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Abstract—Light-based positioning systems (LPS) are gaining
significant attention as a means to provide localization with cm
accuracy. Many of these systems estimate the object position
based on the received light intensity, and work properly in ‘ideal’
environments such as large open spaces without obstructions
around the light-emitting diode (LED) and the receiver, where
reflections are negligible. In more dynamic environments, such
as indoor spaces with moving people and city roads with moving
vehicles, materials cause a wide variety of reflections. This causes
variations in the received light intensity and, as a consequence,
gross localization errors in LPS. We propose a new multipath
detection technique for improving LPS that does not require
the knowledge of the channel impulse response and then, it is
suited to be implemented in low-cost positioning receivers that
use a single-pixel photodetector. To develop our technique, we
(i) analyze the statistical properties of non-line-of-sight (NLOS)
components, (ii) develop an automated testbed to study the
reflections of different types of surfaces and materials, and (iii)
design an algorithm to remove the NLOS components affecting
the positioning estimate. Our experimental evaluation shows
that, in complex environments, our methodology can reduce the
localization error using LEDs up to 93%.

Index Terms—Visible Light Communication, Localization, Re-
flections, Experiments.

I. INTRODUCTION

Artificial lighting is everywhere, from the light bulbs on
the ceilings to car headlights. It is expected that, by 2025,
light-emitting diodes (LEDs) will account as 98% of the
lighting [1]. This trend makes visible light communication
(VLC) an attractive technology for data transmission and,
more recently, for locating objects and people using light-
based positioning systems (LPS). LPS are gaining significant
attention from industry and the scientific community due to
its high accuracy. Broadly speaking, LPS can be divided into
two categories depending on the type of optical receiver they
use: LPS relying on photodiode (PD) and LPS relying on
image sensor (camera) [2–6]. PDs provide higher throughput
and energy-efficiency than cameras, and thus, they are a
better choice for wearable devices (low energy) and vehicular

Ander Galisteo and Patrizio Marcocci are both first authors of this work.
The work of Ander Galisteo was supported in part by the “La Caixa Inter-

national PhD Program” Fellowship under Grant LCF/BQ/ES16/11570019.

networks (high throughput). Image sensors are popular due to
their widespread availability in smartphones, but they have a
reduced data rate (only kb/s rather than Mb/s or more [7]) and
a higher energy cost (∼300 mW rather than a few mW [8]).

The area of LPS for smartphones is relatively mature and
there are products already in the market [9], whereas LPS
in wearable devices and vehicular networks have encountered
additional difficulties. Compared to cameras, the main con-
straint of PDs is its sensitivity to interference caused by optical
reflections coming from the surroundings made of different
type of surfaces and materials. All the incoming optical rays
sum up at the PD due to operating as a single pixel [10].
This implies that reflections affect LPS that work with a
single-pixel PD as receiver, because the majority of LPS relies
on the received signal strength (RSS) resulting from all the
light components [11]. Therefore, LPS relying on PD are
affected by location errors (from a few cm to 1 m) in real
deployments [10], [12–14]. Image sensors can instead solve
optical interference by exploiting multiple pixels [15].

Discerning the line-of-sight (LOS) path for positioning
using a single-pixel PD receiver is not easy. Estimating the
channel impulse response (CIR) to infer the LOS and reflected
non-line-of-sight (NLOS) paths requires a powerful analogue-
to-digital converter (ADC) and high processing capabilities on
the receiver side, which may not be available or desired [16].
Reflected paths have been ignored in recent experimental
works for LPS relying on PD [2], [3], [17], [18], and
reflections have been characterized only from a theoretical
point of view [19–21]. However most of works are limited
to simulations of simple static indoor scenarios [10], [12],
[13], [22], [23] and the detection/discrimination of NLOS
components has been done exploiting quite complex schemes
as multiple sources [24] or multiple receivers [18], [25].

