on the criteria introduced in Section 4.2, in this section we discuss the results of the quality evaluation
of the 24 tested cyber threat intelligence feeds. The following subsections will first review their performance
in terms of timeliness, sensitivity, originality and impact, before in Section 4.4 we will in further detail analyze
the question of their overall utility and adoption in practice.

4.3.1. Timeliness
The goal of subscribing to a threat intelligence feed is to obtain early warning of some emergent malicious ac-
tivity, so that infections in the local area network can be stopped in time before significant losses are incurred.
Hence, the earlier indicators such as IP addresses or domain names are flagged, the higher the utility of the
feed is to the subscriber, and in turn we can also conclude the better the quality of the provided information.

In this section, we are assessing the timeliness of cyber threat intelligence feeds based on the amount of
traffic a particular destination has received, prior and after it was included in the analyzed feeds. Figure 4.1
depicts connections within the Tier 1 network to seven exemplary destination IP addresses between July 2018
and January 2019 that were in the second half of 2018 flagged as malicious. For each day, we aggregated
flows from distinct clients towards each destination, the size of each circle shows in logarithmic scale the
total number of recorded flows. Note that the IP addresses are anonymized as discussed in Chapter 3: while
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Figure 4.1: Scatter plot of netflow activity. The size of the line shows the amount of traffic observed. Crosses denote when the IP address
was blacklisted.

the anonymization protocol matched the feed indicators to the IP addresses, the shown IP addresses are
randomized at the level of prefixes. Thus, no conclusion can be taken about the concrete IP addresses at
hand or their location in the world.

As we see in the graph, we find that activity on IP addresses and their appearance in intelligence feeds
frequently diverges significantly in practice. The first three IP addresses in the figure are examples of a very
timely detection – the IP addresses are reported as soon as the first activity arises, and in the first case even
months before significant botnet traffic appears towards this C&C server. Not every intelligence report is how-
ever as successful. In the fourth and fifth case, the IP addresses are active for several weeks prior to reporting,
and in case of 73.150.151.230 it is only marked as malicious after a significant traffic volume emerges. An even
worse outcome is shown just below in case of 228.219.115.47: while after the including of the IP address in
the threat feeds activity abruptly stops, the IP address had been active for almost 3 months prior, and been
engaged in thousands of connections with clients.

We conducted this analysis for all 1,383,040 indicators across the 24 threat intelligence feeds and counted
the number of consecutive days IP addresses have received activity from clients before they were included in
a particular list. Based on this analysis, we find that the first examples of successful indication in Figure 4.1
are the exception rather than the norm, surprisingly we find that it takes on average 21 days before indicators
are included in a list.

Figure 4.2: Hosts are routinely active for multiple weeks before a destination is marked as malicious by threat intelligence feeds.
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Figure 4.2 splits this analysis, where each curve shows in a probability density function the number of
active days until listed by an individual provider. As can be seen in the graph, a handful of feeds are clearly
leading the pack, with the response time of CI Army being about 50% better than the overall average. In the
collection of feeds, we surprisingly find high homogeneity and overall slow inclusion of malicious sources into
the feeds. This while having turnaround times of approximately one month on average. Even lists commonly
praised by practitioners as “high quality” or “industry standards”, such as the widely used Emerging Threats
score surprisingly average in this respect. At the lower end of the scale, we have already observed activity for
on average 65 to 80 days, before the slowest to respond feeds – Talos and PhishTank – include these IP address
in their reports as malicious. This lag between the emergence of malicious activity and the inclusion in the
threat intelligence feeds might be due to a slow update frequency. To investigate this hypothesis, we analyzed
the inter-arrival time when information was included across the 24 feeds, Figure 4.3 shows a cumulative
density function of the time in between list updates. As we can see from the graph, information is pushed
at a very high frequency to the portfolio of lists, in one third of the cases updates occur at least hourly, while
approximately two thirds of items are updated at a granularity of at least once per day. Thus, it is not the
processing of the lists where reporting latency occurs, but during the selection and preparation of indicators.
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Figure 4.3: CDF of update frequency of the evaluated lists. Two thirds of the threat intelligence feeds are updated a least once a day, one
thirds even includes new indicators in hourly intervals.

Figure 4.4: Cumulation density function of the minimum activity before an IP addresses is included in a threat intelligence feed.
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4.3.2. Sensitivity
As we have already seen above, there seems to be a significant deviation between feeds in how soon indicators
are included after the first sign of network activity. Figure 4.4 lists a cumulative density function of the number
of connections we observe before an address is included in a particular intelligence feed as malicious. While
the majority of lists is surprisingly homogeneous in their sensitivity – we see that the bulk of them triggers
with 50% likelihood if at least 6*8192 - 10*8192 flows are recorded –, also here many drastic outliers emerge.
Dshield’s sensitivity is across the board 1.5 - 2 orders of magnitude lower than the rest, here indicators are
almost exclusively listed only when they show major activity. When we refer back to Figure 4.2, we notice this
feed to also perform sub-average with respect to timeliness. Other feeds that are also not very sensitive, like
Danger.rulez, have better timeliness.

Sensitivity however does not only depend on the types of sensors a threat intelligence provider utilizes,
but also where these sensors are located. Threats emerging in specific geographic areas might be under- or
overestimated, leading to an overall bias in sensitivity. As there is no ground truth on where threats are actu-
ally located, we can only do a relative evaluation on the position of the listed indicators – based on their IP
prefix information – for each individual intelligence feed. Figure 4.5 shows this relative geographical distribu-
tion of indicator per feed, which clearly reveal major differences in reporting between the providers and likely
the location of their sensor infrastructure. For instance, more than 40% of all reports made by Bambenek are
located in the United States, whereas more than 40% of reports on MalwareConfig originate from Turkey and
around 40% of the data provided by GreenSnow relates to China.

Figure 4.5: Geographical distribution of indicators per list.

These biases become even more apparent when we normalize the IP addresses reported as malicious by
the number of IP addresses allocated within that region. Assuming that malicious activity is not strongly
concentrated within individual countries, we thus obtain a normalized geographical reporting as shown in
Figure 4.6, this shows that for example CI Army and CINSscore are heavily leaning towards reports from Turk-
menistan, which is nearly entirely absent in the reports from all the other threat intelligence providers.

On a positive note, the distribution of reports by Emerging Threats, Badips, Blocklist.de, BruteForce-
Blocker, CruzIT and Myip show no clear geographical preference, and which seems to lend to the conclusion
that their measurement infrastructure is sufficiently diverse.
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Figure 4.6: Relative geographical distribution of indicators, normalized by total number of IP addresses in a country.

4.3.3. Originality
To investigate the uniqueness of the provided information, we traced for each of the 1.38 million indicators
when it first emerged on a particular list and whether individual indicators were afterwards also included on
other lists. Besides the result of independent original research, such reuse might also indicate that a particular
feed would import the data provided by others. Figure 4.7 shows the later reuse of indicator information
across lists, where an arrow indicates that information first originated at the source of the arrow and was later
included in the list its points to. The thickness of the arrow and the corresponding label corresponds with the
percentage of information on the receiving list, that earlier appeared somewhere else. For readability, only
flows where more than 5% potentially originated from a different list are shown.

While commercial threat intelligence providers often only consolidate and curate information as dis-
cussed above, we see also some repackaging – although at highly varying degrees – in case of open source
feeds. The indicators first appearing on the feed Blocklist.de routinely appear on other lists, and in two cases
a fifth of all indicators are shared with Blocklist.de where they appear earlier. Similarly, a quarter of the indi-
cators on Danger.rulez previously appeared on Emerging Threats, however at a global scale such repacking
is comparatively seldom and only 11 out of the 24 lists showed such relationships at all. Across the entire
dataset, indicators reappear comparatively seldom, in total only 85,906 out of the total 1.38 million entries
were also listed on another feed (6.2%).
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Figure 4.7: Indicator reuse across feeds occurs only sporadically, with the exception of two threat intelligence feeds.



36 4. Exploration of Cyber Threat Intelligence Feeds

Figure 4.8: Cumulative probability function of the domain names associated with the IP addresses indicated as malicious per threat
intelligence feed.

4.3.4. Impact
In order to evaluate the level of potential collateral damage, we resolved the IPv4 and IPv6 A records of 277
million domain name across 1151 top-level domain zones that we received from the TLD operators on a daily
basis. For every threat intelligence feed, we analyzed how many domain names were pointing to a particular
IP address on the day it was marked as malicious, as all of these domain names would no longer be resolvable
if a customer would apply the ruleset provided by the threat intelligence provider in, for example, a firewall.
Figure 4.8 shows the cumulative density function of the number of domain names resolving to the indicated
IP addresses by threat feed.

As we can see in the graph, there are drastic differences in the amount of collateral damage between feeds.
A homogeneous set of feeds – among them BruteForceBlocker, Talos, CruzIT, CI Army IP, and Rutgers – are
comparatively targeted, more than half of their entries are not affected by any other domain names, while
the 80% most targeted indicators affect less than 6 other domain names if applying an IP-based block. This
is somewhat logical for a list that focuses on brute forcing, which is typically not happening from servers that
host websites or are operated by a shared web hoster, this is however not the case for the information included
on CruzIT, CI Army IP or Rutgers, which include IP addresses used to attack or probe certain networks. For
Talos we know that it is curated by Cisco, which makes it likely that this is the reason for the low amount of
collateral damage.

This is however not true for all of the feeds. In case of Bambenek, only 16% of the best performing indica-
tors will block less than 50 live domains hosted at these websites, where the 50% worst performing indicators
even affect 100 or more domains as collateral damage. While some of the blocked domains may certainly also
contain malicious activity, some of the instances included large shared hosters, in one case with more than
900,000 domains pointing to the blacklisted IP address. While such issues could be explained due to auto-
matic collection of indicators, we also found a surprisingly poor track record in case of “Technical Blogs and
Reports”, a curated list of human analyst reports, which indicates that human-made feeds are not necessarily
better, or at least suggests that feeds do not filter records that could potentially be harmful to normal system
operation.

4.4. Discussion
After an evaluation of each of the 24 feeds across the four dimensions timeliness, sensitivity, originality and
impact, we will take a step back in this section and evaluate the ecosystem of intelligence feeds as a whole.
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Figure 4.9: Continuation of activity to flagged destinations after listing in a feed.

Specifically we will investigate how widely these feeds are adopted by network owners and operators in prac-
tice, and review the issue of the surprisingly high level of originality for the ecosystem as a whole.

4.4.1. Adoption of Intelligence Feeds
As cyber threat intelligence feeds are meant to alert and empower network owners to block malicious activity,
their application should lead to a reduction in network traffic towards the hosts flagged as malicious. This
observation provides us with an angle to investigate the adoption of threat intelligence feeds across networks
worldwide, after all as soon as an indicator has appeared on a list we would expect a significant drop of activity
– if not the absence of requests – from a subscribing network.

When networks apply the information provided in cyber threat intelligence feeds at scale, we should ide-
ally see the activity from infected clients to malicious destinations drop and eventually die out. As we have
however seen above, intelligence feeds are not universally adopted but have a specific regional footprint and
there exists only a marginal overlap between lists; thus, even if a network would subscribe to and apply the
information from every single intelligence feed we cannot expect all activity to immediately seize.

Figure 4.9 shows a probability density function of how long activity towards a particular destination con-
tinued after an indicator was listed on a particular intelligence feed. As we see from the graph, the inclusion of
indicators on for example BruteForceBlocker seems to be an effective deterrent, as on average activity stops
within 2 weeks’ time. Other lists such as Botvrij are less successful: more than 50% of all hosts reported as
malicious by this feed continue their activity for at least 79 days, with an extremely long trail, thus a listing on
this block list seems to have almost no impact on the criminal activity itself. Like in case of timeliness until
detection (see Section 4.3.1), the threat intelligence feeds are also surprisingly homogeneous with respect to
the continuation of activities, and we can clearly see in Figure 4.9 two main clusters, with activity termination
peaking around 20 days after listing and 60 days after reporting.

4.4.2. Coverage
There remain however questions about the quality of the ecosystem of cyber threat intelligence providers as
a whole. Although it is desirable for a customer that CTI feeds have a large degree of originality as otherwise
a customer would subscribe – and pay for – redundant information, we have seen that the amount of overlap
between the entire spectrum of analyzed feeds was actually remarkably low. This on the one hand is com-
mendable as it maximizes value of CTI users, on the other hand it also raises questions whether the cyber
threat intelligence feeds really provide sufficient information to stop malicious activity in their tracks.
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As discussed in Section 4.1, the 24 evaluated open source feeds which span the entire ecosystem of ma-
licious activity from brute forcing activity, ransomware and other malware, to botnets. As each type of ma-
licious activity was covered by multiple feeds, we actually would expect some overlap in reported indicators.
The fact that there is almost no overlap between lists of similar scope could be the result of two reasons: first,
all individual lists for example targeting botnets or ransomware rely on orthogonal detection methods and
are therefore providing complementary information. Second, the lists monitor malicious activity in compa-
rable ways, but the overall volume of malicious activity is so large that effectively each lists only obtains a tiny
sample, and such low rate sampling from a large universe would statistically lead to a very low chance for
duplicates.

Conceptually, we can see that we are probably dealing with the latter than the former reason, after all
methods to for example detect ransomware C&C servers are limited, and most likely all providers would em-
ploy off-the-shelf tools such as an analysis of network activity across malware samples or a forensic analysis
thereof. This unfortunately drives us to the conclusion that cyber threat intelligence feeds cover much less of
malicious activity than we would expect and require, to apply intelligence feeds and confidently expect that
with a very high degree of certainty malicious activity will be stopped through these indicators.

In this chapter we have introduced a taxonomy to evaluate the quality of cyber threat intelligence feeds aim-
ing to assess the utility a user may gain from such a feed and benchmarked the timeliness, sensitivity, origi-
nality and impact of these feeds using our NetFlow data and zone transfers. After having empirically analyzed
the impact an indicator of compromise has on such an intelligence feed, we have been able to evaluate the
adoption of them in practice. We came to the conclusion that utilizing these feeds for defensive purposes
lacks the depth we would have hoped. Reflecting back on our research goal, we are going to need another ap-
proach to effectively paint a picture of the C&C infrastructural landscape as the total coverage of the existing
feeds is insufficient. Apparently these CTI feeds only show a part of the picture, and as we want to show how
large this problem is we ”simply” need to find more malicious servers. A way to achieve this is by combining
auxiliary datasets and using tools applicable to NetFlow data. To approach this methodologically, the next
chapter will explain what steps we need to take from this point on to answer out research question.
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Methodology

The previous chapter has evaluated various aspects of open source threat intelligence, concluding that the
combination of these feeds do not have a complete picture of malicious indicators of compromise on the
Internet. The evaluation towards the timeliness, sensitivity, originality and impact of these feeds have proven
that, in order to answer our research question, we must obtain additional data to explore these malicious
infrastructures in more detail. Besides this, it is a good idea to use more a structured approach in answering
our research question, seeing as publicly available CTI feeds will not provide this structure. In the second step
of our research approach, as mentioned in Section 1.4, we set out to form a methodology which will use our
NetFlow data to identify malicious infrastructures. This chapter explains our method for this by providing
structure to our analysis in Section 5.1, how we will attempt to make information provided by CTI feeds more
complete in Section 5.2, and how we can validate and cluster malicious behavior in Section 5.3.

5.1. Dissecting the problem
If we take a step back and recall our research question, we want to gain insights into how we can investigate
the evolution, attack patterns and tactics, techniques and procedures of malicious C&C infrastructures. Our
initial consideration was that indicators of compromise provided by CTI feeds would give us a good foothold
for our NetFlow dataset to dig into the structures which they and their owners have. We hypothesized that
these intelligence feeds would provide enough evidence for this, but unfortunately they have far less cover-
age than we would have hoped. To make up for this we will have to combine the knowledge of these feeds
with auxiliary information. We have only been looking at feeds which provide solely lists of IP addresses and
domain names, but if we dissect the problem into smaller, more specific problems, we might be able to ac-
quire more information. Keeping this in mind, we chose to bring the problem closer to the perspective of an
everyday Internet user. These users most likely use a lot of devices which are connected to the Internet, think
of personal computers, laptops, smartphones, smartwatches, camera’s, cars and lots of others. Each of these
devices can be vulnerable for cyber-attacks due to malware or careless users, meaning that they can eventu-
ally be controlled and used for malicious intents. We categorized these devices as follows: clients, amongst
others personal computers, laptops and smartphones, will be one category and smart devices connected to
the Internet, or IoT devices, is another category. Both these categories are susceptible for misuse in their own
way. Finally we also categorize routers, as this is the medium for every household to access the internet with
their devices and can be vulnerable without knowledge of the owner.

• Computer clients is a category which has been the target of classical malware since computers first
emerged. Over the years the possibilities and computational power of devices like personal computers
and laptops has grown enormously, making them attractive targets for cyber criminals. Chapter 6 will
discuss this category in more detail by using CTI feeds, NetFlow data and the methodologies elaborated
upon in the rest of this chapter.

• The Internet of Things, or IoT, is a collection of simple devices connected to the Internet which is grow-
ing rapidly. New kinds of malware have been emerging over the years specifically targeting these kind of
devices to gain control over them. Chapter 7 will go into more detail on the vulnerabilities of these IoT
devices and the risk it poses for our society. Besides NetFlow data we make use of a network telescope
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able of measuring scanning and brute force attempts of IoT malware, which we will further elaborate
on during this analysis.

• Routers are generally the more unknown devices in households, as they basically need to do their job;
connecting people to the Internet. All data flows through these devices, and for this reason they are
also a target for cyber criminals. In Chapter 8 we will discuss a new attack vector on routers of the
brand MikroTik and the impact this has. Again our NetFlow data and telescope data will be used for
this analysis, complemented by active scans made by the services provided by Censys and Shodan.

Having divided the problem into these categories, we will for each of them dive into the tactics, techniques
and procedures, and the impact these have on society. We recognize that by dividing them, each category
will have its own structure, but the goal will be the same; to what extent can we track the evolution, attack
patterns and tactics, techniques and procedures of the C&C infrastructure. Each chapter will give background
information for the use case and provide an analysis on its tactics, techniques and procedures. The rest of this
chapter will go into depth on mathematical and statistical tools which we will use in the analyses to answer
our research question.

