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Abstract
The Internet of Things (IoT) has grown dramatically over the past years. Largely autonomous, lightweight
devices with an internet connection have been integrated into many aspects of daily life; from consumer
products to industrial processes and from medical applications to critical infrastructures. Cisco predicts
that by 2023, more than half of the internet connections will belong to IoT devices. With the impact
of cybercrime ever growing, currently leading to a loss of 600 billion US dollar per year according to
McAfee, the Internet of Things has become an attractive target. Successful attacks have already been
demonstrated on smart cars, home security cameras, heart defibrillators, the Ukrainian power grid and
military drones, just to name a few. Attacks of this nature are expected to intensify as more ’things’
are connected to the internet, either by criminals looking for quick money, companies sabotaging com
petitors or countries waging cyber warfare. This demonstrates the need for strong security for IoT
devices.

Attacks on IoT devices can come from three distinct direction: The network, the software or the
hardware level. Where network protocols and software applications can be updated when issues are
found, this is not the case for hardware, which must be designed to be secure from the start. Further
more, the way IoT devices are installed in the field makes hardware based attacks particularly relevant.
Examples include the probing of traces and pins, fault injections to cause unintended behaviour, mod
ifications of the firmware, sidechannel analysis, stealing of data etcetera. Countering many of these
attacks requires integrity verification of the attachedmemory chips of a device, to make sure that the ap
plications have not been tampered with. Existing security measures implemented in high performance
processors, such as Intel SGX and more recently AMD SEV, can encrypt and secure the memory of
a system. These implementations however are not available for the lightweight microcontrollers and
processors generally found in IoT devices. ARM TrustZone is a common security solution found in
embedded devices to provide protection against untrusted software, but does not defend against hard
ware tampering. As such, a lightweight solution is required aimed at the constrained environments
presented by IoT devices, to ensure the integrity of external memory modules.

This thesis presents the Embedded Memory Security (EMS) module as a way to ensure the integrity
and authenticity of data and applications, as well as its confidentiality if required. It is targeted at
lightweight systems with a small hardware budget. The module sits ondie with the central processor
of the device and secures all data being transferred between it and external memory. Integrity is verified
through Message Authentication Codes (MAC) generated with SipHash for each memory transfer. The
lightweight block cipher Prince is used to provide confidentiality through encryption. Five variants of this
module with different levels of security and optimizations are developed and integrated into a processor
development platform. Benchmark runs showed that under realistic cache conditions, their impact was
limited to a 25% increase in execution time at worst. Three attacks were performed on the platform
with the modules, indicating that they protect against several types of hardware attacks on memory.
Finally, the hardware cost in area requirements was determined and found to be less than half of the
microcontrollerclass RI5CY core, excluding its caches, and only 3% of the Linuxcapable Ariane core.
In addition to the EMSmodules, two security extensions are proposed that utilize themodules to provide
a secure method of updating devices.
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1
Introduction

This chapter given an introduction to the topics discussed in this thesis. It first provides the motivation
by going over the increasing costs of cybercrime, relates it to the growth of the Internet of Things
and highlights the need for strong protections against hardwarebased attacks in Section 1.1. Next,
Section 1.2 covers existing security measures and points out the areas that are lacking. Section 1.3
then summarizes the contributions of this thesis and finally, Section 1.4 presents the outline of the
remaining chapters of this thesis.

1.1. Motivation
With the integration of ’smart’ functionality to everyday items, more and more devices are connected to
the internet. Utilities that were once standalone units such as home thermostats, cars and refrigerators
can now offer additional services to automate the daily lives of their owners. Similarly, in order to opti
mize processes in industrial and commercial settings, internetconnected controllers, security cameras
and even wireless sensor networks have become commonplace. Together, such devices make up what
is known as the Internet of Things (IoT); an ever growing collection of largely autonomous devices with
an internet connection. As with most things, there are those who wish to abuse this new technology for
their own gain at the cost of others: Criminals infecting many devices to form botnets, corporate espi
onage or sabotage of processes of competing companies and even fullscale cyber warfare between
rivalling nations; all highlight the need for strong security measures.

Figure 1.1: Cisco’s predictions of current and future growth of the IoT [1]

The growth of the IoT is expected to continue rapidly. Cisco estimates that the amount of connected
IoT devices will reach a total of 14.7 billion by 2023, 2.4 times as many as in 2018, and making up half
of the total internet connections [1]. This growth is illustrated in Figure 1.1. In particular, the amount
of internetconnected cars is expected to increase by 30% annually, with city and energy production
applications following at 26% and 24% respectively. These trends are shown in Figure 1.2. Along with

1



2 1. Introduction

the growth of the internet, so grows the cost inflicted by cybercrime. In 2014, McAfee reported a global
annual loss of 500 billion US dollars caused by this type of crime. In 2018 this figure was increased
by 20% to 600 billion dollars, making up 0.8% of the global GDP [2]. This indicates that combating
cybercrime should be a top priority.

Figure 1.2: Cisco’s expected application makeup of the IoT market [1]

Several attacks specifically targeted at IoT devices have already been demonstrated: Stuxnet for
example, caught the world by surprise when it infected computers all over the planet [3], while targeting
specific controllers to destroy Iran’s nuclear centrifuges. In 2016, the Mirai worm rapidly spread and
infected hundreds of thousands of IoT devices through weak default login credentials. These then
became part of a large botnet, responsible for some of the heaviest DDoS attacks on record [4]. Aside
from such largescale attacks, some have been shown to have much more personal consequences.
For example, researchers were able to take full control over a Jeep Cherokee car through the internet.
No physical tampering was required due to an insecure multimedia system with an internet connection
[5]. This enabled them to change the radio volume, toggle the windscreen wipers as well as disable
the brakes, transmission and the engine itself while driving. Similarly, Hanna et al. could intercept
data in a defibrillator and install custom updates [6]. If performed outside of a research setting, this
could pose a real threat to heart patients. Finally, in 2015, attackers managed to breach systems of
the Ukrainian power grid, showing the reallife consequences of cyberwarfware when 230.000 people
were left without power for several hours.

IoT attack vectors

Software HardwareNetwork

Jamming

Intercepting data

Weak authentication

Malicious node

Code injection

Virus/worm

Known vulnerabilities

Trojans

Probing signals

Fault/code injection

Side channel analysis

Physical damaging

Figure 1.3: Categories of attack vectors on IoT devices, with nonexhaustive list of examples

The above makes clear that there is not just one type of IoT device with one type of attack. In
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fact, there are many different types of attacks that take widely varying approaches. Based on their
primary attack vector, these can be grouped into three main categories: Network based, software
based and hardware based. An overview of these categories with some example attacks for each, is
shown in Figure 1.3. This varied nature of the attack types makes that there is no ’onesizefitsall’
solution to protect against all of them. Each type of attack requires specific countermeasures. Much
research has been performed on developing secure software and network solutions already, but the
hardware security is lacking. Furthermore, weaknesses in software can be fixed through updates,
whereas hardware cannot simply be updated once deployed. Finally, since IoT devices are typically
installed ’in the field’ unlike servers and personal computers, hardware based attacks are particularly
relevant. Fault injections can be performed to extract secret keys or bypass secure boot setups [7] [8].
Malicious firmware could be flashed to their memory through physical access [9], and data could be
falsified to report wrong values and manipulate several processes.

This thesis focusses on protecting IoT devices from hardware based attacks on their memory mod
ules. A large number of techniques to physically modify the data stored in memory are available and
easy to perform. Defending against these attacks by ensuring the integrity and authenticity of data
creates a foundation of trust, upon which additional measures can be constructed against remaining
threats.

1.2. State of the Art
The security of computer systems has long been a topic of research. Especially in server and desktop
applications, the advances in computing power have allowed for extensive security frameworks to be
developed. Intel’s Software Guard Extensions (SGX) for example, enables applications to encrypt
parts of the memory they are using [10]. Amongst other things, this protects them from hardware
based attacks on memory. It does however require applications to be specifically written to make us
of it, and is not available for low power chips and embedded devices. Similarly, [11] presents a way
to encrypt sections in RAM through software when no hardware support for this is available. It does
however come with a severe performance impact and does not protect against hardware attacks, since
it stores its encryption key in plaintext in the same RAM.

ARM TrustZone, on the other hand, is a technology that is implemented on several ARM architec
tures, specifically those aimed at mobile and embedded devices [12]. It sets up two environments; a
secure and a nonsecure world, on the same chip. TrustZone provides hardware barriers that enable
applications from the secure world to access all resources of the device, while the secure resources are
shielded from the nonsecure world. This way, unauthorized reads or writes to sensitive data in mem
ory by nonsecure applications can be prevented. TrustZone is however not intended as a measure
against physical hardware tampering and does not protect against any such attacks.

Several methods of remote attestation exist, which allow a remote ’base station’ to verify the integrity
of its nodes. The base station regularly sends a verification request to its nodes, which then perform a
verification action and respond. This action could be to unseal and use data stored in a Trusted Platform
Module (TPM) to generate a response, which can only happen when the device is in an identical state
as when it was sealed [13]. Similarly, selfchecksumming code could be used as is the case for SCUBA
[14]. Here, the base station orders the execution of a selfverifying application, which then calculates
a hash over memory contents. At the same time, the base station knows the supposed state of the
nodes and performs the same operations. If the reply of the node matches with what it should be, the
node can be considered verified. Such a setup does however require a significant amount of network
communications and processing power at both the node and base station side, especially as the amount
of nodes increases. Furthermore, there are attacks that may counter such a setup [14]. Finally, remote
attestation attempts to detect an attack, after it has taken place. It does nothing however to prevent
one from happening in the first place.

Some proposals have been made that aim to prevent attacks on memory, through security modules
that provide encryption and integrity verification. Suh et al. developed a module in 2003 that uses AES
to encrypt data and implements a hashtree with SHA1 [15]. The design includes timestamps that are
either stored onchip or in memory, in order to also protect against replay attacks. In 2006, Elbaz et
al. developed a module with the same goals [16]. Their design uses randomly generated tags that
are stored onchip for each memory address, and generates new keys for each running application.
When data is encrypted using AES to be written to memory, this tag is combined with the plaintext.
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As data is read back from memory and decrypted, this tag can be compared to the one stored onchip
to verify integrity without a dedicated MAC function. Finally, in 2013, Crenne et al. devised an elab
orate setup using AES in Galois/Counter Modes (GCM) [17], both encrypting and authenticating data
stored in memory. In this mode for each write to memory, a new keystream must be generated. This
is done here by producing and storing timestamps for each memory address on chip, keeping ID’s of
memory segments and also including their address itself. The proposed scheme is shown in Figure 1.4.

Figure 1.4: Write operation with AES in GCM mode using timestamps, addresses and segment ID’s to secure external memory
[17]

Though offering protection against hardware attacks on memory, none of these three implementa
tions can be called particularly lightweight regarding hardware requirements: AES was never intended
to be so, neither was SHA1, nor is storing 64 bits of data for each address in memory onchip. In the
heavily power and area constrained environments of IoT devices, the cost of these modules underlines
the need for a lightweight alternative.

1.3. Contribution
The main goal of this thesis is to understand the types of threats that IoT devices face, and to develop
a security solution against physical tampering. First, known attacks and existing countermeasures
were explored in detail to find what areas need addressing. Next, a hardware module was proposed,
developed and tested to physically protect the external memory modules of a device. Finally, security
extensions were proposed that can be added to the module in order to also provide a secure method
of transferring and installing updates. This thesis’s main contributions are listed as follows:

• Proposal of Embedded Memory Security (EMS) module: It is found that IoT platforms are
particularly attractive targets for and vulnerable to hardware tampering. Their external memory
modules are especially exposed to fault and code injection, malicious firmware, as well as probing.
To counter attacks targeted at such memory chips, a security module is presented that ensures
the integrity, authenticity and optionally the confidentiality of stored code and data. This module
is intended to serve as a base for further extensions to counter other types of attack.
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• Proposal of Security Extensions for EMS module: Two security extensions are proposed to
secure the transfer and installation of updates to IoT devices. The first proposes the use of a
unique device ID provide a custom, authenticated update, and the second proposes a method
to bind this new software to the specific hardware it is installed on. This is intended to prevent
attackers from forging malicious updates for other devices, even in the event they manage to
completely compromise one of them.

• Evaluation on Performance, Security and Hardware Overhead: Five variants of the presented
EMS module were implemented in Verilog. They were then added to the RAM interface of a
processor platform and both simulated and synthesized to an FPGA. Their performance impacts
were tested by running several benchmarks with multiple cache sizes and by measuring their
hardware area requirements. Their provided security was determined by performing attacks on
the platform.

• Comparison with stateoftheart: Two stateoftheart solutions that target the same objective
of EMS module are compared in terms of timing and hardware overhead.

• Survey on relevant attacks for IoT devices: A collection of attacks are grouped into one of
three categories, based on the main attack vector being network, software or hardware based.
In each category, four different attack types are discussed. The workings of each type is briefly
covered, some examples are provided and potential countermeasures are mentioned. This gives
an overview of the current threats to IoT security.

1.4. Thesis Organisation
The remainder of this report consists of 6 more chapters. The first two provide an overview of the
threats that IoT devices face in the form of different types of attacks, and the risk that these devices
pose to their surrounding when an attack is successful. The next two present the proposed Embedded
Memory Security modules, as well as their implementation and design choices. The last two chapters
present the results and conclusions of this thesis. A more detailed description of the chapters is as
follows:

Chapter 2 starts out with an overview of the Internet of Things, including common applications, de
vice hardware and typical software. Next, it discusses some relevant security goals and requirements.
Finally, three application categories are defined based on the severity of the consequences when a
device in a particular application is compromised.

Chapter 3 covers three categories of attacks that can be performed on IoT devices, based on their
primary attack vector; network, software or hardware based. It then explains the operation, gives ex
amples and potential countermeasures to four relevant ones per category.

Chapter 4 presents the solution developed during this thesis. It first discusses the concepts of
the developed EMS modules, followed by their operations, security considerations and possible exten
sions.

Chapter 5 covers the implementation of the EMS modules, as well as their design choices. Here,
the selection process of the used development platform are discussed, as well as the cipher and MAC
functions. It concludes with the setup and variants of the modules themselves.

Chapter 6 presents the results of this thesis. The developed modules are installed in the processor
platform and synthesized to FPGA hardware, as well as simulated while running several benchmarks.
Some attacks are performed against the platform with and without modules, and their hardware costs
are compared to stateoftheart solutions.

Chapter 7, finally, provides a summary of this thesis. The conclusions of the project are stated,
finishing off with potential future work.





2
Introduction to the Internet of Things

The Internet of Things (IoT)) is a rapidly growing collection of electronic devices that are connected
to the internet. These devices range from low powered sensor nodes, to fullfledged computers run
ning a form of Linux. Similarly, their responsibilities vary from innocuous home thermostats controlling
the temperature inside, to controlling parts of a nuclear powerplant. Based on their application, they
may be an attractive target to cyber criminals in order to steal information, breach privacy, sabotage
processes or simply to cause chaos. This chapter first given an overview of the Internet of Things,
including types of applications, commonly used hardware as well as software in Section 2.1. Next,
Section 2.2 explains four relevant security goals; Confidentiality, integrity, availability and authenticity
of data. Finally, Section 2.3 groups IoT applications into three categories, based on the severity of the
consequences when a device is compromised.

2.1. Internet of Things
This section will cover the basics of the Internet of Things. First, some typical applications are men
tioned, followed by the levels of hardware performance that can be found in such devices. Finally, a
list of software options is provided.

2.1.1. Applications
The application space of the IoT has become rather broad over the years and continues to expand. To
give a quick overview of where IoT devices are being used, some categories and examples are briefly
mentioned next:

• A wide variety of personal consumer electronics is available to make daily life easier and more
connected. Examples include home automation devices such as ’smart’ fridges and thermostats,
as well as connected and autonomous cars.

• Corporate and industrial applications include sensor networks and controllers to measure many
aspects of processes and their environments. These are then used to automate and optimize
production.

• Critical infrastructures depend on IoT devices in the form of cameras and electronic signs to
automate traffic control. Similar to the industrial setting, sensors are used in water treatment
facilities and power plants as well.

• Medical uses include defibrillators which can remotely report their (battery) status, as well as
remote surgery machines which allow surgeons to operate on faraway patients.

• Security devices are common in the form of smartcards, PIN terminals and cameras. These are
connected to the internet to, for example, verify authentications with some database.

• Military applications are expanding with wearable sensors and drones. These can be used to
record and share battlefield information with the commandcentre and units on the ground to gain
a strategic advantage.

Though this list is far from exhaustive, it should make the point that IoT devices are being integrated
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into a very broad and ever increasing range of applications.

2.1.2. Hardware
The devices mentioned above perform many different tasks in various environments. As such, their
hardware requirements vary widely as well. Having less processing power available than required
leads to problems, but having more than is needed is a waste of money, resources and energy. For
clarity, most devices can be grouped in one of three categories based on their hardware performance,
similar to other works [18]; lowend, mediumend and highend:

• The lower end of the processing power spectrum contains devices such as wireless sensor nodes.
These don’t need a lot of computational performance to collect and occasionally transmit data. As
they are often powered by batteries because of limitations in their installation locations, there are
strong constraints on their energy consumption. Figure 2.1 shows an example of one such sen
sor node: A Tmote Sky MTMCM5000MSP. These lightweight devices generally contain small
microcontrollers such as the 8bit Microchip ATmega128 or the 16bit Texas Instruments MSP430
as in the Tmote node; The latter running at around 8𝑀𝐻𝑧, coming with 10KB of RAM and 48KB
of Flash, whereas the former is even more limited [19].

Figure 2.1: Tmote Sky MTMCM5000MSP battery powered wireless sensor node, using a TI MSP430 microcontroller

• The medium level is taken up by devices that require a bit more processing power to function.
This power could be needed control displays and other user interfaces, process a larger stream of
data such as audio or otherwise perform more compute intensive operations. Home automation
as well as industrial PLC’s would be some example applications where these are relevant. A
more powerful microcontroller such as an STMicroelectronics STM32F4 and many others based
around a 32bit ARM core would be typical in such devices. These run at up to 180𝑀𝐻𝑧 and
come with up to 256KB of onboard ram and 2MB of flash, as well as additional interfaces and
accelerators [18].

• At the higher end of the processing power spectrum, one would find devices with fast internet
connections, video processing capabilities and/or large data storages. Examples of such appli
cations would be the multimedia systems in modern cars [20], IP cameras as well as the central
base station of home automation [9] or sensor networks [18]. Instead of being based around a mi
crocontroller, these instead step up to microprocessors with much higher performance and large
offchip memories. To name one, the Nest Thermostat shown in Figure 2.2, contains a Texas
Instruments Sitara AM3703 processor with an Arm CortexA8 core. It runs at 1𝐺𝐻𝑧, and comes
with 64MB of external RAM and 256MB of flash [9].
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Figure 2.2: The Nest Thermostat, containing a higherend microprocessor [9]

What kind of hardware will be used in a design is something that should be decided upon at early
stages in development. Once a designer knows the required functionality of the device to be developed,
this leads to a tradeoff between required processing power, unit cost, ease of development and energy
consumption. Software requirements follow a similar decision process, which will be covered next.

2.1.3. Software
Just like the hardware, the software running on IoT devices is not set in stone either. Though the hard
ware capabilities largely determine what kind of tasks it will be able to run, selecting suitable software
for the application greatly influences the time it takes to develop as well as its performance. A tradeoff
will have to be made regarding code size, execution speed, realtime requirements, security, etcetera.
As with hardware, the options can be split in three categories:

• The most lightweight option is to run applications baremetal without an operating system. This
works well when memory and processing performance are severely limited as is the case in
smaller microcontrollers. By not having an operating system, all system resources are directly
available to the applications with minimal overhead. One downside of this is that applications are
less portable and have to be manually written and optimized for each different microcontroller.
With multiple applications, determining which one gets to run when also becomes a task for the
programmer. Finally, complicated network stacks and software security measures might be too
large to fit the device’s memory. Baremetal applications are therefore mostly relevant at the lower
end of the power spectrum, such as wireless sensor nodes [18].

• Lightweight operating systems are a step up in capabilities and ease of development, when multi
ple tasks need to be performed and scheduled. They make it easier to develop applications which
can then run on other devices supported by the OS, with minimal changes to the code. Further
more, they may provide a full networking stack and other functionality. One such lightweight OS
is RIOT [21]. RealTime Operating Systems (RTSO) are also an option at this level. They are
intended to guarantee that tasks are completed before certain deadlines, which makes them ideal
for timingcritical applications such as industrial controllers. An example of one such operating
system is FreeRTOS.

• For the highperformance devices, a ’full’ operating system would be the best option. Linux,
android and Windows 10 IoT Core for example provide well known environments to develop
and run applications. They come with fast networking stacks, full multitasking, enable graphical
processing and support a wide range of high performance devices. Applications that could benefit
from these functionalities are IPcameras and devices with advanced graphical interfaces, such
as the entertainment system in smart cars [20].

As before, choosing which way to go is something that happens in the early phases of development
and is closely tied to the choice of hardware.
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2.2. Security Goals
Internet of Things devices, just like other computer systems, deal with software and data. They perform
measurements using sensors, run software stored in memory and transmit data to base stations and
other systems. Depending on the application, data or algorithms may be proprietary or otherwise
sensitive and should be prevented from falling into the wrong hands. Similarly, when it is critical that a
program runs as intended and has not been tampered with, this will need to be verified. Finally, when
systems depend on a constant stream of data whenever they need it, this too needs to be ensured.

The ISO/IEC 27000series of standards deals with information security. It provides a vocabulary
as well as recommendations on managing the security of code and data [22]. The standard defines
information security as ensuring the ’CIA’ triad, consisting of the concepts Confidentiality, Integrity and
Availability of information. Many security papers follow the same setup [23] [24]. These three concepts
are explained next:

• Confidentiality is defined as the ’property that information is not made available or disclosed to
unauthorized individuals, entities, or processes’ by the standard [22]. In the context of the Internet
of Things, it can prevent adversaries from reading the contents of memory or communication.
Encryption is a typical method to ensure confidentiality, where only those with knowledge the
correct key have access to the information.

• Integrity is defined as the ’property of accuracy and completeness’ [22]. In the context of the IoT,
verifying integrity ensures that data has not been changed either accidentally through hardware
or transmission errors, or on purpose by an adversary. Hash functions are a typical method to
verify the integrity of data.

• Availability is defined as the ’property of being accessible and usable on demand by an autho
rized entity’ [22]. Again, in the IoT context, ensuring availability means that data provided by
a device can be accessed whenever needed. Increasing the availability can be done through
robust communication channels and redundancy.

