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Summary

Inelastic deformation is a common but often neglected phenomenon in experimental analysis
of metal deformation and in contacts. This neglect leads to degraded measurement accuracy
of material properties. Therefore a need arises for material models that a priori incorporate
inelasticity. These material models must be simple and comprehensive to have the highest
impact in society. This thesis addresses three main sources of inelasticity, namely anelasticity
and plasticity in metals and viscosity in contacts. Inelasticity is a dissipative mode of
deformation that is mechanically recoverable for anelasticity and viscosity, and irrecoverable
for plasticity. We connect the fundamental properties and structures of metallic and soft
matter constituents with experimentally accessible measures. The presented models will aid
in the development of materials with specific properties that meet the needs of industry.

Chapter 2 presents an analytical model of the tensile test tangent moduli and yield points
for single-crystallite metals with spatially uniform and nonuniform dislocation distributions
across slip systems. The moduli and the onset of plastic flow show a notable dependence
on initial dislocation character, spatial dislocation distribution, and loading direction with
respect to crystallographic orientations. An improved methodology accounts for elastic
compressibility and anisotropy, and the geometric structure of crystal lattices when one
measures dislocation network geometry in single metallic crystallites.

Chapter 3 contains a seamless, unified stress-strain treatment of dislocation-driven de-
formation. This treatment combines the three deformation mechanisms of elastic bond
stretching, stable dislocation glide, and unstable dislocation glide. The model’s yield criterion
connects the bowing out of local dislocation links and global dislocation multiplication. A
semi-empirical relation is constructed for the evolution of the dislocation network structure
with uniaxial loading.

Chapter 4 formulates a macromechanical model of the yield point phenomenon under
invariant plane conditions. The heterogeneous stress state across the Lüders front and the
plastic flow inside the Lüders band are accounted for. The Lüders band orientation with
respect to the tensile direction is not unique; the orientation changes with material properties
and tensile specimen geometry by the stress concentration at the front. The model serves to
approximate constitutive parameters independent of the test conditions.

Chapter 5 elucidates the interplay between adhesion and roughness by modelling the
retraction of rigid, wavy indenters from viscoelastic substrates. Viscoelasticity governs
adhesive hysteresis across all loading rates, and even in the presence of roughness-induced
mechanical instabilities. This confirms the central role that viscoelasticity must play in
experimental measurements in the presence of adhesive interfaces in soft matter contacts.

Chapter 6 examines the static, quasi-static, and dynamic trajectories of a base-excited
mass-spring-damper system in the presence of friction. The differences between the dynamic
and the quasi-static solution in engineering problems with viscous, static, and dry friction
are assessed. The omission of inertial contributions will under-predict dissipation at both low
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and high excitation frequencies. This chapter is a guide for future (multi-scale) numerical
modelling efforts on adhesion and interface friction, and the hysteretic deformation of metals.

Chapter 7 is a general discussion on the impact of inelasticity in metals, that follows
from Chapters 2 and 3, the measurement of the yield point phenomenon in Chapter 4, and
numerical modelling of dissipative contacts in Chapters 5 and 6. The four models as presented
in Chapters 2-6 are readily applicable in experimental measurements and future numerical
models. The importance of accounting for inelasticity in experimental measurement and
modelling of the yield strength in metals, and adhesive dissipation in soft matter contacts is
emphasised. Finally, the state of the art in research on the three main sources of inelasticity
and potential applications of the presented models are enumerated, which serve as starting
points of future research.



1

1

1
General Introduction
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2 1 General Introduction

Interpreting experiments in the presence of inelastic deformation with models that
are based on elastic deformation leads to discrepancies between observations, prediction,
and postdiction. Elasticity is a mechanically and thermodynamically recoverable mode of
deformation while inelasticity is dissipative. This presents a challenge in understanding the
underlying mechanisms of material behaviour. Essential to materials mechanical behaviour
are the fundamental properties and structures of, and interactions among, their constituents.
While adjusting the elastic magnitude and tuning responses one minimises the observed
discrepancies. The outcome still depends on the particular choices made when introducing
this arbitrariness. Hence the a priori incorporation of the physics-based origins of inelasticity
in models remains necessary. Only then the fundamental properties and structures of, and
the interaction among, constituents will be measurable, which aids in the development of
specific material properties to meet the needs of industry.

Traditionally, inelastic deformation is ignored when appreciable hysteresis is absent.
Common sources of this hysteresis are mechanically and/or thermodynamically irreversible
deformation. However hysteresis is omnipresent, even at small external loads and/or loading
rates. In this thesis, we argue that inelastic deformation must be accounted for. Moreover,
inelastic deformation as emergent behaviour in any model in the presence of localisation,
multistability, adhesion and friction is non-trivial. One consequence of the neglect of inelastic
deformation is the inability to accurately measure mechanical and material properties.

Simplifications are necessary in materials models as they remain essential tools to in-
terpret complex problems in Materials Science. Furthermore, the most industrial impact
is made when one can use a given model with minimal effort. However, more compre-
hensive physics-based descriptions are needed to obtain material properties independent
of test conditions and to predict mechanical behaviour by (numerical) calculations where
model simplification proves inadequate. Our goal in this thesis is to provide insights into
the underlying mechanisms of inelasticity and their influence on their globally observed
mechanical behaviour. While materials models must remain simple, it is crucial that we
address shortcomings in current modelling efforts.

Inelastic deformation has various sources that include anelasticity, plasticity, and viscosity.
The difference between anelasticity and viscosity is that the latter is a time-delayed material
response and the former is instantaneous in e.g. metals. Anelasticity and plasticity are typical
for metals and crystalline solids, while viscosity is more common in rubbers, polymers,
and biological tissue. We treat in this thesis two material types: metals, with an emphasis
on steels under tension; and, soft matter in adhesive contact and their friction with rigid
surfaces. Note that the term anelasticity is used interchangeably with viscoelasticity in
Polymer Science. Metals and polymers together with ceramics are among the most widely
used engineering materials. One’s thorough understanding of their mechanical properties is
thus crucial for societal advancement.

The treatises we present in this thesis share a common theme, that is the difference
between the globally observed mechanical behaviour of materials and the local inelastic
materials deformation. We emphasise the importance of comprehending the underlying
mechanisms of inelastic deformation to accurately capture the mechanical behaviour of
materials. We show that describing local inelastic deformation helps capture the yield point,
and unifying anelastic and plastic mechanisms in steels describes their global flow; secondly,
the yield point phenomenon (YPP) can only be understood by addressing the local plastic
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flow in the associated localisation. Similarly, local viscous dissipation governs the globally
observed adhesive hysteresis; and, finally, we address the need to consider the full complexity
in modelling friction as well as inelastic deformation. The common denominator of this
thesis is the goal of developing comprehensive models of inelastic materials mechanics, that
will aid to develop materials with specific properties that meet the needs of industry.

1.1 Outline
This thesis consists of three topics that we treat across this introduction, and the six subse-
quent chapters. The six subsequent chapters are grouped into three parts that follow this
introduction’s structure, where: Part I treats physics-based models of pre-, at- and post-yield
dislocation-mediated deformation. Chapter 2 presents the tensile test tangent moduli and
yield points in single-crystal metals and Chapter 3 a unified inelastic model under static
loading conditions; Part II covers the YPP, with in Chapter 4 a macromechanical model of
the Lüders front; and, Part III is an overview of the state of the art in modelling of adhe-
sive soft matter contacts, and base-excited systems in the presence of friction. Chapter 5
treats the interplay between surface roughness and viscoelasticity in adhesive hysteresis
and in Chapter 6 the ignorance of inertia by multi-scale models is assessed by means of a
mass-spring-damper system with a single degree of freedom. This thesis finishes with a
General Discussion in Chapter 7 on the contents we present in Parts I, II and III.

1.2 Part I: Inelasticity in Metals
Metals typically undergo significant deformation before they fracture. The force per

unit area necessary to continue deformation increases with the previously applied plastic
strain, which is called strain hardening or work hardening. Hence hardening is commonly
associated with plasticity. A lesser studied type of deformation is anelasticity, i.e. recoverable
nonlinear mechanical behaviour, as observed by [1–7]. Anelastic deformation is an additional
strain component on top of the elastic lattice strain during loading and unloading. Li
and Wagoner [7] show that anelastic deformation is dissipative yet mechanically recoverable,
while plastic deformation is both thermodynamically and mechanically irrecoverable. The
physical interpretation of yield thus is the transition from mechanically recoverable to
mechanically irrecoverable deformation. Both types of deformation are inelastic, which
literally means non-elastic, where elastic is defined as the lattice strain.

Industrial Background and Relevance
It is well known that during plastic deformation dislocations are introduced into the metallic
microstructure that hardens. The degree of hardening is not only essential for the mechanical
behaviour of the material, but also for possible subsequent (phase) transformations, since the
defect density has a direct contribution to the free energy of the microstructural phases and
thus influences nucleation. Within the framework of the DENS (Digitally Enhanced New
Steel Product Development) programme, the aim is to bring through-process modelling for
new product development to a maturity level where it can significantly shorten the time
to market for new steel alloying and processing concepts without compromising on steel
production efficiency. The main challenge addressed in the DENS programme is to connect
state of the art available sub-models in one through-process model framework that can be
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applied in practice for new steel product development. This reduces the number of tests and
extends the efficiency of the experimental process route. In building this through-process
modelling chain, it will be possible to identify the gaps and weakest links which can then be
filled or improved. Having an offline through-process model is not sufficient to successfully
develop and produce new steel grades. Therefore, the second scientific challenge addressed
in this programme is the development of simplified models that are suitable for online control.
Part I treats these challenges on the inelastic deformation and hardening of metals. This is
required as an essential input for dynamic and static recrystallisation, and for online control
of the predicted flow stress for control over the rolling process.

Scientific Background
At temperatures below about one-third of the melting point of metals, dislocation glide is
the dominant mechanism of inelastic deformation [8]. It is common knowledge that the
mechanical deformation of metals is chiefly governed by the generation, glide and storage
of dislocations [9]. It is widely accepted that under these conditions for single crystallites,
the constitutive behaviour is entirely governed by the dynamics of dislocations. The key
microstructural feature thus is the dislocation network [8, 10].

The structure of the dislocation network is complex, with a distribution of dislocation-link
lengths [8, 11]. The network is a continuous structure that consists of dislocation links
delimited by microstructural features like precipitates, solute atoms, grain boundaries, and
junctions with adjacent dislocations within the same net [9, 12]. Those points of interaction,
which include all microstructural defects that impede local dislocation motion, are commonly
known as pinning points [9]. A schematic representation of a dislocation link bound by two
forest dislocations is presented in Fig. 1.1a. The motion of a given dislocation link, which is

(a) (b)

Figure 1.1: Schematic representation of (a) a dislocation link on slip system 𝑘 pinned by two forest dislocations on
slip system 𝑗 , and (b) a Frank-Read source with an initially straight dislocation segment (Adapted from [13] and [4]).

an initially straight dislocation segment under zero Peach-Koehler force delimited by pinning
points, was first described by Frank and Read, and a mobile link is known as a Frank-Read
(FR) source [14, 15]. The Peach-Koehler force is the force per unit length of a dislocation
loop [16]. A schematic representation of the FR source is given in Fig. 1.1b. While a given
link, that is delimited by stable junctions, bows out on its glide plane and not yet attains
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its critical, semicircular shape, the shear strain contribution is mechanically reversible [1].
The interaction between dislocations on non-parallel planes during Stage-II hardening forms
these stable junctions that are strong obstacles to local dislocationmotion [17]. The hardening
stages-I⋯ IV refer to the division of the stress-strain response of single crystals in discrete
strain ranges with distinctly different plastic tangent moduli [18]. When a link attains its
critical shape, the link starts acting as a so-called source [15]. The ensuing dislocation loop,
if unimpeded, keeps expanding. The latter action is commonly referred to as the activation
of FR sources, and herein, the main mechanism for dislocation density increase.

Post-yield mechanical deformation is commonly captured in work-hardening models,
e.g. Kocks [19], Kocks and Mecking [20], Estrin and Mecking [21], Bergström [22, 23],
Bergström-Van Liempt [24, 25] and internal-variable models [26, 27]. Lesser studied is the
contribution of dislocations to the pre-yield constitutive behaviour. The nonlinear pre-yield
mechanical behaviour, as observed by [2–6], is due to an additional strain component on top
of the elastic lattice strain during loading and unloading. First Eshelby [1] and later Koehler
and DeWit [2] connected the apparent elastic constants, which are lower than the constants
due to lattice strains alone, to the bowing out of pinned dislocation segments. Knowledge of
pre-yield mechanical behaviour has already proven important in the design of forming meth-
ods [28], micro-mechanical systems [29] and ultrasonic measurement techniques [30]. An
outstanding example is the physical-phenomenological full-field numerical crystal plasticity
model of isotropic anelasticity by Torkabadi et al. [28]. However, it has not been possible to
accurately predict the apparent elastic constants after plastic deformation [5].

Chapter 2
The circular equilibrium shape of the FR source under an applied stress was first discussed by
Frank and Read [14], and Schoeck [31]. However, for isotropic linearly elastic materials, it is
well-known that the elastic energies per unit segment length of edge and screw dislocations
are unequal for a non-zero Poisson’s ratio. Edge and screw character dislocation are the two
limits of the angle between the local dislocation line direction and the Burgers vector, where
the latter is a measure of the magnitude and direction of the local distortion of a lattice. A
mixed-character dislocation experiences an aligning torque towards its screw orientation
because the self-energy of the edge dislocation is greater than the self-energy of the screw
dislocation. Therefore, the equilibrium shape of FR sources in metals is non-circular.

Recently, Van Liempt and Sietsma [4] show that the pre-yield mechanical behaviour is a
measure for the average properties of the dislocation network which they characterise by the
total dislocation density and the average dislocation segment length. Themethod championed
by Arechabaleta et al. [5, 6] allows for obtaining information on the characteristics of a
dislocation network via mechanical testing. However, the crystallographic texture of a
polycrystalline material is only taken into account by the Taylor factor and the assumed
circular dislocation loop shape is only valid for highly compressible materials. Hereby, for
one, the model predicts an isotropic anelastic response, and secondly, retrieves only spatially
averaged quantities on a mesoscale.

Current models by [2–6] assume a uniform dislocation distribution over slip systems.
Hereby, the models of Koehler and De Wit [2], and Agrawal and Verma [3] predict a linear
anelastic mechanical response with cubic symmetry. The principal anelastic dislocation
strain, however, increases non-linearly with the applied normal stress. Wherefore the tangent
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modulus is an appropriate measure of anelasticity. The models of Van Liempt and Sietsma [4],
and Arechabaleta et al. [5, 6] predict a non-linear mechanical response but with isotropic
symmetry. However, the local response of a given crystallite depends on its spatially uniform
or non-uniform dislocation distribution over slip systems. There is thus a distinct need for
an anelastic model that takes the crystal structure into account and results in an expression
for the anisotropic mechanical response. This is addressed in chapter 2 of this thesis.

Chapter 3
Plastic mechanical deformation is commonly captured in work-hardening models, e.g. [19–
27], which make use of volume averaged quantities, e.g. the total dislocation density, average
storage distance and average interaction range. Hardening models consist of two parts [32].
The first part describes the dislocation network evolution. The dislocation network structure
evolves by the glide of activated dislocation links, commonly called mobile dislocations [9, 17].
The global dislocation density increases and the average dislocation segment length on a
given (active) slip-system decreases [32]. Upon unloading, the stored, previously mobile,
dislocation links reverse their motion. Yet, they might remain inactive as FR sources because
the dislocation network refined concurrently. Plastic deformation is thus uniquely defined
after unloading, i.e. the area swept by mobile dislocations whilst hardening minus the
mechanically recoverable anelastic component of the total strain. Virtually all present
work-hardening models neglect anelastic strain; the second part of hardening models consists
of a flow rule that relates the current dislocation network geometry to the global flow strength.
Commonly the relation between the flow strength and the dislocation density is assumed
by a Taylor-type equation [33]. The Taylor relation is sometimes rationalised with the
force necessary to activate dislocation links [34], under the assumption that the average
segment length scales with the square root of the dislocation density [8, 32]. In the Taylor
model, hardening is thus argued to depend on either the increase in global dislocation
density [33] and/or the decrease of local dislocation segment lengths [34]. Taylor-type
equations assume solely linear elastic pre-yield behaviour, although dislocations mechanics
is modelled [33, 35]. Hence there are few studies, e.g. [36], that explicitly model dislocation
glide over the entire stress-strain curve of metals. Currently, we are solely aware of the work
by Torkabadi et al. [28], who use a mixed physical-phenomenological model. More common
are hyperelasticity and Mroz-like multi-surface descriptions of continuum inelasticity, and
complex path- and direction-dependent hardening models of continuum plasticity (See [7]
for an extensive overview).

Several yield strength models do explicitly consider dislocation motion before massive
dislocation multiplication initiates. Recently, Van Liempt and Sietsma [4] postulate a yield
criterion based on the identification of the transition in dislocation behaviour from limited
reversible glide in the pre-yield stage, without essential changes in the dislocation structure,
to post-yield dislocation multiplication. Li and Wagoner [7] present a dissipative disloca-
tion bow-out model that, they state, reproduces anelastic unloading-reloading hysteresis.
These dislocation bow-out models [4, 7] excel in capturing the dissipative and mechanically
reversible pre-yield deformation, however do not consider significant mechanically irre-
versible dislocation motion, that is at the origin of plastic strain and hardening. The flow
strength description in current hardening models juxtaposed to bow-out models [4–7] leads
to solely linear elastic behaviour; the majority of work-hardening models lack a description
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of reversible dislocation motion and bow-out models [4–7] do not consider significant irre-
versible dislocation motion. From an engineering perspective, the total recoverable strain
during loading and unloading governs the apparent elastic modulus [1–3, 37, 38], which
is essential for materials models of cyclic loading and precision engineering [4, 7, 39], and
in spring-back and thermomechanical processing of metal alloys [5, 28, 40]. Especially the
nonlinear unloading-reloading behaviour in thermomechanical manufacturing processes is
ill understood, which directly affects the process parameters, and assurance of products’
properties and quality [41]. There is thus a distinct need for a unified inelastic model, where
the physics-based descriptions of the anelastic and plastic strain are combined, that currently
lacks in literature. This is addressed in Chapter 3 of this thesis.

Objectives
In summary, the objectives of Chapter 2 are the formulation of an anelastic model, that
takes the crystal structure into account, and closed-form expressions for the anisotropic,
inelastic mechanical response pre- and at-yield. This model must capture the dependence
on initial dislocation character, spatial dislocation distribution and loading direction of the
tangent modulus and inception of plastic flow. Chapter 2 thus presents a methodology that
extends the model by Van Liempt and Sietsma [4], which yielded the dislocation density and
a measure of dislocation segment lengths, to elastically anisotropic crystallites.

The objective of Chapter 3 is the formulation of a unified inelastic model of inelastic
pre- and post-yield dislocation-mediated deformation. This model includes a novel yield
criterion that is based on the local anelastic and global plastic compliances. Moreover,
Chapter 3 presents a semi-empirical relation of dislocation network structure change that
accompanies work hardening. This relationship thus rationalises the experimentally observed
changes in initial apparent elastic constants with thermomechanical processing.

1.3 Part II: Yield Point Phenomenon
Materials that exhibit the YPP in a monotonic, uniaxial tensile test have a sudden transition
from elastic to elastic-plastic behaviour. This transition in force-displacement is accompanied
by a nominal strain region with constant nominal stress, where plastic deformation is
heterogeneous, which is also referred to as yield point elongation or the Lüders phenomenon.
Piobert et al. [42] and Lüders [43] described the YPP in mild steels first. Figure 1.2a is a
schematic representation of a typically measured tensile curve of a metal that displays the
YPP. The nominal stress and nominal strain are calculated on the basis of the specimen’s
initial geometry where localisation is ignored.

In contrast with the YPP, commonmetals display strain hardening, i.e. a change in nominal
strain is accompanied by a finite, proportional change in nominal stress, and thus associated
with ductility. Plastic deformation becomes heterogeneous solely when necking initiates and
failure (rapidly) ensues. Heterogeneous deformation takes place in so-called Lüders bands
for the YPP. A schematic representation of the Lüders band is given by the green coloured
areas in the inserts in Fig. 1.2, that border the elastically and (elastic-)plastically deformed
volumes. Herein, the Lüders band is a given volume where the material deforms plastically,
and saturates to the so-called Lüders strain over an a priori unknown axial distance. Both
necks and Lüders bands are associated with localisation [45]. The important distinction
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Figure 1.2: Schematic representations of (a) the nominal stress-nominal strain and (b) the true stress-true strain
curves of the Yield Point Phenomenon (Adapted from [44]). The observed and true materials, mechanical behaviour
is indicated by the upper and lower yield strengths, 𝑅eH and 𝑅eL, respectively. Here the superscript 𝑅∗

∙ indicates
yield stresses 𝑅∙ that are calculated across the specimens’ original cross-section. The inserts in (a) and (b) depict a
tensile specimen with two Lüders bands and fronts; and, in (b), a schematic representation of the magnitude of local
plastic strain as a function of the axial coordinate.

from necking is that once Lüders bands traverse all elastic volume, the material continues to
harden and the tensile specimen deforms homogeneously, whereas necking directly leads to
fracture.

Materials Science research on the YPP focuses on micromechanical approaches, e.g. the
Cottrell-Bilby theory [46] and dislocation multiplication mechanisms [47, 48]. The majority
of these investigations elucidate the reasons for the YPP inmetals, that include transformation
induced plasticity [49]. Hall [50] presents a comprehensive summary on these treatises in
the fifties and sixties. Research intensity on the YPP decreases over the last five decades,
with efforts to quantify the Lüders strain [44]. Johnston and Gilman [47] find that although
lithium fluoride crystals display the YPP, the initial dislocations do not move. Hahn [48]
supports Johnston and Gilman’s view, and states that the influence on the YPP by impurity
atoms that lock dislocations in place [46] is overstated. They [47, 48] put the YPP down
to rapid multiplication of new dislocations and these “locked” dislocations remain in place
according to their view [46]. Hahn [48] applies their model [47] to mild steels as well.
Most recently, Elliot et al. [51] report that sequential bake hardening and reverse loading
is inconsistent with the carbon pinning model [46]. Currently, no single micromechanical
model rationalises the occurrence of the YPP in low carbon steel.

Numerical research concentrates on modelling the YPP by means of the continuum finite
element method [52]. The end of the last and the first decade of this century present a large
body of constitutive models. Most notable are Hahn’s [48] and the Up-Down-Up [53, 54]
descriptions of the YPP. Yoshida et al. [55] and Žerovnik et al. [56] employ the former
constitutive model; Giarola et al. [57] and Mazière and Forest [58] the latter. However, the
finite element method has its own set of challenges when modelling the YPP [44, 52, 58, 59].
For an exhaustive overview of current numerical models of the YPP we refer to the work
by Kim and Kim [52]. Despite the constant increase of computational power [60], the main
drawback of numerical modelling remains tractability. Hence the aid of numerical modelling
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in obtaining constitutive parameters of the YPP is tentative at best [56, 61, 62].
The works by Schwab and Ruff [44], Schwab [63] and Schwab and Harter [62], require

special mention, because we discuss and reference them [44, 62, 63] extensively throughout
Part II. They [44, 62, 63] present a “completely new”, simple and fundamental macromechanical
model to explain the nature of the YPP in plain carbon steels. Their [44, 62, 63] interesting
assumption is a single strain-hardening law. Figure 1.2b is a schematic representation of
the observed and true, stress–strain mechanical behaviour of a typical metal that displays
the YPP. The true material mechanical behaviour after the elastic-plastic transition is based
on hardening although this is not observed. For one, the true upper yield strength 𝑅eH(tr)
is much higher than the observed upper yield strength 𝑅eH(obs); secondly, true material
mechanical behaviour is strain hardening that starts with the true lower yield strength 𝑅eL(tr);
and, finally, the observed lower yield strength 𝑅∗

eL(obs) in Fig 1.2a is a result of the triaxial
stress state [44, 64, 65], that develops on a plane that borders the elastic volume and the
Lüders band. This plane is indicated by magenta lines on the inserted, dog-bone specimen in
Fig. 1.2, and we refer to it as the Lüders front in the following.

The constitutive parameters for any model are difficult to measure experimentally when
deformation is heterogeneous [66]; any experimental observation in a tensile test is not
necessarily a material property when deformation is localised. Hence from an engineering
standpoint the YPP presents a unique challenge. For one, the material’s yield strength is
potentially higher than the yield strength one observes; and, the constant nominal stress
is not necessarily a material property [67]. Furthermore, strain hardening is not observed
because it is obscured by a constant nominal stress [68] (See Fig. 1.2a). Finally, the Lüders
strain depends on specimen geometry [67, 69].

Industrial Background and Relevance
The YPP represents a major drawback in metallic materials that leads to undesirable visible
traces on the surface of final industrial products [69, 70]. The localised nature of Lüders
bands is problematic in manufacturing processes of sheet metals and leads to “stretcher strain
marks” [71–73]; Lüders bands induce surface roughness and limit industrial application [71,
74]. The prevention of the YPP thus equals stopping the formation of Lüders bands. Hence the
deterioration in surface quality, e.g. due to the formation of stretcher strain marks, prompts
extensive investigations into the YPP [75].

The formation of Lüders bands is usually eliminated by cold-working metallic sheets,
where their thickness reduces by about a percentage point [76]. For example, when one
produces cold-rolled steel sheets, the penultimate annealing process is followed by: skin-pass -
or temper rolling; or, tension-levelling. The post-processing purpose is to eliminate the YPP,
that creates undesirable surface marks when the steel sheets are industrially formed [77].

For annealed or aged steels, stretcher strains and fluting are critical defects that are
induced by the YPP [78]. Pearce [79] explains that the roller-levelling process, with cyclic
bending operations, induces mobile dislocations that diminish the yield-point elongation.
The roller-levelling process is composed of multiple up-and-down bending operations with a
series of offset rolls [78]. Theis [80] shows that plastic deformation generated from repeated
bending-unbending, averts superficial defects for low carbon steel. Butler and Wilson [81]
conclude that the surface of the rolled sheet is composed of yielded and virgin material vol-
umes, which Lüders bands bound, and the plastic volume increases with thickness reduction.



1

10 1 General Introduction

Park and Yoon [54], Kim et al. [82] and Park et al. [83] conduct experimental studies on the
onset condition and reduction of fluting and YPP related superficial defects, respectively.
Park et al. [83] study tension-levelling conditions for reducing yield point elongation in order
to prevent fluting and surface marks with press forming. However, post-processing is not
always possible [76] and these surface marks continue to be a problem in some industrial
applications, e.g. tin plated rings [84] and V-bending [78].

The YPP is beneficial in specific applications and is induced to enhance certain proper-
ties. Conventional steels with YPP are used as automotive, sheet material [85]. Holmberg
and Thilderkvist [86] observe that a higher yield stress directly improves dent resistance.
Hence bake hardening of pre-strained low carbon steel improves the dent resistance in
automotive sheet metal forming [87]. These low-strength deep drawing steels initially offer
low yield strength before forming, but they strengthen with forming and paint baking in
automotive manufacturing [88]. When this higher yield stress is obtained by the YPP, af-
ter paint baking, low carbon steels show superior dent characteristics compared to steels
without [87].

Scientific Background
In the fifties, Hundy [71] observes that for materials that display the YPP in tensile testing
before skin-pass rolling, a light longitudinal stretching afterwards leads to surface markings
perpendicular to the rolling direction. These areas correspond to yielded and virgin material
volumes in the rolled sheet. Lake [89] analyses steel sheets submitted to the skin-pass under
industrial conditions, and reveals Lüders bands similar to those already detected by Butler
and Wilson [81]. Hosford and Caddell [72] state that, in general, the YPP is alleviated by
temper rolling, also known as skin-pass rolling, which provides comparatively small strains
to the material. The skin pass of carbon steel and ferritic stainless steels sheets eliminates
the YPP and controls the sheet thickness and surface finish [90] as well. Yoshida et al. [91]
numerically model temper rolling. Skin-pass rolling (or temper rolling) of steel sheets
involves a thickness reduction of half to two percentage point, that follows hot rolling,
annealing or galvanising [90–93]. It is important to know materials and processing specific,
rolling conditions, because: excess thickness reduction induces defects; and, insufficient
reduction retains defects related to the YPP. This unfortunately remains elusive [78]. Still
low carbon steel often exhibits the YPP, even after the temper rolling because the material
ages, for example, during the post-production colour coating process [78].

Steels that exhibit or lack the YPP have inferior respectively superior mechanical proper-
ties, which obviously depends on the final, industrial products’ application. With the YPP
one obtains an inferior surface finish after press forming [77]. Wherefore the YYP is an
industrially important problem and investigated for several decades. Besides early studies on
the mechanism of the YPP in low carbon steels, the influences of many factors such as: grain
size [68, 73, 75, 94–99]; microstructure [73, 75, 96, 97, 99–105], strain rate [51, 96, 106–110],
deformation temperature [105–107, 111]; and, carbon and nitrogen content [96, 101, 112],
are studied. Despite solid experimental results reported in literature, no clear picture of the
underlying mechanisms of the YPP has emerged [73]; while there is widespread consensus
regarding the factors which influence the YPP, there are still gaps in the arguments that
concern the underlying mechanisms. Depending on the application, one might mitigate,
suppress, enhance or create the YPP. Hence it is crucial to understand the micromechanisms
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of Lüders band formation and propagation [105].
Understanding the geometrical characteristics of Lüders bands that accompany the YPP

in steels, particularly the orientation of these bands with respect to the loading axis, is imper-
ative since they induce surface roughness during metal forming operations [74]. Such bands
are experimentally measured extensively and studies address: band nucleation [109, 113–116];
growth [96, 114, 117–119]; kinematics [109, 114–120]; velocity [69, 96, 108, 109, 119, 121];
and, morphology [69, 74, 109, 117–121]. Earlier studies make significant effort on the morpho-
logical characteristics of Lüders bands [74, 117, 120] as well. In the early nineties, Anonthon
and Hall [120] already note that literature reveals the important aspects of the tensile spec-
imen’s cross-section on the morphology of Lüders bands. While specimen thickness is
thought to effect the nature of the bands [69], this is not given enough attention [114].
The experimentally obtained Lüders front angle varies in the range 45⋯90 degrees with
respect to the tensile direction. Currently, no single model rationalises all these experimental
observations. Although the YPP is investigated for more than hundred and seventy years,
ones understanding of Lüders band formation lacks substantial support from experimental
evidence [116]. The uncertainty on Lüders band characteristic orientation still exists due to
the contradictions in the reported, experimental results [74]. The characteristics of Lüders
band remain uncertain as well due to the limited number of experimental results reported.

Objectives
In summary, the objective of Chapter 4 is to formulate a macromechanical model of the YPP
that accounts for the characteristics of, and the heterogeneous stress state at, the Lüders
front. Moreover, Chapter 4 presents an alternative mechanism for the rotation of the Lüders
band with material properties, specimen’s geometry and test conditions. This results in
a simple methodology to approximate the material properties from uniaxial tensile tests,
independent of test conditions.

1.4 Part III: Dissipative Contacts
Bringing two surfaces into contact and separating them again is generally associated

with net, rate-dependent energy loss [122]. Causes of this hysteresis are ageing, interlock-
ing, relaxation and formation of capillaries. Other more recently recognised sources are
multistability that originates surface roughness [123] and discontinuous motion of contact
lines from surface heterogeneities [124]. The general critical aspect of contacts is that their
contact deformation is mechanically reversible, yet energetically irreversible. This hystere-
sis is commonly observed as a larger intimate contact area during retraction than during
indentation.