Against this background, this work presents a technique
to discern and filter reflected light paths using a single-pixel
PD. Our key idea is to avoid the need of the CIR knowledge
and to propose a low-complexity practical approach based on
time series of the RSS collected with a low-cost PD. This
trade-off is possible in our scenarios of interest (vehicular or
wearable networks) because (i) nodes are mobile, and thus,
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Fig. 1: Comparison of inverse-square law with respect to RSS
measurements using low-cost PD receivers in ideal LOS links.

changes in reflection occur over a short period of time, (ii)
the reflections from materials have unique statistical properties
that can be exploited to filter out NLOS components, and (iii)
our scenarios can accept some marginal delay, which allows
us to work with short time series.

All in all, the main contributions of our work are:
• Section II: system model containing the motivation and

a dedicated experimental testbed that allows making
controllable and realistic down-scaled characterization of
visible light multipath in low-cost receivers.

• Section III: a statistical method to identify and discrimi-
nate NLOS components with limited sampling rate of the
receiver.

• Section IV: a decision tree algorithm that can run in low-
cost receivers and that uses only two features, yet it can
differentiate between different types of reflections.

• Section V: a new algorithm for removing NLOS compo-
nents and an experimental evaluation that shows that our
method can improve the accuracy of LPS up to 93%.

II. SYSTEM MODEL

A. Accuracy of positioning techniques with reflected light

As stated before, positioning techniques with single-pixel
PDs typically rely on RSS-based estimation algorithms. These
solutions exploit the so-called inverse-square law, which char-
acterizes the relation between distance and RSS in pure LOS
scenarios as

RSS ∝ 1

d2
, (1)

where d is the distance between transmitter (TX) and receiver
(RX). Figure 1 validates the application of the inverse-square
law in VLC by comparing (1) to a simple, practical experiment
where the optical received power is measured for multiple
d values. This good match has been the foundation behind
the uptake of LPS in the last few years [11]. However, the
monotonic curve of Fig. 1 becomes less predictable and noisier
if a fraction of the light does not reach the RX through the
LOS link, i.e., it comes from reflected paths.

Since reflections are different for every reflector material,
in order to quantify the impact of reflections, we first consider
the ideal environment (considering only the LOS component),
and subsequently, we include the presence of light reflected
by different materials: shiny glass (glass), grey satin metal
(metal), chipboard (rwood), plywood (swood) and foam core

Fig. 2: Testbed.

(wfoam). We use our experimental setup presented in Fig. 2
where the TX and the RX are at a fixed distance, and then
we estimate, by using (1), the TX-RX distance based on the
power received.

Figure 3 evaluates the TX-RX distance error with respect to
the distance of the reflective material from the LOS link. As
expected, the smallest error is obtained when there is only a
LOS component (i.e. no reflective material). Depending on the
reflective material and its distance, the accuracy of the LPS
may change.

B. Basic intuition behind the proposed approach

The detection of NLOS components could be performed in
systems with an expensive receiver with high gain-bandwidth
product that samples quickly and have enough processing
capabilities to compute the CIR [26]. This requires a very
high sampling rate at the receiver, which is not feasible in
low-end systems.

Instead of computing the CIR, we exploit the fact that, in
a dynamic environment, a reflector does not appear suddenly,
but enters the illuminated area progressively and the reflections
are received by the PD at a certain speed (creating the NLOS
component). This phenomenon is represented in Fig. 41 that,
indeed, is the setup configured in this work for addressing LPS
problems in mobile scenarios. Using past data, the receiver first
observes an RSS variation due to the transition between the
LOS and “LOS+NLOS” conditions and, subsequently, a tran-
sition between the “LOS+NLOS” and LOS conditions (when
the reflective material is moving away). The shape of the time
sequence depends on the material reflecting the light. Note
that, as reflections are typically intermittent in vehicular or
wearable network scenarios, the system can rely on knowledge
of LOS information acquired in a certain time period. Since
the first-order reflection may affect the communication and
location algorithm [27], the objective of this work is to tackle
the localization errors that this NLOS component generates.