Authenticity is often regarded as an addition to these three, being related to Integrity:

• Authenticity is defined as the ’property that an entity is what it claims to be’ by the standard [22].
Verifying authenticity in the IoT ensures that the origins of data are known and correct. Digital
signatures and Message Authentication Codes (MAC) are used to guarantee the authenticity of
data. An adversary may be able to generate data with a correct hash to pass integrity checks,
but the authenticity verification will detect that it was not generated by a valid source.

Availability is mostly a concern for the communication of data. It is less relevant to data stored in
memory on the device as, unless the device is broken, the memory chip and its contents are present
and available. Integrity, authenticity and confidentiality on the other hand, are relevant both to commu
nication and local storage. The first two guarantee that data has not been altered and tampered with,
while the second ensures that it remains hidden from unauthorized entities. Implementing all three will
make it very difficult for an adversary to change and data of his choosing, without being detected.

Figure 2.3: Basic concept of encryption. Only those with the correct key can recover the original data.
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As mentioned above, encryption is widely used in computer systems to protect sensitive information
against prying eyes and ensure confidentiality. It works by performing certain mathematical operations
on data based on a secret key. Ideally, after encryption the result looks like random noise with no
discernible information of the original plaintext. Any change, even a single bit, in the plain or ciphertext
should lead to a completely different corresponding cipher or plaintext. Only those with knowledge of
the secret key will be able to undo the transformation and get access to the original data. The basic
concept is visualized in Figure 2.3. For a good introduction to cryptography in general the reader is
referred to [25].

Figure 2.4: Basic concept of Message Authentication Codes (MACs). Small changes in input or key result in different hash.

Similarly, MACs are a type of digital signature used to verify both integrity and authenticity of data,
and ensure that it has not been tampered with. They are based around a hash function with the addition
of a secret key. A hash function takes data of arbitrary length as its input and generates a fixed
length output through some mathematical algorithm. Inverting the operations, i.e. finding a message
that when hashed would lead to a given hash value must be unfeasible, making hashing a oneway
function. Furthermore, any change in the input data should lead to a completely different hash value,
thus allowing any tampering to be detected and integrity to be verified by comparing the hashes [25].
Though this would be enough to protect against basic attacks that alter data, it is not enough against
more determined adversaries. If an attacker can accurately alter specific data, he may also recalculate
and change its corresponding hash. In that case the data integrity may appear correct with a matching
hash, even though it was altered by an unauthorized entity. To counter this, MAC functions also take
a secret key as an input to generate their output. This way, only those who know the secret key could
have generated a particular hash value for a particular message. The concept is shown in Figure 2.4.
As long as the attacker does not know the secret key, generating a valid message and hash pair would
be unfeasible. MACs as such can be used to ensure both the integrity and authenticity of data.

2.3. Application Risk Levels
As mentioned before, the application space of embedded and Internet of Things devices is rather
broad. It ranges from small, battery powered sensor nodes to industrial controllers and from medical
devices such as defibrillators and implants to military information systems at the front lines. Similarly,
the risks they pose when compromised and subsequent security requirements vary wildly as well; from
expendable to absolutely critical. Where one device could leak privacy sensitive information once under
attack, another could disrupt an industrial process. While a hijacked weather measurement node could
cause somemistakes in weather forecasts, the compromise of medical equipment could pose a danger
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to human life.
As such, a distinction must be made between types of applications and their security demands.

Though different fields will use similar types of devices (Sensor nodes are in use by greenhouses,
weather agencies as well as the military for example) their realistic threats are vastly different. The rest
of this section will distinguish three different groups based on these criteria. Low risk IoT covers most
consumer electronics whose compromise will not lead to bodily harm. Next, medium risk will cover
devices that do have the potential to cause harm or even pose a threat to human life when taken over.
Finally, applications that could pose a danger to society and human life on a larger scale will fall in the
high risk category.

2.3.1. Low Risk IoT
The low risk category is composed of applications and devices that will not have ’major’ consequences
or cause physical harm when compromised. This category includes most consumer electronics that
are connected to the internet, as well as other applications that no vital systems depend on. Examples
of such devices are printers [26], smart fridges, thermostats [9], video baby monitors [27], etcetera.
Smart fridges can keep track of the products stored in it and alert the user when something is about to
run out or reach its expiration date, an example of which is shown in Figure 2.5. A smart thermostat
could learn the living rhythm of its owner and control the temperature in the house accordingly, and
IP baby monitors or security cameras stream their video through the internet, allowing the owners to
inspect their homes when away. Other applications, aside from consumer electronics, include sensor
networks for weather agencies and GPS trackers that transmit their location and can be used to track
the location of cars and other assets.

Figure 2.5: Interface of an LG smart refrigerator [28]

When devices from the group of consumer electronics are compromised, consequences may range
from a loss of functionality to a breach of privacy. As an example, IP cameras may allow an attacker
access to the video feed directly into the victim’s home. Similarly, through internet connected ther
mostats an attacker might learn the living patterns of a particular target to find out when the house can
best be robbed, as well as potentially raise the power bills by increasing the temperature when nobody
is home [9]. Though not directly lifethreatening, such a breach of confidentiality can lead to quite some
discomfort and paranoia. In the case of corporate devices such as sensor networks and GPS trackers,
there are some additional concerns. Aside from leaking sensitive data when a criminal or competing
company gains access to the nodes, the attacker could also have the compromised nodes transmit
manipulated ’sensor data’ in order to disrupt operations at the victim. This would break the integrity,
authenticity and availability of real data. If a GPS tracker can be made to transmit a wrong location or
stop transmitting at all, the asset that was being tracked may now be stolen. Here, too, no lives are
directly at stake, but the monetary losses may be substantial.

As the devices from the first group are commonly installed inside the homes of their users, the risk of
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physical tampering is rather low unless the individual is personally targeted. Even then, the tampering
must have been performed either before the device is delivered to the user, or the attacker will have
to break into the victim’s house to get access, both of which are not easily achieved. The main threats
these devices face are coming from the network, for example from automated worms such as Mirai
[4]. These generally exploit software vulnerabilities or default credentials left unchanged, to take over
these devices and use them to form a botnet for DDoS attacks [29]. Due to the scale of the production
as well as the profit margins of such devices, any changes to the supply chain is expensive. As such,
devices may be shipped out with software that is months to years old, containing by now commonly
known vulnerabilities to exploit [27]. In the corporate setting where corporate espionage and sabotage
are a real concern, sensor networks face different threats. The software running on these devices is
more tightly controlled by one entity, making software and defaultcredential based attacks less likely.
However, because of their reliance on the network to transmit their data, operations may be disrupted
by using jammers for example [30]. Furthermore, because of the decentralized nature of such nodes
it would be easier to gain physical access to a device and mount hardware based attacks to bypass
software security measures.

2.3.2. Medium Risk IoT
This category includes devices that could pose a real risk to human life when under attack, but not at
a scale that would fit them under very high risk. The medical field is an example of such an application
with pacemakers that can be read and updated wirelessly, defibrillators that report their health and
battery status and perhaps the most visual application: Remote surgery. In the latter case a surgeon
can control a set of robotic arms from anywhere in the world to perform surgery on a patient. Another
application is in intelligent cars. Modern cars have all sorts of communication technology on board,
ranging from overtheair updates to media consumption for the passengers. Furthermore the central
computer in a car, the ECU, is in charge of a lot of functionality. This includes engine management, ABS
braking systems, powered steering and even the clutch and transmission. Some industrial applications
controlling dangerous equipment could also fall in this category.

Figure 2.6: Result of a Jeep Cherokee being remotely taken over by researchers [5]

A person depending on medical devices could be at a very real risk when a pacemaker is remotely
hacked, as shown possible in [31]. Imagining what happens when the connection is lost during a remote
surgery because the hospital is hit by a DDoS attack is left as an exercise to the reader. Similarly, a car
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can do a significant amount of damage when the driver loses control. Remotely executed attacks on
the Jeep Cherokee pictured in Figure 2.6 have already been demonstrated, where researchers could
disable the brakes, block the steering wheel and control the throttle, leaving the driver helpless [5]
[20]. One well known attack on industrial processes is the American and Israeli Stuxnet worm. This
worm was used in 2010 to disrupt the nuclear efforts of Iran where the virus caused Iranian nuclear
centrifuges to destroy themselves without raising alarms [3]. In all of these cases, lives depend on the
correct operation of equipment and tampering or attacks may well kill someone.

Somewhat depending on the application, these devices may be targeted specifically. Aside from
personal attacks on someone by using their technology against them, amore determined attacker could
extort companies by threatening to use found exploits. A company is likely to pay up to avoid the public
outrage, if it became known that its cars can be made to kill its drivers. Such scenarios would make
it attractive to criminals to actively look for any vulnerabilities in selected devices. The Stuxnet worm
mentioned above was an example of a very specifically targeted attack, only affecting the particular
controllers in use by the Iranian facility. To perform it, the hardware of and the software running on
these controllers must have been extensively studied.

2.3.3. High Risk IoT
Finally, perhaps the most interesting, is the highrisk category. This covers devices that are likely to
be targeted specifically by a powerful adversary and whose compromise can present a great danger
to human life or society. Critical infrastructure is one example of such an application. This consists
of power plants and the electricity grid, road networks and their control systems and bridges, water
treatment facilities, trains, the internet itself etcetera. Similarly, industrial applications dealing with large
amounts of volatile chemicals, as well as military applications fall under this highrisk category due to
the inherent risks present.

The examples mentioned above are all important strategic targets. If a city were to be left without
power or clean water for extended periods of time, chaos would ensue. Attacks on such infrastructures
have already been recorded outside of laboratory settings. In 2015 for example, the Ukrainian power
grid was attacked and partially taken down for several hours, leaving hundreds of thousands of people
without power [32]. There was a military incident in 2011, when Iranian forces took control over an
American drone, landed it and reverseengineered its technology [33]. A picture of the captured drone
is shown in Figure 2.7. Stuxnet mentioned above showed that industrial controllers can be targeted.
This means the same holds true for those used in industrial processed with dangerous chemicals.
Forcing those to vent toxic materials into their surrounding could cause an ecological disaster.

Figure 2.7: Picture of the US drone that was captured by Iran [33]

Because of their strategic value, these are attractive targets to both terrorists and rivalling countries
waging cyber wars. Especially the latter will have a great deal of resources and manpower available to
research and abuse potential weaknesses in an enemy’s systems. They would have highend equip
ment to analyze hardware, highperformance computer systems to run tests on software and whole
teams within secret service departments working on analyzing networks. As such, devices in critical
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applications require the highest possible level of security.





3
Overview of Relevant Attack Types

Now that the properties, applications and risks associated with the Internet of Things have been cov
ered, this chapter will discuss several attacks that threaten such devices. These attacks are grouped
into three categories, based on their main attack vector. In each category, multiple attack types rele
vant to the IoT are explained, some examples are provided and, if any, potential countermeasures are
mentioned. Section 3.1 first covers attacks from the network level. Next, Section 3.2 presents attacks
targeting the software. Finally, Section 3.3 goes over four attacks that are performed directly on the
hardware of a device through physical access.

3.1. Network Attacks
This section will cover four network based attacks relevant to the Internet of Things. Such attacks
can be performed remotely, without needing access to the target device. As they are typically mass
produced, many identical devices are put at risk when an attack is found successful against one of
them. Furthermore, targeting the network itself can disrupt the operation of all connected IoT devices
in various ways. The methods with which a device is attacked depends on the specific goals of the
attacker, be it stealing data, sabotaging a rival company or setting up a botnet.

First, Section 3.1.1 will explain port scanning and bruteforcing credentials, a common vulnerability
that is often exploited by later attacks. Next, Section 3.1.2 will cover some ways an attacker can
accomplish a Denial of Service (DoS) by limiting the availability of devices connected to a network.
Section 3.1.3 shows how battery powered nodes can be targeted specifically to drain their batteries
and shorten their operational lifetime. Finally, Section 3.1.4 will show some examples of what a Man in
the Middle (MitM) attacker could do once he has gained access to a node within a network.

3.1.1. Scanning/BruteForce
By far the easiest way to take control over a device, is by having valid credentials and simply logging
in. To allow users and/or owners of an IoT device to control its actions, there must be some way to
access it over the network. There are several ways to do this, but for their security they all rely on one
fundamental criteria: The correct combination of username and password must only be known to legit
imate users. Once this criteria no longer holds and an attacker gains knowledge of these credentials,
all sense of security is lost. He can login as a valid user and take full control without needing to resort
to any more complicated exploits and attacks.

There are plenty of tools available to attackers to figure out what kind of login service is available
on a device. One such example is the open source 𝑛𝑚𝑎𝑝 application [34]. Nmap is a network scanner
that is meant to find hosts connected to a network, as well as finding out what services are running
on said hosts by scanning it for any open ports. An example output of nmap is shown in Figure 3.1.
Though it is developed for legitimate purposes, an attacker could use it to find targets on a network as
well. Once a target and its interfaces are identified, the next step is to get credentials.

Though the aforementioned criteria where only legitimate users know the password should be a
good protection in theory, in practice it often does not hold. Many consumer IoT devices are shipped
with default account names and passwords which cannot be changed or disabled by the endusers.

17
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Figure 3.1: Example output of an nmap run, note the ssh service on port 22

Furthermore, even if a password is unique to a device, the algorithm with which it was generated
may be weak, allowing an attacker to guess the password with little effort [27]. As such, bruteforcing
passwords is a realistic strategy.

Examples
Researchers at Rapid7 [27] found several vulnerabilities in commercial video baby monitors that are
trivial to exploit. Many of them were caused by known default login credentials to the devices, enabling
attackers to take control over the device through ssh or telnet. Common username and password
combinations include 𝑎𝑑𝑚𝑖𝑛 − 𝑎𝑑𝑚𝑖𝑛 and 𝑢𝑠𝑒𝑟 − 12345, making it easy to bruteforce.

In 2015, researchers demonstrated that they could take full control over a Jeep Cherokee car over
the internet, through an insecure media entertainment system [5]. This system generates a ’unique’
password based on the time, down to the second, it was first turned on. Though this would seemingly
leave many options, they estimate that it would take less than half an hour to bruteforce a year worth
of passwords. Furthermore, it appeared that the system time is set based on received GPS time. If this
time could not be determined before the password is first generated, i.e. within a minute or so as was
the case during their experiment, it would default to a hardcoded time, meaning brute forcing is trivial.

In 2016, the Mirai worm rapidly managed to infect hundreds of thousands IoT devices which it used
to perform some of the largest DDoS attacks on record [4]. It would scan random IP addresses for open
Telnet TCP ports 23 and 2323 and, when found, would enter a bruteforce phase. During this phase, it
attempted to login with 10 common default username and password combinations picked from a list of62 pairs. After Mirai’s source code was published online, several derivatives using the same methods
have been active as well.

Countermeasures
To protect against scanning and bruteforce attacks, there are some countermeasures.

Firstly, an attacker can not attack what does not exist. Closing ports and disabling services that are
not absolutely required for operations and maintenance, limits the possible attack surface of a device.
Unencrypted protocols such as Telnet should be avoided for administrative access and ssh should be
used instead.

Second, a limit could be put on wrong login attempts after which there is an increasing delay before
it can be tried again. This would prevent an attacker from rapidly trying many different credentials.
One downside of this technique is that it might lock legitimate users out of the device while an attack is
happening.

Finally, strong and unique login credentials would counter bruteforce attacks. These would include
random usernames and passwords, not generated through some easy to guess method [27]. Better
yet, a public/private keypair could be used to log in to ssh, where each device generates its own keys
upon first activation.
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3.1.2. Denial of Service
The classic image of a Denial of Service (DoS) attack is to flood some high level website with millions
of requests. This then overwhelms the network and servers and consequently limits or completely
blocks any connections from legitimate users. In the context of the Internet of Things, the techniques
behind a DoS attack can be quite different, though the result is the same: The availability of a service
is drastically reduced. When a network of sensor nodes in a greenhouse is targeted by an DoS attack
for example, climate control systems relying on the data of said sensors may fail and crop yield may
be affected.

The reasons for an attacker to perform a DoS attack may vary. A company could try to sabotage the
profits of a rival, it may be part of an extortion scheme where the victim must pay the attacker to regain
access to their assets [35], or perhaps it is part of a political statement as were some DoS attacks on
government websites by Anonymous and other groups [36]. Either way, this type of attack poses a real
threat to IoT networks.

Examples
Often IoT devices are the edge components of a larger system, with a central server with which they
communicate. As such, targeting this central server can bring down the entire network. This may be
done through a Distributed DoS (DDoS) attack, utilizing many devices to flood the server with traffic
and bring it down similarly to attacks on websites mentioned above [37].

IoT devices in the field that communicate and connect to the internet wirelessly are at risk of jam
ming. Any radio communications could be disrupted by another source, transmitting at the same fre
quency at the same time. Jammers may be either proactive; transmitting at random frequencies at
random times, or reactive; listening to the wireless channel and begin transmitting at a given frequency
once a packet transmission is detected [30].

Countermeasures
Countermeasures against DDoS attacks targeted at websites are a well studied topic. Some solutions
range from dynamic load balancing with extra servers, to requiring a valid response from the attacker
to a computational challenge before the server looks at their messages. These may however be less
suitable to IoT applications. Researchers in [37] show how to use a ℎ𝑜𝑛𝑒𝑦𝑝𝑜𝑡 to direct any distributed
DoS attacks away from the actual base station.

The amount of research performed into countering jammers, too, is extensive. Researchers in [30]
let other nodes in the network transmit decoy messages to which the reactive jammer may respond,
allowing other nodes to transmit their real messages in another channel. Namvar et al. propose an
evolutionary algorithm to maximise successful message transmissions by spreading its power over the
available channels [38].

3.1.3. Denial of Sleep
Denial of sleep is an attack specifically targeted at autonomous, battery powered sensor nodes. It is in
a way a type of Denial of Service attack in the sense that it reduces availability of a system. Its effects
however are longer lasting and once the damage is done, it requires a costly and manual labour to
become operational again. As such they deserve to be covered in a separate section.

As they run from batteries, low power sensor nodes spend most of their time in a nearly off state
to reduce power consumption to a minimum. Only at specific intervals or when receiving a specific
command do they wake up, perform their measurements, and transmit their data before going back to
sleep. This allows them to be placed in hardtoreach places without nearby power outlets, while still
remaining operational for several years [19]. On the other hand, this does make them vulnerable to
attacks specifically aimed at preventing them from entering sleep mode and as such rapidly draining
their power supply. When their battery has been drained, they will remain inoperable until someone is
sent by to replace it.

Examples
The goal of a sensor node is to occasionally turn on its radio, transmit some measurement data and
power back down to sleep mode. After sending its data, it waits for a reply from the base station to
verify that the data was correctly received. If this reply is blocked, for example by jamming, the node
will retransmit its data. Researchers in [39] provide several methods to do just that. By keeping the
node and its radio awake, precious power is consumed, draining its batteries.
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Countermeasures
As the attack in practice is a specific type of jamming, the same countermeasures mentioned above
in Section 3.1.2 are valid. Alternatively, if their environment allows it, devices could be supplied with a
method to generate their own power, for example with a small solar panel.

3.1.4. Man in the Middle
A Man in the Middle attack (MitM) is a rather broad term in the context of IoT devices. In short, a MitM
attack is when an adversary can intercept data transmitted between two devices unbeknownst to them,
at which point it can record or manipulate it. The goal here could be to steal sensitive information, to
tamper with measurements or simply to prevent the information from reaching its target.

Examples
One relevant type of MitM attack on IoT devices are so called Sybil nodes. During a Sybil attack, an
attacker impersonates legitimate devices in the network, in order to sabotage the effectiveness of the
system. Compromised or custom nodes are inserted into the network, and communicate with legitimate
nodes as if they are part of the network. Zhang et al. provide an overview of different types of Sybil
attacks [40], and an overview is given in Figure 3.2. The main goal of these attacks is sabotage of
processes.

Figure 3.2: Schematic overview of types of Sybil attacks [40]

Countermeasures
Several countermeasures against Sybil attacks exist. SCUBA, for example, lets the base station verify
the integrity of its nodes to detect if one has been compromised [14]. Similarly, digital signatures can
be used during communications, to ensure that data originates from a legitimate source and has not
been tampered with. or additional and more advanced solutions, the reader is referred to the following
paper, covering Sybil detection methods and defences [40].

3.2. Software Attacks
This section will cover three typical softwarebased attacks. Rapid7 found that IoT devices are often
shipped and sold with outdated software [27]. As they are massproduced, this leads to many potential
targets that run software with known vulnerabilities. Once an attacker manages to run some malicious
software on a target device, there are various ways to take control over it and the consequences could
be severe. As with the network based attacks mentioned above, we will start with a particular vulner
ability in applications that is often abused as part of an attack, the buffer overflow, in Section 3.2.1.
Next, perhaps the most famous types of software attack, worms and viruses, will be discussed in Sec
tion 3.2.2. Finally, some techniques regarding firmware injection will be mentioned in Section 3.2.3. For
more types and insight in software based vulnerabilities and attacks, the interested reader is referred
to one of many taxonomy papers [41] [42] [43].
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3.2.1. Buffer Overflows
Software attacks are generally possible because of some vulnerability in the implementation of the
programs running on a device. These vulnerabilities can allow an attacker to crash a process, run
malicious code or bypass security measures. A large and constantly growing list of Common Vulnera
bilities and Exposures (CVE) in various applications is kept by Mitra Corporation [44]. In 2015, Papp et
al. went through this list and created a filter to focus on entries related to embedded systems [41]. This
way they proposed another taxonomy of attacks to such systems based, amongst others, on the type
of vulnerabilities exploited to work. Similarly, researchers in [45] identify seven common causes of se
curity problems that arise from coding mistakes as well as ways to prevent them. These bad practices
range from failing to validate inputs to badly handling errors, by having them expose too much infor
mation to possible attackers. Finally, both [46] and [43] mention buffer overflows as common methods
to make programs perform unwanted behaviour in the context of embedded devices, supported with
several CVE entries.

Buffer overflows are a particular type of vulnerability where failing to check and sanitize inputs can
result in unintended parts of memory being overwritten, by providing a larger input than expected. Doing
so on purpose could allow an attacker to change the return address of a function, or even to inject
executable code directly [47]. Exploiting a buffer overflow can have effects ranging from crashing a
process, all the way to privilege escalation and remote code execution [46]. A lot of these vulnerabilities
can be avoided by adhering to good programming rules [45].