Industrial Background and Relevance
It is impossible to overstate the societal relevance of soft-materials adhesive contacts. Soft-Material
adhesive contact is present in a large variety of engineering applications, that include: au-
tomotive [125–128]; aerospace [129, 130]; nano-engineering [131–135]; robotics [136–138];
bio-medics [139, 140]; and, bio-engineering [123, 141–144]. Understanding of the origins of
adhesive hysteresis is thus paramount in the design, and for the operation of engineering
applications [123, 129–149]. However, the physical mechanisms behind adhesive hysteresis
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in soft materials contact with surface roughness present are ill understood [145–149].
The topical problem to address is when rough contacts are soft and adhesive, and emergent

behaviour arises due to the interplay between adhesion and viscoelasticity [150]. The
importance of this emergent behaviour, namely dissipative processes that occur at, and at a
distance from, the interface, gives rise to the relevance of explicitlymodelling solids [150]. The
knowledge gap and future trends we identify are the lack of patterns that adhere to arbitrarily
curved rough surfaces [151]; space debris remediation [152]; and, the growing demand for
automated manipulation of objects in industrial miniaturisation. Costa et al. [151] remark
on the importance of automated manipulation, where no longer only high adhesion but also
release-ability is of importance. Soft-Matter adhesion in the presence of engineered surface
topographies poses one route to obtain such tunable adhesion.

Scientific Background
It is well-known that adhesion between hard solids is difficult to observe on the macroscopic
length scale, whilst adhesive forces are significant at micro- and meso-scales (i.e. the “adhe-
sive paradox” [153]). Furthermore, it is shown theoretically [154–157], numerically [158, 159]
and experimentally [141, 147, 155, 160, 161], that large surface roughness “destroys adhe-
sion” [149]. The reduction and disappearance of perceptible adhesion with surface roughness
is rationalised by the fact that energy is stored when a given surface roughness is flattened,
and subsequently all stored energy is released in the retraction process in near-adiabatic
contact. The additional energy needed to destroy, and subsequently create, two separate
surface areas is then small compared to the stored (elastic) energy, and thus experimentally
imperceptible and/or negligible in magnitude. Surprisingly though, the relationship between
the observed adhesion and the surface roughness is non-monotonic [162–164].

The first observations of enhancement of adhesion (at pull-off) for small surface rough-
nesses is ascribed to Fuller and Tabor [162] by Papangelo and Ciavarella [149], and observed
in experiments by Griggs and Biscoe [163], and Fuller and Roberts [164] as well. A seminal
criterion for stickiness by Dahlquist [165, 166] is that the elastic Young’s modulus is smaller
than 1× 106 Pa to perceive adhesion, even in the presence of surface roughness. Recently,
this criterion is again experimentally verified by Tiwari et al. [142] and Dalvi et al. [157].
The enhancement in observed adhesion due to surface roughness is more complex than the
single criterion by Dahlquist [165, 166] though.

A first insight is given by Persson and Tosatti [154], when they realised that surface
roughness increases the total surface area. In perfect, continuous and intimate contact the
total contact area increases, and hence so does the observed work of adhesion (known also as
the Dupré surface energy). The relevance of this increase in the total surface area is shown
experimentally by Peressadko et al. [141], theoretically by Dalvi et al. [157] and numerically
by Pepelyshev et al. [167]. The contact theory by Persson and Tosatti [154] follows thermal
equilibrium though, which calls for an additional source of dissipation [149].

Several origins of the observed hysteresis in the presence of adhesion are proposed. When
adhesive forces are present in elastic contact between smooth surfaces, the normal loading
and unloading force-displacement trajectories differ [168–170]. Which implies dissipation
over a given loading/unloading cycle [168]. Dissipation is then exclusively due to the elastic
jump-in and -out of contact, seminally known as “tack” [166, 171]. With surface roughness
present, the mechanical response of bodies in contact is more complex [168]. Guduru [172]
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proposes a contact-mechanics theory pertinent to the contact between an elastic ball and
an axisymmetric rigid wavy surface. He [172] shows that in wavy, elastic contacts the
equilibrium load-area curve is characterised by oscillations that lead to elastic mechanical
instabilities. A representative load-indentation curve by Guduru and Bull [123] is given in
Fig. 1.3a. The difference in location of the elastic jumps in the force-displacement trajectory
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Figure 1.3: Schematic representations of the pressure-indentation curves for (a) axisymmetric, wavy elastic contact
and (b) smooth, Hertzian viscoelastic contact (Adapted from [123] and [171], respectively).

between loading and unloading constitutes adhesive dissipation, that is induced by surface
roughness. This theory [172] is: validated experimentally by Guduru and Bull [123] and
numerically by Carbone et al. [173]; however, it is limited to cases where a single connected
contact area is achieved.

Recent works with (spherical) indenters indicate that, in some cases, elastic instabilities
triggered by surface roughness are rate determining for adhesion hysteresis [155, 157, 170].
Dalvi et al. [157], andWang andMüser [170] state that surface heterogeneities pin the contact
edge such that the retraction process de-pins with instantaneous jumps over small, localised
microscopic areas (i.e. the Griffith theory [174]). Greenwood [175] extends the Fuller and Ta-
bor multi-asperity model [162], and finds that adhesive hysteresis occurs because of elastic
instabilities as well. In the contact between elastic bodies with surface roughness present, the
most commonly recognised sources of dissipation are total contact area increase (of geomet-
rical origin) [154, 157], and mechanical instabilities [123, 149, 172] (beyond elastic jump-in
and -out of contact). Other chemical and mechanical sources of dissipation are chemical
irreversibility [176, 177], heterogeneity of the surface properties [124, 178, 179], difference
in bonding behaviour in tension versus compression [180], surface film transfer [128] and
plasticity [181, 182].

The differences between experimental observation and theoretical prediction on the con-
tact between elastic bodies are commonly attributed to viscoelastic effects [142, 147, 177, 183–
187]. One reason is that despite attempts to approach adiabatic loading conditions, e.g. very
low retraction rates in (vertical) unloading experiments, there is still perceptible dissipation
due to viscoelasticity [124, 142, 147, 149, 177, 185, 188–191]. With viscosity the effective work
of adhesion increases with retraction rate over several orders of magnitude [171]. Represen-
tative load-indentation curves, in smooth, elastomer contact by Barquins and Maugis [171]



1

14 1 General Introduction

are given in Fig. 1.3b.
Current understanding of different types of adhesive mechanics is dominated by the

knowledge on simple adhesive elastic contact. Hence why a summary is called for. In
adhesive circular contact, two well-known limits exist. One, the seminal work by Johnson,
Kendall and Roberts (JKR) [192] on the adhesive contact between an elastic sphere in con-
tact with an elastic (or rigid) half-space in the presence of short-range adhesion [193], i.e.
adhesive forces outside the contact area are neglected [194]. On the other hand, in the
Derjaguin-Muller-Toporov (DMT) approximation [195], i.e. rigid sphere behaviour [194, 196],
the adhesive forces are taken into account, but the contact remains Hertzian. The transition
from short- to long-range, i.e. JKR- to DMT-type, adhesive mechanics is treated analytically
by Maugis [194] with a simple Dugdale potential [197] in smooth Hertzian contacts. The type
of adhesion is then uniquely defined by the Tabor parameter [198], a measure of the surface
roughness’s curvature, effective elastic modulus, work of adhesion and “range of action”
(of a given potential, e.g. [199, 200]) [194, 201]. Moreover, for a given adhesive contact the
type of adhesion is determined by the spherical/cylindrical radius and the cubed adhesive
interaction range (in the Dugdale potential [197]) [194, 201]. The most peculiar feature of
both limiting types of adhesion is that the pull-off force is independent of the elastic modulus,
and only a product of the spherical/cylindrical radius and the work of adhesion [193, 201].
Persson [202], and Gao and Yao [203] predict that the type of elastic jump-out of contact
changes from the Bradley-type [196] prediction (i.e. uniform bond-breaking), towards the
JKR-prediction (i.e. crack propagation), with indenter size and/or shape, respectively. Note
that the works [192, 195, 201–204] omit viscous dissipation in soft-materials contact, and
solely consider system-size (scale-)effects [205].

Chapter 5
Hysteresis due to viscous loss is distinct from hysteresis due to surface roughness in elastic
contacts, as the former is rate dependent [206]. The influence of viscoelasticity is thus also
felt across different length scales under finite deformation rates. Bulk viscosity clearly affects
the contact mechanics, and causes hysteresis, which is trivial. However, viscoelasticity plays
a significant role even when the indentation and retraction rate are small compared to the ma-
terials characteristic frequencies, which is experimentally verified by Chaudhury et al. [177],
Lorenz et al. [147], Tiwari et al. [142], and Violano and Afferante [185], and later inferred
by Papangelo and Ciavarella [149]. The significant role of viscosity is explained by e.g.
the theory by Greenwood and Johnson [183]. They [183] note that high stress rates oc-
cur at low (normal) retraction rates, due to the existence of stress concentrations at the
contacts’ edges. When the retraction is slow enough for bulk stress to be related with
the imposed normal strain through the relaxed modulus, the change in response due to
viscosity is equivalent to that obtained through a given change in the (effective) work of adhe-
sion [183]. In the latter case, the effect of viscoelasticity is oft described with a semi-empirical
equation, that specifies an effective work of adhesion, which increases with crack-tip veloc-
ity [183, 204, 207–211]. Theoretical models reproduce dissipation at the contact edges by
either the Barenblatt model [212–214], classic fracture mechanics [183, 204, 211, 215, 216] or
crack-tip blunting [217–220]. The semi-empirical equation is thus used in theoretical trea-
tises of smooth surface contacts [186, 187, 215, 221–223] and in experimental verification of
models on nominally smooth (Hertzian) contacts [183, 187, 190, 191, 204, 221]. Most recently,
Violano et al. [187] replace the adiabatic surface energy with an effective work of adhesion
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which accounts for viscous dissipation in adhesive Hertzian contact [192]. The central as-
sumption in the works [186, 187, 190, 191, 215, 221–223] is by Gent and Schultz [207–209], i.e.
viscous dissipation resides in a volume by the edges of contact, this volume is small compared
to the bodies.

Greenwood and Johnson [183] indicate that since traction is infinite at the edges of con-
tact under JKR-theory, the stress and strain rates are infinite for any finite contact velocity.
Therefore, any viscousmaterial around the peeling edgewould always be in the instantaneous
limit (i.e. the Graham paradox [224]) [193]. Secondly, with the original framework of the
JKR- and DMT-approximation, ignominiously applied to viscoelastic materials, the pull-off
force is by definition independent of the retraction rate [193]. Obviously, both these analytical
features are absent in experimental observations in the presence of viscous dissipation, where
the pull-off force increases monotonically with the rate of retraction (e.g. [187]). Greenwood
and Ciavarella [183, 193] already noted that the afformentioned analytical features are in
conflict with experimental observations and therefore suggest to use more realistic descrip-
tions of the crack tip. The Barenblatt model [212–214] is a good example of such a more
realistic description. The previous theoretical treatises [183, 186, 187, 191, 193, 215, 221]
implicitly model a cohesive zone though; they [183, 186, 187, 191, 193, 215, 221] essen-
tially modify the JKR-solution by a given increase in the apparent work of adhesion [193].
The increase of pull-off force in JKR-type contacts is then obtained by considering some
velocity-dependent elastic modulus at the crack tip by an increased effective work of adhe-
sion via Gent and Schultz’s theory (in [207–209]) [193]. Hence why a revision of current
theoretical treatises of adhesive Hertzian contacts [194, 201] in the presence of viscoelasticity
is inevitable.

Recent experimental investigations by Dorogin et al. [188], Beak et al. [225] and Deng
and Kesari [226] show an increase in the pull-off force with pre-load (in the presence of
surface roughness). Deng and Kesari [226] suggest that dissipation has two sources, one in-
dentation independent, and one due to roughness [169]. Kroner et al. [227] and Lai et al. [228]
observe a monotonous increase in pull-off force with pre-load, and a maximum, asymptotic
force for high initial indentation depths. However, such findings disagree with tests on
rough-surface, soft materials performed by Kesari et al. [155]. They [155] find a small en-
hancement of the pull-off force with pre-load, that is almost negligible compared with elastic
contact, which is in agreement with Greenwood (in [175]) [191]. Moreover, for a patterned
surface on a viscoelastic substrate, Violano et al. [191] find negligible or no dependence
on pre-load at all. Dorogin et al. [188] find, for intimate contact across the entire apparent
contact, that the pull-off force is independent of the pre-load. Similarly, Violano et al. [185]
observe an almost constant pull-off force, while varying the initial load, in classic adhesion
experiments between a spherical glass indenter and a soft material when unloading. Most
recently, Das and Chasiotis [221] find that the pull-off force is independent of pre-load in
the contact between crossed polymer nanofibres. In conclusion, the mechanism of adhesive
hysteresis in soft materials with surface roughness present is still ill understood [145–149]; the
predictions by theoretical treatises on rough surface, adhesive viscoelastic contacts remain
tentative because of experimental difficulties [189] or tractability [229].

Of engineering interest is the influence of surface roughness and viscoelasticity on the
rate dependencies of the apparent work of adhesion and the pull-off. The depicted state
of the art highlights the absence of a model that is able to describe the real physics of the
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adhesive interactions at rough contact interfaces, and captures the rate-dependent adhesive
hysteresis without any assumptions on the location of viscous dissipation. Such a theoretical
treatise or numerical investigation that satisfies both criteria has not been attempted in the
presence of surface roughness, to the best of the author’s knowledge.

Chapter 6
The quasi-static limit is used as an approximate to the fully dynamic solution in many
engineering problems that involve frictional dissipation. Typically problems of interest in
the field of mechanics of materials where viscous dissipation is active are the deformation of
viscoelastic bodies, or the high temperature deformation of metals that is accompanied by
grain-boundary sliding. For systems with solely viscous friction this estimate holds when the
frequency of loading is low compared to the natural frequency. Even at room temperature,
plastic deformation of metals occurs through the motion of dislocations, which is modelled
without accounting for inertia, through a first-order differential equation. Ignoring inertia
is done routinely, especially in the field of multi-scale modelling, where it is imperative to
limit computational time. There are problems however where it is more difficult to make an
estimate, like the ones where Coulomb friction is active concurrently with viscous dissipation.
The terms static and dry friction are synonymous with Coulomb’s dry contact friction, which
is ubiquitous in Tribology.

When the loading frequency is low compared to the natural frequency and/or the motion
is over-damped, the equation of motion is often reduced to a first-order differential equation.
Notable examples are the drift equations for grain boundary and dislocation motion [17, 230].
The area of our particular interest is multi-scale numerical modelling [231]. Significant phys-
ical problems involve multi-scale physics, e.g. rubbing surfaces [232] and inelasticity [233].
Tractability necessitates simplification when one transitions from lower to higher temporal
and spatial scales. Hysteretic behaviour under cyclic loading takes place in many engineering
problems as well. One might thus be tempted to invoke simplifications and omit inertial
forces, when static and dry friction is observed at the mesoscale. Static and dynamic fric-
tion are the principal sources of hysteresis, with static and dry friction the main sources at
low frequencies. However, the solution under quasi-static assumption (no inertia) and the
dynamic solution differ considerably depending on friction forces and loading frequency.
It was indeed shown that the dynamic solution under quasi-static loading conditions does
not necessarily correspond to the equivalent solution under the quasi-static assumption in a
given mass-spring system [234]. Here, the quasi-static assumption implies the removal of
inertial forces from the equation of motion. With the quasi-static loading limit, we mean the
excitation frequency is only a fraction of the natural frequency of the given system. It is of
engineering interest to know the parameter space where there are (no) differences between
the solution under the quasi-static assumption and the dynamic solution.

Objectives
In summary, the objective of Chapter 5 is to present the interplay between adhesion and
viscoelasticity in the presence of surface roughness. This answers the question of whether
viscous and/or roughness-induced dissipation are/is the origin of adhesive hysteresis in
soft matter contacts. The objective of Chapter 6 is to highlight the differences between
the solution under the quasi-static assumption and the dynamic solution of a base-excited
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system in the presence of friction. This is a guide for future inelastic multi-scale modelling
efforts.

1.5 Preliminaries and Notations
We apply throughout this dissertation the direct tensor notation. Zeroth-order tensors/scalars
are symbolised by italic letters (e.g. 𝑎, 𝑏, 𝐴 and 𝐵), first-order tensors/vectors by italic lower
case bold letters (e.g. 𝒂 = 𝑎𝑖𝒆𝑖 and 𝒃 = 𝑏𝑗𝒆𝑗 ), second-order tensors by italic uppercase bold
letters (e.g. 𝑨 = 𝐴𝑖𝑗𝒆𝑖⊗ 𝒆𝑗 and 𝑩 = 𝐵𝑘𝑙𝒆𝑘 ⊗ 𝒆𝑙) and fourth-order tensors by italic uppercase
bold calligraphic letters (e.g.  = 𝐴𝑖𝑗𝑘𝑙𝒆𝑖⊗𝒆𝑗 ⊗𝒆𝑘⊗𝒆𝑙) with basis 𝒆. Moreover, the first-order
zero tensor is given by an italic lowercase bold letter 𝒐. In vector-matrix notation, vectors
are denoted as upright lowercase sans serif bold letters (e.g., normal n = (𝑛1, 𝑛2, 𝑛3)⊺, with
superscript ∙⊺ indicating the transpose of ∙) and matrices as upright uppercase sans serif
bold letters (e.g. elastic matrix Cel).
For a real-valued Cartesian coordinate system and orthonormal basis, e.g. �̂�𝑖, where the
overscript ∙̂ indicates a unit vector, and origin 𝒐, basic operations for tensors used are:

1 The tensor product: 𝒂⊗𝒃 = 𝑎𝑖𝑏𝑗 �̂�𝑖⊗ �̂�𝑗 = 𝑪;

2 The double-dot product between two second-order tensors:
𝑨 ∶ 𝑩 = 𝐴𝑖𝑗𝐵𝑘𝑙 �̂�𝑖⊗ �̂�𝑗 ∶ �̂�𝑘⊗ �̂�𝑙 = 𝐴𝑖𝑗𝐵𝑗𝑖 = 𝑐;

3 The double-dot product between fourth- and second-order tensors:
 ∶ 𝑩 = 𝐴𝑖𝑗𝑘𝑙𝐵𝑚𝑛�̂�𝑖⊗ �̂�𝑗 ⊗ �̂�𝑘⊗ �̂�𝑙 ∶ �̂�𝑚⊗ �̂�𝑛 = 𝐴𝑖𝑗𝑘𝑙𝐵𝑙𝑘 �̂�𝑖⊗ �̂�𝑗 = 𝑪.

The Einstein summation convention is used where the Latin indices (e.g. 𝑖, 𝑗 , 𝑘, 𝑙, ...) run
through the values 1, 2 and 3. Throughout this work, we choose to denote the second-order
stress and strain tensors, and derived variables by italic lowercase bold (Greek) letters (e.g.
strain tensor 𝝐). Finally, for a Bravais lattice with translation vectors 𝒕𝑖, crystal direction
[𝑢𝑣𝑤] is parallel to direction vector 𝒅 = 𝑢𝒕1+ 𝑣𝒕2+𝑤𝒕3.
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2
Influence of Dislocations on

the Apparent Elastic
Constants in Single Metallic
Crystallites: an analytical

approach
Intricate knowledge of dislocation networks in metals has proven paramount in understanding
the constitutive behaviour of these materials but current experimental methods yield limited
information on the characteristics of these networks. Recently, the isotropic anelastic response
of metals has been used to investigate complex dislocation networks through the well-known
phenomenon that the observed elastic constants are influenced by dislocations. Considering the
dependence of the behaviour of a Frank-Read (FR) source on its initial dislocation character and
using discerning characteristics of dislocations, i.e. Burgers vector, line sense and slip system, the
present paper takes dislocation character, crystal structure and dislocation network geometry
into account and obtains the anisotropic mechanical response for a generic Poisson’s ratio.

In this chapter, the tensile test tangent moduli and yield points are presented for spatially
uniform and nonuniform dislocation distributions across slip systems. First, the reversible shear
strain of the FR source is derived as a function of initial dislocation character. The area swept by
a mobile and initially straight dislocation segment pinned at both ends is given as an explicit
function of the line stress. Secondly, the anisotropic anelastic strain contribution of FR sources to
the total pre- and at-yield strain in single crystallites is calculated. For a given normal stress and
superposition of the principal infinitesimal linear elastic lattice strain and anelastic dislocation
strain, the tangent moduli are presented. The moduli and the inception of plastic flow have a
notable dependence on initial dislocation character, spatial dislocation distribution and loading
direction.

This chapter is based on the scientific article: Van Dokkum, J. S., Bos, C., Offerman, S. E., Sietsma, J., Influence of
dislocations on the apparent elastic constants in single metallic crystallites: an analytical approach. Materialia, 20,
101178, 2021.
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Nomenclature
Variable Definition Dimension (mass M, length L and time t)
𝛼 proportionality coefficient −
𝑏 Burgers vector magnitude L
𝒃 Burgers vector L
�̂� tensile direction −
𝐶1 & 𝐶2 integration constants L
𝑪el elastic tensor ML−1t−2
𝐸 Young’s modulus ML−1t−2
𝑖, 𝑗 & 𝑘 indices −
𝐿 initial segment length L
𝑀 Taylor factor −
𝜇 shear modulus ML−1t−2
𝑁 number −
�̂� unit plane normal −
𝜈 Poisson’s ratio −
𝒐 origin L
{𝑟 , 𝜃,𝜙} spherical coordinates {L,−,−}
{𝑟 ′, 𝜃} polar coordinates {L,−}
𝑅 radius L
R2 coefficient of determination −
𝜌 dislocation density L−2
𝑆 swept-out area L2
𝝈 stress ML−1t−2
𝒕 translation vector L
𝝉 shear stress ML−1t−2
𝜃 azimuth angle −
𝑈 self-energy MLT−2

𝑉 volume L3
𝜙 dislocation character −
𝑥, 𝑦 & 𝑧 Cartesian coordinates L
�̂� unit line-sense −
𝑌 tangent modulus ML−1t−2
𝑍 Zener ratio −

2.1 Introduction
In this chapter, we present an analytical model of the anisotropic tangent moduli and the
yield points for nonuniform dislocation networks in single crystallites. First, the works by
DeWit and Koehler [235], and Cash and Cai [30] are extended with an explicit formulation of
the area swept by a single Frank-Read (FR) source as a function of the applied shear stress. We
derive an explicit analytical expression for the dislocation character at both pinning points
as a function of the line stress. Secondly, the behaviour of crystallites is considered. The
dislocation network is described by the dislocation characters, densities and segment lengths
per slip system. The spatial correlation is given in discrete terms of dislocation densities with
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a given character on individual slip systems. The anelastic dislocation strain contribution
is derived. The current definition of “anelastic” and “anelasticity” by Li and Wagoner [7]
is adopted here: a mode of deformation that is mechanically recoverable and energetically
dissipative, where for metals, nonlinear elasticity is implicit because of the bowing out of
mobile dislocation segments. Loading/Unloading hysteresis thus is due to dissipation and
the bow-out model captures the anelastic strain for a given stress state in metallic crystal-
lites. Finally, combining the elastic and the anelastic mechanical response, we present the
pre- and at-yield mechanical behaviour of crystallites as a function of the loading direction.

Inelastic deformation is considered by treating a dislocation model of the statistical
distribution of dislocation-link lengths [236]. The probability of activation is determined
by the link length; only certain link lengths with low line stresses contribute to inelastic
deformation [236, 237]. Closed-form expressions are found for quasi-static loading conditions,
where a range of segments are activated simultaneously [11, 236–238]. Anelastic deformation
is governed by the same principles, but for static loading conditions only the longest segments
are expected to be activated and determine the critical shear stress. It thus is necessary to
use average statistical quantities, which characterise the ensemble of dislocations in the
crystallite, when one constructs an inelastic constitutive model for static loading conditions.

Firstly, DeWit and Koehler [235] obtain a parametric function for the static equilibrium
shape of the FR source as a function of the self-energy by calculus of variations. Following
their seminal work [235], Kovacs [239] formulates a physical yield criterion depending on the
initial dislocation character of the FR source. More recently, Cash and Cai [30] investigate the
dislocation contribution to acoustic non-linearity in order to non-destructively monitor plas-
tic deformation. They present an implicit analytical expression for the anelastic shear-strain
contribution of initially straight edge and screw segments. Knowing the anelastic shear strain
per FR source, Koehler and DeWit [2], and Agrawal and Verma [3] present in their seminal
works the apparent Young’s moduli for face-centred and body-centred cubic (FCC and BCC)
crystallites, respectively. Nearly all crystals are elastically anisotropic, however a frame-
work that emerges by assuming elastic isotropy is useful and reasonably accurate for most
crystals [240].

A set of convenient formulae is presented, where every simplification is made to find
the closed-form expression for the tangent moduli and yield strength of cubic crystals. We
are unaware of any other publication which presents such an exhaustive treatise of tangent
moduli of cubic crystallites without invoking additional phenomenological assertions as made
by e.g. Yoshida et al. [241] and Sun andWagoner [242]. The former [241] include the modulus
degradation by varying the instantaneous modulus as an exponential function of strain. The
latter [242] propose a Quasi-Plastic-Elastic model, which uses a two-yield-surface plasticity
theory; a two-surface constitutive model in which the inner surface defines the transition
between the linear and non-linear elasticity and the outer surface gives the yield criteria.
Aforementioned models [241, 242, 242] are built based on computational convenience and
lack a physical basis [36]. For recent and exhaustive discussions on anelasticity we refer to
Torkabadi [36] and Li and Wagoner [7]. Our work is based on the underlying mechanism of
dislocation-driven anelasticity, which gives a physical prediction with a minimum number of
parameters and is computationally convenient as well. The central limitation in the present
model is that the self-energy must adhere to the form of equivalent elastic constants [243].
Present work though is readily extended to cubic anisotropy following [243–247], which is
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discussed comprehensively.

Outline
In the following, we consider the isotropic response of polycrystalline materials. Firstly,
our results for various dislocation densities are compared with the predictions made by
Van Liempt and Sietsma [4]. The effects of compressibility and dislocation character on
experimentally obtained total dislocation density and effective segment length are pre-
sented. Our method is directly applicable for analysis of experiments as preformed by Li
and Wagoner [7]. Secondly, the anisotropic response for single crystallites is given and
validated with the initial cubic Young’s moduli obtained by Koehler and DeWit [2], and
Agrawal and Verma [3]. Thirdly, the effects of a heterogeneous dislocation distribution over
glide planes on the anisotropic symmetry of the apparent elastic constants and the yield point
are discussed. A limit analysis of highly compressible and incompressible solids is performed
for initial edge and/or screw character segments. The influences of compressibility and
dislocation densities on the initial (apparent) shear modulus are given. Finally, a relevant
engineering case is presented with Poisson’s ratio 𝜈 = 1/3. The feasibility of experimentally
obtaining information, more than previously possible, on dislocation networks is discussed.

2.2 Method
2.2.1 Frank-Read Sources
We consider the differential equation of equilibrium of the Frank-Read (FR) mechanism for
the case of a uniform applied shear stress 𝝉, with components: (1) the external applied
shear stress 𝝉 doing work on the dislocation; and (2), the potential energy changing as the
dislocation bows out. In Fig. 2.1, an FR source is depicted. The self-energy per unit length 𝑈

Figure 2.1: Schematic representation of a mixed character FR source 𝜙i in the light gray 𝑥-𝑦 plane with initial
segment length 𝐿, dark gray swept-out area 𝑆 and dislocation characters 𝜙𝛼 and 𝜙𝛽 at the pinning points.

of a dislocation segment for an elastically isotropic Volterra dislocation is approximated by
the addition of pure screw 𝑏s and pure edge 𝑏e Burgers vector components, i.e.

𝑈 (𝜙) ≈ 𝑈e+𝑈s =
𝜇el

2 (
𝑏2e

1− 𝜈
+ 𝑏2s) , (2.1a)

with
𝑏s = ‖𝒃‖cos(𝜙), and 𝑏e = ‖𝒃‖sin(𝜙), (2.1b)
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where 𝜇el is the isotropic linear elastic shear modulus, 𝜙 indicates the dislocation character, i.e.
it is the angle between the Burgers vector 𝒃 and the local unit line-sense �̂� , ‖ ∙ ‖ the magnitude
of the vector ∙ and 𝜈 the Poisson’s ratio. Here, the start-finish/right-hand convention is
used. Note that long-range elastic interaction and the specific energy associated with the
dislocation core are neglected. The line tension model is approximate because it considers
the dislocation as a line that carries an energy per unit length along itself, and ignores the
long-range interaction between different sections of the dislocation network. Only a single FR
source is considered because the long-range interaction scales with the inverse of the range.
Hence why line tension and self-interaction are low-order approximations. Self-interaction
is the elastic interaction between dislocation segments across the same dislocation line.
The exact expression for the dislocation energy involves a double integral along the whole
loop [17, 248]. In order to attain closed-form analytical expressions, we solely consider line
tension. Even with these approximations, the model is able to qualitatively capture physical
behaviour of dislocations [240, 249], and hence is a useful model.

Following DeWit and Koehler [235], the static equilibrium of the FR source is determined
by the method of the calculus of variation. Here, the 𝑥-𝑦 plane is the glide plane; the initial
segment with length 𝐿 lies along the line 𝑦 = 𝑥 tan(−𝜙i), with initial dislocation character 𝜙i,
is centred on the origin {0,0,0} and is pinned at each end; the Burgers vector 𝒃 is parallel
to the 𝑥-axis; the line sense of a positive edge dislocation is anti-parallel to the 𝑦-axis; and,
the unit plane normal �̂� ≡ (�̂� e ×𝒃)/‖�̂� e ×𝒃‖ is parallel to the 𝑧-axis, which is defined as the
slip system with a Cartesian coordinate system and axes {𝑥,𝑦,𝑧}. The equilibrium shape of a
pinned dislocation for a shear stress 𝜏𝑥𝑧 as parametric functions is

𝑥(𝜙) ≡
1

𝜏𝑥𝑧𝑏 (
𝑈 (𝜙)sin(𝜙)+

𝜕𝑈
𝜕𝜙

cos(𝜙))+𝐶1, (2.2a)

and
𝑦(𝜙) ≡

1
𝜏𝑥𝑧𝑏 (

𝑈 (𝜙)cos(𝜙)−
𝜕𝑈
𝜕𝜙

sin(𝜙)))+𝐶2, (2.2b)

where 𝐶1 and 𝐶2 are the integration constants. Substituting Eq. (2.1) in the equilibrium
shape (2.2), we obtain the normalised FR source shape for a linear elastic isotropic material
as

𝜏𝑥𝑧𝑥(𝜙)
𝜇el𝑏

= (1+ 𝜈cos2(𝜙))sin(𝜙)
2(1− 𝜈)

+
𝜏𝑥𝑧𝐶1

𝜇el𝑏
, (2.3a)

and
𝜏𝑥𝑧𝑦(𝜙)
𝜇el𝑏

=
(2−3𝜈+ 𝜈cos(2𝜙))cos(𝜙)

4(1− 𝜈)
+
𝜏𝑥𝑧𝐶2

𝜇el𝑏
, (2.3b)

where 𝐶1 and 𝐶2 are the 𝑥- and 𝑦-coordinates of the mid-point of the major and the minor
axis of the near-elliptical equilibrium shape, respectively. Here, the 𝑥- and 𝑦-coordinates
are normalised with twice the seminal radius of curvature, which for a dislocation with
character-independent energy (𝜈 = 0) by Schoeck [31] is the parametric function of a circle
with radius 𝑅 = 𝜇el𝑏/(2𝜏𝑥𝑧). As the shear stress 𝜏𝑥𝑧 increases, the radius of curvature of the
dislocation loop decreases. The bowing out of a FR source becomes critical when the applied
shear stress equals the seminal maximum line stress 𝜏c = 𝜇el𝑏/𝐿. At shear stresses higher
than the critical shear stress 𝜏c, the dislocation line stress 𝜇el𝑏/(2𝑅) does not compensate the
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applied shear stress and the FR source is activated. The mixed character FR source in Fig. 2.1
is depicted for the critical shear stress 𝜏c𝑥𝑧 , by Kovacs [239]. Kovacs defined the critical shear
stress 𝜏c𝑥𝑧 as the line stress 𝜏𝑥𝑧 at which a diameter of the equilibrium shape coincides with
the initially straight dislocation segment, i.e. 𝐶1 = 𝐶2 ≡ 0. The critical stress 𝜏c𝑥𝑧 is a function
of the initial dislocation character 𝜙i and Poisson’s ratio 𝜈 as well.

