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THE WEYL CALCULUS FOR GROUP GENERATORS
SATISFYING THE CANONICAL COMMUTATION RELATIONS

JAN VAN NEERVEN and PIERRE PORTAL

In memory of Alan McIntosh (1942-2016), celebrating his friendship with
José Enrique Moyal (1910-1998)

Communicated by Florian-Horia Vasilescu

ABSTRACT. We generalise the classical Weyl pseudo-differential calculus on
Rd to the setting of two d-tuples of operators A = (A1, . . . , Ad) and B =
(B1, . . . , Bd) acting on a Banach space generating bounded C0-groups satis-
fying the Weyl canonical commutation relations. We show that the resulting
Weyl calculus extends to symbols in the standard symbol class S0 provided
appropriate bounds can be established. Using transference techniques we ob-
tain boundedness of the H∞-functional calculus (and even the Hörmander

calculus), for the abstract harmonic oscillator L = 1
2

d
∑

j=1
(A2

j + B2
j )−

1
2 d.

KEYWORDS: Weyl pairs, canonical commutation relations, pseudo-differential cal-
culus, twisted convolution, transference of C0-groups, UMD spaces, H∞-functional
calculus, spectral multipliers.

MSC (2010): Primary 47A60; Secondary 35S05, 47A13, 47D03, 47G30, 81S05.

1. INTRODUCTION

In the early 1980’s, Alan McIntosh introduced the H∞-functional calculus as
a refined version of the Dunford holomorphic functional calculus for unbounded
sectorial operators (see the original paper [43] in the Hilbert space setting, their
extensions to Banach spaces [15], [35], and the monographs [25], [33]). This cal-
culus is meant to be an operator-theoretic abstraction of the calculus of Fourier
multipliers, which it recovers when applied to constant coefficient differential op-
erators such as the Laplacian on L2(Rd). One of its roles is to provide a framework
for perturbation theory: deriving properties of the functional calculus of differen-
tial operators with varying coefficients from its constant coefficient counterpart.
The quintessential example of such an application is given in [6], where pertur-
bation is first understood in the operator-theoretic sense, then in the harmonic
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analytic sense of (an extension of) Calderón–Zygmund theory. The combination
of both perspectives leads to a striking boundedness result for the H∞-functional
calculus of Dirac operators that includes the solution of the celebrated Kato’s
square root problem (originally obtained in [5]).

In the present paper, we introduce an operator-theoretic framework which
aims to generalise pseudo-differential calculus in the same way that the McIn-
tosh H∞-functional calculus generalises Fourier multiplier calculus. Our start-
ing point is the Weyl calculus of standard position and momentum operators
Qj f (x) = xj f (x) and Pj f (x) = i∂j f (x), j = 1, . . . , d, acting on their natural do-
mains in L2(Rd). For Schwartz functions a ∈ S(R2d) one can define a bounded
operator a(Q, P) acting on L2(Rd) by

(1.1) a(Q, P) f =
1

(2π)d

∫
R2d

â(u, v)ei(uQ+vP) f dudv, f ∈ L2(Rd).

Here, ei(uQ+vP) is understood as the Schrödinger representation

(1.2) ei(uQ+vP) f (x) := e(1/2)iuveiuQeivP f (x) = e(1/2)iuv+iux f (x + v)

which unitarily represents the canonical commutation relations for the position
and momentum operators on L2(Rd); the first identity is suggested by the Baker–
Campbell–Hausdorff formula, noting that all higher commutators of P and Q
vanish. As shown in Proposition 1, p. 554 of [50], (1.1) encodes the standard
pseudo-differential calculus, in the sense that for every a ∈ S(R2d) there exists a
unique b ∈ S(R2d) such that

(1.3) a(Q, P) f (x) =
1

(2π)d/2

∫
Rd

b(x, ξ) f̂ (ξ)eixξdξ,

the map a 7→ b being continuous with respect to various relevant topologies.
The advantage of (1.1) over (1.3) is that the former makes sense for generators of
bounded groups on an arbitrary Banach spaces, whereas a representation such as
(1.3) is restricted to function spaces on which an appropriate Fourier transform
can be defined. We thus take (1.1) as our starting point for the development of a
general theory.

We work with general Weyl pairs (see Section 3 for precise definition), i.e.,
two d-tuples A = (A1, . . . , Ad) and B = (B1, . . . , Bd) acting on a Banach space X
such that iA1, . . . , iAd and iB1, . . . , iBd generate bounded C0-groups satisfying the
canonical (integrated) commutation relations

(1.4) eisAj eitAk =eitAk eisAj , eisBj eitBk =eitBk eisBj , eisAj eitBk =e−istδjk eitBk eisAj .

In this context, (1.2) is replaced by

ei(uA+vB) := e(1/2)iuveiuAeivB := e(1/2)iuv
d

∏
j=1

eiuj Aj
d

∏
k=1

eivk Bk .
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The analogue of (1.1),

(1.5) a(A, B) f =
1

(2π)d

∫
R2d

â(u, v)ei(uA+vB) f dudv, f ∈ X,

defines an algebra homomorphism between S(R2d) endowed with the (non-
commutative) Moyal product

(1.6) (a # b)(x, ξ)=
1

π2d

∫
R2d

∫
R2d

a(x+u, ξ+u′)b(x+v, ξ+v′)e−2i(vu′−uv′)dudu′dvdv′

into the space of bounded linear operators L (X).
This calculus was already studied by Anderson [3], [4] (who assumed the

groups to consist of isometries; but this can be achieved by a simple renorming
of X). The latter paper contains a generalisation of the Moyal product (1.6) in the
case where the operators iA1, . . . , iAn, iB1, . . . , iBn are the generators of a strongly
continuous unitary representation of an arbitrary nilpotent Lie group, equation
(1.6) being the special case corresponding to the Schrödinger representation of
the reduced Heisenberg group (cf. Section 4).

The Moyal product defined in (1.6) is used in pseudo-differential operator
theory to deal with composition of symbols. In Section 3, we show that if the al-
gebra homomorphism defined by (1.5) is continuous from S(R2d) endowed with
the topology of the standard pseudo-differential class of symbols S0 to L (X),
then the calculus can be meaningfully extended from S(R2d) to S0. This is an
analogue of the fundamental convergence lemma in the theory of H∞-functional
calculus (see, e.g. Proposition 10.2.11 of [33]), and is proved using asymptotic ex-
pansions of the Moyal product, typical of pseudo-differential calculus. Having
such a convergence lemma shows that a pseudo-differential calculus for (A, B)
can be defined as soon as appropriate bounds on the operators defined in (1.5)
are obtained.

This is the main point of our paper. While previous studies, such as An-
derson’s [3], [4], have focused on algebraic properties of the calculus considered
as a map from S(R2d) to L (X), we focus on the analytic question of extending
the calculus to a continuous map from a large set of functions to L (X). This is
the operator theoretic analogue of the harmonic analytic problem of identifying
classes of symbols for which pseudo-differential operators are bounded on Lp.

One of the applications of pseudo-differential calculus is to study Schrödin-
ger operators such as the harmonic oscillator defined by 1

2∆ f (x)− 1
2 |x|2 f (x) on

L2(Rd). In our abstract situation, we show that it is possible to express, in Sec-
tion 5, the semigroup generated by

(1.7) − L :=
1
2

d− 1
2

d

∑
j=1

(A2
j + B2

j )
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in terms of the Weyl calculus as

(1.8) e−tL = at(A, B),

where at ∈ S (R2d) is the function

at(x, ξ) :=
(

1 +
1− e−t

1 + e−t

)d
exp(− 1−e−t

1+e−t (|x|2 + |ξ|2)).

For the pair of position and momentum operators associated with the
Ornstein–Uhlenbeck operator (see Example 3.4), (1.8) is a well known formula
for the Ornstein–Uhlenbeck semigroup which goes back, at least, to [52]; see also
[45], where this formula was rediscovered by a reduction to Mehler’s formula.
Here we show, with a different proof, that it generally holds for the operators L
associated with Weyl pairs through (1.7). As such, (1.8) can be throught of as an
abstract analogue of Mehler’s formula for Weyl pairs.

To obtain useful bounds for various functions of L we use, in Section 6, the
idea of transference to derive bounds for a(A, B) acting on X from correspond-
ing bounds on the twisted convolution with â, viewed as an operator acting on
Lp(Rd; X). This idea can be traced back to Coifman and Weiss [14] and the form
used here is inspired by the work of Hieber and Prüss [30], Haase [26], and Haase
and Rozendaal [28]. They have shown that bounds on the Phillips functional cal-
culus defined, for a generator iG of a bounded C0-group acting on a Banach space
X, by

a(G) f =
1√
2π

∫
R

â(u)eiuG f du,

can be obtained from bounds on convolution operators acting on L2(R; X). The
latter can then be proven using, for instance, Bourgain’s UMD-valued Fourier
multiplier theorem [11], or its analogue for operator-valued kernels proven by
Weis in [53].

For twisted convolutions, however, no UMD-valued theory is yet available.
Developing such a theory is bound to be difficult, given that the (scalar-valued)
Lp-theory of twisted convolutions, as developed by Mauceri in [41], is already
subtle (see also [42]). For applications to spectral multipliers theorems for L,
fortunately, we only need to handle highly specific twisted convolutions that
can effectively be “untwisted”. This is shown in Section 7, where we prove R-
sectoriality for the operator L defined by (1.7) in UMD lattices X. In Section 8,
we use this result to deduce the boundedness of the H∞-calculus of L on UMD
lattices X from the boundedness of the Weyl calculus of (A, B). We also show
that the angle of this calculus is best possible (namely 0). Going even further,
we apply the recent Kriegler–Weis approach to spectral multipliers developed in
[37], [38] to show that this H∞-calculus can in fact be extended to a Hörmander
class of sufficiently smooth but not necessarily analytic functions. This is possible
because the estimates obtained in Section 7 are precise enough for us to check the
assumption of [38].
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The present paper provides a foundation for a pseudo-differential oper-
ator theory generalised in at least three directions: Witten pseudo-differential
calculus, global pseudo-differential calculus on Lie groups, and rough pseudo-
differential calculus. In the Witten pseudo-differential calculus, one is interested
in pairs (A, B) acting on Lp(Rd, e−φ(x)dx), such that, informally, the “Witten
Laplacian” L is of the form h(A, B) for an appropriate “Hamiltonian” h which
is chosen so that the measure e−φ(x)dx is an invariant measure for L. We started
such a theory in [45] in the most classical case where the choice φ(x) = 1

2 |x|2
brings us back to the Gaussian setting and L reduces to the Ornstein–Uhlenbeck
operator. In work in progress, some of the results proven in the present paper
are applied to extend the functional calculus theory of the Ornstein–Uhlenbeck
operator in [23].

From the Lie group point of view, the present paper can be seen as an ap-
proach to (sub)pseudo-differential calculus on Lp(H), where H is the Heisenberg
group. The prefix “sub” here indicates that we consider a pseudo-differential
calculus that extends the Fourier multiplier calculus given by the functional cal-
culus of the sub-Laplacian (removing this prefix by extending the present paper
to add ∂t to the joint functional calculus of the Weyl pair (X, Y), in the spirit of
[51], would be interesting). In the setting where X is an Lp-space, a Lie group
representation approach to some of the results in Section 5 has already been pur-
sued in [17], [18] for more general higher-order commutator relations; see also
[19], [20]. Building on earlier work in [19], in the setting of Lp-spaces the bound-
edness of the H∞-calculus of ε + L for ε > 0 has been proved in [49] by more
direct transference arguments. The present operator-theoretic perspective could
help construct global pseudo-differential calculi on nilpotent Lie groups. Such a
theory is currently being developed by Ruzhansky, Fischer, and their collabora-
tors (see, in particular, [22]). The theory of pseudo-differential operators on the
Heisenberg group is developed in [7].

Last but not least, we aim to perturb the Weyl calculus, both from an opera-
tor theoretic and a harmonic analytic perspective, to eventually treat pairs of the
form

QB,j f (x) =
1
2

(
∂j f (x) + xj f (x)−

d

∑
k=1

βkj(x)(∂k f (x)− xk f (x))
)

,

PB,j f (x) =
1
2i

(
∂j f (x) + xj f (x) +

d

∑
k=1

βkj(x)(∂k f (x)− xk f (x))
)

,

where both the matrix B = (βkj)
d
k,j=1 and its inverse have bounded measurable

coefficients. Notice that we recover the standard pair with B = I. These are
analogues of the perturbations of Dirac operators considered in [6]. Since the
latter can be interpreted as a rough Fourier multiplier theory, a corresponding
theory for (QB, PB) could be interpreted as a rough pseudo-differential calculus.
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NOTATION AND CONVENTIONS. All vector spaces are complex unless the con-
trary is stated. To be in line with standard notation in pseudo-differential calcu-
lus, we reserve the notation (x, ξ) for the general point in R2d = Rd×Rd. Because
most applications are concerned with function spaces anyway, general elements
in a Banach space X will be denoted by f , g, . . . . For ξ ∈ Rd we write 〈ξ〉 =
(1 + |ξ|2)1/2. Standard multi-index notation is used. We let N = {0, 1, 2, . . . }.

When A = (A1, . . . , Ad) and B = (B1, . . . , Bd) are d-tuples of linear opera-

tors with domains D(Aj) and D(Bj) respectively, we set D(A) =
d⋂

j=1
D(Aj) and

D(B) =
d⋂

j=1
D(Bj). For u, v ∈ Rd we write uv :=

d
∑

j=1
ujvj and define the operators

uA and vB, with domains D(A) and D(B) respectively, by

uA =
d

∑
j=1

uj Aj, vB =
d

∑
j=1

vjBj.

We write a .p1,p2,... b to express that there exists a constant C, depending on
the data p1, p2, . . . , but not on any other relevant data, such that a 6 Cb. If the
constant is independent of all relevant data we write a . b.