C. Testbed

Moving from the realm of theory and simulations into
empirical evaluations requires a testbed. We require a testbed
with modules capable of providing light-based positioning and

1We consider a mobile reflector and static TX and RX, but the same
concepts applies to other cases as long as there is a relative movement among
TX, RX, and the reflector. For instance, mobile TX and RX, and a static
reflector; or mobile TX and RX and a mobile reflector at different speeds.
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Fig. 3: Experimental TX-RX distance error against reflector distance
for multiple materials.

Fig. 4: Schematic representation of reflections in the presence of
mobility. The red dashed line depicts the reflecting zone.

mobility. On the one hand, the positioning requirement is
addressed by the use of OpenVLC boards for LPS [17]. On the
other hand, the mobility requirement is addressed by mounting
these boards onto a structure that was originally designed for
medium-scale 3D printing: the OpenBuilds ACRO movement
structure [28] (see Fig. 2). We bundle these two systems
together (mechanically, electrically, and with software) to
provide a precisely controlled environment. Our testbed can
reproduce fully customizable down-scaled mobile scenarios
and automatize the collection of raw data.

Without loss of generality, we move the reflecting materials
and keep the positions of the TX and RX fixed (as the
movement can be considered relative). The reflective surface is
fixed on top of the mobile unit of the system (see Fig. 2), and
it can move at a maximum speed of 42 cm/s and a maximum
acceleration of 2 m/s2 per axis. Table I reports the parameters
of our testbed. Note that movement between TX and RX is also
studied in a following section in order to distinguish reflections
from TX-RX relative movements.

All of our experiments use the following setup. The TX and
the RX are placed at a distance of 70 cm. The TX emits a fixed
light intensity. The RX acquires a trace of 7.5 seconds (i.e.
1.5 million samples) for each movement. To consider various
reflector distances, i.e., distances between the LOS path and
the reflecting material, we start from a distance of 20 cm, and
then move the reflective surface away in steps of 5 cm up
to a distance of 65 cm (10 different distances). The same
measurement is repeated 30 times in order to have statistical
relevance. Thus 300 traces are collected for each material, plus
another 300 for the “pure LOS” condition. Although all our
experiments are carried out in the darkness, external illumina-
tion sources would not affect the system performance due to
the fact that reflections still vary over a short time period.
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(a) Diffuse object.
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(b) Specular object.

Fig. 5: Example of power received from reflection over time when
diffuse (a) and specular (b) materials moves into an illuminated area.

TABLE I: Testbed parameters.

Parameter Value

Nodes 2 OpenVLC boards
LED luminous flux 956 lm
LED half-power semi-angle 55◦

Single-pixel PD area 7.02 mm2

Single-pixel PD FOV 120◦

Single-pixel PD spectral sensitivity 80 nA/lx
Sampling 12 bits @200 kHz
Movement grid 130 cm x 130 cm

III. IDENTIFYING REFLECTIONS

As stated in Section II, removing the effects of reflections
in LPS implies identifying those reflections and discerning
valid RSS changes. In this section, we tackle the identification
problem for a series of RSS measurements.

Reflections cause peaks in light intensity, but these peaks
can take widely different shapes depending on the properties
of the reflecting material. Our first task is to define a minimal
set of features to identify all such peaks. When light impinges
upon a material, all reflected components are summed-up at
the receiver. The final received intensity depends on two key
properties: First, the reflection coefficient, i.e., the more reflec-
tive the material is (e.g., a mirror), the higher the light intensity
reflected; Second, the material smoothness, i.e., a very diffuse
material (e.g., white paper) has a wide contribution in space
because it reflects light in all directions. This type of materials
lead to short but wide reflection peaks, as shown in Fig. 5a.
On the other hand, a specular material (e.g. a smooth metallic
plate) will only reflect light near the Snell angle [29] that
leads to high and narrow peaks as represented in Fig. 5b.
Furthermore, the shape of the peaks is also affected by the size
of the reflective material, and by their relative speed (bigger
materials and slower speeds lead to wider peaks). The number
of materials and the variety of sizes and speeds would lead to
a large number of peak shapes. To generalize the solution, we
need an approach for identifying reflections that is material-,
size- and speed-independent:
• Material-independent: The common property in all re-