Examples
At the time of writing, there are nearly eleventhousand CVE entries related to buffer overflows men
tioned in Mitre’s database [44]. An example of one such entry can be seen in Figure 3.3. The reader
is referred to this list for a complete overview of known attacks, though some will be mentioned here
as well.

Figure 3.3: Example CVE entry of a buffer overflow (CVE20209276)

One example where a buffer overflow vulnerability can have severe consequences was presented
by Hanna et al. [6]. They discovered multiple vulnerabilities and attacks against a defibrillator, amongst
which a buffer overflow in the firmware update software. Exploiting it allowed arbitrary code execution,
leading to dangerous situations for patients.

In October 2016 the source code of the Mirai worm, infecting many IoT devices and responsible for
some of the largest DDoS attacks so far recorded [4], was published online. Interestingly it was found
that the worm itself suffered from multiple vulnerabilities, including a buffer overflow. Exploiting it would
crash the process, keeping it from attacking further [46].

Countermeasures
As buffer overflows generally originate from implementation errors, this is also where best to fix them.
By performing proper input validation, any inputs that are too large or otherwise of the wrong type may
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be filtered out. Good coding practices without relying on the assumption that inputs will always be
within an expected range, can prevent buffer overflow vulnerabilities from occurring [45].

Another method are to use so called stack canaries [47]. They can be implemented through a basic
compiler patch and allow for buffer overflows to be detected and even countered, without requiring to
change any source code. One way implement them is by putting a certain value, the ’canary’, before
the return address in memory. Then before the function returns, the value of the canary is checked to
see if it has been overwritten by a buffer overflow. If it has, an alert can be triggered.

3.2.2. Viruses and Worms
Viruses are perhaps the most well known software based threat to computer systems, mostly because
they affect the general users. They are selfreplicating programs that spread by attaching itself to
another file or program. Whenever this file is opened or the program is ran, so is the virus, allowing it
to spread and infect more files. When an infected file is stored on a portable storage medium such as
flash drives, the virus may spread to other devices when the drive is connected to them. In the early
days of personal computers, infected bootsectors of floppy diskettes were a common way for viruses
to spread [23].

Worms are a threat similar to viruses, the main difference being their method of spreading and
infecting other devices. Where viruses use files and storage media, worms spread themselves over a
network [42]. They could be automated bots looking to login and install itself on unprotected devices,
massemail themselves to potential victims hoping they will download the attachments or otherwise
spread themselves over the internet. The fact that they spread through a network could also classify
them as a networkbased attack, but due to their similarities to viruses as well as the fact that they are
based around malicious software, they are covered together.

Once a virus or worm has infected a device, it can deploy its payload with various effects: It may
delete or alter files, leak sensitive information or even demand a ransom for encrypted harddrives.
Because of the nature of IoT devices; autonomous, lightweight and with an internet connection, worms
in particular are a real threat. Some examples of and countermeasures to some known attacks are
provided next.

Examples
In 2010, the Stuxnet worm marked a new era in digital warfare when it infected and destroyed several
of Iran’s nuclear centrifuges. Though neither admit being involved, it is regarded as being developed by
the United States and Israel to delay Iran’s nuclear program. Initially infecting its first targets through
USB drives similar to a virus, it would then spread over local networks and infect all windows PC’s
it could reach by using four different zeroday exploits in Windows. It would then look for particular
controller with specific configurations, ensure it was a valid target, and then install its payload. This
way, though infecting over 100.000 machines worldwide, only the controllers in Iran are known to have
been affected by the specific payload. Once installed, the payload would let the centrifuges destroy
themselves by spinning at excessive speeds, while replaying older normal data to the operators [3].

TheMirai worm asmentioned before rapidly infected many IoT devices to perform largescale DDoS
attacks in 2016. It spread by scanning random IP addresses for open Telnet ports, and would then
attempt to login with a set of default username and password pairs. It specifically targeted unprotected
consumer electronics and IoT devices such as a large number of IP cameras [29]. Once a vulnerable
device was found, it would report back to a control server and then download and install some device
specific malware on it. Afterwards it would take steps to hide itself, disable all other processes using
Telnet or ssh to block other worms from infecting the device, and then wait for commands while scanning
the internet for new targets [4] [46].

In 2017, the WannaCry worm infected over 200.000 computers worldwide. It spread using the
EternalBlue exploit affecting Windows computers, which was developed by the NSA and became part
of a leak in 2016. Once it had infected a device, it would encrypt data on its hard drives and then scan
the network for new potential targets. It would then display a message demanding the victim to pay
a sum of bitcoins to some given wallets in order to receive a decryption key. This way it crippled the
British National Health Service and caused several factories to shut down for some time [48].

Countermeasures
There are several methods to prevent viruses and worms from spreading, a few of which will be briefly
mentioned next:
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Figure 3.4: Screenshot of ransom message from the WannaCry worm [48]

As with other softwarebased attacks, the most straightforward method is to regularly apply software
updates. These updates may fix potential security issues as they are found, preventing any malicious
software from exploiting them. Though this may not be enough if the worm is using zeroday exploits as
was the case for Stuxnet [3], Microsoft did release a patch against the vulnerability used by WannaCry
two months prior to its attack [48] .

Worms that rely on unsecured services such as Mirai can be simply stopped by changing any default
login credentials [4].

Antivirus software can detect the operations of worms and viruses, and alert the user or stop the
process. Here, too, regular updates must be applied to keep the detection database up to date with
the latest and newest threats.

3.2.3. Firmware Injection
Vulnerabilities in software may allow an attacker to run arbitrary code. When this gives him access
to the device’s update mechanisms, firmware injections are possible. Here, custom firmware can be
provided and installed as an ’update’, after which the attacker has full control over the device. If the
update mechanisms themselves have weak security, e.g. if updates are fetched in plaintext from a ftp
server, legitimate updates can intercepted, inspected for weaknesses and modified.

Examples
Cui et al. showed a clear example of insecure software allowing access to the update mechanisms of
an HP printer [26]. Files to be printed could be provided to the printer either over the network or directly
through USB. The printing subsystem, however, was coupled with the firmware update mechanism.
The researchers were able to provide a modified file to the printer as a print job, which then detected it
being a firmware update and went on to install it without need for any authentication.

In this case, they extracted the installed firmware through a hardware attack, by removing the flash
chip from the device and dumping its contents as shown in Figure 3.5. The firmware could then be
studied for vulnerabilities. They estimate tens of millions of devices to be vulnerable to such attacks.
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Figure 3.5: Physical removal of flash chip from a device to dump and study its firmware [26]

Countermeasures
Arm TrustZone [12] could be used to separate the different subsystems from security critical compo
nents such as the update mechanisms. This way, only updates that are signed by the manufacturer can
be installed. Similarly, encrypting the firmware updates would make it more difficult to find vulnerabili
ties if the download was intercepted, and to generate valid modified updates. Note however, that being
signed and encrypted does not necessarily imply that the official update will not have vulnerabilities to
exploit anyway.

3.3. Hardware Attacks
Hardware based attacks form a completely separate group from the previous two. Where network and
software based attacks overlap and can generally be performed remotely, hardware based attacks per
definition require the attacker to have access to the device. Although this puts a limitation on what
types and how many devices can be attacked at once, it does give the attacker a strong advantage.
Devices can be analysed in detail for any open vulnerabilities without having to rely on known bugs in
its software.

This section will cover several attack types and explain how they work, give some examples and
discuss what is already done to protect against them. Probing is mentioned first in Section 3.3.1, where
an attacker manipulates any available interfaces of a device. Following this, fault injection is discussed
in detail in Section 3.3.2. Sidechannel analysis is used to passively learn more about what happens
inside a device by closely observing its surroundings, and will be covered next in Section 3.3.3. Finally
hardware trojans, which are a completely different type of attack, will be mentioned in Section 3.3.4.

3.3.1. Probing
Embedded devices generally have some unused ports on their boards that were used for debugging
by the designers. When these ports are left active and available on production versions, these may
be accessed and abused by potential attackers. Especially since they give lowlevel access to the
device, often bypassing software security measures, they are an attractive target. Some examples
and countermeasures against their missuse are discussed next.

Examples
Most if not all interfaces of a device can be hooked up to an oscilloscope or logic analyser to observe
the data flowing through them. If done on the traces to and from external memory, for example, the
contents can be recorded without needing to read directly from the memory chip.
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Figure 3.6: Internals of a Seagate GoFlex NAS, note the exposed UART on the bottom right

Some interfaces are simply leftovers from development. UART to debug, JTAGs to program, SPI
for external flash that was scrapped later in the design, all may still be available by probing the right pins.
An example of this can be seen in Figure 3.6. This picture shows the main circuitboard of a Seagate
NAS, with exposed UART headers in the bottom right. Connecting wires to it as in the picture, instantly
grants access a root shell on the device without any passwords. Rapid7 reported similar situations
for most commercial IoT devices such as IP cameras [27]. With this level of access, all other security
measures can be considered defeated.

Microcontrollers are typically able to boot from multiple sources, selected by providing specific volt
ages to external boot pins during startup. These options can include booting from internal flash, from
an external SPI connection, through UARTs, USB etcetera. One example of these boot pins being
used to load custom firmware, is the research by Hernandez et al. on the Nest smart thermostat [9].
By forcing a boot from USB, they were able to circumvent any firmware verification of the device.

Figure 3.5 shows how the researchers of the firmwareinjection attack on printers, mentioned above
in Section 3.2.3, removed the printer’s flash chip. This chip was then hooked up to an arduino in order
to extract its contents and study the firmware for vulnerabilities.

Countermeasures
Though the obvious solution of not routing pins and traces on a board for functionality that won’t be used
in the final design could solve the issue, it is not ideal. Doing so would make development more difficult
and require additional production runs. One option is to include security fuses in the chips that can
be burned through upon programming, similar to singlewrite readonly memory. After development,
these fuses can be burned through to physically and permanently disable the interface.

Some interfaces however cannot be disabled because they are needed for operation. These include
the pins and traces to external memory modules, that contain the device’s firmware and RAM. In order
to protect these modules and their contents, additional measures are needed.

3.3.2. Fault Injection
Fault injections are a type of hardware attack where the attacker deliberately induces a fault in a system,
in order to observe the response and gain access to secret information [49]. The goal of the attack could
for example be to change bits controlling security checks, privilege levels or bootloader addresses. By
doing so the attacker may be able to skip steps during an encryption algorithm and leak information
about the secret key. Alternatively it could allow the attacker to circumvent security measures against
booting from unknown sources, and insert his own modified programs. Many ways of performing fault
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injection attacks exist in the literature with varying levels of accuracy, complexity and cost. Some will
require expensive lab equipment, whereas others do not needmuchmore than a light bulb. This section
covers some known techniques as well as some countermeasures. For a more extended classification
of attacks and countermeasures, the reader is referred to BarEl et al. [50].

Examples
One well known method of fault injection is by manipulating the power supply of a device. When the
supply voltage is lowered, the setup time of logic gates increases. With the clock frequency being
kept the same this will eventually cause the slower logic paths to fail and a fault to occur. Barenghi
et al. used this technique to break the AES cipher running on a common 32𝑏𝑖𝑡 ARM processor [7]
without any special equipment. This type of attack can be extended with correctly timed power spikes
as shown in [51]. There, the authors created overvoltage spikes while writing data to an RFID tag,
causing it to store corrupted data to its memory. Similarly Timmers et al. were able to load values of
their choosing into the program counter register of a commercial ARM SoC by glitching the power line
during a load instruction [8]. This allowed them to bypass any secure boot mechanisms built into the
system. Though more advanced than the first example, this type of attack can still be performed with
inexpensive hardware.

Manipulating the clock of a device is a related technique. By increasing the frequency or inserting
clock glitches, an effect similar to that of a reduced input voltage can be achieved: Slow logic paths
can be made to fail by not allowing enough time for their correct setup. Balasch et al. demonstrated
an example of this in [52], where glitching the clock input of an 8𝑏𝑖𝑡 AVR microcontroller enabled
them to replace and skip instructions. It is clear that this type of attack is only possible on devices
with an accessible external clock signal, which limits its applicability on modern embedded systems
with internal clock generation. Furthermore, the equipment that is used to generate the clock glitches
needs to run at a (much) higher frequency than the targeted device.

Another method to generate faults is by overheating the target device, causing the internal com
ponents to become unreliable. The authors of [53] broke the protection mechanisms of Java Virtual
Machines by inducing errors in a commercial desktop PC’s DRAM. After considering waiting for cosmic
rays to cause memory errors and suggesting to buy a small oil company to get access to its restricted
AmericiumBeryllium source, they decided against this on the grounds of not having the time to learn
the oil drilling trade. Instead they showed that the same was possible with nothing more than a ther
mometer and an incandescent light bulb aimed at the DRAM chips. A picture of their experimental
setup is shown in Figure 3.7.

Figure 3.7: Experimental fault injection setup using the heat from a common light bulb [53]
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Further, more advanced methods include inducing faults through electromagnetic radiation. In
aerospace applications electronics are continuously bombarded by cosmic rays and electromagnetic
waves. These rays and waves have enough energy to trigger transistors in integrated circuits, causing
bit flips and subsequent transient errors [54]. As transistors have become smaller and smaller over
the years, these effects now also play a role at groundbased electronics. In [55], Moro et al. show
in detail how to affect a micro controller by purposefully exposing it to electromagnetic waves gener
ated by highvoltage pulses through a coil. Similarly, in [56] the authors use electromagnetic pulses
to set and reset Dflipflops inside an FPGA. They then propose a samplingfault model to explain the
resulting experimental observations. This method of fault injection does not require the attacker to al
ter anything about the targeted device, thus leaving no traces. Pulses can be sent into the device by
attaching probes to its housing. Figure 3.8 shows their advanced setup. It includes 3axes vision and
positioning systems, as well as an oscilloscope and pulse generator.

Figure 3.8: Experimental fault injection setup using electromagnetic pulses directed at a device [56]

Optical fault injection is related to the aforementioned EM method in that it uses waves to flip bits in
integrated circuits. This time however the waves are generated by UV light, lasers or a camera flash
unit as used in [57]. There, Skorobogatov et al. decapsulate the target chip to gain access to the chip
surface itself, which they call a 𝑠𝑒𝑚𝑖 − 𝑖𝑛𝑣𝑎𝑠𝑖𝑣𝑒 attack as the passivisation layer of the chip is left
undisturbed. They were able to change any individual bit in an SRAM cell to their choosing by focusing
a flash of light at the correct area. The limiting factor in their attempts was the accuracy achievable
with their camera flash as it does not produce light of only one wavelength, thus making it difficult to
aim. This limitation was solved by using a commercial laser pointer instead.

The last group of hardware fault injection attacks that will be covered here are paradoxically software
based. Although the attack itself is not performed with tools directly influencing the hardware of the
targeted device, the faults themselves are very much hardware based. One well known example of
such an attack is 𝑅𝑜𝑤𝐻𝑎𝑚𝑚𝑒𝑟. Its operation is based on the increasing memory cell density allowing
more and more data to be stored in a single DRAM chip. As the DRAM cells get smaller and closer
together, parasitic coupling effects between cells become relevant. This leads to a vulnerability where
memory rows are influenced by what happens to adjacent rows. Kim et al. showed in 2014 that data
in one DRAM row can be altered and corrupted by repeatedly accessing a neighbouring row, and that110 out of 129 of the tested memory modules is affected by this vulnerability [58]. This poses a security
problem where one malicious application can influence the data of any other application.
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Countermeasures
As fault injection attacks can take a wide variety of forms, so do their countermeasures. Some of these
methods will be briefly covered next.

Supply voltage detectors can be used in the chip to detect variations in the supply voltage and raise
an error when the input voltage exceeds certain thresholds [50]. A frequency detector can be used the
same way to detect any variations in the clock signal [50]. This way an attack can be detected as it
occurs, allowing the device to reset or shut down. Similarly, decoupling capacitors may be used as a
buffer against sudden input spikes by keeping the supply voltage stable.

Countermeasures against the more advanced EM and light based fault injection techniques may
include using dualrail logic and tamper sensors inside the chip. When a fault is generated in one of the
lines, it can be readily detected by comparing it with the other line [57]. A light detector could be one
type of tamper detector which is triggered when the chip is decapsulated for the attack [50]. Similarly,
some type of wire mesh in the top layers of the silicon could be used to detect a change in capacitance
once the packaging is removed.

Another possible countermeasure to these attacks would be either hardware or software redun
dancy [50]. Redundancy here means that the same operation could be performed multiple times,
either in parallel in hardware or sequentially in software. Under normal circumstances the results of
both executions should be identical. If they somehow differ, something must have happened and an
alarm can be raised. This redundancy does come at the cost of either an increase in hardware size
and power consumption, or an increase in execution time.

Finally in the case of the aforementioned 𝑟𝑜𝑤ℎ𝑎𝑚𝑚𝑒𝑟 attack, the authors proposed several possible
solutions [58]. These range from the manufacturers making ’better’ chips to frequently refreshing all
rows in memory to prevent them from influencing each other. The authors’ preferred solution is referred
to as PARA (probabilistic Adjacent Row Activation) where each time one row is accessed, there is a
probability that one of its adjacent rows will be refreshed. This would prevent a 𝑟𝑜𝑤ℎ𝑎𝑚𝑚𝑒𝑟 attack as
a row becomes likely to be refreshed when its neighbour is frequently accessed, without the overhead
costs of constantly refreshing each row.

3.3.3. Side Channel Analysis
Though the techniques mentioned in the previous section seek to expose hidden internal behaviour
of a device by actively generating faults, SideChannel Analysis (SCA) is all about gaining information
about the internal operations through passive means. By carefully observing the targeted device and
its surroundings all sorts of information may be leaked about internal states, cryptographic keys or other
secret data. Where fault injection induces variations in voltage, temperature or electromagnetic fields,
SCA instead closely monitors these points for variations caused by the device itself.

Examples
In 1998, Kocher et al. were the first to perform powerbased sidechannel attacks. They recorded the
power consumption of a device performing DES encryption [59], of which an image is shown in Figure
3.9. Based on the data and cryptographic key, conditional statements were sometimes executed and
sometimes skipped, which is visible in the power consumption. This way, they were able to extract
secret information, and to break the security of the device.

Figure 3.9: Variations in power consumption of a smart card during a DES operation [59]

Since then, sidechannel analysis methods were developed based for example on differences in
execution time [60], variations in the electromagnetic field around a device [61] and many others.
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Countermeasures
Countering sidechannel analysis is a rather broad and implementation specific field. One basic exam
ple to counter power and timing based analysis is performing redundant computations. As mentioned
above, these differences are caused by software branches or hardware being used or not, depending
on the secret information. By always executing all branches but only using the resulting data if needed,
all runs will have the same duration and power consumption no matter the data, at the cost of addi
tional energy being used [62]. Electromagnetic radiation could be made harder to detect, by shielding
cryptographic hardware by ground planes inside the chip. For a more detailed overview of possible
countermeasures, the reader is referred to one of many papers on the subject [62].

3.3.4. Hardware Trojans
Hardware Trojans are changes or additions made to the design of a device unbeknownst to the original
designers, in order to cause malfunctions, leak sensitive data or otherwise maliciously influence the
performance once the device is deployed [63]. Whereas the previously mentioned hardware attacks
are generally performed once a device is deployed in the field, hardware trojans are installed during
earlier phases in development. Due to the length of the IC supply chain, there are many places a
hardware trojan could be included: First, someone in the original design team could have bad intentions
or be otherwise ’convinced’ to include one. Alternatively a thirdparty IP core could have something
hidden inside without the designers being able to check. The proprietary and closed source design
tools themselves might be compromised, or maybe the foundry actually making the chip could not be
trusted [64] [65].

Wang et al. proposed a classification scheme for hardware trojans based on six attributes: Four
different physical characteristics of the hardware trojan its type, size, distribution and structure, its
method of activation and its effects once activated [66]. The type here specifies whether the trojan is
realized by adding or removing transistors from the design, or by purposefully modifying existing wires
and transistors in order to reduce functionality or performance. Its size is straightforward and covers
the amount of components that have been added or altered in the design. Distribution describes where
the hardware of the trojan is located in the chip; either topologically close together or spread out loosely
throughout the silicon. The structure mentions whether or not the layout of the target chip needs to be
regenerated in order to include the trojan, which would make it more difficult to hide, or if it can be
hidden in some empty spot. The activation method is a broad category and can range from always
on to condition based, and from internally to externally activated by several stimuli. Once activated, a
trojan will perform its intended action. These are classified into modifying functionality, specification or
leaking information to the attacker.

Examples
Although to the best of my knowledge no realworld examples of hardware trojans embedded in IC’s
have ever been found and published about, a significant amount of literature has been written on the
subject. Most of this literature deals with either possible ways of constructing trojans, or methods of
detecting them in a final product. Figure 3.10, for example, shows various ways a hardware trojan
could be activated.

Countermeasures
So far no method has been found in the literature that can fully prevent the installation of a hardware
trojan when parts of the supply chain cannot be trusted. The ability to detect the presence of a trojan
however has been studied in detail. Tehranipoor et al. for example categorize known ways of detecting
a trojan in a device [67]. The authors split detection methods into side channel analysis and attempting
to activate any trojans that might be present. With the first method, side channel analysis is performed
on a number of chips registering characteristics such as timing and power draw. These chips are then
destructively reverse engineered to ensure that no trojan is present. Next, the side channel character
istics of the chipsundertest are compared to those of the known ’clean’ chips. Any deviations from
these ’clean’ characteristics could indicate the presence of a trojan. The main difficulty of this method
is that the deviations caused by small trojans might well be smaller than those caused by process noise
and could therefore result in false negatives. An alternative is to try and activate any trojans on pur
pose. As the trojans mentioned in the literature often use rarely used nets as a trigger, the authors of
[67] and [65] mention methods of purposefully activating such nets in order to activate possible trojans.
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Figure 3.10: Potential hardware trojan activation methods [66]

The same papers mention other countermeasures during different phases of development as well, so
the reader is referred to those for a more complete coverage of the subject.
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Embedded Memory Security Module

It should now be clear that Internet of Things devices are an attractive target for attackers of all levels.
To defend against attacks, strong defences are needed. At the software level, this means applications
should be designed well and tested thoroughly before being used in the field. This alone, however,
is not enough. If an attacker can tamper with data and applications at any stage, the device can be
compromised. As such, the integrity, authenticity and confidentiality of data and applications must be
ensured. This means that the installation and updating of applications must be protected, that the in
tegrity of software can be verified before execution and that the physical storage media are protected
against tampering. This chapter will first outline the unique environment that IoT devices present and
then put the focus on hardware oriented memory protection in Section 4.1. Next, three variants of the
Embedded Memory Security (EMS) module are presented in Section 4.2, as a solution against hard
ware attacks on external memory modules. Section 4.3 then covers relevant security considerations
to make the presented module more secure. Finally, Section 4.4 proposes some additional extensions
to build on top of the EMS module, to also protect the IoT device from software and network based
attacks.