2. PRELIMINARIES

We assume familiarity with the basic theory of pseudo-differential opera-
tors and semigroup theory. Good sources for our purposes are [1], [21] and [50].
Here we collect some terminology and results concerning UMD Banach spaces,
R-boundedness, and the H∞-calculus of sectorial operators. Our main references
are [32], [33]; other sources for these notions are, respectively, [16], [25], [27],
[39], [46].

2.1. UMD SPACES. A Banach space X is said to have the UMDp property, where
1 < p < ∞, if there exists a finite constant C > 0 such that whenever (mn)N

n=1 is
a finite X-valued martingale (defined on a measure space which may vary from
case to case and whose length N may vary as well) and (εn)N

n=1 is a sequence of
scalars of modulus one, we have

E
∥∥∥ N

∑
n=1

εnmn

∥∥∥p
6 CpE

∥∥∥ N

∑
n=1

mn

∥∥∥p
.

It can be shown that if X has the UMDp property for some 1 < p < ∞, then it
has this property for all 1 < p < ∞. Accordingly it makes sense to call a Banach
space a UMD space if it has the UMDp property for some (equivalently, for all)
1 < p < ∞.
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In some treatments only scalars εn = ±1 are used. This leads to an equiva-
lent definition, the only difference being that the numerical value of the constant
may change (see Proposition 4.2.10 of [32]).

The importance of the class of UMD spaces derives from a celebrated the-
orem due to Burkholder and Bourgain [10], [12] which characterises it as pre-
cisely the class of Banach spaces X for which the Hilbert transform extends to a
bounded operator on Lp(R; X) for some (equivalently, for all) 1 < p < ∞. This, in
turn, allows one to prove the boundedness in Lp(Rd; X) of very general classes of
singular integral operators. For some of the sharpest results presently available
see [31]. In particular every Calderón–Zygmund operator with a kernel satisfying
the so-called “standard estimates” is bounded on Lp(Rd; X) for all UMD spaces
X and exponents 1 < p < ∞.

Examples of UMD spaces include Hilbert spaces, the Lp-spaces with 1 <
p < ∞, and the Schatten classes Cp with 1 < p < ∞. The class of UMD spaces
is stable under passing to equivalent norms and taking closed subspaces, quo-
tients, and `p-direct sums. If X is UMD and 1 < p < ∞, then also Lp(M, µ; X)
is UMD, for any measure space (M, µ). As a consequence, all “classical” func-
tion spaces used in analysis such as Sobolev spaces, Besov spaces, and Triebel–
Lizorkin spaces are UMD as long as the exponents in their definitions are within
the reflexive range. UMD spaces are reflexive, and therefore spaces such as c0, `1,
`∞, C(K), L1(M, µ), L∞(M, µ) are not UMD (with exception of the trivial cases
when the latter three are finite-dimensional).

2.2. R-BOUNDEDNESS. A Rademacher sequence is a sequence of independent ran-
dom variables (εn)∞

n=1, defined on some probability space, the values of which
are uniformly distributed in the set of scalars of modulus one. Thus if the scalar
field is real, Rademacher variables take values±1 with equal probability 1

2 , and if
the scalar field is complex their values are uniformly distributed in the unit circle
in the complex plane.

Let X and Y be Banach spaces and let L (X, Y) denote the space of all
bounded linear operators from X into Y. A subset T of L (X, Y) is said to be
Rp-bounded, where 0 < p < ∞, if there exists a finite constant C > 0 such that
for all finite sequences T1, . . . , TN ∈ T and x1, . . . , xN ∈ X (where N may vary)
one has

E
∥∥∥ N

∑
n=1

εnTnxn

∥∥∥p
6 CpE

∥∥∥ N

∑
n=1

εnxn

∥∥∥p
.

The least admissible constant C is called the Rp-bound of T and is denoted by
Rp(T ).

By the Kahane–Khintchine inequality (see Theorem 6.2.4 of [33]), if T is Rp-
bounded for some 0 < p < ∞, then it is Rp-bounded for all 0 < p < ∞, and for
all 0 < p < ∞ we have

Rp(T ) hp R(T ),
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where by default we write R(T ) := R2(T ). Accordingly it makes sense to call
T R-bounded if it is R-bounded for some (equivalently, for all) 0 < p < ∞.

In some treatments real-valued Rademacher variables (random variables
taking the values ±1 with equal probability) are used. This leads to an equiv-
alent definition, the only difference being that the numerical value of the R-
bounds may change (see Proposition 6.1.9 of [33]). Upon replacing the role of
Rademacher variables by Gaussian variables, one arrives at the notion of γ-boun-
dedness. Every R-bounded set of operators is γ-bounded (by a simple randomisa-
tion argument, see Theorem 8.1.3 of [33]), and every γ-bounded set is uniformly
bounded (take N = 1). If X has finite cotype, every γ-bounded family in L (X, Y)
is R-bounded, and if X has cotype 2 and Y has type 2 (in particular, if X and Y are
isomorphic to Hilbert spaces), then every uniformly bounded family in L (X, Y)
is R-bounded (see Theorem 8.1.3 of [33]). The Kahane contraction principle (see
Theorem 6.1.13 of [33]) implies that bounded subsets of the scalar field, viewed
as bounded operators on a Banach space X through scalar multiplication, are
R-bounded. R-Bounded sets enjoy many permanence properties; in particular
they are closed under taking convex hulls and weak operator closure (see Sec-
tions 8.1.e, 8.4.a, 8.5.a of [33]).

The notion of R-boundedness originates from harmonic analysis, where it
captures the essence of so-called “square function estimates”. As such it goes
back to the works [8], [11]; its first systematic study is [13]. Rather than explaining
this aspect in full detail (for this we refer to Chapter 8 of [33]) we mention (see
Proposition 6.3.3 of [33]) that if X = Lq(M, µ) with 1 6 q < ∞, then for all
0 < p < ∞ one has the equivalence of norms(

E
∥∥∥ N

∑
n=1

εn fn

∥∥∥p

Lq(M,µ)

)1/p
hp,q

∥∥∥( N

∑
n=1
| fn|2

)1/2∥∥∥
Lq(M,µ)

with implied constants that depend only on p and q. Thus, in the context of Lq-
spaces, R-boundedness reduces to a square function estimate.

2.3. H∞-CALCULUS. Let X be a Banach space and let 0 < σ < π. A closed
operator L : D(L) ⊇ X → X (with D(L) the domain of L) is said to be σ-sectorial if
its spectrum is contained in the closure of the sector

Σσ = {z ∈ C : z 6= 0, | arg z| < σ}

(arguments are taken in (−π,−π)) and satisfies

‖R(z, L)‖ 6 M
|z|(2.1)

on the complement of Σσ, for some finite constant M > 0. Here, R(z, L) :=
(z − L)−1 is the resolvent operator. An operator is said to be sectorial if it is σ-
sectorial for some 0 < σ < π. The number

ω(L) := inf{σ ∈ (0, π) : L is σ-sectorial}
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is called the angle of sectoriality of L.
For 0 < θ < π let H1(Σθ) be the Banach space of all holomorphic functions

φ : Σθ → C satisfying

‖φ‖H1(Σθ)
:= sup

0<ν<θ

1
2π

∫
∂Σν

|φ(z)| |dz|
|z| < ∞.

If L is σ-sectorial, then for any φ ∈ H1(Σθ) with σ < θ < π we may define

(2.2) φ(L) :=
1

2πi

∫
∂Σν

φ(z)R(z, L)dz,

taking σ < ν < θ with the understanding that ∂Σν is downwards oriented. This
integral converges absolutely and defines a bounded operator of norm at most
M‖φ‖H1(Σθ)

, where M is the constant of (2.1). It is a consequence of Cauchy’s
theorem and Proposition H.2.5 of [33] that the definition of φ(L) is independent
of the choice of the angle ν.

If we were to replace the role of H1(Σθ) by the space H∞(Σθ) of all bounded
holomorphic functions on Σθ , we would run into the difficulty that the corre-
sponding Dunford integral in (2.2) becomes singular at both the origin and at
infinity. To handle this situation a sectorial operator L is said to have a bounded
H∞(Σσ)-calculus, where ω(L) < σ < π, if there exists a finite constant K > 0 such
that

‖φ(L)‖ 6 K‖φ‖H∞(Σσ)

for all φ ∈ H1(Σσ) ∩ H∞(Σσ). A sectorial operator L is said to have a bounded
H∞-calculus if it has a bounded H∞(Σσ)-calculus for some ω(L) < σ < π. The
number

ωH∞(L) := inf{σ ∈ (ω(L), π) : L has a bounded H∞(Σσ)-calculus}

is called the angle of the H∞-calculus of L.
If L is densely defined, has dense range and a bounded H∞(Σσ)-calculus,

the McIntosh convergence lemma [43] (see also Theorem 10.2.13 of [33]) allows one
to uniquely define, for every φ ∈ H∞(Σσ), a bounded operator φ(L) by

φ(L) f := lim
n→∞

φn(L) f , f ∈ X,

where (φn)n>1 is any sequence in H1(Σσ) ∩ H∞(Σσ) that is uniformly bounded
and converges to φ pointwise on Σσ.

The prime example of a sectorial operator with a bounded H∞-calculus (of
angle 0) is the negative Laplacian L = −∆ on Lp(Rd; X) for any UMD space
X and 1 < p < ∞. More generally, under minor regularity assumptions on
the coefficients, uniformly elliptic operators on sufficiently regular domains D in
Rd have bounded H∞-calculi on Lp(D; X) under various boundary conditions.
Examples with precise formulations are reviewed in [16], [33], [39].
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There is an interesting interplay between R-boundedness and H∞-calculi.
Let us say that a closed operator L is σ-R-sectorial if σ(L) is contained in Σσ and
the set

{zR(z, L) : z ∈ {Σσ}
is R-bounded. Since R-boundedness implies boundedness, every σ-R-sectorial is
σ-sectorial. The operator L is said to be R-sectorial if it is σ-R-sectorial for some
0 < σ < π. The infimum

ωR(L) := inf{σ ∈ (ω(L), π) : L is σ-R-sectorial}

is called the angle of R-sectoriality of L. It was shown by Kalton and Weis [35] (see
also Corollary 10.4.10 of [33]) that if L is a sectorial operator with a bounded H∞-
calculus on a UMD Banach space X (actually a slightly weaker assumption will
do for this purpose, but this is not relevant to us here), then L is R-sectorial and
we have

(2.3) ωR(L) = ωH∞(L).

In this context it is interesting to observe that for R-sectorial operators L it may
happen that ωR(L) > ω(L); see [34].

3. WEYL PAIRS

Let A = (A1, . . . , Ad) and B = (B1, . . . , Bd) be two d-tuples of closed and
densely defined operators acting in a complex Banach space X. We assume that
each of the operators iAj and iBj generates a uniformly bounded C0-group on X.
We denote these groups by (eitAj)t∈R and (eitBj)t∈R, respectively.

DEFINITION 3.1. Under the above assumptions, the pair (A, B) is called a
Weyl pair of dimension d if the (integrated) canonical commutation relations hold for
all s, t ∈ R and 1 6 j, k 6 d:

(3.1) eisAj eitAk =eitAk eisAj , eisBj eitBk =eitBk eisBj , eisAj eitBk =e−istδjk eitBk eisAj ,

where δjk is the usual Kronecker symbol.

REMARK 3.2. In essence, Weyl pairs are bounded strongly continuous rep-
resentations on X of the reduced Heisenberg group. This point of view will not
play a role in this paper, for a reason that is best illustrated by considering the par-
ticular case of the Schrödinger representation corresponding to the classical Weyl
pair of position and momentum operators. The two most studied (and unitarily
equivalent) realisations of this representation, corresponding respectively to the
harmonic oscillator (where one takes X = L2(Rd)) and the Ornstein–Uhlenbeck
operator (where one takes X = L2(Rd, γd) with γd the standard Gaussian distri-
bution in d dimensions) become very different once we depart from their Hilber-
tian settings and consider their extensions to Lp(Rd) and Lp(Rd, γd), respectively.
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This is elaborated in the Examples 3.3 and 3.4 below. It shows that the underly-
ing algebraic structure of the Heisenberg group has only a limited bearing on the
properties of general Weyl pairs.

Being a Weyl pair is an isomorphic notion, in that it is insensitive to chang-
ing to an equivalent norm. In particular, by switching to the equivalent norm

|||x||| := max
j=1,...,d

max
{

sup
t∈R
‖eitAj x‖, sup

t∈R
‖eitBj x‖

}
we could have equivalently assumed that the operators iAj and iBj generate C0-
groups of isometries on X. If (A, B) is a Weyl pair on X and T : X → Y is an
isomorphism of Banach spaces, then (TAT−1, TBT−1) is a Weyl pair on Y. This
is of course trivial, but it is of some interest in connection with the next example,
for on Hilbert spaces it easily provides examples of non-selfadjoint Weyl pairs.

EXAMPLE 3.3 (Standard position/momentum pair). On Lp(Rd), 1 6 p < ∞,
the position and momentum operators Qj and Pj, 1 6 j 6 d, are defined by

Qj f (x) = xj f (x), Pj f (x) =
1
i

∂j f (x), x ∈ Rd.

With their natural domains, it is easily checked that they define a Weyl pair
(Q, P). Indeed, iQj generates the multiplication group on Lp(Rd) given by

eitQj g(x) = eitxg(x), x ∈ Rd, t ∈ R,

and iPj generates the translation group on Lp(Rd) given by

eitPj g(x) = g(x + tej), x ∈ Rd, t ∈ R,

with ej the j-th unit vector of Rd. The commutation relations are easily checked.
The position/momentum pair is sometimes referred to as the standard pair

and provides the main example of a Weyl pair. A well-known uniqueness result
of Stone and von Neumann (see, e.g., Chapter 14 of [29] or Section 4.3 of [48])
asserts that every Weyl pair of dimension d of self-adjoint operators in a Hilbert
space is unitarily equivalent to a direct sum of copies of standard pairs on L2(Rd).