5.2. Detection of malicious servers
Section 2.2 has described all novel methods used for detecting adversarial patterns and infrastructures based
on a specific set of data. One of the lessons which can be taken from this summary, is that no perfect solution
exists for the overarching problem of cyber criminals commanding networks of infected machines. Each of
these criminals can think of different solutions to reach these machines as concealed as possible. Most of
these solutions involve deep packet analysis or something similar, but mostly aimed to protect individuals in
closed network setups. The NetFlow dataset which is used in this thesis does not have any local networking
information, but provides a more global picture. A few publications have been made regarding detecting
malicious or C&C infrastructures based on NetFlow data [12, 42, 45, 47, 53, 60, 133, 144, 145] however, only
two actually focus on a relative large and global dataset [12, 133].

The work of Bilge et al. is the only one which has published work on a C&C detection method using a
sampled NetFlow dataset retrieved from an ISP [12]. They developed an algorithm using machine learning
attempting to detect unknown C&C IP addresses. Their detection rates are promising, however they did not
disclose details on the datasets which they used to train their model and the model unfortunately is only able
to perform at 2x real time. The latter is the biggest problem, as our dataset covers 16 months of network traffic
and analysis of a dataset this large at this speed will take months lead time to analyze.

5.2.1. Disclosure
In 2012, Bilge et al. also realized that previous botnet detection approaches are only effective when applied
under the exact circumstances previous researchers have set. This however does not scale beyond local ad-
ministrations. They argue that due to this limitation, the botnet mitigation is only applied to small endpoints
of the Internet whilst the majority remain vulnerable. Adversaries controlling these infected machines are an
Internet-wide problem, targeting innocent users who sometimes do not even realize they are compromised.
One of the most promising solutions to tackle this problem is using ISP NetFlow data. Due to its global nature,
it can observe far more than any singular administration. When network traffic is saved into the compressed
NetFlow format, all evidence of the malware is lost. In their publication, they present Disclosure which is
a large-scale, wide-area botnet detection system, employing various filtering techniques to reduce the chal-
lenges NetFlow data has. They extract features from the traffic to reliably detect C&C IP addresses from benign
flows. After they train a machine learning model and test on unlabeled data to retrieve maliciously labeled
IP addresses. Resulting from this, they claim Disclosure is able to recognize 65% of known C&C servers with
only 1% false positives by applying post-filtering. This filtering was done by hand and thus does not suggest
this can be done automated. Additionally, unlike our data their data was not anonymized, providing an extra
challenge on preserving privacy.

5.2.2. Feature extraction
Disclosure extracts three sets of features for each IP address in the dataset: flow size, client access patterns,
temporal features. Each set of features extracts a number of statistics of the analyzed IP address. As Bilge et
al. did not disclose any of their data or code, we have implemented this system to be able to add or change
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features. Our implementation builds on the work provided by Nicola et al. which implemented the feature
extraction used by Disclosure in Python [29].

Flow size features
The first features extracted from the IP addresses are based on the flow size statistics, retrieved from both
incoming and outgoing flows. C&C commands predominantly have a lot of the same sized packets and are
often relative small packets [12], minimizing the impact they have on a network and trying to stay undetected.
On the other hand, traffic of benign servers usually has a wide range of flow sizes. To extract features from
this a discrete autocorrelation coefficient RF̂i , j F̂i , j

is normalized by the variance æ2 (5.1).

RF̂i , j F̂i , j
=

Pn
i= j xi xi° j

æ2 (5.1)

A series of flow sizes Fi , j is converted to a time series by ordering sizes by time. For each period this function
outputs the correlation results. From this the mean µFi , j and standard deviation æFi , j over these values are
calculated to get all flow size base features. In addition to these features, the amount of unique flow sizes are
also derived and are used to create a statistical occurrence density.

Client Access Features
Infected machines regularly have to establish a connection with the C&C server to retrieve the latest com-
mands. As we have mentioned earlier, these connections are probably short intervals to keep under the radar
of intrusion detection systems. One important feature of these infected machines, is that they should perform
similar access patterns. Clients contacting benign servers should normally not do this and have more variety
in this. For each server, statistics are created regarding each connection pattern ti , j with clients resulting in a
sequence of arrival times Ii , j (5.2). Subsequently, the minimum, maximum, median, and standard deviation
are derived of this time series.

Ii , j =
n[

k=1
ti , j ,k ° ti , j ,k°1 (5.2)

It also can happen that a C&C server is taken down or blacklisted. This renders the infected client useless,
but it will probably still try to connect to the C&C server. When a client is trying to frequently query a server
which is not alive, it is called a zombie. These zombies will have a significant amount of flows towards the
server, but no matching flows in the opposite direction. Disclosure uses a time series of unmatched incoming
and outgoing flows to quantify this behavior (5.3). In this function Ui , j is the time series of unmatched flows
of a server and from this the mean and standard deviation are calculated as features.

Ui , j =
X

j2C
abs

°ØØFi , j
ØØ°

ØØF j ,i
ØØ¢ (5.3)

Disclosure also extracted Temporal features in their model, segmenting a time series of client and flow volume
by hourly intervals. However, even though having sampled data, they claim that introducing these features
improved the detection rate of their model. After implementing this, we concluded that this did not pro-
vide any additional extra detection. This might have to do with the possible different nature of our dataset
compared to the dataset that was used by them.
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Extracted features
After implementing the extracting of these features and building a pipeline for our data, the data could be
formatted to be used in a machine learning algorithm. Listing 5.1 provides an example of these features
once extracted in a JSON format. For data processing convenience, the IP addresses have been converted to
numbers as can be seen in the listing.

3624208180 : {
" autocorrelation_mean_from " : 723 . 4487194773106 ,
" autocorrelation_mean_to " : 1 . 5145964657519804 ,
" autocorrelation_std_from " : 0 . 5985024215098864 ,
" autocorrelation_std_to " : 9 . 134987761149308 ,
"cap_max" : 30645567 . 0 ,
"cap_median" : 22284679 . 5 ,
"cap_median_normalized" : 0 . 5 ,
"cap_min" : 13923792 . 0 ,
" cap_std " : 0 . 37518544971669887 ,
" l ab el " : "0" ,
"mean_from" : 4149163 . 8146487293 ,
"mean_to" : 1625739 . 6363636365 ,
" std_from " : 1 . 2003551738281206 ,
" std_to " : 1 . 6352551061940865 ,
" unique_flow_sizes_entropy " : 3 . 4473171258580715 ,
" unique_flow_sizes_entropy_from " : 3 . 4437111688342608 ,
" unique_flow_sizes_entropy_to " : 1 . 7677614722893296 ,
" unique_flow_sizes_kurtosis " : 1 . 9273838117374908 ,
" unique_flow_sizes_kurtosis_from " : 1 . 9233626506156565 ,
" unique_flow_sizes_kurtosis_to " : 7 . 258284797135221 ,
"unmatched_flows_mean" : 49 . 657407407407405 ,
"unmatched_flows_std" : 0 . 5289755761725886

}

Listing 5.1: Example of features extracted from the activity of a server

5.2.3. Pre-filtering
This detection algorithm is created to detect servers acting as C&C instead of the infected devices. Therefore,
only the features of actual servers have to be compared with each other. For this reason Disclosure has imple-
mented a server selection before extracting the features. Especially because multiple services can be used on
each IP address. Each server is represented of IP address and port si = ha, pi, where a and p are respectively
the IP address and port. Each IP address is marked as a server which has a specific percentage of the same
ports, which they do not mention in their work. We have implemented this as well and require an IP address
to have at least 25% traffic on the same port. This is however where the limitation of their model arises. This
will still leave the user of the model with an extremely large amount of detected servers. We took this a step
further by making a high level comparison with more rudimental features of actual C&C servers. For each
IP address seen on each day in our dataset we created files per day containing the amount of flows sent or
received by the IP address, the amount of unique flow sizes per day and amount of unique IP addresses it
has connected that day. Using historical data of the threat intelligence feed created on C&C servers by Bam-
benek and Zeustracker, as seen in Table 4.1, we used the maximum amounts of the described daily IP counts
to introduce an extra filtering. By adding an additional 25% leniency per maximum amount of known C&C
servers, we could already filter for a more specific set of suspicious IP addresses. In total we have created a
speed up of approximately 36x real time, which significant enough to perform analysis on huge amount of
available NetFlow data.

5.2.4. Detection model
The next step after extracting the specified features for the required time frame of NetFlow data, is to build
the detection model required to extract malicious labeled IP addresses. The work of Bilge et al. compared
a few different applicable machine learning algorithms and chose the random forest classifier as this gave
the best result. Random forest, like the name implies, consists of a large number of individual decision trees
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Figure 5.1: Area under ROC for different amounts of days incorporated in the training window

which operate as an ensemble. Each of these trees provides a prediction for the model, and eventually the
prediction with the most votes will be the output of the algorithm.

Each machine learning algorithm builds a mathematical model based on training data to make predic-
tions. By doing this, the algorithm does not have to be specifically programmed for each different task it has
to perform. Bilge et al. used samples of C&C servers provided to them through a paid provider. Unfortunately,
we do not have that opportunity and will use C&C servers provided by the Bambenek and Zeustracker threat
intelligence feeds and take this as our ground truth for the training data. Additionally, benign servers have to
be included in the training data to create a model which can discriminate benign from malicious. For this,
servers belonging to the Alexa top 1000 most visited websites will be labeled as benign. On average, each
day has about 100 active C&C servers, but this of course differs each day. To populate our model with more
samples, an increasing training time frame is used and tested for the detection rate and false positive rate.
To create a balanced model, we evaluated the usefulness of our model performing a 10-fold cross-validation.
This evaluation can be seen in Figure 5.1 where the accuracy is measured by computing the area under the
Receiver Operating Characteristic (ROC) curve. The ROC-curve is created by plotting the true positive rate
(TPR) against the false positive rate (FPR). The TPR is the actual detection rate, or recall, whilst the FPR shows
the amount of false alarms.

The best results were obtained by including 14 days of malicious and benign activity around the day to be
tested on. Including more days does not increase the detection rate, as can be seen in Figure 5.1. Giving our
model exact numbers on how well it performs is incredibly difficult, as this differs for each day. On average
we can say that the detection rate, or recall, of C&C servers is 50.4% with an average false positives of 16.4%
and accuracy of 87.4%. This recall might not be that good, combined with the amount of false positives, it
must however be taken into account that our data is highly sampled. Disclosure has similar results, where
our implementation takes about 18 times less to process and thus increasing our opportunities to work with
this.

For us it is not a goal to create the optimal machine learning solution to find all existing malicious servers,
as this is not feasible with sampled data. Keeping the dataset in mind, we have the do opportunity to create
a different model for each day, increasing our chances to find actual malicious C&C servers. This however
does mean that the detection rate will vary for each of these days. Disclosure was able to reduce their false
positives to about 1% by filtering manually. This is something which is only preferable when working with
small datasets. We will have to eliminate these false positives, or at least bring them down to a minimum, by
using specific statistical tests for our situation which the next section will elaborate upon.

5.3. Validation and clustering techniques
The model discussed in the previous section is able to predict C&C servers with a particular certainty each
day. This is problematic when the goal is to acquire all malicious servers out there, which is unfortunately
something which is not feasible as every adversary can in theory configure their system to work in an unde-
tectable manner. The model does however provide a good base of IP addresses with highly suspicious activity.
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In some situations, for example when specifically linking malicious activity to a small set of known malicious
servers, it might be necessary to have a higher certainty than the one discussed in Section 5.2.4. This section
will first cover two techniques which can be applied in this scenario, clustering small sets of IP addresses for
similarity. On the other hand, when trying to gain more insights into clusters of activity we will lastly elabo-
rate on a method used to do this. Each of these methods is used in multiple occasions during the following
three chapters to gain more insights into adversarial patterns of cyber criminals.

5.3.1. K-Sample Anderson-Darling test
The detection method proposed by Bilge et al. used un-anonymized IP addresses in their detection, meaning
they could perform a false positive reduction after the detection. The anonymized nature of our dataset
unfortunately does not allow us to do this. Therefore it would be useful to be able to correlate the activity
of two or more servers with each other with a statistic certainty. To realize this we have used the Anderson-
Darling test to be able to compare the distribution of flow sizes belonging to servers. This is a statistical
test which analyzes wether a provided sample is drawn from a specific probability distribution. In its basic
implementation, this test provides a set of critical values correlating to significance levels of which a null
hypothesis can be rejected.

In the case of comparing whether two distributions of flow sizes are drawn from the same distribution,
the K-Sample Anderson-Darling test can be used [112]. This tests if two or more collections of observations
can be correlated to come from a single distribution, not having to specify the distribution function. This
equation is shown in (5.4). To simplify the explanation and usage of this equation, we will focus on using two
samples. In this equation the hypothesis is tested wether that two samples (or vectors in our case), X1, . . . , Xm
and Y1, . . . ,Yn , are drawn from the same distribution. X1, . . . , Xm is represented by the empirical distribution
function Fm(x) and Y1, . . . ,Yn is represented by the empirical distribution function Gn(x). Instead of using a
pre-set distribution to test both these vectors with, HN is introduced to simulate a distribution created by the
input distributions and is calculated by HN (x) = {m §Fm(x)+n §Gn(x)}/N where N = m +n.

A2
mn = mn

N

Z1

°1

{Fm(x)°Gn(x)}2

HN (x) {1°HN (x)}
d HN (x) (5.4)

The result of this equation, A2
mn , is used to test the null hypothesis that F = G without having to specify

the common continuous distribution function. The resulting, so called, critical value can be used to either
accept the null hypothesis or reject it, based on the chosen significance level. The significance level is the
probability of rejecting the null hypothesis when it is true. For example, a significance level of 0.10 indicates
a 10% risk of concluding that a difference exists when there is no actual difference between the distributions.
Because of this, it is good to have this value as low as possible. A significance level of 0.05 is normally used, but
other values can be chosen to acquire a higher or lower threshold [112]. The critical values and corresponding
significance levels of two samples is provided in Table 5.1.

Significance level 0.15 0.10 0.05 0.025 0.01

Critical values 0.325 1.226 1.961 2.718 3.752

Table 5.1: Significance values and corresponding critical values defined for the K-Sample Anderson Darling test [112]

To gain insights on a more intuitive level, we can draw our attention to Figure 5.2. This figure shows four
example distribution of server activity in amount of flows observed with a specific size, which can indicate
a specific behavior. A similar distribution would mean similar communication patterns. In this example, (a)
is known to be malicious and (b), (c) and (d) are servers linked to this behavior by, for example, the decision
model explained in 5.2.4. When using the K-Sample Anderson Darling test with these distributions, a critical
value of 7.543 can be obtained when using (a) and (b) indicating the null hypothesis that these samples come
from the same distribution can be rejected at the 1% level because the returned test value is greater than the
critical value for 1%. For (a) and (c) however the null hypothesis that these samples come from the same
distribution can be rejected at the 10% level because the returned test value is greater than the critical value
for 10%, but lower than the critical value for 5%, as the result is 1.279. Each time this equation is used in this
thesis, the critical value has to reject the null hypothesis at least at 2.5% before we can say the samples are
drawn from the same distribution.
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Figure 5.2: Mock flow size distributions of a malicious server with three potential correlated servers

5.3.2. Cosine Similarity
The Anderson-Darling test provides a robust way to validate whether two servers are drawn from the same
sample. This can provide the validation necessary to complement the detection model. However, when per-
forming campaign analysis between a large number of servers or infected machines it will be helpful to be
able to say something about the similarity of activity seen between IP addresses. To measure this similarity,
the cosine similarity will be used. This will specifically be used to measure the similarity between the per-
centage of traffic per port for a specific time frame. In this case, the magnitude of the vectors containing
port distributions does not matter, making the cosine similarity a good choice to calculate the similarity. The
cosine is derived by using the Euclidean dot product formula as seen in (5.5).

similarity = cos(µ) = A ·B
kAkkBk =

Pn
i=1 Ai Bi

qPn
i=1 A2

i

qPn
i=1 B 2

i

(5.5)

Given two vectors, A and B , this equation measures the similarity between these vectors inner product space
that measures the cosine of the angle between them. Ai and Bi are respectively components of the vectors,
used to solve the equation and return the cosine value, indicating the similarity between the two vectors with
a 0 to 1 score. In our case this has been used to detect the similarity between activity of two servers. This is
measured by creating a vector ~v with the length of all TCP ports, filled with the sum of flows each port has
been identified in the NetFlow data. See ~v1 for an example of this. As we are dealing with sampled data, we
have chosen to deduct the relative percentages for each port and put these values in the final vector which can
be used for comparison. For simplicity ~v1, ~v2 and ~v3 only have 6 ’ports’. Let’s say the server with activity ~v1 is
known to be malicious. ~v2 and ~v3 can be accordingly compared with ~v1 with the cosine similarity, respectively
resulting in similarity values of 0.9488 for ~v1 and ~v2 and 0.5916 for ~v1 and ~v3. This indicates that the activity
of ~v2 is highly similar to ~v1.
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5.3.3. HDBSCAN
In the previous two subsections we have explained two techniques which can be used to gain insights into
the similarity of IP addresses. However, one final technique has been used gain more in-depth knowledge
regarding the division of activity in a C&C server. In the next chapters we will apply an unsupervised cluster-
ing algorithm for a few specific cases to analyze whether there is labor division amongst the infected devices
within malicious infrastructures.

Clustering by heart is all about grouping together data similar data points, regardless of the format. Vari-
ous techniques exist which all have different definitions of what a cluster means and approaches to find these
clusters. Naturally clustering algorithms break apart into centroid based or density, and flat or hierarchical
based algorithms. Centroid based clustering algorithms will make explicit or implicit assumptions about the
shape of the clusters, requiring a priori knowledge about the data. This allows the algorithm to work on small
amounts of data, which can be visualized very efficiently. On the other hand, density based clustering is going
to allow the data to define the clusters, implicitly requiring a lot more data to be effective but also allowing
for noise in the data. Either of these clustering techniques will also employ a flat or hierarchical type of clus-
tering. Flat clustering is going to create clusters based on a priori knowledge of the amount of clusters, also
again requiring to be able to visualize the data. Hierarchical clustering is specifically designed to address this
parameter selection problem by creating a natural hierarchy over the data and use this to define the correct
number of clusters. Examples of clustering methods using the four different combinations of these categories
are show in Table 5.2.

