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Abstract
Rank-Biased Overlap (𝑅𝐵𝑂) is a popular measure of the similarity

between two rankings. A key characteristic of 𝑅𝐵𝑂 is that it can

be computed even when the rankings are not fully seen and only

a prefix is known, but this introduces uncertainty in the computa-

tion. In such cases, one would normally compute the point estimate

𝑅𝐵𝑂𝐸𝑋𝑇 , as well as bounds representing the best and worst cases;

their difference is thus a residual quantifying the amount of uncer-

tainty. Another source of uncertainty is the presence of tied items,

because their actual relative order is unknown. Current approaches

to this issue similarly provide a point estimate by considering the

average 𝑅𝐵𝑂 score over all the permutations of the ties, such as

𝑅𝐵𝑂𝑎
. However, there is currently no approach to quantify and

bound the uncertainty due to ties, just as there is for the uncertainty

due to unseen items. In this paper we fill this gap and provide algo-

rithmic solutions to the problem of finding the arrangements of tied

items that yield the lowest and highest possible 𝑅𝐵𝑂 scores, natu-

rally leading to total bounds and residuals. We also show that the

current 𝑅𝐵𝑂𝑎
estimate only equals the average 𝑅𝐵𝑂 over permuta-

tions when the rankings have the same length, so we also generalize

it to rankings of different lengths. In summary, this work provides

a full account for the uncertainty in 𝑅𝐵𝑂 , allowing practitioners

to make more sensible decisions on the grounds of rank similarity.

The main realization is that residuals can actually be much larger

once we account for both sources of uncertainty. To illustrate this,

we present empirical results using both synthetic and TREC data,

demonstrating that a realistic picture for the residual of 𝑅𝐵𝑂 can

only be provided by considering both sources of uncertainty.
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1 Introduction
In Information Retrieval (IR) and Recommender Systems (RecSys)

we often compare rankings created by different criteria, such as

rankings of items recommended to a user, candidate terms for

query expansion, topics for document clustering, or systems by

evaluation metric score [1, 7, 10, 14, 22, 27, 30, 37, 43]. Some of the

most frequently used measures of ranking similarity are based on

the notion of rank correlation, such as 𝜏 [15], 𝜌 [31], 𝐷 [17], 𝜏∗ [24],
𝑑
rank

[8], 𝜏𝑎𝑝 [35, 41], 𝐾∗ and 𝐹 ′∗ [18], and 𝜏𝑤 [36].

But rank correlation cannot be used when the rankings are non-

conjoint or incomplete. This happens for example whenWeb search

engines likely have different portions of the Web in their indexes,

so that some pages retrieved by system A cannot even be retrieved

by system B, or when they truncate the results at different depths.

Alternatives to handle non-conjoint rankings include adaptations

of the Hoeffding distance [33], Spearman’s footrule [3, 13], and IR

metrics [4, 34]. The most popular alternative is Rank-Biased Over-

lap (𝑅𝐵𝑂), by Webber et al. [40]. In addition to non-conjoint and

incomplete rankings, it can handle rankings of different lengths and

is top-weighted. 𝑅𝐵𝑂 is often employed in IR and RecSys research

for example to assess consistency of systems to query variations

[2], compare system outputs [7, 27, 38], measure topic similarity

[1, 22], or compare rankings in general [6, 9, 25, 29, 42].

1.1 Uncertainty in 𝑹𝑩𝑶
When computing 𝑅𝐵𝑂 , we need to recognize two sources of uncer-

tainty: unseen items and tied items. Uncertainty due to unseen
items arises because rankings are usually truncated after a cer-

tain depth: due to the very nature of rankings, what items appear

after a sufficiently deep rank is negligible. For example, a push

notification may contain only the top 1 recommendation, and a

typical TREC run contains only the top 1,000 documents per topic.

As a consequence, rankings actually consist of a seen part or prefix,

and an unseen part. As acknowledged by Webber et al. [40] when

presenting 𝑅𝐵𝑂 , these unseen items introduce uncertainty because

it is unknown if they overlap or not. To account for this uncertainty,

they proposed to calculate a point estimate, named 𝑅𝐵𝑂EXT, and

the bounds that 𝑅𝐵𝑂 would take in the best and worst possible

arrangements of the unseen parts, namely 𝑅𝐵𝑂MAX and 𝑅𝐵𝑂MIN
(see Figure 1). To quantify uncertainty in a single number, Webber

et al. suggested computing the residual 𝑅𝐵𝑂MAX−𝑅𝐵𝑂MIN, and

reporting it whenever its magnitude is relevant.

Uncertainty due to tied items arises whenever two or more

items appear at the same rank because their relative order, for

whatever reason, is unknown. These items are said to be “tied”,

and they also introduce uncertainty when calculating 𝑅𝐵𝑂 . In IR,

ties may appear for example when two documents have the same

retrieval status value for a query [20, 23, 28]. The treatment of such

ties in correlation problems dates back to the early 1900’s [26, 32],
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𝑌 = ⟨ a   f   d   g   c   e   ·   ·   ·   ·   ·   ·   …⟩

⟩

1 2 3 4 5 6 7 8 9 10 11 12 …
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0.6

0.8

Depth

1.0

RBOMAX = 0.747

RBOEXT = 0.703

RBOMIN = 0.619

RBO@6 = 0.485

Figure 1: Uncertainty due to unseen items (𝒑=0.8). 𝑹𝑩𝑶 at
the end of the seen part is 0.485. The best and worst possible
arrangements of the unseen items are represented by the
upper and lower dashed lines, extending up to infinity. The
middle dashed line represents the point estimate 𝑹𝑩𝑶EXT.

where the work by Kendall [16] is probably the most recognizable

one. He developed two variants of his 𝜏 , namely 𝜏𝑎 and 𝜏𝑏 , via an

stochastic interpretation of ties. In particular, he considered the

expected correlation over all the possible permutations of the tied

items, so that they would appear in one order half the times, and

in the reverse order the other half; the difference later strives in

that the 𝑏-variant further corrects the score by the amount of ties

present in the rankings. More recently, the same approach has been

adopted in the IR literature to develop tie-aware variants of 𝜏𝑎𝑝 [35]

and a weighted variant of 𝜏𝑏 [36].

For 𝑅𝐵𝑂 , we have recently developed 𝑎- and 𝑏- variants as

well [11]. Let us consider the sample rankings from Figure 1 but

with some tied items, as illustrated in Figure 2. There are 3! = 6

possible arrangements of the tied items in 𝑋 , and 2! × 3! = 12

arrangements of 𝑌 , for a total of 72 possible pairs of rankings to

compute 𝑅𝐵𝑂 . In the absence of any other information, all those

72 arrangements are equally likely, so it is natural to compute the

average 𝑅𝐵𝑂 over all permutations, as a sort of expected 𝑅𝐵𝑂 if

one was to break ties at random. In the spirit of Kendall’s 𝜏𝑎 , this is

precisely what the 𝑎-variant, namely 𝑅𝐵𝑂𝑎
, computes [11].

1.2 Should We Care about Uncertainty?
It is important to note that 𝑅𝐵𝑂 does not create this uncertainty.
When a ranking is represented just with a prefix, it is the ranking,

in and on itself, the one that bears uncertainty, which is then prop-

agated on to the 𝑅𝐵𝑂 calculation. Being aware of this uncertainty

allows for a more sensible use of 𝑅𝐵𝑂 . For instance, Figure 1 reflects

an example in which the 𝑅𝐵𝑂 score could be anywhere between

0.619 and 0.747 if we were able to fully observe the rankings. In

some situations, this may be just too much uncertainty to make a

decision. At the very least, it allows us to acknowledge and quantify

how much uncertainty there is in case a decision is made.