EXAMPLE 3.4 (Gaussian position/momentum pair). Let us denote by γ the
standard Gaussian measure on Rd. On Lp(Rd, γ), 1 6 p < ∞, we consider the
position and momentum pair (Qγ, Pγ) given by Qγ = (Qγ

1 , . . . , Qγ
d ) and Pγ =

(Pγ
1 , . . . , Pγ

d ) defined by

Qγ
j :=

1√
2
(aj + a†

j ), Pγ
j :=

1
i
√

2
(aj − a†

j ),

where the annihilation and creation operators aj and a†
j are defined by

aj = ∂j, a†
j = −∂j + xj.
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Thus, for f ∈ C1
c (Rd),

Qγ
j f (x) =

1√
2

xj f (x), Pγ
j f (x) =

1
i
√

2
(2∂j − xj) f (x).

It is readily verified that the pair (Qγ, Pγ) satisfies the canonical commutation re-
lations. As we will explain in a moment, for p = 2 this pair is unitarily equivalent
to the standard pair.

It is clear that the operators iQγ
j generate C0-contraction groups of multipli-

cation operators on Lp(Rd, γ) for all 1 6 p < ∞. On the other hand, the oper-
ators iPγ

j generate bounded C0-groups on Lp(Rd, γ) if and only if p = 2. Thus

(Qγ, Pγ) is a Weyl pair on Lp(Rd, γ) if and only if p = 2. This can be deduced
from Theorem 5.2 below as follows. By a result of [45], in L2(Rd, γ) the operator
1
2 ((Q

γ)2 + (Pγ)2)− 1
2 d considered in Theorem 5.2 is the Ornstein–Uhlenbeck op-

erator. If (Qγ, Pγ) were to be a Weyl pair in Lp(Rd, γ) for certain p ∈ (1, ∞) \ {2},
the theorem would imply that the Ornstein–Uhlenbeck semigroup extends holo-
morphically to the right half-plane {<z > 0}, and this is well known to be false.
In fact the optimal angle θp of holomorphy for the Ornstein–Uhlenbeck semi-

group on Lp(Rd, γ) is known to be cos θp = |p−2|
2
√

p−1
(see [23]).

The failure of iPγ
j to generate a bounded C0-group on Lp(Rd, γ) for p 6= 2

can also be easily checked by hand. Let m(dx) = dx
(2π)d/2 denote the normalised

Lebesgue measure on Rd. On L2(Rd, γ) the group generated by iPγ
j is given

by eitPγ
j = U−1Tj(t)U, where Tj(t) is the translation group on L2(Rd, m) in the

j-th direction and U : L2(Rd, γ) → L2(Rd, m) is the unitary mapping given by
U = δ ◦ E with

E f (x) = e−(1/4)|x|2 f (x), δ f (x) := (
√

2)d f (
√

2x).

An easy computation shows that, in L2(Rd, γ), the operators eitPγ
j are given by

eitPγ
j f (x) = e(1/4)|x|2−(1/2)(x/

√
2−t)2

f (x + t
√

2).

Then, after an integration and change of variable,

‖eitPγ
j f ‖p

p =
1

(2π)d/2

∫
Rd

e((1/2)−(p/4))(2
√

2xt−2t2)| f (x)|pdγ(x).

For p ∈ [1, 2) it follows that eitPγ
j fails to extend to a bounded operator acting on

Lp(Rd, γ) for all t > 0, and for p ∈ (2, ∞) the operators eitPγ
j are bounded on

Lp(Rd, γ), but not uniformly bounded as a function of t > 0.

EXAMPLE 3.5 (Modified Gaussian position/momentum pair). It is of some
interest to note that the pair (Qγ, Pγ) of the previous example does form a Weyl
pair on Lp(Rd, γ2/p) for all p ∈ [1, 2], where γτ(dx) = (2πτ)−d/2e−|x|

2/2τdx.
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This is simply because with this scaling of the measure the mapping U considered
above defines an isomorphism from Lp(Rd, γ2/p) onto Lp(Rd, m). Then each iPγ

j

generates a bounded C0-group on Lp(Rd, γ2/p) which, under U, conjugates with
the translation group in the j-th direction on Lp(Rd, m).

EXAMPLE 3.6 (Duality). If (A, B) is a Weyl pair in X, then the pair of adjoint
operators (B∗, A∗) is a Weyl pair in X∗ provided the operators A∗j and B∗j are
densely defined (by a classical result in semigroup theory (see Proposition I.5.14
of [21]) this is always the case if X is reflexive).

EXAMPLE 3.7 (Additive commuting perturbations). If (A, B) is a Weyl pair
and C is a bounded operator resolvent commuting with A, then (A, B + C) is a
Weyl pair whenever the group generated by i(B + C) is bounded. Indeed, the
assumption implies that C commutes with the operators eitA, and the commuta-
tion relations (3.1) follow from this by going through the standard proof of the
variation of constants formula for perturbed (semi)groups using Picard iteration.
The simplest example is obtained by taking C = ωI with ω ∈ R. This amounts to
frequency modulating the group generated by iB. More generally one could take
C to be any densely defined closed operator such that iC generates a bounded
group commuting with the group generated by iA.

Similarly, if (A, B) is a Weyl pair and C is a bounded operator commuting
with the resolvent of B, then (A + C, B) is a Weyl pair whenever the group gen-
erated by i(A + C) is bounded.

EXAMPLE 3.8 (Skew transforms). If (A, B) is a Weyl pair, then for every
λ ∈ R the pair (A, λA + B) is a Weyl pair. Some care has to be taken with the
interpretation of λA+ B; we interpret it as the generator of the C0-group given by

eit(λA+B) := e(1/2)iλt2
eiλtAeitB

(this idea will be further developed in a moment). Similarly, if (A, B) is a Weyl
pair, then for every λ ∈ R the pair (A + λB, B) is a Weyl pair.

EXAMPLE 3.9. Let ((Q1, Q2), (P1, P2)) be the standard pair of dimension 2d
on L2(R2d), i.e.,

Q1,j f (x, ξ) = xj f (x, ξ), Q2,j f (x, ξ) = ξ j f (x, ξ),

P1,j f (x, ξ) =
1
i

∂ f
∂xj

(x, ξ), P2,j f (x, ξ) =
1
i

∂ f
∂ξ j

(x, ξ),

for 1 6 j 6 d. Reasoning as in the preceding examples, we see that (− 1
2 Q2 −

P1, 1
2 Q1− P2) is a Weyl pair of dimension d on L2(R2d). As we show in Lemma 6.4,

the Weyl calculus of this pair encodes twisted convolutions. Many variations
on twisted convolutions can be considered through the Weyl calculus of twisted
standard pairs obtained from different twists than the one above.
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EXAMPLE 3.10 (Quantum variables). In [24], González-Pérez, Junge, and
Parcet introduce a (non-commutative) Fourier transform, as well as position and
momentum operators, associated with certain von Neumann algebras called
quantum euclidean spaces (or Moyal deformations, or CCR algebras). Their con-
struction allows them to define non-commutative analogues of the key notions
of Calderón–Zygmund theory, including off-diagonal kernel estimates and Hör-
mander symbol classes, and then to prove analogues of the main theorems in
singular integral operator theory. We cannot describe their construction in detail
here, but note that their quantum variables (xΘ,j)j=1,...,2d are Weyl pairs (for the
appropriate choice of Θ) acting on some non-commutative Lp-spaces (see Propo-
sition 1.9 of [24]).

We now collect some easy properties of Weyl pairs which will be useful later
on. For d = 1 they are due to Kato [36] (see also Section 4.9 of [48]) and the proofs
given there extend without difficulty to the present case. The main observation
is that, upon taking Laplace transforms, the third commutation relation in (3.1)
implies the identities

(3.2) R(λ, iAj)e
itBj = eitBj R(λ + it, iAj), R(λ, iBj)e

itAj = eitAj R(λ− it, iBj),

for all t ∈ R, <λ 6= 0, and 1 6 j 6 d. It follows that eitBj leaves D(Aj) invariant,
eitAj leaves D(Bj) invariant, and

(3.3) Aje
itBj f =eitBj(Aj−t) f f ∈D(Aj), Bje

itAj f =eitAj(Bj+t) f f ∈D(Bj).

The same argument applies to the remaining combinations of Aj and Bk, but no
shifts over ±t occur when the operators commute. Thus we obtain the following
lemma.

LEMMA 3.11. Let (A, B) be a Weyl pair. The operators eitAj and eitBj leave both

D(A) :=
d⋂

k=1
D(Ak) and D(B) :=

d⋂
k=1

D(Bk) invariant. For j 6= k we have

(3.4) AjeitBk f = eitBk Aj f f ∈ D(Aj), BkeitAj f = eitAj Bk f f ∈ D(Bk),

while for j = k the identities (3.3) hold.

Differentiating (3.2) at t = 0 gives

(3.5)
R(λ, iBj)R(µ, iAj) = R(µ, iAj)R(λ, iBj)[I − iR(λ, iBj)R(µ, iAj)],

R(λ, iAj)R(µ, iBj) = R(µ, iBj)R(λ, iAj)[I + iR(λ, iAj)R(µ, iBj)].

If

g =
d

∏
j,j′=1

R(λj, iAj)R(λj′ , iAj′)
d

∏
k,k′=1

R(µk, iBk)R(µk′ , iBk′) f

with f ∈ X, then (3.5) may be used to rewrite g, for any pair 1 6 j, k 6 d, as

g = R(λ, iAj)R(µ, iBk)Cjk f = R(µ, iBk)R(λ, iAj)Djk f = R(µ, iBj)R(λ, iBk)Ejk f
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for suitable bounded operators Cjk, Djk, Ejk. From this we see that g belongs to⋂
16j,k6d

(D(Aj Ak) ∩D(AjBk) ∩D(Bk Aj)) ∩D(BjBk). Since, for all f ∈ X,

lim
λ,µ→∞

d

∏
j,j′ ,k,k′=1

λjλj′R(λj, iAj)R(λj′ , iAj′)µkµk′R(µk, iBk)R(λk′ , iBk′) f = f ,

the limit being taken in any order for λ1, . . . , λd, λ′1, . . . , λ′d, µ1, . . . , µd, µ1,′ . . . , µ′d
tending to ∞, this subspace is dense in X. The identity (3.5) also gives the identity
AjBjg− Bj Ajg = ig for g of the above form. The same argument gives commuta-
tion for the remaining combinations of Aj and Bk. Thus we obtain the following
lemma.

LEMMA 3.12. Let (A, B) be a Weyl pair of dimension d. The subspace⋂
16j,k6d

(D(Aj Ak) ∩D(AjBk) ∩D(Bk Aj) ∩D(BjBk))

is dense, and on this subspace we have Aj Ak = Ak Aj, BjBk = BkBj, and AjBk −
Bk Aj = δjkiI.

Let (A, B) be a Weyl pair of dimension d. Consider, for t ∈ R and u, v ∈ Rd,
the bounded operators

Tu,v(t) := e(1/2)it2uveituAeitvB = e−(1/2)it2uveitvBeituA.

PROPOSITION 3.13. The family (Tu,v)t∈R is a bounded C0-group on X, D(A) ∩
D(B) is a core for its generator Gu,v, and, on this core, the generator is given by

Gu,v f = iuA f + ivB f , f ∈ D(A) ∩D(B).

Proof. The identity Tu,v(0) = I is trivial. The group property Tu,v(t0) ◦
Tu,v(t1) = Tu,v(t0 + t1) follows straightforwardly from the commutation relations
(3.1). Strong continuity is also clear.

It follows from the general properties of Weyl pairs mentioned earlier that
each operator Tu,v(t) maps the subspace D(A) ∩D(B) into itself.

Moreover, D(A) ∩ D(B) is dense in X. By Lemma 3.14 below, every f ∈
D(A) ∩D(B) belongs to D(Gu,v) and differentiation gives

Gu,v f =
d
dt
|t=0Tu,v(t) f = iuA f + ivB f , f ∈ D(A) ∩D(B).

A general result in semigroup theory (see, e.g., Proposition II.1.7 of [21]) now
implies that D(A) ∩D(B) is a core for Gu,v.

The proof of Proposition 3.13 is completed by the following observation,
which we leave as an easy exercise to the reader.

LEMMA 3.14. Let (S(t))t∈R and (T(t))t∈R be strongly continuous families of
operators, and let f ∈ X be fixed. If

(i) t 7→ S(t) f is differentiable at t = 0, with derivative S′(0) f := d
dt |t=0S(t) f ,
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(ii) t 7→ T(t)S(0) f is differentiable at t = 0, with derivative

T′(0)S(0) f :=
d
dt
|t=0T(t)S(0) f ,

then t 7→ T(t)S(t) f is differentiable at t = 0, with derivative

d
dt
|t=0T(t)S(t) f = T′(0)S(0) f + T(0)S′(0) f .

4. THE WEYL CALCULUS

Let (A, B) be a Weyl pair of dimension d on a Banach space X. For (x, ξ) ∈
R2d we consider the bounded operators

ei(uA+vB) := e(1/2)iuveiuAeivB.(4.1)

This notation is justified by Proposition 3.13.

EXAMPLE 4.1. For the standard pair (Q, P) on L2(Rd), (4.1) reduces to the
Schrödinger representation: the operators ei(uQ+vP) are unitary on L2(Rd) and
given by

ei(uQ+vP) f (x) = e(1/2)iuv+iux f (x + v).

DEFINITION 4.2 (Weyl calculus). Let (A, B) be a Weyl pair of dimension d.
For functions a ∈ S (R2d) we define

a(A, B) f :=
1

(2π)d

∫
R2d

â(u, v)ei(uA+vB) f dudv, f ∈ X,

where

â(u, v) =
1

(2π)d

∫
R2d

a(x, ξ)e−i(xu+ξv)dxdξ

is the Fourier–Plancherel transform of a. The mapping a 7→ a(A, B) from S (R2d)
to L (X) is called the Weyl calculus of (A, B).