In order to calculate the anelastic dislocation shear strain contribution per FR source,
the area 𝑆 swept by the source is needed. The area enclosed by the initial and bowed-out
segment is

𝑆 (𝜏𝑥𝑧) =
1
2 ∫

𝜙𝛼(𝜏𝑥𝑧)

𝜙𝛽(𝜏𝑥𝑧) (
𝑥 (𝜙′)

𝜕𝑦 (𝜙′)
𝜕𝜙′

−𝑦 (𝜙′)
𝜕𝑥 (𝜙′)
𝜕𝜙′ )

d𝜙′, (2.4)

where 𝜙𝛼 and 𝜙𝛽 represent the dislocation characters at the pinning points {𝑥𝛼 , 𝑦𝛼} and
{𝑥𝛽 , 𝑦𝛽}, respectively (See Fig. 2.1). To calculate the swept area, the dislocation characters 𝜙𝛼
and 𝜙𝛽 as a function of the line stress 𝜏𝑥𝑧 are needed. The dislocation line stays attached to
both pinning points when bowing out. The equilibrium shape must pass through {𝑥𝛼 , 𝑦𝛽}
and {𝑥𝛽 , 𝑦𝛽}, which serves as physical boundary conditions to find the coordinates of the
mid-point of the major and the minor axis of the near-elliptical equilibrium shape {𝐶1,𝐶2}.
The two trigonometric polynomials, which relate the 𝑥- and 𝑦-distance between pinning
points and the line stress, are formulated, i.e.

𝜏𝑥𝑧𝐿cos(𝜙i)
𝜇el𝑏

=
𝜏𝑥𝑧𝑥 (𝜙𝛽)

𝜇el𝑏
−
𝜏𝑥𝑧𝑥 (𝜙𝛼)

𝜇el𝑏
, (2.5a)

and
𝜏𝑥𝑧𝐿sin(𝜙i)

𝜇el𝑏
=
𝜏𝑥𝑧𝑦 (𝜙𝛼)

𝜇el𝑏
−
𝜏𝑥𝑧𝑦 (𝜙𝛽)

𝜇el𝑏
. (2.5b)

The domain of dislocation characters 𝜙𝛼 and 𝜙𝛽 at the pinning points is shifted to [−𝜋,𝜋] by
defining the difference angles Δ𝜙𝛼 ≡ 𝜙i−𝜙𝛼 and Δ𝜙𝛽 ≡ 𝜙𝛽 −𝜙i. Inspecting Eq. (2.5), we find
that Δ𝜙𝛼 = Δ𝜙𝛽 for 𝜙i = 0, 𝜋/2, 𝜋 and 3𝜋/2. Hence the axes of symmetry for an initial screw
dislocation segment, with 𝜙i = 0 and 𝜋, is the line 𝑥 = 0 and for an initial edge dislocation,
with 𝜙i = 𝜋/2 and 3𝜋/2, the line 𝑦 = 0. The Peach-Koehler force is parallel to the outward
normal of each infinitesimal dislocation segment within the FR source and the newly created
dislocation lines, on either half of the expanding loop, have the same self-energy. Hereby,
the coordinate of the integration constant is 𝐶1 = 0 for initial screw dislocation segments
and 𝐶2 = 0 for initial edge character segments [249].

Substituting Eqs. (2.3a) and (2.3b) into Eqs. (2.5a) and (2.5b), we obtain the relationship
between the line stress, 𝜏𝑥𝑧 , and the dislocation characters at both pinning points, 𝜙𝛼 and 𝜙𝛽 ,
by

(1− 𝜈)𝜏𝑥𝑧𝐿
𝜇el𝑏

cos(𝜙i) =
1
2 (

sin(𝜙𝛽)(1+ 𝜈cos2 (𝜙𝛽))

−sin(𝜙𝛼)(1+ 𝜈cos2 (𝜙𝛼))) ;
(2.6a)

(1− 𝜈)𝜏𝑥𝑧𝐿
𝜇el𝑏

sin(𝜙i) =
1
4
(cos(𝜙𝛼) (2−3𝜈+ 𝜈cos(2𝜙𝛼))

−cos(𝜙𝛽)(2−3𝜈+ 𝜈cos(2𝜙𝛽))) .
(2.6b)
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The Kovacs condition, which indicates where the applied stress becomes critical [239], reads

Δ𝜙c𝛼 +Δ𝜙c𝛽 = 𝜋, (2.7)

where ∙c indicates the dependent variable ∙ for the critical shear stress 𝜏c𝑥𝑧 . Substituting Δ𝜙c𝛼 ,
Δ𝜙c𝛽 and Eq. (2.7) into Eqs. (2.6a) and (2.6b), we obtain the relationships between the critical
shear stress and the dislocation characters at both pinning points as

(1− 𝜈)𝐿𝜏c𝑥𝑧
𝜇el𝑏

cos(𝜙i) = sin(𝜙i+Δ𝜙c𝛽)(1+ 𝜈cos2 (Δ𝜙i+𝜙c𝛽)) ; (2.8a)

(1− 𝜈)𝐿𝜏c𝑥𝑧
𝜇el𝑏

sin(𝜙i) = −
1
2
cos(𝜙i+Δ𝜙c𝛽)(2−3𝜈+ 𝜈cos(2(𝜙i+Δ𝜙c𝛽))) . (2.8b)

By solving Eqs. (2.8a) and (2.8b) simultaneously with a semi-analytical method, we find the
critical values of the difference angles Δ𝜙c𝛼 and Δ𝜙c𝛽 , and critical shear stress 𝜏c𝑥𝑧 . The critical
shear stress and associated difference angles are shown in Fig. 2.2. Similarly, character angles

Figure 2.2: The normalised critical shear stress (1− 𝜈)𝜏c𝑥𝑧𝐿/(𝑏𝜇el), the normalised critical difference angles Δ𝜙c𝛼/𝜋
and Δ𝜙c𝛽/𝜋 as functions of normalised initial character 𝜙i/𝜋 for different Poisson’s ratios 𝜈 = 0, 1/3 and 1/2. The
values at 𝜙i = 0,𝜋/4 and 𝜋/2 for 𝜈 = 0,1/3 and 1/2 are presented as square, triangle and circle symbols, respectively.

𝜙𝛼 and 𝜙𝛽 are calculated as a function of line stress 𝜏𝑥𝑧 with a generic initial dislocation
character 𝜙i ∈ ( −𝜋,𝜋 ]. Knowing the critical shear stresses 𝜏c𝑥𝑧 , we obtain difference angles
Δ𝜙𝛼 and Δ𝜙𝛽 as functions of 𝜏𝑥𝑧 from Eqs. (2.6a) and (2.6b).

The difference angle Δ𝜙s is defined as the monotonically increasing difference between
the initial right-hand side (RHS) screw dislocation character, i.e. 𝜙i ≡ 0, and the dislocation
characters 𝜙𝛼 = −Δ𝜙s and 𝜙𝛽 = Δ𝜙s. Substituting the definition of Δ𝜙s in Eq. (2.6a), we obtain
the normalised dislocation line stress as

𝜏′𝑥𝑧
𝜏c

= (1+ 𝜈cos2(Δ𝜙s))sin(Δ𝜙s), (2.9)

with the scaled shear stress 𝜏′𝑥𝑧 ≡ 𝜏𝑥𝑧(1 − 𝜈) and the range for 𝜏′𝑥𝑧/𝜏𝑐 is [−1,1]. Since
cos2(Δ𝜙s) ≡ cos2(𝜋 −Δ𝜙s) and sin(Δ𝜙s) ≡ sin(𝜋 −Δ𝜙s), there are two branches of the so-
lution for Δ𝜙s as a function of shear stress 𝜏𝑥𝑧 . The dislocation bows out under a given
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applied shear stress 𝜏𝑥𝑧 < 𝜏c𝑥𝑧 . The diameter of the equilibrium shape is larger than the
length of the initial dislocation segment with difference angle 0 ≤ Δ𝜙s < 𝜋/2. When the
applied shear stress (originally 𝜏𝑥𝑧 < 𝜏c𝑥𝑧) is subsequently removed, the bowed-out RHS screw
dislocation returns to its original configuration parallel to the line 𝑥 = 0. Hence the process
is reversible. The corresponding branch with solutions Δ𝜙stables (𝜏′𝑥𝑧) < 𝜋/2 is designated as
“stable” because the swept-out area will only increase with increasing applied shear stress.
This reversibility causes the pre-yield behaviour of FR sources. Secondly, for an applied shear
stress 𝜏𝑥𝑧 equal to the critical shear stress 𝜏c𝑥𝑧 , the diameter of the equilibrium shape coincides
with the initial dislocation segment, i.e. the difference angle Δ𝜙s = 𝜋/2. When the applied
shear stress (originally 𝜏𝑥𝑧 = 𝜏c𝑥𝑧) is subsequently increased, the bowed-out dislocation line
does not return to its initial configuration but keeps on expanding with difference angle
𝜋/2 < Δ𝜙s ≤ 𝜋. The corresponding branch of the solution Δ𝜙unstables (𝜏′𝑥𝑧) ≥ 𝜋/2 is desig-
nated as “unstable” because the swept-out area will increase. This is the at- and post-yield
behaviour of FR sources, which leads to plastic deformation and dislocation multiplication.
Here 𝜏𝑥𝑧 = 𝜏c𝑥𝑧 is part of the “unstable” solution because, although static equilibrium is at-
tained, a small stress perturbation leads to the unstable state of continuing plastic deformation.
Finally, it is trivial that Δ𝜙unstables (𝜏′𝑥𝑧) = 𝜋 −Δ𝜙stables (𝜏′𝑥𝑧).

The explicit equation of the difference angle for the stable equilibrium shape is

Δ𝜙stables ≡ sin−1
(
2
√
1+ 𝜈
3𝜈

sin
(
1
3
sin−1

(
3
√
3𝜈

2(𝜈+1)
1√

(𝜈+1)
𝜏′𝑥𝑧
𝜏c )))

, (2.10a)

for 𝜈 ≠ 0. In the limit 𝜈→ 0 the difference angle for the stable equilibrium shape is given by

Δ𝜙stables ≡ sin−1(
𝜏𝑥𝑧
𝜏c )

, (2.10b)

in agreement with Eq. (2.9). Secondly, the difference angleΔ𝜙e is defined as the monotonically
increasing difference between the initial positive edge dislocation character, i.e. 𝜙i ≡ 𝜋/2,
and the characters 𝜙𝛼 = 𝜋/2−Δ𝜙e and 𝜙𝛽 = 𝜋/2+Δ𝜙e. Substituting the definition of Δ𝜙e in
Eq. (2.6b), we obtain the normalised dislocation line stress as

𝜏𝑥𝑧𝐿
𝜇el𝑏

=
(2+3𝜈− 𝜈cos(2Δ𝜙e))sin(Δ𝜙e)

2(1− 𝜈)
≡
𝜏𝑥𝑧
𝜏c

. (2.11)

The explicit equation of the difference angle for the stable equilibrium shape is

Δ𝜙stablee ≡ sin−1
(
2
√
1−2𝜈
3𝜈

sinh
(
1
3
sinh−1

(
3
√
3𝜈

2(1−2𝜈)

√
(1− 𝜈)2

1−2𝜈
𝜏𝑥𝑧
𝜏c )))

, (2.12a)

for 𝜈 ≠ 0 and 𝜈 ≠ 1/2. Note that for Poisson’s ratio 𝜈 = 0, Eq. (2.10b) holds. Since cos(2Δ𝜙e) ≡
cos(2(𝜋 −Δ𝜙e)), again two branches of the solution forΔ𝜙e areΔ𝜙unstablee (𝜏𝑥𝑧)≡𝜋−Δ𝜙stablee (𝜏𝑥𝑧).
In the limit 𝜈→ 1/2 the difference angle for the stable equilibrium shape is

Δ𝜙stablee ≡ sin−1(
3

√
𝜏𝑥𝑧
𝜏c )

. (2.12b)
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(a) (b)

Figure 2.3: (a) The normalised difference angles Δ𝜙s/𝜋 and Δ𝜙e/𝜋 as a function of the normalised line stresses
𝜏′𝑥𝑧/𝜏c and 𝜏𝑥𝑧/𝜏c for Poisson’s ratios 𝜈 = 0, 1/10, 1/5, 3/10, 2/5 and 1/2. The coloured arrows indicate an increase
in Poisson’s ratio 𝜈 across equivalently coloured lines. (b) The normalised half equilibrium shapes {𝑥/𝐿,𝑦/𝐿} with
shear stresses 𝜏𝑥𝑧/𝜏c=𝜏′𝑥𝑧/𝜏c= 1/10, 9/10 and 1, and Poisson’s ratio 𝜈 = 1/2.

Intermediate steps in the derivation of Eqs. (2.10) and (2.12) are given in Appendix A.II.
In Fig. 2.3a, the difference angles as a function of the line stress are presented. The dif-

ference angles for line stresses 𝜏𝑥𝑧/𝜏c=𝜏′𝑥𝑧/𝜏c= 1/10, 9/10 and 1 are indicated with triangle,
square, circle and gradient symbols with Poisson’s ratios 𝜈 = 0 in black and for 𝜈 = 1/2 in
red and blue in Fig. 2.3. The gradient symbols correspond to an unstable static equilibrium
solution with normalised line stress 𝜏𝑥𝑧/𝜏c=𝜏′𝑥𝑧/𝜏c= 9/10. In the following, the equilibrium
shapes and swept-out areas for these stresses and Poisson’s ratios are studied in more detail.
In Appendix A.I, the equations for the equilibrium shape of a given FR source as a function
of the angles 𝜙𝛼 and 𝜙𝛽 are given. Hereby, the static equilibrium shape of a given FR source
{𝑥 (𝐿,𝜏𝑥𝑧) , 𝑦 (𝐿,𝜏𝑥𝑧)} as an explicit function of the line stress is obtained. In Fig. 2.3b, the
equilibrium shapes of the FR sources with RHS screw and positive edge character are pre-
sented for Poisson’s ratio 𝜈 = 1/2. Since the shapes are symmetric, half is shown in colour,
half in grey. The triangle and square symbols indicate the stable shapes, the circle symbols
the critical shapes and the gradient symbols the unstable shapes. These symbols indicate
the shapes for the line stresses 𝜏𝑥𝑧/𝜏c=𝜏′𝑥𝑧/𝜏c= 1/10, 9/10 and 1 as indicated in Fig. 2.3a.
When the applied shear stress increases so does the circumference of the FR source and the
swept-out area 𝑆. For Poisson’s ratio 𝜈 = 1/2, the equilibrium shapes are markedly different
between initial RHS screw and initial positive edge FR sources. For isotropic elasticity, the
energy per unit edge character line length is a factor 1/(1− 𝜈) times higher than that for
pure screw character. This is why the dislocation line aligns towards a majority of screw
character and line length with edge character is minimised. However, because the dislocation
line must remain continuous, locally sharp corners appear for both “stable” and “unstable”
geometries with increased Poisson’s ratio 𝜈. As expected for the maximum dislocation
line stress [239], the given diameter of the critical equilibrium shape coincides with the
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initial dislocation segment, i.e. Δ𝜙s = 𝜋/2 and Δ𝜙e = 𝜋/2. Dislocation dynamics governs
line shape under quasi-static loading conditions in both the “stable” and “unstable” regime.
However, for static loading conditions, we show in [249] that the dislocation loop orients in
the lowest line-tension direction as well when self-interaction is included. When the applied
stress is increased beyond the critical shear stress 𝜏c𝑥𝑧 , the FR source continues to expand
as depicted by the (dashed) lines with gradient symbols in Fig. 2.3b. This leads to the well
known dislocation multiplication mechanism. Note that once the critical stress is exceeded,
no stable quasi-static equilibrium is attained. The time-dependent relation can solely be
found solving the inherently dynamic problem. However, the tendency of the dislocation
loop to orient itself in the lowest self-energy direction remains. This is only captured by
the unstable quasi-static equilibrium solution, which also represents the shape for 𝜏𝑥𝑧 > 𝜏c𝑥𝑧 .
Notwithstanding, the present unstable equilibrium solution is relevant beyond purely theo-
retical interest. We repeat the realistic numerical calculations by Fitzgerald et al. [247] for
isotropic elasticity [249]. Long-range elastic interaction across the dislocation loop is incor-
porated. The line tension model is qualitatively consistent with the results which include self
interaction [240, 249]. The self interaction suppresses the bowing out of the FR source. As a
result, for the same magnitude of applied shear stress, the inclusion of long-range interaction
reduces the swept out area. It is demonstrated that loops remain “stable" even when the
applied stress surpasses the maximum dislocation line stress by about a factor two. The FR
source attains static equilibrium beyond the approximate half-ellipse shape. Secondly, we
reason that within a dislocation network, activated FR sources will experience long-range
stresses from adjacent dislocation segments. These stresses are known as back stresses and
allow for attaining a equilibrium with dislocation loop shapes comparable to the unstable
equilibrium.

The area swept by a given FR source as a function of the difference angles is given in
Appendix A.III. Combining Eqs. (2.10) and (2.12), and Eqs. (A.14) and (A.15), respectively,
we obtain the explicit equation for the swept area 𝑆 (𝜏𝑥𝑧). For the sake of brevity, only two
limiting cases are given, namely the positive edge segment and only the normalised areas
for the stable equilibrium shape, being

𝑆 (𝜏𝑥𝑧)
𝐿2

=
1

8(𝜏𝑥𝑧/𝜏c)2 (
2sin−1(

𝜏𝑥𝑧
𝜏c )

−sin(2sin−1(
𝜏𝑥𝑧
𝜏c ))) , (2.13a)

and

𝑆e (𝜏𝑥𝑧)
𝐿2

=
1

128(𝜏𝑥𝑧/𝜏c)2 (
60sin−1(

3

√
𝜏𝑥𝑧
𝜏c )

−45sin(2sin−1(
3

√
𝜏𝑥𝑧
𝜏c ))− ⋯

⋯ 9sin(4cos−1(
3

√
𝜏𝑥𝑧
𝜏c ))−sin(6sin−1(

3

√
𝜏𝑥𝑧
𝜏c ))) ,

(2.13b)

for 𝜈 = 0 and 1/2, respectively. In Fig. 2.4, the dislocation line stress is presented in relation
with the swept area. The axes are chosen as such to readily relate with tensile curves, but
note that hardening is not considered here. The calculated stress is the stress needed to
accomplish plastic strain by a single dislocation loop. The triangle, square, circle and gradient
symbols in Fig. 2.4 correspond to those in Fig. 2.3. We observe that the area-to-stress relation
has a continuously changing slope and zero gradient for the critical shear stress 𝜏c𝑥𝑧 . Initially
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Figure 2.4: The normalised line stresses 𝜏′𝑥𝑧/𝜏c and 𝜏𝑥𝑧/𝜏c as a function of the normalised swept-out areas
8𝑆s/(𝜋𝐿2) and 8𝑆e/(𝜋𝐿2) for Poisson’s ratios 𝜈 = 0, 1/10, 1/5, 3/10, 2/5 and 1/2. The arrows indicate an in-
crease in Poisson’s ratio 𝜈 across equivalently coloured lines, from 𝜈 = 0 to 1/2.

the dislocation line stress increases with swept area 𝑆. The line stress increase depends on
the Poisson’s ratio 𝜈 and is largest for an initial screw dislocation segment because mixed
character dislocation line is formed upon expansion of the dislocation loop. Vice versa, the
dislocation loop of an initial edge character FR source easily expands, which gives rise to
a high local gradient 𝜕𝑆/𝜕𝜏𝑥𝑧 . Secondly, the local gradient of the area-to-stress relation
depends on the length and orientation of the formed dislocation line. The length of the
loop with a majority of edge character is minimised while the formation of predominant
screw character dislocation lines requires less work (See Fig. 2.3b). However, given that the
dislocation line cannot terminate within the bulk of the material, parts of the loop must attain
orientations with higher self-energy. Hereby, the dislocation line stress increases rapidly
upon the formation of approximately pure edge character dislocation line as witnessed
between the red square and circle symbols in Fig. 2.4 (0.9 ≤ 𝜏′𝑥𝑧/𝜏c ≤ 1). And, contrary, an
initial edge character FR source sweeps a large area between shear stresses 0.9 ≤ 𝜏𝑥𝑧/𝜏c ≤ 1
(the blue square and circle symbols in Fig. 2.4). The unloading curve will be the same as the
loading curve because dissipation is not taking place in the static solution here. It should be
noted that the present model reproduces the anelastic strain for a given stress state but not
the symmetric unloading/loading curves as reported in e.g. [4–7]. The maximum dislocation
line stress is highest for screw character FR sources because a pure edge character dislocation
line is formed. Once the applied stress matches the critical shear stress, the line stress reduces
upon further expansion of the dislocation loop. The dislocation loop will expand and the
potential energy is minimised. This “unstable” line stress equals the minimum applied stress
needed for the loop to continue expanding. Unimpeded expansion of the loop results in
softening which is expected when a single FR source is considered and work-hardening is
excluded.
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2.2.2 Strain in Uniaxially Loaded Crystallites
For an arbitrary stress 𝝈 in the crystal frame, the corresponding strain 𝝐 is a superposi-
tion of the elastic and anelastic strains, 𝝐el and 𝝐an, respectively. The crystal frame is a
Cartesian coordinate system with axes {𝑥′, 𝑦′, 𝑧′} with right-hand orthonormal basis �̂�𝑖 ∥ 𝒕𝑖,
with translation vectors 𝒕𝑖. In Fig. 2.5, a schematic representation of the crystal frame is
given. The second-order elastic lattice strain tensor 𝝐el is derived through a linear mapping

Figure 2.5: Schematic representation of the tangent modulus 𝑌 on a unit sphere in the crystal frame and the
stereographic projection onto the plane with its normal parallel to �̂�3 containing the origin 𝒐.

of the infinitesimal second-order stress tensor 𝝈 with a fourth-order tensor (el)
−1 called

the inverse elastic (i.e. stiffness) tensor [250–252]. The stiffness tensor has major and minor
symmetry. For a given slip system with Burgers vector 𝒃 and unit slip-plane normal �̂� in
the crystal frame, the Orowan equation [253] is used and the second-order infinitesimal
anelastic strain is

𝝐an (𝝈) =
𝑁
2
𝑆 (𝝈)
𝑉

Sym (𝒃⊗ �̂�) , (2.14)

where 𝑁/𝑉 is the number of FR sources with length 𝐿 per unit volume 𝑉 and Sym (∙) is the
symmetric part of tensor ∙. Hereby, slip is solely a function of the resolved shear stress.

For given stress tensor 𝝈 = 𝜎�̂�⊗ �̂�, where �̂� is a unit vector parallel to the normal stress
with magnitude 𝜎, the corresponding principal strain is 𝜖 = 𝝐 ∶ �̂�⊗ �̂�. The unit vector in the
loading direction is

d̂ = (cos(𝜃)sin(𝜙),sin(𝜃)sin(𝜙),cos(𝜙))⊺ , (2.15)

where 𝜃 is the azimuth angle, 𝜙 from here on the polar angle. The infinitesimal principal
strain 𝜖 in the crystal frame is a superposition of the elastic and anelastic components 𝜖el
and 𝜖an. The principal elastic lattice and anelastic strains are

𝜖el(𝜎, �̂�) = 𝜎�̂�⊗ �̂� ∶ (el)
−1

∶ �̂�⊗ �̂� (2.16a)

and,
𝜖an(𝜎, �̂�) = �̂�⊗ �̂� ∶ 𝝐an(𝝈), (2.16b)

respectively. In order to employ computational algebra to calculate the spatial representation
of the moduli, the well-known Voigt scheme is used [249]. If the material is devoid of
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dislocations, the well-known definition of the linear elastic Young’s modulus 𝐸 ≡ 𝜎/𝜖el is
obtained. Contrary, with dislocations present the tangent modulus 𝑌 ≡ 𝜕𝜎/𝜕𝜖 depends on the
direction �̂�, the magnitude of the normal stress 𝜎 and the dislocation structure. Furthermore,
the left-hand side of Eq. (2.16a) is not limited to isotropic or cubic elasticity but valid for
any symmetric elastic tensor 𝑪el. We note that the effective Poisson’s ratio is unaffected
because volume is conserved during dislocation glide. Hence the scaled effective Poisson
ratio 𝜈 (𝜃,𝜙)/𝜈el remains a unit sphere.

The scaled linear elastic Young’s modulus 𝐸 (𝜃,𝜙)/𝐸el can be graphically represented in
spherical coordinates {𝑟 , 𝜃,𝜙}, with 𝑟 ≡ ||𝐸 (𝜃,𝜙)/𝐸el||. For isotropic linear elastic materials
devoid of dislocations [251, 252], the Young’s modulus is a unit sphere. Equivalent to the
frequently used spherical representation of linear elastic anisotropy, the tangent modulus
can be shown in spherical coordinates with 𝑟 ≡ ||𝑌 (𝜎,𝜃,𝜙)/𝐸el||. A two-dimensional repre-
sentation by means of a stereographic projection onto the plane with its normal parallel to
�̂�3 and containing the origin 𝒐 is possible since 𝑌 (�̂�) = 𝑌 (−�̂�). The polar angle is expressed
as 𝜙 = 2tan−1 (𝑟 ′), with the polar coordinates {𝑟 ′, 𝜃} [251]. The stereographic projection is
included in Fig. 2.5.

2.3 Results
2.3.1 Isotropic Mechanical Response
In the following, we present the results for virtual tensile tests on polycrystalline materials.
For an isotropic mechanical response, the principal strain is

𝜖(𝜎) =
𝜎
𝐸el

+ 𝜖an(𝜎). (2.17)

In Appendix B, the relation between the normal stress and resolved shear stress, and the
principal anelastic strain and anelastic shear strain by the Taylor factor 𝑀 [4, 254, 255] is
revisited. Assuming FR sources to be uniformly distributed over 𝑘 = 12 slip systems with
dislocation density 𝜌slip each, i.e. the total dislocation density 𝜌total =∑𝑘 𝜌

slip
𝑘 ≡ 𝑘𝜌slip, and

substituting Eqs. (2.14) and (B.4) in Eq. (2.17), we give the total principal strain as

𝜖(𝜎) =
𝜎
𝐸el

+
𝑏
𝑀 (

𝜌totale 𝑆e (𝜎)
𝐿e

+
𝜌totals 𝑆s (𝜎)

𝐿s ) , (2.18)

with 𝜌total ≡ 𝜌totals +𝜌totale , where 𝜌totals and 𝜌totale , and 𝐿s and 𝐿e are the dislocation densities
and effective segment lengths of screw and edge dislocations, respectively. In the works
by Van Liempt and Sietsma [4] and Arechabaleta et al. [5, 6], the equilibrium shape of the FR
source is circular and the total principal strain is

𝜖iso(𝜎) ≈
𝜎
𝐸el

+
𝑀𝜌total (𝐸el)

2 𝑏3

32(𝜈+1)2𝜎2𝐿 (2sin−1(
2(1+ 𝜈)𝜎𝐿
𝑀𝐸el𝑏 )−sin(2sin−1(

2(1+ 𝜈)𝐿𝜎
𝑀𝐸el𝑏 ))) ,

(2.19)
with 𝐿 independent of dislocation character. Here, four cases are considered, namely:
(1) the results by Van Liempt and Sietsma [4]; (2) only screw dislocation segments (i.e.
𝜌totals = 𝜌total and 𝜌totale = 0) with length 𝐿s = 𝐿; (3) only edge dislocation segments (i.e.
𝜌totals = 0 and 𝜌totale = 𝜌total) with length 𝐿e = 𝐿; (4) mixed dislocation densities 𝜌totals = 𝜌totale = 𝜌total/2
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with lengths 𝐿e = 𝐿s = 𝐿. First, the total dislocation density 𝜌total = 1014, 5×1014 and 1015 m−2

is varied while the effective segment length 𝐿 = 140 nm is kept constant; secondly, the ef-
fective segment length 𝐿 = 100, 140 and 200 nm changes while the total dislocation density
𝜌total = 5×1014 m−2 remains constant. In Fig. 2.6, the tensile results are presented with
Young’s modulus 𝐸el = 210×109 Pa, Poisson’s ratio 𝜈 = 0.3, Taylor factor𝑀 = 3.06 [256–258]
and Burgers vector magnitude 𝑏 = 0.25 nm. In Fig. 2.6, the elastic response is represented

(a) (b)

(c) (d)

Figure 2.6: The normal stress 𝜎 as a function of principal strain 𝜖 for (a) effective segment length 𝐿 = 140 nm
and total dislocation densities 𝜌total = 1014, 5×1014 and 1015 m−2, and (b) density 𝜌total = 5×1014 m−2 and lengths
𝐿 = 100, 140 and 200 nm. The tangent modulus 𝑌 as a function of the normal stress 𝜎 in (c) and (d). The arrows in
(a) and (c) indicate an increase in total dislocation density 𝜌total, and in (b) and (d) an increase in effective segment
length 𝐿 across lines with a given colour.

by a solid gray line marked “Elastic”. The results with constant effective segment length
𝐿 = 140 nm and total dislocation densities 𝜌total = 1014, 5× 1014 and 1015 m−2 are indicated
by dashed, dash-dotted and solid lines, respectively. The same line patterns hold for results
with constant density 𝜌total = 5×1014 m−2 and lengths 𝐿 = 100, 140 and 200 nm.

While varying the total dislocation density for the effective segment length 𝐿 = 140 nm,
we observe in Fig. 2.6a that the principal strain increases with dislocation density. The
principal anelastic strain is the horizontal distance between the line 𝜎 ≡ 𝐸el𝜖 and any point
on the tensile curve. When the dislocation density per slip plane is increased, and in turn,
so is the anelastic dislocation strain (See Eq. 2.14). In Fig. 2.6b, the dislocation density
𝜌total = 5×1014 m−2 and the effective segment length is varied. We observe that the principal
anelastic strain increases with effective increasing segment length. The anelastic dislocation
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shear strain scales with the area swept by an FR source, which scales with the square of the
effective segment length, 𝑆 ∝ 𝐿2. Furthermore, the normal stress for a given anelastic strain
is inversely proportional to the effective segment length because the self-stress scales with
the curvature of the bowed-out dislocation. In the present work dissipation is not accounted
for, hence why the initial modulus deviates from the isotropic linear elastic modulus from
the start of loading. Furthermore, the tangent modulus vanishes when the applied stress
matches the line tension, because upon further expansion of the FR loops the line stress
decreases.

The differences between the prediction by Van Liempt and Sietsma [4] and the results for
solely screw or edge dislocations are striking. Between screw dislocations and the prediction
by [4], the normal stress for a given total principal strain differ up to a factor 1/(1− 𝜈), i.e.
on the order of 50%. Also for a given stress the principal anelastic strains differ up to a factor
(1− 𝜈). Hence the normal stress is underestimated and total principal strain overestimated.
While the range of normal stresses is unaffected between edge dislocations and the prediction
by [4], the anelastic dislocation strains differ a factor 1/(1− 𝜈), hence the total principal
strain is underestimated. The observed differences are easily rationalised by considering an
elliptical equilibrium shape and with the results in Fig. 2.4 for initial screw and edge character
sources. The prediction by [4] and the results for mixed dislocation segments match closely.

In order to present the tangent modulus, we take the inverse of the derivative of Eq. (2.19)
with respect to the normal stress and obtain the isotropic tangent modulus [4], i.e.

𝑌iso(𝜎) ≈
⎛
⎜
⎜
⎝

1
𝐸el

+
𝜌total𝐿𝑏
2𝑀𝜎

(𝑀𝐸el𝑏)
2

(2(𝜈+1)𝜎𝐿)2
⎛
⎜
⎜
⎝

√
(2(𝜈+1)𝜎𝐿)2

(𝑀𝐸el𝑏)
2−(2(𝜈+1)𝜎𝐿)2

−sin−1(
2(𝜈+1)𝜎𝐿
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⎞
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⎟
⎠

⎞
⎟
⎟
⎠

−1

.