Flat Hierarchical

Centroid K-means Complete-linkage
Density DBSCAN HDBSCAN

Table 5.2: Categorical overview of clustering approaches

The data which we want to cluster is based on the daily port distribution per IP address to cluster, as we can
see in the vectors shown in Section 5.3.2. A M §N matrix is created with M representing all IP addresses to
be clustered and where N is the distribution of all 65536 TCP ports. The higher dimensional nature of this
data does not provide a clear a priori understanding of possible clusters. These clusters which we want to
create essentially are sets of samples which are found to be similar, measured by some distance metric. Ac-
cording to this metric, neighbors of samples are compared with each other and put together. Density-based
spatial clustering of applications with noise, or DBSCAN, is a clustering algorithm which eliminates the para-
metric centroid distribution assumption. It accounts for noise in the dataset, something which K-means for
example does not facilitate. DBSCAN however still requires some beforehand knowledge about the cluster
sizes. This can be solved by using a hierarchical approach and still having the density based clustering. HDB-
SCAN, as introduced by Campello et al. [15], combines both these worlds. It internally creates a dendrogram
with decreasing numbers of clusters to fit the purpose and goal of the to-be-clustered dataset. This fits the
requirements of the dataset and the intention of our clustering.

This chapter has both elaborated upon the structure in which we will perform analyses and explained math-
ematical and statistical techniques which will be used in these analyses. It is important to mention that these
techniques will only be used if applicable in the situation.
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Nowadays personal computers, laptops and smartphones are devices used by a large portion of the world
population. In our world today these devices have become essential as a lot of important infrastructures
rely on computers and people operating them. The possibilities of these machines are constantly growing;
they are gaining more power, more memory, and more developers and companies are interested in writing
applications for monetary or personal gain. Cybercriminals also notice this and innovate in deployment of
malicious software and in Command and Control distribution, as we have seen in Chapter 2. Computers
these times are incredibly vulnerable for malware infections.

This chapter will analyze infected clients controlled by C&C servers, the first category of networking de-
vices which we have defined in our methodology. We show that by using NetFlow data we can gain valuable
insights how adversaries operate their networks. Previous work has not yet provided a global understanding
of how these C&C servers operate, what the different tactics are between them and how they utilize their net-
work. We identify a lot of previously unidentified structures being used by adversaries throughout 2018. We
also look at the differences in behavior of the infected machines which are controlled by cybercriminals and
the evolution of this behavior. By doing this, we gain understanding of a not yet explored perspective on C&C
servers, allowing us to find unknown malicious servers; a technique which can possibly be used by ISPs for
mitigation of threats.

6.1. Background
A lot of different types of malicious code fall under the global term malware. Every adversary can write ma-
licious code to perform misuse for their personal gain. A user downloading a popular image processing tool
for free might think they have found an amazing deal, free software which normally costs hundreds of dol-
lars, but at the same time the infected program requests malicious commands from a remote C&C server
administrated by an adversary.

Infected machines, or bots, in this analysis have been infected by a kind of classic malware variant and
all connect at some point to a C&C server coordinating their infection. During their infection the bots can
contact a C&C server for various reasons. In the most simple infrastructures the bots periodically connect to
the C&C server to ask for commands or send collected data (for example collected usernames and passwords).
More advanced structures will however disperse this kind of activity to stay undetected; a few different servers
for C&C activity and a few other servers to gather data. We hypothesize that current C&C servers will diverge
a lot in behavior, tactics and day to day utilization. In this analysis we will make the following contributions:

• We have analyzed adversarial tactics and reveal differences between servers in how they communicate
with their infected machines and how this activity evolves over time.

• We are the first to use a combination of learning techniques to find unknown C&C servers in anony-
mous NetFlow data and complementing data found in open source threat intelligence feeds.

For the remainder of this analysis we will first provide some additional information about the datasets used in
this chapter. Section 6.2 will go into the tactics, techniques and procedures observed and what we can learn
from this, and Section 6.3 will go into the detection of new servers and how this can aid malware detection.

6.1.1. Datasets
To perform this study we additionally make use of cyber threat intelligence feeds. In Chapter 4 we have an-
alyzed various blacklists related to different malicious IP addresses or domain names on threat intelligence
feeds. As we have seen in this exploration, these lists are far from complete and do not provide a complete
picture of the entire threat landscape. We can unfortunately not say anything about paid threat intelligence
providers, but ultimately the open source community can provide insights into attack vectors which can con-
tribute to a safer society. As a starting point for this chapter, known C&C servers are needed. The open source
threat intelligence feeds of Bambenek and Zeustracker, as can be seen in Table 4.1, provide C&C servers linked
to certain types of malware. We have used these blacklisted IP addresses, which are a total of 993 IP addresses
listed by the Bambenek feed and 112 IP addresses listed by Zeustracker.

6.2. Adversarial Tactics, Techniques and Procedures
In this section, we will analyze the techniques, tactics and procedures (TTPs) adversaries use concerning C&C
servers of infected clients and their subsequent abuse. We will do this in a structure which starts by analyzing
global structures, followed by behavioral analysis and the evolution of the behavior of different C&C servers.
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Literature tells us that cyber criminals in theory employ different techniques regarding their infrastructure,
to hide their misuse from the public eye. The goal of this subsection is to show actual cases of this theory
being used in practice. Furthermore we will discuss what kind of behavior the bots connecting to their C&C
servers have and what we can learn from this. Ultimately we want to have a better understanding about what
adversaries actually do in practice, to be able to stop them.

6.2.1. Malicious infrastructures
To provide insights into the basic activity of these C&C servers, we have aggregated rudimentary statistics
each of these servers have made per day during the timeframe of our NetFlow dataset, as mentioned in Chap-
ter 5. Using the amount of connections an IP address makes each day, we can visualize the activity belonging
to this IP address. Using this information we can hopefully uncover information about the infrastructures
behind these malicious servers.

Load balancing Load balancing is a technique often used for highly popular websites or applications to
ensure availability. By engaging more than one server, each having their own IP address and by making them
all point towards the same domain, companies can ensure that their service stays online even after a server
breaks down. When for example performing a simple lookup, it can be seen that www.amazon.com has three
IP addresses pointing towards this single domain name. This is called round-robin DNS and is one of the
more popular load distribution techniques. Round-robin is a method which does not require one dedicated
server. This technique also uses multiple IP addresses pointing to the same domain name, but the operator
can choose the amount of time each IP address links to the domain name. DNS delegation on the other hand
is more effective, as this makes use of the geographical location of the client. When visiting a website which
uses DNS delegation, it specifies zones to accordingly send the request to one of the servers linked to the
domain name. This however only works when servers are distributed on several locations world-wide. These
techniques, whilst being designed for distributing networking load, are also very attractive for adversaries to
hide their structures.

We have found a number of different examples of adversaries employing evasive behavior regarding their
infrastructure. For each of these examples we have tested their behavior according to the Anderson-Darling,
test as explained in Section 5.3.1, and can conclude that their behavior is the same. Therefore we can say that
these servers belong to the same infrastructure. Figure 6.1 shows three IP addresses which are showing an
example of a round-robin structure being used. These IP addresses not only overlap in behavior regarding
the size of the flows, but the IP addresses also overlap regularly. This tells us that victims do not always make
contact with the same malicious server, but iterate through the first available server.

Another example can be seen in Figure 6.2, where one C&C server has been active since February 2018
and three new servers pop-up after the start of October. After these servers have been activated, all four also
start to act in a round-robin fashion.

Figure 6.1: Round robin structure used by a malware linked to the distribution of ransomware

Figure 6.2: New servers emerging contributing to load balancing of the initial server hosting .. malware

Both the these examples have initially been found by visualizing their activity and confirming they belong to-
gether. Note that the IP addresses are in close vicinity of each other. However, in Figure 6.3 this is not the case.
In our data we found 44 C&C servers active from November until which are all part of AS14618, or Amazon
Web Services. This says that adversaries are using cloud provides to mobilize their misuse, something which
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we can expect. Most of these IP addresses are active for a short time-span, this is probably due to Amazon
monitoring behavior of its cloud services. After testing the behavior of all these servers with each other, 4
servers popped up to have the same behavioral patterns. As we can see in Figure 6.3, the servers are alive for
approximately 20-30 days. After a server has stopped, another server with similar behavior emerges right the
previous one has concluded its activities. Multiple of the same victim IPs have been observed on all four of
these servers. This tells us that the adversary behind this operation, keeps moving it around, trying to keep
it alive. It turns out that this kind of ’hopping’ sequence is not unique. Figure 6.4 shows another example of
this kind of structure, this time used by the bedep malware variant.

Figure 6.3: Evasive behavior found regarding the tinba malware hosted on Amazon Web Services

Figure 6.4: Another example of evasive behavior used by the bedep malware

6.2.2. Behavior
After having gained insights into structural patterns, which mostly show high level information of behavioral
patterns, it is interesting to dive more into the actual activity of the bots controlled by the C&C server. The
hypothesis is that C&C servers controlling a meaningful infrastructure will divide the labor of their bots, in-
stead of focusing all power on one task and increasing the sophistication. Global behavioral patterns are only
possible with data that actually contains all of this information, instead of testing malware in a concealed
environment or collecting data of internally infected machines.

It is difficult and not entirely realistic to compare the activity of each C&C server with each other, which is
also not the goal of this Chapter. Our hypothesis is tested by comparing thirteen different C&C servers, listed
in Table 6.1, and their activity, evolution and utilization. The only criteria to effectively compare the activity
of these C&C servers, was that they have one month of unabridged C&C activity. By limiting our analyses to
this criteria ensures that the compared servers are actively used by an adversary and are actively spreading
commands to infected machines. Furthermore this list contains both large and small structures, related and
unrelated servers, and a mix of related malware. The sizes of these infrastructures are estimated accordingly
to the sampling ratio of 1 to 8192 of the NetFlows.

Comparing malicious activity Each infected machine at some point in time requests from or sends infor-
mation to its C&C server. These infected machines are most likely personal computers or laptops affected
by the malware consolidating the infection, this is something the NetFlow data will not be able to tell us.
However, the activity of these clients can provide meaningful insights into the utilization of the commands
they received. Unfortunately real world data has a lot more noise than synthetically created data, but it can
be assumed that machines used by users have a baseline of activity containing mostly web traffic [65]. To
differentiate between activity of infected clients or servers we have used cosine similarity measuring the the
angle between two vector, as elaborated upon in Section 5.3.2. This is a comparison of orientation resulting
in 1 when both vectors have the same direction and 0 when the two vectors are opposite of each other. These
vectors are filled with the amount of activity towards each port. This activity is normalized, allowing us to
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C&C Server Estimated size Linked malware

164.208.79.99 73.728 Generic
164.208.79.98 204.800 Generic
164.208.79.117 114.688 Generic
164.208.79.112 57.344 Generic
172.165.138.217 458.752 Banjori
200.43.79.87 139.264 Ramnit
216.130.162.157 4.931.584 Simda
223.87.191.197 40.960 Virut
73.5.141.200 221.184 Suppobox
73.5.141.201 131.072 Suppobox
73.5.141.198 417.792 Suppobox
58.9.245.50 745.472 Kraken
49.182.4.150 770.048 Ramnit

Table 6.1: C&C servers analyzed with the estimated unsampled amount of infected machines and linked malware

compare activity between larger and smaller botnets. In this situation 1 can be interpreted as the exact same
port distribution, whilst 0 corresponds to having an opposite port distribution.

Putting this into context, this methodology has been applied to the list of C&C servers and the combined
port distribution of all its infected machines, resulting in a similarity matrix provided in Figure 6.5. This
image compares the activity of all combined infected clients of each C&C server with the rest of the servers
from Table 6.1 and some interesting observations can be made. When looking at the similar IP combinations,
diversity can already be seen. 73.5.141.200, 73.5.141.201 and 73.5.141.198 are related by malware type and
also show great similarity in the activity its infected machines produce, which is evidence similar instruction
patterns are provided by the adversary. 164.208.79.99, 164.208.79.98, 164.208.79.117 and 164.208.79.112 on
the other hand are also related by malware type but show great diversity in activity. Some other interesting
observations which can be seen is the similarity between 172.165.138.217, 49.182.4.150 and 216.130.162.157
which do not seem to have a direct connection in terms of the same malware for example. Furthermore both
differences and similarities can be observed in Figure 6.5. From this we can conclude that from a high level
perspective, we can make indications of behavioral resemblances. Inspection of the actual packets rather
than the flows can further verify this.

Figure 6.6 shows the cosine similarity between infected clients the C&C server 49.182.4.150. As expected,
clusters can be seen on various locations of the image, as well as a few clients correlating only with each other.
The goal of this image is to show how some infected machines have potentially similar behavior, hinting
towards a decent level of sophistication by grouping activities together. From an adversarial perspective it
makes sense to be able to use infected machines for all sorts of different malicious activities. Booter services
can for example rent a part of such an infrastructure to perform DDoS attacks with only a subset of clients.

6.2.3. Evolution in behavior
As we have observed, by analyzing the behavior of infected machines controlled by C&C servers overlap and
division can be seen. When thinking from the perspective of an adversary managing malicious infrastruc-
tures, a lot of different possibilities present itself in terms of utilization. One can for example choose to rent
out half of the infected machines to set up DDoS as a service for monetary gain or it might be possible to
rotate the usage of these infected clients to minimize suspicious activity. They can even choose to provide
each of the machines with an individual task list which they have to perform at certain times, without con-
necting to the C&C server. Keeping this in mind, we have shown a method to gain foothold on behavioral
similarities and differences between IP addresses in the NetFlow data. This allows us to gain more insights
into the inner workings and commands provided to the infected machines contacted by a C&C server. Instead
of comparing the cumulative daily activity of these commanding servers with each other, the same method
can possibly show differences in activity over time by comparing itself with the previous day. Differences over
time can possibly show an evolution in commands provided to the infected machines and can provide us
with an initial feeling if there is for example labor division.

To evaluate this, the cosine similarity of the port distribution has again been used between the selected
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Figure 6.5: Similarity in activity of infected clients of selected
C&C servers Figure 6.6: Similarity in activity of infected clients of 49.182.4.150

Figure 6.7: High similarity in evolution regarding the behavior of all
bots related to three linked C&C servers during October

Figure 6.8: Low similarity in evolution regarding the behavior of
all bots related to four linked C&C servers during October

C&C servers however, instead of comparing them with each other we have now compared the servers with
their own activity of the previous day. Again a vector of the cumulative daily activity is created for each day of
October 2018 for these servers, and the cosine similarity is calculated between the current day and the next
day. Figures 6.7, 6.8 and 6.9 respectively show these results, depicting the two related clusters of C&C servers
and four unrelated servers. To clarify, the vertical axis shows the amount of similarity compared with the
previous day.

Looking at an example, in Figure 6.7 73.5.141.201 on the second day has an approximate cosine similarity
of 0,1 with the first day, indicating little behavioral overlap. Following from this we say that the C&C server
provides different commands to its infected machines, affecting this change of behavior. The behavioral evo-
lution of this specific IP address shows a lot of ups and downs regarding this similarity. This is a curious
pattern to see and hints to new commands being communicated to the infected machines on intervals. Even
more interesting, when comparing the evolution of all three IP addresses shown in Figure 6.7 an underlying
pattern worth mentioning can be seen, indicating the same set of commands being sent from the C&C to the
infected clients. In Figure 6.8, comparing 164.208.79.99, 164.208.79.98, 164.208.79.117 and 164.208.79.112,
the same pattern amongst the servers can also be seen. For these servers this is however more interesting, as
the similarity between these servers was extremely low which we saw in Figure 6.5. Especially when compar-
ing these servers with the servers shown in Figure 6.7, which did have a high similarity between themselves.
This shows that the servers in Figure 6.8 have the same behavior regarding C&C infrastructure, but have a
higher level of sophistication as the cumulative daily activity between them is different.

Figure 6.9 on the other hand shows C&C servers which are not directly related based on our analysis. At
a first glance different behavioral patterns can be observed and shows a lot more diversity. 49.182.4.150 is a
particularly interesting example, as the similarity stays around 1,0 during the course of October. An adversary
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Figure 6.9: Evolution regarding the behavior of all infected clients of four unrelated C&C servers during October

can for example design their botnet infrastructure in such a way that it has the same labor division each day,
making the C&C infrastructure probably easier to maintain. 216.130.162.157 also shows the same kind of
behavioral similarity over time, except for a small change of infrastructure which can be seen around 13th of
October. The activity of the infected machines controlled by the other C&C servers in this image show great
contrasts, again indicating different utilization of the managed infrastructure. The other two C&C servers
however show a huge diversity in activity each day, which hint to more diversification in commands, also
something which we expect to happen. 223.87.191.197 for example shows three peaks of behavioral changes
which could be explained by the purpose or goal of the adversary.

6.3. Detection of unknown C&C servers
The previous sections have shown that C&C servers vary a lot with regards to infrastructural choices, and both
similar and diverging behavior can be observed. These malicious structures already tell us a lot more about
the nature of the operation than literature tells us and helps us understand how they roughly work. We have
shown that we can correlate servers to each other.

6.3.1. Using machine learning to our advantage
Our extensive evaluation of open source threat intelligence in Chapter 4 showed that these feeds are not
complete. They give a good baseline for detection and threat intelligence, but there is definitely a lot more
adversarial activity in ’the wild’. It is close to impossible to know and see all threats, even when knowing
malicious patterns. The past 15 years has given us a lot of technological evolution in the world of threat
intelligence as we have seen in Section 2; researchers have been creating advanced detection and machine
learning algorithms to predict malicious behavior on known patterns. Most work has been done on detec-
tion on local machines, which can aid anti-virus software accountably. This is mostly detection based on
a few types of malware used in specific scenarios. ISP level NetFlow data can potentially give more insights
into globally similar patterns, providing more insights into C&C infrastructures and ultimately stopping them
before the operation harms a lot of people. For this reason we have chosen to adopt the machine learning
method proposed by Bilge et al. [12] to be able to apply it to our NetFlow dataset.

By using a sliding window model and re-training the classifier for each specific day, a lot more C&C servers
could be detected according to the accuracy and precision defined in Section 5.2. After applying our detection
system a total of 251,117 possible new C&C servers have been found during the course of 2018, with an
average around 3,430 each day with a lot of overlap. We say possible, as each day poses a certain amount
of false positives, so even though these servers all have suspicious activity, we cannot with certainty say that
these servers are all malicious. However, even when incorporating a lenient amount of false positives of
25%, which is more than the largest amount of false positives found, we can still say that there have been
approximately 188,337 servers in 2018, and around 2,572 each day, exhibiting malicious behavior similar to
the behavior we have observed from the cyber threat intelligence feeds. This is already a huge amount more
than the total of 1,105 servers presented by the feeds, and also an order of amount which we would have
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expected as 1,105 is relatively low compared to the 4.3 billion IP addresses available making our estimation
more realistic.