An easy computation based on the identity

ei(uA+vB) ◦ ei(u′A+v′B) = e(1/2)i(u′v−uv′)ei(u+u′)A+(v+v′)B,(4.2)

which follows from the commutation relations (3.1), gives the following analogue
of the multiplicativity property of the functional calculus of a single operator: for
all a, b ∈ S (R2d) we have

a(A, B) ◦ b(A, B) = (a # b)(A, B),

where a#b is the Moyal product of a and b, given by (see Section XII.3.3 of [50])

(a # b)(x, ξ) =
1

π2d

∫
R2d

∫
R2d

a(x + u, ξ + u′)b(x + v, ξ + v′)e−2i(vu′−uv′)dudu′dvdv′.
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DEFINITION 4.3. Let N, m ∈ N. A Weyl pair (A, B) is said to admit a bounded
Weyl calculus of type (−N, m) if, for all a ∈ S(R2d), we have

‖a(A, B)‖ . max
|α|,|β|6m

sup
(x,ξ)∈R2d

〈ξ〉N+|α||∂α
ξ ∂

β
x a(x, ξ)|,

with a constant independent of a. The pair (A, B) is said to admit a bounded Weyl
calculus of type−N if it admits a bounded Weyl calculus of type (−N, m) for some
m ∈ N.

In Subsection 4.1 we will prove that if X is a UMD space and 1 < p < ∞,
then the standard pair (Q, P) has a bounded Weyl calculus of type 0 on Lp(Rd; X).

The convergence lemma for the Dunford calculus for sectorial operators
(see, e.g., Theorem 10.2.2 of [33]) has the following analogue for the Weyl cal-
culus.

LEMMA 4.4 (Convergence lemma). Let (an)n∈N be a sequence of Schwartz func-
tions defined on R2d and let N ∈ N. There exist m = m(d, N) ∈ N and M =
M(d, N) ∈ N, both depending only on d and N, such that the following holds: if (A, B)
is a Weyl pair with a bounded Weyl calculus of type (−N − 1, m), and if

(i) for all multi-indices γ ∈ Nd with |γ| 6 M we have lim
n→∞

∂γan = 0 uniformly on
compact sets,

(ii) sup
n∈N
‖an(A, B)‖ < ∞,

then lim
n→∞

an(A, B) f = 0 for all f ∈ X.

Admittedly the formulation of this lemma is a bit awkward; the point here
is that we need (A, B) to be of type (−N − 1, m) for all m > m0, where m0 may
depend on N and d. The proof of the lemma is based on an asymptotic expansion
representation for Moyal products of Schwartz functions.

LEMMA 4.5. There exists a sequence (cα)α∈N2d of complex numbers such that, for
all a, b ∈ S(R2d) and all integers M ∈ N, there exists a function ra,b;M+1 ∈ S (R2d)
such that

a(A, B)b(A, B) = ∑
α∈N2d , |α|∞6M

cα∂α(ab)(A, B) + ra,b;M+1(A, B)

whenever (A, B) is a Weyl pair. Moreover, there exists an m ∈ N, depending only on d
and M, such that if (A, B) has a bounded Weyl calculus of type (−M− 1, m), then

‖ra,b;M+1(A, B)‖

. max
α′ ,β′ ,α′′ ,β′′∈Nd , |α′ |,|β′ |,|α′′ |,|β′′ |6m

sup
x,ξ∈R2d

〈ξ〉min(|α′ |,|α′′ |)|∂α′
ξ ∂

β′
x a(x, ξ)∂α′′

ξ ∂
β′′
x b(x, ξ)|.

Proof. Let a, b ∈ S(R2d). Recall that a(A, B)b(A, B) = (a#b)(A, B), where
a#b is the Moyal product of a and b. By Theorem 3.16 of [1], for any M > 0 there



270 JAN VAN NEERVEN AND PIERRE PORTAL

exists a function ra,b;M+1 ∈ S(R2d) such that

(4.3) a#b(x, ξ) = ∑
α∈Nd , |α|6M

1
α!

1
iα

∂α
ξ a(x, ξ)∂α

xb(x, ξ) + ra,b;M+1(x, ξ).

This gives the formula in the first part of the theorem (with many coefficients cα

equal to 0).
Suppose next that (A, B) has a bounded Weyl calculus of type (−M− 1, m)

for some M ∈ N, where m ∈ N is arbitrary for the moment but will be fixed later.
Then, by assumption, the remainder ra,b;M+1(A, B) in the expansion (4.3) for this
particular value of M satisfies the estimate

‖ra,b;M+1(A, B)‖ . max
|γ|,|δ|6m

sup
(x,ξ)∈R2d

〈ξ〉M+1+|γ||∂γ
ξ ∂δ

xra,b;M+1(x, ξ)|

with a constant only depending on M, m and the pair (A, B). By Theorem 3.15
of [1], ra,b,M+1(x, ξ) is given by a finite linear combination, extending over all
multi-indices satisfying |α| = M + 1, of terms of the form

Rα,a,b(x, ξ) :=
∫
R2d

e−ix′ξ ′(ξ ′)α

1∫
0

∂α
ξ p(x, ξ + θξ ′, x + x′, ξ)(1− θ)Mdθdx′dξ ′

for p(x, ξ, x′, ξ ′) = a(x, ξ)b(x′, ξ ′).
As in the proof of Theorem 3.15 in [1] (see, in particular, (3.20) on page 54

and (3.10) on page 47), there exists m(d, M) ∈ N, depending only on d and M,
such that for all multi-indices γ, δ satisfying |γ|, |δ| 6 m(d, M) we have

|∂γ
ξ ∂δ

xRα,a,b(x, ξ)| . 〈ξ〉−(|α|+|γ|) = 〈ξ〉−(M+1+|γ|),

with constant depending linearly on

max
|α′ |,|β′ |,|α′′ |,|β′′ |6m(d,M)

sup
x,ξ∈R2d

〈ξ〉min(|α′ |,|α′′ |)|∂α′
ξ ∂

β′
x a(x, ξ)∂α′′

ξ ∂
β′′
x b(x, ξ)|.

If we fix the integer m to be this m(d, M), the second part of the lemma follows
by collecting estimates.

The proof of the convergence lemma requires one further auxiliary result.
Given a function η : R2d → C and a real number δ > 0 we set ηδ(x, ξ) :=
η(δx, δξ).

LEMMA 4.6. For all η ∈ C∞
c (R2d) with η(0, 0) = 1, and f ∈ X, we have

lim
k→∞

η1/k(A, B) f = f .

Proof. For all f ∈ X we have

η1/k(A, B) f =
1

(2π)d

∫
R2d

η̂1/k(u, v)ei(uA+vB) f dudv
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=
1

(2π)d

∫
R2d

k2dη̂(ku, kv)ei(uA+vB) f dudv

=
1

(2π)d

∫
R2d

η̂(u, v)ei((u/k)A+(v/k)B) f dudv −→
k→∞

η(0, 0) f = f .

Proof of Lemma 4.4. Fix N ∈ N, let m = m(d, N) be as in Lemma 4.5 (where
we take M = N), and suppose (A, B) has a bounded Weyl calculus of type
(−N, m). Let (an)n>1 be a sequence of Schwartz functions satisfying the assump-
tions (i) and (ii) in the statement of the lemma. Let η ∈ C∞

c (R2d) be supported
in B(0, 2) and identically 1 on B(0, 1). Fixing f ∈ X and ε > 0, by Lemma 4.6
and the uniform boundedness of the operators an(A, B) we may choose a large
enough integer k so that

lim sup
n→∞

‖an(A, B) f ‖ 6 lim sup
n→∞

‖an(A, B)η1/k(A, B) f ‖+ ε.(4.4)

Fix n > 1 for the moment. By Lemma 4.5,

‖an(A, B)η1/k(A, B)‖

.
∥∥∥ ∑
|α|∞6N

cα∂α(anη1/k)(A, B)
∥∥∥+ ‖ran ,η1/k ;N+1(A, B)‖

. max
α∈N2d , |α|∞6N

‖∂α(anη1/k)(A, B)‖+ max
α′ ,β′∈Nd , |α′ |,|β′ |6m

sup
(x,ξ)∈B(0,2k)

〈ξ〉|α′ ||∂α′
ξ ∂

β′
x an(x, ξ)|.(4.5)

with constants independent of n. For later reference (we do not need this here)
we observe that the constants are also uniform in k, as is evident from the proof
of Lemma 4.5.

The first term on the right-hand side of (4.5) can be estimated as follows:

max
|α|∞6N

‖∂α(anη1/k)(A, B)‖ . max
|α|∞6N

‖ ̂∂α(anη1/k)‖1

. max
|α|∞6N

‖(u, v) 7→ 〈(u, v)〉2d+1 ̂∂α(anη1/k)‖∞

. max
|β|∞6N+2d+1

‖∂β(anη1/k)‖1

. max
|β|∞6N+2d+1

‖∂βan‖L∞(B(0,2k)),

with constants independent of n. This results in the estimate

‖an(A, B)η1/k(A, B)‖

. max
|β|∞6N+2d+1

‖∂βan‖L∞(B(0,2k)) + max
|α′ |,|β′ |6m

sup
(x,ξ)∈B(0,2k)

〈ξ〉|α′ ||∂α′
ξ ∂

β′
x an(x, ξ)|

with constants independent of n.
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Set M := max(dN + d + 2d2, 2m); the extra factor d in the first term in the
maximum comes from |α| 6 d|α|∞. If all partial derivatives up to order M tend
to 0 uniformly on B(0, 2k), it follows that lim

n→∞
‖an(A, B) f ‖ = 0.

DEFINITION 4.7. A function a ∈ C∞(R2d) is said to belong to the standard
symbol class S−N , with N ∈ Z, if

sup
(x,ξ)∈R2d

〈ξ〉N+|α||∂α
ξ ∂

β
x a(x, ξ)| < ∞

for all multi-indices α, β ∈ Nd.

The Schwartz class is included in S0, and if N > M then S−N ⊆ S−M. The
class S−N for N > 0 plays a key role in estimating error terms that arise from the
difference between the pointwise product of functions and their Moyal product.
In particular, we use the fact that, for any N > 0 and r ∈ S−N , we may write

Tr f (x) =
∫
Rd

Kr(x, x− y) f (y)dy,(4.6)

with

sup
x∈Rd

∫
Rd

|Kr(x, x− y)|dy + sup
y∈Rd

∫
Rd

|Kr(x, x− y)|dx

. max
|α|,|β|62d+1

sup
(x,ξ)∈R2d

〈ξ〉|α||∂α
ξ ∂

β
xr(x, ξ)|.(4.7)

This is proven by combining Proposition 1 p. 554 of [50] and Theorem 5.12 of [1]
(see also Theorem 5.15, Corollary 5.16 of [1]).

We are now ready to state and prove the main result of this section. It asserts
that the calculus of a Weyl pair with bounded calculus of type (−N, m) extends
continuously to symbols in the class S−N .

THEOREM 4.8. Let N ∈ N. If (A, B) has a bounded Weyl calculus of type
(−N, m), where m = m(d, N) is as in Lemma 4.5, then the Weyl calculus a 7→ a(A, B)
extends continuously to functions a ∈ S−N . More precisely, if a ∈ S−N is given and
(an)n∈N is sequence in S(R2d) such that for all multi-indices γ ∈ N2d we have

∂γan → ∂γa

uniformly on compact sets as n→ ∞, then the limit

a(A, B) := lim
n→∞

an(A, B)

exists in the strong operator topology of L (X) and is independent of the approximating
sequence. Furthermore, for all a ∈ S−N we have

‖a(A, B)‖ . max
|α|,|β|6m+N

sup
(x,ξ)∈R2d

〈ξ〉N+|α||∂α
ξ ∂

β
x a(x, ξ)|.
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Proof. The existence and uniqueness of the strong operator limits follows
from what we have already proved. As pointed out in Section 1.4, p. 232 of [50],
it is possible to approximate functions a ∈ S−N by Schwartz functions in the
way stated, by taking an(x, ξ) = a(x, ξ)η( x

n , ξ
n ) = a(x, ξ)η1/n(x, ξ) for some η ∈

C∞
c (R2d) such that η(0, 0) = 1.

It remains to prove the bound for the norm of a(A, B). For this we return to
(4.4) and (4.5), both of which also hold if we replace an by a. For a given ε > 0,
and a large enough k, this gives

‖a(A, B)‖6‖(aη1/k)(A, B)‖+ 2ε

. max
α∈N2d , |α|∞6N

‖∂α(aη1/k)(A, B)‖

+ max
α′ ,β′∈Nd , |α′ |,|β′ |6m

sup
(x,ξ)∈B(0,2k)

〈ξ〉|α′ ||∂α′
ξ ∂

β′
x a(x, ξ)|+2ε

with estimates uniform in ε > 0 and k > 1 (note that the sup norms of the deriva-
tives of ηk are uniform in k > 1).

Each expression in the first term on the right-hand side can be estimated
using the type (−N, m) of the Weyl calculus of (A, B):

‖∂α(aη1/k)(A, B)‖ . max
γ,δ∈Nd , |γ|,|δ|6m

sup
(x,ξ)∈R2d

〈ξ〉N+|γ||∂γ
ξ ∂δ

x∂α(aη1/k)(x, ξ)|

. max
α′ ,β′∈Nd , |α′ |,|β′ |6m+Nd

sup
(x,ξ)∈R2d

〈ξ〉N+|α′ ||∂α′
ξ ∂

β′
x a(x, ξ)|,

again with estimates uniform in ε > 0 and k > 1. Since ε > 0 was arbitrary, this
results in the desired estimate.