Likewise, a ranking containing ties bears uncertainty, which is

propagated on to the 𝑅𝐵𝑂 calculation. As Figure 2 shows, scores

may vary substantially depending on the specific arrangement of

tied items, and in particular the best and worst possible cases differ

by as much as 0.374. This is an extremely high amount of variability

that would go unnoticed when reporting a single number.
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𝑋 = ⟨ f   a  [d   c   b]  g   · · · · · ·  …

𝑌 = ⟨[a   f   d] [g   c]  e   · · · · · ·  …⟩
⟩

1 2 3 4 5 6 7 8 9 10 11 12 …
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0.2

0.4

0.6
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Depth
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RBO@6hig = 0.711

RBO@6avg = 0.47

RBO@6low = 0.337

Figure 2: Uncertainty due to tied items (from Figure 1; square
brackets indicate groups of tied items). Grey lines represent
𝑹𝑩𝑶 scores for all possible permutations of the ties. The
red, orange and blue lines represent the highest, average and
lowest 𝑹𝑩𝑶 score over permutations, respectively.

One could choose to ignore uncertainty. Indeed, once the prefixes

are sufficiently long the uncertainty due to unseen items becomes

negligible. However, while practitioners may often be able to con-

trol the prefix length, they have no control over the presence or

absence of ties, for they are an intrinsic property of the rankings

themselves. To illustrate, Cabanac et al. [5] and Corsi and Urbano

[11] showed that the majority of typical TREC runs do contain ties,

with dozens of documents having the same retrieval status values.

One could still counter-argue that ties can always be broken, but it

does not seem reasonable to artificially modify a ranking just for

the sake of comparing it to another one. In addition, breaking ties at

random unnecessarily introduces noise, and breaking by a determin-

istic criterion is even worse because it inflates scores [11]. Simply

neglecting uncertainty is not an option. We need to acknowledge

it, embrace it, and make it an integral part of our work.

1.3 Contribution
Simply put, 𝑅𝐵𝑂EXT just handles the uncertainty due to unseen

items by providing a point estimate, but it is 𝑅𝐵𝑂MIN and 𝑅𝐵𝑂MAX
who actually quantify the amount of uncertainty around this esti-

mate. In the same way, the formulations for 𝑅𝐵𝑂𝑎
and 𝑅𝐵𝑂𝑏

simply

handle the uncertainty due to tied items, but there is currently no

work on the quantification of that uncertainty, neither with bounds

nor with residuals. Therefore, in this paper we address this gap:

(1) Section 3 provides solutions for the lowest and highest possi-

ble scores over permutations of the ties, namely 𝑅𝐵𝑂 low
and

𝑅𝐵𝑂hig
, as well as a proper formulation for the average, namely

𝑅𝐵𝑂avg
, which deals with a subtle pitfall of 𝑅𝐵𝑂𝑎

.

(2) Section 4 illustrates the importance of accounting for uncer-

tainty with real world TREC data and synthetic data.

(3) Section 5 presents detailed discussion and guidelines about how

to compute and report 𝑅𝐵𝑂 .

Together with [11, 40], this work thus provides a full account for the

uncertainty in Rank-Biased Overlap, as illustrated in Figure 6. All

the results can be reproduced with data and code available online.
1

1
https://github.com/matteo-corsi/sigir_ap24
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2 Ranked-Biased Overlap
Given two indefinite rankings 𝐿 and 𝑆 , 𝑅𝐵𝑂 is defined as an infinite

sum of weighted agreements at increasing depths:

𝑅𝐵𝑂 =
1 − 𝑝
𝑝

∞∑︁
𝑑=1

𝐴𝑑 · 𝑝𝑑 , (1)

where 𝐴𝑑 is the agreement between 𝑆 and 𝐿 at depth 𝑑 , and 𝑝𝑑 is

the corresponding weight; the persistence parameter 𝑝 determines

how the weight decays as a function of the depth [40].

In the absence of ties, the agreement is defined as the fraction of

items up to depth 𝑑 that are common to both rankings:

𝐴𝑑 =
𝑋𝑑

𝑑
=
|𝐿

:𝑑 ∩ 𝑆:𝑑 |
𝑑

, (2)

where𝑋𝑑 is the overlap between 𝑆 and 𝐿 up to depth 𝑑 . 𝑅𝐵𝑂 ranges

between amaximum of 1 when two identical rankings are compared

and a value of 0 when the rankings have no items in common.

2.1 Uncertainty due to Unseen Items
Despite being defined for infinite rankings, in practice 𝑅𝐵𝑂 is al-

ways computed from a prefix or seen part of the rankings. To better

illustrate, let 𝑠 and 𝑙 refer to the lengths of 𝑆 and 𝐿, respectively,

where 𝑆 is generally the shorter one (i.e. 𝑠 ≤ 𝑙). Following Corsi

and Urbano [11], let us rewrite 𝑅𝐵𝑂 in eq. (1) as follows:

𝑅𝐵𝑂 =
1 − 𝑝
𝑝

[
𝑠∑︁

𝑑=1

𝐴𝑑𝑝
𝑑

︸     ︷︷     ︸
1

+
𝑙∑︁

𝑑=𝑠+1
𝐴𝑑𝑝

𝑑

︸       ︷︷       ︸
2

+
∞∑︁

𝑑=𝑙+1
𝐴𝑑𝑝

𝑑

︸       ︷︷       ︸
3

]
, (3)

where items in the first summation are seen in both rankings, items

in the second summation are seen only in the longer ranking, and

items in the third summation are not seen in any ranking. The

unseen items in the second and third summations are the ones

responsible for the first source of uncertainty.

The lower bound, 𝑅𝐵𝑂MIN, is computed by assuming that all

these unseen items do not overlap [40]. In other words, it is assumed

that the rankings are non-conjoint. Noting that overlap is always

𝑋𝑙 in the third summation, after some rearrangement we obtain:

𝑅𝐵𝑂MIN =
1 − 𝑝
𝑝

[
𝑙∑︁

𝑑=1

𝐴𝑑 𝑝
𝑑 + 𝑋𝑙

[
ln

(
1

1 − 𝑝

)
−

𝑙∑︁
𝑑=1

𝑝𝑑

𝑑

] ]
. (4)

The opposite assumption is made for the upper bound 𝑅𝐵𝑂MAX:

all unseen items match items that remained unmatched from the

other ranking [40]. In particular, in the second summation it is

assumed that every unseen item in 𝑆 matches an item from 𝐿. In

the third summation, every unseen item in 𝐿 matches something

still unmatched from 𝑆 and vice-versa, thus increasing overlap by

+2 at every depth. This happens up to depth 𝑓 = 𝑙 + 𝑠 − 𝑋𝑙 , after
which it is assumed that the same item appears in both rankings,

increasing overlap by +1. After some rearrangement, we obtain:

𝑅𝐵𝑂MAX =
1 − 𝑝
𝑝

[
𝑠∑︁

𝑑=1

𝐴𝑑 𝑝
𝑑 +

𝑙∑︁
𝑑=𝑠+1

𝑋𝑑 + 𝑑 − 𝑠
𝑑

𝑝𝑑+

+
𝑓∑︁

𝑑=𝑙+1

2𝑑 − 𝑙 − 𝑠 + 𝑋𝑙
𝑑

𝑝𝑑

]
+ 𝑝 𝑓 . (5)

In Figure 1, 𝑅𝐵𝑂MIN and 𝑅𝐵𝑂MAX values at increasing depths are

represented by the lower and upper dashed lines. The residual due to

unseen items can thus be calculated as 𝑅𝐸𝑆U = 𝑅𝐵𝑂MAX −𝑅𝐵𝑂MIN.