(2.20)
In Figs. 2.6c and 2.6d the tangent modulus as a function of the normal stress (extended
Kocks-Mecking plot [4]) is presented. These correspond to Figs. 2.6a and 2.6b, respectively.
In Fig. 2.6c, we observe that the initial modulus decreases with increasing total dislocation
density. Furthermore, in Fig. 2.6d, the given change in segment length affects the initial
moduli. The inverse relationship between the yield stress and the effective segment length is
clearly visible in Fig. 2.6d. Considering the prediction by Van Liempt and Sietsma [4] and the
results for mixed dislocation segments, we observe that the tangent moduli are close as well.

Arechabaleta et al. [5] evaluated the validity of the model with approximate circular
equilibrium shape [4] by comparison with dislocation densities from X-Ray Diffraction (XRD)
measurements. The dislocation densities 1012 < 𝜌total ≤ 1014 m−2 obtained through aforemen-
tioned model [4] were consistent with those obtained by XRD. We note that the prediction
by [4] approximates the results for isopycnic dislocation densities in Fig. 2.6. Isopycnic
means of, relating to, or marked by equal or constant density. Hereby, the experimental XRD
diffraction and tensile-test measurements of the total dislocation density 𝜌total might have
agreed too.

It is of interest to study the effect of different screw and edge dislocations densities on
previously experimentally obtained total dislocation densities and effective segment lengths.
Theywere calculated bymeans of Eqs. (2.19) and (2.20) [4–6]. Here, a set of virtual tensile tests
is performed for various edge and screw dislocation densities 𝜌totals /𝜌total = 1−𝜌totale /𝜌total = 0,
1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 15/16, 99/100 and 1. In Fig. 2.7, the tensile results are given
by solid black lines with screw dislocation densities 𝜌totals /𝜌total = 0, 1/2, 3/4 and 1, total dis-
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location density 𝜌total = 1015 m−2 and effective segment length 𝐿 = 140 nm. Here the dashed

(a) (b)

L i
so

  / 
L 

(c)

Figure 2.7: (a) The normal stress 𝜎 as a function of the principal strain 𝜖 and (b) the tangent modulus 𝑌 as
a function of the normal stress 𝜎 with screw dislocation densities 𝜌totals /𝜌total = 0, 1/2, 3/4 and 1, total density
𝜌total = 1015 m−2 and effective segment length 𝐿 = 140 nm. The arrows in (a) and (b) indicate an increase in total
screw dislocation density 𝜌totals across equivalently coloured lines. (c) The ratios 𝜌totaliso /𝜌total and 𝐿iso/𝐿 as a function
of the scaled screw dislocation density 𝜌totals /𝜌total via the damped least-squares (DLS) method and the method by
Van Liempt and Sietsma [4].

gray line marked “Elastic” indicates the linear elastic response; in Fig. 2.7b, the tangent mod-
ulus as a function of the normal stress is given. Subsequently, a non-linear fitting and the
fitting procedure as followed by Van Liempt and Sietsma [4] are preformed on the tensile-test
data sets. The former method is the damped least-squares (DLS) method [259, 260] with
Eq. (2.19), 𝐿 = 𝐿iso and 𝜌total = 𝜌totaliso . In the latter method, the effective segment length
𝐿iso is obtained at the yield points with critical normal stress 𝜎c ≡ 𝑀𝜇el𝑏/𝐿iso; the initial
Young’s modulus, i.e. 𝐸 ≡ lim𝜎→0𝑌 (𝜎), is used to determine the effective dislocation density
𝜌totaliso . The numerical fits by DSL method and the method by Van Liempt and Sietsma are
indicated by solid blue and dashed red lines, respectively, in Figs. 2.7a and 2.7b solely for
𝜌totals /𝜌total = 0, 1/2, 3/4 and 1. In Fig. 2.7c, the obtained ratios 𝐿iso/𝐿 and 𝜌totaliso /𝜌total are
presented. The red triangle and blue gradient symbols in Figs. 2.7a and 2.7b indicate results of
the DLS method and the method by Van Liempt and Sietsma [4], respectively. The symbols in
Fig. 2.7c correspond to the tensile-test data with varying screw dislocation density 𝜌totals . The
(dashed) lines connecting these symbols are guides to the eye. The results for solely screw
dislocations are indicated separately. They represent a limit case given the difference in yield
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strength from finite edge dislocation densities. The goodness of fit is assessed by calculating
the coefficient of determination R2. The obtained coefficients of determination are between
R2 = 0.96 and 1. The non-linear fits by DLS method for ratio 3/4 ≤ 𝜌totals /𝜌total < 1 do not
converge to the global minimum and are therefore omitted.

The effective dislocation density 𝜌totaliso is significantly affected by the ratio between edge
and screw dislocations. In the limit of solely edge dislocations, the total dislocation density
𝜌total is overestimated. The observed effective segment length 𝐿iso differs far less from the
actual length 𝐿 because the yield strength 𝜎c ∝ 1/𝐿. For an approximately elliptic dislocation
loop, the observed total dislocation density 𝜌totaliso and segment length 𝐿iso agree well with den-
sity 𝜌total and length 𝐿 when the ratio 𝜌totals /𝜌total ≈ 1/(2−𝜈). For Poisson’s ratio 𝜈 = 1/3 this
screw dislocation density 𝜌totals /𝜌total ≈ 0.58 and in agreement with the observed unit ratios
between 𝜌totals /𝜌total ≈ 0.62−0.64. The method by Van Liempt and Sietsma underestimates the
total dislocation density 𝜌total for a majority of screw dislocations, i.e. 1/2 << 𝜌totals /𝜌total < 1.
Finally, for solely screw dislocations, the effective segment length is underestimated by a
factor ∼ 0.3 because the critical shear stress is 𝜏c/(1− 𝜈). The effective dislocation density
𝜌totaliso differs marginally from the given total density 𝜌total. This is non-trivial. Quantifying
the observational error in previous works is however only possible if additional information
on the geometry of the given dislocation network was measured. The method here does
not need additional observations on the dislocation network geometry. The orientation of
individual dislocations and a generic Poisson’s ratio are a priori incorporated.

2.3.2 Anisotropic Mechanical Response
In the following, we present the results for virtual tensile tests on single crystallites with
cubic crystal lattices. In the supplementary material [249], the slip systems in face- and
body-centred (FCC and BCC) crystallites, respectively, are given. For BCC crystallites, only
twelve ⟨111⟩{110} slip systems are considered. They form the six main glide planes at low
temperatures [240], instead of the forty-eight potential slip systems which include {112}
and {123} planes. In order to present the effect of a nonuniform dislocation distribution, the
effective segment length 𝐿s = 𝐿e = 𝐿 is kept constant and solely the density 𝜌slip is varied.
The present method is not limited to the same fractions of initial dislocation segments with
a given character per slip-system either. Though under static loading conditions it remains
necessary to use effective segment lengths which characterise the ensemble of dislocations
in a given crystallite.

Dislocations are spread homogeneously across each active slip-system contained within a
single crystallite. The total dislocation density per slip system 𝜌slip ≡ 𝜌slips +𝜌slipe , where 𝜌slips
and 𝜌slipe are the screw and edge dislocation densities per slip system. We choose to limit the
results to pure (or a mixture of pure) screw and edge character segments. The present method
is not limited to these assumptions, but needs numerical root-finding to approximate the
equilibrium solution for an arbitrary initial dislocation character (𝜙i ≠ −𝜋/2, 0, 𝜋/2 and 𝜋)
for Poisson’s ratio 𝜈 ≠ 0, while the closed-form expressions for initial pure edge and screw
character segments do not. The dislocation density on each glide plane is defined as the
sum of its constituent slip systems. Here, we use the seminal proportionality coefficient

𝛼 ≡ (𝐿
√
𝜌total)

−1
= 1/3 which was both experimentally [6] (𝛼 ≈ 0.4) and theoretically [261]

obtained.
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In order to validate our method with the works by Koehler and DeWit [2], and Agrawal
and Verma [3], we take the series expansion of Eq. (2.13a) around zero applied shear stress
and obtain the engineering shear strain

𝛾an𝑥𝑧 =
𝑏𝜌slip

𝐿
𝑆 (𝜏𝑥𝑧) ≃

𝜌slip𝐿2

6
𝜏𝑥𝑧
𝜇el

. (2.21)

Assuming the dislocation density 𝜌slip to be constant across all slip systems and Poisson’s
ratio 𝜈 = 0, we give the fourth-order inverse anelastic tensor in vector-matrix notation as
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This corresponds to the results for a uniform distribution of dislocations across all glide
planes in FCC by Koehler and DeWit [2] and in BCC by Agrawal and Verma [3].

For a single active glide plane with two active slip systems in FCC and BCC, we find
Tetragonal versus Rhombic anisotropic symmetry because of the difference in angles between
the Burgers vectors ⟨110⟩/2 and ⟨111⟩/2. Inactive slip systems and/or glide planes are devoid
of dislocations and active ones have isopycnic dislocation densities. For two active glide
planes Rhombic versus Tetragonal anisotropic symmetry is found. In addition the angles
between glide plane normals, {111}/

√
3 and {110}/

√
2, differ. The anisotropic symmetry is

unique for any (non)uniform distribution of dislocations and depends on the crystal structure
as well. Furthermore, the obtained anisotropic symmetry is independent of Poisson’s ratio 𝜈
and a given normal stress below the yield stress. We find it notable that for distributions
with differing edge and screw dislocation densities the number of symmetry planes reduces.
The anisotropic ratio [262] and index [263] do depend on dislocation distribution, densities
and characters. In the supplementary material [249], the normalised initial Young’s moduli
𝐸/𝐸el for nonuniform distributions of dislocations in FCC and BCC are presented. Finally,
as expected for the uniform distribution of dislocations across all glide planes, the initial
modulus has cubic anisotropy as seen in Fig. 2.8.

2.3.3 Limit Analysis
In the following, we consider the compressibility and incompressibility limits, i.e. Poisson’s
ratios 𝜈 = 0 and 1/2. In the supplementary material [249], the normal stress-strain relations
are presented in five rational tensile directions for several nonuniform dislocation distri-
butions in FCC and BCC. For tensile tests on single crystallites, it is well-known that the
normal stress at yield is predicted by means of the Schmid factor and the often used critical
shear stress 𝜏c ≡ 𝜇el𝑏/𝐿 [264]. Hence the yield stress decreases, or remains the same, as more
glide planes become active. The normal stress-strain relationships for a uniform distribution
of dislocations are the same for FCC and BCC. From here on, only cubic lattices with uniform
dislocation distributions are considered.

In Fig. 2.9, the tensile results are presented with Poisson’s ratio 𝜈 = 1/2, edge or screw
dislocations and rational tensile directions ⟨100⟩, ⟨110⟩ and ⟨111⟩. In Fig. 2.9, the rational
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Figure 2.8: The normalised initial Young’s modulus 𝐸/𝐸el in spherical coordinates for a cubic crystallite with
Poisson’s ratio 𝜈 = 0 and a uniform distribution of dislocations across all glide planes.

(a) (b)

(c)

Figure 2.9: (a) The normalised normal stress 2𝜎𝐿/(𝐸el𝑏) as a function of normalised principal strain 2𝜖𝐿/𝑏, (b) the
normalised tangent modulus 𝑌 /𝐸el as a function of the normalised stress 2𝜎𝐿/(𝐸el𝑏), and (c) the normalised strain
2𝜖𝐿/𝑏 with Poisson’s ratio 𝜈 = 1/2 in rational tensile directions ⟨100⟩, ⟨110⟩ and ⟨111⟩.

tensile directions are indicated by coloured dots on the inserted stereographic projection of
Fig. 2.8. The stress 𝜎c and strain 𝜖c at yield are depicted by coloured triangle and gradient
symbols in Fig. 2.9. Note that the choice of normalisation originates from 𝐸el/2 ≡ 𝜇el for
Poisson’s ratio 𝜈 = 0. It is obvious that the strain 𝜖 is not obtained by the linear elastic
stiffness alone because FR sources contribute significantly to the total principal strain. As
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expected, we obtain the largest anelastic dislocation strain contribution for edge character
segments and Poisson’s ratio 𝜈 = 1/2. Intermediate values are found for Poisson’s ratio 𝜈 = 0
independent of initial dislocation character (See Fig. 2.10) and the smallest anelastic strain
contribution results for screw dislocations and Poisson’s ratio 𝜈 = 1/2. The anisotropy is not
affected by the dislocation character.

In Figs. 2.9b and 2.9c, the normalised tangent moduli 𝑌 /𝐸el as a function of the nor-
malised stress 2𝜎𝐿/(𝐸el𝑏), and the normalised strain 2𝜖𝐿/𝑏, respectively, are presented. The
flow-stress 𝜎c and critical principal strain 𝜖c are the intersects of given tangent modulus
with 𝑌 /𝐸el = 0. During tensile experiments the observed tangent modulus does not reduce to
zero for critical normal stress 𝜎c [4–6, 265, 266]. Before the tensile curve becomes horizontal,
work-hardening initiates with shear stress contribution 𝜏w and plastic shear strain 𝛾p. The
flow stress is 𝜎f ≃ 𝜎c+𝜎w and the work-hardening gradient Θ ≡ 𝜕𝜎f/𝜕𝜖p. Values of constant
gradient Θ during Stage-I/II/III work-hardening are typically one to three orders of magni-
tude smaller than the elastic Young’s modulus [20]. Hence plastic deformation commences
when the tangent modulus, 𝑌 , equals the work-hardening gradient, Θ. Moreover, the critical
stress 𝜎c and strain 𝜖c are the upper bounds of the yield point.

In Fig. 2.9, we observe a marked difference between the tangent moduli for edge or screw
dislocation segments. Regarding initial edge character segments in the limit 𝜎 → 0, we find
that the initial tangent modulus approaches zero. This is readily understood by taking the
limit lim𝜏𝑥𝑧→0 𝜕Δ𝜙e/𝜕𝜏𝑥𝑧 of Eq. (2.12b). It is intuitive that with a given change of dislocation
character at both pinning points, the total dislocation line length either increases or decreases,
and the local line sense changes. The associated change in potential energy can be split
into: (1) a contribution solely due to line length change with constant dislocation character;
and (2), a change in self-energy with dislocation character for a constant line length. Even
though the line length increases when a given FR source with initial pure edge character
bows out, the increase in potential energy associated with total segment length is lowered
because dislocation character changes along the dislocation loop. From pure edge character,
which has the maximum self-energy for a finite Poisson’s ratio, the local line sense changes
to a mixed character. In the limit of an incompressible solid, the total energy change is
zero because the increase in potential energy per unit dislocation line length with constant
character equals the reduction in self-energy with dislocation character. Contrarily, when a
given FR source with initial pure screw character bows out, the potential energy increases
with both dislocation line length and the change of character. Hence the apparent elastic
constants depend on the initial dislocation character and compressibility.

It is of interest to compare our results with the isotropic predictions by Van Liempt and Si-
etsma [4]. Moreover, a mix of initial edge and screw characters segments is incorporated. In
Fig. 2.10, the tensile results are presented with Poisson’s ratios 𝜈 = 0 and 1/2, and isopycnic
dislocation densities. In Fig. 2.10a, the normal stress-strain relation is given and the isotropic
results for Taylor factor 𝑀 = 3.06 are represented with dashed and solid black lines. The
solid and dashed lines correspond to Poisson’s ratios 𝜈 = 0 and 1/2, respectively. Comparing
Figs. 2.9a and 2.10a for Poisson’s ratio 𝜈 = 1/2, we observe that the yield stress is determined
by the initial edge dislocation segments. These segments attain their critical shape before
initial screw segments as predicted by Kovacs [239]. The principal strain for a given stress
decreases compared to solely edge dislocations since 𝜌totale < 𝜌total (See Fig. 2.9 and 2.10). The
predicted critical normal stress 𝜎c by Van Liempt and Sietsma [4] agrees well with single
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Figure 2.10: (a) The normalised normal stress 2𝜎𝐿/(𝐸el𝑏) as a function of normalised principal strain 2𝜖𝐿/𝑏
with Poisson’s ratios 𝜈 = 0 and 1/2, screw dislocation density 𝜌totals /𝜌total = 1/2 and rational tensile direc-
tions ⟨100⟩ and ⟨111⟩. The normalised tangent modulus 𝑌 /𝐸el as a function of (b) the normalised stress
2𝜎𝐿/(𝐸el𝑏) and (c) the normalised strain 2𝜖𝐿/𝑏. The dashed and solid black lines indicate the isotopic results in
Eqs. (2.19) and (2.20) by Van Liempt and Sietsma [4].

crystallite results because the critical shear stress is 𝜏ce ≡ 𝜇el𝑏/𝐿. However, the predicted
total principal strain at yield 𝜖c by Van Liempt and Sietsma [4] is an overestimate because
the anelastic shear strain across different slip systems is the same (See Appendix B). Con-
trarily, here the anelastic shear strain depends on slip system orientation. Hence not every
slip system contributes equally in the given tensile direction. The exaggerated anelastic strain
in the isotropic model [4] leads to overestimating the total dislocation density (See Sec. 2.3.1).

The cubic tangent moduli and the isotropic tangent modulus by Van Liempt and Si-
etsma [4] are given in Figs. 2.10b and 2.10c. The Taylor factor 𝑀 proportionally scales the
isotropic curves. For Poisson’s ratio 𝜈= 0, the functional forms of our results and the isotropic
prediction by [4] agree. For Poisson’s ratio 𝜈 = 1/2, we observe a large disparity between
our results and the isotropic tangent modulus by [4]. Notable are the differences in tangent
moduli for small normal stresses and principal strains. This is readily understood because
the self-energy in the isotropic prediction by Van Liempt and Sietsma [4] is independent of
dislocation character. Hereby, the potential energy always increases with dislocation line
length. Hence the gradient of the normal stress/strain-to-modulus relation is negative for
any normal stress (and principal strain).
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In order to illustrate the effects of compressibility, 𝜈, and dislocation densities 𝜌totals
and 𝜌totale , the normalised initial shear modulus, 𝜇/𝜇el ≡ lim𝜏𝑥𝑧→0 𝜇 (𝜏𝑥𝑧)/𝜇el, is given as a
function of the Poisson’s ratio 𝜈 and density 𝜌slips /𝜌slip in Fig. 2.11. The densities are varied
from solely edge to only screw dislocations in increments of Δ𝜌slips = 𝜌slip/5 across coloured
(dashed) lines in Fig. 2.11a. The shear moduli are presented for the given proportionality

(a) (b)

Figure 2.11: The normalised initial shear modulus 𝜇/𝜇el as a function of (a) the Poisson’s ratio 𝜈 and (b) the scaled
screw dislocation density 𝜌slips /𝜌slip with inverse coefficients 𝐿

√
𝜌slip = 1 and 3. The arrows indicate an increase in

(a) screw dislocation density 𝜌slips and (b) Poisson’s ratio 𝜈 across equivalently coloured lines.

coefficients (𝐿
√
𝜌slip)−1 =1/3 and 1 in a single active slip system. Several metals are depicted

in Fig. 2.11a with their horizontal loci corresponding to their respective Poisson’s ratios,
e.g. Au and Si with 𝜈 = 0.42, and Cr with 𝜈 = 0.21. The initial shear moduli predicted by
Van Liempt and Sietsma [4] are depicted by horizontal dashed-dotted lines. The initial
modulus as a function of the screw dislocation density is given in Fig. 2.11b, for several
Poisson’s ratios. As expected, we observe that the initial modulus is only independent of
dislocation character for Poisson’s ratio 𝜈 = 0. Otherwise, when a given FR source with
initial pure screw character bows out, the potential energy increases with dislocation line
length and the change of local line sense towards a mixed character. Hereby, the initial shear
modulus increases with Poisson’s ratio 𝜈 and screw dislocation density 𝜌slips . Juxtaposed,
the increase in potential energy with line length is lowered because of the formation of
mixed character dislocation line from an initial pure edge dislocation. Hence the initial
modulus depends on the fractions of screw and edge dislocations. For a given increase in
Poisson’s ratio 𝜈 ≥ 0.4 and/or edge dislocation density 𝜌slipe , the initial shear modulus tends
to zero. As expected, the initial modulus decreases with increasing coefficient 𝐿

√
𝜌slip. A

given decrease in proportionality coefficient 𝛼 implies an increase in dislocation density
and/or initial segment length. Apart from an increase in dislocation density after plastic
deformation, the accompanying changes in dislocation character affect the initial moduli.
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This might explain why accurate predictions of the apparent linear elastic constants after
plastic deformation proved impossible up to now [5].

2.3.4 Cubic Crystallites
In the following, we study materials with Poisson’s ratio 𝜈 = 1/3 which is commonly used
for steels and aluminium. It is well-known that at low temperatures BCC iron contains
predominantly screw dislocations [267]. Furthermore, BCC related non-Schmid effects [268],
e.g. the lack of mirror symmetry with respect to planes orthogonal to the dominant ⟨111⟩
slip directions and the structure of the screw cores, are not considered here. Recently,
Cash and Cai [30] discussed the surplus of edge dislocations in fatigued FCC metals. Given
that a dislocation network is continuous and cannot terminate inside the bulk, a single
character segment distribution is rare. Here, dislocation densities 𝜌totals /𝜌total = 1/4 and 3/4
are considered. The virtual tensile results are presented in Fig. 2.12. As expected [239],

(a) (b)

(c)

Figure 2.12: (a) The normalised normal stress 2𝜎𝐿/(𝐸el𝑏) as a function of normalised principal strain 2𝜖𝐿/𝑏 with
densities 𝜌totals /𝜌total = 1/4 and 3/4, and rational tensile directions ⟨100⟩, ⟨110⟩ and ⟨111⟩. The normalised tangent
modulus 𝑌 /𝐸el as a function of (b) the normalised stress 2𝜎𝐿/(𝐸el𝑏) and (c) the normalised strain 2𝜖𝐿/𝑏. The black
arrows marked with 𝜌totals indicate an increase in screw dislocation density 𝜌totals across lines with a given colour.
The dashed-dotted black line indicates the isotopic results in Eqs. (2.19) and (2.20) by Van Liempt and Sietsma [4].

the yield strength is independent of screw dislocation density 𝜌totals . Here, the initial seg-
ment lengths are equal 𝐿s = 𝐿e. Thus edge character FR sources become critical first; when
𝐿s > 𝐿e/(1− 𝜈), screw character FR sources become critical before edge character segments.
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Hence the yield strength depends on the length of edge character segments, or the seg-
ment length of screw dislocations. This is a general observation. The isotropic prediction
by Van Liempt and Sietsma [4] with Taylor factor 𝑀 = 3.06 is indicated by a dashed-dotted
black line with diamond symbols in Fig. 2.12. In accordance with Fig. 2.11, the initial Young’s
modulus 𝐸/𝐸el increases with increasing screw dislocation density 𝜌totals . We note that the
gradients of the cubic tangent moduli 𝑌 /𝐸el are initially positive. The positive initial gradient
is markedly different from the prediction by Van Liempt and Sietsma [4]. The principal strain
increases with edge dislocation density 𝜌totale . The increase in anelastic strain is most apparent
at the yield stress (See Figs. 2.12b and 2.12c). Given that the anelastic strain increases with
(edge) dislocation density, the linear elastic stiffness cannot a priori predict the principal
strain in compressible materials either.

In order to experimentally obtain information on a physical dislocation network, the
quantitative and qualitative change in stress-strain relationship, with a given change in dislo-
cation densities, has to be observable. It is obvious that this criterion is satisfied for Poisson’s
ratio 𝜈 = 1/2 (See Figs. 2.9-2.11). However, many engineering materials are compressible due
to which the difference in initial moduli decreases (See Fig. 2.11). Fortunately, the anelastic
strain, and in turn the tangent moduli, differ significantly for Poisson’s ratio 𝜈 = 1/3. This is
most apparent between the tensile results in the ⟨100⟩ directions. These display a difference
in initial moduli 𝐸 of about a tenth of the linear elastic Young’s modulus 𝐸el; the difference
in principal strains 𝜖c is about half the elastic strain 𝜖elc for 𝜎c (See Fig. 2.12b). The latter is
intuitive because an initial edge character FR source sweeps out a large area 𝑆 near activation
of the FR source.

Nearly all crystals are elastically anisotropic, at least to some extent. For several techni-
cally important engineeringmaterials with cubic anisotropy the Zener ratio𝑍 ≡ 2𝐶44/(𝐶11−𝐶12)
[269]. In materials with low Zener ratios, the FR source equilibrium shape is approximately
elliptical because self-energy chiefly depends on dislocation character. As the anisotropy
ratio increases, discrete segments of the dislocation loop tend to align themselves along
directions which are not necessarily screw orientations. Even so, Fitzgerald [244] showed
that the critical shear stress 𝜏c𝑥𝑧 of various initial dislocation segment orientations, in BCC
iron at room temperature, is approximated within an order of magnitude by an equivalent
elastically isotropic material provided that 𝑍 < 5. When the ratio 𝑍 ≥ 2.5, depending on the
Burgers vector and slip system, sharp corners emerge in the dislocation loop equilibrium
shape. Contrary to the elastically isotropic case, these corners are not directly associable
with dislocation character [244]. Those sharp corners are due to thermodynamic instability
of certain dislocation orientations [246] as a given crystallite’s anisotropy ratio increases
with, e.g., temperature. The influences of Zener ratio and dislocation orientation in 𝛼-iron
are comprehensively discussed in [244–247].

Firstly, we argue that aluminium is a promising candidate to perform single crystal
tensile-test upon. Foremost, aluminium is considered a “fairly isotropic” FCC material with
anisotropy ratio 1.23 (equal to the Zener ratio for cubic anisotropy [262]). The Poisson’s
ratio 𝜈 ≈ 0.33 is high enough to experimentally obtain distinguishable changes in tangent
modulus and yield point with a given change in dislocation density, effective segment
length and dislocation character. Furthermore, the emergence of a surplus of edge character
dislocation segment is expected for a fatigued specimen [30]. This warrants a noticeable
change in tensile behaviour. Secondly, for crystallites with cubic anisotropic elasticity,
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Scattergood and Bacon [243] developed a method to calculate effective elastic isotropic
moduli with dislocations in mind. Note that these effective elastic isotropic moduli are
not the apparent elastic moduli, but similar to the Voigt [270] and Reuss [271] average
elastic moduli, which were developed to model the aggregate behaviour of poly-crystallites.
The effective moduli are defined as explicit functions of the pre-logarithmic part of the
self-energy of straight screw and edge dislocations in a given slip system. Aubry et al. [246]
showed that one can model dislocation loop equilibrium shapes in BCC crystallites using
the isotropic elasticity and Scattergood and Bacon’s approximation. According to [246],
the Scattergood and Bacon model produces results in reasonable agreement with the full
anisotropic numerical calculations of a a given dislocation loops on a given slip system. Our
framework distinguishes between different slip systems and allows for tailoring the effective
elastic constants per glide plane, and even per initial line sense and Burgers vector. This
allows one to model the tangent moduli and yield points in crystallites with high Zener
ratios, e.g, in single iron crystallites with 𝑍 ≈ 8 as the 𝛼-𝛾 transition is approached [272].
The present elastic-anelastic constitutive model takes account of anisotropic effects on a
per-grain basis. For crystallographically textured materials, with e.g. cubic elasticity, an
additional level of abstraction is necessary beyond the present constitutive model, which is
satisfied by probabilistic or full-field crystal plasticity methods.

2.4 Conclusions
In this chapter, the anisotropic tangent moduli and the yield points for heterogeneous dis-
location networks in single crystallites are presented. First, the explicit expression for the
area swept by a FR source pre-, at- and post-yield is derived. Secondly, the geometries of the
slip systems in FCC and BCC single crystallites are incorporated. Making use of well known
methods from linear elastic theory, we visualise the apparent elastic constants.

It is shown that the previously predicted isotropic tangent modulus by Van Liempt and Si-
etsma [4] only yields accurate results for highly compressible material. For a finite Poisson’s
ratio, previous analysis was prone to over- and/or underestimate the total dislocation density
and effective segment length. Varying the dislocation density across slip systems to describe
a (non)uniform dislocation distribution, we observe:

- The pre-yield mechanical response for a given dislocation network in a linear elastic
isotropic material is anisotropic. The anisotropic symmetry and the magnitude of
anisotropy depend on the dislocation distribution, density and character;

- The initial moduli depend on the ratio between edge and screw dislocations for a finite
Poisson’s ratio. They decrease with increasing edge dislocation density and Poisson’s
ratio. For incompressible solids with a finite edge dislocation density, the apparent
initial Young’s modulus vanishes;

- The yield strength of single crystals depends on the initial lengths of edge or screw
dislocation segments. The anelastic dislocation strain increases with (edge) dislocation
density. Hence the total principal strain at yield cannot be predicted by the linear
elastic stiffness alone.
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3
Static Unified Inelastic

Model: pre- and post-yield
dislocation-mediated

deformation

Modelling dislocation glide over the initial part of a stress-strain curve of metals received
little attention up to now. However, dislocation glide is essential to ones understanding of the
fundamental relationship between inelastic deformation and the evolution of the dislocation
network structure. Therefore, we present a model of dislocation-driven deformation under static
loading conditions.

In this chapter, we reproduce repeated cyclic uniaxial tensile tests on Interstitial-Free and
Low-Alloy steels. The elastic mechanical behaviour is described by isotropic linear elastic-
ity, pre-yield anelastic mechanical behaviour by a dislocation bow-out model with dissipation,
and the post-yield evolution of dislocation network structure by a statistical storage model. We
hypothesise that when the local anelastic compliance is lower than the global plastic compliance,
deformation is mechanically recoverable, and vice versa. This hypothesis is corroborated with
the classical Taylor relation. We report the relation between stable and unstable dislocation glide
using this prototypical modelling framework.

We find four structural variables, that are based on dislocation physics, to describe the stress-strain
curve: total dislocation density, average dislocation segment length, dislocation junction forma-
tion rate, and average dislocation junction length. Firstly, we quantify the dislocation network
evolution during uniaxial monotonic loading, and verify work-hardening by dislocation junction
formation and a Taylor-type equation for flow. Finally, we present a semi-empirical relation
for the evolution of the dislocation network structure. Which allows us to: refine the physical
interpretation of the Taylor relationship, and rationalise experimental observations on apparent
modulus degradation by thermomechanical processing. Both these findings circumvent the
limitations of current, physics-based hardening models.
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Nomenclature
Variable Definition Dimension (mass M, length L and time t)
𝛼 proportionality −
𝛼′ Taylor relationships’ constant −
𝑏 Burgers vector magnitude L
𝛽 junction formation rate −
𝛽 work-hardenability −
𝐶 constant − & L−1
𝛾 shear strain −
𝐸 elastic modulus ML−1t−2
𝜖 strain −
Θ tangent modulus ML−1t−2
𝑗 & 𝑘 slip-system indices −
𝑙 segment length L
𝑀 Taylor factor −
𝜇 shear modulus ML−1t−2
𝑁 number −
𝜈 Poisson’s ratio −
𝜉 junction length L
𝑅 radius L
RMSE root mean-square error −, L−2 & ML−1t−2
R2 coefficient of determination −
𝜌 dislocation density L−2
�̂�−1 hardening ratio −
𝑆 area L2
𝜎 stress ML−1t−2
𝜏 shear stress ML−1t−2
𝑉 volume L3
𝜙 angle −
𝑥 & 𝑧 Cartesian coordinates L

3.1 Introduction
In this chapter, we construct a model of inelastic deformation under static loading condi-
tions. We propose a novel yield criterion that encompasses both the local behaviour of
individual sources and the global dislocation interactions that constitute hardening. First,
we ensure that the bow-out model [273] and a statistical storage [274] model share the same
set of dislocation structural variables, which is the unification in the present work. Then,
we hypothesise that when the local anelastic compliance is higher than the global plastic
compliance, deformation is mechanically irrecoverable, and vice versa. The unified inelastic
model consists of three parts: part one describes the anelastic deformation in the absence
of structural change in the dislocation network, i.e. the dissipative dislocation bow-out
model [7]. Here, we simplify the quasi-static bow-out model by Benzerga et al. [273]; part

This chapter is based on the scientific article: Van Dokkum, J. S., Bos, C., Offerman, S. E., Sietsma, J. Static Unified
Inelastic model: dislocation-mediated deformation pre-, at- and post-yield. Materialia, 101694, 2023.
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two describes the structural change of the dislocation network with plastic strain. Here,
we re-interpret the proto(type)-statistical storage model by Kocks [19]; and, part three is
the physics-based criterion that identifies the transition from mechanically recoverable to
irrecoverable deformation. In the remainder of the present work, we consider static loading
conditions [17], i.e. time-dependent (dislocation) interactions that take place at much shorter
timescales than the rate of loading and unloading. The present model must be: general, to
apply to various metals; concise, to represent dislocation physics; consistent, to incorporate
commonplace material properties; and, transparent, to uniquely capture the stress-strain
curves shape. These steps allow us to define the four unique physical, structural variables
of total dislocation density, average segment length, junction formation rate and average
junction length. Herewith we finalise our unified model, that we use to analyse uniaxial
tensile force-displacement curves.