(a) (b)

Figure 6.10: Complete infrastructure with missing C&C servers detected and verified with our method

6.3.2. Complementing CTI feeds
As is it difficult to accurately measure how much of these predicted servers are actually malicious, we have
defined a clustering method based on the Anderson-Darling test which we have used earlier this chapter and
explained in Section 5.3.1. By applying this method we can test if the packet size distribution of all connec-
tions in one IP address is taken from the same distribution as another IP address. In our case, this method
allows us to test whether predicted IP addresses have the same behavior as known C&C servers. Revisiting
Figure 6.4, also shown in Figure 6.10, it can be observed that activity is missing according to the shown struc-
ture. To approach this, we initially took all the malicious servers found for a specific day for which it looked
like data was missing, for example the 6th of September. By using the distribution of bytes used by one of
the other servers, in our case we chose 180.20.249.242, and used the Anderson-Darling test to compare all
other servers detected on this day. Using this approach for two days, we found the two missing IP addresses
(180.20.249.246 and 180.20.249.243) to complete the malicious infrastructure shown in Figure 6.10 (b).

In our datasets we visually found 4 other similar structures to the one in (b), and in total found 10 ’missing’
IP addresses, which is almost 1% more than the corresponding cyber threat intelligence feeds show. This per-
centage might seem low, but this example is done by manually finding and testing this. It would be incredibly
valuable to extrapolate this to a magnitude where all known malicious servers are compared to each detected
possible malicious servers. If ISPs would incorporate and automate a technique like this, more adversaries
can be stopped before actual misuse has been done. This way anti-virus protecting can be brought to a global
scale, compared to device-based protection.
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In the beginning of September 2016 a number of considerable DDoS attacks temporarily took down some
large websites. One of these attacks was towards Krebs on Security, exceeding 600 Gbps which is one of the
largest attacks on record [71]. Interestingly, these attacks originated from thousands and thousands of the
least powerful devices on the Internet - Internet of Things, or IoT Devices - controlled by a botnet called Mirai.
This new attack vector is presently reported as one of the most malicious attack vectors of our time. A lot of
privately owned devices are being connected to the Internet, providing new technological services to users.
Surveillance cameras, TV’s, printers, lighting or even smart doorbells connected to the Internet to provide
remote access are examples of these kind of devices. Unwillingly, the industry provided cybercriminals with a
candy shop filled with vulnerable devices, as most of these devices have standard usernames and passwords
which users will most likely not have changed. Mirai targets these devices, using a list of standard usernames
and passwords to break into them.

This chapter will analyze our second category of networking infrastructures, IoT devices. By combining
NetFlow data with two months of scanning and brute forcing data, retrieved from a network telescope, we
can understand IoT infections and C&C structures from a global perspective. Up until now, the only reports
of this attack vector have elaborated on the inner workings of the malware. In this chapter we will gain in-
sights on the tactics, techniques and procedures of Mirai and its variants. We report on the average infection
rate amongst Mirai variants, based on newly infected machines after having been compromised in these two
months. It is imperative to understand how easily IoT devices can be infected and misused. We use the traffic
patterns of a known C&C server to uncover additional malicious C&C servers based on their behavior. We
have taken a sample of these servers and have analyzed the behavior of their infected machines with each
other, which has proven to be rather primitive. Furthermore we have elaborated on the evolution of the in-
fected machines belonging to a C&C server over time. Finally a global revenue estimation, based on the attack
capacity of Mirai variants, will be given showing the impact this attack vector can have.

7.1. Background
Internet of Things is a term used to describe the extension of Internet connectivity into physical devices and
everyday objects. Electronics are embedded with access to the Internet, enabling users to connect to their
devices remotely. Sending a job to the printer whilst commuting, checking the perimeter of the house by
remotely checking the security camera or even turning on the heater right before you return home. These
are all examples of IoT devices providing new services to users and can ultimately be compromised by an
adversary. In this analysis we will make the following contributions:

• We are the first to analyze IoT infection from the perspective that NetFlow data provides. By additionally
using scanning data, targeted at a network telescope, we can estimate the leverage of the infection.
According to our data, 1 in every 2,345 scanned devices is successfully infected by Mirai variants.

• We are the first to detect Mirai C&C servers without inspecting the actual malware binary and expand
existing knowledge by elaborating on their behavior over time. Additionally we provide two examples
of infected devices being utilized for DDoS attacks and correlate this with C&C behavior.

• We estimate the amount of revenue which can possibly be made by setting-up a DDoS booter service
based on the amount of malicious traffic flowing through these infected machines. A large botnet could
possibly earn up to ~$285,000 per year.

The remainder of this analysis will be structured as follows: This section will provide background information
on Mirai and the network telescope used in this analysis. Section 7.2.1 will cover basic analysis obtained
when combining the datasets and initial explorations, Section 7.2.2 on the other hand provides more in depth
information about the infection and its consolidation. Section 7.2.3 will explore C&C opportunities Mirai
has and explore our dataset for this kind of traffic and Section 7.2.4 will expand on this by elaborating on
monetization options. Finally Section 7.3 will give a revenue estimation based on attack capacities.

7.1.1. Mirai
The Mirai malware is a self-propagating worm, scanning the IPv4 address space for devices that run Telnet
or Secure Shell (SSH). When a device running these services is found, the infected machine attempts to log
in using a hardcoded dictionary of publicly available IoT credentials. In August of 2016 the first reports of
Mirai popped up, where researchers noticed a huge spike of Telnet scanning activity [130]. One month later,
in September 2016, Mirai first showed up in the new headlines with large scale DDoS attacks on Krebs on
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Security [71] and OVH [95]. Not much later, DNS provider Dyn was targeted by Mirai, affecting a few large
companies like Amazon, GitHub and Twitter [55]. Early 2017, the actors behind the Mirai malware were iden-
tified [72]. Not much later, the source code of the malware was released on a forum called hackforums.net.
This provided researchers a foothold on analyzing the code and creating countermeasures. However, also
individual cybercriminals could examine this code and use it for their own malicious intents. This led to the
introduction of a wide range of Mirai variants, using more advanced password brute-forcing techniques or
exploiting other vulnerabilities.

Attack name Type

GRE Attack UDP
TSource Query UDP
DNS Flood UDP
Random Flooding UDP
SYN Flood TCP
ACK Flood TCP
PSH Flood TCP
Port 80 Flood HTTP

Figure 7.1: Pre-set Mirai attack options [6]
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Figure 7.2: Basic infrastructure to maintain and
utilize Mirai [4]

Figure 7.2 provides an overview of Mirai’s initial operation as provided by the source code [43]. On the
initial setup the first IoT device is infected with the malware and will start asynchronously sending TCP SYN
packets to pseudorandom IP addresses, ignoring a few hardcoded blacklisted addresses (1). These TCP SYN
packets specifically probe Telnet ports 23 and 2323, targeting the software suite called BusyBox, providing
UNIX utilities in one single executable. When a potential target has been found, the malware will try to brute-
force the username and password using a preset list of 64 factory default credentials. If successful, the initial
infected device will report back to a specially designed reporting server (2) which in its turn will load the Mirai
worm onto the vulnerable device (3). Alongside with this, Mirai will block TCP ports 23 and 22, preventing
other malware to ’take over’ the device. At this point the newly infected machine is added to the list of active
bots for the C&C server to use. The controlling adversary can, through a simple command-line interface (4),
give commands to all of the infected IoT devices in its botnet (5). The Mirai source code comes with a pre-set
list of available attacks, as seen in Table 7.1. One of these attacks then can be easily used to target a specific
company or other victim (6).

7.1.2. Telescope data

A network telescope, or darknet, is a system allowing the observation of malicious trends taking place on the
Internet. This system consists of all unused IP addresses in a network and is mostly used by large organi-
zations or research institutes. In general, these IP addresses are not used for any kind of traffic. Therefore,
all traffic to these addresses is suspicious and allowing the observer to gain insights into new or prevalent
attack vectors. For this analysis we additionally use insights provided by such a network telescope, located in
the Technical University of Delft. Table 7.1 shows the IP address ranges of the TU Delft, totaling 196,602 IP
addresses. These addresses are dynamically allocated to users, so not all IP addresses are always used for the
telescope.

As by the scanning behavior of Mirai, the network telescope also shows artifacts of IoT devices infected
with Mirai scanning the network telescope for vulnerable devices. Each of these addresses have been logged
by the telescope, and for this analysis we have focused on the scanning activity during the period of January
2018 up to and including February 2018. The acquired dataset from the telescope, besides from the scanning
source address, also provided information about the Mirai variant of the infected device. In total, a number
of 698 unique infected devices and 14 different Mirai variants have scanned the network telescope. As a
starting point for this analysis, these IP addresses have been anonymized by the provider and extracted from
the NetFlow dataset, which we will elaborate on in the next Section.
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IP Address range Subnet

130.161.0.0 to 130.161.255.255 16
131.180.0.0 to 131.180.255.255 16
145.94.0.0 - 145.94.255.255 16

Table 7.1: IP Address ranges of the Technical University of Delft

7.2. Adversarial Tactics, Techniques and Procedures
Some previous work has been done exploring the Mirai infections however, this work has mainly focused
on both the inner workings of the malware itself and attacks performed by infected devices. This section
will discuss the techniques, tactics and procedures (TTPs) from a more global perspective by combining the
data extracted from a network telescope with our NetFlow dataset. Following the infection steps of the Mirai
malware, the identification of new vulnerable devices will be discussed. After a device is compromised, this
new infected machine will start scanning by itself, consolidating the infection. An adversary can provide
commands to these infected devices by means of a C&C server. Each of these steps will be discussed in this
section, providing a more complete picture of infections on IoT devices.

7.2.1. Identification & exploitation
In order to gain a foothold on possible vulnerable IoT devices, TCP ports 23 and 2323 are aggressively scanned
by already infected devices. At the beginning of 2019, 7 billion of the 17.8 billion devices connected to the
Internet are IoT devices, and this number is predicted to grow to 21.5 billion IoT devices in 2025 [76]. This
provides a huge and increasing attack vector for individual cyber criminals. For this reason, pseudo randomly
scanning the IPv4 space would likely result in a large botnet to control. Before this can be analyzed, we
examined the total activity of scanning behavior as shown in Listing 7.1 in our NetFlow data. This example
shows scanning activity from a few of the infected devices retrieved from the telescope. To achieve this, IP
addresses attacking the network telescope were collected and used to extract world-wide information about
the infected devices. Furthermore it can be seen that the compromised devices use the same source port for
their scanning activity, inherit to horizontal scanning.

date timestamp proto source:port destination:port size
2018 -01 -10 00:10:53.212 TCP 237.200.155.91:27683 -> 222.120.88.17:23 360448
2018 -01 -10 00:11:50.775 TCP 55.8.174.159:22561 -> 110.111.10.148:23 327680
2018 -01 -10 00:19:18.610 TCP 201.16.71.152:4127 -> 73.29.67.241:23 491520
2018 -01 -10 00:49:50.074 TCP 228.12.254.58:18953 -> 207.249.63.65:23 327680
2018 -01 -10 00:52:11.620 TCP 55.8.174.159:22561 -> 181.233.17.28:23 327680
2018 -01 -10 00:53:10.124 TCP 237.200.155.91:27683 -> 60.31.25.42:23 360448
2018 -01 -10 00:54:10.676 TCP 55.8.174.159:22561 -> 173.223.227.212:23 327680
2018 -01 -10 01:18:16.770 TCP 144.115.234.106:60288 -> 219.80.157.142:23 327680
2018 -01 -10 01:19:17.059 TCP 45.192.247.31:1025 -> 219.85.188.56:23 327680
2018 -01 -10 01:25:09.260 TCP 144.115.234.106:60288 -> 47.251.107.193:23 327680
2018 -01 -10 01:30:08.201 TCP 45.192.247.31:1025 -> 209.186.2.247:23 327680
2018 -01 -10 01:44:35.774 TCP 203.228.154.242:34058 -> 181.48.11.184:23 344064
2018 -01 -10 01:49:58.699 TCP 55.8.174.159:22561 -> 60.30.224.234:23 327680
2018 -01 -10 01:54:41.220 TCP 45.192.247.31:1025 -> 111.13.38.108:23 327680
2018 -01 -10 02:01:12.566 TCP 45.192.247.31:1025 -> 221.162.100.157:23 327680

Listing 7.1: Scanning activity on port 23 originating from infected devices

After having extracted the flow traffic from the NetFlows, Figure 7.3 and Figure 7.4 provide insights into this
data. Figure 7.3 depicts the total amount of scanning activity of the 698 infected devices over time. Addition-
ally this shows the amount of scanning activity targeted at the network telescope of the university, illustrating
the tremendous scale of which we can analyze this. As the dataset from the telescope also provided each
malicious device with a timestamp and Mirai variant, this evolution could be plotted over time in Figure 7.4.
The name Mirai was given to a Mirai bot because of the strings /bin/busybox MIRAI and MIRAI: applet
not found which can be found in the source code. These commands determine if the bot has successfully
brute forced a targeted IoT device. It is clear that there are four prominent versions of Mirai active: daddyl33t,
dwickedgod, JOSHO and MIRAI.
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Figure 7.3: Total scanning activity towards port 23 of devices
infected with Mirai found in the NetFlow data in log scale

Figure 7.4: Port 23 scanning activity divided by Mirai variant
found in the NetFlow data

7.2.2. Infection consolidation
After an IoT device has been infected with Mirai, the malware closes access to ports 23 and 22, and the newly
infected device asynchronously starts scanning for other vulnerable devices. The file scanner.c from the
source code ensures the infected bot will start scanning. The source code also unveils some IP ranges which
are skipped purposely, like the internal network or invalid address spaces. Interestingly, the NetFlow data
provides a new perspective on the infection as it can be seen when a new device has been infected. When,
for example, a known infected IoT device can be observed scanning in the NetFlow data, the subsequent ac-
tivities of this targeted IP address can also be seen flowing through our NetFlow data. When an IP address
has never scanned for ports 23 and 2323 before, and it suddenly starts scanning as aggressively as Mirai in-
fections, we can conclude that this device has been infected. An example of such activity can be seen in
Figure 7.5. This example device has never scanned for ports 23 and 2323 before, but starts scanning heav-
ily at 5am on January 23r d after have being scanned by one of the known infected devices derived from our
telescope dataset. Interestingly, two days later at 6pm January 25th a sudden stop in scanning activity can be
seen, indicating Mirai could have been removed from the device.

Figure 7.5: Example of an IoT device being infected and scanning for other vulnerable devices

This provides an interesting angle for this analysis, as this can be extrapolated for the observed timeframe
and an estimation can be made of the amount of devices which have been infected with Mirai. All infected
machines scanning the IP ranges of the telescope have scanned a total of 326,039 unique IP addresses in
the NetFlow data. After analyzing traffic from and to all targeted IP addresses by the 698 infected devices, we
see 139 of the targeted IP addresses are aggressively scanning after being found by one of the infected IoT
devices. From this we conclude that these devices have been compromised. Following this, we can state that
0.0426% of all scanned devices, or 1 in every 2345, get infected with Mirai. Table 7.2 shows the distribution of
originating countries of the compromised devices.
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Attack name Type

Brazil 72.7%
The Netherlands 12.9%
Turkey 11.5%
Israel 2.2%
Venezuela 0.7%

Table 7.2: Country distribution of new infections

7.2.3. Command & Control
A successful scanning and infection campaign will provide the adversary with a number of compromised
machines under its command, which can then be utilized for misuse. As Figure 7.2 shows, the C&C is an
important step for this. After an IoT device has been compromised and registered to the reporting server, it
will periodically make contact to the C&C server. In the original Mirai code, the C&C server was interestingly
preconfigured to solely talk to the infected bots from port 23 as can be seen in Listing 7.2 [43, 79]. This was
probably due to the simplicity of the Telnet protocol. The NetFlow dataset provides the opportunity to inves-
tigate the C&C servers and the command propagation. By using the 698 known scanners from the telescope
dataset, all traffic from and to these scanners in the NetFlow data and the detection method discussed in Sec-
tion 5.2, we attempted to find C&C servers in the flow traffic. Initially an example C&C server was found by
manually looking for these conditions, shown in Listing 7.3. In this example 63.141.24.225 is the C&C server
talking to a few of the infected devices as seen in the telescope. All other connecting IP addresses were verified
using AbuseIPDB [77] to be malicious addresses scanning for port 23.

func main() {
tel , err := net.Listen ("tcp", "0.0.0.0:23")
if err != nil {

fmt.Println(err)
return

}

Listing 7.2: Source code of Mirai establishing a connection to the C&C server as found in main.go [43, 79]

date timestamp proto source:port destination:port size
2018 -01 -10 00:19:49.819 TCP 63.141.24.225:23 -> 219.76.16.146:55997 581632
2018 -01 -10 00:21:03.132 TCP 63.141.24.225:23 -> 245.181.162.29:34829 942080
2018 -01 -10 00:21:25.098 TCP 63.141.24.225:23 -> 179.91.106.133:54528 581632
2018 -01 -10 00:36:36.637 TCP 63.141.24.225:23 -> 245.181.162.29:34829 581632
2018 -01 -10 01:19:53.000 TCP 63.141.24.225:23 -> 60.19.149.12:38781 360448
2018 -01 -10 01:20:07.910 TCP 63.141.24.225:23 -> 179.91.106.133:54528 581632
2018 -01 -10 01:24:36.783 TCP 63.141.24.225:23 -> 219.76.16.146:55997 581632
2018 -01 -10 01:25:17.891 TCP 63.141.24.225:23 -> 60.19.149.12:38781 581632

Listing 7.3: Example of Command & Control traffic to infected IoT devices

Detection Manually looking for probable C&C servers is not doable, therefore we have used the same method
which has been used in Chapter 6 to detect C&C servers. Applying the sliding window detection model on
this dataset for the timeframe of January up and until February 2018, resulted in 130 probable C&C servers.
Analysis showed that a few of these servers were also talking from ports 80 and 443, indicating either a false
positive or a more sophisticated infrastructure. For this reason, these servers were removed from the set, leav-
ing 87 highly probably C&C servers. All connecting addresses for five of these servers were manually checked
on AbuseIPDB, and all of them showed signs of either brute-forcing or port scanning.