For the point estimate 𝑅𝐵𝑂EXT, it is assumed that the seen agree-

ment remains constant throughout the unseen parts [40]. In order

to achieve this, the 𝑑 − 𝑠 unseen items in 𝑆 in the second summa-

tion are assumed to contribute fractionally by an amount equal to

𝐴𝑠 = 𝑋𝑠/𝑠 . For the third summation, agreement assumed at depth 𝑙

continues up to infinity, leading to:

𝑅𝐵𝑂EXT =
1 − 𝑝
𝑝

[
𝑠∑︁

𝑑=1

𝐴𝑑 𝑝
𝑑 +

𝑙∑︁
𝑑=𝑠+1

𝑋𝑑 + (𝑑 − 𝑠)𝐴𝑠
𝑑

𝑝𝑑

]
+

+ 𝑋𝑙 + (𝑙 − 𝑠)𝐴𝑠
𝑙

𝑝𝑙 . (6)

A stochastic interpretation of these choices is detailed in [11, Sec-

tion 4]. In Figure 1, 𝑅𝐵𝑂EXT values at increasing depths are repre-

sented by the mid dashed line.

2.2 Treatment of Ties
Webber et al. [40] briefly contemplated the case where tied items re-
ally occur at the same rank (i.e. the “sports” rankings), later coined

𝑅𝐵𝑂𝑤
by Corsi and Urbano [11]. But this interpretation of ties does

not bear to the idea of uncertainty, so they introduced variants

𝑅𝐵𝑂𝑎
and 𝑅𝐵𝑂𝑏

, akin to Kendall’s 𝜏𝑎 and 𝜏𝑏 , thus following the

interpretation typically found in the Statistics literature. Specifi-

cally, they approached the problem stochastically by considering

all the possible arrangements of the tied items, and computing the

expected overlap,𝑋𝑎
𝑑
, over all such permutations.𝑅𝐵𝑂𝑎

is then com-

puted using the expected agreement 𝐴𝑎
𝑑
= 𝑋𝑎

𝑑
/𝑑 (see Section 3.3

for more details). In contrast, the agreement for 𝑅𝐵𝑂𝑏
does not

normalize 𝑋𝑎
𝑑
with 𝑑 , but with the amount of measurable overlap

at depth 𝑑 . In other words, it corrects for the amount of ties. Finally,

they followed the same rationale by Webber et al. to quantify the

uncertainty due to unseen items in these three tie-aware variants.

As such, the current literature offers ways to handle both sources of

uncertainty, but it is still unknown how to quantify the uncertainty

introduced by tied items. We fill this gap next.

3 Uncertainty due to Ties
Section 2.1 described how to deal with the uncertainty due to unseen

items by defining bounds and a point estimate for 𝑅𝐵𝑂 . Inspired

by this, in this section we deal with the uncertainty due to ties in

the seen part by similarly deriving bounds and a point estimate.

Specifically, let us consider all the possible arrangements of the tied

items: the permutations that minimize overlap at each depth will

lead to the lowest possible score, namely 𝑅𝐵𝑂𝑙𝑜𝑤
, and those that

maximize it will lead to the highest possible score, namely 𝑅𝐵𝑂ℎ𝑖𝑔
.

Our goal is to derive such permutations to compute the bounds.

A brute-force approach that calculates 𝑅𝐵𝑂 for all possible per-

mutations is off the table, for the number of permutations grows

factorially with the number of ties. To put this into perspective,

we note that rankings by a typical TREC Web run have more per-

mutations than atoms in the observable universe [12]. In addition,

we note that there may be multiple solutions to this problem. For

instance, permutations ⟨a d c i m h b e⟩ and ⟨m e b c d a n⟩
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𝑑 = ⟨ 1   2   3   4   5   6   7   8   9 10 11 12  …

𝑳 = ⟨ a [i d   m   c] [e   b   h]〉 ⋅ ⋅ ⋅ ⋅ ⋅

𝑺 = ⟨ m [b   a   e   c   d] n〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Figure 3: Main example used in Section 3. Colored letters rep-
resent tied items, and square brackets represent tie groups.

lead to the 𝑅𝐵𝑂𝑙𝑜𝑤
for the example in Figure 3, but so do permuta-

tions ⟨a c d i m h e b⟩ and ⟨m b e d c a n⟩. Finally, we note
that finding 𝑅𝐵𝑂𝑙𝑜𝑤

and finding 𝑅𝐵𝑂ℎ𝑖𝑔
are not dual problems. Let

us use

←−
𝑋 to denote 𝑋 reversed, and 𝑋 𝑙𝑜𝑤

for a permutation leading

to 𝑅𝐵𝑂𝑙𝑜𝑤
. One could intuitively hope that 𝑌 𝑙𝑜𝑤 |𝑋 = 𝑌ℎ𝑖𝑔 |←−𝑋 and

vice-versa, so that only one algorithm would really be needed, but

this is unfortunately not the case. The reason is again that there are

multiple solutions to𝑌 𝑙𝑜𝑤 |𝑋 , so that an algorithm would ultimately

still be needed to compute a valid 𝑌ℎ𝑖𝑔 .2

3.1 Permutations with Lowest Score: 𝑹𝑩𝑶 low

In order to derive the permutations that lead to the lower bound

𝑅𝐵𝑂 low
, we must decide how to arrange tied items and in which

order. Every choice we make as to the rank of an item has a direct

influence on the possible choices we can make for the other items.

Therefore, it is essential to establish an order of priority, for which

we consider two principles:

• P1: delay overlap. Items should be ranked as deep as possible,

so that their contribution to overlap is delayed the most.

• P2: leave room. P1 should apply to one ranking only; in the

other one the item should actually be ranked as early as possible

so that it leaves room for other items to also delay overlap.

Let us consider the example in Figure 3. Principle P1 tells us to fix

c at rank 6 in 𝑆 so that its overlap is delayed the most. But then, it

does not need to be ranked deep in 𝐿, because it would not make a

difference with respect to the delay. Instead, rank 5 in 𝐿 could be

taken by another item from the group in order to delay its overlap,

such as d. Therefore, P2 tells us to rank c at rank 2 in 𝐿, so as to

make up the most room to delay overlaps in the red group.

To accommodate principle P1, let us define the overlap interval

for an item 𝑒 as the set of all ranks at which that item could finally

contribute to overlap; let us refer to the top and bottom ranks of

such interval as 𝜏𝑒 and 𝛽𝑒 , respectively. The length of the overlap

interval gives an indication of how much room we have to delay

the item’s overlap, so we first prioritize items with long intervals. In

order to accommodate principle P2, let us define 𝛿𝑒 as the maximum

distance between the ranks at which item 𝑒 may appear in both

rankings. For example, the distance for item b is maximized when

it is placed at the top of the blue group and at the bottom of the

green one. This distance can then be used as the second criterion

to prioritize which items to fix, as it would maximize the room left

for other items to delay their overlap. In practice then, by P1 we

will place an item as deep as possible in one ranking, and by P2 we

will place it as early as possible in the other ranking.

Algorithm 1 presents a summary of procedure Permutation-

sLowest, which generates two permutations of 𝑆 and 𝐿 that lead

2
We do not elaborate further because of space restrictions. The interested reader may

refer to the toy example 𝑋 = ⟨d [a c]⟩, 𝑌 = ⟨[c d] b⟩ to illustrate this.

Algorithm 1 Compute permutations for 𝑅𝐵𝑂 low
scores.