4.1. Concept
This section will briefly describe the unique situation that IoT devices find themselves in, and explain
the reasoning behind focusing on hardware security. Section 4.1.1 first reiterates the need for strong
security in IoT devices. Next, Section 4.1.2 covers the restricted environments of these devices. Finally,
Section 4.1.3 underlines why hardware security is particularly important for the Internet of Things.

4.1.1. Current Situation
Chapter 3 has shown that Internet of Things devices are vulnerable to attacks from all directions. Once
a device is connected to a network, it is at risk of automated network based attacks targeted at any new
device that comes online. More highprofile devices in important locations may be targeted directly.
In that case, an attacker could spend the time and effort required to find vulnerabilities in the specific
software running on those devices. Finally, those used in applications from the highrisk category de
fined in Chapter 2, run a real risk of being targeted physically by a powerful adversary. Unlike personal
gadgets such as laptops and smartphones, IoT devices are spread out in the field and easily accessible
as demonstrated in Figure 4.1. There is no user constantly nearby who notices when the device has
been taken or tampered with, and as such an attacker may perform all sorts of attacks directly on the
hardware. Ensuring the integrity and authenticity of applications running on, as well as the availabil
ity and confidentiality of the data collected by the IoT device is of primary concern. Especially since
devices from the highrisk category may control parts of some critical infrastructure, their compromise
may have dire consequences. Protecting these devices begins at the hardware level.

Many of the covered existing security measures are only focused on one type of attack, while leav
ing other parts unprotected. Antivirus packages may protect against some software threats, but do not
defend against network based bruteforcing and certainly not against anything hardware based. Simi
larly, countermeasures that detect attempts at hardware fault injection in the processor will not protect
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Figure 4.1: Remote sensor node of CSIROs Fleck sensor network, installed in a field [68]. Cropped to fit page.

against malicious software leaking secret information, nor attacks on external memory or its interfaces.
The same problem is present with more advanced security schemes such as Arm’s TrustZone [12] tech
nology. As covered in more detail in Section 3.2.3, it uses hardware barriers to set up a secure software
environment which allows secure execution of selected applications, as well as secure firmware up
dates. It does not however protect against hardware tampering. Similarly, Maxim’s MAXQ1061 [69]
chip can protect a microcontroller’s boot process against tampering on externally stored firmware, but
it cannot secure external RAM of a device. Though implementing multiple of the mentioned measures
at the same time may provide the required protection, it is not an elegant solution [70]: The combined
performance penalties could be unacceptable for the (very) limited resources available in an IoT device.
Furthermore, doing so could cover some attack vectors redundantly while others are left insufficiently
protected. Security now also depends on the technology of multiple sources designed for multiple ap
plications, and may fail entirely if one proves to have a breach. Ideally there would be a single solution
that starts at the hardware level, is specifically aimed at IoT devices and covers all three attack vectors.

4.1.2. IoT Restrictions
By the nature of IoT devices they provide a rather restricted environment, a property that can be used
to develop a security scheme. From the network point of view, things can easily be closed down sub
stantially: Services and protocols that are not required for functionality may be disabled completely
to prevent abuse. The few interfaces that remain can then be tightly controlled with strong authen
tication. The same is true for the software running on the device: The manufacturer has full control
over what OS and applications come installed on it. They can limit that to what is needed to function
while leaving everything else out, reducing the amount of possible bugs and weak points to exploit.
They control when and what applications are updated and also what settings, if any, are available to
the end user. Furthermore users may be prevented from installing other software, largely reducing
the risks associated with viruses and trojans. Finally, the available hardware is rather limited. As IoT
devices are meant to operate largely autonomously there is no need to include interfaces for keyboards
or monitors, making it harder to mess with and observe the results compared to a regular computer.
Similarly, debug ports such as UART and JTAG used during development can be left out on production
models, or permanently disabled by burning onchip security fuses after initial programming. Again,
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any unneeded interfaces can be disabled to minimize the attack surface of the device. Then, the only
interfaces left accessible are those used for sensors or actuators, a network interface and the PCB
traces between the central processor and offchip memory modules.

4.1.3. Goals
The goal of this thesis will be put at protecting IoT devices from physical threats, focused on thememory
interfaces to offchip RAM and storage. The reason for this is threefold: First, because of the unique
restrictions of IoT devices, the attack surface from the network and software sides can be severely
reduced with ’well written’ software and strong authentication. Second, because of the way IoT devices
are spread out in the field, constant supervision is costly and physical attacks are likely. Third, once an
attacker has physical access to storage media, the system is vulnerable despite strong network and
software defences. For example, once applications are running and considered trusted, an attacker
may try to alter their execution through fault and code injection attacks. Similarly, he may flash custom
or older firmware with known vulnerabilities to the device, or even swap the entire memory chip along
with its contents with one from another device. Furthermore, consider the case where security settings
are stored and either enabled or disabled based on some bits in memory. If these bits can be identified
and flipped, the system is put at risk. Finally, sensitive information such as sensor data, cryptographic
keys or proprietary algorithms may be stored in either flash or RAM, which could be leaked through
physical access. Any software based security mechanisms are useless once an attacker can change
the behaviour of ’trusted’ applications through hardware. As such, attempts at influencing the code or
execution of an application must be detected, and if so, execution must then be prevented or stopped.
To achieve this, the next section will present a solution based around integrity verification and encryption
of the contents of attached memory modules as the main contribution of this thesis.

4.2. The Embedded Memory Security Module
A typical setup of a processor with external memory modules is schematically shown in Figure 4.2.
When the processor needs to write something to memory, it sends a request along with the data and its
intended address to the memory controller. The controller then in turn sends a request to the memory
module and provides the data over the memory interface. Once the data has been written successfully,
the memory signals the controller that it is ready, which in turn forwards the signal to the processor,
ending the request. Memory reads follow a similar method: The processor first sends a request for
data from a certain address to the memory controller. It then forwards the request over the memory
interface to the external module. When the request was processed and the data is available, themodule
provides the data along with a ready signal to the controller. The controller then simply forwards the
data to the processor on its interface along with a ready signal, finishing the request.

When an attacker can read data from the memory of a device, its confidentiality is breached. Sim
ilarly, if an attacker can write data to memory, its integrity and authenticity is breached. As shown in
Figure 4.2, once an attacker has physical access to a device, there are several ways to do just that by
probing the traces to, or messing with the contents of the memory chip. To combat both these concerns,
this thesis presents the Embedded Memory Security (EMS) module as a solution.
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Figure 4.2: Schematic setup of processor with external memory, multiple attacks are possible

The EMS module is a hardware block that is integrated in the same chip as the main processor of
a device. It sits ondie, between the processor and its memory controller as shown schematically in
Figure 4.3. To both the processor and the external memory, the module is fully transparent; They have
no control over the module in any way and are not even aware of its existence. As far as the processor
is concerned, it is connected directly to the memory controller and nothing has changed interfacewise.
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Since data is written to and read from memory on a peraddress basis and each address in a memory
device contains a block of data of fixed length, these blocks can be secured individually. The EMS
module does this by either calculating and storing a hash, or more specifically a Message Authenti
cation Code (MAC), for each data block to ensure integrity and authenticity, encrypting each block to
ensure confidentiality, or both, depending on the required security and acceptable costs. Hashing and
encrypting is done using a secret key, unique to each device, that is stored in hardware only accessible
by the EMS module. This prevents it from being exposed by malicious software. The module can be
used to secure any memory attached to the device, from RAM to flash, after which anything stored on
it is bound to this particular device.
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Figure 4.3: Schematic setup of processor with the EMS module, external memory is now secured

This section will cover the three variants of the EMS module: Those that ensure integrity and au
thenticity, those that ensure confidentiality and those that do both, in Sections 4.2.1, 4.2.2 and 4.2.3
respectively. There, the concept and workings of each version will be explained in detail. Finally,
Section 4.2.4 discusses expected security and performance figures for each implementation.

4.2.1. Integrity and Authenticity
The first variant of the EMS module is intended to ensure the integrity and authenticity of code and data
stored on a device. This has the highest priority as it does not only protect the device itself, but also
the systems it belongs to: If no unauthorized software is able to run and no data can be tampered with,
systems depending on the device’s information are protected. This verification is done by calculating
and storing a MAC of each block of data as it is written to external memory. This MAC is then verified
when the data is read back. Verification is done on a peraddress basis.
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Figure 4.4: Schematic overview of components and interfaces of the hashing EMS module

From the processor and memory controller point of view, the EMS module is transparent with the
exception of an additional error flag towards the processor. It has access to a keyed hashing block
that provides the hardware function to calculate the MAC over a given message, as well as a secure
cryptographic key store. When writing data to memory, calculated MACs are stored together with the
original data. Upon reading, the MAC is calculated again over the read data and compared to the
value stored in memory. If they are the same, it is verified that the data was generated by the device
itself and that it was not altered, hence ensuring its authenticity and integrity. If they differ however,
this is immediately detected by the EMS module and additional security measures may be triggered by
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setting its error flag. A schematic overview of the hashing variant of the EMS module and its interfaces
is shown in Figure 4.4.

Writing to Memory
This variant of the EMS module requires an additional location in memory to store its MAC tags for
each block of data. When the processor requests to write data to a certain address in memory, it
first calculates a MAC over this data and determines the address to store it. After this, both the data
and its tag are sent to the memory controller to be written to memory at their respective addresses.
Schematically this process is shown in Figure 4.5. The steps taken by the module upon receiving a
write request are as follows:

1. EMS module receives a write request along with data and its address from the processor
2. EMS module sends data and key to MAC block to process
3. EMS module receives the calculated MAC from the MAC block once it is done
4. EMS module sends data and address to memory controller to write
5. EMS module receives ready signal from controller once write is complete
6. EMS module sends MAC and its address to memory controller to write
7. EMS module receives ready signal from controller once write is complete
8. EMS module sends ready signal to the processor, completing write request
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Figure 4.5: Schematic overview of the MAC state machine

Reading from Memory
Similar to the write request, on read requests the EMS module needs to read both the data and its
corresponding MAC from memory. It then calculates the MAC of the data and compares it to the tag
that was stored along with it. If the tagsmatch, the data’s integrity and authenticity has been verified and
the data is provided to the processor. If not, the module raises an error flag to signal that something
is wrong. This process is shown schematically in Figure 4.5. The steps taken by the module after
receiving a read request are as follows:

1. EMS module receives a read request along with its address from the processor
2. EMS module sends data address to memory controller to read
3. EMS module receives ready and data from the controller once read is complete
4. EMS module sends MAC address to memory controller to read
5. EMS module receives ready and MAC from the controller once read is complete
6. EMS module sends data and key to MAC block to process
7. EMS module receives the calculated MAC from the MAC block once it is done
8. EMSmodule sends data and ready to the processor if MACsmatch or raises flag if not, completing

read request
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4.2.2. Confidentiality
The second variant of the EMS module is intended to ensure the confidentiality of code and data on
the device. Confidentiality is relevant if a device handles information or applications that are to be
kept secret from adversaries. The module provides this functionality by encrypting all data leaving the
central processor toward its external memory modules, and decrypting all data coming back.

Assuming the cipher and its implementation are secure, encrypting all traffic flowing between a pro
cessor and its external storage media will prevent an attacker from gaining access to secret information
through hardware attacks. Intercepting the traffic to, or dumping the contents of the storage media will
only show encrypted data. Furthermore, memory based fault injection attacks as shown in Chapter 3
become impractical as the adversary has no way of knowing what data was actually changed. This
is extended by the fact that any output back to memory, which may or may not be a result from the
attack, is also encrypted and as such unreadable. Finally, it prevents any types of hardware based
code injection as without knowing the encryption key, anything written to memory will become garbled
by decryption before it reaches the processor. Code injection here becomes nothing more than fault
injection with a larger amount of random data.

The EMS module is fully transparent to both the processor and its memory controller. This variant
has access to a cipher block and a secure cryptographic key store. This cipher block provides the
function to encrypt a plaintext message with the secret key, as well as to decrypt a ciphertext message.
A schematic overview of the encryption variant of the EMS module and its interfaces is shown in Figure
4.6. This variant of the module encrypts and decrypts each block of data corresponding to a single
address individually as it is transferred between the processor and its memory.
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Figure 4.6: Schematic overview of components and interfaces of the encryption module

Writing to Memory
The ciphertext messages have the same size as the plaintext data, meaning this variant of the EMS
module does not have additional memory requirements. When the processor issues a write request
to write data to memory, the module encrypts the data and then forwards it to the memory controller.
This process is shown schematically in Figure 4.7. The steps taken by the module upon receiving the
request are as follows:
1. EMSmodule receives a write request along with plaintext data and its address from the processor
2. EMS module sends the plaintext data and key to the cipher block to encrypt
3. EMS module receives ciphertext data from cipher block once it is done
4. EMS module sends ciphertext data and its address to the memory controller to write
5. EMS module receives ready signal from controller once write is complete
6. EMS module sends ready signal to the processor, completing write request

Reading from Memory
Similar to the write requests, the module also receives the requests from the processor to read data
from memory. Once it then receives the encrypted data from the memory controller, it decrypts it and
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Figure 4.7: Schematic overview of encrypt state machine

passes it on the the processor. This, too, is shown schematically in Figure 4.7. The steps taken by the
module upon receiving the read request are as follows:

1. EMS module receives a read request along with its address from the processor
2. EMS module sends the address to the memory controller to read
3. EMS module receives ready and ciphertext data from the controller once the read is complete
4. EMS module sends ciphertext data and key to the cipher block to decrypt
5. EMS module plaintext data from the cipher block once it is done
6. EMS module sends plaintext data and ready to the processor, completing read request

4.2.3. Integrity, Authenticity and Confidentiality
The third variant of the EMS module is meant to ensure the integrity, authenticity and confidentiality of
the code and data stored on the device to achieve the highest level of security. This is done by combin
ing the functionality of the first two variants and both encrypt the data and verify a MAC. Because the
contents of external memory are encrypted, an attacker will not gain access to the data by intercepting
traffic to the memory chips, or by dumping their content. Furthermore, it will prevent attacker from in
jecting fault or code and observing the results. The MAC additionally ensures that any such attempts
are also detected by the processor, in order to activate security measures.
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Figure 4.8: Schematic overview of components and interfaces of the combined encryption and hashing module

Again, the module has the same transparent interfaces between the processor and memory con
troller, with the addition of an error flag. It has access to both a cipher block and keyed hashing block,
as well as a secure cryptographic key store. The cipher block provides the function to encrypt and
decrypt data with the secret key, and the keyed hash function can calculate a MAC over a message
with its key. When writing data, the data is encrypted first using the cipher. A MAC is then calculated
over the ciphertext, and both are stored in memory. On reads, both the ciphertext data and its MAC
are read from memory. The mac is calculated again over the ciphertext and compared with the stored
MAC. If they match, it is verified that the data was not altered and the ciphertext is decrypted. If they
do not, the error flag is set towards the processor. A schematic overview of this variant of the EMS
module and its interfaces is shown in Figure 4.8.
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Writing to Memory
As mentioned above, this variant of the EMS module performs a number of steps when writing data
to memory. As a MAC is stored with the data, an additional spot in memory is required to store it.
When the processor requests to write data to a certain address in memory, the data is first encrypted.
It then calculates a MAC over the ciphertext, and determines the address to store it. After this, both the
encrypted data and its tag are sent to the memory controller to be written to memory at their respective
addresses. This process is displayed schematically in Figure 4.9. The steps taken by the module upon
receiving a write request are as follows:

1. EMSmodule receives a write request along with plaintext data and its address from the processor
2. EMS module sends the plaintext data and key to the cipher block to encrypt
3. EMS module receives ciphertext from the cipher block once it is done
4. EMS module sends ciphertext and key to MAC block to porcess
5. EMS module receives the calculated MAC from the MAC block once it is done
6. EMS module sends ciphertext data and its address to the memory controller to write
7. EMS module receives ready signal from controller once write is complete
8. EMS module send MAC and its address to the memory controller to write
9. EMS module receives ready signal from controller once write is complete
10. EMS module sends ready signal to the processor, completing write request

Idle

Write oparation Read operation

Calculate
MAC

Write
data

Write
MAC

Finalize
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Read
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Calculate
MAC

Finalize

ErrorEncrypt

Decrypt

Figure 4.9: Schematic overview of the encrypt + MAC state machine

Reading from Memory
Reading from memory again follows a similar process as before. Besides the encrypted data itself, the
module also needs to read the corresponding MAC from memory when it receives a read request from
the processor. Once it has received both, it calculates the MAC of the ciphertext data and compares it
to the tag that was stored along with it. If the tags match, the data is considered to be authenticated
and the ciphertext is provided to the cipherblock to be decrypted. If not, the module raises an error
flag to signal that something is wrong. After decryption is done, the plaintext data is provided to the
processor. Once more, this process is displayed schematically in Figure 4.9. The steps taken by the
module when receiving a read request are as follows:

1. EMS module receives a read request along with its address from the processor
2. EMS module sends data address to the memory controller to read
3. EMS module receives ready and ciphertext data from the controller once read is complete
4. EMS module sends MAC address to the memory controller to read
5. EMS module receives ready and MAC from the controller once read is complete
6. EMS module sends ciphertext data and key to the MAC block to process
7. EMS module receives the calculated MAC from the MAC block once it is done
8. EMSmodule sends ciphertext data and key to the cipher block to decrypt if MACs match or raises

flag if not
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9. EMS module receives plaintext data from the cipher block once it is done
10. EMS module sends plaintext data and ready to the processor, completing read request

4.2.4. Expectations
Now that the three variants of the Embedded Security Module module have been presented, some
points will be made regarding their levels of protection, their performance impact and finally some
tradeoffs when implementing them on different types of memory.

Security
The first variant, with MACs, is intended to ensure the integrity and authenticity of code and data.
Without knowing the key, the attacker cannot generate matching MACs to any injected faults or custom
code, meaning the module will detect any such attempts. By its nature however, hashing does not
protect the confidentiality of any stored data; an attacker may still be able to intercept and read it
without raising alarms.

The second variant of the module, with encryption, is intended to ensure confidentiality of code and
data. It has the beneficial sideeffect of making some types of attack more difficult if not impossible to
perform successfully. Without knowing the key, an attacker does not know what data is changed by
injecting faults and can not insert his own code. However, it will not prevent the attacks from happening
in the first place. The processor may still be made to perform unintended random actions, even though
the attacker can not directly control what happens. When one bit is changed in memory that stores
application instructions, the instructions are likely to be completely different if not illegal once they reach
the processor. This would cause applications or the whole operating system to crash.

The third variant, with both encryption and MACs, is intended to ensure all three; confidentiality,
integrity and authenticity. It combines the security aspects of both. Without knowing the key, an attacker
can not read any secret information, nor can he perform any kind of injection attack without detection.
This third variant as such offers the highest level of protection. The levels of protection of each variant
against some hardware attacks is shown in Table 4.1.

Table 4.1: Protection offered by variants of EMS module against hardware attacks

Protected against attack type:
Module variant: Stealing data Fault injection Code injection Side channel Replay
MAC No Yes Yes Depends No
Encrypt Yes Partially Yes Depends No
Encrypt + MAC Yes Yes Yes Depends No

Aside from the mentioned attacks based around stealing data or injecting faults or malicious code,
there are other hardware attacks as mentioned in Chapter 3. Specifically sidechannel analysis is a
type of attack that the EMS module does not inherently protect against. Depending on the implemen
tation, it might be possible for an attacker to gain information about the secret key by observing power
consumption or other metrics. Securing the system against these types of attacks is entirely imple
mentation and technology dependent and many countermeasures already exist. Defending against
sidechannel analysis is therefore considered out of scope for this project.

Another inherent weakness of transparent cryptography is the vulnerability to replay attacks. These
are attacks where an adversary replaces a message with an earlier message, without the sender and
receiver noticing anything has happened. It comes from the fact that without additional measures, a
specific plaintext with a specific key always leads to a specific ciphertext. The same holds true for
MACs; when the same message is hashed with the same key, it will lead to the same MAC. To abuse
this fact, an attacker would have to save the messages (As well as their MAC, if used) and could
then replace data in memory with older versions (Along with their MAC), and the module would not
detect anything wrong. It could be argued that encryption will prevent an attacker from knowing what
data he replaced with what other data, making the attack impractical. Similarly, hashing would require
an attacker to save and replace two values in memory, making the attack more difficult to perform.
However, the modules on their own do not offer specific protection against this type of attack. Some
potential additions to the modules to include this protection will be covered in Section 4.3.



40 4. Embedded Memory Security Module

Performance
Adding security measures comes at a cost. Aside from the area requirement ondie of the EMSmodule,
the additional calculations will take time. This time will be added directly to the time it already takes to
transfer data to and from memory.

The exact time it takes to encrypt or decrypt the data for a single memory access is implementation
specific. It depends on how fast the selected cipher can process the amount of data that the platform
transfers in one go. Table 4.2 shows some typical access times for different memories. From this data
it is clear that an access to external DRAM modules can easily take more than a hundred clock cycles
of the processor, while flash for storage can take many thousands of cycles per access. As such,
an additional delay of, say, ten extra cycles for encryption would not significantly affect the memory
performance.

Table 4.2: Access times for different memory technologies. Data from [71], page 378
Memory technology Typical access time

SRAM semiconductor memory 0.52.5 ns
DRAM semiconductor memory 5070 ns
Flash semiconductor memory 5.00050.000 ns

Magnetic disk 5.000.00020.000.000 ns

The MAC variants of the EMS module are expected to have a much larger performance impact.
Aside from the time it takes to calculate the hash value, this value will also need to be stored. Doing
so will require an additional memory access per access, in order to read or write the MAC. This will
effectively double the time spent on memory transfers. Furthermore, this will require additional memory
space to store the hash. The exact amount depends on the size of the hash relative to the input data.
The upper bound to this would be when the hash is the same size as the input data, as using hashes
that are larger do not make much sense. This would require a doubling of the installed memory to have
the same amount of system resources available. A smaller hash would reduce the amount of memory
required to store it, potentially at the cost of security. No matter the size however, an additional memory
access will always be necessary.

In the absolute worst case scenario this would lead to memory performance being halved, while
requiring twice as much of it. In practice this is not expected to be realistic. Realworld performance
will depend greatly on the availability, size and performance of any caches near the processor, as well
as the memory behaviour of the running applications. This realworld performance will be explored
later in Chapter 6.