Behavior After acquiring a set of C&C servers, we can look at the same behavior of these servers as shown
in Chapter 6. We can hypothesize that the behavior of C&C servers related to IoT infections overlap a lot,
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Figure 7.6: Similarity between the activity of the infected devices of ten random detected C&C servers on January 13, 2018

as each infected device most likely does not have a lot of traffic compared to a personal computer. Comple-
menting this, most of the activity will probably employ scanning for other vulnerable targets. To compare this
activity, again vectors have been constructed containing percentages of activity for each port as explained in
Section 6.2.2. Then these vectors are compared using cosine similarity, measuring the cosine of the angle
between these two vectors. This methodology has been applied to the list of C&C servers and the combined
port distribution of all its infected machines in a similar way as the clients have been compared, resulting in
a similarity matrix provided in Figure 7.6.

Some interesting observations can be made when examining this figure. As expected, the similarity be-
tween these servers is overall high as most of the activity of the infected devices is scanning for ports 23 and
2323. 214.146.145.104 notably has a significant low similarity with the other servers, indicating interesting
activity that will be analyzed further in the next section. 173.223.46.60 and 151.128.15.44 also have a low, but
less significant, correlation with the other servers. Following from these results, it is interesting to compare
the activity between a few of these C&C servers over time which will be discussed in the next Sections.

Evolution Contrasting to malware infections on clients where compromised devices can be used for multi-
ple attack vectors, botnets sustaining IoT devices have primarily been used in DDoS attacks. This is due to the
fact that IoT devices simply do not have much technological options. Having observed the differences in ac-
tivity between a few C&C servers for one day, it would be interesting to take this a step further and look at the
differences in activity over time. For this analysis, three C&Cs representing different similarities were chosen
from Figure 7.6. 214.146.145.104 because it has no similarity with the compared servers, 219.86.198.109 as is
has diverse range of similarity and finally 220.125.52.78 as it compares well with a lot of servers in contrast to
the other two.

Figure 7.7: Daily behavioral evolution between the infected devices of three detected C&C servers



62 7. Infections on IoT devices

Instead of comparing the cumulative daily activity of these servers with each other, the same method
can show differences in activity over time. These differences over time can possibly explain the contrast in
activity of the infected machines. Again by applying the cosine similarity, but this time comparing the C&C
servers with themselves, the evolution of the infected devices can be seen in Figure 7.7. For each day the
cosine similarity of the port distribution is calculated between the current and previous day. As can be seen
in this figure, a similarity of 1 is very common. This can be explained by the fact that IoT devices most often
do not have a lot of activity by itself and when infected only talk to ports 23 or port 2323. 220.125.52.78 is a
good example of this. The interesting parts of this figure are in the huge negative spikes in similarity, which
indicate a sudden change of behavior of all of the compromised devices linked to this C&C. The similarity of
214.146.145.104 in this figure explains the difference with the other servers of the 13th January in Figure 7.6.
219.86.198.109 on the other hand did not show a lot of discrepancy in the heatmap, but does show significant
activity changes in this figure.

7.2.4. Monetization
In the previous sections we have discussed various different perspectives of the Mirai malware and how it
moves throughout the landscape of IoT devices. During the course of Mirai’s lifecycle, DDoS attacks have
been its main application. Previous work has mostly been done on the largest attacks with limited data. The
results of the previous sections have shown possibilities to dive into the utilization of these infected devices
even further. As explained in Section 7.1.1 there are a limited number of DDoS attacks pre-set in the source
code of Mirai. Besides DDoS attacks, IoT botnets can also be used for other kinds of malicious purposes,
amongst which are sending spam, identify theft and mining for cryptocurrencies. It is interesting to try and
divulge how these Mirai variants utilize their network for monetary gain.

Labour division Figure 7.7 illustrated structural behavioral evolution of the infected devices linked to a few
C&C servers. These examples show a sudden change in utilization of their resources. Especially 214.146.145.104
and 219.86.198.109 show interesting behavior. The only explanation of such a drastic change of behavior must
be some kind of attack taking place. To uncover this, we took these two C&C servers and performed two dif-
ferent analysis on both servers, resulting in Figures 7.8 and 7.9 for 214.146.145.104, and Figures 7.10 and 7.11
for 219.86.198.109. Both these analyses are performed for a timeframe in which interesting activity took place
according to Figure 7.7.

Scanning

HTTP Flood

UDP Flood

Figure 7.8: Malicious activity of all infected devices of the C&C server
214.146.145.104

HTTP

Figure 7.9: Detected clusters all infected devices of the C&C
server 214.146.145.104

First we plotted the destination port distribution over time. If the infected devices would only be scan-
ning, a steady activity would be visible towards port 23. In both Figures 7.8 and 7.10 this steady trend can
be seen, indicating active scanning for new devices to infect. Besides the scanning activity, both C&C servers
also show huge spikes of activity towards TCP port 80 and towards a lot of high UDP ports indicating DDoS
attacks. Figure 7.10 for example has peaks of 250 Gbps. This behavior explains the differences of activity in
the evolution as seen in Figure 7.7 and is also expected behavior according to the theory.

Secondly, we have employed the HDBSCAN clustering method, as explained in Section 5.3.3 to uncover
the division of labor of the compromised devices controlled by 214.146.145.104 and 219.86.198.109. Fig-
ures 7.9 and 7.11 show the resulting cluster movement over time. In both figures it is clear that most infected
machines are used to actively scan for new vulnerabilities. It is also interesting to see not all infected ma-
chines are being utilized for DDoS purposes, which could be a tactic from the adversary to keep a part of its
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Scanning

HTTP Flood
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Figure 7.10: Malicious activity of all infected devices of the C&C server
219.86.198.109

Figure 7.11: Detected clusters all infected devices of the C&C
server 219.86.198.109

infected machines not blacklisted and thus consolidating these devices.

DDoS booter service Services can monetize their networks through various means, however these are very
difficult to estimate. A malicious actor could hold a victim ransom for a certain amount of (virtual) money in
exchange for not taking the victims’ website or service down. Measuring this is not doable, as there will likely
be no historical data of this besides the occasional news item. Identity theft, although less likely, can also be
possible with IoT botnets. This information can then be sold on underground markets for profit. What we
however can estimate, is how the malicious infrastructure can be used a service to perform DDoS attacks.
The first Mirai version was initially created to specifically perform DDoS attacks. Over the years actors have
tried to make this more lucrative by offering DDoS as a service, or so-called DDoS booter services. These ser-
vices allow clients to pay, usually with cryptocurrencies to ensure anonymity, for bandwidth to attack specific
websites or services. This bandwidth can be created by a network of infected (IoT) devices.

Mirai variant Scanning DDoS Other

AKUMA 97,06% 0,00% 2,94%
Cult 12,84% 84,32% 2,84%
daddyl33t 31,62% 59,19% 9,19%
dwickedgod 20,75% 68,89% 10,36%
ECCHI 34,85% 0,00% 65,15%
EXTENDO 44,17% 47,34% 8,49%
JOSHO 16,76% 69,71% 13,53%
MASUTA 99,14% 0,00% 0,86%
MATOS 100,00% 0,00% 0,00%
MIORI 19,14% 66,55% 14,31%
MIRAI 22,75% 64,43% 12,82%
MMIKKI 12,62% 86,39% 0,99%
NGRLS 44,92% 0,00% 55,08%
OWARI 99,00% 0,00% 1,00%
RipPEEP 23,39% 0,00% 76,61%
SORA 90,53% 0,00% 9,47%
wickedgod 34,92% 63,12% 1,96%
Word 22,67% 0,00% 77,33%
Zeus 98,60% 0,00% 1,40%

Table 7.3: Division of scanning, attack and other traffic approximated for each Mirai variant.

Compared to normal web clients like personal computers, IoT devices normally do not send or receive an
abundant amount of traffic. Therefore, activity out of the ordinary can be spotted with ease. When an IP
address sends a lot of traffic to various different targets at a specific port, hosting a known vulnerability, we
can say this entails scanning or brute force activity. On the other hand a DDoS attack can be seen by observing
extreme amounts of traffic sent to one target for a specific amount of time. We have made an estimation of
the diversification in activity amongst the different variations found after the /bin/busybox string of the
Mirai code scanning or brute forcing the TU Delft telescope, which can be found in Table 7.3. We have bound
DDoS activity when amount of traffic in bytes towards one victim passes a baseline for a consecutive time of
15 minutes. This baseline is defined as the average bytes of the total amount of traffic sent from one infected
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Mirai variant DDoS traffic (Gb) Monthly revenue Yearly revenue Yearly revenue
January 2018 small botnet (5,000) small botnet (5,000) large botnet (100,000)

Cult 3,501.63 $1.197.14 $14,365.65 $287,312.98
MIRAI 16,212.85 $967.21 $11,606.52 $232,130.34
JOSHO 6,220.08 $694.01 $8,328.15 $166,562.94
dwickedgod 4,805.77 $604.50 $7,253.99 $145,079.74
MIORI 5,038.30 $546.16 $6,553.88 $131,077.65
daddyl33t 2,533.05 $404.48 $4,853.74 $97,074.84
MMIKKI 80.78 $307.75 $3,692.97 $73,859.45
EXTENDO 153.58 $102.39 $1,228.67 $24,573.38

Total $4,832.64 $57,883.57 $87,323,146.98

Table 7.4: Estimated revenue which can be made by the top 8 most active attacking Mirai variants

device doubled. After investigating the numbers in Table 7.3, some interesting observations can be made.
About half of the traffic in the DDoS column goes, as expected, to ports 80 and 443. Otherwise a lot of UDP
floods can be seen when looking more closely at the NetFlow data, which are most popular with MIRAI and
JOSHO. wickedgod is an interesting case, as this variant shows a few DDoS attacks on port 123, similar to
activity what a blog post from Netab describes [39]. Just as in this blog post, this variant also tries to infect
new devices on port 81, something which is not used in the traditional code of Mirai. This port leads us to a
vulnerability regarding GoAhead and OEM security cameras, estimating that more than 185,000 devices have
potential problems. dwickedgod and Cult show interesting behavior, as their attacks are towards ports 31504
and 58526 respectively, something which is less sophisticated then randomizing these ports. Besides these
differentiating attack vectors, different infecting tactics can be seen between the variants, possibly to further
optimize infection rates. Cult and MIORI for example show a lot of scanning activity, besides the usual ports
23 and 2323, towards ports 4672 and 7547 inhabiting vulnerabilities which allow remote shell execution.

7.3. Quantification of revenue
The previous sections have shown how this attack vector can spread easily through landscape of poorly pro-
tected smart devices connected to the Internet. To get a feeling of the impact this attack vector we will try
to make a quantification of earnings malicious actors may make based on the differences we have amongst
the Mirai variants, something which has not yet been done before. As we cannot estimate anything about
earnings from holding victims ransom, or other angles which cannot be measured with NetFlow data, we will
focus on the amount of revenue which can be made when using the malicious network for DDoS as a service.
In the previous section we have elaborated on this attack vector.

Quantifying how much money an actor can make by offering the bandwidth of the malicious network is
tedious, as every actor can sell for any price they offer. Clients can buy an amount of bandwidth for a certain
price and attack a host of their choosing. Prices range from as low as 100 Gb/s spanning 300 seconds for
$5, to 1 Gb/s spanning 150 seconds for $30. This all depends on both what the service offers and how good
the protection is of the service/website which is to be attacked. To calculate this, we have formed a simple
equation

((traffic [bytes]÷# of infected devices)£botnet size£cost for bandwidth [$])

÷ bandwidth [bytes] = revenue in dollars

and we have taken a lower bound of the average of 10 different IP stress / DDoS booter services, entailing 5
Gb/s spanning 300 seconds for $8. This will ensure that our estimation will be conservative. Prices can even
be up to four times as high when the victim has DDoS protection in place. The # of infected devices is the
amount of devices we have observed with the different variants of Mirai in the TU Delft telescope.

The estimations can be found in Table 7.4 and shows two example revenue’s, for a small botnet and for a
larger one. These numbers show that a decent amount of revenue can be made by criminals, just by renting
the bandwidth of their network of infected devices. This is merely a lower bound of the earnings adversaries
can make with such malicious networks, as other methods like holding victims ransom, can possibly create
much more revenue.
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The final part of our analysis will address routers, networking devices which send data between computer
networks. Routers can be seen as the actual backbone of the Internet, as each packet traverses through a sub-
stantial amount of routers from source to destination. Each time somebody checks their e-mail or performs
a web search, requests flow from router to router to obtain the answer to this request. Routers are positioned
at multiple points in computer networks, ensuring that each of these requests get answered. The request for
checking a new e-mail will traverse from a home-based router to ISP grade routers, eventually arriving at the
router which connects to the server responsible for the e-mail service. It can be imagined that these routers
have an incredible responsibility in terms of security, as vulnerabilities in these routers can possibly lead to
huge problems.

In this chapter we report on a new attack vector in which cybercriminals used a firmware vulnerability
in routers of the brand MikroTik to gain control of the router and rewrite outgoing user traffic. By embed-
ding special code in every outgoing web connection, they can use the computing power of all connected
computers for adversarial tasks, in this case to mine so-called cryptocurrencies. By combining our NetFlow
dataset with weekly crawls and telescope traffic, we have been able to follow their activities over a period
of 10 months. We report on the tactics, techniques and procedures, and coordinating infrastructure of the
adversaries. We found that during this period these adversaries were in control of up to 1.4M routers, or ap-
proximately 70% of all MikroTik devices deployed globally. Besides this we track the evolution of the used
mining services and keys used by adversaries, and report on C&C servers we have found and observed. Addi-
tionally, we found different levels of sophistication among adversaries, ranging from individual installations
to campaigns involving large numbers of routers.

8.1. Background
Cryptocurrencies, which started with the release of Bitcoin in 2009 [91], represent monetary value secured by
a blockchain. Transactions are permanently stored in an ever growing list of records, where transaction data
can be added by solving a cryptographic challenge. This puzzle is dependent on the last block, the current
transactions and their recipients, and once solved a new record gets inserted into the chain consolidating the
record of previously conducted activities. Users are incentivized to participate and donate computational
resources to the system, as the one solving the puzzle gets a (fraction of a) cryptocurrency unit as reward.

As the Bitcoin blockchain was designed to continuously increase the difficulty of these challenges, Bit-
coin mining is no longer profitable on regular PCs, now requiring specialized hardware such as ASICs. As
a result, thousands of other cryptocurrencies, so-called alt-coins, have emerged that replace the proof-of-
work algorithm of Bitcoin with alternative mechanisms to validate transactions. The Monero cryptocur-
rency [125], which uses a private blockchain with transactions not publicly visible, relies on the CryptoNight
algorithm, a memory-intensive computation of subsequent reads and writes that can be efficiently run using
the processor-level cache found in typical consumer-grade CPUs.

The reward that can be gained from these alt-coins has however also attracted the attention of cyber crim-
inals, who have distributed cryptomining code through malware or as part of botnet installations [96]. With
the recent introduction of a JavaScript miner by Coinhive in 2017, cryptomining code can now be shipped
as part of a web page and be efficiently executed by a web browser, thereby providing an easy, scalable and
low-effort method to roll out cryptomining to a large user population. This has led to new business and
revenue models, for example replacing advertisements by letting website visitors donate computational re-
sources [126].

The relative ease with which website visitors can be recruited for cryptomining has also led to a major
surge in illicit cryptomining, so-called cryptojacking or drive-by mining, in which the visitor’s resources are
hijacked without knowledge and consent. Aside from cryptojacking that is initiated by the website owner
without their visitors’ consent, criminals also seek to increase their revenue by compromising websites to
install mining code [21, 80], as well as hiding miners in third party software used by web masters and thus
inadvertently being deployed [11, 23, 139]. Cryptojacking is also spread through exploitable vulnerabilities in
content management systems [88], through the distribution of advertisements including malicious code [87]
or through malware [96]. Previous work by Konoth et al. estimate that cryptojacking possibly yields monthly
revenues of $41,000 for the 10 most successful perpetrators across the Alexa Top 1M [70].
In this Chapter, we will analyze a previously unseen attack vector for cryptojacking, namely man-in-the-
middle attacks launched through compromised consumer and edge routers that inject mining code into ev-
ery web page requested by their users. This was made possible by a firmware vulnerability in MikroTik routers
discovered in early 2018 [93], which allowed adversaries to change the device configuration and create an out-
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going HTTP proxy, and that remained widely unpatched until a year later. By following reconnaissance scans
of the perpetrators through a large network telescope, the detection of compromised routers through semi-
weekly crawls, and the tracing of connection patterns of adversaries, their supporting infrastructure and the
compromised routers based on NetFlows from a Tier 1 operator, we are able to provide a comprehensive in-
sight into how this vulnerability scaled out into massive cryptojacking campaigns that drastically overshadow
previous mining activities. In this work, we make the following four contributions:

• We are first to investigate a new type of attack that exploits Internet infrastructure for cryptomining, and
show how over a period of 10 months after the initial discovery of the vulnerability groups of criminals
launch massive campaigns to control 1.4M routers, with a peak of 460,618 simultaneously infected
routers.

• We have analyzed adversarial tactics and unveil the supporting infrastructure used within the cam-
paigns, and are able to show differences between groups in how they locate their victims, compromise
routers, and run their infrastructure.

• We demonstrate that previously reported vectors are negligibly small in number of affected users and
created revenue, compared to the reported MITM attack. We find that this attack yielded monthly rev-
enues, estimated exceeding $1,200,000 per month for the top 10 grossing accounts, a factor of 30 larger
than previously estimated cryptojacking revenues from hacked websites, malicious advertisements and
website-owner initiated mining combined.

• We have observed high levels of sophistication in three identified campaigns, of which the largest in-
volved 40 mining accounts linked to one single actor.

The remainder of this analysis will be structured as follows: Section 8.1.1 introduces the concept of crypto-
jacking and previously used modus operandi, and describes the vulnerability and its exploitation used for a
MITM-based cryptojacking on routers. Section 8.1.2 describes the datasets used in this study. Section 8.2
presents the techniques, tactics and procedures in use during the identification, exploitation, monetization
and maintenance of the compromised systems. Sections 8.3 and 8.4 puts the techniques and sophistication
levels of the ecosystem into perspective and quantifies adversarial revenues.

8.1.1. Cryptojacking
The introduction of memory-bound cryptocurrencies like Monero allowed for new methods of cryptomining,
one of them being browser-based cryptomining. These cryptocurrencies, together with new web technolo-
gies such as WebAssembly (native speed code execution within the browser sandbox), WebWorkers (sepa-
rate JavaScript instances), HTML5 WebSockets (simple multiplex TCP connection) and the Stratum Mining
Protocol (JSON-RPC formatted mining pool communications) paved the way for the creation of an efficient
browser-based cryptominer by Coinhive in 2017. Their miner, and most other mining applications, work as
follows: the user visits a cryptojacking website which includes (a reference to) a cryptojacking script. This
script explores the host system, downloads a highly optimized WebAssembly module for mining and spawns
a number of WebWorkers to run this module. Consequently, it sets up a connection with a mining pool
through a proxy server operated by the service, authenticating using a siteKey or (Monero) wallet address,
which is essentially the account of the adversary. For readability when we mention siteKeys, we will refer to
them by the first six characters of the key. The mining pool distributes a job to work on, the WebWorkers start
mining and found hashes are submitted to the mining pool. When the browser window is closed, all mining
activity stops.