flection peaks is that the power received by the NLOS
component increases when the reflective object enters the
illuminated area, reaches a maximum when the whole
material is illuminated and starts decreasing when the
material gets out of that area, an action that can be seen
in Fig. 4. This effect is represented in Fig. 5, where the
received power is plotted for two different reflectors. Note
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(g) Plywood - raw data.
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Fig. 6: Typical signal for “LOS+NLOS” condition with different
reflector materials. Left side: raw data. Right side: histograms.

that the maximum peak and the length of the transitions
can change depending on the material, but the shape is
similar and useful to identify a NLOS path.

• Size-independent: The plateau of the peak in Fig. 5 is
determined by the size of the reflective material. Thus, if
the study focuses only on the intrinsic properties of the
received signal transitions, that is the upward and down-
ward slopes highlighted in red in Fig. 5, the proposed
approach may be considered as size-independent.

• Speed-independent: As long as the sampling rate is high
enough compared to the object speed, speed variations
will not modify the statistics of the received signal.

Each material and each surface type, due to its unique
properties, reflects light differently. This is why this work
analyzes different materials, trying to identify the reflection
properties that are similar (and different) among them.

A. Statistics considered

Let us consider a “Pure LOS” scenario and four
“LOS+NLOS” scenarios composed of materials with distinct

reflective features (glass, metal, plywood and chipboard).
Using our experimental setup introduced in Section II-C, Fig. 6
shows the raw traces and distributions for these cases. For the
“Pure LOS” case (Fig. 6a and 6b), we observe, as expected,
a normal distribution with µ = 238 and σ = 2.91. For the
“LOS+NLOS” scenarios (Fig. 6c-6j), we observe peaks that
would lead to localization errors. To highlight the behavior
hidden underneath the shot and thermal noises, a moving
average filtering (white line) is shown. Except for the chip-
board, which has a minimal effect due to its weak and diffuse
reflection behaviour, all the other materials have bimodal
distributions. These bimodal distributions have different trends
–for instance, glass produces a sharper reflection than metal
or plywood (two well-separated groups of values)–, but all
distributions are clearly distinguishable from the “Pure LOS”
case.

Our aim is to exploit the peculiar characteristics of the
received signal variation over time when light bounces on a
given surface. With the constraint of using a given sequence of
RSS samples collected with low-cost receivers, here we pro-
pose to look at the statistical moments up to the fourth-order
as candidate observations to monitor the channel transitions of
the NLOS component, and identify those material properties.
Apart from the mean µ, and the standard deviation σ, we then
consider:
• skewness (skew): third-order statistic that gives the

amount and direction of skew (departure from horizontal
symmetry).

• kurtosis (k): fourth-order statistic that defines how tall
and sharp the central peak is, relative to a standard bell
curve (i.e. normal distribution where k = 3) [30].

Since we are considering low-computational algorithms,
higher-order statistics (HOS) are not taken into account be-
cause the higher the moment, the harder it is to estimate.
Moreover, larger sample intervals are required in order to
obtain estimates of similar quality. Finally, due to the high
noise power produced when using off-the-shelf devices, HOS
are significantly less robust than lower-order statistics.