Memory Options
The EMS module is a intended to be a modular block. Its interfaces can be altered to fit any type of
memory interface. This means it can be implemented to secure external flash storage, as well as the
RAM on higherperformance IoT devices. Lightweight sensor nodes such at the Tmote Sky may not
have external RAM to secure, but even these devices can have external flash chips to store additional
code and data [19]. As such, the EMSmodule is applicable to a wide range of devices and applications.

Securing external RAM modules will protect applications and their data while they are running. By
hashing the memory, it can be ensured that an attacker can not change any security parameters. Fur
thermore, he will not be able to modify the execution of applications without being detected. Encryption
would hide any secrets that are temporarily stored, such as cryptographic keys and possibly the oper
ations of some proprietary algorithms.

Similarly, securing external flash can protect code and data while it is at rest. Unlike RAM, this
kind of memory is persistent; It will remain the same when the device is powered off. An attacker with
access to the device could dump the contents and take his time to explore it, change data or even
swap the entire chip for another one. Hashing it ensures that the stored applications are authorized by
the device and haven’t been tampered with, meaning they can be trusted to execute the way they’re
supposed to. Encrypting it ensures that an attacker can not get access to secret or proprietary code
and data. In both cases, if an attacker breaks anything, the device is practically bricked. Though this
could also be seen as a valid attack vector to disrupt some operations, it should be noted that since
the attacker would have physical access anyway, actually bashing it with a real brick would be more
efficient.
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4.3. Security Considerations
When implementing the modules proposed above, there are several additional steps and security mea
sures that should be considered. These may be basic requirements to secure the systems that use the
modules, as well as potential options to counter some other types of attacks. This section will cover
some of these considerations next.

4.3.1. Key Handling
The keys used by the Embedded Memory Security modules to perform MACs and encryption must be
kept secret. If these keys were to be leaked, the security of the system can no longer be guaranteed.
An attacker would be able to read any data stored in the device, as well as encrypt any message of
his choosing and generate matching MACs. At this point, it would be as if the EMS modules were not
there at all. To prevent this, these keys must never be allowed to leave the device or be readable by
any software running on it. Furthermore, if both MACs and encryption are performed, both operations
should use a separate key. If the same key is used for both, some information about this key may be
leaked through interactions between the ciphertext and its MAC [25]. Furthermore, if for example the
key is somehow recovered from a broken MAC scheme, when the same key is used the confidentiality
of the data is now also lost. To extend these requirements even further; a sufficiently determined (and
funded) attacker may still be able to extract a device’s keys through invasive hardware attacks. Though
such an attack would render that particular device inoperable, the security of any other devices that
utilize the same keys should now be considered broken. To combat this, each device coming from the
factory must have its own unique keys that never leave the device.

Figure 4.10: Unique fibre layout of a piece of paper, visualising the concept of a PUF [72]

Implementing a Physical Unclonable Function (PUF) in each device is one way to generate device
specific keys. The main concept of a PUF is to use any manufacturing variations inherent in smallscale
electrical circuits, to generate unique ’fingerprints’ for each device. These manufacturing variations are
random, and cannot be identically reproduced intentionally. A visual example of this concept is shown
in Figure 4.10, where the exact fibre structure of a piece of paper represents the randommanufacturing
variations. Reproducing this exact structure intentionally in another piece of paper would be infeasible.
In the context of electronics these variations could be found in parasitic capacitances, gate leakage of
transistors, wire delays etcetera. This allows for building a hardware function that generates certain
outputs (responses) to given inputs (challenges), unique to each device and impossible to clone or
predict [73]. There are two main categories of PUFs; weak and strong, depending on their amount of
challengeresponse pairs. A weak PUF only support one to a ’few’ challengeresponse pairs. These
may be used to generate a single unique key for a device. Strong PUF’s on the other hand support
many challengeresponse pairs. When such pairs are recorded and stored right after manufacturing,
they can be used to authenticate a device later. An advantage of these is that even if an attacker
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manages to record some pairs, he will still not be able to extrapolate the response for any other input
and as such cannot perfectly impersonate a device. A more indepth discussion about the differences is
covered by Holcomb et al. in [73]. For a complete overview about the properties and various methods
of constructing a PUF, the reader is referred to the taxonomy of McGrath et al. [72]. By adding a PUF,
it can be ensured that each device will have its own unique secret key.

4.3.2. Authentication Methods
The presented EMS modules implement a MAC function for authentication and encryption for confi
dentiality. When both are required, an ’encryptthenMAC’ scheme is used as discussed in Section 4.2.
Other alternatives do exist, such as ’encryptandMAC’ where the MAC is calculated over the plaintext
and ’MACthenencrypt’, where the MAC is also calculated over the plaintext but then encrypted along
with it. These alternatives however are not ’generically’ secure and put more constraints on the type
of cipher and MAC function to use [25]. Bellare et al. discuss the security properties of these three
schemes in more detail, and provide security proofs in [74].

Aside from these schemes that combine a cipher and a MAC function, there are other methods to
perform authenticated encryption. Several modes of operations have been developed for blockciphers
that provide this functionality, including Offset CodeBook (OCB) mode [75], Counter with cipher block
Chaining Mode (CCM) [76] and the Galois/Counter Mode (GCM) [77]. OCB was submitted to be in
cluded in the IEEE 802.11i standard, but due to patents and licensing issues it was refused. CCM was
developed as an open alternative for this purpose and is currently part of said standard. Finally, GCM
was developed as a highthroughput alternative to other authenticated encryption schemes, by being
parallelizable in hardware implementations. It is defined in NIST standard SP 80038D. An example of
the GCM encryption process is shown in Figure 4.11.

Figure 4.11: Encryption process of GCM mode, encrypting two plaintext blocks and using one block of authentication data [77]

These modes, though interesting, were not further explored for the application of this thesis for
two main reasons: First, the EMS modules are intended to be modular, meaning it should be possible
to only encrypt or only MAC as well, only implementing the required hardware functions. This would
defeat the purpose of these authenticated encryption modes. Secondly, these modes of operation are
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not particularly lightweight compared to the alternatives. They all require blockciphers that use blocks
of at least 128bits, which would disqualify most if not all of the purposelydesigned lightweight ciphers
covered later in Chapter 5. For completeness however, one GCM implementation was synthesized in
Chapter 6 as a comparison to the results of this thesis.

4.3.3. Memory Vulnerabilities
For the modules that support encryption, one potential security issue that remains comes from patterns
in memory being visible to an attacker. Each individual block of data that gets encrypted is only the
size of data stored at one address in memory, i.e. 128 bits. This introduces an issue similar to using
a block cipher in the basic Electronic Code Book (ECB) mode of operation to encrypt a large file: As
each block of data is encrypted with the same key, this means identical plaintexts lead to identical
ciphertexts in memory. Though the attacker may not know what the plaintext data is, he may still be
able to recover some information. An example of this issue is shown in Figure 4.12, where an image
of the Linux mascot Tux was encrypted with AES128 in ECB mode. Note how though the image is
encrypted, its outline is still clearly visible. Whether or not this is an issue depends on the actual data,
as it may allow an attacker to deduce the plaintext of common values.

Figure 4.12: When encrypting each block individually with the same key, some details of the original data may still be visible [78]

Modes of operation are meant to combat the problem of encrypting data larger than a single block
size. They are methods to manipulate the inputs or outputs of a block cipher, based for example
on the results from previous blocks, in order to ensure that identical plaintext blocks lead to different
ciphertext outputs. An overview of different modes of operation and their properties is given in [25]. In
our application however, this method is not applicable: Here the issue is not that the plaintext contains
multiple identical blocks, but that the entire (small) plaintext will occur multiple times. As such, a different
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approach is needed to let the same plaintext result in a different ciphertext at different addresses.
A similar issue are the replay attacks mentioned before. They are similar in that an attacker can

simply observe the contents of the memory to get the needed information. He can then replace any
valid dataMAC pair with another one that was stored earlier or at a different address, without being
detected by the EMSmodules. This issue is solved in some network protocols by including sessionIDs
or timestamp information, which are then transmitted along with the data and verified by the recipient.
Both of these would need to be generated and stored alongside the data and MAC however, further
increasing the memory footprint of the EMS module. Unlike data transferred over the network where
packets arrive shortly after being sent, themoment when data is read back after being written tomemory
is unknown and may take a long time. This makes it difficult to verify if data was rolled back by a replay
attack without storing. Encryption reduces the risk of replay attacks being effective as the attacker does
not know what data is being replaced with what, but it does not prevent them from slipping detection.

Several options of including the address in the encryption algorithm were explored, most of which
were discarded as being too costly or out of scope of this thesis. The most straightforward solution
would be to XOR the key or plaintext data directly with the address before encrypting. Though this would
create different ciphertexts for identical plaintext messages, it would expose the system to relatedkey
and relatedplaintext attacks respectively and cannot be considered secure. Another option was to
implement a Key Derivation Function (KDF) or use a strong PUF with the address and main key as
inputs to produce more keys. Generating such a key each time an address is accessed would be
costly however, and a search did not lead to any existing efficient hardwaretargeted KDFs. As such
this option was not explored further. Alternatively, a socalled tweakable cipher could be used. These
take, aside from the key and message, an additional ’tweak’ input to introduce variability. Here, the
address could be used for this purpose. Unlike the key, this tweak does not need to be kept secret to
remain secure, and no additional hardware is required aside from the cipher [79]. All of these solutions
would solve the issue of patterns in memory and would prevent replay attacks with data from other
locations. However, none would fully prevent them from a theoretical level, as an attacker may still roll
back data to earlier versions from the same address. These solutions are mentioned for reference, and
were not further implemented in this thesis.

4.4. Security Extensions
The proposed solution protects a device, its data and its software from hardware based attacks. How
ever, as the module is completely transparent to the processor, it does nothing against any software
based attacks. In particular, if an attacker can exploit some vulnerability in the installed applications or
the update mechanism, the EMS module on its own will not help. Therefore, we propose the addition
of two other strategies to leverage the security provided by EMS module. They are referred as Cloud
Protocol and Software Binding.

4.4.1. Cloud Protocol
Ideally, an attacker would be unable to run any code on a target device. This would prevent him from
leaking or manipulating any data, or controlling any attached machinery. To ensure that this is the
case, all applications running on the device must be verified and checked for tampering at all stages.
If some tampering has taken place it must be detected, and the application must not be allowed to be
executed. From the IoT restrictions mentioned above, it follows that there is one single channel for
updates that needs to be secured  the Cloud to Device communication. Updates may only come from
the authorized server, and any tampering with data during transit must be detected immediately. To
ensure this, some method of authentication and securely transferring the updates is required.

The concept here is to build a CloudtoDevice protocol having the unique ID of the device as the
rootoftrust. Only the manufacturer has access to the unique ID, generated or retrieved after the
integrated circuit was created. Using such ID as part of the protocol, classical methods [80] can be
used to build a resilient and unique communication between the Cloud and the Device. Additionally,
by having a Physically Unclonable Function (PUF) [72], the protocol can take benefit of multiple unique
IDs. In this case, the Cloud generates random values to be used as the PUF Challenge, and hence,
improve the quality of the secure protocol.
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4.4.2. Software Binding
Since the manufacturer has full control over what software should run on the device, these applications
can be bound to the particular hardware. This prevents any proprietary software from running on
an unexpected hardware platform (i.e., attacker’s equipment), and also guarantees that if there is an
application with hidden malicious functionality present (e.g., if that functionality was not detected during
the tampering test), it can not spread its code among other devices.

The concept of software binding aims to link the applications to the target hardware platform. The
operating system is not considered for binding, as it contains its own security mechanisms. In fact, the
Operating System has an important role in the process of checking the applications and guaranteeing
that only valid processes can run in the processor. To achieve such functionality, both Cloud and
Device must know a secret of each other. The Cloud already has the unique IDs of each device in its
database, but the Device must have also know a secret that refers to the Cloud. Such data can be
stored in the Device after fabrication (in the same step where the IDs are generated/retrieved). Finally,
the application itself must receive additional data or instructions that applies the secrets. Thereafter,
before starting the application, the Operating System can check the content or run a specific part of the
process to evaluate if that code matches with the hardware ID, and also if it is authentic.
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Implementation

While developing the Embedded Memory Security module, several design choices had to be made in
order to build a working prototype. The first decision was about the processor development platform, as
that determines the required interfaces of the module. Next, both a cipher and MAC function had to be
selected out of many options. This chapter will cover these design choices and tradeoffs, as well as the
structure of the EMS modules themselves. To that end, Section 5.1 first discusses the platform, Section
5.3 covers the encryption algorithm and Section 5.2 goes over the MAC function. Finally, Section 5.4
covers the interfaces and variants of the EMS modules.

5.1. Test Platform
The developed EMS modules are not standalone units; they are meant to be integrated into an actual
processor. Their interfaces and consequently their performance will depend largely on how, and in
what processor they are added. As such, a (softcore) test platform on an FPGA is required to simulate
the realworld situation when implemented in actual hardware. Since the EMS modules are aimed at
IoT implementations, this platform should be similar to those found in actual IoT devices. This means
it should at least be able to run arbitrary programs and use onboard LEDs to signal various things.

Though several options were available online, project criteria and limitations reduced the selection
size significantly. Some requirements were formulated in order to deal with this, which will be men
tioned next. This is then followed by a list of available platforms and their tradeoffs. After this, the
specifications of the chosen platform will be covered in more detail.

5.1.1. Requirements
At the beginning of the project, several requirements were put on the test platform. These are based
on the available development hardware and software, but also on keeping the project open to allow
potential porting and further development at a later stage. The requirements are listed as follows:

• Req 1: The first requirement is that the test platform must be open source. This makes it possible
to modify parts of the processor as needed to insert the new authentication module. Furthermore
it allows for detailed debugging by analysing all internal signals in a simulator. As changes to the
platform will have to be made, this is a hard requirement.

• Req 2: The second requirement is that the platformmust have specifications comparable to those
found in general IoT devices. As covered in Chapter 3, this varies widely from 8 bit microcon
trollers to full fledged multicore processors. Since adding the proposed EMS module only makes
sense when using external memory, the focus is put on higher end 32bit microcontrollers or bet
ter. Ideally the platform has access to instruction and data caches to model their effects on the
performance impact of the module.

• Req 3: The third requirement is that the platform must not be strongly tied to one single vendor of
FPGA’s by making extensive use of that vendor’s custom IP blocks. The Computer Engineering
department uses hardware from multiple manufacturers including Xilinx, Altera (Intel) and Lattice
Semiconductors. As such, vendor lockin should be avoided by not relying heavily on IP blocks
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from one particular source if not absolutely required. Furthermore said custom IP blocks may not
be open source, violating the first requirement.

• Req 4: The fourth requirement is that the platform must be able to fit and run on the available
FPGA development boards for testing. For this project a fairly limited Digilent PYNQZ1 board is
available of which a picture is shown in Figure 5.1. It contains a Xilinx ZYNQXC7Z0201CLG400C
FPGA with 13.300 logic slices, 53200 LUTs and 630𝐾𝐵 of block RAM. For more details, the
reference manual of the board can be found at [81].

Figure 5.1: Picture of the available FPGA development board, a Xilinx PYNQZ1

5.1.2. Options
A search was performed online for available processor development platforms, which were then held
against the aforementioned requirements. The first and third requirement disqualified several options
that require a license to use or are tied to a specific company, examples being ARM cores and Xil
inx’s Microblaze platform. As per the second requirement the search was limited to relatively high
performance platforms, which excluded many small 8bit open microcontrollers from the list. Finally,
the fourth requirement, based on the limitations of the development board, meant that any larger pro
cessors would not be able to be ran in hardware. One of these is the RISCV Ariane processor that
otherwise met all other requirements [82]. The resulting list of options that fulfilled at least some require
ments is shown in Table 5.1. Here, the green colour indicates that the platform fulfils a requirement,
red indicates that it does not, and yellow indicates a partial dependency that could be worked around
with some effort. From this list there remain three options: The Ariane platform [83], the Pulpissimo
platform [84] and a custom platform that is already in use by the computer engineering department. All
three of these are based around a RISCV core architecture.

Table 5.1: Requirement compliance for different testplatforms

Platform: Architecture: Req 1: Req 2: Req 3: Req 4: Notes:
Arm M4 ARM No 32 bit uC ARM No Not available
Ariane RISCV Yes Full processor Xilinx* No 64 bit, can run Linux
Microblaze RISC/DLX No 32 bit uC Xilinx Yes Too vendor bound
Pulpissimo RISCV Yes 32 bit uC Xilinx* Maybe Similar to TU custom
TU custom RISCV Yes 32 bit uC None Yes Department support

Performancewise the Ariane platform has the highest specifications [83]. It is a fullfledged 64
bit processor with multiple cache levels, support for external flash and DRAM, as well as a Memory
Management Unit (MMU), making it able to run Linux. Especially this last property makes it an attractive
development platform. However, it does use some Xilinx specific components in its AXIbus and the
developers only support the Digilent Genesys 2 FPGA board [85]. Furthermore, because the minimum
singlecore configuration already requires more than 85.000 LUTs of FPGA area, it would not fit in the
FGPA on the available PYNQ Z1 board.
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The Pulpissimo and the TU custom platforms are very similar. Both use the RI5CY core [86], which
is a 32bit microcontrollerlevel RISCV core with performance equivalent to that of an ARM M4. Like
the Ariane platform, Pulpissimo’s developers only support Xilinx based boards albeit more than one,
though the PYNQ Z1 board is not one of them. It supports multiple interfaces such as SPI, I2C and
UART, and has support for an instruction buffer. The TU custom platform on the other hand does not
use any proprietary modules from any vendor and currently does support the PYNQ Z1 board, amongst
others. It does not support I2C or SPI interfaces, but it does have access to a UART and can write to
onboard LED’s. Furthermore, it does come with configurable instruction and data caches and is being
actively worked on by the department.

With identical cores and consequently similar performance, the selection was based on the required
interfaces and support. As the proof of concept of the EMSmodule will be aimed at securing the RAM of
a device, the fact that the custom platform supports instruction and data caches was a decisive factor.
Without these, their influence on the performance costs cannot be measured or simulated. From this
it followed that the TU custom processor was selected to be the development platform.

5.1.3. Specifications
The development platform is centred around a RISCV RI5CY core [86]. This is a small 32bit inorder
microcontrollerlevel core with a 4stage pipeline. It has full support for the 𝑅𝑉32𝐼 base integer, 𝑅𝑉32𝐶
compressed instructions and 𝑅𝑉32𝑀 integer multiply and division instruction sets extensions, as well
as optional support for the 𝑅𝑉32𝐹 single precision floating point extensions [86] [87]. A block diagram of
the core, taken from its user manual, can be seen in Figure 5.2. In this platform, its instruction interface
connects only to the instruction cache through a modified 𝐴𝐻𝐵−𝐿𝑖𝑡𝑒 bus. The data interface connects
to another 𝐴𝐻𝐵−𝐿𝑖𝑡𝑒 bus, which has access to the data cache as well as external peripherals including
a UART, timer and board LED’s. No flash interface is present. A rough overview of the setup is shown
in Figure 5.3.

Figure 5.2: Block diagram of the RI5CY core [87]

The instruction and data caches of the platform are configurable. Their associativity, line size and
line count can be set by changing some initialization parameters. During development and simulations
they were set to 4way set associative with a 128bit line size, similar to other processors of its class
[83], whereas its total size was varied through its line count. When synthesizing the platform to run it in
hardware, caches larger than 2kb would no longer fit in the available FPGA. The caches respond in one
cycle, meaning they either provide the data in case of a cachehit, or forward the request to memory
with one cycle of latency. They implement a roundrobin replacement policy for simplicity, where the line
that gets replaced during a miss depends on a modular counter. Finally, they are writeback caches,
meaning updated lines are only written back to memory when that line is about to be replaced at a
cache miss.

Upon a cache miss, data will be requested from memory. For this platform, the memory comes in
the form of blockRAM on the FPGA as the development board does not support access to its external
DDR3 interface directly from the FPGA. Since the platform does not have the hardware required to
handle memory requests from both caches at the same time, each cache has its own separate range
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of memory with its own interfaces. Each memory address contains one cache line worth of data, 128
bits, and read and write accesses to memory take a constant 100 cycles to complete, as is typical for
external memory modules [71]. The EMS module is inserted between the cache and its memory to
intercept and secure all data being transferred. This location is also shown in Figure 5.3.
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Figure 5.3: Schematic overview of the development platform, including location of EMS modules

Vivado 2019.2 is used on a Linux laptop to develop, test and integrate the EMS module into the
platform. Changes are verified using the builtin simulator and when successful the design is syn
thesized and ran on the actual FPGA board. Benchmarks are written in C and compiled using the𝑟𝑖𝑠𝑐𝑣32 − 𝑒𝑙𝑓 − 𝑔𝑐𝑐 toolchain, version 9.3.0 on the same laptop. After compiling, the resulting .𝑒𝑙𝑓
files are converted to .𝑑𝑎𝑡 to be loaded directly into the RAM upon initialization using some python
scripts. These same scripts can be used to generate secured versions corresponding to the various
EMS module variant covered later.

5.2. MAC
The integrity and authenticity verification part of the EMS module is performed with Message Authen
tication Codes (MAC). These use a secret key to generate a hash value for a given message. Upon
reading the data, this value can be compared and verified. Without knowing the key, an attacker will not
be able to generate any valid tags for custom data, ensuring authenticity. Furthermore, any changes
in the data will lead to a different tag, ensuring its integrity.

For this purpose, a suitable hash functionmust be chosen. This section will first present the selection
requirements. Next, a tradeoff is provided between the available functions. Finally, the chosen hash
function, SipHash, will be covered in more detail.

5.2.1. Requirements
For the variants of the EMS modules that support it, all data being stored to and read from memory
must be verified. To do this, each block of data passing through the module is given a tag that is stored
with it and verified when read back. Unlike hashes that are used to verify the integrity of a large file and
need to be computed once, this application requires the verification of both integrity and authenticity of
many small blocks of data.
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Aside from the typical requirements of a MAC, such as that it should be infeasible to generate a
valid hash without knowing the key or find another message that leads to the same hash value, there
are some application specific requirements. These requirements greatly influence the selection of the
hash function, and are as follows:

• Req 1: The first requirement is that the tag must be no larger than the data it is securing and
will fit in a single memory line, as larger tags would take up a prohibitive amount of space. This
platform stores 128bits of data per memory address and as such that will be the upper limit of the
hash output. The tag may be smaller, though if so, 64bits is preferred for optimization reasons.

• Req 2: The second requirement is that calculating and verifying the MAC should be fast. As with
encryption, any processing delays here will be added directly to the memory latency. Therefore,
the time spent on this should be relatively short when compared to the overall memory delay.