All is performed under the following main assumption: the proportionality 𝛼 between
the square root of the dislocation density √𝜌 and the number of junctions per unit dislocation
length 1/⟨𝑙⟩ is constant for monotonic uniaxial loading in each cycle. This is based on the
relation between the the proportionality 𝛼 and the Taylor relationships’ constant 𝛼′ [33] as
proposed by Arechabaleta et al. [6]. The proportionality 𝛼 ≡ 1/(⟨𝑙⟩

√𝜌) thus represents the
geometry of the dislocation network, wherein the global dislocation density is connected to
the local dislocation-link structure as described by average dislocation segment length ⟨𝑙⟩.
From a physics perspective, we identify a disparity between the invariance of the Taylor
relationships’ constant 𝛼′ during work hardening, which is widely accepted, and the different
functional forms of the proportionality 𝛼. Several works find that the proportionality 𝛼 is
constant [6, 31, 32], while others [5, 7, 8] report that it decreases with plastic deformation.

Outline

The following results are presented and discussed: first, we corroborate our definition of yield
with the square root dependence of the yield strength on dislocation density. Wherefore we
analyse the experimental force-displacement results of asymmetric stress, low cyclic, uniaxial
ratcheting of single phase, Interstitial-Free and Low-Alloy, steels [5, 6]. Moreover, we find our
definition of yield to be in keeping with the Taylor relationship [33]; then, we reproduce the
evolution of average dislocation segment length and density with plastic monotonic uniaxial
loading. Combining these findings, we construct the statistical storage-base work-hardening
model. The statistical storage-based work-hardening model allows us to verify that the
Taylor relationship captures the flow stress increase with dislocation network structure
evolution; finally, we find that the proportionality 𝛼 decreases monotonically with plastic
strain, yet distinctly different from previous reports [6, 7]. These observations prompt us
to experimentally quantify the evolution of the dislocation network structure. Hence we
derive a new, semi-empirical relation of proportionality change that accompanies work
hardening. This relation then allows us to: present a new physical interpretation for the
Taylor relationships’ constant 𝛼′; rationalise previous experimental observations [28, 38, 41,
275–278] on the changes in initial apparent moduli with thermomechanical processing; and,
finally, we propose a first step towards improving the current unified inelastic model.
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3.2 Theory
For an isotropic mechanical response and uniaxial loading 𝜎, the total principal strain is

𝜖 (𝜎) = 𝜖el (𝜎)+ 𝜖in (𝜎) =
𝜎
𝐸
+ 𝜖an(𝜎)+ 𝜖pl(𝜎), (3.1)

with elastic lattice strain 𝜖el, inelastic strain 𝜖in, and anelastic and plastic strains, 𝜖an and 𝜖pl,
respectively, where 𝐸 is the isotropic linear elastic modulus. Here, the Roman subscript ∙
indicates a given mean-field property ∙. In the following, we consider solely isothermal
deformation conditions.

3.2.1 Anelastic Strain
A pinned dislocation segment with length 𝑙 lays along the 𝑥-axis with the applied shear
stress 𝜏PK in Fig. 3.1. Benzerga et al. [273] solved the differential equation of motion, under

Figure 3.1: Schematic representation of a dislocation link with radius of curvature 𝑅, subtended angle 𝜙 and swept
area 𝑆 indicated by a grey semicircle (Adapted from [4]).

quasi-static loading conditions, of a single dislocation link for a constant Peach-Koehler
force 𝜏PK𝑏, with the Burgers vector magnitude 𝑏. The Roman superscript ∙ indicates a given
specification ∙. These quasi-static loading conditions mean that the solution of the differential
equation of motion is approximated by omission of inertia [279]. Under static equilibrium,
the velocity of the dislocation line vanishes and the given link’s curvature is

1
𝑅
=
2𝜏PK

𝜇𝑏
, (3.2)

where 𝜇 = 𝐸/(2(1+ 𝜈)) is the linear elastic shear modulus, with Poisson’s ratio 𝜈. The area
swept by the given link is

𝑆 (𝜙) =

{ −𝜋𝑅2− 1
2𝑅

2(𝜙−sin(𝜙)), −𝜋 ≥ 𝜙 > −2𝜋;
1
2𝑅

2(𝜙−sin(𝜙)), 𝜋 > ‖𝜙‖ ≥ 0;
𝜋𝑅2− 1

2𝑅
2(𝜙−sin(𝜙)), 𝜋 ≤ 𝜙 < 2𝜋;

, (3.3)
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with the subtended angle

𝜙 (𝑅/𝑙) =

{ −2𝜋 −2sin−1 (𝑙/(2𝑅)) , 𝑅 < − 𝑙
2 ;

2sin−1 (𝑙/(2𝑅)) , ||𝑅|| ≤ 𝑙
2 ;

2𝜋 −2sin−1 (𝑙/(2𝑅)) , 𝑙
2 < 𝑅;

. (3.4)

Substituting Eqs. (3.2) and (3.4) in Eq. (3.3), we obtain the swept area for shear stress 𝜏PK < 𝜇𝑏/𝑙
as

𝑆 (𝜏PK, 𝑙) =
𝑙2

8 (
𝜏c

𝜏PK)

2

(2sin−1(
𝜏PK

𝜏c )−sin(2sin−1(
𝜏PK

𝜏c ))) , (3.5)

with the critical line stress 𝜏c ≡ 𝜇𝑏/𝑙. In the following, pre-yield dislocation motion is limited
to planar glide.

We take the local Peach-Koehler force 𝜏PK𝑏 equal to 𝜏𝑘𝑏, with resolved shear stress 𝜏𝑘 in
slip system 𝑘. Note that the Italic subscript ∙ is not the index notation, but indicates a given
slip system ∙. The anelastic shear strain is

𝛾an𝑘 (𝜏𝑘) =
𝑏𝜌𝑘
⟨𝑙𝑘⟩

𝑆 (𝜏𝑘 , ⟨𝑙𝑘⟩) , (3.6)

where the average segment length ⟨𝑙𝑘⟩ is related to the dislocation density 𝜌𝑘 on slip sys-
tem 𝑘. We thus consider a dislocation-link length-distribution, that we model implicitly by
representative, volumetric mean, dislocation structural properties ∙ indicated by ⟨∙⟩.

3.2.2 Statistical Storage Model
Kocks [19, 274] constructed a self-styled statistical dislocation storage and dynamic recovery
model. This early model, often called prototype [280] and/or Kocks-Mecking model, is
a posteriori rationalised by the empirical Palm-Voce equation [281, 282]. The formulation is
originally based on the forest strengthening model [10, 261], although this is not advocated
as such in the earliest publication [19]. Furthermore, the dislocation interaction is confined
to interaction between mobile and forest dislocations, and the model was formulated for
zero Kelvin as well. In order to relate the flow strength at 0 K to the glide flow stress
at finite temperatures and applied strain rates, one can use, following [19, 280, 283], a
simple Arrhenius expression for thermally activated glide. We extend this proto-statistical
storage-based model.

Mobile dislocation links travel a given distance till they interact with microstructural
obstacles and/or (other) dislocations. The latter interaction predominantly forms stable
junctions between dislocation lines on the given slip system and/or forest planes. We refer
to this process as dislocation storage and gave a schematic representation thereof in Fig. 1.1a.
Another part of the dislocation density annihilates because oppositely signed dislocations
meet, or they reach free surfaces and grain boundaries. We thus write the forest dislocation
structure evolution as:

𝜕𝜌𝑗
𝜕𝜖pl

=
𝜕𝜌+𝑗
𝜕𝜖pl

−
𝜕𝜌−𝑗
𝜕𝜖pl

. (3.7)

The forest structure evolution describes the creation and loss of a given part of the junction
density 𝜌𝑗 , where slip systems 𝑗 form junctions with a given slip system 𝑘. Note that the
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junction density 𝜌𝑗 is the number of potential junction sites to be formed between a given
mobile dislocation link on slip system 𝑘 with the given dislocation link on system 𝑗 . Here, the
first term on the right-hand side of Eq. (3.7) is defined by the chance that a mobile dislocation
encounters a potential junction and, subsequently, forms a (stable) junction. Therefore,
assuming a model with the mean free path on slip system 𝑘 given by the effective junction
spacing (

√𝜌𝑗 ⟨𝛽𝑘𝑗⟩)
−1, we write the storage term as:

𝜕𝜌+𝑗
𝜕𝜖pl

= ⟨𝛽𝑘𝑗⟩𝜌m𝑘
√𝜌𝑗

𝜕 ⟨𝑅𝑘⟩
𝜕𝜖pl

, (3.8)

where d ⟨𝑅𝑘⟩ is the average distance travelled by mobile dislocation lines per unit of vol-
ume 𝜌m𝑘 during a principal strain increment d𝜖pl. Furthermore, the mean junction formation
rate ⟨𝛽𝑘𝑗 ⟩ [284, 285] is assumed to be temperature independent, and, as will be shown, an
effective measure that relates the dislocations on slip system 𝑘 to the dislocation densities
on all slip systems, which include system 𝑘. The double Italic subscripts ∙𝑘𝑗 indicate the
interaction matrix ∙ of a given dislocation property of slip 𝑗 on a given dislocation property
of slip system 𝑘. The individual components of these interaction matrices are not determined
herein, but their effective values on a polycrystalline level are in the following.

The second term on the right-hand side of the structure evolution equation (3.7) describes
a recovery or a rearrangement process that occurs on junctions when impinged by mobile
dislocations. The number of potential recovery sites a mobile dislocation meets during the
principal strain increment d𝜖pl is defined as:

d𝑁 recov
𝑘𝑗 ≡ 𝜌𝑗 (𝜖pl)d ⟨𝑆𝑘⟩ , (3.9)

where ⟨𝑆𝑘⟩ is the average area swept by a mobile dislocation on slip system 𝑘. An average
junction length ⟨𝜉𝑗𝑘⟩ of the junction density 𝜌𝑗 gets recovered at each potential recovery
site [19]. We thus find that the average, recovered junction length per unit of volume 𝑉 is

𝜕𝜌−𝑗
𝜕𝜖pl

=
𝜌𝑗 ⟨𝜉𝑗𝑘⟩

𝑉
𝜕 ⟨𝑆𝑘⟩
𝜕𝜖pl

. (3.10)

Typically, one increases ⟨𝜉𝑗𝑘⟩ by means of a power law to describe cross-slip of screw dislo-
cations at low to intermediate temperatures and vacancy assisted climb from intermediate
up to high temperatures [280].

The assumption is made that the probability of a recovery event per unit of distance a
dislocation travels is proportional to the number of times that a potential recovery site is
contacted by a moving dislocation, i.e.,

𝜌m𝑘 d ⟨𝑅𝑘⟩ ∝ d ⟨𝑆𝑘⟩/𝑉 . (3.11)

This is equivalent to the Orowan equation and therefore we write:

𝜕𝛾pl𝑘
𝜕𝜖pl

≂ 𝑏𝜌m𝑘
⟨𝑅𝑘⟩
𝜖pl

≂
𝑏
𝑉
𝜕 ⟨𝑆𝑘⟩
𝜕𝜖pl

, (3.12)
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where 𝛾pl𝑘 is the plastic shear strain on slip system 𝑘. By substituting Eqs. (3.8), (3.10) and (3.12)
in Eq. (3.7) and using the chain rule, we find:

𝜕𝜌𝑗
𝜕𝛾pl𝑘

= ⟨𝛽𝑘𝑗⟩
√𝜌𝑗

𝑏
− ⟨𝜉𝑗𝑘⟩𝜌𝑗

𝑏
. (3.13)

We relate the potential junction-dislocation density to average area per junction on given
slip system 𝑘, and take 𝜌𝑗 (𝜖pl) ≡ 𝛼2𝑗𝑘𝜌𝑘 (𝜖pl) for a dislocation net with homogeneous junction
spacing, i.e. uniformly distributed junction sites characterised by the length scale ⟨𝑙𝑘⟩. The
density increase on given plane thus reads

𝜕𝜌𝑘
𝜕𝛾pl𝑘

= ⟨𝛽𝑘𝑗⟩
√𝜌𝑘

𝛼𝑗𝑘𝑏
−
𝜌𝑘⟨𝜉𝑗𝑘⟩

𝑏
, (3.14)

where we assume that the proportionality 𝛼𝑗𝑘 ≡ (
√𝜌𝑘 ⟨𝑙𝑘⟩)

−1 is constant during monotonic
plastic straining in each loading cycle. This is approximately satisfied for monotonic plastic
strain 𝜖plm ⪅ 5×10−3 as shown in the following.

Contrary to the number of potential junctions per area of slip plane 𝜌𝑗 , density 𝜌𝑘 is the
dislocation density on slip system 𝑘. Substituting the proportionality 𝛼𝑗𝑘 into Eq. (3.14), the
evolution of the average dislocation segment length is given by the ordinary differential
equation

𝜕 ⟨𝑙𝑘⟩
𝜕𝛾pl𝑘

= ⟨𝜉𝑗𝑘⟩⟨𝑙𝑘⟩
2𝑏

− ⟨𝛽𝑘𝑗⟩⟨𝑙𝑘⟩2

2𝑏
. (3.15)

When the network refinement d ⟨𝑙𝑘⟩ equals zero, we find the minimum segment length
lim ⟨𝑙𝑘⟩(𝜖pl →∞) ∼ ⟨𝜉𝑗𝑘⟩/⟨𝛽𝑘𝑗⟩, i.e. the scaled projection of average junction length⟨𝜉𝑗𝑘⟩
is recovered at each recovery site, and the network no longer refines.

3.2.3 Yield Strength
The definition of global, plastic flow strength before yield is ambiguous because dislocation
mediated deformation is limited without the glide of activated dislocation links. However,
when mobile dislocation loops are present with radii larger than the average dislocation
segment length, they move at Peach-Koehler forces that are a fraction of those necessary to
maintain pre-yield reversible deformation. Moreover, these dislocation loops shear across
larger areas than dislocation links do at pre-yield stress. So we hypothesise that when
the local anelastic compliance is lower than the global plastic compliance, deformation is
mechanically recoverable. Vice versa, once the local anelastic compliance is higher than the
global plastic compliance, inelasticity is mechanically irrecoverable. The least compliant
type of deformation thus describes post-yield mechanical deformation. Compliance is the
ratio of strain to stress with units of inverse stress, analogue to the inverse of the stiffness.

In Fig. 3.2, a schematic representation of the yield-point by shear stress-inelastic strain
curves is given. At yield, we then ensure the flow curve and tangent modulus are continuous
and write the criteria:

Θpl
𝑘
|||𝜏𝑘=𝜏y𝑘

≡ Θan
𝑘
|||𝜏𝑘=𝜏y𝑘

; and, lim
𝜏𝑘→(𝜏y𝑘 )

+
𝛾pl𝑘 ≡ lim

𝜏𝑘→(𝜏y𝑘 )
− 𝛾

an
𝑘 , (3.16)
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Figure 3.2: Schematic representation of the novel yield criterion by shear stress-inelastic shear strain curves.

i.e. at yield the anelastic and plastic compliance are equal. The post-yield tangent modulus
thus is larger for plastic than for anelastic deformation, which is obvious from experiments [4–
7]. Note that by the right-hand side of Eq. (3.16), the pre-yield anelastic deformation becomes
plastic deformation when yield occurs, and we choose to neglect pre-yield micro-plasticity.
A finite yield stress based on a Taylor-style relations considers forest dislocations [286],
junction strengthening [287] and/or a combination of both [35]. A potential plastic flow rule
thus is defined as:

𝜏𝑘 (𝜖pl) ≡ 𝛼𝑘𝑗𝜇𝑏
√
𝜌𝑗 (𝜖pl). (3.17)

The novel yield criterion and the Taylor-type equation (3.17) are distinct herein.

3.3 Calculation
We use the relation between the normal stress and resolved shear stress, and the principal
inelastic strain and inelastic shear strain as given by the Taylor factor 𝑀 . Assuming dis-
location lines to be, one, homogeneously dispersed, and two, uniformly distributed over 𝑘
slip-systems with dislocation density 𝜌𝑘 each, i.e. the total dislocation density∑𝑘 𝜌𝑘 ≡ 𝑘⟨𝜌𝑘⟩,
we approximate the resolved shear stress and principal inelastic strain by

𝜏 ≈
𝜎
𝑀

, and 𝜖in(𝜎) ≈
1
𝑀

∑
𝑘
𝛾 in𝑘 (𝜏), (3.18)

respectively.
In the following, the average junction length ⟨𝜉𝑘⟩, the mean junction formation rate ⟨𝛽𝑘⟩

and proportionality 𝛼𝑘 are assumed to represent dislocation statistics of ⟨𝜉𝑗𝑘⟩, ⟨𝛽𝑘𝑗⟩
and 𝛼𝑗𝑘 , respectively, which is necessary for the Taylor homogenisation. This requires
the average junction length ⟨𝜉𝑘⟩, the mean junction formation rate ⟨𝛽𝑘⟩ and proportional-
ity 𝛼𝑘 = (

√𝜌𝑘⟨𝑙𝑘⟩)
−1 to be solely properties of the given slip system 𝑘. Variable with the

given Roman subscript ∙, and several without, e.g. proportionality 𝛼𝑘 , thus are spatially
averaged values, here across grains, that represent the given, more complex polycrystalline
morphology.
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3.3.1 Flow Curve
In this work, the plastic shear strain 𝛾pl𝑘 relates to the dislocation density 𝜌𝑘 via

𝜕𝜌𝑘
𝜕𝛾pl𝑘

=
⟨𝛽𝑘⟩
𝛼𝑘𝑏

√
𝜌𝑘 (𝛾

pl
𝑘 )−

⟨𝜉𝑘⟩
𝑏

𝜌𝑘 (𝛾
pl
𝑘 ) . (3.19)

The maximum dislocation density is 𝜌max
𝑘 = (𝛼𝑘⟨𝜉𝑘⟩/⟨𝛽𝑘⟩)−2, which corresponds with the

total density of created dislocation line being recovered. The flow strength is

𝜏𝑘 (𝛾
pl
𝑘 ) = 𝛼𝑘𝜇𝑏

√
𝜌𝑘(𝛾

pl
𝑘 ) = 𝜇𝑏/⟨𝑙𝑘 (𝛾

pl
𝑘 )⟩, (3.20)

where the average dislocation-link length is equal to the mean potential junction spacing.
The inelastic shear strain 𝛾 in𝑘 = 𝛾an𝑘 + 𝛾pl𝑘 on slip system 𝑘 is derived in Appendix C. Given the
anelastic and plastic tangent moduli, Eqs. (C.3) and (C.6), respectively, are symmetric, and
substituting them into the left-hand side term of Eq. (3.16), we obtain the inverse hardening
ratio

�̂�𝑘 =
1

�̄�y𝑘√
1−(�̄�

y
𝑘)

2
−sin−1 (�̄�

y
𝑘)

⎛
⎜
⎜
⎝

⟨𝛽𝑘⟩√
1−(�̄�

y
𝑘)

2
−
⟨𝛽𝑘⟩
�̄�y𝑘

sin−1 (�̄�
y
𝑘)−4(�̄�

y
𝑘)

2 𝛼2𝑘
⎞
⎟
⎟
⎠
, (3.21)

where �̂�-1𝑘 ≡ ⟨𝑙𝑘⟩/⟨𝜉𝑘⟩ is a measure of the capacity of the dislocation network to refine the
average link length, i.e. harden. Herein, the overhat ∙̂ indicates a given scaled variable ∙.

Li and Wagoner [7] constructed a dissipative bow-out (DB) model. The increment of
energy dissipated is conceptually provided by a reduction of the resolved shear stress with a
static friction shear stress 𝜏f. The physical interpretation of the static friction shear stress 𝜏f
is a local strengthening mechanism by various microstructural obstacles to glide, that is
particularised to the experiment’s materials in the following. The principle inelastic strain is

𝜖in(𝜎) ≈
𝑏

𝑀⟨𝑙⟩

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

0, 0 ≤ 𝜎 ≤ 𝜎f ;1

8𝛼2 (�̄�′)
2 (2sin−1 (�̄�′)−sin(2sin−1 (�̄�′))) , 𝜎f < 𝜎 ≤ 𝜎y ;

1
8𝛼2(�̄�

′y)
2 (2sin

−1
(�̄�

′y)−sin(2sin
−1

(�̄�
′y)))+

2
�̂�
ln

⎛
⎜
⎜
⎜
⎜
⎝

1−
�̂��̄�′y
𝛽

1− �̂��̄�′
𝛽

⎞
⎟
⎟
⎟
⎟
⎠

, 𝜎y < 𝜎 < 𝜎s ;

, (3.22a)

with normalised effective resolved shear stress and yield strength,

�̄�′ =
(𝜎−𝜎f)

𝑀
⟨𝑙⟩
𝑏𝜇

, and �̄�′y =
(𝜎y−𝜎f)

𝑀
⟨𝑙⟩
𝑏𝜇

, (3.22b)

respectively, where 𝜎f =𝑀𝜏f is the static friction stress and 𝜎s the saturation stress. Here, 𝛼, 𝛽
and �̂�−1 = ⟨𝑙⟩/𝜉 are the proportionality, junction formation rate and hardening ratio at the
polycrystalline level. Herein, the overbar ∙̄ indicates a given normalised variable ∙. To
facilitate the subsequent numerical regression, we normalise the structural parameters in
the following.
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3.3.2 Normalisation
As plastic straining continues, the total dislocation density approaches the maximum den-
sity, 𝜌 ∼ 𝜌max, i.e. the shear flow stress asymptotically approaches the saturation shear
stress

𝜏s ∼ 𝛼𝜇𝑏
√
𝜌max (𝛾) =

𝛽𝜇𝑏
𝜉

. (3.23)

The tangent modulus thus decreases with increasing strain, i.e. 𝜕Θ/𝜕𝜖 ≤ 0, which we rewrite
as

𝜕2𝜏
𝜕𝛾2in

=
𝜏�̂�2

4
−
𝛽�̂�
4

≤ 0. (3.24)

Then the minimum mean junction formation rate becomes

𝛽min ≡
4𝛼2 (�̄�y)

3
√
1−(�̄�y)

2

�̄�y−
√
1−(�̄�y)

2 sin−1 (�̄�y)
, (3.25)

that is equivalent to no recovery taking place, i.e. when the average dislocation junction
length at the polycrystalline level 𝜉 ∼ 0, and allows for scaling the junction formation rate 𝛽
over the range (0,1). Here, the inverted scaled mean junction formation rate 𝛽 = 𝛽min/𝛽. The
inverted scaled junction formation rate 𝛽 thus is the measure of work-hardening capacity,
where the limit zero equals perfect plasticity, and unity the absence of anelasticity and solely
hardening. From here on we refer to 𝛽 as the work-hardenability, that is unrelated to the
depth to which a material is hardened after putting it through a heat treatment process [288].
Substituting the work-hardenability 𝛽 and inverse hardening ratio �̂� in Eq. (C.5), we define
the scaled dimensionless shear stress as ̂̄𝜏 ≡ 𝜏′/𝜏s = �̄�′(1−𝛽)/�̄�y. This allows for scaling the
normalised resolved shear stress ̂̄𝜏 ∈ (0,1) as well. Hence the average dislocation segment
length ⟨𝑙⟩ is uniquely defined by

𝜎s⟨𝑙⟩
𝑀𝜇𝑏

1−𝛽
�̄�y

∼ 1. (3.26)

Substituting work-hardenability 𝛽 and scaled normalised resolved shear stress ̂̄𝜏 in Eq. (3.22a)
and normalising the inelastic shear strainwith the anelastic strain at-yield �̄�an (𝜏y) (right-hand
side of Eq. (3.16)), we obtain the scaled inelastic shear strain as

�̂�in (𝜏/𝜏s) ≡
𝛾in (𝜏)
𝛾an (𝜏y)

=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

(
1−𝛽
̂̄𝜏 )

2 2sin−1
(

̂̄𝜏�̄�y
1−𝛽 )

−sin(2sin−1(
̂̄𝜏�̄�y
1−𝛽 ))

2sin−1 (�̄�y)−sin(2sin−1 (�̄�y))
, 0 < ̂̄𝜏 ≤ 1−𝛽;

1+

sin−1 (�̄�y)−
�̄�y√
1−�̄�2y

2sin−1 (�̄�y)−sin(2sin−1 (�̄�y))

4𝛽

(1−𝛽)
ln(

1− ̂̄𝜏
𝛽 ) , 1−𝛽 < ̂̄𝜏 < 1;

. (3.27)

Here, solely in equation (3.27) the friction stress is neglected for readability, i.e. 𝜎f = 0; in
the remainder of this work, the friction stress is accounted for. Note that the constant
proportionality 𝛼 linearly scales the inelastic strain because it is removed by scaling with
the anelastic shear strain at yield. Equations (3.18), (3.22) and (3.26) thus allow one to
uniquely obtain the proportionality coefficient 𝛼, work-hardenability 𝛽 and normalised yield
strength �̄�y, all at the polycrystalline level.
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3.4 Method
In previous methodology [4–6], graphical estimates are made by means of the initial degrada-
tion of the apparent moduli [31] and a distinct transition point on the tangent modulus. Van
Liempt and Sietsma [4] formulated a novel method to determine the yield stress of metals
from tensile curves. The transition point is determined by a clearly distinguishable feature in
a given plot of the tangent modulus versus the uniaxial normal stress. Arechabaleta et al. [5, 6]
propose an accessible, cheap and accurate method to quantify the dislocation network in
metals, based on tensile tests and the aforementioned method [4]. A similar approach is
used by Li and Wagoner [7], who closely reproduce experimental results on Dual-Phase,
Transformation- and Twinning-Induced Plasticity steels. The present unified model allows
us to advance this methodology, that yields the total dislocation density 𝜌 and average
segment length ⟨𝑙⟩ at the polycrystalline level.

By means of the unified model, we analyse repeated cyclic uniaxial tensile tests on
Interstitial-Free and Low-Alloy steels. We characterise the dislocation network evolution in
relation to the macroscopic stress-strain behaviour. The present model is rooted in disloca-
tion physics, yet general, so applicable to a wide range of metals [7]. Herein, we perform
non-linear regressions on experimental force-displacement measurements. Numerical com-
putation is limited to non-linear regression by an existing software package [289].

3.4.1 Experimental
Repeated cyclic tensile tests are performed on Low-Alloy (LA) and Interstitial-Free (IF)
steel [6]. Both are single-phase ferritic steels. The main alloying elements for the LA
steel are 0.08 wt% C, 0.30 wt% Mn and 0.10 wt% Si, and for the IF steel 0.0047 wt% C,
0.15 wt% Mn and 0.049 wt% Ti. Specimens of 275 × 10−3 m total length, 60 × 10−3 m gauge
length and 12.5×10−3 m gauge width, with a thickness of 0.7×10−3 m are used. Note that
we choose to present our results in a coherent system of units. Static loading conditions
are achieved when deformation is applied slowly. The resultant static load then varies slow
compared to phonon drag and thermally-activated dislocation motion [9, 17].

The repeated cyclic tests consisted at most of twenty successive loading and unloading
cycles with a strain rate in the order of 10−5 s−1. In each of these cycles the stress reduces
to 𝜎f ≈ 10× 106 Pa after the application of Δ𝜖plm ≈ 5×10−3 true principal plastic strain. We
choose to keep the friction stress constant because of the finite positive stress at load reversal.
Detailed descriptions of the methodologies, specimens geometries and tensile tester is given
in the works [5, 6] by Arechabaleta et al..

3.4.2 Numerical
By means of the present method, the dislocation network structure is approximated. The
present, numericalmethodology is as follows (See also Fig. 3.3): (1) themeasured force-displacement
curve is transformed to the normal stress vs. principal strain curve, and the friction stress 𝜎f
and strain 𝜎f/𝐸 are subtracted from the normal stress 𝜎 and the total principal strain 𝜖,
respectively; (2) the principal elastic strain 𝜖el is subtracted from total principal strain 𝜖 via
Eq. (3.1), and the resolved shear stress 𝜏 and inelastic strain 𝛾in are approximated by Eq. (3.18);
(3) the plastic hardening rate Θpl is numerically obtained by a finite-difference method, and
the normalised saturation shear stress 𝜏s/(𝜇𝑏) is obtained by a linear fit on the plastic tan-
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gent modulus of Stage-II hardening; (4) the shear stress 𝜏 is normalised by the saturation
stress 𝜏s, and the dislocation shear strain 𝛾in by the anelastic strain at-yield 𝛾an (𝜏y), i.e.
we obtain the scaled inelastic shear strain �̂�in; (5) the scaled dimensionless shear stress is
multiplied by negative one, and subsequently unity is added (i.e. the scaled dimensionless
shear strain-stress curve is mirrored in the vertical axis through the origin, and then shifted
in the positive stress direction); and (6), the natural logarithms of the scaled shear stress,
and of the scaled inelastic shear strain, i.e. ln(1− 𝜏/𝜏s) and ln(𝛾in/𝛾an (𝜏y)), respectively,
are calculated. A schematic representation of the steps (2-6) is given in Fig. 3.3. We ob-
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Figure 3.3: Schematic representation of the present numerical methodology in steps (2-6).

tain the dependent variables 𝛼, 𝛽 and �̄�y by a given non-linear regression with Eq. (3.27).
Subsequently, we calculate the effective segment length ⟨𝑙⟩ by means of Eq. (3.26) and the
dislocation density as 𝜌 = (𝛼⟨𝑙⟩)−2 on the polycrystalline level. Note that the yield criterion
is not restricted to our choice of strain-hardening model. However, the set of structural
variables changes with the hardening models’ description of dislocation network structure.
The current unified model is limited to Stage-II work-hardening of a polycrystalline material.
The storage and loss parameters, 𝛽/𝛼𝑏 and 𝜉/𝑏 are thus obtained via Eqs. (3.25) and (3.21),
respectively. However, there is not limitation to the choice of work-hardening model. For ex-
ample, towards higher applied plastic strains, a phenomenological description of the complex
process of Stage-III can serve a useful purpose [17].