B. Region of interest (ROI) of the received signal

The detection of the NLOS component in the received signal
depends on the statistical properties of the signal itself. As
observed previously, the information we want to exploit lies
in the transition between LOS and “LOS+NLOS”. Therefore,
we compute the region of interest (ROI) to select the subset of
samples in which we are interested, by searching for changes
in the signal [31]. Here, a change in the signal is given by
a significant variation of the first statistical moment (i.e. the
mean value µ). If µ is considered as a parameter for detecting
changes, then a proper algorithm would return the index at
which µ changes most significantly (e.g. index corresponding
to the blue dashed line of Fig. 7a and Fig. 7d). Instead, if the
statistical parameter is the standard deviation σ, the algorithm
would return the index relative to the beginning/ending of the
rising/falling edge, which is the area where σ changes the
most (red dashed line of Fig. 7a and Fig. 7d). As examples
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(a) µ and σ abrupt changes.
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(b) ROI area.
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(c) Cropped signal.
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(d) µ and σ abrupt changes.
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(e) ROI area.
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(f) Cropped signal.

Fig. 7: Typical ROI selection steps for glass (a-c) and white foam (d-f).
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(h) LOS+glass.
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Fig. 8: Statistical parameters µ (a-c), σ (d-f), skewness (g-i), kurtosis
(j-l) against step numbers (i.e., distance to the reflector that goes
from 20 to 65 cm in steps of 5 cm). Comparison among “Pure LOS”,
“LOS+glass” and “LOS+metal” are also represented.

of this procedure, the ROI selection steps for two different
materials are shown in Fig. 7. Starting from the whole traces
of Fig. 6, the signal is processed for detecting regions of
interest2. Our algorithm works as follows. First, the signal is
filtered with a smoothed filter for removing the noise, allowing

2With a double passage back and forth, there are two ROIs.

a sharp ROI selection. Then the regions between the µ and σ
changes, named “transition intervals”, are selected. As a final
step, in order not to alter the statistical properties of the signal
and make the selection size-and-speed-independent, the ROI
is extracted by taking the “transition interval” plus the same
amount of this interval before and after it as highlighted in
Fig. 7b and Fig. 7e. The result is the signals of Fig. 7c and
Fig. 7f for glass and white foam, respectively, that will be used
for the statistical analysis.

C. Assessment of observables to identify reflections

As we perform a statistical analysis, we show in Fig. 8 the
trend of each observable (mean, standard deviation, skewness
and kurtosis) over step numbers, which represent the reflector
distances from 20 to 65 cm in steps of 5 cm. Note that only
values for glass and metal reflectors are discussed, as they are
the most representative cases of reflection types and typical
materials in vehicular scenarios. By analyzing the results, we
note that µ and σ follow the same trend for both sample
materials. Their values decay exponentially along the distance
and converge to the pure LOS case.

Something more peculiar can be stated for skewness and
kurtosis. In the experiment involving glass, skewness tends
to the LOS case value more quickly than the values corre-
sponding to the metal case. Glass produces a more directional
reflection than metal and only in a determined position along
the movement. This is why the NLOS due to glass (specular-
like) is lost after a few steps, becoming indistinguishable from
noise.

Skewness and kurtosis values for all the scenarios acquired
at step number 1 are reported in Table II. Note that the “Pure
LOS” condition can be clearly identified by only exploiting
skewness and kurtosis. Also, a high-level estimation of dif-
ferent types of reflector materials can be given, leaving space
to an in-depth analysis for a material-type classification (i.e.
specular-like and diffuse-like material groups), but this is out



TABLE II: Example values of skew and k for step number 1

Condition skew k

Pure LOS 0.18 6.32
LOS+metal 1.05 2.41
LOS+swood 0.67 2.08
LOS+glass 0.64 1.77
LOS+wfoam 0.55 2.20
LOS+rwood 0.17 4.92

the scope of this paper and a possible future research line.
Besides, note that all the “LOS+NLOS” scenarios tend to look
the same and approach the “Pure LOS” condition for larger
distances. Therefore, after a certain distance, the identification
cannot be performed anymore. However, in those cases, the
reflection due to a specific material or large distance leads
to a very weak contribution and the generated noise into the
system can be considered negligible (refer to Section II-A).