• Req 3: The third requirement is that the MAC offers sufficient security. Similar to encryption, this
is a complicated subject depending on many variables. In the context of this application, it simply
means that there must be no known attacks that significantly reduce its security.

• Req 4: The fourth requirement is that the area requirements of the additional hardware are small,
relative to its alternatives. Though perhaps a vague requirement, it means that hash functions
designed to be lightweight are preferred.

5.2.2. Options
There are several ways to generate a Message Authentication Code (MAC). CMAC, for example, uses
blockciphers in Cipher Block Chaining (CBC) mode as shown in Figure 5.4. Similarly, cryptographic
hash functions may be used along with a secret key, as is the case for HMAC. Aside from such con
structions that make use of existing cryptographic primitives, there are some hash functions that are
inherently designed to be used with a cryptographic key, making them MACs by definition.

Figure 5.4: Overview of Cipher Block Chaining mode of operation to generate a MAC [88]

It was found that the first and second requirements removed most of the typical MAC solutions from
the selection pool. Keccak for example, winner of the NIST SHA3 competition, is a wellresearched
cryptographic hash function. Though faster than its predecessors used in SHA1 and SHA2, its hard
ware implementation is prohibitively large for our application, at tens of thousands Gate Equivalents
(GE) [89]. Area optimized variants on the other hand exist but take several hundreds of cycles to com
plete, causing an unacceptable delay, while still taking up over 6500 GE of chip area. Furthermore,
the short message size of 128bits in our usecase would lead to inefficient application of many exist
ing solutions that take time to initialize. DMPresent for example would have its throughput reduced
by a factor of three or more compared to long messages [90]. As such, the search was focussed on
lightweight MAC implementations optimized for small messages.

Where new lightweight blockciphers were introduced constantly in recent years, the same can not
be said for cryptographic hash and MAC functions. Biryukov et al. compiled an extensive collection
of the state of the art in lightweight cryptography [91]. Their list includes over a hundred symmetric
algorithms, most of which were blockciphers, ten were hash functions and only two being dedicated
MACs. Of the listed hash functions only four support inputs and outputs of 128bits or smaller, namely;
Armadillo, PHOTON, Spongent and GLUON. These, together with the two dedicated MAC functions
SipHash and Chaskey made up the full selection list, and are briefly described next:

• Armadillo [92] was presented in 2010 as a generalpurpose cryptographic function. It is aimed
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to be implemented in hardware and to be used as a hash or MAC function, as well as a stream
cipher in RFID tags.

• PHOTON [90] was presented in 2011, as a hash function aimed at hardware implementations in
extremely constrained devices such as RFID tags. In particular, it is designed to require very little
chip area and to be efficient with short messages.

• Spongent [93] was also presented in 2011. Similar to Armadillo and PHOTON it, too, is aimed at
hardware implementations in RFID tags. Its permutation rounds are based on the Present [94]
blockcipher. Of the considered options, Spongent has the lowest area requirements.

• GLUON [95] was presented in 2012, also aimed at RFID tags and embedded sensor networks.
Its authors mostly compare it with PHOTON and state that it performs worse in most metrics,
though think it is still relevant because of its wellstudied construction.

• SipHash [96] was also presented in 2012. It is a dedicated MAC function optimized for short
inputs, as well as to be fast in software and small in hardware. Originally intended to protect
servers against hashflooding attacks, it is now used in multiple other applications as well.

• Chaskey [97] is a MAC algorithm presented in 2014. Its main goal is to be fast when implemented
in software and running on a microcontroller, when compared to AES128CMAC.

The specifications of all aforementioned options, as well as the to the best of my knowledge smallest
Keccak implementation, are shown in Table 5.2. The area and latency per block are given for the
’typical’ implementation as mentioned in the respective papers. Some also mention areaoptimized
implementations at the cost of greatly increased latency, and viceversa. As both latency and area are
of concern in our application, these nonbalanced implementations are not considered. Similarly, as the
sizes and latency of variants that produce tags greater than 128bits are irrelevant to our application,
these are omitted as well.

Table 5.2: Specifications of several lightweight hash and MAC functions. Data given for tag sizes smaller than 128bit.
Name Tag size (bits) Block size (bits) Area (GE) Cycles per block
Keccak [89] 256 1600 >6500 6750
Armadillo [92] 80/128 48/64 4030/6025 44/64
PHOTON [90] 80/128 16 1168/1708 132/156
Spongent [93] 88/128 8 1127/1687 45/70
GLUON [95] 128 8 2071 66
SipHash [96] 64 64 3700 12
Chaskey [97] 128 128 N/A N/A

From the table it becomes clear that PHOTON and Spongent have by far the smallest implementa
tions, largely due to their construction and small block size. GLUON and SipHash both support 64bit
tags, of which two would fit in a single memory line. The four hash functions; Armadillo, PHOTON,
Spongent and GLUON, would need additional hardware to let them function as a MAC. This would
both increase their area and latency to some extent. SipHash is clearly the fastest, requiring only 12
cycles to process a 64bit block. It is larger than PHOTON, Spongent and GLUON’s implementations,
but as it is already a MAC function by design, it requires no additional hardware for this functionality.
For Chaskey, no physical implementation data could be found, as it is mostly aimed to be efficient in
software applications on microcontrollers. Based on the given requirements and specifications stated
above, SipHash was chosen to be the MAC function in the EMS modules.

5.2.3. Siphash
Siphash is a lightweight MAC function optimized for small input messages [96]. It was designed to
counter hashflooding attacks on servers, by preventing attackers from generating collisions. As such
its main security goal is to prevent an attacker from guessing valid tags for any messages he has not
seen before, even after having seen many other valid message/tag pairs. Messages are processed in64bit blocks using a 128bit key and the results is a 64bit tag. SipHash is used in several software
applications for hashtable implementations, including Python, Bitcoin and systemd. Its operation is
briefly described next.

Structurally, SipHash is rather straightforward. The authors define a single function RipRound
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shown in Figure 5.5, as well as family of functions SipHash𝑐𝑑, where 𝑐 represents the number of
SipRound calls when compressing each block and 𝑑 represents the amount of rounds during finaliza
tion. SipHash24 is defined as the typical implementation, while SipHash48 is proposed for higher
security at the cost of speed. A run is initialized by XORing the key with four initialization vectors.
Next, the message is processed 64bits at a time, the final block being padded with zeros and a byte
representing the length of the message. A full run of SipHash24 can be seen in Figure 5.6.

Figure 5.5: Overview of a single SipHash round [96]

Figure 5.6: Overview of SipHash24 generating a tag for a 15byte message [96]
For a more complete description of the process as well as the reasoning behind the steps, the

reader is referred to SipHash’s research paper [96].

5.3. Cipher
To achieve the encryption task of the EMS module, a suitable cipher will need to be chosen. Since
there is a wide variety of ciphers available, this section will first lay down the selection criteria relevant
to our application. Next, a tradeoff will be given between different options. Finally the workings of the
chosen cipher, Prince, will be covered in more detail.

5.3.1. Requirements
With the EMS module variants that include it, all data passing through them must be encrypted. This
means that for each transfer a small, fixedsize block of data needs to be processed as fast as possible.
Such a setting is rather different from many typical cryptographic applications, and as such it puts some
specific requirements on the chosen cipher. These main requirements are as follows:

• Req 1: The first requirement is that both encryption and decryption should be fast, since the time
spent on processing data will be directly added to the delay caused by memory latency. This will
linearly increase the amount of time the processor will have to wait during each memory access.
The time, measured in clock cycles, spent on encryption must therefore be relatively short when
compared to the overall memory latency.
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• Req 2: The second criteria is that the required chip area for both the encryption and decryption
functions should be small. The EMS module as a solution is meant to be applicable for devices
ranging from low power nodes where size is a real concern, to larger processors where it might
be less of an issue. The chosen development platform contains a microcontrollerlevel core, and
as such a small cipher would be a realistic choice.

• Req 3: The third requirement is that the cipher is secure. This is a complicated subject when it
comes to cryptography depending on many variables. Considering the application, this means
it should uses a 128 − 𝑏𝑖𝑡 key similar to the chosen MAC function, and that there are no known
attacks that significantly reduce the cipher’s security.

5.3.2. Options
The typical first choice for encryption when security is a concern, is to use AES [98]. AES is used ex
tensively in many applications and is regarded as the standard in cryptography. During its development
in the late 1990′𝑠 however, having a lightweight hardware implementation was not one of its design
criteria. As such, the area and power requirement of such implementations are too large for embed
ded applications such as IoT devices. Since then there has been quite some development concerning
lightweight cryptography, with many new ciphers being available.

When performing a search to find a suitable cipher, it was quickly found that the list is rather ex
tensive and will need to be shortened significantly. As a first step, the options were limited to block
ciphers only, as those fit best for the intended application: Each memory address stores a line of 128
bits of data, which is therefore the minimum amount of data to encrypt in one go. Furthermore, each of
these addresses can be accessed at random and there is no guarantee that successive addresses will
always be accessed in the same order. From this it follows that 128 bits is also the largest guaranteed
amount of data to encrypt in one go. Though stream ciphers such as Grain [99] and Trivium [100] can
be implemented very efficiently in hardware, they take several cycles for initialization followed by multi
ple cycles to encrypt a singly byte. This could be acceptable for situations where there is a continuous
or unknownlength stream of data, but it makes them unsuitable for this application with short, constant
blocks [101].

Next, the search was focused on ciphers with a fast and efficient hardware implementation, while
retaining security. Several papers were found comparing large amounts of lightweight block ciphers
based on area, power consumption, throughput and latency. In 2017 Hatzivasilis et al. started out by
splitting the existing ciphers in three time periods [102]. They note that the first period started in the
1980’s when cryptography was first introduced to mainstream computers. The second period ranges
from 2005 to 2012 where embedded systems become prominent, triggering a race to develop ciphers
with hardware requirements as small as possible. The third period includes the present where the focus
shifts from area reduction to speed and latency improvements, as well as the possibility to decrypt with
similar requirements. They then proceed to list several ciphers developed in each time period, and order
them based on their construction type. This way they cover 56 block ciphers and 360 implementations,
and compare them in multiple fields. Similarly, Banik et al. compare multiple hardware implementations
of lightweight block ciphers based on their size and energy consumption [102]. They then explore the
effects that unrolling rounds of each ciphers has on these properties, and create a model to predict the
additional energy consumed for each additional unrolled round.

Comparing the different ciphers in a fair way was complicated. The comparisons by Hatzivazilis et
al. are mostly focused on the encryption functionality and don’t take into account the need for decryp
tion as well, as is the case in our application. Furthermore, not all ciphers have been implemented in
the same technologies or with the same key sizes, and some ciphers have been implemented multi
ple times in the same technologies with different performance figures. To make matters worse, some
were implemented with varying amounts of unrolled rounds which also affects the area and throughput
figures. Figure 5.7 for example shows the comparison results of several block ciphers, for several pro
duction technologies and key sizes [102]. Though not all ciphers were implemented in all technologies
and the smaller bars are hard to read from the large area comparison (In Gate Equivalents (GE)), the
authors also provide the raw data in a table. Banik et al. also provide their data in a table, but they
have the same issue when it comes to consistent settings.

Through the requirements mentioned above and the ciphers covered in the comparison papers, the
list of potential candidates was reduced to five entries:
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Figure 5.7: Comparison of several ciphers based on different criteria [102]

• mCrypton [103] was presented in 2005 as a more lightweight variant of the Crypton cipher, based
around a Substitution Permutation Network (SPN). It uses 64, 96 or 128bit keys to encrypt 64bit
data blocks in 25 rounds.

• Present [94] was presented in 2007 as one of the first blockciphers specifically targeted at
lightweight cryptography, and is currently the standardized block cipher for this application. It
is built around an SPN, takes 31 rounds to process a 64bit block of data and uses 80 or 128bit
keys.

• Piccolo [104] was presented in 2011 and is built around a generalized Feistel network aimed to
be small and with low energy consumption. Adding decryption functionality is cheap compared
to other lightweight ciphers. It processes 64bit blocks of data in 25 and 31 rounds for the 80 and128bit key variants respectively.

• Prince [105] was presented in 2012, specifically designed to be lightweight while providing high
throughput and low latency. It is a special type of SPN based cipher that takes 12 rounds to
process 64bit data blocks using a 128bit key. Unlike the other ciphers, it was designed for
all rounds to be fully unrolled to process a block in one clock cycle. Due to its construction no
additional hardware is required for the decryption functionality.

• Rectangle [106] was presented relatively recently in 2015. It is also based around a SPN struc
ture, takes 64bit blocks to process in 25 rounds and supports keys of 80 or 128bits. It is aimed
specifically at devices such as RFID tags, sensor nodes and smart cards.

In an attempt to fairly compare these options, the best implementations of each cipher mentioned
in [102] for a given technology are shown in Table 5.3, where possible with the same key size and
including decryption functionality marked with (D). AES is included as well to indicate the reduction in
area requirements for lightweight ciphers. From this data it is clear that Prince is the most efficient
when it comes to raw throughput per area of the cipher, followed by Piccolo and Rectangle. Decryption
functionality is only included for the Piccolo and mCrypton implementations however, and for Present
only the 80bit key variant is given. Though Prince uses the same hardware for both encryption and
decryption and adding this functionality won’t increase its area by much, this is not necessarily the case
for the other ciphers. Furthermore, the authors of Prince state that it was designed to be efficiently fully
unrolled, in order to process a block in a single clock cycle. The mentioned implementation on the other
hand is iterative and takes 12 cycles.

The comparisons in [107] are similarly limited, but do shed some light on the effects of unrolling
rounds of the ciphers. Their data for the relevant ciphers is shown in Table 5.4. The throughput and
efficiency columns were not part of the original data, but were calculated using the block size, amount
of cycles and the cipher’s area in order to give a figure that can be compared with the data in Table 5.3.
It should be noted that both Piccolo and Present are implemented with an 80bit key, which makes the
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Table 5.3: Hardware performance of block ciphers on 0.13𝜇𝑚 technology. Truncated data taken from Table 5 in [102]

Cipher Key size
(bits)

Block
size (bits)

Cycles
per block

Throughput at
100kHz (kbps)

Area
(GE)

Efficiency
(kbps/KGE)

AES 128 128 226 48 11031 4.35
mCrypton (D) 128 64 13 492.3 4108 119.83
Present 80 64 31 206 2195 93.84
Piccolo (D) 128 64 33 193.8 1362 142.32
Prince 128 64 12 533.3 2953 180.59
Rectangle 128 64 26 246 1787 137.66

implementation both smaller and faster than their 128 counterparts. The AES implementation shown
here also takes considerably less cycles to process a block compared to the previous data, at the cost
of additional hardware space. No data is present for mCrypton and Rectangle, and no information is
given about any of the implementations’ support for decryption functionality. Nonetheless, Prince is
again the most efficient when it comes to throughput over area. In fact, when Prince is fully unrolled
to process a full block in one cycle as per its original design, it is less than twice the size of the most
unrolled 80bit Piccolo variant which still takes 8 cycles, while consuming only half as much energy per
bit.

Table 5.4: Estimated hardware performance of block ciphers on STM 90nm low leakage technology @ 10MHz. Truncated data
taken from Table 4 in [107]

Cipher Key
size
(bits)

Block
size
(bits)

Unrolled
rounds

Cycles
per
block

Calculated
throughput at
100kHz (kbps)

Area
(GE)

Calculated
efficiency
(kbps/KGE)

Energy
per bit
(pJ)

AES 128 128 1 11 1163 12459.0 93.4 2.74
2 6 2133 22842.3 93.3 4.64
3 5 2560 32731.9 78.2 8.15
4 4 3200 43641.1 73.3 11.07
5 3 4266 53998.7 79.0 12.77

Present 80 64 1 33 193 1439.9 134.6 2.69
2 17 376 1967.9 191.3 2.43
3 12 533 2499.3 213.4 2.79
4 9 711 3000.4 237.0 3.13

Piccolo 80 64 1 26 246 1492.0 164.9 2.78
2 14 457 2385.5 191.6 4.42
3 10 640 3268.1 195.8 6.55
4 8 800 4124.7 193.9 9.45

Prince 128 64 1 13 492 2286.5 215.4 2.33
Half 3 2133 8245.9 258.7 5.60
Full 1 6400 7728.6 828.1 5.77

Based on the mentioned requirements, namely that encryption should be fast and small, it is clear
that Prince is the cipher of choice. To the best of my knowledge there are no known attacks on the
Prince cipher that significantly reduce its security level, aside from some relatedkey attacks that are
not relevant to this setting [108]. The workings of Prince will be briefly covered next.

5.3.3. Prince
Prince is a lightweight block cipher optimised to provide low latency encryption and decryption of data,
proposed in 2012 by Borghoff et el. [105]. It was designed to be fully unrolled in hardware, processing
a 64bit block of data within one single clock cycle with a 128bit key, while maintaining a short critical
path to keep the clock rates ’moderately high’. Designing it this way provided some new possibilities by
removing the need for very similar round functions, as is the case for iterative hardware implementa
tions. Furthermore, it allows for a design where implementing decryption comes at a minimal additional
cost. With Prince, decrypting with one key is the same operation as encrypting with a related key, a



5.3. Cipher 57

property the authors refer to as ’𝛼reflection’. As such no, additional hardware is required for decryption,
aside from a basic operation on the secret key.

Structurally, Prince is a type of Substitution Permutation Network (SPN) similar to AES and many
other block ciphers. As their name implies, these networks perform several rounds consisting of substi
tution operations using a socalled Sboxes, and permutation operations using Pboxes to generate a
ciphertext from a given plaintext and key. The goal of the Sbox is to replace a block of bits with another
block of bits, where changing one bit of the input block leads to ideally half the bits of the output block
being changed. This property is referred to as an avalanche effect and ensures that similar plaintexts
do not result in similar ciphertexts and viceversa. To save code or hardware space, Sboxes gener
ally only operate on parts of the input and multiple are used in parallel to process the full width of the
block. The goal of the Pbox is to spread the outputs of the Sboxes to the inputs of as many Sboxes
in the next round as possible by shuffling the bits. By performing multiple rounds of substitution and
permutation steps, this ensures that all bits in the full ciphertext depend on each bit of the plaintext.
Decrypting is done by inverting the S and Pboxes and reversing their order in a round.

The encryption and decryption process of Prince consists of five distinct steps: (1) a key whitening
step; (2) five regular rounds; (3) a middle round; (4) five inverted round; and (5) a final key whitening
step. The outline of these steps is shown in Figure 5.8 and Figure 5.9. The keys 𝑘0, 𝑘′0 and 𝑘1 are64bit subkeys generated from the 128bit master key 𝑘 as follows:

𝑘 = 𝑘0||𝑘1(𝑘0||𝑘1) → (𝑘0||𝑘′0||𝑘1) ∶= (𝑘0||(𝑘0 >>> 1)𝑋𝑂𝑅(𝑘0 >> 63)||𝑘1)

Figure 5.8: Top level overview of Prince block cipher [105]

Figure 5.9: Operational structure of the Prince core and its rounds [105]

The steps performed by the Prince core are explained next:

1. k1 add XOR’s the 64bit state with the constant 64bit subkey 𝑘1. Prince uses the same subkey
for each round.

2. RC𝑖 add XOR’s the 64bit state with a given 64bit round constant shown in Table 5.5.
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Table 5.5: Round constants used by the the Prince block cipher𝑅𝐶0 0000000000000000𝑅𝐶1 13198𝑎2𝑒03707344𝑅𝐶2 𝑎4093822299𝑓31𝑑0𝑅𝐶3 082𝑒𝑓𝑎98𝑒𝑐4𝑒6𝑐89𝑅𝐶4 452821𝑒638𝑑01377𝑅𝐶5 𝑏𝑒5466𝑐𝑓34𝑒90𝑐6𝑐𝑅𝐶6 7𝑒𝑓84𝑓78𝑓𝑑955𝑐𝑏1𝑅𝐶7 85840851𝑓1𝑎𝑐43𝑎𝑎𝑅𝐶8 𝑐882𝑑32𝑓25323𝑐54𝑅𝐶9 64𝑎51195𝑒0𝑒3610𝑑𝑅𝐶10 𝑑3𝑏5𝑎399𝑐𝑎0𝑐2399𝑅𝐶11 𝑐0𝑎𝑐29𝑏7𝑐97𝑐50𝑑𝑑
3. Slayer substitutes each 4bit nibble 𝑥 of the 64bit state according to the 1D Sbox shown in

Table 5.6.

Table 5.6: Sbox used by the the Prince block cipher𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F𝑆[𝑥] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

4. M/M’layers perform the function of a Pbox by diffusing the bits of the 64bit state. 𝑀′ is a 64𝑥64
matrix as defined below with which the 64bit state is multiplied. This matrix is an involution,
meaning it is its own inverse. The 𝑀 and 𝑀−1 steps consist of a multiplication with 𝑀′, followed
by an additional shiftrows permutation of the state shown in Table 5.7, or its inverse, respectively.

𝑀0 = (0 0 0 00 1 0 00 0 1 00 0 0 1) ,𝑀1 = (
1 0 0 00 0 0 00 0 1 00 0 0 1)𝑀2 = (

1 0 0 00 1 0 00 0 0 00 0 0 1) ,𝑀3 = (
1 0 0 00 1 0 00 0 1 00 0 0 0)

�̂�0 = (𝑀0 𝑀1 𝑀2 𝑀3𝑀1 𝑀2 𝑀3 𝑀0𝑀2 𝑀3 𝑀0 𝑀1𝑀3 𝑀0 𝑀1 𝑀2) , �̂�1 = (
𝑀1 𝑀2 𝑀3 𝑀0𝑀2 𝑀3 𝑀0 𝑀1𝑀3 𝑀0 𝑀1 𝑀2𝑀0 𝑀1 𝑀2 𝑀3)

𝑀′ = ⎛⎝
�̂�0 0 0 00 �̂�1 0 00 0 �̂�1 00 0 0 �̂�0⎞⎠

Table 5.7: Shiftrows permutation used by the the Prince block cipher during M step𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F𝑆𝑅[𝑥] 0 5 A F 4 9 E 3 8 D 2 7 C 1 6 B

This symmetric structure is what allows the socalled 𝛼reflection property to occur. Because of
this property it is possible to decrypt messages with the same hardware used to encrypt them, saving
significantly on area requirements. For a full explanation on how this works exactly as well as the
reasoning behind the design of the rounds, the reader is referred to Prince’s research paper [105].