1: procedure PermutationsLowest(𝑆, 𝐿)

2: # Compute top/bottom ranks and possible overlaps
3: Ω ← {𝑆 ∩ 𝐿}
4: for all 𝑒 ∈ Ω do
5: compute 𝑡𝑒𝑆 , 𝑡𝑒𝐿 , 𝑏𝑒𝑆 , 𝑏𝑒𝐿 , 𝜏𝑒 , 𝛽𝑒 and 𝛿𝑒

6: end for
7: # Initialize output rankings
8: 𝑆∗, 𝐿∗ ← empty rankings of lengths 𝑠 and 𝑙

9:

10: while |Ω | > 0 do
11: # Select next item to fix and decide its final ranks
12: 𝑓 ← arg𝑒∈Ω by max(𝛽𝑒 − 𝜏𝑒 ) then by max𝛿𝑒

13: 𝑟𝑆 ← 𝑏𝑓 𝑆 and 𝑟𝐿 ← 𝑏𝑓 𝐿
14: if 𝑓 is tied in 𝑆 or 𝑓 is tied in 𝐿 then
15: if 𝑏𝑓 𝐿 > 𝑏𝑓 𝑆 or (𝑏𝑓 𝐿 = 𝑏𝑓 𝑆 and 𝑡𝑓 𝑆 < 𝑡𝑓 𝐿 ) then
16: 𝑟𝑆 ← 𝑡𝑓 𝑆
17: else
18: 𝑟𝐿 ← 𝑡𝑓 𝐿
19: end if
20: end if
21: # Fix in the output rankings
22: 𝑆∗𝑟𝑆 ← 𝐿∗𝑟𝐿 ← 𝑓 and Ω ← Ω/{ 𝑓 }
23:

24: # Update top/bottom ranks and possible overlaps
25: for all 𝑒 ∈ Ω do
26: recompute 𝑡𝑒𝑆 , 𝑡𝑒𝐿 , 𝑏𝑒𝑆 , 𝑏𝑒𝐿 , 𝜏𝑒 , 𝛽𝑒 and 𝛿𝑒

27: end for
28: end while
29:

30: # Items in only one ranking do not make a difference
31: for all 𝑒 ∈ {𝑆 ∪ 𝐿}/{𝑆 ∩ 𝐿} do
32: fix 𝑒 in a random empty spot

33: end for
34:

35: return 𝑆∗, 𝐿∗

36: end procedure

to the lowest possible 𝑅𝐵𝑂 score.
3
The algorithm aims precisely at

prioritizing principles P1 and P2 above:

(1) Lines 3–6: Ω represents the items in common between the two

rankings. For each of these, we compute the deepest position

that they can take in each ranking (i.e. the bottom ranks 𝑏𝑒𝑆
and 𝑏𝑒𝐿), and the earliest (i.e. the top ranks 𝑡𝑒𝑆 and 𝑡𝑒𝐿). In

Figure 3, we would have for example 𝑏e𝐿 =𝑏b𝐿 =𝑏h𝐿 = 8 and

𝑡b𝑆 =𝑡a𝑆 =𝑡e𝑆 =𝑡c𝑆 =𝑡d𝑆 =2. We also compute the bounds of the

overlap interval, 𝜏𝑒 =max(𝑡𝑒𝑆 , 𝑡𝑒𝐿) and 𝛽𝑒 =max(𝑏𝑒𝑆 , 𝑏𝑒𝐿), and
the maximum distance 𝛿𝑒 =max(𝑏𝑒𝑆−𝑡𝑒𝐿, 𝑡𝑒𝑆−𝑏𝑒𝐿). For c in the

example, we would have 𝜏c=2, 𝛽c=6 and 𝛿c=4 (when ranked

at the top of the red group and at the bottom of the blue one).

(2) Lines 12–13: the item 𝑓 to be fixed next is selected, prioritizing

longer overlap intervals and then longer distances. By default,

its new ranks 𝑟𝑆 and 𝑟𝐿 are set at the bottom of its groups. In

the example, item m would initially be assigned 𝑟𝑆 =1 and 𝑟𝐿 =5.

(3) Lines 14–20: we identify the ranking where the chosen item can

be placed the deepest, and in the other ranking it is placed as

3
For simplicity, both Algorithm1 and 2 are described for rankings of the same length,

but the generalization is straightforward with proper checks for 𝑑 ≤ 𝑠 .

128



How do Ties Affect the Uncertainty in Rank-Biased Overlap? SIGIR-AP ’24, December 9–12, 2024, Tokyo, Japan

early as possible, thus complying with principles P1 and P2.For

instance, if the deepest rank in 𝐿 is greater than the one in 𝑆 (i.e.

𝑏 𝑓 𝐿 > 𝑏 𝑓 𝑆 ), then 𝑓 will be assigned rank 𝑡𝑓 𝑆 in 𝑆 . For instance,

item c would be assigned rank 2 in 𝐿 and rank 6 in 𝑆 .

(4) Line 22: the selected item 𝑓 is finally fixed in the output

rankings 𝑆∗ and 𝐿∗ at ranks 𝑟𝑆 and 𝑟𝐿 , and it is removed from Ω.
(5) Lines 25–27: for the remaining items in Ω, we update the top

and bottom ranks, as well as the bounds of the overlap interval

and the maximum distance.

(6) Steps (2)–(5) are repeated until Ω is empty.

(7) Lines 31–33: all items that were not initially in Ω (i.e. they

appear in only one ranking) can be placed at random in the

remaining spots. Indeed, these items do not influence overlap

once all the other items have been placed.

This algorithm returns two permutations of the originals, namely

𝑋 low
and 𝑌 low

, that have no ties and yield the lowest possible 𝑅𝐵𝑂

score among all possible permutations; these are illustrated in Fig-

ure 6 with solid blue lines. Computing eqs. (4), (5) and (6) with these

two permutations, we can add the uncertainty due to unseen items

on top of the lower bound of the uncertainty due to ties, resulting

in the 𝑅𝐵𝑂 low
* scores displayed in Figure 6 with blue dashed lines.

Again, recall that there may be multiple valid solutions, for example

when there are several items with the same 𝛽 − 𝜏 and 𝛿 in line 12,

and one has to be chosen at random.

3.2 Permutation with Highest Score: 𝑹𝑩𝑶hig

Similarly, we can find the permutations of 𝑆 and 𝐿 that lead to the

highest possible 𝑅𝐵𝑂 score. In this case, we want items to match as

early as possible so that overlap is maximized. We can differentiate

four cases at any given rank 𝑑 :

• Case 1: in the best scenario, overlap may increase by +2 if the

items appearing at that depth both match an item from the

other ranking that was still unmatched.

• Case 2: the same item appears at rank 𝑑 in both rankings, thus

increasing overlap by +1.

• Case 3: if in one ranking we place an item still unmatched in

the other ranking, and in this other ranking we place an item

that does not match anything, overlap also increases by +1.

• Case 4: in the worst scenario, placing two still unseen items

does not increase overlap.

Algorithm 2 presents a summary of procedure Permutation-

sHighest to generate the two permutations of 𝑆 and 𝐿 that lead

to the highest possible 𝑅𝐵𝑂 score. The algorithm aims precisely at

prioritizing allocation of items following the four cases above:

(1) Lines 3–5: for each item, we calculate the deepest and earliest

position that they can take in each ranking.

(2) Line 13: at a given depth 𝑑 , we first look for possible items to

fix, namely 𝑓𝑆 and 𝑓𝐿 , according to Case 1 above: if the item at

that rank is not tied then it will be chosen to be fixed; if it is tied,

we randomly select an item from the group that would match

something in the other ranking, if possible. In the example, at

rank 𝑑 = 2 we would select 𝑓𝑆 = a and 𝑓𝐿 = m, increasing the

overlap by +2.
(3) Lines 14–16: if there was no success looking for Case 1 (i.e. 𝑓𝑆

or 𝑓𝐿 are undefined), then we check for the possibility of Case

2: if there are candidate items shared by both rankings at depth

Algorithm 2 Compute permutations for 𝑅𝐵𝑂hig
scores.