IV. CLASSIFICATION PROBLEM PROPOSED

We start this section by solving the problem of discerning
valid RSS changes and then introducing a low-cost decision
tree algorithm to learn which RSS sequences are caused by
reflections.

A. Relative movement of devices

As seen until now, a quick object passage produces a reflec-
tion which can lead to a significant amplitude signal variation.
As shown in Section II-B a relative linear movement between
devices cannot be distinguished easily from the presence of
a reflector object. It is necessary to investigate if the statisti-
cal methodology proposed in the previous section to detect
reflections is still valid in presence of relative movements
between the TX and the RX. We want our method to detect
reflections when they are present, but not to remove relative
movement information, as it will lead to a higher error on the
computed location, our final goal. The statistical properties of
the received signal are related to the relative speed between TX
and RX, and the sampling rate. Thus, if we want to make our
metric speed independent, we should look into the number of
samples obtained per unit of distance. Two acquisition systems
will have the same behavior if the speed

sampling rate ratio is the
same. Therefore, keeping the number of samples per unit of
area constant, the movement of fast objects can be studied by
decreasing the sampling rate. In fact, increasing the number
of samples per unit of distance does not necessarily lead to
a better detector accuracy. A system needs sufficient samples
to detect a change in the signal, but sampling the signal more
will not improve the detection. Taking this into account, we
perform tests at low speeds, so that the experimentation can
be correctly performed with a low-sampling-rate device and
safely carried out also in an indoor controlled environment,
such as the one presented in Section II-C. Note that, if the
movement is too fast that cannot be detected, it will not be
even appreciated by the localization algorithm.

We acquire a set of relative movements (approaching or
moving away TX and RX) at five different speeds. Figure 9
shows four tests performed at different speeds (v1 = 42 cm/s
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(a) Towards at speed v1 = 42 cm/s:
skew = -0.50, k = 1.34.
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(b) Backwards at speed v1 = 42 cm/s:
skew = 0.78, k = 1.72.

0 5 10 15

10
5

100

200

300

400

500

600

sa
m

p
le

 v
al

u
e

sample number

(c) Towards at speed v2 = 10.6 cm/s:
skew = 0.82, k = 2.24.
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(d) Backwards at speed v2 =
10.6 cm/s: skew = 0.21, k = 1.43.

Fig. 9: Typical received signal for a linear movement towards and
backwards the transmitter.
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Fig. 10: “isMov” parameter against skewness for different conditions
along distances (mean values for each step).

and v2 = 10.6 cm/s). We see that raw data look specular as
the reflective object approaches or moves away at the same
speed. Skewness assumes positive and negative values with
respect to the direction of the movement, but overall both
statistical parameters we consider have very similar values to
those related to “LOS+NLOS” conditions (Fig. 8). Therefore
a way for discriminating the relative movement of devices is
needed. By supposing that dynamics change fast in mobile
environments, a certain NLOS component may last over a
short period of time. An option would be to introduce a time
metric, but this would come at the cost of a speed dependent
measure, which is undesired. We instead propose a metric
that is the sum of the difference between consecutive samples,
denoted by the variable

isMov =

N∑
i=2

(xi − xi−1), (2)

where xi is the i-th sample of the received signal and N is
the window signal length. Equation (2) gives us an intuition
on how the system is at the end of the measuring window
compared to the beginning. If they are very different, the
system has changed, otherwise the system relative distance
did not change significantly. This lets us distinguish between
a signal variation which returns to the same value of the
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Fig. 12: Coarse tree classification model.

beginning after a fast perturbation (like the one coming from
a reflection) and an increased final value. Typical values
of “isMov” are high (always above 100) only for relative
movements. This avoids the fact that relative movements of
devices are confused with a LOS to “LOS+NLOS” transition
(see Fig. 10).