5.4. EMS Modules
With the platform, cipher andMAC function now set, several variants of the EmbeddedMemory Security
module were implemented as described in Chapter 4. Aside from the three types mentioned there that
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perform encryption, integrity verification an both, two additional variants were developed that optimize
memory usage for the MACs. This resulted in the five different types described as follows:

• Encrypt: The most straightforward implementation only ensures the confidentiality of data by
encrypting any transfers to and from memory with the Prince cipher.

• MAC (Single): This variant verifies the integrity and authenticity of transfers to and from memory.
It takes a full 128bit memory line to store its 64bit MAC as calculated with SipHash for each line
of data, with the remaining 64 bits padded with zeroes. As such, each memory access requires
an additional access for the MAC and capacity requirements are doubled.

• MAC (Double): This is an optimized version of the MAC (Single) variant. It reduces memory
requirements to 33.3%, by storing the 64bit MAC’s of two adjacent memory lines in one 128bit
line. Writing to memory now takes an additional read and write to update the MAC.

• Encrypt & MAC (Single): This variant ensures the confidentiality, integrity and authenticity of
data in memory. It encrypts each transfer and verifies a MAC over the encrypted data. One MAC
is stored per memory line.

• Encrypt & MAC (Double): This variant is the memoryoptimized version of the Encrypt & MAC
(Single) module, similar to above.

Figure 5.10: Schematic memory layout for Single and Double MAC variants of the EMS modules

The EMS modules store their MAC tags in a region in memory that is not accessible by the proces
sor. In this platform, the RAM address bus coming from the processor is 11 bits wide. This way, the
processor can index 2048 lines of memory, for a total of 32kb or RAM. The address bus between the
EMS modules and the external memory is expanded to 12 bits, allowing to access a total of 64kb. For
the singleMAC variant, the MAC address is simply the data address offset by 2048. The doubleMAC
variants store the MACs of two adjacent data addresses in the same location to save capacity, at the
cost of an additional read to update the correct MAC when writing data to memory. This concept is
shown schematically in Figure 5.10.

5.4.1. Platform Interfaces
The EMS modules are installed in the datapath between the processor and its memory controller.
As such, they have matching interfaces to connect to both. The interfaces present in this processor
platform consist of several signals, all of which are schematically shown in Figure 5.11 for an encrypt
and MAC version, and listed as follows:

• Request: The request signal originates from the processor. It is a single bit signal that is pulled
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Figure 5.11: Interface overview of an encrypt + MAC EMS module

high when the processor intends to initiate a data transfer to or from memory. This signal is kept
high for the duration of the request, until the memory signals ready.

• Rw_enable: The read/write enable signal originates from the processor. It is a single bit signal
that is pulled high during a request to signify a write to memory, or pulled low to signify a read.

• Address: The address signal originates from the processor. It is a 11bit signal and signifies the
data address in memory to access. This way the processor can index 2048 memory lines, each
containing 128 bits for a total of 32kb.

• Write_data: Thewrite data signal originates from the processor. It is a 128bit signal that transfers
one memory address worth of data to the memory during a write request.

• Read_data: The read data signal originates from the memory. It is a 128bit signal that transfers
one memory address worth of data to the processor during a read request.

• Ready: The ready signal originates from the memory. It is a single bit signal that is raised for
one clockcycle once the memory has completed a request from the processor, and pulled low
otherwise. During a write this indicates that data has been stored successfully and during a read
this signifies the data on the read_data signal is valid.

Aside from these signals, the EMS modules that perform integrity verification include an additional
connection towards the processor:

• Error: The error signal originates from the EMS module. It is a single bit signal that functions
as a flag and is pulled high when a MAC missmatch is detected, signalling the processor that
memory integrity has been compromised. The flag remains high until a device reset.

The functions of the other signals remain the same with the EMS modules present and, from the
memory and processor’s point of view, the modules are transparent. Only the address bus on the
memory side is extended with one additional bit, not accessible by the processor. Instead, it is used by
the EMS modules to index the addresses where the MACs are stored.

5.4.2. Components
Aside from the platform interfaces, the cores of the modules are also connected to their respective
cryptographic hardware: The cipher and MAC blocks. The interfaces to these blocks as well as their
structure and operation are briefly described next.

Cipher Block
The cipher block implements the Prince blockcipher for the encryption functionality of the EMS mod
ules. It has the following connections with the EMS core.

• Request: The request signal originates from the EMS core. It is a single bit signal that is pulled
high to initiate an encryption or decryption operation. This signal is kept high for the duration of
the request, until the cipher block signals ready.
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• Encrypt/decrypt: The encrypt/decrypt signal originates from the EMS core. It is a single bit
signal that is pulled high during a request to signify encryption, or pulled low to signify decryption
of the input data.

• Key: The key signal originates from the EMS core. It is a 128bit bit signal that transfers the key
with which to encrypt or decrypt the input data.

• Data_in: The data_in signal originates from the EMS core. It is a 128bit signal that transfers
one memory address worth of data to the cipher block, to be encrypted or decrypted.

• Data_out: The data_out signal originates from the cipher block. It is a 128bit signal that transfers
one memory address worth of data to the EMS core after encryption or decryption is complete.

• Ready: The ready signal originates from the cipher block. It is a single bit signal that is raised
for one clockcycle once the cipher block has completed the requested encryption or decryption
of its input data. This indicates that the output data is valid.

At the centre of the cipher block is the prince core. The original design of this core was taken from
[109]. It has been extended to include decryption functionality according to the cipher’s specifications,
as outlined in Section 5.3. This core can process a single 64bit block of data in one clock cycle.

Upon receiving a request from the EMS core, the cipher block modifies the input key based on the
encrypt/decrypt signal. The resulting key is then supplied to the Prince core, along with the first 64bit
half of the 128bit input data. It then generates the first 64bits of the output data. The second 64bit
block is processed the following cycle, completely encrypting or decrypting the input data in two clock
cycles. The ready flag is then raised and the full 128bit block of output data is presented to the EMS
core.

MAC Block
The MAC block implements the SipHash MAC function for the integrity and authenticity verification
functionality of the EMS modules. Its interfaces to the module’s core are defined as follows:

• Request: The request signal originates from the EMS core. It is a single bit signal that is pulled
high to initiate a MAC calculation. This signal is kept high for the duration of the request, until the
MAC block signals ready.

• Key: The key signal originates from the EMS core. It is a 128bit signal that transfers the key
with which to calculate the MAC of the input data.

• Data_in: The data_in signal originates from the EMS core. It is a 128bit signal that transfers
one memory address or cache line worth of data to the MAC block, to be processed.

• Data_out: The data_out signal originates from the MAC block. It is a 64bit signal that transfers
the calculated MAC to the EMS core after processing is completed.

• Ready: The ready signal originates from the MAC block. It is a single bit signal that is raised
for one clockcycle once the MAC block has completed the calculation of the MAC over the input
data. This indicates that the output data is valid.

At the centre of the MAC block is the SipHash24 core. The original design of this core was taken
from [110]. Its reset handling was slightly modified to operate the same as the rest of the platform. This
core operates according to the specifications outlined in Section 5.2. It processes data in blocks of 64
bits at a time, performs two processing rounds during compression between each block and performs
four rounds for finalization after the last block has been compressed.

Upon receiving a request from the EMS core, the MAC block initializes the SipHash core. The next
cycle, it supplies the it with the first 64bit half of the 128bit input data, and starts a compression round.
When the core is done, the next 64bit block is provided. After this, in line with the specifications of
SipHash, a third block specifying the length of the message is provided, padded with zeroes. Once all
three blocks have been compressed, the core is instructed to finalize the MAC, after which the result
is provided to the output of the MAC block to the EMS core. The process of calculating the MAC takes
a total of 11 clockcycles.
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Results

After the Embedded Memory Security modules were developed as described in the previous chapter,
they were tested for functionality and performance. This chapter will first describe the setup and per
formed experiments in Section 6.1. Next, the performance impact of the modules is measured and
tested based on benchmarks in Section 6.2. Following this, the effects of cachesizes on this perfor
mance is explored in Section 6.3. Section 6.4, then, presents study cases against some attacks, and
Section 6.5 covers the hardware cost and overhead of the modules. The chapter is closed with Sec
tion 6.6 comparing the cost of the modules to some related works, and finally Section 6.7 providing a
discussion of the results.

6.1. Setup
This section first provides an overview of the rest of this chapter, discussing the performed experiments
and the tools used.

6.1.1. Performed Experiments
To determine the performance of the EMS modules from all aspects, five groups of experiments were
performed. These experiments are as follows:

1. Performance Evaluation: First, the additional delay caused by the modules per memory access
is measured. Software benchmarks are then ran on the development platform with the different
module variants, keeping all other variables the same, to measure the actual inuse performance.
These runs are performed with a 4kb, 4way L1 cache.

2. Cache Impact Evaluation: To measure the effects of cache missrates on the performance
impact of the modules, the same benchmarks are ran with caches of 2kb, 8kb and 16kb in size.

3. Security Evaluation: The added security of the modules is explored through three study cases.
Here, attacks are performed against the platform to observe the effects of the various modules.

4. Hardware Overhead Evaluation: All variants of the EMS module were synthesized and im
plemented in an FPGA, along with the processor platform, to determine their area and timing
requirements.

6.1.2. Benchmarks
Five benchmarks were selected to measure the performance impact of the different module variants,
under various workloads. These benchmarks were taken from the riscvtests repository [111] and
ported to run on this platform. They were compiled using the 𝑟𝑖𝑠𝑐𝑣32 − 𝑒𝑙𝑓 − 𝑔𝑐𝑐 toolchain, ver
sion 9.3.0, which was locally generated. Various Python scripts were written to convert the resulting.𝑒𝑙𝑓 files into a format that could be loaded into the processor’s memory by Vivado. These same scripts
also encrypted and hashed the contents to initialize the runs for the corresponding modules. A short
description of each benchmark is provided next:

1. TheMedian benchmark performs a basic threeelement 1Dmedian filter over a 400 element input
63
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array. Afterwards, the result is verified by comparing with an included results array. If a mismatch
is found, the benchmark returns with an error code.

2. The Multiply benchmark multiplies the elements of two 100 element input arrays oneonone
through a software shiftandadd algorithm. The resulting array is then again compared to an
included array with correct results.

3. The Qsort benchmark implements the quicksort algorithm on a 2048 element input array. The
elements are then sorted in ascending order and the results are verified. This benchmark has
the largest dataset and as such the most memory operations of the five, but also performs a
computationally intensive algorithm.

4. The Towers benchmark is a purely arithmetic intensive algorithm with no real dataset. It plays a
round of the Towers of Hanoi puzzle. Here, a player must move rings of various sizes between
three pegs in order to stack them from large at the bottom to small at the top. This benchmark
performs the puzzle with 10 rings.

5. The Vvadd benchmark adds the elements of two 300 element input arrays oneonone. It too
compares its results with an included array. As such it is heavily data oriented with low compu
tational intensity.

These benchmarks were chosen to represent various workloads from dataheavy such as Vvadd, to
computationally intensive such as Towers. Simulating a single benchmark would take several minutes
to complete on the used laptop, despite taking only milliseconds in hardware time. An example of the
traces generated by a benchmark run is shown in Figure 6.1.

Figure 6.1: Example traces of a simulated benchmark run in Vivado, with inverted colours. Note the leds output changing
value, indicating a run’s completion.

6.1.3. Hardware Platform and Tools
The EMS modules were developed in the Verilog hardware description language, according to the
specifications laid out in the previous chapter. To simulate and verify their functionality, Xilinx Vivado
2019.2 was used running in Arch Linux on a laptop machine. After integration into the development
platform, the whole system was simulated to run benchmarks. The modules could only be used to
protect the system’s RAM, as the platform does not have any external flash devices. Similarly, since
the platform does not support both the instruction and data caches to interface with the same RAM,
two of the modules had to be added, one for each cache. A single address in RAM stores 128bits
of data, corresponding to one cache line, with a single memory access having a latency of 100 clock
cycles. Benchmarks were ran with 4way L1 caches of 2kb, 4kb, 8kb and 16kb in size, and no L2 or
higher levels. Simulating caches of 32kb became prohibitively slow and as will be shown later, would
not have had any noticeable further effect on performance.

The platform was also synthesized in Vivado and physically ran in hardware. This was done on the
available PYNQZ1 board [81] described in Chapter 5 and shown again for clarity in Figure 6.2. As the
FPGA could only contain the platform with a 16way variant of the smallest 2𝑘𝑏 caches, this was done
mostly to verify that the modules work correctly in hardware and to measure their hardware overhead.
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Figure 6.2: Picture of the available fpga development board, a Xilinx PYNQZ1. Repeat of Figure 5.1

6.1.4. Security Evaluation Scenarios
The developedmodules are intended to protect a device against hardwarebased attacks on its external
memory. For completeness, the effects of manipulating the contents of memory are analysed for the
different modules. Three attacks are selected and performed for this purpose, these are listed as
follows:

1. Fault/Code/Data injection: The main concern is that an attacker is able to alter running applica
tions or write his own modified software to the device. Countering this is the main goal of the EMS
modules. Fault injections are similar, as data in memory is changed to a value of the attacker’s
choosing.

2. Rogue memory: Here, an attacker may try to change the full contents of the device’s memory,
or even swap the physical memory chip itself with another one. Then, the firmware or running
state of applications could for example be changed to an earlier version, perhaps with known
vulnerabilities, obtained from another device.

3. Replay attacks: These differ from the above injection and rogue memory attacks, in that the
attacker changes contents of the same memory back to an earlier state. This implies that he
has access to valid MACs for the intended manipulation. Although it would be complicated to
implement custom applications this way, it would be possible to ’restore’ the device to an earlier
version of its firmware, or cause unintended behaviour.

6.2. Performance Evaluation
The additional delay that the Embedded Memory Security modules impose on the duration of a memory
access was first determined. These results can be seen in Table 6.1. The longest additional time is
caused during writes by the encryption and MAC (Double) variant of the modules, taking 37 cycles to
perform its processing. The additional two memory accesses required to update the MAC far outweighs
this processing time.

Table 6.1: Delays in clock cycles of a single cache request to read or write to memory, with and without the various EMS
modules.

Module : Read: Write:
None 100 100
MAC (Single) 230 229
MAC (Double) 230 332
Encrypt 108 108
Enc + MAC (S) 235 234
Enc + MAC (D) 235 337

As the processor has caches, the somewhat pessimistic situation drawn by the table does not reflect
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reallife performance. Tomore accurately determine this impact, the five benchmarks as selected above
were ran on the platform. Since the benchmarks follow a set sequence of instructions and all other
aspects of the platform remain the same, any differences in execution time are caused purely by the
modules. This way these times can be directly compared to those of the baseline platform. For this
experiment the platform’s instruction and data caches are 4way set associative and 4kb in size. Each
benchmark was successively ran 10 times to measure both coldstart and average performance. Due
to the data structure of the Qsort benchmark and the limited amount of memory available, it could only
be ran once without requiring a complete rewrite. Following runs would receive the already sorted
array as input, leading to a different execution from the first run and therefore no comparable results.
The results of each benchmark are discussed next.
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Figure 6.3: Execution times of the Median benchmark

Figure 6.3 shows the execution times for theMedian benchmark. The effects of the memory integrity
verification are clearly visible in the coldstart runs. Execution times are nearly doubled, though this
increase is reduced to 50% over the next ten runs. The memoryoptimized variants of the EMS module
show a slight increase over the singlehash variant which is caused by cachemisses after the cold
start, in particular its additional writes to memory.

6.2.2. Multiply
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Figure 6.4: Execution times of the Multiply benchmark

The execution times for the Multiply benchmark are shown in Figure 6.4. For the coldstart runs it
can be seen that there is a noticeable decrease in performance, caused by the EMS module variants
that verify memory integrity. This effect almost completely disappears during subsequent runs when the
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data is already in the cache and fewer memory accesses are required. The purely encryption version
of the EMS module does not have a significant impact on performance, even for the coldstart runs.

6.2.3. Qsort
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Figure 6.5: Execution times of the Qsort benchmark

The coldstart results for the Qsort benchmark can be seen in Figure 6.5. Here, the distinction
between single and doublehash variants is most visible of all benchmarks. This shows that there is
a significant amount of writes to memory, indicative of cache misses during execution after the initial
coldstart. As mentioned above, due to the datastructure of the benchmark and the available memory,
no subsequent runs were performed.

6.2.4. Towers
Figure 6.6 shows the impact of the EMS modules on the execution times of the Towers benchmark, or
rather, the lack thereof. As mentioned above, Towers is a purely arithmetic intensive benchmark with
no real dataset to process, leading to very little cachemisses. This results in few memory accesses
where the modules would have an effect. The coldstart run times are therefore also very close to the
averages.
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Figure 6.6: Execution time of Towers benchmark

6.2.5. Vvadd
Finally, Figure 6.7 displays the results of the Vvadd benchmark. It shows a process similar to that of
the Median benchmark: The addition of the integrity verifying modules close to doubles the execution
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Figure 6.7: Execution time of Vvadd benchmark

times of the coldstart runs. This effect becomes smaller over the next runs as data is already loaded
in the caches.

6.3. Cache Impact Evaluation
This section explores the effects of different cachesizes on the performance impact of the EMS mod
ules. As the cache size influences the missrate and therefore the amount of memory accesses, this
affects the impact of the modules as well. Aside from the 4kb caches from the previous section, the
same measurements were performed with caches of 2kb, 8kb and 16kb in size.
6.3.1. Baseline
The baseline performance of the benchmarks and caches without EMS modules was determined first.
Figure 6.8a shows the missrates of the data cache for all benchmarks and cache sizes. The missrates
were determined by counting the total amount of cache requests from the processor and how many of
these resulted in a𝑀𝐼𝑆𝑆 state. Here, the left bars show the coldstart measurements and the right bars
represent the average over 9 subsequent runs. The instruction cache for all benchmarks only showed
a missrate of less than 0.5% during the coldstart run, and subsequent runs saw zero misses no matter
the cache size. Figure 6.8b shows the actual execution times of the benchmark runs. Here, the left
bars represent the coldstart, and the right bars the average over 10 runs. As before, no averages
were determined for the Qsort benchmark. For clarity these same times are shown in Table 6.2. Some
trends visible in the benchmark performance will be covered next.
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Figure 6.8: Benchmark performance on baseline platform for all five benchmarks, on all four cache sizes.
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Table 6.2: Baseline benchmark execution times in 𝜇s for each cache size.
Benchmark Run 2kb 4kb 8kb 16kb
Median Coldstart 732 597 557 557

Average 678 401 277 277
Multiply Coldstart 864 864 864 864

Average 751 751 751 751
Qsort Coldstart 10965 9606 7588 6625

Average N/A N/A N/A N/A
Towers Coldstart 2880 2880 2880 2880

Average 2811 2811 2811 2811
Vvadd Coldstart 605 481 467 467

Average 564 308 172 172

The Median and Vvadd benchmarks show similar behaviour: The smallest caches of 2kb lead to a
high coldstart missrate of 13 and 20 percent respectively, which only slightly decreases during subse
quent runs. A larger cache of 4kb, on the other hand, reduces the missrate significantly. This effect is
amplified for runs following the coldstart. Increasing the cachesize further leads to diminishing returns
during the first run, although it does completely prevent any cachemisses during the subsequent runs.
These results are also visible in the execution times. Larger caches result in higher performance over
multiple runs, though increasing them beyond 8kb does not offer any additional advantage. Coldstart
performance is increased by 31 and 25 percent at most, over the smallest 2kb cache for Median and
Vvadd respectively.

Multiply and Towers, too, show similar behaviour to each other. Though Multiply shows a 17%miss
rate during the coldstart run, this percentage is not affected at all by cachesizes ranging from 2kb to16kb. After this initial run, its entire dataset is stored in cache, and subsequent runs do not lead to any
new misses. As Towers does not have a dataset at all, it does not suffer from this coldstart penalty and
shows no data cachemisses for any runs. Increasing the cache size also does not lead to significant
improvements in execution time, with the smallest caches performing just as well as the largest ones.

Finally, the Qsort benchmark with its large dataset and complicated algorithm, shows a slightly
different result. Increasing the cachesize shows a more gradual improvement in performance. The
missrate drops from 7.5% with the 2kb caches to 6.2%, 3.1% and 2.5% for the 4𝑘𝑏, 8kb and 16kb
caches respectively. The same is visible in the execution times, which gradually drop for larger caches.
Due to the reasons stated above, no data regarding average runs was recorded.

6.3.2. Median
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Figure 6.9: Execution times of Median benchmark for 4 cache sizes.

Figure 6.9 presents the execution times of the Median benchmark, for all four cache sizes. It shows
that the smallest 2kb cache with more cachemisses leads a slower execution. This effect is amplified
by the integrityverifying EMS modules, nearly doubling the execution times. Increasing the cachesize
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shows clear speedups, in particular during runs after the coldstart, though no more improvements are
gained beyond 8kb. At that size, the integrityverifying modules result in a 75 and 15 percent increase
for the coldstart and subsequent runs respectively.

6.3.3. Multiply
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Figure 6.10: Execution times of Multiply benchmark for 4 cache sizes.

The effects, or lack thereof, of the cachesize on the execution of the Multiply benchmark can be
seen in Figure 6.10. No changes are visible when larger caches are used. During coldstarts, the
hashing variants of the EMS module cause a 19% increase in execution time, which falls to 2% over10 subsequent runs.
6.3.4. Qsort
Figure 6.11 shows the results for the Qsort benchmark. Larger caches have a clear effect on the per
formance of this benchmark, in particular when integrity verification is performed. For the 2kb caches,
the platform with this functionality is close to twice as slow as the baseline. At 16kb, this impact is
limited to 20% at worst.
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Figure 6.11: Execution times of Qsort benchmark for 4 cache sizes.



6.3. Cache Impact Evaluation 71

6.3.5. Towers
As above in Section 6.2, the EMS modules have no significant influence on the execution times of the
Towers benchmark. For completeness, Figure 6.12 shows the performance for all four cachesizes.
Without a dataset however, no differences are visible.
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Figure 6.12: Execution times of Towers benchmark for 4 cache sizes.

6.3.6. Vvadd
Figure 6.13, finally, displays the results for the Vvadd benchmark. As in Section 6.2, the behaviour
is similar to that of the Median application. Increasing the cachesize beyond 2kb shows large per
formance improvements, which stop at 8kb. At that point, the hashing EMS modules cause a 90%
degradation in performance during the initial coldstart, dropping to 25% on average over 10 runs.
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Figure 6.13: Execution times of Vvadd benchmark for 4 cache sizes.