1: procedure PermutationsHighest(𝑆, 𝐿)
2: # Compute top/bottom ranks
3: for all 𝑒 ∈ {𝑆 ∪ 𝐿} do
4: compute 𝑡𝑒𝑆 , 𝑡𝑒𝐿 , 𝑏𝑒𝑆 , and 𝑏𝑒𝐿

5: end for
6: # Initialize output rankings
7: 𝑆∗, 𝐿∗ ← empty rankings of lengths 𝑠 and 𝑙

8: # Initialize sets of still unmatched items
9: 𝑆 ← �̄� ← ∅
10:

11: for 𝑑 ∈ {1, . . . , 𝑙 } do
12: # Select items that would maximize overlap, if possible
13: 𝑓𝑆 , 𝑓𝐿 ← NextItemsCase1(𝑆, 𝐿,𝑑, 𝑆, �̄�)
14: if 𝑓𝑆 =⊥ or 𝑓𝐿 =⊥ then
15: 𝑓𝑆 , 𝑓𝐿 ← NextItemsCase2(𝑆, 𝐿,𝑑, 𝑆, �̄�, 𝑓𝑆 , 𝑓𝐿 )
16: end if
17: if 𝑓𝑆 =⊥ or 𝑓𝐿 =⊥ then
18: 𝑓𝑆 , 𝑓𝐿 ← NextItemsCase3(𝑆, 𝐿,𝑑, 𝑆, �̄�, 𝑓𝑆 , 𝑓𝐿 )
19: end if
20: if 𝑓𝑆 =⊥ or 𝑓𝐿 =⊥ then
21: 𝑓𝑆 , 𝑓𝐿 ← NextItemsCase4(𝑆, 𝐿,𝑑, 𝑆, �̄�, 𝑓𝑆 , 𝑓𝐿 )
22: end if
23:

24: # Fix in the output rankings
25: 𝑆∗

𝑑
← 𝑓𝑆 and 𝐿∗

𝑑
← 𝑓𝐿

26:

27: # Update sets of still unmatched items
28: if 𝑓𝑆 ≠ 𝑓𝐿 and 𝑓𝑆 ∉ �̄� then
29: 𝑆 ← 𝑆 ∪ { 𝑓𝑆 } # New unmatched
30: else
31: �̄� ← �̄�/{ 𝑓𝑆 } # Not unmatched anymore
32: end if
33: if 𝑓𝐿 ≠ 𝑓𝑆 and 𝑓𝐿 ∉ 𝑆 then
34: �̄� ← �̄� ∪ { 𝑓𝐿 } # New unmatched
35: else
36: 𝑆 ← 𝑆/{ 𝑓𝐿 } # Not unmatched anymore
37: end if
38: # Update top ranks
39: for all 𝑒 ∈ {𝑆 ∪ 𝐿}/{𝑆∗ ∪ 𝐿∗} do
40: recompute 𝑡𝑒𝑆 and 𝑡𝑒𝐿

41: end for
42: end for
43:

44: return 𝑆∗, 𝐿∗

45: end procedure

𝑑 , we choose one at random to be fixed. In the example, item d
is common to both rankings for rank 𝑑 = 3, falling within Case

2. Item c is another valid candidate; let us assume it gets fixed

at 𝑑 = 4.

(4) Lines 17–19: at this point we may have made a decision about

what to fix in one ranking but not the other. We check for the

possibility of Case 3: we simply select an item at random from

the group. In the example, item i would be fixed in 𝐿 at rank 5

because it is the only available spot left in the group, and either

b or e can be fixed in 𝑆 , increasing overlap by +1.

(5) Lines 20–22: in case 𝑓𝑆 or 𝑓𝐿 remain undefined, Case 4 is used to

fix two unseen items at random that will not increase overlap.
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(6) Line 25: the selected items are actually fixed at rank 𝑑 in the

output rankings 𝑆∗ and 𝐿∗.
(7) Lines 28–37: we update the sets of unmatched items 𝑆 and 𝐿, to

reflect the matching or unmatching of the selected items.

(8) Lines 39–41: all the other items in the group crossed by 𝑑 can

no longer appear at rank 𝑑 , so we update their top ranks to 𝑑 +1

for the next iteration.

(9) Steps (2)–(8) are repeated for all depths from 1 to 𝑙 .

This algorithm returns𝑋hig
and𝑌 hig

. They have no ties and yield

the highest possible 𝑅𝐵𝑂 score among all possible permutations;

these are illustrated in Figure 6 with solid red lines. In the example

from Figure 3, they are 𝑋hig = ⟨a m d c i b e h⟩ and 𝑌 hig =

⟨m a d c b e n⟩. Computing eqs. (4), (5) and (6) with these two

permutations, we can add the uncertainty due to unseen items on

top of the upper bound of the uncertainty due to ties, resulting in

the 𝑅𝐵𝑂
hig
* scores displayed in Figure 6 with red dashed lines.

3.3 Average Score over Permutations: 𝑹𝑩𝑶avg

Just as for the 𝑅𝐵𝑂𝑎
variant by Corsi and Urbano [11], we ask

the following question: what is the expected 𝑅𝐵𝑂 when breaking

ties at random? Their solution involves determining the average

overlap over all permutations of the ties, from which an 𝑎-variant

of agreement, and ultimately of 𝑅𝐵𝑂 , could be formulated. To do

this, they redefined overlap 𝑋𝑑 as follows:

𝑋𝑎
𝑑
=

∑︁
𝑒∈Ω

𝑐𝑒,𝑆 |𝑑 · 𝑐𝑒,𝐿 |𝑑 , (7)

where Ω = {𝑆 ∪ 𝐿} represents all items, and the item contribution

𝑐𝑒,𝑆 |𝑑 equals the fraction of permutations of 𝑆 in which item 𝑒 is

ranked at or above depth 𝑑 (untied items have a unitary contri-

bution). As an example, consider ranking 𝐿 in Figure 3 at depth

𝑑 = 4: only three of the four tied items in the red group can be

ranked at or above 𝑑 in any given permutation. Across all possible

permutations, each item is ranked at or above 𝑑 precisely 3/4−𝑡ℎ
of the times. Defining the 𝑎-variant agreement as 𝐴𝑎

𝑑
= 𝑋𝑎

𝑑
/𝑑 , and

plugging it into eq. (3), they were able to define 𝑅𝐵𝑂𝑎
.

The problem arises when formulating 𝑅𝐵𝑂𝑎
EXT for rankings of

different lengths, because in the second part (depths 𝑠 + 1 to 𝑙)

some assumption needs to be made about unseen items in 𝑆 . They

computed the assumed agreement �̃�𝑎
𝑑
as the sum of two separate

terms: overlap due to seen and unseen items:

�̃�𝑎
𝑑
=

seen︷︸︸︷
𝑋𝑎
𝑑
+

unseen︷                ︸︸                ︷
(𝑑 − 𝑠) · 𝐴𝑎𝑠 · 𝑐𝐿 |𝑑

𝑑
, (8)

where, in the unseen section, 𝐴𝑎𝑠 represents the probability that an

unseen item in 𝑆 matches an item still to be matched from 𝐿, while

𝑐𝐿 |𝑑 is the average contribution of the still unmatched items in 𝐿.

For details, please refer to [11, Section 4.1].

While𝐴𝑎
𝑑
is precisely the “average agreement over permutations”,

�̃�𝑎
𝑑
actually makes 𝑅𝐵𝑂𝑎

EXT different from the desirable “average

𝑅𝐵𝑂EXT over permutations” whenever the rankings have different

lengths. Let us illustrate with a toy example: ⟨a [b c d]⟩ and
⟨b a⟩. According to (8), �̃�𝑎

3
is 5/9 + 4/27 = 0.70. However, if we

computed the actual average agreement 𝐴3 over all 6 permutations,

wewould obtain (1+1+5/6+5/6+1/2+1/2)/6 = 0.78, resulting from

Table 1: Summary of 𝑹𝑩𝑶 residuals when accounting for
items in the unseen part (𝑹𝑬𝑺U), ties in the seen part (𝑹𝑬𝑺S),
and both (𝑹𝑬𝑺S+U). M for medium residuals in (0.01, 0.1], and
L for large in (0.1, 1]. TREC data.

𝑅𝐸𝑆U 𝑅𝐸𝑆S 𝑅𝐸𝑆S+U
𝑝 Avg. Max. M L Avg. Max. M L Avg. Max. M L

0.80 0.00 0.04 0% 0% 0.04 1.00 6% 7% 0.04 1.00 6% 7%

0.90 0.00 0.18 0% 0% 0.04 1.00 7% 7% 0.04 1.00 7% 7%

0.95 0.00 0.37 0% 0% 0.03 1.00 8% 5% 0.03 1.00 8% 6%

adding observed and extrapolated overlap in every permutation.