B. Detection of NLOS reception

Contrary to the first and second moments, skewness and
kurtosis are independent of signal intensity, and they can be
efficiently used as features in a classification model where
three classes are discerned: “Pure LOS”, “LOS+NLOS” and
“Movement”. Figure 11 represents a scatter plot with axes
that are skewness, kurtosis and the “isMov” variable. The
“LOS+NLOS” class aggregates all the different materials in
our tests. We observe that classes are well separated as the
“Pure LOS” and “Movement” persist in a very limited area.

Therefore, we can introduce the algorithm to detect NLOS
components in fully dynamic scenarios. In order to classify
different scenarios, we choose a supervised machine learning
classifier. We introduce a Decision Tree (DT) algorithm to
let low-cost devices take advantage of NLOS recognition.
In particular, here a coarse tree is used as it has a simple
structure, fast prediction speed, small memory usage and low
computational cost [32], [33].

The classification model we exploit is shown in Fig. 12.
As mentioned before, it is a coarse tree algorithm with only
two decision nodes. It uses only kurtosis and “isMov” as
predictors since, as demonstrated in Fig. 11, they are sufficient

TABLE III: Confusion matrix, model trained on data set A and tested
on data set B.

Predicted condition

Tr
ue

co
nd

iti
on

Pure LOS LOS+NLOS Movement
Pure LOS 100% 0% 0%

LOS+NLOS 26.8% 73.2% 0%
Movement 0% 0% 100%

Fig. 13: Block diagram of the algorithm implemented.

for discriminating the three labels (or classes): “Pure LOS”,
“LOS+NLOS” and “Movement”. Skewness would be useful
in discriminating a material type from another, but is not the
objective of this study.

For training the classification model, we take a data set
(A) of 1320 collected observations (200 traces for each LOS
and NLOS scenario, considering different step numbers, and
120 for movement). A 5-fold cross validation is employed for
avoiding an overfitted training. It has an accuracy of 100%.
Finally, for testing the trained classification model, another
data set (B) of 660 collected observations (100 for each LOS
and NLOS condition, 60 for movement) is used.

Table III shows how the model performs in discerning
among classes. In particular, “Pure LOS” and “Movement”
are always detected correctly. Differently, the “LOS+NLOS”
class suffers the condition in which the NLOS contribution is
very poor, and the classification model fails to detect it, with
an error of up to 26.8%. Therefore, as expected, there are
conditions with low predictive accuracy. Nevertheless, it must
be taken into account that the final objective is not simply to
detect when there is an object reflecting, but to also remove
that reflection.

V. LOCALIZATION ACCURACY IMPROVEMENT BY
REMOVING THE NLOS COMPONENT

The final goal of this work is to design a method to remove
the NLOS components from received VLC signals in order
to improve the LPS accuracy. Using the results obtained
in Section IV, we design a NLOS removal algorithm. This
algorithm detects and corrects the NLOS components that
appear in mobile environments.

As input, the algorithm takes the raw data from the ADC.
This data is statistically analyzed and the NLOS is detected
using the method introduced in Section IV. Then, the NLOS
component is removed as follows.
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Fig. 14: NLOS removal in a “LOS+metal” condition.
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Fig. 15: Distance calculation error after applying correction algorithm
(glass = shiny glass, metal = grey satin metal, rwood = chipboard,
swood = plywood, wfoam = foam core).

A. NLOS removal

After the signal is received, it is analyzed for detecting the
presence of a NLOS component. In order to remove it, the
algorithm performs the following steps that are also depicted
in Fig. 13:
• First, it detects the ROI where the NLOS component is

located. In order to do so, it computes the average value
of the whole signal and it detects what part deviates from
it. This is selected as the ROI (see Section III-B).

• The ROI is processed by computing the variable “isMov”
as (2) indicates in order to determine if there is a relative
movement in it. Then it is statistically analyzed using the
metrics explained in Section IV.