4.1. BOUNDED WEYL CALCULUS OF TYPE 0 FOR BANACH SPACE-VALUED STAN-
DARD PAIRS. Let X be a UMD space. On Lp(Rd; X), 1 < p < ∞, we consider the
vector-valued standard pair (Q⊗ IX , P⊗ IX) defined by Q⊗ IX = (Qj ⊗ IX)

d
j=1

and P ⊗ IX = (Pj ⊗ IX)
d
j=1, where Qj and Pj are the position and momentum

operators as in Example 3.3. Note that (Q⊗ IX , P⊗ IX) is a Weyl pair: as in the
scalar case, iQj ⊗ IX and iPj ⊗ IX generate multiplication and translation groups
on Lp(Rd; X) given by the same formulas as in the scalar-valued case (Exam-
ple 3.3). The commutation relations for the vector-valued extensions also follow
from their scalar-valued counterparts.

NOTATION. In order to simplify notation we will suppress the tensors with IX
when no confusion is likely to arise.

As an illustration of Definition 4.3 we now prove the following theorem.

THEOREM 4.9. If X is a UMD Banach space, the standard pair (Q, P) has a
bounded Weyl calculus of type 0 on Lp(Rd; X) for all 1 < p < ∞.
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To prove this theorem we will use Theorem 6 of [47]. To do so, we need
to view a(Q, P) as a pseudo-differential operator acting on L2(Rd; X). This is
possible thanks to the following lemma.

LEMMA 4.10. For every a ∈ S(R2d) there exists a unique b ∈ S(R2d) such that
a(Q, P) = Tb, where Tb is the pseudo-differential operator on L2(Rd) defined by

Tb f (x) =
1

(2π)d/2

∫
Rd

b(x, ξ) f̂ (ξ)eiξxdξ.

This function is given by

b(x, ξ) = ∑
|α|=1

1
α!

1
i|α|

∂α
ξ ∂α

y pa(x, ξ, y, ξ ′)|y=x,ξ ′=ξ + ra(x, ξ),(4.8)

where ra ∈ S (R2d) and pa(x, ξ, y, ξ ′) = a( x+y
2 , ξ). Moreover, for all m ∈ N, there

exists m̃ > m, depending only on m and d, such that

max
|α|,|β|6m

sup
(x,ξ)∈R2d

〈ξ〉|α||∂α
ξ ∂

β
xra(x, ξ)| . max

|α|,|β|6m̃
sup

(x,ξ)∈R2d
〈ξ〉|α||∂α

ξ ∂
β
x a(x, ξ)|.

Proof. The first assertion follows from Proposition 1, p. 554 of [50] (see also
formula (58), p. 258 of [50]). As in the proof of Lemma 4.5, the estimate follows
from Theorem 3.15 of [1].

Proof of Theorem 4.9. We must show that there exists an integer m ∈ N such
that for all a ∈ S(R2d) we have

‖a(Q, P)‖L (Lp(Rd ;X)) . max
|α|,|β|6m

sup
(x,ξ)∈R2d

〈ξ〉|α||∂α
ξ ∂

β
x a(x, ξ)|.

Let a ∈ S (R2d). We first apply Lemma 4.10 to write

(4.9) a(Q, P) = Tb = ∑
|α|=1

1
α!

1
i|α|

T∂α
ξ ∂α

x pa + Tra ,

where ∂α
ξ ∂

β
x pa(x, ξ) is short-hand for the expression ∂α

ξ ∂α
y pa(x, ξ, y, ξ ′)|y=x,ξ ′=ξ oc-

curring in (4.8). We now estimate the Lp(Rd; X)-norms of the terms on the right-
hand side of (4.9) separately, starting with Tra . As pointed out in (4.6) and (4.7)
we have

Tra f (x) =
∫
Rd

Kra(x, y) f (y)dy

with

sup
x∈Rd

∫
Rd

|Kra(x, y)|dy+ sup
y∈Rd

∫
Rd

|Kra(x, y)|dx. max
|α|,|β|62d+1

sup
(x,ξ)∈R2d

〈ξ〉|α||∂α
ξ ∂

β
xra(x, ξ)|.
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Therefore, by Schur’s lemma (in the formulation of Lemma 4.1 with p = q, r = 1,
φ = ψ ≡ 1 of [45], noting that the proof extends without change to the vector-
valued case), Tra extends to a bounded operator on Lp(Rd; X) of norm at most

‖Tr‖L (Lp(Rd ;X)) . max
|α|,|β|62d+1

sup
(x,ξ)∈R2d

〈ξ〉|α||∂α
ξ ∂

β
xra(x, ξ)|

. max
|α|,|β|6m̃

sup
(x,ξ)∈R2d

〈ξ〉|α||∂α
ξ ∂

β
x a(x, ξ)|,(4.10)

for some m̃ > 2d + 1, the second inequality being a consequence of Lemma 4.10.
Next we estimate the Lp(Rd; X)-norms of the operators T

∂α
ξ ∂

β
x pa

. Let α, β ∈

Nd be such that |α|, |β| 6 1. In order to apply Theorem 6 of [47], we remark that
pa,α,β := ∂α

ξ ∂
β
x pa has the following (trivial) properties:

(a) for all |γ| 6 2d + 5 and x ∈ Rd we have

〈ξ〉|γ||∂γ
ξ pa,α,β(x, ξ)|= 〈ξ〉|γ||∂α+γ

ξ pa(x, ξ)|6 max
|α′ |,|β′ |62d+6

sup
(x,ξ)∈R2d

〈ξ〉|α′ ||∂α′
ξ ∂

β′
x a(x, ξ)|;

(b) for all |γ|, |δ| 6 2d + 5 we have

|∂γ
ξ ∂δ

x pa,α,β(x, ξ)| = |∂α+γ
ξ ∂

β+δ
x a(x, ξ)| 6 max

|α′ |,|β′ |62d+6
sup

(x,ξ)∈R2d
〈ξ〉|α′ ||∂α′

ξ ∂
β′
x a(x, ξ)|.

This means that each bα,β belongs to the class S0
1,0(2d + 5, X) as defined in Defi-

nition 3 of [47] (note that the R-boundedness condition in this definition reduces
to a uniform boundedness condition in view of the fact that we are considering
scalar-valued symbols). Therefore, by Theorem 6 of [47] (and its proof, which
shows that the estimates depend linearly on the expressions on the right-hand
sides in (a) and (b)), the operators T

∂α
ξ ∂

β
x a

are bounded on Lp(Rd; X), and

(4.11) ‖T
∂α

ξ ∂
β
x a
‖L (Lp(Rd ;X)) . max

|α|,|β|62d+6
sup

(x,ξ)∈R2d
〈ξ〉|α||∂α

ξ ∂
β
x a(x, ξ)|.

Putting together the estimates (4.10) and (4.11) we obtain the following which
concludes the proof:

‖a(Q, P)‖L (Lp(Rd ;X)) . max
|α|,|β|6max(m̃,2d+6)

sup
(x,ξ)∈R2d

〈ξ〉|α||∂α
ξ ∂

β
x a(x, ξ)|.

5. THE OPERATOR A2 + B2

In this section we show how the Weyl calculus of the pair (A, B) relates to
the functional calculus of the operator A2 + B2.
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For Weyl pairs (A, B) of dimension d we define

A2 :=
d

∑
j=1

A2
j , B2 :=

d

∑
j=1

B2
j

with domains D(A2) :=
d⋂

j=1
D(A2

j ) and D(B2) :=
d⋂

j=1
D(B2

j ). The operator A2 +

B2 is understood as being defined on D(A2) ∩ D(B2). Earlier we have already

defined D(A) :=
d⋂

j=1
D(Aj) and D(B) :=

d⋂
j=1

D(Bj).

The following proposition is an immediate consequence of Lemmas 3.11
and 3.12.

PROPOSITION 5.1. If (A, B) is a Weyl pair of dimension d on X, then D(A2) ∩
D(B2) is dense in X and invariant under the groups (eitAj)t∈R and (eitBj)t∈R, 16 j6d.

The next theorem shows, among other things, that for any Weyl pair (A, B)
the operator −(A2 + B2) is closable and its closure generates an analytic C0-
semigroup of angle 1

2 π. Up to a scaling, this semigroup can be throught of as
an abstract version of the Ornstein–Uhlenbeck semigroup. For the standard pair,
such a theorem is well-known to mathematical physicists, going back at least to
[52]. It was rediscovered for the Ornstein–Uhlenbeck semigroup in Theorem 3.1
of [45]. Here we prove that it holds for all Weyl pairs.

THEOREM 5.2. Let (A, B) be a Weyl pair. The operators

P(t) :=
(

1 +
1− e−t

1 + e−t

)d
exp(− 1−e−t

1+e−t (A2 + B2)) (t > 0)

define a uniformly bounded C0-semigroup on X. The dense set D(A2) ∩D(B2) is a core
for its generator −L, and, on this core, we have the identity

L =
1
2
(A2 + B2)− 1

2
d.

The semigroup (P(t))t>0 extends to an analytic semigroup of angle 1
2 π that is uniformly

bounded and strongly continuous on every subsector of smaller angle.

In the above formula for P(t), for t > 0 the right-hand side is interpreted in
terms of the Weyl calculus for the pair (A, B), i.e., P(t) = at(A, B), where

at(x, ξ) := (1 + λt)
de−λt(|x|2+|ξ|2)(5.1)

with λt =
1−e−t

1+e−t . For t = 0 we interpret the formula as stating that P(0) = I.

Proof. The semigroup property P(t1)P(t2) = P(t1 + t2) follows from the
following identity which is obtained by elementary computation:

at1# at2(x, ξ)
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=
1

π2d (1+λt1)
d(1+λt2)

d×
∫
R2d

∫
R2d

e−λt1 ((x+u)2+(ξ+u′)2)e−λt2 ((x+v)2+(ξ+v′)2)

=(1 + λt1+t2)
de−λt1+t2 (|x|

2+|ξ|2) = at1+t2(x, ξ).(5.2)

Next we prove the strong continuity lim
t↓0

P(t) f = f for all f ∈ X. Fix t > 0

for the moment. We have

P(t) f = at(A, B) f =
1

(2π)d

∫
R2d

ât(u, v)ei(uA+vB) f dudv

=
1

(2π)d (1 + λt)
d 1
(2λt)d

∫
R2d

exp(− 1
4λt

(|u|2 + |v|2))ei(uA+vB) f dudv

=
1

(2π)d
1

(1− e−t)d

∫
R2d

exp(− 1+e−t

4(1−e−t)
(|u|2 + |v|2))ei(uA+vB) f dudv(5.3)

so that

‖P(t)‖ 6 MA MB

(2π)d
1

(1− e−t)d

∫
R2d

e−(1/4(1−e−t))(|u|2+|v|2)dudv . MA MB.(5.4)

This proves the uniform boundedness of P(t) for t > 0. Strong continuity follows
from the fact that ât → δ0 weakly (in the sense that we have strong convergence
against every f ∈ Cb(R; X)).

Let us denote the generator of the C0-semigroup (P(t))t>0 by −L. We claim
that L f = 1

2 d f − 1
2 (A2 f + B2 f ) for all f ∈ D(A2) ∩ D(B2). Our argument will

be somewhat formal. The reader will have no difficulty in making it rigorous by
proceeding as follows: write

ei(uA+vB) f = ψ(u, v)ei(uA+vB) f + (1− ψ(u, v))ei(uA+vB) f

for some compactly supported smooth function aψ which equals 1 in a neigh-
bourhood of (0, 0). Treating the resulting integrals separately, the ones involving
ψ will give the desired convergence while the ones involving 1− ψ will vanish as
we pass to the limit.

Proceeding to the details, we write P(t) = (1 + λ)dR(λ), where λ = λt =
1−e−t

1+e−t . Then,

d
dt

P(t) f =
d

dλ
[[(1 + λ)]dR(λ) f ]

dλ

dt
=

1
2
(1− λ2)

d
dλ

[[(1 + λ)]dR(λ) f ].

In the limit t ↓ 0 we also have λ ↓ 0 and 1
2 (1− λ2) → 1

2 . Hence the claim will be
proved if we show that d

dλ R(λ) f→d f−(A2+B2) f for f ∈D(A2)∩D(B2). We have

lim
λ↓0

d
dλ

[[(1+λ)]dR(λ) f ]= lim
λ↓0

d
dλ

[
(1+λ)d 1

(2π)d

∫
R2d

∫
R2d

̂e−λ(|u|2+|v|2)ei(uA+vB) f dudv
]
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= lim
λ↓0

d(1+λ)d−1 1
(2π)d

∫
R2d

∫
R2d

̂e−λ(|u|2+|v|2)ei(uA+vB) f dudv

+lim
λ↓0

[
(1+λ)d 1

(2π)d

∫
R2d

∫
R2d

d
dλ

̂e−λ(|u|2+|v|2)ei(uA+vB) f dudv
]

= (I) + (II).

Now, for any f ∈ X,

(I) = lim
λ↓0

d
(2π)d

∫
R2d

∫
R2d

̂e−λ(|u|2+|v|2)ei(uA+vB) f dudv

= d
∫
R2d

∫
R2d

δ(0,0)e
i(uA+vB) f dudv = d f .

Similarly, for f ∈ D(A2) ∩D(B2),

(II) = lim
λ↓0

1
(2π)d

∫
R2d

∫
R2d

− ̂(|u|2 + |v|2)e−λ(|u|2+|v|2)ei(uA+vB) f dudv

=
∫
R2d

∫
R2d

∆δ(0,0)e
i(uA+vB) f dudv = −(A2 + B2) f .

Here, ∆δ(0,0) denotes the Laplacian of the Dirac delta function in the sense of
distributions.

We will prove next that D(A2)∩D(B2) is a core for L. We have already seen
that D(A2) ∩ D(B2) is contained in D(L). The definition of the operators P(t)
together with the commutation relation defining Weyl pairs implies that D(A2)∩
D(B2) is invariant under P(t). Since D(A2)∩D(B2) is also dense in X, a standard
result in semigroup theory implies that D(A2) ∩D(B2) is a core for L.

To complete the proof it remains to show the final assertion. By a standard
analytic extension argument, the right-hand side of (5.3) defines an analytic ex-
tension of P(t) to the open right half-plane which again satisfies the semigroup
property. Estimating as in (5.4) we see that this extension is uniformly bounded
on every sector of angle strictly less than 1

2 π. A standard semigroup argument
(see, e.g., Exercise 9.8 of [27]) gives the strong continuity of the extension on each
of these sectors.