Past modus operandi of cryptojacking
As stated by a New Jersey Attorney General in 2015 [56], mining cryptocurrencies with the computing power
of others is not considered illegal when a clear notification of such activities is shown and the possibility of
opting-out exist. However, most cryptojacking cases lack these and are therefore considered illegal. There
have been cryptojacking scripts found on malware infected PCs [96], but since the release of the Coinhive
miner, cryptojacking in the form of browser-based mining gained enormous popularity. There is a large
number of websites running a cryptominer to increase their revenues, such as The Pirate Bay [126], but cryp-
tojacking has also occurred on websites where the owner did not initiate it. Website compromises, such as
government pages of the Indian government [21] in 2018, have led to cryptojacking infections, but cyber crim-
inals are constantly searching for more efficient methods to deploy their miners. To spread an infection over
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Figure 8.1: Through a MITM attack on routers, adversaries performed cryptojacking on HTTP websites visited by users.

a large number of websites, attackers abused third party software (such as infecting WordPress plugins [139]
or exploiting Drupal CMS vulnerabilities [114]) with cryptojacking scripts as well as injected advertisements
with mining code and served them through ad networks to websites unaware of any infection [87].

Pervasive Cryptojacking through Man-In-The-Middle Attacks
As mentioned in the previous section, cryptomining code is included as part of the served HTML page, which
requires the website owner to explicitly install a cryptominer or inadvertently embed it due to a compromised
component. It is however also possible to modify the request in transit, by modifying the HTML as a man-in-
the-middle.

In the attack reported in this analysis, adversaries compromised the routers’ operating system, and recon-
figured the system causing requests from clients to any website to be rewritten and channeled to an internal
HTTP proxy server running on the device. With the compromise of the router, the perpetrator installs a script
to change the firewall rules of the device, opening telnet and SSH to the Internet if not already exposed, and
introduces a firewall rule to redirect outgoing requests on port 80 to a proxy port. Finally, it deploys an HTML
page sent by the proxy to each outgoing connection.

While different groups of actors followed slightly different techniques, tactics and procedures as we will
show in Section 8.2, it meant as shown in Figure 8.1 from the perspective of the user that any outgoing con-
nection to port 80 was redirected to the proxy on port 8080 (1). This served a web page based on a common
template, shown in Listing 8.1 for a connection to facebook.com. This led the client’s browser to fetch two
web resources: the outer frame containing a JavaScript that loaded cryptomining code (2), and within the
frame the actual website the user intended to visit was displayed (2). The client’s web browser would setup
a WebSocket connection to a WebSocket proxy or to a mining pool in order to retrieve instructions (3), and
spin up WebWorkers to mine for a specific siteKey (4).

From the perspective of the perpetrator, this design has a number of advantages. First, as the iframe opens

<html >
<head >
<meta http -equiv="Content -Type" content ="text/html;charset=windows -1251" >
<title >"http :// www.facebook.com/"</title >
<script src="https :// coinhive.com/lib/coinhive.min.js"></script >
<script >

var miner = new CoinHive.Anonymous(’<mining key >’, {throttle: 0.1});
miner.start(CoinHive.FORCE_EXCLUSIVE_TAB);

</script >
</head >
<frameset >
<frame src="http :// www.facebook.com/"></frame >

</frameset >
</html >

Listing 8.1: HTML returned by the proxy of an infected router, with a Coinhive miner and the actual page in an iframe
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the original page, the user will at first sight not notice anything wrong, as the requested web page loads within
the borderless iframe. Second, as the interaction with the loaded website functions normally, the victim will
remain on the Web page for an extended period of time, thus increasing the time the miner will run in the
background. Third, as clicks on the embedded page do not reload the outer frame, the cryptominer keeps
running during navigation on the visited web page, thus maximizing mining cycles.

Susceptibility of HTTP(S) connections While the browser address would show a connection to the router
instead of the requested URL, the hijack from a usability perspective is both comparatively frictionless and
effective. The original URL is displayed as the title of the page, and experimentation on recent versions of
both mobile and desktop browsers showed that websites can even be loaded via HTTPS within the iframe
without triggering a warning by the browser. In this case, the HTTP proxy loads an unencrypted HTTP page
with an iframe showing the secured HTTPS contents. Thus, unless the rewritten URL raises suspicion with
the user, we can expect the activity to go by relatively unnoticed.

Vulnerability CVE-2018-14847
The exploited vulnerability in this attack is CVE-2018-14847 and affected MikroTik RouterOS through version
6.42, allowing “unauthenticated remote attackers to read arbitrary files and remote authenticated attackers to
write arbitrary files due to a directory traversal vulnerability in the WinBox interface.” [93]. Of special signifi-
cance to the attack is that MikroTik uses RouterOS across their entire product line, making the vulnerability
applicable to a large number of both consumer and carrier-grade routers. As we will see later, the vulnera-
bility of carrier-grade devices explains the magnitude of cryptomining activity that could be realized in this
attack.

WinBox is a small Win32 binary that allows for the administration of RouterOS using a graphical user
interface. The functionalities of the WinBox interface are almost identical to the console functions, but some
advanced and critical system configurations changes, like changing the MAC address, cannot be made from
the WinBox GUI. Several WinBox commands did not require authentication, e.g., an attacker could open files
for reading while being unauthenticated, while another allows an attacker to write files to disk given some
authentication [124]. By sending a carefully crafted package to the WinBox service on port 8291 exploiting
one of these commands, the attacker would retrieve the user credential store user.dat, and using these
credentials drop files to disk to enable a developer backdoor [124]. Triggered if a specific file, /pckg/option
or flash/nova/etc/devel-login, is present on the system, the developer mode sets up a root BusyBox
shell accessible over port 22 (SSH) or 23 (Telnet) giving complete control over the device.

8.1.2. Additional datasets
The study was made possible through a combination of three datasets each covering a different angle of the
reported malicious activity: first, we use the traces from a large network telescope to trace adversarial scan-
ning activity. Second, we rely on a periodic crawl for the proxy status page by Censys [31] and Shodan [116] to
discover which routers were infected. And third, we use our NetFlow dataset to visualize the communication
patterns between the infected routers and the remaining Internet to identify their staging hosts and quantify
the volume and revenue of this large scale exploitation.

Network Telescope
In order to exploit routers using the WinBox vulnerability, the attacker must first know where vulnerable
routers are located. This identification and localization could be done in one of two ways: either the adversary
scans the Internet for open ports or banners that would identify the devices, or obtains a list of devices.

To discover which adversaries are actively scanning the Internet for devices with the WinBox vulnerabil-
ity, we rely on a large network telescope of three partially populated /16 networks, through which a total of
approximately 130K IP addresses are monitored. In order to discover whether TCP port 8291 is open and to
send a payload triggering CVE-2018-14847, adversaries first need to complete a TCP handshake. This ensures
that perpetrators cannot spoof their source IP as otherwise the handshake couldn’t complete, and reveals the
location of the adversary or a potential proxy.

Active Scans of Censys and Shodan
As discussed in Section 8.1.1, the exploitation through the rewriting proxy was unusual as it unnecessarily ex-
posed the webpage to the Internet instead of just presenting it to just the users on the inside. Since RouterOS
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allows both port 80 and port 8080 to be used by a HTTP proxy, an Internet-wide survey of these ports made
it possible to discover which MikroTik routers are currently infected as they are serving the proxy page, and
based on the embedded key track who currently “owns” the device.

Censys To trace infections and their evolution, we thus additionally rely on Censys [31], which scans and
archives the responses of all IPv4 addresses on a number of common ports, among them 8080 and 80. We
retrieved these Internet surveys twice a week between the first wide-scale exploitations in July 2018 until
April 2019, and identified a router as a MikroTik system if the proxy header was set to MikroTik HttpProxy
and as infected if it contained scripts or code for crytomining. This yielded a total of 1,452,550 unique IPs
belonging to an infected router at some point during the study.

Shodan A second service that scans devices for open ports is Shodan [116]. Besides listing ports, the ser-
vice additionally extracts banners to link it with known vulnerabilities, and makes it possible to conveniently
search specific devices and credentials. Given the Internet surveys of Censys, we queried the databases of
Shodan and recorded when a particular IP that could be identified as compromised due to the mining proxy
page appeared in Shodan’s database.

8.2. Adversarial Tactics, Techniques and Procedures
In this section, we analyze the techniques, tactics and procedures (TTPs) adversaries use in the exploitation
of 1.4M MikroTik routers and their subsequent abuse. We will split this discussion based on the stages in the
life cycle of a router infection as shown in Figure 8.2. This life cycle begins with the identification of candi-
date victims, the exploitation of the vulnerability, and methods used to gain a foothold and consolidate the
infection. After a device is compromised, actors will install tools to monetize the exploited routers and per-
form maintenance, until the infected system is removed from the pool due to decommissioning or patching.
As we will see in this section, each of the individual steps can be accomplished in a variety of ways, and we
find adversaries using different techniques and tooling in each of the life cycle phases. In Section 8.3, these
findings on the individual stages will be combined into an overview of the actor landscape.

Identification
Port Scan / 

Device Listing

Vulnerability 
Exploitation

Infection 
Consolidation MaintenanceMonetization

Patching

Figure 8.2: Life cycle of the vulnerable routers.

As we will see in this section, each of the individual steps can be accomplished in a variety of ways, and we
find adversaries use different techniques and tooling in each of the life cycle phases. In Section 8.4, these
findings on the individual stages will be combined into an overview of the actor landscape.

8.2.1. Identification
In order to gain a foothold on a machine, adversaries first need to know where exploitable devices are located.
This also holds for vulnerable MikroTik routers, of which according to market surveys approximately 2M units
were installed worldwide [113]. Routers are usually deployed in one of three ways on the Internet: (a) they
are either provided by the Internet Service Provider (ISP) to the customer who uses the device to connect to
the ISP’s network, (b) they are bought, deployed and operated by the customer to connect to the Internet,
or (c) they are part of the network infrastructure of the ISP. As RouterOS was used across the entire MikroTik
product line, we see vulnerable devices of all three types in practice.

Figure 8.3 shows a heatmap of all MikroTik routers that were exploited at least once during the study
period, mapped to a geographic location by using the MaxMind GeoIP database [78]. The devices are very
prevalent in select parts of the world, especially Brazil or Indonesia, where such a device responded at 29%,
and 35% of all publicly accessible IP addresses of the largest operators in these countries, thereby indicating
that these devices were provided by the ISP to the customers. Table 8.1 lists the number of compromised
MikroTik routers for the 10 most affected autonomous systems and their share of the overall infected popu-
lation. We can see that 136,659 exploited MikroTik routers could be linked back to the 5 most compromised
ISPs. The heatmap however also shows sparse deployments throughout the world, with clusters appearing
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AS Count (%) AS Count (%)

Telekomunikasi Indonesia 55,082 (3.8%) Cat Telecom 12,883 (0.9%)
Telefonica Brasil S.A 33,589 (2.3%) Rostelecom-AS 11,352 (0.8%)
TCI 21,357 (1.5%) TOT-NET 11,136 (0.8%)
PTC-Yemennet 13,585 (0.9%) UKRTELNET 10,993 (0.8%)
BSNL-NIB 13,046 (0.9%) IR-THR-PTE 9,248 (0.6%)

Table 8.1: Top 10 most affected Autonomous Systems (ASN)

in densely populated areas, proportionally to the number of IP addresses located in an area, suggesting that
these routers were owned and operated by end customers.

Discovery using Port Scanning To localize potential victims, adversaries could make use of port scanning
to test remote IPs whether they have TCP port 8291, the port associated with the WinBox vulnerability, open.
This reconnaissance could be done at different levels of granularity and sophistication: on the low end, at-
tackers could blindly trawl through the entire Internet in a horizontal port scan to discover any potential
victim, albeit at the disadvantage of creating much noise and potentially being identified, blocked and black-
listed. A sophisticated scanner could however do some prior background research, and determine in which
networks large MikroTik installations exist, as a result of these devices being used within an ISP’s network or
being given out to its customers.

We can differentiate between these type of strategies using the data provided by the network telescope
and general flow statistics of the Tier 1 operator. Figure 8.4 shows the absolute number of packets directed
against port 8291 in our telescope as well as traffic carried by the operator during 2018 aggregated by day. The
vertical lines show important milestones in the lifespan and news coverage of the WinBox vulnerability. On
March the 24th , the average daily traffic towards TCP 8291 exploded by 6 orders of magnitude, as the Hajime
botnet executed a short, but concentrated horizontal scan for the port across the Internet [92]. On April 23rd,
the vulnerability was discovered and patched by MikroTik, and the resulting news coverage only lead to a
very minor continuous increase in scan traffic. Starting mid-July, the first cryptojacking installations started
to appear in the wild, followed by a public proof-of-concept for the exploit and beginning of August the CVE
report was published in the National Vulnerability Database [93].

As we can see from the graph, the general characteristics of telescope and NetFlow traffic resemble each
other. Both record the same sudden increase in network traffic due to the Hajime botnet at the same moment
and with a similar magnitude, demonstrating that the botnet initiated an unspecific worldwide trawl for the
vulnerability. While after this burst the telescope traffic returns to business-as-usual, aside from selected
worldwide scans, we see in the NetFlow data that geographically targeted scans – not targeting our network
telescope – immediately followed, and continued to run until the end of the observation period. As the num-
ber of infections started to rise in December 2019, we observe increased worldwide scanning activity as both

Figure 8.3: Geographical location of the MikroTik routers compromised during the study period.
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Figure 8.4: Packets received on port 8291 in our network telescope (in solid blue) and NetFlows observed (in dashed red).

our telescope and NetFlow data report more connections towards port 8291.
Out of a total of 1.7M IP addresses that probed the three /16 network ranges in our telescope as well as the

rest of the Internet during the late March burst, only 124K IPs continued to probe specific parts of the Internet
for router vulnerabilities. This seems to indicate that the scanners used the data collected from previous tests
(as our passive monitors would not respond to 8291), or that additional knowledge – such as the popularity
of MikroTik in specific parts of the world – is used to steer the search. In order to determine the specificity of
these scanners, we compared the traffic distributions of the Tier 1 operator towards all autonomous systems
(AS) with the traffic distribution for the anonymized scanning source IP addresses. This relative comparison
accounted for the fact that the operator would not be part of an exact random sampling of all worldwide traffic
flows, but that due to BGP policies and specific IXP and PoP presences certain autonomous systems would be
preferred. From this relative comparison we can determine whether sources showed specific preferences for
select networks, or scanned the Internet non-discriminantly. Figure 8.5 shows a summary of all scanners as
a histogram of the scanners’ deviation from the expected non-discriminatory baseline. As we can see in the
graph, there exist three basic behaviors: the bulk – which is also visible in our telescope – targets the entire
Internet unspecifically, a smaller but significantly sized group that specializes and concentrates the scan on
a specific AS, while a small portion of adversaries scan a large but apparently curated list of destinations.

Localization using Public Datasets In addition to actively scan and probe IPs on the Internet to test whether
they are running RouterOS and are potentially exploitable, attackers could try to get a pre-made list of device
IPs to connect to potential targets directly, for example by searching on Shodan. To determine whether the
attacker uses such services to locate vulnerable routers, we consider the moments Censys retrieved a proxy
page from a router with a mining key on port 8080 or 80, which means that at this moment the device was
compromised. If at the moment of publication on Censys the router was not listed yet in Shodan, the per-
petrator must have found the vulnerable router through independently scanning for it. If prior to the Censys
publication, there already existed a record in Shodan, the attacker could have obtained knowledge from this
service.

When we track this relationship for when keys first appeared on the 1.4M routers, we find that 54% of

Figure 8.5: Histogram of the specificity of scans for port 8291.
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Figure 8.6: Percentage of infected unlisted routers per key.

the cases when an actor first found a device it was the result of it being listed in Shodan, whereas 29% of
the initial infections were derived from independent scanning. In the rest of the cases, too few routers were
compromised to significantly categorize. While public vulnerability databases such as Shodan seem to give a
head start to perpetrators, the situation is more nuanced when we look at individual actors. Figure 8.6 shows
the percentage of unlisted routers used by actors within the first 14 days of their activity. We clearly see two
regimes. For readability when we mention siteKeys during the analysis, we will refer to them by the first six
characters of the key. Innovators and early adopters such as d68a7a and hsFAjj which are shown as dashed
lines (for key emergence see Figure 8.10) all perform their own discovery, and start off with a high number
of new, unlisted nodes. This percentage drops over time, as the compromised boxes are then included in
Shodan. The long lasting campaign tD2a2P starts out with 42% unlisted routers on its first, and kept adding
unknown devices to its installation base for the months to come. On the other hand, we find a large number
of campaigns which primarily feed off public lists to populate their setups. The largest and most profitable
campaign 6a9929 had at its peak 13,815 routers infected, almost exclusively drawn from public lists. As we
will see in Section 8.3, the degree of innovation is not a proxy for the amount of revenue these campaigns
make – innovation does not always seem to pay off.

8.2.2. Vulnerability Exploitation
With vulnerable routers identified, adversaries can trigger the vulnerability by sending a simple payload.
While the activities of the perpetrators on the devices cannot be inferred using our datasets, we can and
will investigate in this section patterns on how adversaries infect devices, and how infected devices are taken
over.

Infections and Re-infections From previous discussion, we have seen that a large number of IPs in our
telescope and in the NetFlow data scanned for port 8291, and that actors additionally used records such as
Shodan to find exploitable targets. Once a device however appears in Shodan, it could already be infected, as
it lists a proxy running on port 80 or 8080. This naturally raises the question whether and how re-infections
occur, in other words whether actors are grabbing compromised devices from others.