Indeed, if we compare the tie-unaware extrapolation in eq. (6, 2nd

summation) with the tie-aware one in eq. (8), we see that the average

observed overlap is precisely𝑋𝑎
𝑑
, the average overlap to extrapolate

is precisely 𝐴𝑎𝑠 , but the extra term 𝑐𝐿 |𝑑 becomes redundant. Corsi

and Urbano justified its inclusion in a larger context of several

tie-aware variants of 𝑅𝐵𝑂 , but it actually needs to be removed if

we want an extrapolated formulation precisely equal to the average

𝑅𝐵𝑂EXT over permutations:

�̃�
avg
𝑑

=
𝑋𝑎
𝑑
+ (𝑑 − 𝑠)𝐴𝑎𝑠

𝑑
. (9)

This way, we can then plug eqs. (7) and (9) into eqs. (4), (5) and

(6) to compute 𝑅𝐵𝑂
avg
MAX, 𝑅𝐵𝑂

avg
MIN and 𝑅𝐵𝑂

avg
EXT. These coefficients

are equal to the average of bare 𝑅𝐵𝑂MAX, 𝑅𝐵𝑂MIN and 𝑅𝐵𝑂EXT
computed over all possible permutations of tied items.

4

4 Experimental Demonstrations
In this section we illustrate the impact of computing partial residu-

als instead of total residuals, and how this might affect decisions

made on the grounds of rank similarity. In particular, we compare

the partial residual 𝑅𝐸𝑆U=𝑅𝐵𝑂
avg
MAX−𝑅𝐵𝑂

avg
MIN due to unseen items,

the partial residual 𝑅𝐸𝑆S=𝑅𝐵𝑂
hig
EXT−𝑅𝐵𝑂

low
EXT due to ties in the seen

part, and the total residual 𝑅𝐸𝑆S+U=𝑅𝐵𝑂
hig
MAX−𝑅𝐵𝑂

low
MIN due to both

(see Figure 6 for clarity). We will do this with two datasets, first

with real TREC data and then with synthetic data, also varying the

persistence parameter 𝑝 between typical values 0.8, 0.9 and 0.99.

4.1 TREC Data
A clear application of 𝑅𝐵𝑂 is comparing an experimental retrieval

system with a baseline. Specially when relevance judgments are

scarce or nonexistent, comparing the rankings they produce for a

set of queries may provide a useful indication of their similarity.

To explore this scenario, we use the adhoc runs from the TREC

2009–2014 Web track, comprising 255 systems by 95 groups ran

over various sets of 50 topics per year. In particular, we compare

every pair of systems by the same group and for every available

topic, for a total of 12,750 comparisons. Of these, we focus on the

9,256 cases (73%) where the rankings contained tied documents. On

average, they were 978 documents long, with a maximum of 1,000.

Table 1 shows a summary of the partial and total 𝑅𝐵𝑂 residuals.

First, we can appreciate that the residuals 𝑅𝐸𝑆U due to the unseen

4
It can be shown that 𝑅𝐵𝑂𝑎

MIN = 𝑅𝐵𝑂
avg
MIN because the extrapolated overlap is zero.

However, 𝑅𝐵𝑂𝑎
MAX ≤ 𝑅𝐵𝑂

avg
MAX for a reason similar to that described above.
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Figure 4: Left: comparison of per-topic 𝑨𝑷 scores of TREC
2009 Web runs UMHOOsd and UMHOOsdp. Right: compar-
ison of per-topic 𝑹𝑩𝑶

𝒂𝒗𝒈
MIN and 𝑹𝑩𝑶 low

MIN scores (topic 29 not
plotted for clarity).

parts are essentially zero, because the rankings are long and the

weight of the unseen items is negligible. But bounding only the

unseen parts would have given the false impression of highly reli-

able comparisons. When we look at the uncertainty induced by ties,

we can see that 𝑅𝐸𝑆S consistently captures higher residuals. This

confirms that the majority of the uncertainty in 𝑅𝐵𝑂 scores occurs

in the seen parts. Given the characteristics of TREC data, the total

residual 𝑅𝐸𝑆S+U is indeed essentially the same as 𝑅𝐸𝑆S. The average

size of residuals tells us that 𝑅𝐵𝑂 scores are overall quite reliable,

but there are enough examples where this is not the case to warrant

caution. Let us classify residuals into large (0.1 ≤ 𝑅𝐸𝑆∗), medium

(0.01 ≤ 𝑅𝐸𝑆∗ < 0.1) or small (𝑅𝐸𝑆∗ < 0.01), roughly representing

differences in the first, second, or third decimal digit of a reported

𝑅𝐵𝑂 score, respectively; the first two are identified as L and M in

Table 1. We can see that residuals are of medium size about 7% of the

times, while large cases appear in another 7%. Therefore, residuals

make a substantial difference in about 14% of the comparisons.

We can better illustrate the impact of the residuals with the exam-

ple of two TREC 2009 runs: UMHOOsd used the Markov Random

Field framework with features about individual term occurrences

and term-dependencies, while UMHOOsdp adds clique pruning

to optimize retrieval efficiency [19]. It is thus natural to consider

UMHOOsd as the baseline system, and UMHOOsdp as the ex-

perimental one. Efficiency is indeed improved, but the question is

whether effectiveness gets harmed in return. As shown in Figure 4

(left), this particular question had a positive answer because the𝐴𝑃

scores remained the same in all but one topic (topic 29, bottom-left).

But imagine this experiment in a setting with low resources

where judgments are scarce or unavailable. One could alternatively

calculate the rank similarity between the outputs from both systems,

hoping that it remains above some threshold, say 0.99, for most

topics. Because these systems produce ties (17% of documents) one

could calculate 𝑅𝐵𝑂𝑎𝑣𝑔
, but in order to prevent misjudgments due

to the uncertainty brought by unseen items, it would be better

to compute 𝑅𝐵𝑂
𝑎𝑣𝑔

MIN. Doing so, it would be found that similarity

stays above the threshold in 44 of the 50 topics. However, someone

now also aware of the uncertainty brought by tied items should

compute 𝑅𝐵𝑂 low
MIN instead, that is, the total lower bound. Doing so,

it would be found that similarity stays above the threshold in 37

topics (see Figure 4-right). Given this outcome, it might be decided

to not replace the baseline system on the grounds of too much

uncertainty, or perhaps to collect some relevance judgments and

actually compare the effectiveness of the 13 topics where 𝑅𝐵𝑂

Figure 5: 𝑹𝑬𝑺𝑼 vs 𝑹𝑬𝑺𝑺 as a function of 𝒑. Synthetic data.

fell below the threshold before making the decision. This is an

example where full awareness of the total 𝑅𝐵𝑂 residual would

make practitioners take action with more caution.

4.2 Synthetic Data
While the previous results with TREC data are of interest to the

general IR reader, they do not generalize to non-IR settings: TREC

rankings are so long that 𝑅𝐸𝑆U ≈ 0, but in other settings they

may be considerably smaller. In order to provide more general

results, here we resort to synthetic data. Specifically, we generate

two rankings over the same 1, 000 items and a certain degree of

similarity (Kendall’s 𝜏 randomly chosen between 0.5 and 1). Then,

we randomly induce ties independently in each ranking, ensuring

that at least 10% of items are tied. Finally we randomly truncate

the rankings such that they have lengths between 10 and 100 items.

This procedure is repeated a total of 100, 000 times, producing pairs

of rankings with an average length of 55 items, a length difference

of 30 items, and 54% of ties on average.

The size of 𝑅𝐸𝑆S relative to 𝑅𝐸𝑆U depends on the interplay be-

tween the length of the rankings and the persistence parameter 𝑝

(see Figure 5). Indeed, low 𝑝 gives more weight to the top of the

rankings, and as a consequence it places more importance on the

ties, if present. At the same time, low 𝑝 minimizes the impact of

the unseen part because items in the tail have low weight.