EXAMPLE 5.3. For the standard pair of momentum and position we recover
the standard fact that the harmonic oscillator defined by −L f (u) = 1

2∆ f (u) −
1
2 |u|2 f (u) generates a holomorphic semigroup of angle 1

2 π, strongly continuous
on each smaller sector, on each of the spaces on Lp(Rd) with 1 6 p < ∞.

For later use we make the following simple observation.
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COROLLARY 5.4. For all t > 0 we have

‖tLP(t)‖ 6 2d+2dMA MB(1 + t)e−t.

Proof. Using the same notation as before, write λ′t =
2e−t

(1+e−t)2 for the deriv-

ative of t 7→ λt = 1−e−t

1+e−t . In view of LP(t) f = − d
dt P(t) f , differentiation of the

right-hand side of (5.3) (and noting that 1
1−e−t =

1
2 (1 + λ−1

t )) gives

(4π)dLP(t) f

= − d
dt

(
(1 + λ−1

t )d
∫
R2d

exp(− |u|
2+|v|2
4λt

)ei(uA+vB) f dudv
)

= d(1 + λ−1
t )d−1 λ′t

λ2
t

∫
R2d

exp(− |u|
2+|v|2
4λt

)ei(uA+vB) f dudv

− (1 + λ−1
t )d λ′t

4λ2
t

∫
R2d

(|u|2 + |v|2) exp(− |u|
2+|v|2
4λt

)ei(uA+vB) f dudv

and therefore

‖LP(t) f ‖ 6 d(1 + λt)
d−1 λ′t

λt

MA MB‖ f ‖
(4πλt)d

∫
R2d

exp(− |u|
2+|v|2
4λt

)dudv

+ (1 + λt)
d λ′t

4λ2
t

MA MB‖ f ‖
(4πλt)d

∫
R2d

(|u|2 + |v|2) exp(− |u|
2+|v|2)
4λt

)dudv.

In view of the identities

1
(4πλt)d

∫
R2d

exp(− |u|
2+|v|2)
4λt

)dudv = 1

and

1
(4πλt)d

∫
R2d

(|u|2 + |v|2) exp(− |u|
2+|v|2)
4λt

)dudv

=
1

(4πλt)d

2d

∑
j=1

∫
R2d

w2
j exp(− |w|

2

4λt
)dw

=
1

(4πλt)d

2d

∑
j=1

( ∫
R

w2
j exp(−

w2
j

4λt
)dwj

)
∏

16k62d, k 6=j

∫
R

exp(− w2
k

4λt
)dwk

=
1

(4πλt)1/2

2d

∑
j=1

∫
R

w2
j exp(−

w2
j

4λt
)dwj = 4dλt
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we obtain

‖tLP(t) f ‖ 6 t
(

d2d−1 λ′t
λt

+ 2d λ′t
4λ2

t
· 4dλt

)
MA MB‖ f ‖ = 2d+1dt

λ′t
λt

MA MB‖ f ‖

= 2d+1dt · 2e−t

(1 + e−t)2 ·
1 + e−t

1− e−t MA MB‖ f ‖

= 2d+2d
t

1− e−2t e−t MA MB‖ f ‖ 6 2d+2d(1 + t)e−t MA MB‖ f ‖.

5.1. GROUND STATES. Let (A, B) be a Weyl pair on the Banach space X. Upon
passing to the limit t1, t2 → ∞ in (5.2) one sees that if the limit

a∞(A, B) := lim
t→∞

at(A, B)

exists in the weak operator topology of L (X), then it is a projection. That this
limit indeed exists under the assumption that X be reflexive is a consequence of
the following lemma.

LEMMA 5.5. Let (S(t))t>0 be a C0-semigroup on a reflexive Banach space X and
let (Tt)t>0 be a uniformly bounded family of operators on X such that S(s) ◦ Tt = Tt ◦
S(s) = Tt+s for all s, t > 0. Then there exists a bounded operator π on X such that
lim
t→∞

Ttx = π(x) weakly for all x ∈ X.

Proof. Fix x ∈ X. Since X is reflexive, any sequence tn → ∞ has a subse-
quence tnk → ∞ such that lim

k→∞
Tnk x exists weakly. Let π(x) be this weak limit.

We will show that π(x) does not depend on the choice of the sequence tn → ∞,
nor on the choice of the weakly convergent subsequence tnk ↓ 0. To this end it
suffices to show that if both rk → ∞ and sk → ∞ are such that the weak limits
y := lim

k→∞
Trk x and y′ := lim

k→∞
Tsk x exist, then y = y′. By passing to a further sub-

sequence we may assume that rk 6 sk for all k. Then Tsk x = S(sk − rk)Trk x and
therefore, for all x∗ ∈ X∗,

|〈Tsk x− Trk x, x∗〉| = |〈S(sk − rk)Trk x− Trk x, x∗〉| 6 ‖Trk x‖‖S∗(sk − rk)x∗ − x∗‖X∗

6 M‖x‖‖S∗(sk − rk)x∗ − x∗‖X∗ ,

where M = sup
t>0
‖Tt‖. Since X is reflexive, the adjoint semigroup (S∗(t))t>0 is

strongly continuous (see Proposition I.5.14 of [21]), it follows that

|〈y− y′, x∗〉| = lim
k→∞
|〈Tsk x− Trk x, x∗〉| 6 M‖x‖ lim

k→∞
‖S∗(sk − rk)x∗ − x∗‖X∗ = 0.

This being true for all x∗ ∈ X∗, we conclude that y = y′.
The operator π thus defined is linear and bounded, with norm ‖π‖ 6 M.

That π(x) = lim
t→∞

Ttx weakly now follows from a standard subsequence argu-
ment.
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PROPOSITION 5.6. If (A, B) is a Weyl pair on a reflexive Banach space X, then
the weak operator limit π := lim

t→∞
at(A, B) exists in L (X). Furthermore, N(L) = R(π)

and R(L) = N(π).

Proof. For all t1, t2 > 0, (5.2) implies

e−t1L ◦ at2(A, B) = at2(A, B) ◦ e−t1L = at1+t2(A, B).

Hence the first assertion follows from the lemma.
The second assertion is proved by a routine semigroup argument. If f ∈

N(L), then at(A, B) f = e−tL f = f implies π( f ) = f , and conversely if π( f ) = f ,
then for all t > 0 and φ ∈ X∗ we have

〈e−tL f , φ〉 = 〈 f , e−tL∗φ〉 = lim
s→∞
〈as(A, B) f , e−tL∗φ〉

= lim
s→∞
〈as+t(A, B) f , φ〉 = 〈π( f ), φ〉 = 〈 f , φ〉

and therefore e−tL f = f . This implies f ∈ D(L) and L f = 0. This proves N(L) =
R(π). The proof that R(L) = N(π) is equally simple.

In particular we see that X admits the direct sum decomposition N(L) ⊕
R(L). Such a decomposition holds for every sectorial operator on a reflexive
Banach space (see Proposition 10.1.9 of [33]); the point of the proposition is to
identify the associated projection as being given by π.

6. TRANSFERENCE

In the spectral theory of generators of C0-groups on a Banach space X, trans-
ference is a powerful technique to “transfer” properties of the group of transla-
tions to general bounded C0-groups. The key result is a theorem of Coifman and
Weiss [14] which, in the formulation of [30], may be stated as follows.

For functions g ∈ L1(R) we consider the convolution operator Kg f := f ∗ g.
This operator is bounded on Lp(R; X), 1 6 p 6 ∞, by Young’s inequality.

THEOREM 6.1 (Transference, Coifman–Weiss). Let iA be the generator of a uni-
formly bounded C0-group (U(t))t∈R on a Banach space X. Then for all p ∈ [1, ∞),
g ∈ L1(R), and x ∈ X one has∥∥∥ ∞∫

−∞

g(t)U(t)xdt
∥∥∥ 6 ‖Kg‖L (Lp(R;X)) sup

t∈R
‖U(t)‖2‖x‖.

Of course one always has the trivial estimate∥∥∥ ∞∫
−∞

g(t)U(t)xdt
∥∥∥ 6 ‖g‖1 sup

t∈R
‖U(t)‖‖x‖
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and moreover Young’s inequality gives the estimate

‖Kg‖L (Lp(R;X)) 6 ‖g‖1,

but there are important examples where the above theorem provides a better es-
timate, due to the availability of an improved estimate for the norm of Kg in
Lp(R; X). For a systematic treatment of these matters the reader is referred to [33].

The aim of this section is to prove a variant of the Coifman–Weiss theo-
rem for Weyl pairs. Due to the non-commuting nature of the operators Aj and
Bj, the convolution product needs to be adjusted to take care of the commutator
structure of these operators. This is achieved by means of the so-called twisted
convolution.

DEFINITION 6.2. For functions a ∈ S (R2d), the twisted convolution with a
function g ∈ Cc(R2d; X) is defined by

Cag(x, ξ) :=
1

(2π)d

∫
R2d

e(1/2)i(xη−yξ)a(y, η)g(x− y, ξ − η)dydη.(6.1)

By the pointwise inequality ‖Cag‖ 6 |a| ∗ ‖g‖ and Young’s inequality, Ca extends
to a bounded operator on Lp(R2d; X) for all 1 6 p 6 ∞.

PROPOSITION 6.3 (Transference, for Weyl pairs). Let (A, B) be a Weyl pair of
dimension d on a Banach space X. Set MA := sup

t∈R
‖eitA‖ and MB := sup

t∈R
‖eitB‖. Let

1 6 p < ∞.
(i) For all a ∈ S (R2d) we have

‖a(A, B)‖ 6 M2
A M2

B‖Câ‖L (Lp(R2d ;X)).

(ii) Let {aj : j ∈ J} be a family of functions in S (R2d). If the family of twisted
convolutions {Câj

, j ∈ J} is R-bounded in L (Lp(R2d; X)), then {aj(A, B) : j ∈ J} is
R-bounded in L (X), and in that case

Rp(aj(A, B) : j ∈ J) 6 M2
A M2

BRp(Câj
: j ∈ J).

(iii) Let {aj : j ∈ J} be a family of functions in S (R2d). If the family of twisted
convolutions {Câj

, j ∈ J} satisfies

E
∥∥∥∑

j∈J
εjCâj

g
∥∥∥ . ‖g‖ ∀g ∈ Lp(R2d; X),

then

E
∥∥∥∑

j∈J
εjaj(A, B) f

∥∥∥ . ‖ f ‖ ∀ f ∈ X.

Proof. The proof is an adjustment of the technique of [14], [30]. For r > 0 we
will use the short-hand notation [−r, r]2 = {(x, ξ) ∈ R2d : |x| 6 r, |ξ| 6 r}. The
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elementary estimate ‖a(A, B)‖ 6 MA MB‖â‖1 shows that, for any given ε > 0, we
may choose N > 0 so large that the operator

a(A, B)(N) f :=
1

(2π)d

∫
{[−N,N]2

â(u, v)ei(uA+vB) f dudv

satisfies

‖a(A, B)(N)‖ 6
MA MB

(2π)d

∫
{[−N,N]2

|â(u, v)|dudv < ε.

We will therefore concentrate on estimating the norm of the operator

a(A, B)(N) f :=
1

(2π)d

∫
[−N,N]2

â(u, v)ei(uA+vB) f dudv.

Accordingly, set â(N) := 1[−N,N]2 â. Choose M so large that M+N
M 6 1 + ε. Let us

write U(u, v) = ei(uA+vB) for brevity. By (4.2) we have U(u, v) ◦U(−u,−v) = I
and therefore

(6.2) ‖ f ‖ 6 MA MB‖U(−u,−v) f ‖, f ∈ X.

Averaging over [−M, M]2, for all 1 6 p < ∞ and f ∈ X we obtain

‖a(A, B)(N) f ‖p

6
Mp

A Mp
B

(2M)2d

∫
[−M,M]2

‖U(−u,−v)a(A, B)(N) f ‖pdudv

=
Mp

A Mp
B

(2M)2d

∫
[−M,M]2

∥∥∥ 1
(2π)d

∫
R2d

â(N)(y, η)U(−u,−v)U(y, η) f dydη
∥∥∥p

dudv

=
Mp

A Mp
B

(2M)2d

∫
[−M,M]2

∥∥∥ 1
(2π)d

∫
R2d

e(1/2)i(uη−yv) â(N)(y, η)U(y− u, η − v) f dydη
∥∥∥p

dudv

using (4.2). Also 1[−M−N,M+N]2(y−u, η−v) = 1 if (u, v)∈ [−M, M]2 and (y, η)∈
[−N, N]2, so that with χM+N := 1[−M−N,M+N]2 the last expression can be rewrit-
ten as

=
Mp

A Mp
B

(2M)2d

∫
[−M,M]2

∥∥∥ 1
(2π)d

∫
R2d

e(1/2)i(uη−yv) â(N)(y, η)

× [χM+N(y− u, η − v)U(y− u, η − v) f ]dydη
∥∥∥p

dudv

=
Mp

A Mp
B

(2M)2d

∫
[−M,M]2

‖Câ(N) [χM+N(·, ·)U(·, ·) f ](u, v)‖pdudv
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6
Mp

A Mp
B

(2M)2d ‖Câ(N) [χM+NU f ]‖p
Lp(R2d ;X)

(i)
6

Mp
A Mp

B
(2M)2d ‖Câ(N)‖p

L (Lp(R2d ;X))

∫
[−M−N,M+N]2

‖U(u, v) f ‖pdudv

6
Mp

A Mp
B

(2M)2d ‖Câ(N)‖p
L (Lp(R2d ;X))

(2(M + N))2d Mp
A Mp

B‖ f ‖p

6 (1 + ε)2d M2p
A M2p

B ‖Câ(N)‖p
L (Lp(R2d ;X))

‖ f ‖p.