Figure 8.7 depicts the transition behavior of the 1.4M routers between keys, filtered to only include edges
if more than 500 devices are taken over from the original “owner” by a particular new actor. Most visible
are the large transitions on the right between initially widely used key hsFAjj towards SK_LCx and oDcuak,
which could indicate key rotation by the same actor. There are however significant flows between SK_LCx
and for example J3rjnv, where a little over 15k routers shift back and forth. The left side of the graph shows
smaller and more nuanced interactions between the different installations. First, a chain of key transitions
from WDUFD to ByMzv3 to aff2ba to ef18c8 shows a sequence of keys actors rotate through. Second, we see
a key such as 4983e3, which draws its installation base from many other keys, using lists of already infected
devices and then reinfecting them with a new key. This confirms the trajectory of the line belonging to this
key in Figure 8.6. Finally, the graph also shows obfuscation techniques applied by the adversaries. When
decoded, 0xbdaf(’0x0’ is equal to 4983e3, and at some point the actor behind 4983e3 updates the installation
base to mine using a masked key. While the figure only displays the largest transitions for readability, there
are a lot of transitions happening, especially in the long tail of the distribution. Overall, 55% of all routers are
infected with more than one key, 15% of all MikroTik devices even rotate through 5 or more keys in 2018.
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Figure 8.7: Re-infections of compromised devices with different keys with >500 overlapping IPs.

8.2.3. Infection Consolidation
After the adversary has been able to obtain the system credentials and activate a developer backdoor, root
access is used to establish a foothold on the device. As described in Section 8.1.1, the firewall configuration
is changed, the proxy activated, and additional files downloaded to the system. We defer a discussion on
the monetization, the cryptomining, to the next section, and discuss the infrastructure used to perform the
scanning, logins and loading of additional components.

Node to node reconnaissance Based on Censys and Shodan data we obtained a list of infected devices
over time, and could in the NetFlows thus trace which anonymized IP addresses would connect to the Win-
Box service on vulnerable and infected routers. While the bulk of these connections came from a variety
of anonymized IPs, 6.5% of the flows towards port 8291 were sent from infected MikroTik routers to other
MikroTik routers. We observed 948 infected routers which were systematically scanning their local subnet
for additional vulnerable routers on port 8291. While based on NetFlows it is not clear whether these in-
fected routers only enumerate vulnerable hosts or also perform the compromise itself, we find this additional
structural component noteworthy as interestingly this behavior was only implemented in geographic regions
where MikroTik routers seemed to be rolled out structurally by ISPs. We observed this behavior specifically
in Brazil.

Infrastructure In 2018, a malware infection spread throughout Brazil, probing to exploit the vulnerability
elaborated on in Section 8.1.1 injecting both a miner and a script called script3_ which would fetch new up-
dates and commands from a staging server on port 2008 every 30 seconds. In the NetFlows we have identified
six staging servers in the subnet of 211.164.222.*, which confirms the research of [120].

In their research they initially found the C&C server 211.164.222.159. By combining our machine learning
method and the resulting probable C&C servers, and the Anderson-Darling test as explained in Chapter 5 and
in Section 6.2.1. These resulting 6 other servers were the only servers which had a significant similarity to the
original staging server. We have identified that these staging servers are active from 26 July to 21 Septem-
ber 2018, and these servers have connected to 220 distinct infected routers during this period. The most
prominent key exhibiting this was hsFAjj as confirmed by [120], however our data also shows that SK_LCx
and oDcuak appear towards the end of this period, suggesting a link between keys.

Based on the connection patterns of the compromised routers and the maintenance activities (which
we will discuss in Section 8.2.5), we can deduct the system architecture as depicted in Figure 8.8. While a
handful of infected routers are performing scanning and infections within the same prefix, compromised
routers remain unconnected among themselves. They only have two flows in common: the connection on
port 2008 to a handful of staging or C&C servers, as well as SSH flows from a shared origin.
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Figure 8.8: Schematic overview of the system architecture.

When a router is taken over, the new perpetrator does not seem to always aim to eradicate a previous
infection after having replaced the proxy template and mining key. In fact, we find numerous examples where
the routers are taken over by a different key keep beaconing to the staging servers associated with an unrelated
actor, who shows no other commonalities or features with the new owner.

8.2.4. Monetization
With the vulnerability triggered and a foothold on the routers established, the adversaries moved to the ex-
ploitation of the routers for monetary gain. Over the course of the study period we observed the evolution
of two monetization strategies. First, the use of the routers as a proxy service, and second, the injection of
cryptomining code into users’ web browsing sessions.

HTTP Proxies The first use case of the compromised MikroTik routers was the establishment of HTTP prox-
ies. Here traffic from a web browser to a web server is tunneled through the HTTP proxy, thus masking the IP
address of the client towards the server. HTTP proxies are used as a basic variant of a VPN service, although
application-protocol specific and with limited authentication options if at all implemented. Starting from
July 9, 2018, the first MikroTik routers were repurposed as HTTP proxies, which we identified from the emer-
gence of large incoming traffic towards specific high TCP ports, namely 36551, 53281 and 58833. This use case
remained however relatively rare, with only 3,216 of the total 1.4M infected routers being abused in this way.
Interestingly, the usage as an HTTP proxy did not seem to serve a monetary gain, as within 3 days 95% of the
routers for which these unusual spikes appeared were posted to free public proxy lists [103], and allowed a
connection without user credentials. This usage was only relatively short-lived, as most were disabled within
40 days, at which point SOCKS proxies were spun up at TCP 4145.

SOCKS Proxies In contrast to HTTP proxies, SOCKS proxies work at the transport layer and forward traffic
transparently with regard to the application layer protocol. This allows this proxy type to be used in combina-
tion with any application and thus extending the monetization potential. Shortly after the emergence of this
new use case, the HTTP proxies on the MikroTik routers are replaced by SOCKS proxies, and 1,530 MikroTik
routers remained in use as SOCKS proxies even until the end of the study. Further characterization of the
NetFlows is not possible, as the application traffic itself would be forwarded inside the tunnel and the router
would rewrite the outgoing flow to an ephemeral source port. However, we do find that the exploitation as
SOCKS proxy was under the control of a few and not deployed pervasively.

This is possible to conclude, as the use of SOCKS proxies was never encountered alone, but only in com-
bination with a cryptomining infection. As we discussed in the previous section, adversaries were routinely
reinfecting devices and by changing the cryptomining siteKeys effectively snatching the devices away from
their competitors. With the infection script reconfiguring the device including firewall and proxy settings, we
can thus assess that the “ownership” with respect to an active cryptomining would also indicate who had con-
trol over the SOCKS proxy at that point in time. As we discuss in the next section, we identified a total of 140
cryptomining keys on the 1.4M MikroTik routers, but as shown in Table 8.2, only five siteKeys were in use on a
router whenever the device was proxying traffic. Their impact is however huge: more than 95% of all SOCKS
activity that originates from MikroTik routers is the result of proxies operated by these five siteKeys, with hs-
FAjj being one of the early adopters of MITM-based cryptomining. The small number of siteKeys related to
SOCKS proxy activity suggests a relation between those siteKeys, as others do not exhibit this behavior.
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Key hsFAjj J3rjnv SK_LCx oDcuak d68a7a

% of all SOCKS traffic 53.6% 29.1% 7.8% 3.4% 1.2%

Table 8.2: Router “ownership” based on cryptomining key and corresponding proxy activity

Figure 8.9: Evolution of cryptominers over time per service.

Cryptomining Proxies While the usage as HTTP proxies was not commercialized and only few actors re-
purposed a limited number of devices as SOCKS proxies, a large number of actors engaged in cryptojacking
user connections, with a total of 140 different cryptomining siteKeys being installed on the routers during the
study, and a maximum of 106 different siteKeys being active at the same time.

Figure 8.9 depicts the number of infected routers over time, categorized by the mining service provider
used. As we see in the figure, the MITM-based mining started out based on Coinhive, which was at that
time the obvious choice to be introduced in the MITM vector as it was the first service for cryptomining and
already widely deployed in website-based mining [11, 70, 107]. Starting in middle of September, this ho-
mogeneity shattered with first the emergence of CoinImp, and later on Omine, all taking on approximately
equal market shares which led to a peak of cryptojacking activity on December 19, 2018, as 460,618 routers
were infected concurrently. This activity continues relatively unchanged until January 26, 2019, when sud-
denly mining activity disappeared from the bulk of infected routers. The distribution of miner applications
between Coinhive, CoinImp and Omine remained similar and relatively unchanged.

Interestingly, related keys as found in previous analysis, do not necessarily use the same mining appli-
cation, possibly to defract risks from accounts becoming frozen by cryptomining services. Despite this risk
sharing across accounts, several actors also spread out their activities across multiple mining keys, as can be
inferred when the same maintenance hosts connects to routers with multiple keys (as we will show in Sec-
tion 8.2.5). These movements – and also the strong emergence of CoinImp and Omine – can probably be
explained based on fees: while Omine charges a 2% fee and CoinImp is entirely free, Coinhive takes a 30%
cut.

Figure 8.10 shows the evolution of siteKeys installed on MikroTik routers between July 2018 and April 2019,
ordered by the time they were first encountered on a router. The size of circle indicates on how many routers
this siteKey was installed on a given day. We can see that MITM-based cryptomining was pioneered by three
siteKeys: first, d68a7a emerged first but beside a small peak remained only a minor player. Second, hsFAjj who
followed one week after, temporarily controlled 70% of all infected routers, and introduced new strategies for
controlling and otherwise monetizing the routers, remaining a steady force until the general decline. And
third, oDcuak, like the first mover d68a7a experiencing a small surge followed by steady but comparatively
low-volume activity.

Approximately one week after these first movers, a large number of new siteKeys started to appear, fre-
quently co-emerging in groups that stay relatively similar in size. Four sequential blocks of 10 siteKeys can be
clearly observed, two of them using Coinhive, the other two are using Omine as their mining service. While
all other siteKeys never reach the same size as hsFajj’s initial deployment (167,182 infections), each of them
is able to hold control over up to 64,539 routers at a time. While we find a total of 1.4M routers to be vul-
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Figure 8.10: Evolution of detected siteKeys over time.
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Figure 8.11: Additions/deletions over time by selected keys.

nerable and at some point infected, the perpetrators are never rolling their cryptojacking infections out to
all potential victims simultaneously. Instead, we see a constant flux, with new routers being infected so that
the mining deployments stay consistent in size. This is necessary, because once infected, most of the routers
are patched quickly, as shown in Figure 8.12. This figure shows the cumulative density function (CDF) of the
number of days a router is infected on a logarithmic scale. We see that 50% of the devices are patched within
18 days after compromise, whereas only 30% of the devices remain active for more than 50 days, urging actors
to constantly replace disappearing routers to maintain their installation base.

This is best observed when we look at the keys in Figure 8.10 that remain relatively constant over time.
Four of these keys are depicted in Figure 8.11 with respect to daily additions and removals from the pool,
indicated in blue and red respectively, starting from the day the key first became active. This behavior, as well
as the sets of keys that appear together, might indicate a strategy to offset risk. If a particular key gets blocked
by a miner service, others will still generate profits. The same might hold for the deployment size in gen-
eral, where an all-out operation from becoming too greedy might lead to increased press coverage and faster
cleanup of the vulnerability than maintaining a smaller infection size and thus lower profile. This diversifica-
tion however stops from December 2018 onwards, where we see that most actors no longer replenish routers
lost. This might be explained by Monero’s significant drop in value, down by 60% from early November until
a month later.

Indeed, we observe a steady decline of new devices that are added to the pool from November 2018 on-
wards, as shown in the bottom of Figure 8.13, which leads to a flattening out of the overall installation base.
As we have already seen in Figure 8.9, the ecosystem of router-based cryptomining drastically changes in late
January. Most apparent is the major drop in participating devices, approximately 87% of all infected routers
disappear, leading to a drop in the installation base of all keys. While such a large and universal movement
would indicate some external trigger, we could not find any evidence for a coordinated cleanup action, for
example by an ISP or a grey hat hacker (aside from one who has taken credit for patching 100,000 routers

Figure 8.12: CDF of the infection duration.
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Figure 8.13: New and total of IP addresses infected per day.

in November 2018 [22]). After this cut, we also see a rotation of remaining actors towards new keys, where
the new key f6c73 partially takes over the efforts of 4983e3, however only a few continue to re-establish their
activities and forego previous practices, whereas f6c73 is responsible for most new infections.

Geographical Focus Based on the heatmap in Figure 8.3 and the large deployment of MikroTik devices in
certain autonomous systems as shown in Table 8.1, we have seen that a number of countries seemed prime
candidates when looking for MikroTik devices, which would logically mean that advanced adversaries should
focus their activities there. As RouterOS is used in both consumer devices and carrier-grade routers, we would
naturally expect some devices to be more lucrative than others, immediately posing the question whether
reinfection of devices – in other words “stealing” routers – would primarily occur in popular areas and target
those devices where a lot of money could be made.

Figure 8.14 shows the number of siteKeys as a function of the amount of NetFlows on port 80 this router
processed during its infection. Counterintuitively, there is no trend that high-value targets are more fought
over than low-value ones. Especially routers with much traffic tend to stick with just a low number of siteKeys.
This is surprising, as a cryptomining operation on a large router would clearly affect more people, lead to
more complaints and thus logically faster patching. The lack of a fight for high-grossing routers can however
partially be explained based on the location of the routers, indicated by the color of the data point. While
routers in Indonesia and Brazil – the hotspots of the infection – cover the entire spectrum and are changing
keys considerably, the most stable infections – and the highest grossing ones for that matter as we will see
in Section 8.3 – are in countries that do not appear anywhere near the top in MikroTik installation counts,
for instance, 6 out of the 10 most grossing routers are located in Iraq. This means that actors targeting niche
markets accomplished much more valuable deployments, as these routers mined longer for them.

Figure 8.14: Relation between the number of flows to port 80 and the number of keys per router.

8.2.5. Maintenance
When we look at the life cycle of a malware infection as for example a botnet, after the initial exploitation
the compromised device remains in contact with the perpetrator or a C&C server to download additional
components or receive a new configuration. While we would expect a similar behavior for malware targeting
routers, we saw little evidence for post-compromise maintenance operations.
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Configuration Access and Periodic Updates As a siteKey is directly linked to a particular actor, we analyzed
whether any connections were made between an end point and the group of routers that were at a certain
moment compromised by the same key. Using the association rules methodology described by Agrawal &
Srikant [1], we have searched for maintenance patterns where specific keys have a large probability to coin-
cide with a specific anonymized IP address or port number, as maintenance would likely be performed from
a set of C&C servers or the attacker’s PC. As connections to port 22 (SSH) and 23 (Telnet) in NetFlows are also
caused by prevalent port scanning, we differentiate between port scanning and active SSH sessions in Net-
Flows based on the packet size and only include connections with a confidence c and support s of at least 40%
among our router/key set, in other words we require that at least 40% of infected routers had been contacted
by a common origin, while being significantly present in the data.

We have observed maintenance connections on port 22 (SSH), which was only pursued by the actor(s)
responsible for routers infected with one of three keys oDcuak, SK_LCx and hsFAjj, while other strains and
actors do not seem to deploy such coordinated access. Surprisingly, routers with any of these keys were
in contact with the same remote host at a given moment in time, strongly suggesting that the keys were
actually related to the same persona. In addition, when a new IP address appeared to make contact with the
compromised devices, routers with all three keys were always contacted by the same source. For example,
routers with these keys made SSH connections to 236.197.108.8 between 3 and 20 August 2018, while between
11 and 14 August 2018 these routers were contacted by 236.247.130.64. Each of these IPs seemed to employ
automation, contacting routers either at midnight or during the timeframe 16–19h. Besides these IPs, almost
no evidence of scripted interactions between a controlling source and the infected routers has been found,
which would be evident from a large number of connections being made at the same time, or sequentially
within a short time period. In total we observed 5 IPs making such common connections over time, matching
our earlier observation about the link between the aforementioned three keys as discussed in Section 8.2.4.

8.3. Quantification of revenue
The results from the previous sections already suggested that MITM-based cryptomining operates at an en-
tirely different scale than previously reported attack vectors. This is due to three reasons:

1. The volume of compromised entities is much higher. Instead of a few thousand websites [17, 61, 107,
109], here a total of 1.4M infected routers is involved. A MITM through routers would also amplify
earnings, as all users to mine on any site.

2. MikroTik uses the vulnerable RouterOS on consumer grade and carrier-grade devices. A carrier-grade
router will likely serve significant user populations, and thus within a short time amass large volumes
of revenue.

3. While 30% of all website-based cryptomining is removed in 15 days [61], we find that 30% of the MITM-
based mining remains active for more than 50 days. Although also routers are often patched quickly,
the pool of vulnerable devices is so large that it barely affects the installation base.

In this section we will extend the previous results towards a quantification of adversarial revenue per key
using this new attack vector. We will conduct this quantification according to the method established by
Konoth et al. [70] for a direct comparison with website-based mining, but make some adjustments for the
shifted attack vector. For their analysis, they built a three step estimation model:

• Estimation of monthly visitors and visit duration: They estimate visitor count and the average time
spent for 1,705 cryptomining sites using data from SimilarWeb [118].

• Average computing power of visitors in hash rate per second: Cryptocurrency is mined during the visit
on the website. They measure the hash rate of two desktop CPUs, and 16 mobile devices, yielding an av-
erage rate per second of 40.5 and 14.56, respectively. Afterwards, information of MineCryptoNight [84]
is used to convert that to X MR/s.

• Current value of cryptocurrency: The overall mining power of the visitors is then mapped to and mon-
etized in Monero cryptocurrency, which was valued at $253/X MR at that time, yielding an overall rev-
enue of up to $30,000 per month.
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Parameter Methodology in [70] This study

Number of visitors SimilarWeb estimations # of NetFlows on port 80
Average hashing rate SimilarWeb estimations desktop / mobile: 25 H/s
Monero market value $ 253 as of May ‘18 $253 for equal comparison
Time on website SimilarWeb estimations Average, 1st / 3rd quartile

Table 8.3: Revenue estimation parameters

In the following analysis, we are following the same equation of

traffic£avg. time [s]£mining rate [XMR/s]

£ value [$/XMR] = profit in dollars

but adjust them for the specific attack vector observed. First, our NetFlow traces allow for an extrapolation of
the actual number of HTTP connections, and we attribute the count of flows to the revenues of a key installed
on the proxy page at that time. While the embedded miners also work for iframed-HTTPS connections, we
did not find evidence that this attack was pursued in the wild. This will thus be a lower bound on the amount
of traffic.