3.5 Results
The loading and unloading periods are determined from the time-step vs. displacement
curves, with a constant time-step period of 5 × 10−3 seconds across > 1.8×105 data points.
The cyclic true normal stress vs. true principal strain curves are determined from the force
vs. engineering strain curves, under the assumption of a constant volume, and corrected for,
by the initial engineering strain at (re)loading. The datasets of true normal stress vs. true
principal strain are combined per cycle and sorted by true normal stress. The mean and the
root mean square error (RMSE) are determined by a rectangular windowing function across
ten neighbouring data points of equal and/or increased true normal stress. The standard
deviation in true principal strain serves then used as weight in the successive non-linear
regressions. In Fig. 3.4, the cyclic true normal stress as a function of the cyclic true principal
strain is given; successive cyclic results are shifted by 5 × 10−3 strain and indicated with
five different, four times repeated, colours. The plastic tangent modulus is obtained by first
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Figure 3.4: The cyclic normal true stress 𝜎c as a function of the cyclic principal true strain 𝜖c for (a) IF and (b) LA,
and the unified model prediction (3.22) indicated by dashed black lines. The error bars indicate the RMSEs in stress
and strain per data point.

filtering the monotonic average true normal stress vs. average true principal strain data by
convolution with a block function with a width of a hundred neighbouring data points with
a plastic strain range Δ𝜖pl ≈ 10−6. Subsequently, the tangent modulus is calculated by the
central-difference method. A linear regression is performed on the plastic tangent modulus,
from a minimum true normal plastic stress defined with the ≤ 0.002 off-set method on the
cyclic average normal stress vs. average true principal strain curves. The saturation stress 𝜎s
is calculated by equating the Stage-II hardening model’s plastic tangent modulus to zero.
In Appendix D, this method is briefly summarised. The saturation stress 𝜎s = 320±1×106
and 380±3×106 Pa for IF and LA, respectively. Here, ±∙ indicates RMSE for independent
and standard error for dependent variables. We calculate a single saturation stress 𝜎s for
each steel grade across all loading-unloading cycles. Whereby we consider any changes
in deformation conditions negligible, e.g. a changes in specimen temperature across these
successive cycles. Furthermore, we find that the stress-strain range satisfies the Considère
criterion [290] for uniform deformation.

The dependent variables 𝛽, 𝛼 and �̄�y are obtained by first a non-linear regression on an
hundredth of all data points. Herein, the non-linear regression is by the damped least-squared
method [259, 260]. We use a single set of material parameters, namely: elastic shear mod-
ulus 𝜇 = 83.8 × 109 Pa. The alloying content of IF and LA lowers the elastic modulus less
than 1% of the value for pure 𝛼−Iron [291]; Poisson’s ratio 𝜈 = 0.3; Burgers vector magni-
tude 𝑏 = 2.48 × 10−10 m [5]; and, Taylor factor 𝑀 = 3.06 [292],[293] for body-centred cubic
polycrystalline material.

Because the dependent variable �̄�y lies near the edge of the permissible range [0,1], we use
the natural logarithm-transformation to ensure convergence: �̄�y ≡ �̄�min

y +(1− �̄�min
y )/(1+ 𝑒− ̂̄𝜏y

),

with the lower boundary �̄�min
y = 0.9 and the scaled normalised yield strength ̂̄𝜏y ∈ℜ. The

latter is related to, but distinct from the normalised yield strength �̄�y ∈ (0,1] and scaled dimen-
sionless stress ̂̄𝜏 ∈ (0,1). Although dependent variable 𝛽 shares its permissible range with �̄�y,
no transformation is found necessary. The initial guess for the dependent variables, informed
by their geometric meaning [294], are varied across the ranges �̄�y ∈ [0.9,0.99], 𝛼 ∈ [0.1,0.9]



3

60 Part I: Static Unified Inelastic Model

and 𝛽 ∈ [0.1,0.9], and converge to a unique set of best-fit parameters. Subsequently, the set
of best-fit parameters is used to initialise the non-linear regression on the mean cyclic true
normal stress vs. cyclic mean true principal strain results as presented here. The covariance
matrix is determined, and the standard errors and correlation coefficients are used to calculate
the standard error of the remaining physical, structural parameters, i.e. dislocation density 𝜌,
average segment length ⟨𝑙⟩ and storage rate 𝛽/𝛼. Note that the normalised average junction
length 𝜉/𝑏 is already uniquely defined when the saturation stress 𝜎s is kept constant.

The model reproductions (3.22) are indicated in Fig. 3.4 by dashed black lines. The
predictions are omitted for the first loading cycle of IF and the first three of LA, due to
poorness of fit and the yield point phenomenon, respectively. The former is thought to be in
part due to: micro-plasticity observed in virgin materials, as discussed by Li andWagoner [7];
internal stresses [6]; and, imperfect alignment in the samples [6]. In Fig. 3.5a, the cyclic
normal true stress 𝜎c as a function of the cyclic principal true strain 𝜖c, and the fit for
cycle #5 are presented; the stress-strain ranges are indicated in Fig. 3.4 by dashed light-gray

(a) (b)

Figure 3.5: (a) The scaled cyclic normal true stress 𝜎c/𝜎s as a function of the cyclic principal true strain 𝜖c for
cycle #5 in 3.4a IF and (b) LA, and the unified model prediction (3.22) indicated by dashed black lines. The error
bars indicate the RMSEs in stress and strain per data point. (b) The root mean-square error (RMSE) and shifted
coefficient of determination 1−R2 as functions of the cyclic true principal strain 𝜖c for IF and LA, are indicated by
coloured dots and open squares, respectively.

rectangles. The total cyclic inelastic strain, per cycle, is 2×10−4⋯12×10−4 for both steel
grades. This fraction of the total cyclic inelastic strain, per cycle, increases by 1 ∶ 17⋯1 ∶ 4
and 1 ∶ 10⋯1 ∶ 5 between cycle #3 and #20, for IF and LA, respectively.

The RMSE and coefficient of determination R2 are given in Fig. 3.5b; the solid, coloured
circles indicate the RMSE in strain over each loading cycle, and the open, coloured squares the
shifted coefficient of determination 1−R2. The ranges of the coefficient of determination R2
are (0.989,0.999) and (0.994,0.999) for IF and LA, respectively.

In Fig. 3.6, the proportionality 𝛼, scaled normalised work-hardenability 𝛽/𝛼, and yield
stress 𝜎y and scaled normalised yield stress ̂̄𝜏y are presented. In Fig. 3.7, the total dislocation
density 𝜌, the average dislocation segment length ⟨𝑙⟩ and the storage rate 𝛽/𝛼 are presented.
The statistical measures and the physical parameters in Fig. 3.5a, and Figs. 3.6 and 3.7,
respectively, are spaced by the applied cyclic 5×10−3 strain so they correspond with the
cyclic strains at reloading in Fig. 3.4.
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Figure 3.6: The proportionality 𝛼, scaled normalised work-hardenability 𝛽/𝛼, normalised yield stress (𝜎y −𝜎f)/𝜎s
and scaled normalised yield stress ̂̄𝜏y as functions of the cyclic principal true strain 𝜖c for (a) IF and (b) LA. The
error bars indicate the standard error in the experimentally obtained physical parameters.
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Figure 3.7: The total dislocation density 𝜌, scaled average segment length ⟨𝑙⟩/𝑏 and storage rate 𝛽/𝛼 as functions of
the cyclic principal true strain 𝜖c for (a) IF and (b) LA. The error bars indicate the standard error in the experimentally
obtained physical parameters.

3.6 Discussion
3.6.1 Yield Strength
The Taylor relationship reads

𝜎y = 𝜎0+𝛼′𝑀𝜇𝑏√𝜌, (3.28)

where 𝜎0 ≡ 𝑀𝜏0 is a strength contribution due to other microstructural obstacles than
dislocations and 𝛼′ constant. Note that equations (3.17) and (3.28) differ by a factor 𝛼/𝛼′,
that is not necessarily unity, because the proportionality is allowed to vary each cycle while
the Taylor relationships’ constant is not. Moreover, the difference between the maximum
line stress 𝜎c (See Sec. 3.2.1) and the present observed yield strength 𝜎y requires explanation.
It stands within reason that dislocation segments whose lengths are several times greater
than the mean segment length exist [8]. Those of “greater length” than the average segment
length are expected to control the onset of flow [32]. Considering this physical property of
the dislocation network, we thus limit the present definition of the observed yield strength
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by

𝜎y ≃ 𝜎f+𝑀
𝜇𝑏
⟨𝑙⟩

. (3.29)

Here, the difference between theoretical and observed yield strength is exceedingly small,
but finite, due to the distributive nature of dislocation-link lengths, that comprise the given
dislocation network. It has since long been accepted that the so-called Taylor equation describes
the relation between yield stress and dislocation density [6], which warrants the validation
of our hypothesis. In Fig. 3.8, the yield stress 𝜎y is given as a function of the square root
of the dislocation density √𝜌; the dashed gray line indicates the classic Taylor relation-

(a) (b)

Figure 3.8: (a) The scaled yield stress (𝜎y −𝜎f)/𝜎s as a function of the square root of the scaled dislocation
density

√
𝜌/𝜌max, and (b) the scaled shear flow stress (𝜏y − 𝜏f/)𝜏s as a function of the normalised dislocation

density 𝜌𝜇2𝑏2/𝜎2
s for IF and LA. The blue arrow indicates the original position of the origin of LA and the error

bars indicate the standard error and the RMSE.

ship (i.e. 𝛼′𝜇𝑏√𝜌 [33]). Note that the maximum dislocation density and saturation stress
are constants across loading-unloading cycles. Moreover, the maximum dislocation den-
sity 𝜌max is defined by Eq. (3.23), so the scaled dislocation density 𝜌/𝜌max is independent of
proportionality 𝛼.

It is clear that the classic Taylor relationship holds, with RMSEs 1.11×103 and 1.22×103 Pa,
for IF and LA, respectively. Where the maximum (latter) absolute error is less than 0.1% of the
saturation stress 𝜎s. The present definition of the observed yield strength is thus corroborated
by the square root dependency of the yield stress on dislocation density. Which is testament
to the success of the classic Taylor relationship [33], even though the latter is based on the
force necessary for a single-character dislocation to move through a regular spaced grid of
like-signed infinite straight Volterra dislocation lines. We find the physics-based local yield
criterion as postulated by Gurrutxaga et al. [279], and Van Liempt and Sietsma [4], and em-
ployed by Torkabadi et al. [28] and Li andWagoner [7]. In Fig. 3.8b, the shear yield stress 𝜏y is
presented as a function of the dislocation density 𝜌; the dashed coloured lines indicate the Tay-
lor relationship (3.28). The origin for LA is shifted for clarity, the blue arrow indicates its origi-
nal position. The constant and strength contribution

{
𝛼′ [-], 𝜏0− 𝜏f [106 Pa]

}
= {0.410,18.7}

and {0.345,34.0}; and, the RMSEs are 57 × 104 and 28×104 Pa for IF and LA, respectively.
Standard errors are exceedingly small hence omitted here. Note that stresses 𝜎0 and 𝜎f are
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not necessarily equal because the former is a global strength contribution due to other mi-
crostructural obstacles than dislocations, while the latter is a local strengthening mechanism
by dislocation links that “jump over” other soft pins [4, 7]. Moreover, the normalised disloca-
tion density 𝜌𝜇2𝑏2/𝜎2

s does depend on the measured proportionality 𝛼. Present definition of
the observed yield strength thus is in keeping with the Taylor relationship (3.28) as well.

3.6.2 Dislocation Network Evolution
The statistical storage model describes the dislocation network structure evolution with
plastic strain. Integrating the average segment length evolution (3.15) by parts and solving for
the principal plastic strain, we define a scaled average dislocation segment length⟨𝑙(𝜖pl)⟩≡

⟨𝑙(𝜖pl)⟩/⟨𝑙(𝜖pl →∞)⟩, that decreases as:

⟨𝑙(𝜖pl)⟩ =((⟨𝑙 (0)⟩
−1

−1)𝑒−𝑀𝜖pl𝜉/(2𝑏)+1)

−1

. (3.30)

Integrating equation (3.19) by parts and solving for plastic strain once more, we define a
scaled dislocation density �̂�(𝜖pl) = 𝜌(𝜖pl)/𝜌(𝜖pl →∞), that increases as:

�̂�(𝜖pl) = ((
√
�̂�(0)−1)𝑒

−𝑀𝜖pl𝜉/(2𝑏)+1)
2
. (3.31)

Equations (3.30) and (3.31) constitute the evolution of dislocation structural parameters in
the present statistical storage model.

We assume that physics-based structural parameters obtained at a given loading cycle
are an indication of the dislocation network structure when unloading initiates in the pre-
ceding loading-unloading cycle; the dislocation network structure is preserved between
unloading and subsequent reloading upto yield. Furthermore, we expect no local trans-
formation of the dislocation structure into persistent slip bands [295] under our loading
conditions [296, 297]. Torkabadi et al. [28] show aforementioned assumptions to hold for
Advanced High Strength Steels by comparison of monotonic and repeated cyclic uniaxial
tensile test results. Hence we keep these assumptions in the remainder of the present work,
which our experimental observations on the monotonic (flow) stress curves in Sec. 3.6.3
support.

In Fig. 3.9, the scaled dislocation density �̂� is presented as a function of the monotonic
plastic strain 𝜖pl; the scaled average dislocation segment length ⟨𝑙⟩ is given as well; the
proportionality 𝛼 is scaled by its number average ⟨𝛼⟩ over all loading-unloading cycles of
a particular type of steel; and, the coloured dashed lines indicate the evolution of average
dislocation segment length, dislocation density and proportionality by Eqs. (3.30) and (3.31),
respectively.

In Fig. 3.10, the average junction length 𝜉 is presented as a function of the monotonic
plastic strain 𝜖pl; the physical, structural parameter 𝜉/𝑏 per cycle is indicated by coloured
circles (See Sec. 3.5). The constant average junction lengths 𝜉 for monotonic loading are
determined as described in this section by Eq. (3.31), and for Stage-II hardening in Eq. (D.3).
The former and latter results are indicated by solid and dashed coloured lines, respectively,
and their standard errors by equivalently coloured shaded areas. The average junction
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Figure 3.9: The scaled dislocation density 𝜌/𝜌(𝜖pl →∞), scaled average dislocation segment
length ⟨𝑙⟩/⟨𝑙(𝜖pl →∞)⟩ and scaled proportionality 𝛼/⟨𝛼⟩ as functions of the monotonic plastic strain 𝜖pl for (a) IF
and (b) LA. The error bars indicate the standard error and RMSE, and the dashed coloured lines the statistical
storage model.
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Figure 3.10: The normalised average junction length 𝜉/𝑏 as a function of the monotonic plastic strain 𝜖pl for
IF and LA. The error bars indicate the standard errors and RMSE, and the coloured circles the scaled junction
lengths 𝜉/𝑏 per cycle; the solid and dashed coloured lines indicate the junction lengths 𝜉/𝑏 for monotonic loading,
and the coloured shaded areas their standard errors.

lengths 𝜉 differ within 30% of each other. We argue that the origin of these differences
are due to the assumption of a constant proportionality 𝛼 in the present statistical storage
model, and noise of the experimental signals in the first derivative of the stress-strain curves,
respectively. Moreover, the storage parameter 𝛽/(𝛼𝑏) is presumed to be constant for Stage-II
work-hardening (See Sec. 3.2.2). The storage rate 𝛽/𝛼 in Fig. 3.7 increases with the cyclic
principal true strain 𝜖c due to the decrease in proportionality 𝛼 as shown in Figs. 3.9, when
the junction formation rate 𝛽 remains constant.

The main assumption in the statistical storage model on the dislocation structure is the
constant proportionality 𝛼 ≡ (⟨𝑙⟩

√𝜌)
−1 for Stage-II work-hardening. Obviously, this holds

when one combines equations (3.30) and (3.31). Even so, the measured proportionality 𝛼,
as displayed in Figs. 3.6 and 3.9, decreases with plastic strain. This is as rationalised by
Li and Wagoner [7], who expect the proportionality 𝛼 to decrease with forest dislocation
density. Moreover, they [7] present an empirical linear decrease of the squared propor-
tionality 𝛼2 with flow stress 𝜎 ∝ √𝜌 and expect the proportionality 𝛼 to saturate with
significant strain hardening. The proportionality 𝛼 is obviously not constant with increasing
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plastic strain across the monotonic loading curve. Yet, the differences across successive
loading and unloading cycles are tenths of their number average. So, we find that propor-
tionality 𝛼 is approximately constant and equal to 1/(

√𝜌⟨𝑙⟩) over monotonic plastic strain
ranges 𝜖pl ⪅ 5×10−3. The measured scaled mean segment length ⟨𝑙⟩ and scaled density �̂� in
Fig. 3.9 are independent of the measured proportionality 𝛼 though. Moreover, the evolution
of the average dislocation segment length ⟨𝑙⟩ and dislocation density 𝜌 are independent
across (successive) cycles. Hence the equations (3.19) and (3.15) predict the evolution of
average segment length and dislocation density for monotonic loading, which is testament
to the versatility of the proto-statistical storage model [19]. However, the main assumption
of the present model (See Sec. 3.1) is violated for monotonic loading, which we address in
the following.

3.6.3 Work Hardening
With the square root dependency of the observed yield strength (See Sec. 3.6.1) and the
statistical storage model (See Sec. 3.6.2), we predict the plastic flow curve under monotonic
loading. The work-hardening model is a combination of the dislocation network structural
evolution (3.31) and the potential flow rule (3.17). Here we choose to describe the dislocation
network by the total dislocation density alone, and use the Taylor relationship, respectively.
Aforementioned combination we call the statistical storage-based work-hardening model.

In Fig. 3.11, the monotonic (flow) stress is given as a function of the monotonic inelastic
strain; numerical analysis of experimental results in this section is limited to the plastic
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Figure 3.11: The scaled, monotonic (flow) stress (𝜎m −𝜎f
m)/𝜎s as functions of the monotonic inelastic strain 𝜖inm for

IF and LA. The dashed black lines indicate the reproduction via the work-hardening (WH) model. The error bars
indicate the RMSEs per data point.

strain ranges as defined in the present work (See Secs. 3.4 and 3.5); we ignore the first loading
cycle of IF and first three of LA, respectively (See Sec. 3.5 as well), and the deformation
pre-yield in our numerical analysis here. The dashed black lines in Fig. 3.11 indicate the
reproduction by the statistical storage-based work-hardening (WH) model. The RMSEs
across the plastic strain ranges considered in Sec. 3.5 are 1.1×106 and 1.6×106 Pa for IF
and LA, respectively. Equivalently, the error bars that indicate the RMSEs per data point
are omitted across the stress-strain ranges that are omitted from the current numerical
analysis. The monotonic flow curves are indicated by the coloured lines and globally smooth,
which supports the dislocation network structure to be preserved between unloading and
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subsequent yield [28] (See Sec. 3.6.2).
We include in Fig. 3.11 the monotonic stress-monotonic inelastic strain curves of the

first loading cycle of IF and the first three of LA. A given work-hardening model is obviously
incapable of reproducing these stress-inelastic strain curves pre-yield, which is one of the
main reasons to conduct this study. However, all experimental data is presented in Fig. 3.11
because they facilitate the discussion in the following.

For one, it is clear that 𝜎 ∝ √𝜌 holds during work hardening; under static loading
conditions, the flow strength increase with dislocation density is captured by the Taylor
relationship. Secondly, we indeed find that the (inelastic) strain in the initial cycle(s) appears
to be captured by neither anelasticity nor plasticity. A potential reason is rearrangement in
the dislocation network structure during the initial loading cycle [7]. For LA, the yield point
elongation phenomenon is distinct; and, our method inadvertently predicts a lower yield
strength [44, 62, 63]. We find that the confirmation between our model reproductions and
the experimentally obtained (plastic) results for IF and LA steels notable; notable is that the
reproductions indicated by dashed black lines are based on the total dislocation density 𝜌
as measured in Sec. 3.6.2, and not obtained by regression on the experimental results as
indicated by the coloured solid lines in Fig. 3.11. Finally, the assumption that the storage
rate 𝛽/𝛼 is constant during unidirectional loading in Sec. 3.2.2 seems to hold, at least up to
the first-order. Herewith we verify that the statistical storage-based WH model captures the
monotonic plastic deformation. Still the functional difference between proportionality 𝛼 and
the Taylor relationships’ constant 𝛼′ requires rationalisation.

3.6.4 Proportionality
Recalling the Taylor relation (3.28), we think that the constant 𝛼′ is potentially perceived as
the quantitative measure between the global dislocation densities 𝜌 and the local average
dislocation segment length ⟨𝑙⟩ [34], i.e. the main descriptors of dislocation network geometry.
This implies that the proportionality 𝛼 is an equivalent quantifier for the dislocation network
geometry, and thus remains constant whilst work hardening takes place [6]. However, we
find that the proportionality 𝛼 decreases during plastic straining (See Sec. 3.6.2), while a
large body of experimental evidence a constant 𝛼′ ≈ 0.1…0.4 ditto the present work.

The success of the Taylor relation is the prediction of the flow strength increase with
dislocation density whilst hardening takes place (See Sec. 3.6.3); the success of the bow-out
model is the relation between global yield strength and the local dislocation structural feature
of dislocation segment length [6]. As we demonstrate in Sec. 3.6.1, the Taylor relation for
the shear flow strength and present definition of observed yield strength are equivalent, i.e.

𝜏(0)𝑘 +𝛼′𝜇𝑏
√
𝜌(𝛾

pl
𝑘 ) ≃ 𝜏f𝑘 +

𝜇𝑏

⟨𝑙𝑘 (𝛾
pl
𝑘 )⟩

, (3.32)

where 𝜏(0)𝑘 is the strength contribution on slip system 𝑘 other than dislocation strengthening
equivalent to 𝜎0 in Eq. (3.28). When assuming the local yield and global flow strength to
increase equally in strain hardening, taking the derivative with respect to the plastic strain 𝜖pl
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and using the chain rule twice, we find the ordinary differential equation

𝜕⟨𝑙(𝜖pl)⟩
𝜕𝜌(𝜖pl)

= −
𝛼′⟨𝑙(𝜖pl)⟩

2

2
√
𝜌(𝜖pl)

. (3.33)

This equation is an implicit equation of the dislocation network structure evolution with
plastic strain, at the polycrystalline level. We solve the ordinary differential equation (3.33),
with the initial conditions of average dislocation segment length ⟨𝑙 (0)⟩ and dislocation
density 𝜌 (0) at zero plastic strain, and find that the proportionality decreases as:

𝛼 (𝜌(𝜖pl)) = 𝛼′+
𝛼(0)−𝛼′√
𝜌(𝜖pl)/𝜌 (0)

, (3.34)

with an initial proportionality 𝛼 (0) ≡ (⟨𝑙 (0)⟩
√
𝜌 (0))

−1. It is trivial that the Taylor relation-
ship’s constant 𝛼′ ∼ 𝛼 (𝜌 →∞).

In Fig. 3.12, the proportionality 𝛼 is given as a function of the dislocation density 𝜌; the
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Figure 3.12: The scaled proportionality 𝛼/𝛼′ as a function of the normalised dislocation density 𝜌𝜇2𝑏2/𝜎2
s for

IF and LA. The error bars indicate the standard errors; the dashed coloured lines indicate the semi-empirical
relation (3.34).

coloured dashed lines in Fig. 3.12 indicate the proportionality 𝛼 (𝜌), obtained by non-linear
regression with Eq. (3.34), where the constant and initial, average dislocation segment length{
𝛼′, ⟨𝑙 (0)⟩/𝑏

}
= {0.406±0.004,4510±130} and {0.343±0.003,2450±30} for IF and LA, re-

spectively. Different from Arechabaleta et al. [6], and akin to Li and Wagoner (𝛼 ∝ 𝜌−1/4) [7],
we find the proportionality 𝛼 has a non-linear dependence on the dislocation density 𝜌. The
latter work [7] treats more complex microstructures beyond the present work though, e.g.
various Transformation- and Twinning-Induced Plasticity Steels.

We argue that the proportionality 𝛼 (𝜌) is the appropriate implicit quantitative measure
of the dislocation network structure evolution with plastic deformation. Coercive is the
minimal difference between the constants 𝛼′ obtained in Sec. 3.6.1 (𝛼′ = 0.410 and 0.345 for IF
and LA, respectively) and the current section, which are obtained independently. Moreover,
the RMSEs are 4.4 × 10−3 and 2.1 × 10−3 and 7.0 × 10−3, for IF and LA, respectively, and the
shifted coefficient of determination 1−R2 < 10−4. The minimum proportionality 𝛼 (𝛾pl) ∼ 𝛼′
is obviously only achieved when dislocation recovery or rearrangement processes are absent.
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The constant 𝛼′ thus is a lower limit of the quantitative representation of the dislocation
network geometry 𝛼, i.e. a physics-based, yet theoretical, asymptote. We issue a warning
to the reader here on the physical interpretation of constant 𝛼′. It seems tempting to relate
the constant 𝛼′ directly with the forest strengthening [7], as the projection of dislocation
links that intersect a given glide plane is constant. Detractive is the change in constant 𝛼′
with steel type though, which can be remedied by changing the elastic shear modulus.
However, use of the Taylor factor to relate principal inelastic strain and normal stress to local
inelastic shear strain and shear stress, convolutes any such interpretation. Furthermore, the
proportionality 𝛼 in Eq. (3.22) is an effective measure at the polycrystalline level, that neglects
the notion of active and inactive slip-systems. The success of equation (3.34) combined with
the present statistical storage model, excludes the seminal interpretation of the Taylor
relationships’ constant 𝛼′ as the measure of dislocation-dislocation interaction on a single
slip-system though. Hence we interpret the Taylor relationship as a combination of forest
interactions and junction strengthening, akin to Kubin et al. [35]. Here, the proportionality 𝛼
thus is the effective measure of junction strengthening on the crystallite level (See Sec. 3.2.2),
that changes with plastic strain through forest interactions [7].

Equation (3.32) remains an a posteriori constructed semi-empirical relation, that is based
solely on the interpretation of the experimental results with our present model (i.e. with
a constant proportionality 𝛼 per loading-unloading cycle). Use of the ordinary differential
equation (3.33) in the present statistical storage model, in Sec 3.2.2, will enforce the equiv-
alence in Eq. (3.32). Then, the interpretation of the constant 𝛼′ is set a priori, which we
think severely weakens the results herein. The current work thus presents the next step [6]
towards the final interpretation of the Taylor relationship.

In the present model, we consider solely monotonous, unidirectional loading where-
fore the current modelling framework, as the works [4–7] show, is adequate. For pre-yield
tension-compression asymmetry Zhu et al. [39] recently present a combined experimental-modelling
approach. We do not account for strain gradients or internal stresses, which are postulated
as critical in understanding anelasticity under reciprocal loading conditions [7]. Full-Field
crystal plasticity methods are the only way to satisfy mechanical equilibrium and strain
compatibility throughout a polycrystal. Hence they will give more realistic results than
our Taylor homogenisation, e.g. the influence of the accumulation of dislocations at grain
boundaries, which we do not capture in this model (See Sec. 3.3). However, the present
experimental data leads to over-fitting when one employs a more sophisticated full-field
crystal plasticity method. Our framework is accepted in inelastic deformation modelling,
and demonstrates its usefulness in anelasticity by e.g. Li and Wagoner [7] and plasticity
by e.g. Sendrowic et al. [298] to date. In the following, we summarise several universal,
experimental observations that support our findings.

3.6.5 Apparent Modulus
Given that the elastic modulus is virtually constant with strain, the degradation in apparent
modulus is primarily due to anelastic deformation [1]. With successive loading-unloading
cycles the dislocation density 𝜌 increases and the average segment length ⟨𝑙⟩ decreases
(See Sec. 3.6.2). The associated change in dislocation network is such that the product 𝑏𝜌⟨𝑙⟩
(See Eq. (3.6)), i.e. the anelastic strain magnitude, increases with each loading-unloading
cycle (See Sec. 3.5). For a given applied uniaxial, cyclic tension, 𝜎c, well below the yield
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strength 𝜎y, the anelastic modulus thus decreases, i.e. the apparent modulus degradates.

Ma et al. [41] present a series of continuous loading-unloading-reloading experiments
on a near-alpha high-strength titanium alloy within the cold and warm forming domains.
They [41] find that the chord modulus under cold deformation is degraded dramatically at
a low plastic strain level and then gradually gets a saturated state with dislocation density.
Chamakura et al. [278] experimentally observe independent of the unified model herein
that the modified chord modulus, which is proportional to the chord modulus but can be an
order of magnitude higher, decreases with dislocation density in cyclic loading-unloading
tensile tests on fully martensitic stainless steel. Most recently, Vitzthum et al. [38] presents
continuous cyclic tensile test on a DP and IF steel, that are similar to those herein. They [38]
observe that the loading and unloading chord moduli decrease with increasing plastic strain,
where in the beginning of plastic deformation, these moduli decrease rapidly until they
converge with further plastic deformation.

The initial anelastic modulus reads Θan ∝ 𝛼2. Hence the now known proportionality
evolution, 𝛼 (𝜌), allows us to rationalise the following observations: one, the variation
of the apparent modulus depends on prior plastic straining [38, 41, 276–278]; two, the
apparent modulus decreases to a certain extent, and then saturates with work hardening,
i.e. successive plastic deformation does not lead to an experimentally observable decrease
in modulus [38, 41, 276]; three, (recovery) heat treatment increases/restores the apparent
modulus [41, 275]; and four, the apparent modulus approaches the theoretical elastic modulus
after bake-hardening [28], while the flow strength is unaffected, i.e. the dislocation density
is virtually constant.

We find that: one, with work hardening and ensuing plastic deformation the proportion-
ality decreases with dislocation density; two, because of the recovery and/or rearrangement
process in Stage-II strain-hardening, the dislocation density saturates, similarly the change
of initial anelastic modulus with plastic strain does. Similar to our findings (not presented in
this work), Vitzthum et al. [38] find the loading modulus for single-phase material decreases
less with increasing plastic strain then the loading modulus of Dual-Phase steel; three, heat
treatment reduces the dislocation density by increased dislocation recovery, which leads
to a higher apparent modulus. This is inline with the extensive experimental results on
warm deformation by Ma et al. [41]. They [41] show that the modulus degradation and
its strain dependence decrease with forming temperature; and four, interstitials diffuse to
dislocation lines, so the average dislocation segment lengths decrease with bake-hardening,
yet dislocation recovery is minimal, so the proportionality 𝛼 increases. For the influences
of metals lattices, local dislocation network structure and compressibility, we refer to our
previous work on the influence of dislocations on the apparent elastic constants in single
metallic crystallites [37, 39].

To accurately predict the apparent modulus (i.e the anelastic strain) after plastic defor-
mation, one needs a dislocation network structure model which a priori incorporates the
evolution of proportionality 𝛼 (𝜖pl). The relationship given by Eq. (3.33) is not enforced in
the current statistical storage-based WH model though. However, future storage models are
to be amended with the now known dependence of the proportionality 𝛼 on the dislocation
density 𝜌.
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3.7 Conclusions
In this chapter, we present a static inelastic model. The elastic mechanical behaviour is
described by isotropic linear elasticity, anelastic mechanical behaviour by the dissipative
dislocation bow-out model and the dislocation network structure evolution by the statistical
storage model. We analyse repeated cyclic tensile tests on Interstitial-Free and Low-Alloy
steels. The yield point is determined by the compliance of anelastic and plastic deformation.
We ascertain the two premises in physical metallurgy of the Taylor relationship and the
statistical storage-based work-hardening. Finally, we present a measure for the changes in
initial apparent modulus with thermomechanical processing.

Under the assumption that the dislocation network structure is preserved between un-
loading from the plastic regime and subsequent reloading up to yield, we draw the following
conclusions: the statistical storage model predicts the evolution of average segment length
and dislocation density with plastic strain; and, the statistical storage-based work-hardening
model is experimentally verified, and successfully predicts monotonic uniaxial plastic defor-
mation at least upto the first-order.

The fundamental understanding on the evolution of dislocation network geometry during
plastic deformation is expanded as well. The implicit semi-empirical relation of the propor-
tionality, 𝛼 (𝜌) ∝ 1/√𝜌, captures the average dislocation segment length decrease and dislo-
cation density increase with work hardening, i.e. the chance in dislocation network structure.
Moreover, this findings rationalise the previous experimental observations [28, 38, 41, 275–
278] on the changes in initial apparent moduli with thermomechanical processing.
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4
On the Characteristics of

the Lüders Front: the yield
point phenomenon under

invariant plane conditions

The plastic deformation of metals that exhibit the yield point phenomenon is confined to Lüders
bands. Current knowledge on the Lüders band characteristics is derived from numerical and
experimental observations, but a more comprehensive constitutive relation is needed. We present
an analytical model that determines the Lüders front orientation relative to the uniaxial tensile
direction, taking into account the heterogeneous stress states across the front. Moreover, we
verify this model by means of full-field numerical calculations.