It follows that

‖a(A, B) f ‖ 6 ‖a(A, B)(N) f ‖+ ‖a(A, B)(N) f ‖

6 ε‖ f ‖+ (1 + ε)2d/p M2
A M2

B‖Câ(N)‖L (Lp(R2d ;X))‖ f ‖.

Letting N → ∞ in this estimate, and then letting ε ↓ 0, the desired estimate in (i)
is obtained.

Part (ii) is proved in exactly the same way. We replace a by
N
∑

n=1
εnajn (where

j1, . . . , jN ∈ J and (εn)N
n=1 is a Rademacher sequence) and instead of using one

fixed f we use a sequence ( fn)N
n=1 to build Rademacher sums; instead of estimat-

ing with operator norms in (i), we estimate with R-bounds. The same reasoning
applies to part (iii).

The next lemma expresses the twisted convolution Câ in terms of the stan-
dard pair on L2(R2d).

LEMMA 6.4. Let ((Q1, Q2), (P1, P2)) be the standard pair of dimension 2d on
L2(R2d), i.e.,

Q1,j f (x, ξ) = xj f (x, ξ), Q2,j f (x, ξ) = ξ j f (x, ξ),

P1,j f (x, ξ) =
1
i

∂ f
∂xj

(x, ξ), P2,j f (x, ξ) =
1
i

∂ f
∂ξ j

(x, ξ),

for 1 6 j 6 d. The pair (− 1
2 Q2 − P1, 1

2 Q1 − P2) is a Weyl pair of dimension d on
L2(R2d), and for all a ∈ S (R2d) we have

Câ = a
(
− 1

2
Q2 − P1,

1
2

Q1 − P2

)
.

Proof. The proof of the first assertion is immediate. For all a ∈ S (R2d) and
g ∈ L2(R2d),

a
(
− 1

2
Q2 − P1,

1
2

Q1 − P2

)
g(x, ξ)

=
1

(2π)d

∫
R2d

â(u, v)ei(u(−(1/2)Q2−P1)+v((1/2)Q1−P2))g(x, ξ)dudv
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=
1

(2π)d

∫
R2d

â(u, v)e(1/2)iuveiu(−(1/2)Q2−P1)eiv((1/2)Q1−P2)g(x, ξ)dudv

=
1

(2π)d

∫
R2d

â(u, v)e(1/2)iuve−(1/2)iuQ2e−iuP1e(1/2)ivQ1e−ivP2 g(x, ξ)dudv

=
1

(2π)d

∫
R2d

â(u, v)e(1/2)ivQ1e−(1/2)iuQ2e−iuP1e−ivP2 g(x, ξ)dudv

=
1

(2π)d

∫
R2d

â(u, v)e(1/2)i(vx−ξu)g(x− u, ξ − v)dudv = Câg(x, ξ).

In the setting of the lemma, by the Stone–von Neumann theorem (see Theo-
rem 14.8 of [29]), there exist a countable index set L and an orthogonal direct sum
decomposition

L2(R2d) =
⊕
`∈L

H`,

as well as unitary operators U` : H` → L2(Rd), such that for all ` ∈ L the follow-
ing assertions hold:

(i) H` is invariant under the groups eit(−(1/2)Q2,j−P1,j) and eit((1/2)Q1,j−P2,j);
(ii) U` establishes a unitary equivalence of these groups on H` with the groups

eitQj and eitPj on L2(Rd), where (Q, P) is the standard pair on L2(Rd).

As a direct consequence we obtain that, for all ` ∈ L and a ∈ S (R2d):

(i’) H` is invariant under a(− 1
2 Q2 − P1, 1

2 Q1 − P2);
(ii’) U` establishes a unitary equivalence of the restriction of a(− 1

2 Q2− P1, 1
2 Q1

−P2) to H` and the operator a(Q, P) on L2(Rd).

As a result we obtain

‖Câ‖L (L2(R2d)) =
∥∥∥a
(
− 1

2
Q2 − P1,

1
2

Q1 − P2

)∥∥∥
L (L2(R2d))

= sup
`∈L

∥∥∥a
(
− 1

2
Q2−P1,

1
2

Q1−P2

)
|H`

∥∥∥
L (H`)

=‖a(Q, P)‖L (L2(Rd)).(6.3)

REMARK 6.5. In the next section we address the problem of estimating the
norm of Câ in the vector-valued setting. Here we wish to point out the general
fact that the identity (6.3) has a simple, albeit not very useful (cf. the concluding
remark at the end of the section), vector-valued extension in terms of spaces of γ-
radonifying operators. These are defined as follows (comprehensive treatments
are given in [33], [44]). Let H be a Hilbert space with inner product (·|·) and X be
a Banach space. Every finite rank operator T : H → X can be represented as

Th =
N

∑
n=1

(h|hn)xn
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for some orthonormal sequence (hn)N
n=1 in X, and some sequence (xn)N

n=1 in X.
For such operators T we define

‖T‖2
γ(H,X) := E

∥∥∥ N

∑
n=1

γnxn

∥∥∥2
,

where (γn)N
n=1 is a sequence of independent standard normal random variables

(taken real-valued if the scalar field is R and complex-valued if the scalar field is
C; once again, one could insist on using real-valued standard normal variables at
the expense of different constants). It is easy to see that this gives a well-defined
norm on the space of finite rank operators from H to X. Its completion is denoted
by γ(H, X).

If X is a Hilbert space, then γ(H, X) is isometric in a natural way to the space
of Hilbert–Schmidt operators from H to X, and if X = Lp(M, µ) with 1 6 p < ∞,
then one has a natural isomorphism of Banach spaces

γ(H, Lp(M, µ)) ' Lp(M, µ; H).

It is not hard to see (see Theorem 9.6.1 of [33]) that if S : H → H is a bounded
operator, then the mapping h⊗ x 7→ Sh⊗ x uniquely extends to a bounded op-
erator S̃ ∈ L (γ(H∗, X)) of the same norm. Here, H∗ is the Banach space dual
of H. Applying this construction to the twisted convolutions Ca and the oper-
ators a(Q, P) with a ∈ S (R2d), viewed as bounded operators on the Hilbert
spaces L2(R2d) and L2(Rd) respectively, and identifying the duals of these spaces
with the spaces themselves via the duality 〈 f , g〉 =

∫
f g (no conjugation here),

we obtain well-defined extensions of these operators to bounded operators on
γ(L2(R2d), X) and γ(L2(Rd), X) of the same norms. Thus (6.3) self-improves to

‖Câ‖L (γ(L2(R2d),X)) = ‖a(Q, P)‖L (γ(L2(Rd),X)).

This identity suggests that we could try to bound the Weyl calculus in terms
of the γ(L2(R2d), X))-norm of the twisted convolution. This is possible under a
γ-boundedness assumption.

PROPOSITION 6.6 (γ-Transference). Let (A, B) be a Weyl pair of dimension d
on a Banach space X. If the set

{ei(uA+vB) : (u, v) ∈ R2d}

is γ-bounded, with γ-bound Γ, then for all a ∈ S (R2d) we have

‖a(A, B)‖ 6 Γ2‖Câ‖L (γ(L2(R2d),X)).

Similar versions of parts (ii) and (iii) of Proposition 6.3 hold. The proof is a
routine adaptation of the proof of Proposition 6.3.

As a corollary we obtain that, if the set {ei(uA+vB) : (u, v)∈Rd} is γ-bounded,
with γ-bound Γ, then for all a ∈ S (R2d) we have

‖a(A, B)‖ 6 Γ2‖a(Q, P)‖L (γ(L2(Rd),X)).
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Admittedly, this result is unlikely to be useful: for the standard pair, the γ-
boundedness assumption is satisfied only for p = 2 (by Proposition 8.1.16 of [33]).

7. R-SECTORIALITY OF L

To apply the transference theory from Section 6, ideally one needs to bound
twisted convolution operators Câ acting on the Bochner spaces Lp(R2d; X) in
terms of the norm of a(Q, P) for the standard pair, i.e., one needs a vector-valued
extension of (6.3). We do not know how to do this in general. The Lp-theory in
the scalar-valued case, considered by Mauceri in [41], is already quite subtle and
depends on Hilbert space-specific techniques to treat the p = 2 case. Extending
his theory to UMD-valued functions would be interesting in itself (for the new
techniques that need to be developed) and would lead to general estimates for
the Weyl calculus of Weyl pairs. Here, we just focus on those twisted convolu-
tions needed to study the semigroup generated by −L = 1

2 d− 1
2 (A2 + B2). The

symbols a involved are such that Câ can be effectively “untwisted”. The main aim
of this section is to prove the following result.

THEOREM 7.1 (R-Sectoriality). Let (A, B) be a Weyl pair on a UMD Banach
lattice X. Then for all θ ∈ (0, π) the operator L = 1

2 (A2 + B2)− 1
2 d is R-sectorial of

angle θ. Moreover, the set {(π
2 − θ)2d exp(−zL) ; | arg(z)| < θ} is R-bounded, with

R-bound independent of θ.

The only place in the proof where we use the lattice structure of X is in the
following lemma, which reduces the task of proving R-boundedness of twisted
convolutions to proving R-boundedness of (standard) convolutions.

LEMMA 7.2. Let X be a Banach lattice with finite cotype and let 1 6 p < ∞.
Suppose (aj)j∈J and (bj)j∈J are families of functions in S(R2d) satisfying

|aj(y, η)| 6 |bj(y, η)| ∀y, η ∈ Rd, j ∈ J.

If the family of (standard) convolution operators (C|bj |)j∈J on Lp(R2d; X) is R-bounded,

with Rp-bound Rp, then also the family (Caj)j∈J on Lp(R2d; X) is R-bounded, with
Rp-bound .p,q,X CpR

p
p .

Proof. Since Lp(R2d; X) has finite cotype (see Proposition 7.1.4 of [33]), we
may use the Khintchine–Maurey theorem (see Theorem 7.2.13 of [33]) to pass
from Rademacher sums to square functions.

If j1, . . . , jN ∈ J and g1, . . . , gN ∈ Lp(R2d; X) are given and (εn)N
n=1 is a

Rademacher sequence, we thus obtain

E
∥∥∥ N

∑
n=1

εnCajn
gjn

∥∥∥p

Lp(R2d ;X)
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h
∥∥∥( N

∑
n=1
|Cajn

gjn |
2
)1/2∥∥∥p

Lp(R2d ;X)

=
∫
R2d

∥∥∥( N

∑
n=1

∣∣∣ ∫
R2d

e(1/2)i(xη−yξ)ajn(y, η)gjn(x− y, ξ − η)dydη
∣∣∣2)1/2∥∥∥p

dxdξ

6
∫
R2d

∥∥∥( N

∑
n=1

( ∫
R2d

|bjn(y, η)||gjn(x− y, ξ − η)|dydη
)2)1/2∥∥∥p

dxdξ

=
∥∥∥( N

∑
n=1

(C|bjn ||gjn |)
2
)1/2∥∥∥p

Lp(R2d ;X)
h E

∥∥∥ N

∑
n=1

εnC|bjn ||gjn |
∥∥∥p

Lp(R2d ;X)

6 R
p
pE
∥∥∥ N

∑
n=1

εn|gjn |
∥∥∥p

Lp(R2d ;X)
h R

p
p

∥∥∥( N

∑
n=1
|gjn |

2
)1/2∥∥∥p

Lp(R2d ;X)

h R
p
pE
∥∥∥ N

∑
n=1

εngjn

∥∥∥p

Lp(R2d ;X)

with constants depending only on p and X.

We now consider the kernels relevant to our applications. These are the
Fourier transforms of

az(x, ξ) = (1 + λz)
de−λz(|x|2+|ξ|2)

with λz =
1−e−z

1+e−z for z ∈ C such that <z > 0. We need an elementary lemma.

LEMMA 7.3. For all 0 < θ < 1
2 π and non-zero z ∈ C satisfying | arg z| 6 θ we

have (1
2

π − θ
)
. cos(arg λz), |λz| .

(1
2

π − θ
)−1

,

with constants independent of θ and z.

Proof. It suffices to prove the inequalities for non-zero z ∈ C satisfying
| arg z| = θ. Writing z = r(cos θ + i sin θ) and computing the real and imaginary
parts of 1−e−z

1+e−z in terms of r and θ, one readily finds that if | arg z| < θ, then

tan(arg( 1−e−z

1+e−z )) <
1

cos θ

and consequently

1

cos(arg( 1−e−z

1+e−z ))
<
(

1 +
1

cos2 θ

)1/2
6 1 +

1
cos θ

.
1

(1/2)π − θ
.

Similar elementary estimates show that if | arg z| < θ, then

|λz| =
∣∣∣1− e−z

1 + e−z

∣∣∣ . 1
cos θ

.
1

(1/2)π − θ
.

This lemma is used to prove the following R-boundedness result.
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PROPOSITION 7.4. Let X be a UMD Banach lattice, and let 1 < p < ∞. There
exists a constant M > 0, depending only on p and X, such that for all θ ∈ (0, 1

2 π) the
family {Câz ; z 6= 0, | arg z| < θ} is R-bounded in L (Lp(R2d; X)), with constant

R({Câz ; z 6= 0, | arg z| < θ}) 6 M
((1/2)π − θ)2d .

Proof. The Banach space X, being UMD, has finite cotype (see Proposi-
tion 7.3.15 of [33]). Fix θ ∈ (0, 1

2 π) and let z ∈ C be a non-zero element such
that | arg z| < θ for all k = 1, . . . , N. Writing t = 1

<(1/λz)
= |λz|/cos(arg λz), for

all y, η ∈ Rd we have

|âz(y, η)| h |1 + λz|d|λz|−de− cos(arg λz)(|y|2+|η|2)/4|λz |

. |1 + λz|d(cos(arg λz))
−dt−de−(|y|

2+|η|2)/4t

with constants depending only on p and X. Hence by Lemma 7.3,(1
2

π − θ
)2d
|âz(y, η)| . t−de−(|y|

2+|η|2)/4t =: bt(y, η),

with constants depending only on p and X. Hence, by Lemma 7.2,

R
({(1

2
π − θ

)2d
Câz ; z 6= 0, | arg z| < θ

})
. R({Cbt ; t > 0}),

with a constant depending only on p and X. Noting that Cbt is a constant mul-
tiple of exp(t∆⊗ IX), the R-boundedness of the family {Cbt ; t > 0} follows
from the fact that −∆⊗ IX has a bounded H∞-calculus on Lp(R2d; X) ([33], Theo-
rem 10.2.25).