Table 2 reports the size of residuals faceted by the length of

the shorter ranking. The table confirms that 𝑅𝐸𝑆U increases with

𝑝 but decreases with 𝑠 . With small and medium rankings, 𝑅𝐸𝑆U
can easily have medium and large sizes, but with large rankings

this only happens in conjunction with a high 𝑝 . In contrast, 𝑅𝐸𝑆S
decreases with 𝑝 but is less affected by 𝑠 . Overall, the size of 𝑅𝐸𝑆S
is noticeable most of the cases, and even large about half the times.

Similarly, Table 3 reports the size of residuals faceted by the amount

of ties present in the rankings. As expected, the amount of ties does

not affect 𝑅𝐸𝑆U, but it can have a major impact on 𝑅𝐸𝑆S. Indeed,

with a low-to-moderate number of ties we can see a noticeable

residual in all cases, and with a moderate-to-high number of ties

most of these differences are actually larger than 0.1. Again, we

can see that 𝑅𝐸𝑆S tends to decrease with 𝑝 . Overall, we see that the

total residual 𝑅𝐸𝑆S+U is noticeable in virtually all pairs of rankings

in our synthetic dataset, with the majority of cases displaying a

strikingly large residual.

The main message to take from the TREC and synthetic results

is that 𝑅𝐵𝑂 residuals may actually be too large under the right

conditions. Specifically, while 𝑅𝐸𝑆U may become negligible for long

rankings, 𝑅𝐸𝑆S can still become an issue. These results demonstrate

the potential drawbacks of quantifying uncertainty only due to

unseen items or, even worse, not quantifying uncertainty at all.
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Table 2: Summary of 𝑹𝑩𝑶 residuals when accounting for
items in the unseen part (𝑹𝑬𝑺U), ties in the seen part (𝑹𝑬𝑺S),
and both (𝑹𝑬𝑺S+U). Top table for 𝒔 ≤ 25, middle for 25 < 𝒔 ≤ 50
and bottom for 𝒔 > 50. M for medium residuals in (0.01, 0.1],
and L for large in (0.1, 1]. Synthetic data.

𝑠 ≤ 25

𝑅𝐸𝑆U 𝑅𝐸𝑆S 𝑅𝐸𝑆S+U
𝑝 Avg. Max. M L Avg. Max. M L Avg. Max. M L

0.80 0.01 0.06 32% 0% 0.24 1.00 27% 63% 0.25 1.00 30% 65%

0.90 0.06 0.25 80% 20% 0.18 1.00 32% 61% 0.24 1.00 19% 81%

0.95 0.20 0.50 1% 99% 0.12 1.00 46% 47% 0.32 1.00 0% 100%

25 < 𝑠 ≤ 50

𝑅𝐸𝑆U 𝑅𝐸𝑆S 𝑅𝐸𝑆S+U
𝑝 Avg. Max. M L Avg. Max. M L Avg. Max. M L

0.80 < .01 < .01 0% 0% 0.24 1.00 27% 62% 0.24 1.00 27% 62%

0.90 0.01 0.03 20% 0% 0.19 1.00 31% 62% 0.19 1.00 33% 64%

0.95 0.05 0.16 97% 3% 0.14 0.99 45% 50% 0.19 0.99 24% 76%

𝑠 > 50

𝑅𝐸𝑆U 𝑅𝐸𝑆S 𝑅𝐸𝑆S+U
𝑝 Avg. Max. M L Avg. Max. M L Avg. Max. M L

0.80 < .01 < .01 0% 0% 0.24 1.00 26% 62% 0.24 1.00 26% 62%

0.90 < .01 < .01 0% 0% 0.19 1.00 32% 61% 0.19 1.00 32% 62%

0.95 0.01 0.03 43% 0% 0.14 0.96 44% 50% 0.15 0.96 44% 55%

5 Discussion
5.1 Residuals
In their original work, Webber et al. [40] acknowledged the uncer-

tainty due to unseen items, and proposed to compute and report

𝑅𝐸𝑆U =𝑅𝐵𝑂MAX−𝑅𝐵𝑂MIN to quantify this uncertainty. This is il-

lustrated in Figure 1, where 𝑅𝐸𝑆U = 0.128. In their work on the

treatment of ties, Corsi and Urbano [11] followed the same path

and provided solutions to the computation of bounds, therefore

restricting the quantification of uncertainty to just 𝑅𝐸𝑆U as well.

This is similarly illustrated in Figure 6, where 𝑅𝐸𝑆U = 0.128 too. In

contrast, in this paper we address the uncertainty due to ties in the

seen part, and similarly propose to quantify it through the residual

𝑅𝐸𝑆S computed as the difference between the best and worst cases

over all permutations of the ties. These bounds are illustrated in

Figure 2, where 𝑅𝐸𝑆S@6 is already 0.374.

𝑅𝐸𝑆S and 𝑅𝐸𝑆U may of course be large or small depending on

the rankings and 𝑝 . For example, 𝑅𝐸𝑆U may be negligible with

small 𝑝 or with long rankings, as is typical in IR data. In addition,

and everything else being equal, longer rankings are also expected

to have more ties, leading to an increase in 𝑅𝐸𝑆S. But even small

rankings may have a high 𝑅𝐸𝑆S if ties appear toward the top, as

they would have higher influence on the scores. It is therefore

evident that one should consider uncertainty due to both unseen

and tied items, that is, 𝑅𝐸𝑆S+U = 𝑅𝐵𝑂
hig
MAX −𝑅𝐵𝑂

low
MIN. As illustrated

in Figure 6, in our example 𝑅𝐸𝑆S+U = 0.502, which is probably just

too high by any reasonable standard.

However, it is in general hard to interpret the magnitude of a

residual in 𝑅𝐵𝑂 . For comparison, let us consider a correlation coef-

ficient such as Kendall’s 𝜏 , and imagine that one calculates 𝜏 = 0.17

with lower bound 𝜏MIN = −0.05 and upper bound 𝜏MAX = 0.39.

Such a result would make us somewhat wary of concluding there

Table 3: Same as Table 2, but top table for ties ≤ 40%, middle
for 40% < ties ≤ 60% and bottom for ties > 60%.

ties ≤ 40%

𝑅𝐸𝑆U 𝑅𝐸𝑆S 𝑅𝐸𝑆S+U
𝑝 Avg. Max. M L Avg. Max. M L Avg. Max. M L

0.80 < .01 0.06 10% 0% 0.10 0.99 39% 29% 0.10 0.99 42% 30%

0.90 0.02 0.24 33% 7% 0.07 0.93 51% 26% 0.09 0.93 52% 36%

0.95 0.09 0.47 50% 33% 0.05 0.85 66% 14% 0.14 0.85 45% 54%

40% < ties ≤ 60%

𝑅𝐸𝑆U 𝑅𝐸𝑆S 𝑅𝐸𝑆S+U
𝑝 Avg. Max. M L Avg. Max. M L Avg. Max. M L

0.80 < .01 0.06 10% 0% 0.21 1.00 31% 62% 0.22 1.00 31% 62%

0.90 0.02 0.25 33% 6% 0.16 1.00 36% 61% 0.19 1.00 30% 69%

0.95 0.09 0.50 50% 33% 0.12 0.99 53% 45% 0.20 0.99 23% 77%

ties > 60%

𝑅𝐸𝑆U 𝑅𝐸𝑆S 𝑅𝐸𝑆S+U
𝑝 Avg. Max. M L Avg. Max. M L Avg. Max. M L

0.80 < .01 0.06 10% 0% 0.35 1.00 15% 83% 0.36 1.00 15% 84%

0.90 0.02 0.23 33% 7% 0.27 1.00 15% 84% 0.29 1.00 12% 88%

0.95 0.09 0.47 50% 33% 0.20 1.00 25% 75% 0.28 1.00 9% 91%

is a positive correlation, because we can not rule out the possibility

of 𝜏 = 0. In fact, such bounds could even make us reconsider the

possibility of no correlation at all. This kind of reasoning is possible

with correlation coefficients because the value 0 is used as a refer-

ence with a well-knownmeaning: the expected correlation between

independent rankings. However, to the best of our knowledge such

reference is unknown in 𝑅𝐵𝑂 , complicating the interpretation of

bounds and residuals, at least in absolute terms. This issue should be

addressed in future research, especially in practical settings where

rankings are not infinite and probably conjoint.