Plastic flow in the Lüders front maximises global dissipation and vanishes parallel to it. These
are the characteristics of the Lüders front under invariant plane conditions. The change in front
inclination originates from the local stress concentration. Hence the Lüders front orientation
depends on the ratio between upper and lower yield strength, and tensile specimen geometry.
Our results provide an additional explanation beyond test conditions for the wide range of Lüders
band orientations in experiments.

We present a methodology to approximate the lower yield strength measuring force-displacement
and the Lankford coefficient. The here presented description of the yield point phenomenon
provides an experimental method for future studies, that is independent of test conditions.

This chapter is based on the scientific article: Van Dokkum, J. S., Bos, C., Offerman, S. E., Sietsma, On the
Characteristics of the Lüders Front, (In preparation).
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Nomenclature
Variable Definition Dimension (mass M, length L and time t)
𝑎 & 𝑏 scalars −
𝛼 Lüders front inclination −
𝐶1 axial coordinate L
�̄�2 Lüders band ratio −
𝐸 elastic modulus ML−1t−2
𝝐 strain −
𝑓 Von Mises criterion ML−1t−2
ℎ specimen height L
𝐻 plastic modulus ML−1t−2
𝑖 & 𝑗 indices −
𝑙 specimen length L
𝜆 proportionality M−1Lt2
�̂� Plane normal −
𝜈 Poisson’s ratio −
Ω volume L3
�̄� contraction ratio −
𝑟 inverse yield strength ratio −
𝑅e flow strength ML−1t−2
𝑅eH(obs) observed upper yield strength ML−1t−2
𝑅eL(obs) observed lower yield strength ML−1t−2
𝑅eH(tr) true upper yield strength ML−1t−2
𝑅eL(obs) true lower yield strength ML−1t−2
 yield surface ML−1t−2
H upper yield criterion ML−1t−2
L lower yield criterion ML−1t−2
𝒔 deviatoric stress ML−1t−2
 observation area L2
𝝈 stress ML−1t−2
𝜏 shear stress ML−1t−2
𝑡 time t
𝒖 displacement L
𝒗 velocity Lt−1
𝜙 Lüders front angle −
𝑤 gauge width L
𝑥, 𝑦 & 𝑧 Cartesian coordinates L
𝜁 azimuth angle −
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4.1 Introduction
Seminally, the deformation in the Lüders front is pure shear [117, 299, 300] or a combination
of initial shear and subsequent, plastic flow [68, 301, 302]. In both hypotheses the Lüders
front forms parallel to the plane of maximum shear stress [120, 303] and/or the plane of
maximum projected shear stresses [299, 300]. The experimentally obtained Lüders front
angle is thus expected to be close to 𝜙 = 45 degrees with respect to the tensile direction. This
angle 𝜙 is indicated on the insert in Fig. 1.2a. The mesomechanical explanation by Lomer [68]
and Jaoul [299] is that the YPP occurs by pure shear under a characteristic angle between
the front and the tensile axis, that originates from the average slip orientation in individual
grains. Lomer [68] reasons that the kink at the Lüders band introduces bending moments
that influence the Lüders front angle 𝜙. The macromechanical rational by Butler [68, 300]
states that the orientation of the front on the specimen’s faces change in order to minimise
the misalignment caused by plastic shear with Lüders strain. They [300] report that the
Lüders angle remains constant with 𝜙 = 50 degrees, but increases to 90 degrees on the tensile
specimen’s widest face. Delwiche and Moon [117] find that the Lüders front propagates
with the angle 𝜙 = 45 degrees, i.e. parallel to planes of maximum shear stresses. The global
orientation of the Lüders front maximises the stress intensity factor on one side of the shear
kink, and remains constant under a constant load [117]. Ananthan and Hall [120] find that
the direction of shear is not parallel with the greatest slope in the Lüders front, which points
to grip constraints and/or the bending moment of the specimen that influence the orientation
of the Lüders front. Notable is that the works [68, 117, 300] attribute the plastic flow to the
tensile test conditions; plastic flow is not a characteristic of the Lüders front.

The experimental works [50, 68, 109, 117, 118, 304] report a constant Lüders angle𝜙 = 45 de-
grees; Joaul [299] and Pomey et al. [305] find that the Lüders front angle varies across speci-
mens with 𝜙 = 45⋯55, and the average 𝜙 = 50.1 degrees. The works [50, 53, 115, 116, 299,
306, 307] report a constant Lüders angle of 𝜙 ≈ 55 degrees; Cai et al. [69] report a constant
Lüders angle of 𝜙 = 60 degrees, and Louche and Chrysochoos [308] 𝜙 = 70.5 degrees; The
observations in [119, 309] give a constant Lüders front angle 𝜙 = 90 degrees; and, Nagaran et
al. [74] and Van Rooyen[64] obtain Lüders front angles that vary between 𝜙= 62.5⋯76.4 for a
constant strain rate, and 𝜙 = 47.5⋯68.5 degrees with strain rate, respectively. Notable exper-
imental observations are the works by Butler [300] and Ananthan and Hall [120] that report
Lüders angles that increase 𝜙= 50⋯90with the Lüders strain, and varies between 𝜙= 45⋯76
degrees with tensile specimens’ geometry, respectively.

Mechanics research into the occurrence of the YPP covers both mesomechanical, e.g.
Lomer [68], Jaoul [299] and Butler [300], and macromechanical approaches, e.g. Nadai [310]
and Van Rooyen [64]: firstly, Nadai [310] states that the plastic extension parallel to the Lüders
front is zero because the adjoining portions of non-yielding material do not participate in the
deformation [311]. Experimental observations on the Lankford coefficient [307, 312] support
the hypothesis by Nadai [310], that plastic flow parallel to the Lüders front is zero. When
the ratio between specimen height and width increases, Nadai [310] states that the Lüders
front angle decreases towards 𝜙 = 45 degrees. They [310] connect this decrease in angle to
the dominant plane strain state in the interior of the tensile specimen. Thomas [311, 313]
and Thomas [314] use the method of characteristics [315] to find the Lüders front inclination
under plane stress condition, with Hencky’s stress-strain and Prandtl-Reuss stress-strain
increment relationships, respectively. Both Nadai [310] and Thomas [311, 313, 314], yet
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commonly ascribed to Hill [316], find the seminal Lüders front angle 𝜙 ≈ 54 degrees under
the plane stress condition. Park and Kim [317] rewrite the former method by Thomas [311] to
plane strain condition; and, Tokuoka and Saito [318] the latter method [314] for orthothropic
anisotropy by Hill [319]. Savoie et al. [307] report the experimental observation that the
Lüders front angle varies between 𝜙 = 52.2 and 64.3 degrees from the rolling to the transverse
direction; and, Mengi et al. [320] extend the works by Thomas [311, 313, 314] to how the
Lüders front angle 𝜙 increases with Poisson’s ratio 𝜈. The Lüders front angle 𝜙= 45 [310, 317]
and 𝜙≈ 54 [310, 311, 313, 314, 318, 320] degrees for an incompressible solid under plane strain
and stress conditions, respectively. Notable is that the stress state at the Lüders front in the
works [310, 311, 313, 314, 316–318] is homogeneous [310, 311, 313, 314, 317] and/or uniaxial
tensile [316, 318] because they [310, 311, 313, 314, 316–318] consider a single true, and thus
observed, yield strength, i.e. 𝑅eL(tr) = 𝑅eH(tr). The Lüders front angle thus changes with a
given materials elastic compressibility and tensile specimen geometry but not with a change
in material specific micromechanisms (excluding orthothropic plastic anisotropy [318]).
Secondly, the work by Van Rooyen [64] is the first that treats the stress concentration at
the Lüders front. A stress concentration is a location where the local stress is significantly
different from the global stress. This heterogeneous stress state across the Lüders front
qualitatively accounts for most of the experimentally observed yield-point phenomena in
low-carbon steel [64, 65]. Notable is that Van Rooyen [64, 65] treats a uniaxial stress across
the Lüders front and the increase in Lüders front angle 𝜙 is empirical. Burg and Harris [302]
are the first to notice that the Lüders front angle, that they define as the direction of no finite
elongation [310], varies between 𝜙 = 45 and 90 degrees with the ratio of applied stresses in
rocks [302]. Similarly, Watterson [321] treats the effect of plastic dilatation on the orientation
of no finite extension under plane strain condition, and the subsequent failure surfaces, in
brittle fracture of rocks. They [302, 321] self-evidently omit the conditions necessary for the
associated triaxial stress state in uniaxial tensile tests of metals. Even so, the majority of
Materials Science studies ignore the stress concentration at the Lüders front [44, 64]. Most
recently, Schwab and Ruff [44], Schwab [63], and Schwab and Harter [62] are the first to
present a closed-form expression for the Lüders front angle 𝜙 as a function of the material
properties. Their [44] significant hypothesis is that the Lüders front is the plane, where the
maximum shear stress acts. This assumption is inline with the observations in [117, 299, 300].
Both Van Rooyen [64, 65] and Schwab et al. [44, 62, 63] postulate that the Lüders front angle
𝜙 depends on the stress concentration, and require this angle to increase with the constant
nominal stress, i.e. the lower observed yield strength 𝑅∗

eL(obs) in Fig. 1.2a. The majority of the
mechanical investigations took place in the fifties and sixties, and focus on the orientation of
the Lüders front [310, 311, 313, 314, 316–318]. Others, which start with Van Rooyen [64, 65]
and continue till today [44, 62, 63], treat the heterogeneous stress state at the Lüders front.
However, a comprehensive, mechanical framework that explains the YPP misses.

Outline
We present a macromechanical model of the YPP. We divide the current, macromechanical
descriptions of the YPP into two general categories: models that consider a discontinuity
in displacement and stress along the Lüders front but with a homogeneous stress state,
e.g. [310, 314, 317, 320]; and, models [44, 64, 65] that treat the discontinuity in stress along
the Lüders front with a stress concentration at the Lüders front. The former’s limitation is
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that the heterogeneous stress state is prerequisite to the YPP [44, 64, 65]; the latter’s stress
state is independent of the specimen’s geometry and the Lüders front orientation changes
with the discontinuity in displacement [310, 315, 316]. These simplifications were necessary
at the time, yet limit the applicability of resulting analytical models. Hence our goal is
to combine these macromechanical descriptions of the YPP to provide an explanation for
experimental observations. We usematerial mechanical behaviour as inputs to the (numerical)
models and the micromechanical origin of the YPP remains open-ended. The experimentally
obtained Lüders front angle varies between 45 and 90 degrees [50, 53, 64, 68, 74, 109, 115–
120, 299, 300, 304, 306–309] with respect to the tensile direction. No general, mechanical
model of the Lüders front exist, that captures these observations, to the best of the authors
knowledge. Hence we study the characteristic orientation of the Lüders front.

The following results are presented and discussed: firstly, we present the YPP in a
generic, uniaxial tensile test, where the Lüders front is modelled in a rigid-plastic framework.
Herein, plastic flow in the Lüders front is maximised and comparatively negligible parallel
to it. These are the characteristics of the Lüders front we propose; secondly, we limit the
analyses to invariant-plane conditions, that allow us to present open-form expressions with
minimal simplification; thirdly, we use the Finite Element Method as presented by Schwab
and Harter [62] to model tensile tests under uniaxial tension. Via the numerical results, we
obtain closed-form expressions under plane strain and stress conditions, and corroborate the
characteristics of the Lüders front; fourthly, we verify the main feature of our model under
plane stress conditions: the change in Lüders front angle 𝜙 with the stress concentrations,
which depends on the ratio between the upper and lower yield strength; finally, our model
allows one to approximate constitutive parameters by the common-place uniaxial tensile
test. A simple methodology with the force-displacement and Lankford coefficients [322]
measurement is discussed to approximate material properties, independent of test conditions.

The major outcomes are the characteristics of the Lüders front. Moreover, we discuss an
alternative mechanism for the rotation of the Lüders band with material properties, specimen
geometry and testing conditions. The outcomes herein are for future use in experimental
works to obtain constitutive parameters by the common-place uniaxial tensile test.

4.2 Problem Definition
We consider a tensile specimen with a prismatic cross-section. The specimen’s material
is homogeneous and displays isotropic material mechanical behaviour. This distinction
between material mechanical and observed mechanical behaviour is necessary because the
materials parameters one measures experimentally are not necessarily material properties
when deformation is heterogeneous [66]. Away from the tensile specimen shoulders a single
Lüders band covers the whole cross-section and moves from one towards the opposite end of
the specimen length. On either side, a given distance away from this band, the applied stress
is uniaxial tension. A typical tensile specimen shape is shown schematically in Fig. 4.1.

The Lüders front has two degrees of freedom that correspond to the local direction of
its normal. To uniquely capture this front, we attach a Cartesian coordinate system with
orthonormal basis 𝑂𝑥′𝑦′𝑧′ to the specimen geometry. The prime ∙′ and double primes ∙′′
with coordinate ∙ indicate coordinate transforms. Here, the 𝑥′-direction is parallel with
the applied tensile direction, and the 𝑧′-plane parallel with the widest specimen face. The
local Lüders front is represented by a unit vector �̂�′ = [cos(𝛼),sin(𝜁 )sin(𝛼),−cos(𝜁 )sin(𝛼)],
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Figure 4.1: Schematic representation of the Lüders front with the stress states in material points in the still-elastic,
just-plastic and uniaxial tensile volumes in a typical, dog-bone tensile specimen (after [44]).

with the polar angle 𝛼 ∈ [−𝜋/2,𝜋/2] and azimuth angle 𝜁 ∈ [−𝜋,𝜋], and has the coordi-
nates (𝑥′ (𝑡) , 𝑦′ (𝑡) , 𝑧′ (𝑡)) at time 𝑡. Here, the hat ∙̂ indicates a unit vector ∙. We take the
convention that the materials volume on the positive side of the vector �̂�′ is elastic.

In the remainder of this work, the Lüders front moves with a constant velocity 𝑣𝑥′ , that
remains undefined but whose magnitude is small enough for dissipative contributions beyond
plasticity to be negligible, e.g. phonon damping. For convenience sake, we attach a local or-
thogonal Cartesian reference system to the Lüders front, where the 𝑥-axis remains parallel to
the tensile 𝑥′-direction and the 𝑧-axis is in the Lüders front. Wherefore we construct a Carte-
sian coordinate system with orthonormal basis 𝑂𝑥𝑦𝑧 and unit vectors �̂�1 = [100] , �̂�2 = [010]
and �̂�3 = [001], with �̂�3 ⋅ �̂� ≡ 0. Hence the front is uniquely captured by the Lüders an-
gle 𝜙 (𝑦) = 𝜋/2−𝛼 (𝑦), with 𝛼 ∈ [0,𝜋/2] and the coordinate translation 𝑥 = 𝑥′− 𝑣𝑥′ 𝑡. Finally,
for convenience of notation, we attach a second local orthogonal Cartesian reference sys-
tem to the Lüders front. This Cartesian coordinate system has the orthonormal basis basis
𝑂𝑥′′𝑦′′𝑧 and unit vectors �̂�1 = [cos(𝛼) sin(𝛼) 0], �̂�2 = [−sin(𝛼) cos(𝛼) 0] and �̂�3 = [0 0 1]
in the local basis 𝑂𝑥𝑦𝑧 (See Fig. 4.1). In the following, the angle 𝛼 is the inclination in
the �̂�3-plane between the unit vector �̂�2 and the Lüders front; the Lüders front has the
unit normal �̂� = [cos(𝛼) sin(𝛼) 0]; and, the angle 𝜙 is the smallest angle between the ten-
sile 𝑥′−direction and the Lüders front 𝑦′′. We assume that the inclination 𝛼 is independent
of the 𝑦′− and 𝑧′-coordinates in the following as well, i.e. the Lüders front is a plane.

Material both in the elastic and plastic volume, away from the Lüders front, experiences
the observed uniaxial tensile stress 𝜎∗

u11, where the superscript 𝜎∗
∙ indicates stresses 𝜎∙ that are

calculated across the specimen’s original geometry. Directly at the Lüders front, two material
states (still-elastic and just-plastic) coexist. As the front traverses the gauge length a given
material point is initially in the elastic state, until an upper yield criterionH is met. This
instance coincides with the given material point entering the Lüders band. Inside the Lüders
band the material point starts to deform plastically, but with a lower yield criterionL ≤H.
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In Fig. 1.2b, a schematic representation of the material mechanical behaviour is given in red.
In the remainder of this section and Sec. 4.3 the transition in stress space between both yield
surfaces∙ is void of plastic deformation.

The Von Mises criterion for plastic yielding is

𝑓 (𝜎𝑖𝑗 ,𝑅e) = �̃�2−𝑅2
e , (4.1a)

with the equivalent stress,
�̃� ≡

√
3𝑠𝑖𝑗 𝑠𝑖𝑗/2, (4.1b)

where 𝑅e is the flow strength, 𝑠𝑖𝑗 deviatoric stress and the circumflex ∙̃ indicates an equivalent
measure of tensor ∙. Using the yield criterion (4.1), we obtain the yield strengths

𝑅eH(tr) ≡
1√
2

√
(𝜎e1−𝜎e2) 2+(𝜎e2−𝜎e3) 2+(𝜎e3−𝜎e1) 2; (4.2a)

𝑅eL(tr) ≡
1√
2

√
(𝜎p1−𝜎p2) 2+(𝜎p2−𝜎p3) 2+(𝜎p3−𝜎p1) 2; (4.2b)

and,
𝑅eL(obs) ≡

1√
2

√
(𝜎u1−𝜎u2) 2+(𝜎u2−𝜎u3) 2+(𝜎u3−𝜎u1) 2, (4.2c)

where 𝑅eH(tr) and 𝑅eL(tr) are the true upper and lower yield strengths, and 𝑅eL(obs) the lower
observed yield strength. Here, the stresses 𝜎e𝑖 are the principal stresses in a material point in
the elastic volume, where ∙e𝑖 is the index notation with 𝑖 = {1,2,3}. We observe the Mohr’s
circle convention, where the principal components ∙3 ≤ ∙2 ≤ ∙1, and the given ∙1 indicates
the major, ∙2 the middle and ∙3 the minor principal component of second-order tensor ∙.
Moreover, 𝜎p𝑖 and 𝜎u𝑖 are the principal stresses in a material point in the plastic and uniaxial
tensile volumes. The still-elastic and just-plastic material points are indicated schematically
in Fig. 4.1 by a red and a blue square, respectively. A material point in the plastic volume
under uniaxial tension, with the true stresses 𝜎u11 and 𝜎u22 = 0, is indicated by a green square
in Fig. 4.1 as well.

The problem is governed by the traction continuity condition:

[[𝜎′′
𝑖𝑗 ]]𝑛

′′
𝑗 = [[𝜎′′

𝑖1]] = 0, (4.3)

where [[𝜎𝑖𝑗]] ≡ 𝜎p𝑖𝑗 − 𝜎e𝑖𝑗 are the differences in stresses across the Lüders front, in the
still-elastic and just-plastic volumes. The normal stress to the Lüders front is 𝜎∙ ≡ 𝜎′′

∙11
and the shear stress parallel to the Lüders front 𝜏∙ ≡ 𝜎′′

∙12, where ∙ = {e,u,p} indicates the
elastic, uniaxial tensile and plastic volumes, respectively. These stresses in the still-elastic,
just-plastic and uniaxial material points are indicated in Fig. 4.1 by red, blue and green
arrows, respectively. Note that the stresses parallel to the Lüders front, 𝜎′′

∙22 and 𝜎′′
∙33, and

shear stresses 𝜎′′
∙23 and 𝜎′′

∙13, are not necessarily equal.
Incompressible rigid-plastic deformation is given by the associated Levy-Mises hypothe-

sis,
d𝜖p𝑖𝑗 ≡ 𝑠p𝑖𝑗d𝜆, (4.4a)

with,
d𝜖p1+d𝜖p2+d𝜖p3 ≡ 0, (4.4b)
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where d𝜖p𝑖𝑗 is the plastic strain increment and 0 ≤ d𝜆 the plastic multiplier. We neglect elastic
deformation, i.e. elastic deformation is small compared with plastic deformation. Material in
the elastic state is thus rigid and in the plastic state displays typical hardening behaviour
which we leave unspecified till Sec. 4.4.

We propose two kinematic conditions:

d𝜖′′p22 = 0, (4.5a)

parallel to the Lüders front; and,

d𝜖p12 = 0, and d𝜖p13 = 0, (4.5b)

perpendicular to the uniaxial tensile direction. Condition (4.5a) equals a velocity discontinu-
ity/localisation [316] under uniaxial tension. Similarly, we locate the Lüders front parallel
to the directions of zero extension [314]; condition (4.5b) ensures maximum, global plastic
dissipation and was postulated by Irvin [323], i.e. direction of the major principal plastic
strain increment is parallel with the tensile direction. These are the characteristics of the
Lüders front we propose. Notable is that kinematic conditions (4.5) hold for a homogeneous
stress state [314, 318], yet not necessarily for a heterogeneous stress state across the Lüders
front, which we consider in the following.

Herein, the dependent variables are the observed lower yield strength𝑅eL(obs) ∈ [𝑅eL(tr),𝑅eH(tr)]
and the Lüders front angle 𝜙 ∈ (0,𝜋/2] because of plane symmetry. The independent vari-
ables are the true upper and true lower yield strengths 𝑅eH(tr) and 𝑅eL(tr), respectively. The
remaining unknowns are the twelve stresses 𝜎∙𝑖𝑗 , nine on each side of the Lüders front of
which at least six sets are equal. Equations (4.2)-(4.5) are the governing equations; and, the
inverse yield strength ratio 𝑟 ≡ 𝑅eL(tr)/𝑅eH(tr) ∈ (0,1], where the overbar ∙̄ indicates a scaled
scalar ∙. From these we construct open-form expressions for the lower yield strength 𝑅eL(obs)
and the Lüders front angle 𝜙 in the following.

4.3 Model
The problem definition presents an underdetermined system. We thus need five more
functions that relate the macroscopic quantities of the lower observed yield strength 𝑅eL(obs)
and the Lüders front angle 𝜙 to the yield strength ratio 𝑅eH(tr)/𝑅eL(tr). We choose the invariant
plane condition, that reduces the number of additional expressions to two. Wherefore we
define three analytical expressions, one under plane strain and two under plane stress
condition, and present their physics-based bounds in the following.

4.3.1 Plane Strain Analysis
Under plane strain condition, the displacement is zero perpendicular to the invariant plane,
i.e.

𝜖3𝑖 = 0, (4.6)
and the two remaining principal strain directions reside in the invariant plane.

Uniaxial Tensile Volume
The principal stresses in the (plastic) uniaxial tensile areas

𝜎u1 = 2𝑅eL(obs)/
√
3; 𝜎u2 = 𝑅eL(obs)/

√
3; and, 𝜎u3 = 0, (4.7)
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with the observed lower uniaxial tensile strength

𝑅eL(obs) =
√
3𝜎u11/2, (4.8)

for an incompressible solid and the uniaxial yield strength (4.2c).

Just-Plastic Volume
Using the plastic incompressibility (4.4b), we obtain the principal plastic strain increments
in the invariant plane

d𝜖p3 = −d𝜖p1, (4.9a)

with the out of plane strain increment

d𝜖p33 = d𝜖p2 = 0. (4.9b)

Substituting the principal plastic strain increments (4.9) in the kinematic conditions (4.5), we
find that Lüders front angle

𝜙 =
𝜋
4
, (4.10)

that is independent of the heterogeneous stress state across the Lüders front.
Using the Levy-Von Mises hypothesis (4.4a), the plane strain boundary condition (4.6)

and the kinematic condition (4.5b), we obtain the stresses in the just-plastic volume

𝜎p33 =
1
2 (

𝜎p11+𝜎p22) ; 𝜎p13 = 0; 𝜎p23 = 0; and, 𝜎p12 = 0. (4.11)

The normal and shear stress in the just-plastic volume

𝜎p =
1
2 (

𝜎p11+𝜎p22) ; and, 𝜏p =
1
2 (

𝜎p11−𝜎p22) . (4.12)

Using the principal stresses in the just-plastic volume 𝜎p∙ and the yield strength (4.2b), we
find the true lower yield strength

𝑅eL(tr) =
√
3𝜏p. (4.13)

Still-Elastic Volume
Under plane strain condition (4.6) for an incompressible solid, the out of plane (shear) stresses

𝜎e33 =
1
2
(𝜎e11+𝜎e22) ; 𝜎e23 = 0; and 𝜎e13 = 0. (4.14)

The normal and shear stress in the just-plastic volume

𝜎e =
1
2
(𝜎e11+2𝜎e12+𝜎e22) ; and, 𝜏e =

1
2
(𝜎e11−𝜎e22) , (4.15)

respectively. Using the principal stresses in the still-elastic volume𝜎e∙ and the yield strength (4.2a),
we obtain the true upper yield strength

𝑅eH(tr) =
√
3(𝜏2e +𝜎2

e12). (4.16)
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Yield Strengths
The lower yield point limit corresponds with the yield strength ratio that approaches
unity, i.e. 𝑟 ∼ 1. Using the boundary conditions (4.3), and the true lower and upper yield
strengths (4.13) and (4.16), respectively, we find the shear stress in the invariant plane is
obviously zero, i.e. 𝜎e12 ∼ 0. The shear stress in the Lüders front is trivially 𝜏 ∼ 𝑅eL(obs)/

√
3.

The upper yield point limit corresponds with the inverse yield strength ratio 𝑟 ∼ 0. The shear
stress in the Lüders front thus approaches zero, i.e. 𝜏 ≡ 𝜏p = 𝜏e ∼ 0. The angle of the Lüders
front 𝜙 = 𝜋/4 is invariant under plane strain condition.

Combining the boundary conditions (4.3), and true yield strengths (4.13) and (4.16), we
obtain the shear stress in the invariant plane and the still-elastic volume

𝜎e12 =
√
1− 𝑟2

𝑟
𝜏. (4.17)

The two remaining independent variables are the normal and shear stresses in the Lüders
front 𝜎 ≡ 𝜎p = 𝜎e and 𝜏, respectively. Using the true lower uniaxial yield strength (4.13), we
find the shifted and scaled, major and minor principal stresses

(𝜎p1−𝜎)
𝑅eL(tr)

= (𝜎−𝜎p2)
𝑅eL(tr)

=
1√
3
; (4.18a)

the shifted middle principal stress 𝜎p2−𝜎 = 0 in the just-plastic volume; and, the shifted and
scaled, major, middle and minor principal stresses

(𝜎e1−𝜎)
𝑅eL(tr)

=
1−

√
1− 𝑟2√
3𝑟

;
(𝜎e2−𝜎)
𝑅eL(tr)

= −
√
1− 𝑟2√
3𝑟

;

and,
(𝜎e3−𝜎)
𝑅eL(tr)

= −
1+

√
1− 𝑟2√
3𝑟

,
(4.18b)

respectively, in the still-elastic volume. Hence the true yield strengths ratio is independent
of the normal stress in the Lüders front 𝜎, that solely translates both sets of principal stresses
and remains unknown. In Fig. 4.2, the shifted and scaled Mohr’s circles are given for yield
strength ratio 𝑅eH(tr)/𝑅eL(tr) = 2 under plane strain condition; the 𝑥𝑦-, 𝑥𝑧- and 𝑦𝑧-planes
that contain the given plane normal �̂� are indicated with solid, dashed and dotted lines,
respectively; and, the stresses in the just elastic 𝜎e𝑖𝑗 and just-plastic 𝜎p𝑖𝑗 volumes are indicated
in red and blue, respectively. The shear stress 𝜏 in the Lüders front is highlighted by a gray
dashed circle.

Substituting the shear stress in the invariant plane (4.17) in the true upper yield strength (4.2a),
and using the definition of the inverse yield strength ratio 𝑟 , we rewrite the scaled true lower
and upper yield strengths as

𝑅eL(tr)

𝑅eL(obs)
= 𝑟

𝑅eH(tr)

𝑅eL(obs)
=

√
3𝜏

𝑅eL(obs)
. (4.19)

The scaled shear stress in the Lüders front 𝜏/𝑅eL(obs) is then the independent variable. In
accordance with Eqs. (4.18) and (4.19), the heterogeneous stress state is the result of the yield
strength ratio 1 < 𝑅eH(tr)/𝑅eL(tr) = 𝑟−1 and the stress concentration increases with it. The
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Figure 4.2: The scaled shear stress 𝜏�̂�/𝑅eL(tr) as a function of the shifted and scaled normal stress (𝜎�̂� −𝜎)/𝑅eL(tr) on
a plane with normal �̂� in the still-elastic and just-plastic volumes for yield strength ratio 𝑅eH(tr)/𝑅eL(tr) = 2 under
plane strain condition.

challenge thus remains to find the functional form of the relation between the observed
lower yield strength 𝑅eL(obs) and the shear stress in the Lüders front 𝜏 as a function of the
material properties of the yield strength ratio 𝑅eH(tr)/𝑅eL(tr).

4.3.2 Plane Stress Analysis
Under plane stress condition, the only non-zero stresses are in the invariant plane, i.e.

𝜎3𝑖 = 0, (4.20)

and one principal stress direction is perpendicular to the invariant plane.

Uniaxial Tensile Area
The principal stresses in the uniaxial tensile areas are

𝜎u1 = 𝑅eL(obs); 𝜎u2 = 0; and 𝜎u3 = 0, (4.21)

with the observed lower uniaxial tensile strength

𝑅eL(obs) = 𝜎u11, (4.22)

for the yield strength (4.2c).

Just-Plastic Area
Using the kinematic conditions (4.5), we find the stresses in the invariant plane on the
just-plastic area

𝜎p22 =(1−
2

3cos(2𝛼)+1)
𝜎p11; and, 𝜎p12 = 0. (4.23)

The normal and shear stress in the Lüders front on the just-plastic area

𝜎p =
4cos(2𝛼)

3cos(2𝛼)+1
𝜎p11; and, 𝜏p =

sin(2𝛼)
3cos(2𝛼)+1

𝜎p11, (4.24)
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respectively. Using the principal stresses on the just-plastic area,

𝜎p1 = 𝜎p11; 𝜎p2 = 𝜎p22; and 𝜎p3 = 0, (4.25)

and the yield strength (4.2b), we obtain the true lower yield strength

𝑅eL(tr) =
√
9cot2(2𝛼)+3csc2(2𝛼)𝜏p. (4.26)

Hence the true lower yield strength depends on the shear stress 𝜏p in and the inclination 𝛼
of the Lüders front.

Still-Elastic Area
The normal and shear stress in the Lüders front on the still-elastic area are

𝜎e = cos2(𝛼)𝜎e11+sin(2𝛼)𝜎e12+sin2(𝛼)𝜎e22; and,

𝜏e =
1
2
sin(2𝛼)𝜎e11−cos(2𝛼)𝜎e12−

1
2
sin(2𝛼)𝜎e22,

(4.27)

respectively. Using the principal stresses on the still-elastic area𝜎e∙ and the yield strength (4.2a),
we find the trivial true upper yield strength

𝑅eH(tr) =
√
𝜎2
e11−𝜎e11𝜎e22+𝜎2

e22+3𝜎2
e12. (4.28)

Yield Strengths
Using the true lower yield strength (4.26), the shear stress on the just-plastic area (4.24) and
the observed lower tensile strength (4.22), we find that in the lower yield point limit the Lüders
front inclination 𝛼 ∼ tan−1 (

√
8)/2 radian (i.e. the seminal Lüders front angle 𝜙 ≈ 54.74 de-

grees [310]). The shear stress in the Lüders front 𝜏 ≡ 𝜏u ∼
√
2𝑅eL(obs)/3. Using the true upper

yield strength (4.28) and the normal and shear stresses (4.27), we find that the shear stress in
the invariant plane on the still-elastic area 𝜎e12 is obviously zero as well, i.e. a uniaxial tensile
stress state exists. Using the true lower and upper yield strengths (4.26) and (4.28), we find
that in the upper yield point limit the shear stress in the Lüders front 𝜏 vanishes as well, and
the Lüders front angle 𝜙 ∼ 𝜋/2 radian. Hence the Lüders front angle 𝜙 ≈ 55⋯ ∼ 90 degrees
increases with the yield strength ratio 𝑅eH(tr)/𝑅eL(tr)under plane stress condition. Notable
is that the major and middle principal stresses are positive, i.e. 0 ≤ 𝜎p2/𝜎p1 < 1/2, and the
maximum shear stress on the just-plastic area (𝜎p1−𝜎p3)/2 resides on a plane at a 𝜋/4
radian angle to the tensile direction out of the invariant plane.