Proof of Theorem 7.1. Let (P(t))t>0 be the analytic C0-semigroup generated
by −L = 1

2 d − 1
2 (A2 + B2). Fix θ ∈ (0, 1

2 π). By Proposition 10.3.3 of [33] it
suffices to show that the set

Vθ := {P(z) : z 6= 0, | arg z| < θ}

is R-bounded with

R(Vθ) .p,X
1

((1/2)π − θ)2d .

By Theorem 5.2 and Proposition 6.3, for this it suffices to show that the set

V′θ := {Câz : z 6= 0, | arg z| < θ}

is R-bounded with

R(V′θ) .p,X
1

((1/2)π − θ)2d .

This has been done in Proposition 7.4.
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8. FUNCTIONAL CALCULUS OF L

In this section we prove that boundedness of the Weyl calculus of a Weyl
pair (A, B) implies a spectral multiplier theorem for the operator L = 1

2 (A2 +

B2)− 1
2 d, acting on a UMD lattice X. This is done by applying the theory devel-

oped in [35] to obtain a holomorphic functional calculus of angle zero from square
function estimates and appropriate R-sectoriality bounds. The precise form of the
latter then allows us to apply the theory developed in [38] to extend this holomor-
phic functional calculus to a full Hörmander type spectral multiplier theorem.

THEOREM 8.1 (Bounded H∞-calculus). If (A, B) is a Weyl pair of dimension d
on a UMD lattice X with a bounded Weyl calculus of type 0, then L := 1

2 (A2 + B2)− 1
2 d

has a bounded H∞(Σθ)-calculus for all θ ∈ (0, π).

For the proof of the theorem we need two lemmas. The first provides an
expression for derivatives of the exponentials in the Weyl calculus representation
formula of the operators e−tL of Theorem 5.2.

LEMMA 8.2. For all multi-indices α, β ∈ Nd there is a polynomial pα,β of degree
(α, β) in the variables (x, ξ) ∈ R2d such that for all λ > 0 we have

∂α
ξ ∂

β
xe−λ(|x|2+|ξ|2) =

√
λ
|α|+|β|

pα,β(
√

λx,
√

λξ)e−λ(|x|2+|ξ|2).

Proof. If p is a polynomial in 2d variables x = (x1, . . . , xd), ξ = (ξ1, . . . , ξd),
of degree γ = (γ1, . . . , γd) in x and δ = (δ1, . . . , δd) in ξ, then for any λ > 0,

∂xj [p(
√

λx,
√

λξ)e−λ(|x|2+|ξ|2)]

= [
√

λ(∂xj p)(
√

λx,
√

λξ)− 2λxj p(
√

λx,
√

λξ)]e−λ(|x|2+|ξ|2)

=
√

λq(
√

λx,
√

λξ)e−λ(|x|2+|ξ|2),

where q is polynomial of degree (γ1, . . . , γj−1, γj + 1, γj+1, . . . , γd) in x and of
degree δ in ξ. A similar identity holds for the partial derivatives with respect to
ξ j, which add one to the degree in the variable ξ j. The lemma now follows by
induction on α and β.

As an application of the preceding lemma, the next lemma provides a uni-
form bound on the derivatives of certain signed sums of exponentials which will
be used later to prove that certain related sums belong to the symbol class S0

uniformly.
As before, let λt =

1−e−t

1+e−t for t > 0.

LEMMA 8.3. For all multi-indices α, β ∈ Nd such that |α|+ |β| 6= 0 the functions

κk,ε,s(x, ξ) :=
k

∑
j=1

εj exp(−λ2−js(|x|
2 + |ξ|2))
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satisfy

sup
(x,ξ)∈R2d

〈ξ〉|α||∂α
ξ ∂

β
xκk,ε,s(x, ξ)| < ∞

uniformly with respect to k > 1, ε = (εj)
k
j=1 ∈ {±1}k, and s ∈ [1, 2].

Proof. Let us set µj,s = λ2−js for brevity. Given any two multi-indices α, β ∈
Nd such that |α|+ |β| 6= 0 we may estimate, using Lemma 8.2,

〈ξ〉|α||∂α
ξ ∂

β
xκk,ε,s(x, ξ)|

6 〈ξ〉|α|
k

∑
j=1

√
µj,s
|α|+|β||pα,β(

√
µj,sx,

√
µj,sξ)| exp(−µj,s(|x|2 + |ξ|2)).

For |ξ| 6 1 we estimate the right-hand side by

.α

k

∑
j=1

√
µj,s
|α|+|β||pα,β(

√
µj,sx,

√
µj,sξ)| exp(−µj,s(|x|2 + |ξ|2))

.α,β

k

∑
j=1

√
µj,s
|α|+|β| .α,β

k

∑
j=1

2−(1/2)j(|α|+|β|) .α,β 1

where we used that sup
(x′ ,ξ ′)∈R2d

|pα,β(x′, ξ ′)| exp(−(|x′|2 + |ξ ′|2)) < ∞, and that

µj,s . 2−j; while for |ξ| > 1 we may estimate it by

.α

k

∑
j=1

(
√

µj,s|ξ|)|α|+|β|pα,β(
√

µj,sx,
√

µj,sξ)| exp(−µj,s(|x|2 + |ξ|2)) .α,β 1,

where the last step follows by an application of Proposition H.2.3 in [33]. In all
these estimates, the constants are uniform in k, ε, and s.

Proof of Theorem 8.1. By Theorem 7.1 L is R-sectorial of angle θ for any θ ∈
(0, π). Hence by Theorem 10.4.9 of [33] it suffices to show that

‖ f ‖2 ∼ sup
s∈[1,2]

sup
N∈N

E
∥∥∥ ∑
|j|6N

εj(exp(−2j+1sL)− exp(−2jsL)) f
∥∥∥2
∀ f ∈ D(L) ∩ R(L),

where (εj)j∈Z is a Rademacher sequence, noting that the function z 7→ exp(−2z)−
exp(−z) belongs to H1(Σθ) ∩ H∞(Σθ) for each θ ∈ (0, 1

2 π) using the notation of
Chapter 10 in [33]. It actually suffices to prove the one-sided inequality

sup
s∈[1,2]

sup
N∈N

E
∥∥∥ ∑
|j|6N

εj(exp(−2j+1sL)− exp(−2jsL)) f
∥∥∥2

. ‖ f ‖2 ∀ f ∈ X,(8.1)
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since the reverse inequality (for f ∈ R(L) = D(L) ∩ R(L)) will then follow by
duality as in the proof of Theorem 10.4.4(3) in [33], noting that the pair of ad-
joint operators (B∗, A∗) is a Weyl pair in the dual lattice X∗ (which is UMD by
Proposition 4.2.17 of [32] and Proposition 7.5.15 of [33]).

Referring to the direct sum decomposition X = N(L) ⊕ R(L) provided by
Proposition 5.6, we will prove (8.1) separately for f ∈ N(L) and f ∈ R(L). For
f ∈ N(L), (8.1) is immediate from the fact that exp(−tL) f = f . For f ∈ R(L)
we consider indices j ∈ N and j ∈ Z \ N separately. For j ∈ N and f ∈ R(L),
say f = Lg, we use that exp(−tL) f = L exp(−tL)g decays to 0 exponentially
as t → ∞ by Corollary 5.4. In combination with the triangle inequality and the
contraction principle, this gives

sup
s∈[1,2]

sup
N∈N

(
E
∥∥∥ N

∑
j=0

εj(exp(−2j+1sL)− exp(−2jsL)) f
∥∥∥2)1/2

6 2 sup
s∈[1,2]

sup
N∈N

(
E
∥∥∥ N

∑
j=0

εj exp(−2jsL) f
∥∥∥2)1/2

6 2 sup
s∈[1,2]

sup
N∈N

N

∑
j=0
‖ exp(−2jsL) f ‖ . ‖ f ‖.

By continuity, this estimate extends to f ∈ R(L).
Let

ãt(x, ξ) := a2t(x, ξ)− at(x, ξ),

where as always at(x, ξ) = (1 + λt)de−λt(|x|2+|ξ|2) with λt := 1−e−t

1+e−t . In view of
the cases already dealt with, the proof will be complete once we have shown that,
for all f ∈ R(L),

(8.2) sup
s∈[1,2]

sup
N>1

E
∥∥∥ N

∑
j=1

εj ã2−js(A, B) f
∥∥∥2

. ‖ f ‖2

with a constant independent of f . Set

b̃t : = (1 + λ2t)
−da2t − (1 + λt)

−dat

so that

ãt = b̃t − ((1 + λ2t)
−d − 1)a2t + ((1 + λt)

−dat − 1)at.

We now take t = 2−js and estimate each of the resulting three sums separately.
Fix an integer N > 1. We first estimate

sup
s∈[1,2]

sup
N>1

E
∥∥∥ N

∑
j=1

εj((1 + λ2−j+1)−d − 1)a2−j+1s(A, B) f
∥∥∥2

. sup
s∈[1,2]

( ∞

∑
j=1
|(1 + λ2−j+1)−d − 1|‖ exp(−2−j+1sL) f ‖

)2
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.d

( ∞

∑
j=0

2−j‖ f ‖
)2

. ‖ f ‖2,

where we used the bound (1 + λ2−j)−d − 1 .d 2−j together with the uniform
boundedness of the operators exp(−tL) = P(t). Similarly,

sup
s∈[1,2]

sup
N>1

E
∥∥∥ N

∑
j=1

εj((1 + λ2−j)−d − 1)a2−js(A, B) f
∥∥∥2

. ‖ f ‖2.

To prove (8.2), it therefore remains to show that

sup
s∈[1,2]

sup
N>1

E
∥∥∥ N

∑
j=1

εj b̃2−js(A, B) f
∥∥∥2

. ‖ f ‖2.

To this end we claim that the functions

κ̃N,ε,s :=
N

∑
j=1

εj b̃2−js

belong to the symbol class S0, uniformly in N, ε ∈ {±1}N , and s ∈ [1, 2]. Since
by assumption (A, B) has a bounded Weyl calculus of type 0, this claim, once it
has been proved, will prove the theorem.

We have

|κ̃N,ε,s(x, ξ)| 6
N

∑
j=1
|b̃2−js(x, ξ)|

=
N

∑
j=1
| exp(−λ2−j+1s(|x|

2 + |ξ|2))− exp(−λ2−js(|x|
2 + |ξ|2))|

=
N

∑
j=1

(exp(−λ2−j+1s(|x|
2 + |ξ|2))− exp(−λ2−js(|x|

2 + |ξ|2))) 6 1

using a telescoping argument in the last step. In combination with Lemma 8.3

(which remains true if we replace the summation
N
∑

j=1
by

N−1
∑

j=0
), this proves the

claim.

REMARK 8.4. For the standard pair (Q, P) on Lp(Rd; X) with 1 < p < ∞
and X any UMD space, the operator 1

2 (Q
2 + P2) − 1

2 d is R-sectorial and has a
bounded H∞-calculus for any angle θ ∈ (0, π). Following the lines of [40], this
follows from the results of [9] (see also [2]).

Using the theory developed in [38], we can extend the functional calculus
of L from H∞(Σθ) to an appropriate Hörmander class. We thus obtain a calculus
in one of their Hβ

2 classes. As pointed out in Remark 3.3 of [38], these classes are
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slightly larger (but more complicated to define) than the standard Hörmander
classes of functions f ∈ Cm[0, ∞) satisfying

sup
R>0

R2k
2R∫

(1/2)R

| f (k)(t)|2 dt
R

< ∞,

for all k = 0, . . . , m. Note that the latter class contains all smooth functions with
compact support in (0, ∞).

THEOREM 8.5. If (A, B) is a Weyl pair on a UMD lattice X with a bounded Weyl
calculus of type 0, then L = 1

2 (A2 + B2)− 1
2 d has an R-boundedH2d+(1/2)

2 -Hörmander
calculus.

Proof. By Theorems 7.1, 8.1, the assumptions of Theorem 7.1 in [38] are sat-
isfied (note that UMD lattices have the required property (α) by Theorem 7.5.20;
see the Notes to this section for the terminology of [33]).

9. OPEN PROBLEMS

As explained in the introduction, this paper is mostly meant as a founda-
tion for the development of pseudo-differential calculi in “rough” settings. We
nonetheless think that the general theory of Weyl pairs presented here is also
worth developing further in its own right. This would include solving the fol-
lowing problems:

(1) To extend Mauceri’s results on twisted convolutions [41] to Lp(R2d; X),
where X is UMD and p ∈ (1, ∞).

An affirmative answer would automatically solve the next problem.

(2) To extend Theorem 4.9 to general Weyl pairs (A, B).

As observed in Remark 8.4, for standard pairs on Lp(Rd; X) with 1 < p < ∞, the
conclusions of Theorems 7.1, 8.1, and 8.5 hold for arbitrary UMD Banach spaces
X. In the three theorems for general Weyl pairs, the lattice structure of X was only
used through the proof of Lemma 7.2. Thus one may pose the following problem:

(3) To decide whether Theorems 7.1, 8.1, and 8.5 hold for arbitrary UMD
spaces X.

An affirmative answer to the first problem could possibly also solve the third
problem, since it might pave the way for an alternative proof via transference. For
these three problems, studying the particular case where X is a non-commutative
Lp-space would be particularly interesting, yet potentially much simpler than
the general case (thanks to the availability of both domination and extrapolation
techniques).
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(4) To prove an analogue of the Stone–von Neumann uniqueness theorem for
Weyl pairs.
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