5.2 Which Coefficients Should be Computed?
To deal with unseen items, Webber et al. [40] proposed 𝑅𝐵𝑂EXT as

a point estimate of the 𝑅𝐵𝑂 score with the full, infinite rankings.

When ties are present, Corsi and Urbano [11] similarly provided

formulations of 𝑅𝐵𝑂EXT for the 𝑤-, 𝑎- and 𝑏- tie-aware variants.

Specifically, when ties do represent uncertainty as to the actual

order of items, the most sensible choice is probably 𝑅𝐵𝑂𝑎
, as it

precisely computes the average score over permutations of the ties.

However, as we noted in Section 3.3, their assumptions regarding

the unseen items makes their formulation not entirely correct for

rankings of different lengths. In contrast, our formulation𝑅𝐵𝑂
avg
EXT is

equal to the average over permutations in all cases,
5
so we strongly

recommend it when reporting a point estimate for 𝑅𝐵𝑂 .

It is common practice in the literature to report a single 𝑅𝐵𝑂

score, most likely 𝑅𝐵𝑂EXT, without mention of bounds or residual

(see e.g. [1, 21, 25, 29, 39]). As mentioned in Section 5.1, this is likely

because the residual due to unseen items, 𝑅𝐸𝑆U, is usually negligible

in IR data because systems typically retrieve hundreds or thousands

of documents. This is evidenced in Table 1, where 𝑅𝐸𝑆U is essen-

tially 0 in TREC data. However, in the presence of ties, the total

residual 𝑅𝐸𝑆S+U can be large (substantial in about 14% of the cases).

5𝑅𝐵𝑂𝑎
EXT and𝑅𝐵𝑂

avg
EXT differ only from 𝑠+1 to 𝑙 , so their difference is mostly negligible

in TREC data (medium-sized in <1% of cases). However, with arbitrary lengths and

unevenness, differences may be larger (5% of cases in our synthetic data).
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In addition, the size of 𝑅𝐸𝑆S and 𝑅𝐸𝑆S+U increases with the amount

of ties, as shown in Table 3. In light of this, we strongly suggest to

always compute the total residual 𝑅𝐸𝑆S+U covering seen and un-

seen parts, or alternatively the total bounds 𝑅𝐵𝑂
hig
MAX and 𝑅𝐵𝑂 low

MIN.

Whenever the residuals are relevant, they should be reported next

to the point estimates 𝑅𝐵𝑂
avg
EXT.

5.3 𝒃-variant
When ties represent uncertainty as to the actual order of items, both

𝑅𝐵𝑂𝑎
and 𝑅𝐵𝑂𝑏

are suitable options [11]. They follow a stochastic

approach by computing the expected overlap over permutations

of the ties, but the 𝑏-variant goes a step further and corrects this

overlap by the measurable overlap. In other words, the 𝑏-variant

corrects by the amount of ties, and as a byproduct make 𝑅𝐵𝑂𝑏 ≥
𝑅𝐵𝑂𝑎

. This correction by the amount of ties may be desirable in

some applications, but it has three drawbacks.

(1) It can be deceiving because it tends to inflate the similarity be-

tween rankings. Take for example the two rankings in Figure 6;

the average 𝑅𝐵𝑂EXT is 0.688, but the worst and best possible

permutations lead to 0.555 and 0.929, respectively. It turns out

that 𝑅𝐵𝑂𝑏
EXT is 0.788, which is quite higher than the average

and probably too close to the best case.

(2) This is much more problematic when the rankings tend to tie

the same items, because they are essentially ignored in the

computation: there is no difference between them being fully

overlapping or being fully tied. As a result, 𝑅𝐵𝑂𝑏
actually com-

putes a sort of best-case similarity. To illustrate, consider in

the same Figure the extreme case of comparing 𝑌 with itself;

the average 𝑅𝐵𝑂EXT is 0.8, while 𝑅𝐵𝑂𝑏
EXT = 1, that is, a perfect

score! Again, this might be desirable in certain applications that

require a metric space, but it is in general deceiving: 𝑅𝐵𝑂EXT
would be 1 only in the best possible arrangement of ties, but it

can also be as low as 0.694 in the worst case.

(3) Even worse, and again because 𝑅𝐵𝑂𝑏
corrects for the amount of

ties, it can be the case that it yields a score higher than is even

attainable by the best arrangement of the ties. For example,

when comparing ⟨a [b c d]⟩ and ⟨a e [b c d]⟩, we find

𝑅𝐵𝑂𝑏
EXT = 0.869 but 𝑅𝐵𝑂

hig
EXT = 0.831.

It is only fair to state that this behavior, in the general case, is

rather unreasonable and even dangerous. As such, we strongly dis-
courage the use of the 𝑏-variant, and note that exactly the same

arguments apply to the 𝑏-variant of Kendall’s 𝜏 [16] and Yilmaz’s

𝜏𝑎𝑝 [35]. Unfortunately, 𝜏𝑏 is computed by default in popular soft-

ware implementations such as R, SciPy in Python, MATLAB, or

Apache Commons in Java. Practitioners barely ever mention which

variant they use, so it is only fair to assume that they report 𝜏𝑏 and

may therefore suffer from the three issues described above; future

research should explore the implications of this choice.

6 Conclusions and Future Work
Properly accounting for measurement error is critical for Science

in general, and for decision making in particular. In the context of

IR and RecSys, the similarity between rankings is very often the

criterion to make decisions, and 𝑅𝐵𝑂 is a very popular choice for

measuring that similarity. A source of uncertainty when measuring
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Figure 6: Uncertainty due to both unseen items and ties in
the seen part (from Figure 2).

rank similarity are the unseen items ranked beyond the observed

prefixes. The literature advises to report the point estimate 𝑅𝐵𝑂EXT,

quantifying uncertainty with the residual (difference between the

best and worst possible arrangements of unseen items). Another

source of uncertainty are the items tied in the seen parts. In this

case, the literature provides tie-aware variants, most notably 𝑅𝐵𝑂𝑎
,

but again calculates only the residual due to unseen items, leaving

open the question of how to quantify uncertainty due to ties.

In this paper we provided algorithmic solutions to this problem,

allowing us to quantify a total residual due to both unseen and tied

items. With this residual we can better grasp the potential variabil-

ity in 𝑅𝐵𝑂 measurements to make sensible decisions. Empirical

demonstrations with TREC data showed that, while the residual

due to unseen items can often be neglected because rankings are

too long, the residual due to ties is substantially larger and may be

just too high in many cases. With more general synthetic data, we

were able to show the interplay between the length of the rank-

ings, the amount of ties and the amount of uncertainty. In addition,

we showed that the existing formulation for 𝑅𝐵𝑂𝑎
deviates from

the intended “average over permutations” when the rankings have

different length. Although these deviations are very small in prac-

tice, we provide a reformulation, namely 𝑅𝐵𝑂𝑎𝑣𝑔
, that is equal to

the “average over permutations” in all cases. Finally, we also pro-

vided arguments for the discontinuation of the 𝑏-variants of rank

similarity and correlation measures.

We identify three main points for further research. First, we note

that the current measurement of uncertainty through the achievable

bounds of the residual may very well lead to overly conservative

decisions. A better approach would be a probabilistic account for

the residual, akin to confidence intervals. Second, as intuitive as

our algorithmic solutions may be, we did not provide proofs of

correctness. We did validate them with a brute-force approach over

a dataset of 100, 000 synthetic pairs of rankings, but a formal proof or

even more efficient solutions should also be explored. Third, similar

work should aim for quantifying uncertainty in rank correlation

coefficients in the presence of ties.
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