• The results of this analysis are passed to the trained
decision tree, that decides if there is a NLOS component
or not.

• If the decision tree decides that a NLOS component is
present, it is filtered out from the received signal. This
is done by subtracting the ROI average value µROI from
the ROI and adding the average value of the rest of the
received signal µRX :

ROI ′ = ROI − µROI + µRX . (3)

The NLOS removal algorithm works only on the ROIs as the
rest of the signal is not being filtered. An example of how the
algorithm performs is shown in Fig. 14 for a “LOS+metal”
condition. As can be seen, the incoming raw data (blue curve)
with a significant RSS variation is corrected into a reflection-
less signal (red curve) following (3).

B. Algorithm Evaluation

This section analyzes the performance of the NLOS re-
moval algorithm. In particular, using the same data set and

TABLE IV: Position accuracy (worst cases)

Condition W/o correction With correction Improvement
[cm] [cm] [%]

Pure LOS 0.58 0.58 0
LOS+glass 5.15 1.32 74.3
LOS+metal 11.79 0.8 93.2
LOS+rwood 1.5 1.06 28.8
LOS+swood 4.7 0.7 85.3
LOS+wfoam 3.94 0.99 74.8
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Fig. 16: CDF of the estimated TX-RX distance error. Plots aggregate
all the steps and all the conditions.

the received-power based localization algorithm [17] used in
Section II-A, we compute the relative localization of an object
using light. The position of the object was computed both with
and without the correction algorithm.

As it can be seen in Fig. 15, the distance error3 is always
below 2% and the accuracy may increase up to 93% as
shown in Table IV. The reason why the error stays low even
if the relative power of the NLOS component increases, is
that the removal algorithm works better with higher NLOS
components. Indeed, when the NLOS component is weak (i.e.
the reflective material is far), the ROI selection does not work
very well, but the effect on the localization is, as seen in
Section II-A (Fig. 3), negligible.

As an additional result, Fig. 16 shows the cumulative dis-
tribution function (CDF) of the estimated TX-RX distance
error. Note that a significant improvement is achieved when the
reflection correction algorithm is used. Indeed, the positioning
error can reach a sub-centimeter accuracy with a probability
of 80% when filtering is applied.

VI. RELATED WORK

Authors in [10], [16], [21], [22] perform an efficient charac-
terization of the NLOS components to model the CIR. How-
ever these solutions come at the cost of high computational
resources and the use of specific software even for outdoor
applications [34]. Proper countermeasures are then needed for
compensating the undesired effect of reflections in VLC [35]
and for avoiding the positioning error in LPS [15], [18], [36],
[37].

Among other solutions, LOS and NLOS identification algo-
rithms make use of multiple LEDs and PDs [24], [25], [37],
which is a condition that may not be available. Some others
work opt to use image sensors for cancelling the effect of
reflections [4], [5], but it comes with much higher energy
consumption cost and lower data rate of communication.

3Percent distance error means the positioning error w.r.t. the ground truth,
that is fixed and equal to 70 cm.



Our work is an experimental-based analysis and the solution
we introduce here exploits a low-cost system allowing a NLOS
cancellation in both specular and diffuse reflection conditions.
It implies a statistical study of time series of the received signal
instead of a way-more-complex and costly CIR estimation.
Our method, by using a single-pixel photodetector, offers a
solution for overcoming the reflection effect and guaranteeing
a better accuracy than more sophisticated systems do.

VII. CONCLUSION

Motivated by the errors caused by reflections in LPS,
this paper presented a new method to filter out multipath
components that is suited to be implemented in low-cost
positioning receivers that use a single-pixel photodetector. By
analyzing the statistical properties of NLOS components and
exploiting the results obtained from a custom-built and fully
controllable testbed, we have performed an extensive experi-
mental campaign that drove us to design a low-computational
cost algorithm to effectively remove the NLOS components,
and then to improve the LPS accuracy in up to a 93 %.
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