6.3.7. Total
To support the figures from the previous sections, Table 6.3 shows the same results numerically. It
provides the execution times for all benchmarks, with all EMS module variants and all four cache sizes.
The percentages represent the increase in execution times, relative to the baseline figures with the
same cache size.
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Table 6.3: Benchmark execution times for each module variant and cache size.

Baseline Encrypt
2kb 4kb 8kb 16kb 2kb 4k 8kb 16kb

Median C 732 597 557 557 767 (4.7%) 622 (4.2%) 580 (4.2%) 580 (4.2%)
A 678 401 277 277 709 (4.6%) 412 (2.7%) 279 (0.7%) 279 (0.7%)

Multiply C 864 864 864 864 873 (1.0%) 873 (1.0%) 873 (1.0%) 873 (1.0%)
A 751 751 751 751 752 (0.1%) 752 (0.1%) 752 (0.1%) 752 (0.1%)

Qsort C 10965 9606 7588 6625 11345 (3.5%) 9891 (2.9%) 7731 (1.9%) 6701 (1.1%)
A N/A N/A N/A N/A N/A N/A N/A N/A

Towers C 2880 2880 2880 2880 2885 (0.2%) 2885 (0.2%) 2885 (0.2%) 2885 (0.2%)
A 2811 2811 2811 2811 2812 (0.1%) 2812 (0.1%) 2812 (0.1%) 2812 (0.1%)

Vvadd C 605 481 467 467 635 (4.9%) 504 (4.7%) 489 (4.7%) 489 (4.7%)
A 564 308 172 172 593 (5.1%) 320 (3.9%) 174 (1.2%) 174 (1.2%)

MAC S MAC D
2kb 4kb 8kb 16kb 2kb 4k 8kb 16kb

Median C 1374 (87.7%) 1066 (78.5%) 976 (75.2%) 976 (75.2%) 1479 (102.0%) 1105 (85.1%) 976 (75.2%) 976 (75.2%)
A 1250 (84.3%) 606 (51.1%) 319 (15.2%) 319 (15.2%) 1355 (99.8%) 638 (59.1%) 319 (15.6%) 319 (15.6%)

Multiply C 1026 (18.7%) 1026 (18.7%) 1026 (18.7%) 1026 (18.7%) 1026 (18.8%) 1026 (18.8%) 1026 (18.8%) 1026 (18.8%)
A 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%)

Qsort C 17998 (64.1%) 14874 (54.8%) 10229 (34.8%) 8028 (21.2%) 20000 (82.4%) 16265 (69.3%) 10786 (42.1%) 8038 (21.3%)
A N/A N/A N/A N/A N/A N/A N/A N/A

Towers C 2971 (3.2%) 2971 (3.2%) 2971 (3.2%) 2971 (3.2%) 2971 (3.2%) 2971 (3.2%) 2971 (3.2%) 2971 (3.2%)
A 2820 (0.3%) 2820 (0.3%) 2820 (0.3%) 2820 (0.3%) 2820 (0.3%) 2820 (0.3%) 2820 (0.3%) 2820 (0.3%)

Vvadd C 1199 (98.1%) 920 (91.2%) 888 (90.1%) 888 (90.1%) 1270 (109.9%) 933 (93.9%) 888 (90.1%) 888 (90.1%)
A 1112 (97.1%) 527 (71.1%) 214 (24.4%) 214 (24.4%) 1189 (110.8%) 554 (79.9%) 214 (24.4%) 214 (24.4%)

Enc + MAC S Enc + MAC D
2kb 4kb 8kb 16kb 2kb 4k 8kb 16kb

Median C 1394 (90.4%) 1080 (80.9%) 989 (77.5%) 989 (77.5%) 1499 (104.7%) 1119 (87.4%) 989 (77.5%) 989 (77.5%)
A 1268 (87.0%) 612 (52.6%) 320 (15.0%) 320 (15.0%) 1372 (102.3%) 644 (60.6%) 320 (15.5%) 320 (15.5%)

Multiply C 1031 (19.3%) 1031 (19.3%) 1031 (19.3%) 1031 (19.3%) 1031 (19.3%) 1031 (19.3%) 1031 (19.3%) 1031 (19.3%)
A 768 (2.3%) 768 (2.3%) 768 (2.3%) 768 (2.3%) 768 (2.2%) 768 (2.2%) 768 (2.2%) 768 (2.2%)

Qsort C 18215 (66.1%) 15036 (56.3%) 10310 (35.9%) 8071 (21.8%) 20217 (84.3%) 16428 (71.0%) 10867 (43.2%) 8081 (21.9%)
A N/A N/A N/A N/A N/A N/A N/A N/A

Towers C 2973 (3.2%) 2973 (3.2%) 2973 (3.2%) 2973 (3.2%) 2973 (3.2%) 2973 (3.2%) 2973 (3.2%) 2973 (3.2%)
A 2821 (0.3%) 2821 (0.3%) 2821 (0.3%) 2821 (0.3%) 2821 (0.3%) 2821 (0.3%) 2821 (0.3%) 2821 (0.3%)

Vvadd C 1217 (101.2%) 934 (94.2%) 901 (92.9%) 901 (92.9%) 1288 (112.8%) 947 (96.9%) 901 (92.9%) 901 (92.9%)
A 1129 (100.1%) 533 (73.1%) 215 (25.0%) 215 (25.0%) 1206 (113.8%) 560 (81.8%) 215 (25.0%) 215 (25.0%)

6.4. Security Evaluation
Next, the security provided by the EMSmodules was tested by performing attacks on the platform. This
section covers three types as explained in Section 6.1: Injections, rogue memory and replay attacks.
For each attack the results of the baseline platform, the encryption EMS variant and the hashing EMS
module are compared.

6.4.1. Fault/Code Injection
Fault injections aim to flip one or more bits in memory to induce unintended behaviour. Code injections
are similar, where instructions or even full applications are changed into other ones. As such, both
attacks can be simulated by changing one or more bits in a location in memory, that is read during
execution of an application. In the following examples, the last bit at address 42 in the instruction
memory was randomly chosen and changed, with the platform running the Median benchmark. The
same was done for 9 other random locations in memory, leading to identical results.

Baseline

Figure 6.14: Fault injection attack performed on baseline platform

Figure 6.14 shows the result of the injection on the baseline platform with no EMS module. The
alteredmemory line is being read in the areamarked with 1. In this case no illegal instruction follows and
the processor continues with unintended behaviour, marked by area 2 and onwards. In fact, it starts
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reading and writing seemingly random data to and from its data memory, never returning to normal
operation.

Encrypt

Figure 6.15: Fault injection attack performed on platform with encrypting EMS module

Figure 6.15 displays the result when memory is encrypted by an EMS module. The affected line
is being read in the area marked with 1. Decryption leads to entirely different data, causing an illegal
instruction error in area 2. From area 3 and onwards, the processor has crashed and no more activity
is observed.

MAC

Figure 6.16: Fault injection attack performed on platform with hashing EMS module

Figure 6.16 shows what happens when memory integrity is verified by and EMS module. Area 1
shows the altered line being read, immediately followed by an interrupt in area 2 as the MACs do not
match. From this point onwards, the EMS module only presents zeros to the processor and activity
halts.

6.4.2. Rogue Memory
Roguememory attacks are when an attacker changes the entire contents of amemory chip with those of
another, or physically removes the original chip and installs the memory chip of another unit to a device.
This way, one device can be ’borrowed’ from a target and extensively researched for vulnerabilities. If
it turns out that any issues that are found have already been patched by updates for the other devices,
the attacker could perform a roguememory attack to ’restore’ its target to a previous firmware version.
In this section, a roguememory situation is emulated by loading a benchmark that was secured by the
key of another device into the platform, and simulating the results.

Baseline
As there is no security available in the baseline platform, performing a roguememory attack is trivial.
The processor simply executed the benchmark without any issues. An attacker would be able to change
the contents of thememory to anything he wants, as long as it is a valid application that can be executed.

Encrypt
In case the contents of memory are encrypted, a roguememory attack will not work as intended. Even if
the attacker is advanced and funded enough to extract the secret key of his ’borrowed’ research device,
the target will be using a different key. When decrypting the new memory contents with another key,
the result will be the same as for the injection attack in Figure 6.15. Invalid instructions are encountered
and the processor crashes.
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MAC
Similar to above, a device’s memory contents are secured with a unique cryptographic key. As such,
replacing thememory with a chip or contents from another device, will lead to mismatching MAC values.
These are detected at the very first read from memory, and the processor will hang as in the injection
case from Figure 6.16.

6.4.3. Replay Attacks
Replay attacks are performed by replacing data in memory with values that were stored earlier or in
a different location in the same memory. This type of attack remains a threat to the developed EMS
modules as no time or addressbased verification is implemented. For completeness, a replay attack
was performed on the platform with and without EMS modules. In the following examples, address 42
in the instruction memory was again modified: Its contents were replaced with those of address 43.
Baseline

Figure 6.17: Replay attack performed on baseline platform

Figure 6.17 shows the results of the baseline platform when a replay attack is performed. Area 1
shows the affected memory line being read, with the platform getting stuck in a loop in area 2 and on
wards. The result is similar to that of code injection, as all ’new’ instructions are valid and the processor
does not detect anything being wrong.

Encrypt

Figure 6.18: Replay attack performed on platform with encrypting EMS module

Figure 6.18 displays the result when and EMS module has encrypted all memory contents. In this
case the ciphertext data in line 42 is replaced with the ciphertext data from line 43. The affected line is
being read in area 1, after which it is decrypted into valid instructions identical to those in the baseline
case. From area 2 onwards, the processor shows identical behaviour to the baseline version. Though
the 𝑚𝑒𝑚_𝑟𝑑𝑎𝑡𝑎 and 𝑚𝑒𝑚_𝑎𝑑𝑑𝑟 traces appear different from the baseline, this is because now the
EMS module is located between the cache and RAM, blocking any changes to the cache’s address
output with no valid memory request.

MAC
Figure 6.19 shows the results when only the data part is replaced in a replay attack, with an integrity
verifying EMS module present. The data again is being read in area 1. As now the MAC does not
match, the module will produce an interrupt and behave similar to an injection attack as shown in area2. If an attacker is able to replace both the data and its corresponding MAC in memory, the result is
shown in Figure 6.20. Now, the module does not detect a mismatched MAC and the result is the same
as for the baseline platform.
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Figure 6.19: Replay attack performed on platform with hashing EMS module, not including hash

Figure 6.20: Replay attack performed on platform with hashing EMS module, including hash

6.5. Hardware Overhead Evaluation
To measure the hardware overhead of the EMSmodules, they were added to the development platform
and synthesized in Vivado. As mentioned in Section 6.1; due to size constraints of the available PYNQ
FPGA board, the platform could only be synthesized with 2kb, 16way data and instruction caches. The
target clock frequency was set at 25MHz and the baseline platform without module was synthesized
first. Its resulting timing and area constraints can be seen in Table 6.4, as well as schematically in Figure
6.21a for clarity. In this configuration, the platform requires more than 60% of the FPGA’s available
LUTs, twothirds of which is taken by the combined data and instruction caches. The actual processor
core itself is responsible for 19% of the area taken by the platform. At 25MHz, the estimated Worst
Negative Slack (WNS) was found to be nearly 5ns, meaning the frequency could potentially be raised
to a maximum of 28.5MHz under the same conditions.

I$
33.5%

D$

33.5%

Core

18.7%

Other

14.2%

(a) Baseline

I$ 26.9%

D$

26.9%

Core15.0%

Other

17.5%

I Module

6.8%

D Module

6.8%

(b) With largest module

Figure 6.21: FPGA area distribution of baseline platform and platform with largest module

Table 6.5 shows the additional area requirements of each variant of the EMS module, as well as
their impact on the Worst Negative Slack. The encryption functionality is more expensive than hashing
when it comes to area. This is true for both the single and double hash configurations. An encrypting
EMSmodule on its own takes up one third as much area as the RI5CY core, where the hashing variants
require just over a quarter. Combining these functionalities in one EMS module costs less than its sum,
with less than half the area of the core. The module with encryption and double hashes represents the
worstcase, taking up 45% the amount of LUTs as the RI5CY core. This effect is visualized in Figure
6.21b. Finally, the module variants with a single hash per memory line require half of the available
memory to store their tags, whereas the optimized double hash variants take up one third.

All versions of the EMS module could synthesize successfully along with the platform at the set
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Table 6.4: Hardware requirements of baseline platform with 2kb, 16way caches.
Slice LUTs (Of 53200) Slice Regs (Of 106400) WNS @ 25MHz

Full platform 32057 43871 4.97ns
RI5CY core 6006 2203
Cache (x2) 10752 19019

Table 6.5: Hardware requirements of platform with modules and 2kb, 16way caches.
Slice LUTs Slice Regs WNS @ 25MHz RAM capacity

lost to MAC
Encrypt
Full platform 35176, +9.7% 45025, +2.6% 4.30ns 0.0%
EMS module (x2) 2090 560
Prince core 1905 130
MAC Single
Full platform 34003, +6.1% 46056, +4.9% 3.88ns 50.0%
EMS module (x2) 1505 1084
SipHash core 863 467
MAC Double
Full platform 34197, +6.7% 46461, +5.9% 4.38ns 33.3%
EMS module (x2) 1596 1277
SipHash core 851 467
Encrypt+MAC (S)
Full platform 36126, +12.6% 46589, +6.2% 4.21ns 50.0%
EMS module (x2) 2563 1346
Prince core 1526 130
SipHash core 762 467
Encrypt+MAC (D)
Full platform 36427, +13.6% 46983, +7.1% 1.75ns 33.3%
EMS module (x2) 2713 1539
Prince core 1590 130
SipHash core 847 467

25MHz clock frequency. The WNS was reduced somewhat compared to the base implementation
without module. Here, too, the module with encryption and double hashes saw the largest impact with
an estimated maximum frequency of 26.3MHz, a drop of 2.2MHz over de baseline. It should be noted
though that no nets related to the modules were ever listed among the slowest paths by Vivado.

6.6. Related Works Comparison
Finally, the cost of the modules is compared to that of that of the art proposals. The first work imple
mented AES in GCM mode to achieve authenticated encryption [17]. A verilog design of this mode
of operation was taken from [112] and synthesized in Vivado as a standalone unit for the same tar
get FPGA. It was not connected to other functionality to get the area requirements. The second work
applied the SHA256 hash function to memory contents related to specific applications [15]. In the
same manner, only the core IP is considered for evaluation, in this case the SHA256 taken from [113].
Results can be seen in Table 6.6, with area requirements compared to the largest of the EMS modules.

From the table it follows that the hardware requirements of the GCMAES implementation are close
to those of the largest EMS module. This is however not the full story, as the EMS module includes all
functionality to work in this application. The GCMAES implementation will still need the additional logic
to be used as a memory security module. Furthermore, additional logic is required for the timestamp
generation hardware which is needed to make this mode of operation secure. Even more significant,
the design presented in [17] requires storing this 32bit timestamp onchip, for each address in memory.
Combined, the area requirements would be significantly larger than even the largest EMS variant. From
the timing side of things; the GCMAES implementation requires 20 clock cycles to initialize for each
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Table 6.6: Hardware requirements comparison to state of the art

Slice LUTs Slice Regs Bram
Encrypt+MAC (D) 2713 (100%) 1539 (100%) 0
Prince core 1590 130 0
SipHash core 847 467 0
GCMAES [112] 2670 (98%) 1568 (102%) 5
SHA256 [113] 2027 (75%) 1830 (119%) 0

memory access, followed by 18 cycles to process a single 128bit block of data. This results in an
overhead of 38 cycles, excluding the additional memory access for the tag. Performance here is close
to that of the slowest EMS module, coming in at 37 cycles excluding the memory accesses. In a full
implementation however, the GCMAES version would still require additional cycles for the EMS logic
and the timestamp generation. Similarly, the SHA256 implementation is significantly larger than the
used SipHash. Including SHA256 in an EMS modules, would therefore greatly increase the size.
Furthermore, the SHA implementation requires 66 cycles to process a single block, twice that of the
EMS module with both encryption and MAC calculation.

6.7. Discussion
Based on the experiments, the following can be highlighted:
Security: The modules performed as expected during the attacks in Section 6.4. The MAC variants
counter all sorts of hardware based attacks on memory, including fault and code injection, by alerting
the processor and halting operation. Although encryption alone does not prevent such attacks from
being attempted, it does prevent the attacker from learning what he is actually doing. This alone would
make many such attacks impractical. Both options completely counter a roguememory attack, as
long as each device has access to a unique key. Replay attacks remain a weakness for the current
implementations of the EMS modules, and more research will be needed to counter these.
Performance: The performance impact of the modules varies widely per benchmark and per cache
size. Cache missrates as high as 20% were observed, whereas in modern systems missrates are
typically lower than 5% [71]. For runs where these rates were at or below 5%, the slowest version of
the module encrypt + MAC (Double) caused the execution times to increase by 25% at worst and0.3% at best. Where the single MAC variant performs noticeably better at the smaller cache sizes, at
this point the difference is no longer significant. Compared to the MAC implementations, encryption
causes a minimal overhead of less than one percent typically, and less than 5% in the worst case.
Area Overhead: The area overhead of the EMS modules when implemented in hardware caused a
less than 14% increase in LUT requirements over the full processor platform. However, this platform
required two of the modules, one for each cache which were connected to their own RAM, whereas
typically only one would be required. Compared to the used RI5CY microcontroller core, the largest
module encrypt + MAC (Double) was 45% its size. Compared to a more powerful and perhaps more
realistic processor core such as Ariane [82] with its 85000 LUTs requirements, this largest module
would cause only 3.2% overhead.
Evaluations under Operating Systems: An attempt was made to implement the EMS modules for
the Ariane platform. This would have allowed to measure its effect on a more powerful IoT platform
with a real operation system such as Linux, multilayered caches, flash storage support and enough
memory to run larger and custom benchmarks. However, it did take half a year before the order of
the required FPGA development board was processed and as such the board arrived too late for this
thesis. Porting the EMS modules to this platform is left for future research.
Security Extensions Evaluations: As presented in Chapter 4, the security provided by EMS modules
can be increased by including two other techniques, namely a secure network protocol and software
binding. Since it was not possible to perform such experiments without having an Operating System,
these security extensions could not be implemented and tested. Therefore, we consider this part as
future works.





7
Conclusion

This chapter concludes this thesis by providing the conclusions and some points left open for future
research. The main conclusions of each chapter are first summarized in Section 7.1, followed by the
future research options in Section 7.2.

7.1. Summary
Chapter 1 pointed out the threat of cybercrime, in particular regarding the Internet of Things, which is
expected to continue to grow rapidly to make up half of the total internet connections by 2023, according
to Cisco. It discussed how IoT devices are already installed in a large variety of applications, some of
which pose a considerable risk to their surroundings if the device were to be attacked. Several real
world examples of this were given. The chapter then highlighted hardwarebased attacks aimed at the
external memory modules of a device, which are insufficiently protected and are an attractive target in
highvalue applications. The rest of the thesis is focussed on developing memory security modules to
counter this threat.
Chapter 2 of this thesis discussed the types of hardware and software that are typically found in IoT
devices. Next, it explained the importance of the security criteria integrity, authenticity, confidentiality
and availability. It then defined three categories of IoT applications based on the severity of the con
sequences in case a device is compromised. These categories were low, medium and high risk, with
the consequences ranging from personal inconvenience, danger to human life and danger to society
on a larger scale. This chapter reenforces the point that the security of IoT devices is critical.
Chapter 3 discussed three different categories of attacks based on their main attack vector being
network based, software based or hardware based. For each category, the workings, some examples
and existing countermeasures were covered for multiple different types of attack.
Chapter 4 presented the security solution developed to counter hardware based threats on memory
modules. It first laid out the constrained environments of IoT devices to focus on hardware, and then
explained the concept and operation of the Embedded Memory Security modules as a solution. Some
additional considerations were mentioned and discussed to make the modules more secure. It ended
by proposing two security extensions that could be implemented along with the presented EMSmodules
to also secure against software and network threats.
Chapter 5 covered the design choices made when developing the EMS modules. The chosen devel
opment platform, cryptographic cipher and MAC function used in the modules were discussed in detail
by covering the requirements, available options and tradeoffs as well as the final specifications for
each. Then, it mentions the five variants of the EMS module that were developed, their components
and their interfaces.
Chapter 6 presented the results of the developed modules. They were integrated into the processor
development platform and their performance was determined through various experiments. The setup
and performed experiments were first described in detail. Then, the performance impact of the modules
was determined by running several benchmarks and testing with multiple cache sizes. This showed
that under realistic cache conditions, their impact was limited to a 25% increase in execution time at
worst. Following this, three attacks were performed on the platform to observe the security properties of
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the modules, demonstrating that they do protect against various hardware attacks on memory. Finally,
the hardware cost of the modules was determined and compared to state of the art works. It was found
that the most expensive module cost less than half the area of the RI5CY microcontroller core, and
only 3% of the linuxcapable Ariane core.

7.2. Future work
Finally, this section lists several paths to explore further in future research as follows:
1. Flash support: The performance impact of the EMS modules was measured when applied to

RAM with multiple benchmarks and multiple cache sizes. Aside from this, the modules could also
be used to secure other interfaces such as persistent flash storage, which was originally planned
to be part of this thesis. Due to time constraints and the lack of flash support by the platform, this
was left for future research.

2. Operating systems: The microcontrollerclass processor platform did not have an operating
system. Implementing the modules in a larger platform such as Ariane, would allow for measuring
the effects when an operating system is present. Furthermore, it would provide functionality to
run more advanced benchmarks. This, too, was intended to be part of this thesis, however due
to development boards not arriving on time this was not possible.

3. Replay attacks: Although the developed modules protect against several hardwareattacks on
memory, they are unable to detect a replay attack. Some stateoftheart proposals mentioned
in Chapter 1 do offer this functionality, at a significant cost in hardware. If this type of attack is
considered relevant for an application, a lightweight solution to this would also be required.

4. Security extensions: The security extensions mentioned in Chapter 4 would offer protection
against software and network based attacks. Developing these further is left open to future work.

5. Optimizations: Additional optimizations could be implemented to the developedmodules to save
on time and area costs. For example, operations could be parallelized to save clock cycles.
Similarly, cache lines that are larger than what is stored at one memory address could be used.
Then, a single MAC could be calculated per cache line instead of for each address, reducing the
memory requirements. These and other optimizations could be explored.

6. Tweakable authenticated encryption: Tweakable ciphers are a recent development, which
would allow for using the address as an additional input when encrypting data. This is briefly
mentioned in Chapter 4 as a solution against memory patterns, but could also help against re
play attacks. Similarly, lightweight implementations of authenticated encryption could be further
developed to combine encryption and MAC calculation into one operation.
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