Second, Konoth et al. estimated average visiting times for each of their 1,705 detected websites using
SimilarWeb data, but the MITM attack works across all pages of the Internet. As the actual end point of the
outgoing connection has been anonymized for privacy, we can approximate the average visiting time as we
query the average visiting duration of websites listed in the Alexa Top 10k – the 10,000 most popular websites
– on SimilarWeb. The average visiting time for these websites is 293 seconds. We will for our calculation work
with three values for visit duration to provide a range of the revenues made by the attackers. We will use
the average visiting time, as well as the first and third quartile of visit durations. Yet, already the highly con-
servative estimation based on the first quartile highlights the magnitude of this new attack vector. Table 8.3
compares the parameters used in [70] to our study.

Third, Konoth et al. also used SimilarWeb data to estimate the hashing rate for both mobile and desk-
top visitors, being 14.56 and 40.5 respectively. We estimated the hashing rate based on the desktop/mobile
device ratio found across the Internet as a whole, which is listed in [32] as 0.58, resulting in a weighted hash
rate of 25 H/s. Since we want to compare the profitability of MITM-based to website-based cryptojacking,
we could either compare the amount of Monero mined, or translate the Monero amount into more intuitive
currency such as USD. Currency exchange rates are however volatile and in between Konoth’s May 2018 study
and our study, the average Monero price had dropped during August and December 2018 to $92.2/XMR. To
compare both attack vectors side by side, we thus use the same exchange rate as in [70], which still makes a
fair comparison, as the decline would have equally scaled down the revenues attackers could have generated
using website-based mining during our observation period. Even if we scale the revenue down with the de-
clined value of Monero, the MITM-based revenues would still be a factor of 10 higher than the website-based
earnings made half a year earlier.

SiteKey
Total # First quartile Median stay Third quartile

routers 2’27" stay 4’53” stay 6’19" stay

48zUYB 52,181 $111,447.18 $222,136.22 $287,336.61
6a9929 30,135 $97,626.82 $194,589.52 $251,704.53
8C7UoT 47,981 $90,532.54 $180,449.21 $233,413.82
BOvlp3 49,640 $82,573.82 $164,585.92 $212,894.42
4983e3 117,502 $70,017.28 $139,558.26 $180,520.75
FgWWtJ 39,384 $50,719.01 $101,092.99 $130,765.33
J3rjnv 45,934 $40,551.39 $80,826.92 $104,550.86
hsFAjj 223,844 $35,396.11 $70,551.44 $91,259.37
BT9k5D 8,459 $31,494.11 $62,773.97 $81,199.10
wjORhf 42,342 $27,671.96 $55,155.67 $71,344.70

Total top 10 $638,030.22 $1,271,720.11 $1,644,989.49

Table 8.4: Estimated monthly revenue of top 10 grossing actors based on the average visit duration on the Alexa Top 10K, as well as the
first and third quartile according to SimilarWeb.
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8.4. Charting the ecosystem of actors
While looking at the life cycle of router infections, we observe different levels of sophistication in every stage.
In the identification stage, we discover a clear distinction between siteKeys installed as a result of scanning and
infection based on public sources, such as Shodan. In the exploitation of the routers afterwards we observe
a constantly changing landscape in which actors are regularly infecting new devices and stealing from each
other. After infection, only a limited number of actors demonstrate a high level of sophistication by setting up
an infrastructure. To monetize the hijacked routers, actors initially set up HTTP proxies, but subsequently in-
creased their revenues by installing SOCKS proxies with cryptojacking scripts. The used cryptomining scripts
diverge to multiple services, and we have noticed a continuous flow of router infections and removals. Clear
geographical differences in mining characteristics are identified, where Brazil and Indonesia are the most in-
fected, while Iraq seems to have the most lucrative infrastructure to infect. Observed maintenance patterns
show that specific anonymized IPs can be linked by behavior to siteKeys.

8.4.1. Relating actors and keys
Based on the results of the different independent components analyzed in the previous sections, we are able
to link certain siteKeys to each other and/or to IPs. To start with, three siteKeys hsFAjj, SK_LCx, oDcuak show
similar behavior as the same infrastructural patterns can be found on routers infected with these siteKeys,
as well as regular contacts with the same set of attacker IPs for maintenance over SSH. Figure 8.7 confirms
this hypothesis by showing numerous routers transitioning between those siteKeys. Interestingly, the analysis
of SOCKS traffic also links J3rjnv to this set. Additionally, this figure depicts the sophistication level of the
actor behind siteKey 4983e3, as this actor hijacks vulnerable routers infected with numerous other siteKeys,
but subsequently changes his own siteKey to a masked variant. Revisiting Figure 8.10, which shows 4 clear
sequential blocks of 10 siteKeys having similar installation sizes and evolutional patterns. This in combina-
tion with the aforementioned figure, which shows 5 clear siteKey transition chains, an even larger number
of siteKeys can be linked to one single adversary. By following each siteKey within these transition chains
in Figure 8.7, we noticed that these transitions resemble transitions between the sequential blocks in Fig-
ure 8.10. All the siteKeys in the transition chains are located inside these blocks in the same sequence. For
each of the siteKeys inside these four blocks, the first two blocks (highlighted in green in Figure 8.10) use a
Coinhive miner, with the uncommon option CoinHive.FORCE_EXCLUSIVE_TAB enabled, and the latter two
(highlighted in yellow) use Omine as a mining service. Additionally, all 40 mining scripts within these blocks
were set to the same throttle value of 0.1. As a result, this common behavior across multiple siteKeys strongly
suggests that we can thus link these 40 siteKeys to one single actor.

In this analysis, we have reported on a new attack vector for cryptojacking, which does not infect websites but
compromises the Internet infrastructure itself. This vector greatly overshadows any cryptojacking campaigns
known to date by orders of magnitude, and we find groups of actors compromising a total of 1.4M vulnerable
routers, approximately 70% of all deployed MikroTik routers, with various degrees of sophistication. As the
injection of miners into network traffic affects any user visiting any website, we find this attack vector to be
highly profitable, based on conservative estimates exceeding $1M per month. Curiously, the highest grossing
actors are not the ones innovating with new techniques or creating the largest deployment, but those finding
the most productive niche where they can operate relatively undisturbed.
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Conclusion and Discussion

Nowadays cybercrime has nestled itself into the daily usage of modern technologies. Anybody using a device
to connect to the Internet at some point has to think about protection against digital criminals. Antivirus
software provides services to detect the activity these cybercriminals have on our devices, primarily based
on signatures created by malware. This host-based detection has led to a rat race between adversaries and
researchers, as new malware on average remains active for no longer than two hours. The underlying concept
however remains similar; infected devices connect to a central commanding server, which operate under cer-
tain tactics, techniques and procedures. Not much is known about these tactics, techniques and procedures
and their evolution, which is why the main research question of this work has been defined as:

What are the attack patterns and tactics, techniques and procedures of malicious
Command & Control infrastructures, how do these infrastructures evolve and how

can we track them on a global scale?

This chapter will summarize and discuss the results of this thesis. Initially we will present our main results
and how this contributes to the academic world. Subsequently we will present the results of the three steps
of our research approach and evidently in the conclusion answer our main research question. Our work also
encountered a few limitations and drawbacks which will be discussed. Finally our work will be concluded
with ideas for future work on this research.

9.1. Main contributions
To be able to answer the research question, we will first discuss our findings and contributions to Cyber Threat
Intelligence. Initially we have performed an analysis on open source threat intelligence, evaluating whether
the coverage of these feeds is sufficient to answer our research question. Following this we have analyzed the
various tactics, techniques and procedures which adversaries employ regarding their C&C infrastructures.

Analysis of threat intelligence feeds
We have analyzed 24 different open source threat intelligence feeds based on four evaluation criteria; time-
liness, sensitivity, originality and impact. By doing this we have investigated how widely these feeds are
adopted in practice by network owners and operators. To analyze how and which of these feeds are uti-
lized by networks around the world, we traced activity from each IP prefix before and after an indicator was
included in an intelligence feed by using Tier 1 ISP NetFlow traffic and zone transfers. When we saw requests
emanating from a network before a listing but after its inclusion no further flows were ever recorded, we con-
cluded that the indicator information was applied within a network based on, for example firewall rules or
sinkholing. Repeating this process for all indicators provided an assessment which networks subscribed to
which intelligence feeds, and thus what the approximate geographical market shares of threat intelligence
providers were.

These 24 evaluated open source feeds chart the entire ecosystem of malicious activity; from brute forc-
ing activity, to ransomware and from spyware, to botnets. As each type of malicious activity was covered by
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multiple feeds, we would have expected some overlap in reported indicators, which however did not turn out
to be the case. The fact that there is almost no overlap between lists of similar scope could be the result of
two reasons: first, all individual lists targeting for example botnets or ransomware rely on orthogonal detec-
tion methods and are therefore providing complementary information. Secondly, the lists monitor malicious
activity in comparable ways, but the overall volume of malicious activity is so large that effectively each lists
only obtains a tiny sample, and such low rate sampling from a large universe would statistically lead to a very
low chance for duplicates. Conceptually, we can see that we are probably dealing with the latter reason, as
methods and datasets to for example detect ransomware C&C servers are limited. This unfortunately drives
us to the conclusion that open source cyber threat intelligence feeds cover much less malicious activity than
we would expect.

Adversarial tactics, techniques, and procedures
After having evaluated the publicly available threat intelligence sources, we used the conclusions drawn from
this study to analyze the tactics, techniques, and procedures adversaries employ to utilize their malicious
C&C infrastructures. To provide structure in the analysis of these infrastructures, we have looked at three dif-
ferent Internet network fundaments which are encountered daily; computer clients, IoT devices and routers.
To gain more insights into the tactics, techniques and procedures of malicious C&C infrastructures, indica-
tors of compromise were needed. As the coverage of publicly available threat intelligence is fairly low, we
have used tier 1 ISP NetFlow data to track connection patterns of these indicators of compromise to learn
about their structure and use them to detect more suspicious activity on a global networking scale. By adopt-
ing a known detection methodology proposed by Bilge et al. [12], we have been able to learn malicious C&C
patterns and use this technique to validate more malicious activity than previously known.

We have shown that by combining the proposed C&C server detection technique and various clustering
algorithms new malicious servers, performing similar malicious patterns, can be detected. This has allowed
us to perform more in-depth analyses and create a more coherent picture of attack vectors. We have been
able to track the global activity and connection patterns of C&C infrastructures, uncovering multiple differ-
ent tactics they employ to hide from the public. Different types of malicious structures have been encoun-
tered by for example constantly changing the C&C server to which infected devices connect. Also other load
balancing techniques have been encountered, showing high levels of adversarial sophistication. We have
also shown that C&C infrastructures employ division techniques in their infected devices, creating clusters of
labor division. Additionally we show that we can complement existing cyber threat intelligence by predict-
ing malicious servers and correlate them with known adversarial servers. By combining NetFlow data with
information retrieved from the TU Delft telescope we have also analyzed malicious behavior regarding IoT
devices. Adversarial scanning towards the network telescope revealed information about devices infected
with Mirai, probing the network for vulnerable devices. By extrapolating these indicators of compromise, we
have been able to estimate the leverage and the evolution of these infections. We have found that 1 in every
2,345 scanned devices is successfully infected by Mirai variants. Additionally we have been able to detect
servers, highly suspicious of performing command and control towards infected IoT devices, and have again
seen labor division between the infected devices related to these C&C servers. Finally we have been the first
to investigate a new type of attack that exploits infrastructural Internet routers by performing cryptomining.
We have showed how, over a period of 10 months after the initial discovery of the vulnerability, groups of
criminals launch massive campaigns to control 1.4 million MikroTik routers to perform malicious activities.
We have analyzed the different adversarial tactics and have reported on the supporting infrastructure used
within these cryptojacking infrastructures. By doing this we have been able to show different levels of sophis-
tication between groups in how they locate their victims, compromise routers, and run their infrastructure.

9.2. Research approach
To accomplish the main goal of our work, we have set out a research approach which will help in answering
our main research question. Here we will list the steps in our approach accordingly with our findings.

(1) Determine the coverage of open source threat intelligence feeds and determine if these
resources provide enough information to analyze malicious infrastructures.

Cyber threat intelligence feeds are designed to alert and empower network owners to block malicious activity.
Incorporating these feeds should lead to a reduction in network traffic towards the hosts flagged as malicious.
After performing an analysis on 24 distinct open source threat intelligence feeds, we can conclude that the
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current state of these feeds is not where it should be to be effective in defense. The originality of these feeds is
higher than we would have expected, creating a huge amount of data to process before being able to apply it
in, for example, firewall rules. Besides the coverage these combined feeds provide, we have also seen that the
overall measured quality of each feed differs greatly. Using these feeds to track malicious C&C infrastructures
has proven to not be sufficient.

(2) Define a methodology which enables us to utilize NetFlow data, combined with
additional datasets, to identify malicious infrastructures.

Resulting from our first step, we understand that open source threat intelligence will not provide us the cov-
erage we had hoped for. For this reason we have created a methodology which first breaks down Internet
networking infrastructures into three different categories, making it better to cope with the problem. Sec-
ondly we have adopted an existing machine learning method to detect possible new malicious C&C servers
by using NetFlow data. This method however brings a level of uncertainty with its prediction. For this reason
we introduce methods to elevate the level of confidence when looking for similar malicious indicators.

(3) Discover attack patterns and tactics, techniques and procedures of malicious
Command & Control infrastructures and their evolutions within infections on clients,

IoT devices and routers.

Cybercriminals use various levels of sophistication to accomplish their malicious intents. We have distin-
guished a wide variance of refinement based on their infection strategies, either as a result of scanning or
based on public datasets. We have found evidence of a diverse landscape of Command & Control infrastruc-
tures, where adversaries employ all kinds of different strategies to be evasive. Hopping structures and other
load balancing techniques have been observed. Each of the analyzed Internet infrastructural components
show different techniques to consolidate infections on devices. Where simple IoT devices have been used to
spread at a rapid rate of 1 in every 2,345 scanned devices, routers have been used to employ more advanced
malicious structures by creating proxies on infected devices to earn money based on cryptojacking.

9.3. Conclusion
We have set out to discover what attack patterns and tactics, techniques and procedures of malicious Com-
mand & Control infrastructures, how these evolve and how they can be tracked on a global scale. Antivirus
software uses malware signatures to perform detection on adversarial behavior at the ’front door’ of a device.
Most research has worked on new detection methods which try to realize this. However, whilst these signa-
tures change and disappear at rapid pace, the connection patterns from adversary to this front door stay the
same. By taking a step back, we point to cyber threat intelligence as the ’antivirus’ which will be able to tackle
adversaries at this level of networking. This open source threat intelligence is not yet at the level to be as
effective towards these malicious infrastructures as we would have hoped.

To discover the tactics, techniques and procedures these cybercriminals pursue, we have combined the
knowledge from these feeds with global detection and clustering mechanisms to paint a more complete pic-
ture of the cyber threat landscape. All of this has been possible by combining a rich dataset of tier 1 ISP Net-
Flow data combined with various other threat intelligence sources. In this research we have just scratched
the surface of possibilities NetFlow data presents to the research on threat intelligence. Pandora’s box is not
empty yet.

9.4. Limitations
During the analysis of our results, three main limitations have been observed which we will discuss in this
section. Working with NetFlow data provides a lot of new research angles, not yet seen in the academic world
of cyber threat intelligence. This also comes with a few challenges which we have encountered during our
research.

Sampling rate
The work presented in this thesis has been made possible by using NetFlow data of a tier 1 ISP operator ex-
tensively and combining this with other threat intelligence sources. This rich data source provides all traffic
flowing through the Internet backbone of this ISP provider. One challenge we observed whilst working with
this data, is the sampling rate at which the NetFlow data has been limited. For each 1 flow seen in the Net-
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Flow files, 8192 flows have passed through the network of the ISP provider. This proved especially challenging
when estimating the amount of proxy traffic observed in Chapter 8. This also proved challenging when be-
ing able to say whether traffic is malicious, as we do not see the whole sequence. We have only made this
assumption when this could be validated by multiple sources, for example in Section 7.2.3 where all traffic
to the detected C&C servers is sent only by infected devices to a port which should initially not be used for
periodic communication.

Location based bias
As we have mentioned, NetFlow data at this scale has never been used before to study malicious infrastruc-
tures. Instead of one-way traffic, which can predominantly be seen in host-based analysis, NetFlow gives the
opportunity to see more interconnections and more levels of networking depth from source to destination.
However, since these flows only contain traffic sent through the network backbone of one ISP provider, it
is limited to traffic passing through the routers it controls. Due to the location of these routers (Point-of-
Presence, or PoP), Border Gateway Protocol (BGP) policies, and a specific Internet Exchange Point (IXP) foot-
print could lead to a location based bias of certain autonomous systems being controlled by this ISP operator.

Machine learning
The results provided by the analyses from Chapter 4, pointed out that the current state of open source threat
intelligence does not provide enough coverage. We tackled this problem by adopting a machine learning
model presented in previous work, and making it suitable for the amount of data we have dealt with in this
thesis. Machine learning however relies on statistical models to perform a specific task relying on specific
patterns. The sampling rate of the NetFlow data introduces an additional problem, as these patterns are not
always the same. We have overcome this problem by introducing a set of clustering techniques, validating
assumptions before drawing our conclusions.

9.5. Future work
The results derived from our analyses presented in this thesis have shown the incredible possibilities NetFlow
data presents for the academic world. NetFlow data can reveal various, malicious and benign, infrastructures
and connection patterns between source and destination. We have shown that by combining this rich data
with various threat intelligence sources, a whole new analytical perspective regarding adversarial behavior
can be explored. One limitation of our dataset is that the NetFlows are sampled. Unsampled data would
eliminate this problem and would show the exact patterns of malicious infrastructures. Analysis on unsam-
pled data would therefore provide more opportunities to observe adversarial behavior. However, our dataset
is already incredibly large, containing 4Tb of binary files. An unsampled version of this data would be 8192
times as large: 33,914Tb or 33Pb. This introduces a whole new set of challenges by itself.

Our results are very promising; we have been able to track and analyze malicious infrastructures regarding
three different Internet components, and their tactics, techniques and procedures. However, we still feel like
we have only just scratched the surface regarding the added value ISP grade NetFlow data can provide for
cyber threat intelligence and adversarial detection. Antivirus companies have been performing host-based
malware detection for a very long time, however to our knowledge detection on the backbone of the Internet
is not something which has been done to date. Cutting off adversaries before reaching the front door of the
Internet user, would be the ideal situation. ISP providers could play a big role in this, by analyzing NetFlow
data flowing through their routers to perform detection of malicious behavior based on previous misuse and
cyber threat intelligence. To overcome a location based bias any ISP would have, these providers could even
join hands and work on international collaboration forming the ’anti-virus’ of our Internet based society.
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