Using Eq. (4.24) and the boundary condition (4.3), we obtain the normal stress in the
Lüders front

𝜎 = 4cot(2𝛼)𝜏. (4.29)

Combining the boundary condition (4.3), the normal stress in the Lüders front (4.29), and yield
strengths (4.26) and (4.28), we find the shear stress in the invariant plane on the still-elastic
area

𝜎e12 =(
2cos(2𝛼)+

√
3(1− 𝑟2)

8𝑟2
(3cos(4𝛼)+5)

)
𝜏. (4.30)
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The two remaining independent variables are the shear stresses 𝜏 in, and the inclination 𝛼 of,
the Lüders front.

Using the true lower yield strength (4.26) and the Lüders front ratio �̄� ∈ [0,1], we rewrite
the scaled, true lower and upper yield strengths as

𝑅eL(tr)

𝑅eL(obs)
= 𝑟

𝑅eH(tr)

𝑅eL(obs)
=

3√
2

𝜏
�̄�𝑅eL(obs)

. (4.31)

The scaled shear stress in the Lüders front 𝜏/𝑅eL(obs) is one remaining independent variable.
With the Lüders front ratio �̄�, we rewrite the Lüders front inclination as

𝛼 =
1
2
cos−1

(

√

1−
8�̄�2

6�̄�2+3)
, (4.32)

which aids the formulation of a closed-form expression for the Lüders front angle 𝜙 as a
function of the yield strength ratio 𝑅eH(tr)/𝑅eL(tr) in the following.

Using the true lower yield strength (4.26) and the definition of the Lüders front ratio �̄�
in (4.32), we find the shifted and scaled, major and middle principal stresses

4𝜎p1−3𝜎
2𝑅eL(tr)

=
3𝜎−4𝜎p2
2𝑅eL(tr)

=
√
2�̄�2+1√

3
, (4.33a)

on the just-plastic area; and, the major and minor principal stresses

4𝜎e1−3𝜎
2𝑅eL(tr)

=
1
3

√

6(�̄�2−1)+
9
𝑟2

+6

√

(2�̄�2−3)
1− 𝑟2

𝑟2
−

√
1− 𝑟2

𝑟2
; and,

4𝜎e3−3𝜎
2𝑅eL(tr)

= −
1
3

√

6(�̄�2−1)+
9
𝑟2

+6

√

(2�̄�2−3)
1− 𝑟2

𝑟2
−

√
1− 𝑟2

𝑟2
,

(4.33b)

respectively, on the still-elastic area, with the normal stress in the Lüders front,
𝜎

𝑅eL(tr)
=
2
3

√
3−2�̄�2. (4.33c)

The ratio between principal stresses, within and between both sets, are thus independent of
the shear stress 𝜏; the shear stress 𝜏 in the Lüders front solely scales all principal stresses 𝜎∙𝑖.
In Fig. 4.3, the scaled Mohr’s circles are given for yield strength ratios 𝑅eH(tr)/𝑅eL(tr) = 2
and 5/2, and Lüders front angles 𝜙 = 60 and 80 degrees under plane stress condition; the
yield strength ratio increases from 𝑅eH(tr)/𝑅eL(tr) = 2 to 5/2 between Figs. 4.3a, and b and c;
and, the Lüders front angle increases from 𝜙 = 60 to 80 degrees, between Figs. 4.3a and b, and
c. The shear stress 𝜏 in, and the normal stress 𝜎 on, the Lüders front are highlighted by a gray
dashed circle. Furthermore, the ×-shaped markers on the horizontal axis in Fig. 4.3b indicate
the principal stresses 𝜎′

∙1 and 𝜎′
∙2 on the widest face of a tensile specimen. The heterogeneous

stress state is then the result of the yield strength ratio 1 < 𝑅eH(tr)/𝑅eL(tr) and/or a decrease in
Lüders front inclination 𝛼 < tan−1 (

√
8)/2 radian. The stress concentration increases with

the yield strength ratio 𝑅eH(tr)/𝑅eL(tr) and Lüders front angle 𝜙 as well. The challenge that
remains under plane stress conditions is to find the functional form of the relation between
the Lüders front angle 𝜙 and the material properties of the yield strength ratio 𝑅eH(tr)/𝑅eL(tr),
which we address in the following.
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(a)

n

n

' ' ''

(b) (c)

Figure 4.3: The scaled shear stress 𝜏�̂�/𝑅eL(tr) as a function of the scaled stress 𝜎�̂�/𝑅eL(tr) on a plane with normal �̂� in
the still-elastic and just-plastic areas for yield strength and Lüders front ratios (a)

{
𝑅eH(tr)/𝑅eL(tr); 4𝜙/𝜋

}
= {2;4/3},

(b) {5/2;4/3} and (c) {5/2;16/9} under plane stress condition.

4.4 Numerical Approach
We use the method as presented by Schwab and Harter [62] to obtain the numerical results.
We carry out the numerical calculations with the Abaqus/Standard code version 6.14 [324],
with finite deformations, dynamic two-dimensional solid (continuum) elements, and with-
out mass scaling. Rayleigh damping of 10−6 s stabilises the implicit calculations and the
volumetric mass density is 7.85×103 kg/m3. Time increments are limited to a maximum and
minimum of 1 × 10−3 s and 1 × 10−15 s, respectively, and the remaining criteria are kept as
supplied by Abaqus 6.14 [324]. The geometry, mesh and boundary conditions are presented
schematically in Fig. 4.4. The geometry is that of a typical dog-bone tensile specimen with

Figure 4.4: Diagram of the tensile specimen, mesh and the displacement boundary conditions. All spatial dimensions
are in ×10−3 m.

gauge width 𝑤 = 2×10−2 m and total length 𝑙 = 1.6×10−1 m. The gauge length is maximised
to avoid influence of the shoulder shape and initiation of the Lüders bands. We create a
trigger point for these bands by means of a triangular cutout at {𝑥′, 𝑦′} = {−45,10} × 10−3 m,
that reduces the specimen cross-sectional area by one hundredth. This trigger point is
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shown in the insert in Fig. 4.4. The specimen thickness is ℎ = 1×10−3 m for computational
convenience.

The mesh consists of predominantly, square eight-node two-dimensional solid elements
with reduced integration under plane strain and stress conditions, which are termed CPE8R
and CPS8R in Abaqus [324], respectively. The discretization varies symmetrically around the
𝑦′-axis, where the mesh coarsens a factor two across the shoulders to increase computational
tractability. The maximum element’s aspect ratio is kept below two. The discretization
is constant with square elements over the central rectangular section with 12.5 × 10−5 m
sides (See the insert in Fig. 4.4). We limit mechanical behaviour to elasticity for the rectangular
parts of the specimen shoulders to increase computational tractability as well.

The material mechanical behaviour is described by isotropic linear elasticity, with the
elastic modulus 𝐸 = 210×109 Pa and Poisson’s ratio 𝜈= 0.3; and, the isotropic plastic behaviour
is described by a simple Up-Down-Up plasticity model [325]. The material flow strength is

𝑅e = 𝑅eL(tr)+𝐻�̃�p, (4.34a)

during hardening, with the equivalent plastic strain,

�̃�p ≡
√
2𝜖p𝑖𝑗𝜖p𝑖𝑗/3, (4.34b)

and the plastic modulus ratio 𝐻 = 𝐸/10. The softening modulus is kept constant in the fol-
lowing with −260𝐸. We find this ensures computational tractability and simplifies the further
analysis of our model that is independent of softening/hardening behaviour (See Sec. 4.3). The
boundary conditions are selected as those by Mazière and Forest [58]. This ensures predomi-
nantly uniaxial tension across the tensile specimen. Only the displacement rate �̇�𝑥′ is kept
constant across the outer faces of the prismatic part of the specimen shoulders. Here the over-
dot ∙̇ indicates a derivative with respect to time 𝑡. This results in a strain rate �̇�11 ≈ 10−4 s−1,
where the hardening response is independent of loading rate. The Up-Down-Up plasticity
model [325] induces strain localisation [62]. This steep drop of stress at first yielding poses
problems with stability and mesh dependence.

It is well known that conventional strain localisation is associated with spurious mesh
dependence due to the loss of ellipticity of the set of partial differential equations [326]. Due
to the hardening behaviour that follows the softening convergence is still achieved [58].
However, it has been demonstrated that simulations of Lüders band formation is prone
to spurious mesh dependencies, and the observed lower yield strength 𝑅eL(obs) and Lüders
strain 𝜖L cannot be predicted with high accurately due to the presence of mesh-dependent
oscillations on the overall curve [59, 61, 88]. This dependence on the relative orientation
between element edges and loading direction is evidenced by Mazière and Forest [58], and
pronounced under plane stress condition. We counteract this by: (1) limiting our observations
to only a section of the tensile specimen with a well-developed Lüders front; and (2), an
extensivemesh-sensitivity study. Closure and corroboration of our simple rigid-plastic model
is the goal, for which we find the numerical approach suffices [44, 62, 63].

4.5 Numerical Results
In the remainder, we limit our observations to an area  , that is one-fourth of the tensile
specimen’s length, 𝑙/4, centred around the origin with a volume Ω = ℎ. This area we
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shade light grey in Fig. 4.4 and refer to, from hereon, as the observation area. The observed
quantities are reported in the original orthonormal basis 𝑂𝑥′𝑦′𝑧′ in the following (See the
Problem Definition 4.2).

We find it necessary to make special mention of the method by which we visualise
and quantify the Lüders front. Firstly, the (physical) quantity one chooses depends on
ones understanding of the characteristics of the Lüders front. Secondly, not all (observable)
quantities are easily accessible in an experiment. Numerical analysis allows us to choose
any spatial quantity, yet we find the equivalent plastic strain gradient ||∇�̃�p|| most suitable.
The spatial difference in equivalent plastic strain gradient is maximised perpendicular to,
and minimised parallel to the Lüders band. This makes it particularly suitable for visualising
the Lüders front by means of the global coordinates

{
𝑥′, 𝑦′

}
of the local maxima in the

equivalent plastic strain gradient. This is similar to the analysis method of experimental
results in [69, 74]. The Lüders front that we consider is a plane (See Problem Definition 4.2).
Hence we use linear regression [289] with

𝑥′ = 𝐶1+ �̄�2𝑦′, (4.35)

where 𝐶1 is the axial coordinate of the Lüders band and 𝛼 ≡ tan−1 (||�̄�2||) the inclination of
the Lüders front, with Lüders band ratio �̄�2.

4.5.1 Tensile Test
The volume averaged Von Mises stress ⟨�̃�⟩ as a function of the volume averaged equiva-
lent plastic strain ⟨�̃�p⟩ for yield strength ratios 𝑅eH(tr)/𝑅eL(tr) = 7/4, 2, 5/2, 3, 7/2 and 4, is
presented in Figs. 4.5a and b; the dashed-dotted grey line indicates materials strain hard-
ening 𝑅e (�̃�p); the coloured solid markers the numerical results; and, the solid and dashed
coloured lines the means and a single standard deviations, respectively. We determine the
observed lower yield strength 𝑅eL(obs) by averaging the volume averaged Von Mises stress ⟨�̃�⟩
over the volume averaged equivalent plastic strain ⟨�̃�p⟩, i.e.

𝑅eL(obs) ≡
1
�̃�Lp ∫

�̃�Lp

0
⟨�̃�⟩d⟨�̃�p⟩, (4.36a)

with the volume averaged scalar function,

⟨∙⟩ ≡
1
Ω

y

Ω

∙d𝑥′ d𝑦′ d𝑧′, (4.36b)

where �̃�Lp is the volume averaged equivalent plastic Lüders strain. Here the roman super-
script ∙L indicates the quantity ∙ at the instant the Lüders band swept the observation area  .
Three of these instants are highlighted by black circles in Figs. 4.5a and b.

Under plane stress in Fig. 4.5a and plane strain condition in 4.5b, the observed lower
yield strength 𝑅eL(obs) increases with yield strength ratio 𝑅eH(tr)/𝑅eL(tr). The equivalent plastic
Lüders strain �̃�Lp increases as well. Notable is that the standard deviation in the volume
averaged Von Mises stress is larger under plane strain than plane stress conditions. Whereof
one reason is that the axial length of the Lüders band along the 𝑥′-axis is longer under
plane strain than under plane stress condition. Plastic deformation across the shoulders thus
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(a) (b)

(c)

Figure 4.5: (a,b) The scaled volume averaged Von Mises stress ⟨�̃�⟩/𝑅eL(tr) and (c) the scaled Lüders front angle 4𝜙/𝜋
as functions of the volume averaged equivalent plastic strain ⟨�̃�p⟩, under (a,c) plane stress and (b,c) plane strain
conditions for yield strength ratios 𝑅eH(tr)/𝑅eL(tr) =7/4, 2, 5/2, 3, 7/2 and 4. The solid coloured lines indicate the
mean over the given equivalent plastic strain ranges, and the dashed dotted lines a single standard deviation.

influences the initial volume averaged Von Mises stress ⟨𝜎⟩ with volume averaged equivalent
plastic strain range ⟨�̃�p⟩ ≤ 1×10−3 over the observation area  . Notable is that equivalent
plastic Lüders strain �̃�Lp for the given yield strength ratio 𝑅eH(tr)/𝑅eL(tr) is larger than the
plastic strain (𝑅eL(obs)−𝑅eL(tr))/𝐻 , i.e. the intersection of the given solid coloured line and
the slanted dashed-dotted grey line in Figs. 4.5a and b. The magnitude of this difference
increases with yield strength ratio 𝑅eH(tr)/𝑅eL(tr), which we discuss in Sec. 4.6.2.

The Lüders front angle 𝜙 as a function of the volume averaged equivalent plastic strain ⟨�̃�p⟩
for yield strength ratios 𝑅eH(tr)/𝑅eL(tr) = 7/4, 2, 5/2, 3, 7/2 and 4, is shown in Fig. 4.5c; the
dashed and dashed-dotted grey lines indicate the plane strain and plane stress results by
Nadai [310] of angles 𝜙 = 45 and ≈ 55 degrees, respectively. We omit the mean and standard
deviation of the Lüders front angle 𝜙 ≈ 45 degrees under plane strain condition because
the standard deviations are negligible compared with those under plane stress condition.
The means and the standard deviations are over the volume averaged equivalent plastic
strain range 0⋯ �̃�Lp. We find that the Lüders front angle 𝜙 increases with yield strength
ratio 𝑅eH(tr)/𝑅eL(tr) under plane stress condition. However, we limit the plastic strain range
under plane stress condition, that we display and integrate with, to when then the Lüders
band covers the whole specimens width 𝑤 (See Fig. 4.4). The standard deviation in the
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Lüders front angle 𝜙 increases because the fronts’ morphology curves with yield strength
ratios 𝑅eH(tr)/𝑅eL(tr) = 5/2⋯4 [120] under plane stress condition. This we discuss in Sec. 4.6.2
as well.

4.5.2 Macroscopically ObservedQuantities
The scaled shear stresses in the Lüders front (4.19) and (4.31), and the Lüders front ratio (4.32)
present underdetermined systems under plane strain and stress conditions, respectively.
Hence we construct two first-order approximations for these independent variables that
satisfy the bounds that we present in Sec. 4.3. Using a linear approximation, we give the
scaled observed lower yield strength as

𝑅eL(obs)

𝑅eL(tr)
≈ 1−𝑎(1−

1
𝑟 )

, (4.37)

with scalar 𝑎 ∈ (0,1). Herewith we assume that the observed lower yield strength 𝑅eL(obs) is
directly related to the shear stress in the Lüders front 𝜏 as a function of the yield strength
ratio 𝑅eH(tr)/𝑅eL(tr), the Lüders front angle 𝜙 and the in-plane condition. This is our alternative
to a condition by Schwab and Ruff [44]. They [44] keep the shear stress in the Lüders front 𝜏
the same as that in the nominal, uniaxial tensile volume 𝜏∗u (i.e. on a plane parallel with the
Lüders front outside the Lüders band), which is not necessarily satisfied under invariant
plane conditions. By means of a linear fit of Eq. (4.37), we obtain the scalars 𝑎 = 0.606±0.038
and 0.436±0.046 under plane strain and stress conditions, respectively. Here the plus-minus
sign ±∙ indicates the standard deviation. The observed lower yield strength 𝑅eL(obs) is
presented as a function of the yield strength ratio 𝑅eH(tr)/𝑅eL(tr) in Fig. 4.6a. the red and

(a) (b)

Figure 4.6: (a) The scaled lower observed yield strength ratio𝑅eL(obs)/𝑅eL(tr) and (b) the scaled Lüders front angle 4𝜙/𝜋
as functions of the yield strength ratio 𝑅eH(tr)/𝑅eL(tr). The error bars indicate a single standard deviation; the dashed
coloured lines the reproductions by means of (a) Eq. (4.37), and (b) Eqs. (4.10) and (4.32).

blue coloured markers correspond with the numerical results under plane stress and strain
conditions, respectively; and, the error bars indicate a single standard deviation as displayed
in Fig. 4.5. The reproductions by Eq. (4.37) are indicated in Fig. 4.6a by coloured dashed lines.

Under plane strain condition, the Lüders front angle 𝜙 ≈ 𝜋/4 radian and independent of
the yield strength ratio 𝑅eH(tr)/𝑅eL(tr) (See Fig. 4.5c). By means of a linear fit, we obtain the
Lüders front inclination 4𝛼/𝜋 = 1.000 radian with a standard deviation that is less than a five
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hundredth of this mean. The (numerical) Lüders front angles 𝜙 are shown as a function of the
yield strength ratios 𝑅eH(tr)/𝑅eL(tr) in Fig. 4.6b; the blue coloured markers correspond with
the numerical results under plane strain condition; and, the reproduction is indicated by the
dashed blue line in Fig. 4.6b. Under plane stress condition, the Lüders front angle 𝜙 increases
with the yield strength ratio 𝑅eH(tr)/𝑅eL(tr) = 5/2⋯4 (See Fig. 4.5c). We use an exponential
function for the Lüders front ratio �̄� ≈ 𝑟𝑏 with the scalar 𝑏 ∈ (0,1], that satisfies the lower
and upper yield point limits, i.e. Lüders front ratios �̄� = 1 and ∼ 0, respectively. This is the
second first-order approximation for the now dependent variable of the Lüders front angle 𝜙.
By means of a linear fit of Eq. (4.32), we obtain the scalar 𝑏 ≈ 1/5, with 𝑏 = 0.201± 0.001.
The insert in Fig. 4.6b is this linear fit of a Lüders front ratio �̄� (𝑟) on a Log-Log scale. The
numerical results are indicated by red solid square symbols and a single standard deviation
by red coloured error bars in Fig. 4.6b. The reproduction via Eq. (4.32) is indicated by a
dashed red line. Herewith we obtain four closed-form expressions, two for the observed
lower yield strengths 𝑅eL(obs) and two for the Lüders front angle 𝜙 under invariant plane
conditions.

4.5.3 Lüders Band
The principal stresses 𝜎′

𝑖 and plastic strains 𝜖′p𝑖𝑗 on the invariant plane as a functions
of the distance 𝑥′′ from the Lüders front are presented in Fig. 4.7 for yield strength ra-
tio 𝑅eH(tr)/𝑅eL(tr) = 3; the principal stresses 𝜎∙ are shifted with the volume averaged stress ⟨𝜎∙⟩
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Figure 4.7: The shifted and scaled stress (𝜎∙− ⟨𝜎∙⟩)/𝑅eL(tr) and the scaled strain 𝜖∙/�̃�Lp as a function of the distance 𝑥′′
from the Lüders front for yield strength ratio 𝑅eH(tr)/𝑅eL(tr) = 3 under (a) plane strain and (b) plane stress condition.
Stresses are indicated by solid lines and strains by dashed coloured lines.

and indicated by solid coloured lines. The plastic strain 𝜖∙ is scaled with the equivalent plastic
Lüders strain �̃�Lp and indicated by dashed coloured lines. The vertical dashed grey lines divide
the distances from the Lüders front 𝑥′′ into four regions, that are labelled elastic, front, band
and plastic. These regions are delimited by yield 0 < d�̃�p and softening d�̃� < 0, between the
elastic and front regions; hardening 0 < d�̃� and 0 < d�̃�p between the front and band regions;
and, d�̃� = 0 and d�̃�p = 0 in the plastic region. The Von Mises stress �̃� is indicated by a solid
grey line in Fig. 4.7 as well.

In Fig. 4.7, the principal and equivalent stresses in the still-elastic and just-plastic vol-
ume/area are indicated by coloured squares and circles, respectively. We make this choice be-
cause the former coincidewith initial yielding, that is related to the upper yield strength𝑅eH(tr);
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and, the latter with global hardening, that we capture with the lower yield strength 𝑅eL(tr).
The scalar stress and strain field are shifted back to the origin 𝑥′−𝐶1 by means of the axial
coordinate 𝐶1 and averaged over the equivalent plastic strain ranges as Fig. 4.5c displays.
Notable is that because of the (numerical) method we choose, the high softening tangent
modulus and Lüders band morphology (See Secs. 4.5.1 and 4.5.2), the change in stresses are
smoothed compared with our analytical analysis in Sec. 4.3.

In Fig. 4.7, the major principal stresses 𝜎′
1 are the major stresses 𝜎e1 and 𝜎p1, which depend

on their distance 𝑥′′ from the Lüders front. The minor principal stress 𝜎′
2 is not necessarily

the middle principal stress 𝜎∙2. Similarly, the stress on the invariant plane 𝜎′
33, that we use to

approximate the minor or middle principal stress (𝜎e3 and 𝜎p2) under plane strain condition
in Fig. 4.7a, depends on the in-plane condition as well. The stress on the invariant plane 𝜎′

33
is obviously zero under plane stress condition in Fig. 4.7b and thus omitted. With the scaling
of the stresses we choose in Fig. 4.7 the relative magnitudes between the middle and minor
principal stresses 𝜎∙2 and 𝜎∙3 are retained.

Wemake the following observations on the principal stresses under plane strain condition
in Fig. 4.7a: the maximum principal stresses in both still-elastic and just-plastic volume are
positive with 0 < 𝜎p1 < 𝜎e1; the middle principal stress in the just-plastic volume is larger
than the middle principal stress in the still-elastic volume with 𝜎e2 ≤ 𝜎p2; and, the minor
principal stress in the just-plastic volume is 𝜎e3 < 0, while the minimum principal stress
in the just-plastic volume is 𝜎p3 < 0, with 𝜎e3 ≤ 𝜎p3. The latter two observations agree
with the analytical model in Sec. 4.3.1. The former observation is partly due to the elastic
compressibility in our numerical results (with Poisson’s ratio 𝜈 = 0.3) and hardening that
our analysis both omits (See Secs. 4.2 and 4.3.1). Moreover, under plane stress condition
in Fig. 4.7b: the maximum principal stresses in both still-elastic and just-plastic area are
positive with 𝜎e1 ⪅ 𝜎p1; the middle principal stress in the still-elastic area is 𝜎e2 = 0, while
the middle principal stress in the just elastic area is 0 ≤ 𝜎p2, with 𝜎e2 ≤ 𝜎p2; and, the minimal
principal stress in the still-elastic area is 𝜎e3 ≤ 0, while the minimum principal stress in
the just-plastic area is 𝜎p3 = 0, with 𝜎e3 ≤ 𝜎p3. The latter two observations agree with the
analytical model in Sec. 4.3.2. The former difference in major principal stress magnitudes
is small. The numerically obtained principal stresses’ signs and relative magnitudes agree
with our model framework in Sec. 4.2. The difference in the ratio between principal stresses
under plane stress condition is due to the numerical method that accounts for hardening as
well. This is discussed further in Sec. 4.6.1.

The plastic shear strain 𝜖′p12 is below a hundredth of the plastic strain 𝜖′p11, and approaches
zero in the front. Likewise the plastic strain 𝜖′′p22 is less than a twentieth of plastic strain 𝜖′p11
strain. In the Lüders front the plastic extension 𝜖′′p22 is less than a fiftieth of the equivalent
plastic Lüders strain �̃�Lp. Notable is that the plastic shear strain 𝜖′p12 remains an order of
magnitude smaller than the plastic strain 𝜖′p11 in the plastic region as well. However, the
plastic extension 𝜖′′p22 increases throughout the Lüders band under plane stress condition
in Fig. 4.7b. These observations in Fig. 4.7 support the characteristics (4.5) under invariant
plane conditions in the Lüders front, which are the characteristics of the Lüders front we
propose herein.
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4.6 Discussion
4.6.1 Stress Concentration under Uniaxial Tension
In Fig. 4.8a, the equivalent stress �̃�, and the principal stresses on the still-elastic and
just-plastic side of the Lüders front, 𝜎e∙ and 𝜎p∙, respectively, are presented; a thin ten-

(a) (b)

Figure 4.8: The scaled principal stresses 𝜎e∙/𝑅eL(tr) and 𝜎p∙/𝑅eL(tr) in a material point (a) on the elastic and plastic
sides of the Lüders front and (b) in the elastic and plastic area in front and inside the Lüders band as functions of
the yield strength ratio 𝑅eH(tr)/𝑅eL(tr). The solid lines in (a) are the true, lower and upper yield strengths 𝑅eL(obs)
and 𝑅eH(tr), respectively; and, the grey dashed-dotted line the observed lower yield strength (4.37) with scalar 𝑎= 1/2.
The solid and dashed coloured lines in (b) indicate the analytical major and middle/minor principal stresses (4.33)
with scalar 𝑏 = 1/5, respectively. The dashed coloured lines in (a,b) and the solid lines in (b) that connect solid
symbols with a given shape are guides to aid the reader.

sile specimen is considered under plane stress condition; the red and blue coloured symbols
indicate the stresses on the still-elastic 𝜎e∙ and just-plastic side 𝜎p∙ of the Lüders front, respec-
tively; and, the numerical equivalent stress �̃� and principal stresses 𝜎′

∙ are indicated by solid
circular, and square and gradient symbols, respectively. Numerical results are obtained within
a square with an area 4×10−5 𝑤2, that is centred on the origin

{
𝑥′, 𝑦′

}
= {0,0} (See Fig. 4.4).

The red and blue solid coloured lines indicate the true upper and lower yield strengths 𝑅eH(tr)
and 𝑅eL(tr), respectively; and, the grey dashed-dotted line the observed lower uniaxial tensile
strength 𝑅eL(obs) via Eq. (4.37) with scalar 𝑎 = 1/2.

The major and minor principal stresses 𝜎e1 and 𝜎e3 (i.e. 𝜎′
1 and 𝜎′

2 in red, respectively)
correspond with the maximum numerical Von Mises stress �̃�e ≈ 𝑅eH(tr) on the still-elastic
side of the Lüders front. The major and middle principal stresses 𝜎p1 and 𝜎p2 (i.e. 𝜎′

1 and 𝜎′
2

in blue, respectively) correspond with the minimum numerical Von Mises stress �̃�p ≈ 𝑅eL(tr)
on the just-plastic side of the Lüders front. These numerical maximum and minimum Von
Mises stresses are indicated by solid circles with red and blue colours, respectively, that are
connected by dashed lines as well.

On the elastic side of the front, the minor principal stress 𝜎e3 is negative and decreases; on
the plastic side of the front, the middle principal stress 𝜎p2 is positive and increases. The stress
concentration increases each side of the Lüders front with yield strength ratio 𝑅eH(tr)/𝑅eL(tr).
Stress concentration is here the ratio between the major principal stresses 𝜎e1 and 𝜎p1, and
the observed lower tensile strength 𝑅eL(obs); and, the minor and middle principal stresses 𝜎e3
and 𝜎p2, respectively, and the volume averaged stress ⟨𝜎′

22⟩ = 0. The major principal
stresses 𝜎∙1 differ from the observed lower tensile strength 𝑅eL(obs). This difference increases
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with yield strength ratio 𝑅eH(tr)/𝑅eL(tr) as well. These results corroborate the signs of the
principal stresses in our model, which is straightforward when one compares the inter-
sects of the Mohr circles with the horizontal axis in Fig. 4.3b and the numerical results
in Fig 4.8. Secondly, we confirm once again that the stress concentration increases with
yield strength ratio 𝑅eH(tr)/𝑅eL(tr), which is the original contribution by Van Rooyen [64, 65].
Notably this increase in stress concentration coincides with the increase in Lüders front
angle 𝜙 (See Fig. 4.6b). This confirms the Lüders band orientation changes with yield strength
ratio 𝑅eH(tr)/𝑅eL(tr) due to the heterogeneous stress state at the Lüders front, at least for thin
tensile specimens.

Because of the elastic-plasticmaterial behaviour in the numerical calculations (See Sec. 4.4)
the maximum middle principal stress 𝜎p2 resides in the Lüders band. Similarly, the minimum
middle principal stress 𝜎e2 occurs in front of the Lüders front. In Fig. 4.8b, the principal
stresses and on either side of the Lüders front, i.e. 𝜎e∙ in front and 𝜎p∙ inside the Lüders
band, under plane stress condition are shown; the solid and dashed coloured lines indicate
the analytical major principal stress 𝜎∙1 and middle/minor principal stresses 𝜎∙2 and 𝜎∙3
in Eq. (4.33) in the invariant plane as well. Comparable with the representation in Fig. 4.8a,
major principal stresses 𝜎∙1 correspond with the maximum middle principal stress 𝜎p2 inside
the Lüders band and the minimumminor principal stress 𝜎e3 in front of the Lüders front. The
latter stresses are indicated by blue and red solid gradient symbols, respectively. The major
numerical principal stresses 𝜎e1 and 𝜎p1 are indicated by solid coloured square symbols and
connected by solid coloured lines; and, the numerical minor principal stress 𝜎e3 and middle
principal stress 𝜎p2 by gradient symbols and dashed lines that guide the reader as well.

In front of the Lüders band the minor principal stress 𝜎e3 is negative and its magnitude
increases with the yield strength ratio 𝑅eH(tr)/𝑅eL(tr). The analytical results show a larger
minor principal stress magnitude ||𝜎e3|| than the numerical results, which is intuitive because
the latter accounts for the elastic contraction perpendicular to the loading direction. Hence
the ratio −𝜎e3/𝜎e1 is smaller in the numerical results than in the analytical postdiction (4.33).
We can reduce the modulus ratio𝐻/𝐸 < 10 to decrease this difference, however that increases
the oscillations in the numerical force-displacement response and Lüders front angle. Inside
the Lüders band themiddle principal stress𝜎p2 is positive and increaseswith the yield strength
ratio 𝑅eH(tr)/𝑅eL(tr). The analytical results show a larger middle principal stress magnitude 𝜎p2
than the numerical result because the material point hardens in the Lüders band, which is not
accounted for in our modelling framework (See Sec. 4.3). In turn the major principal stress 𝜎p1
increases because the material hardens as well. The numerical results agree qualitatively
with the analytical postdiction (4.33) with scalar 𝑏 = 1/5. Quantitative agreement between
the numerical and analytical results are not expected because the latter does not account for
elasticity, neglects softening and hardening, and solely considers the traction continuity on
the Lüders front (See Sec. 4.2). Still we find with our characteristics of the Lüders front (4.5)
that the signs and magnitudes of the principal ratios 𝜎e3/𝜎e1 and 𝜎p2/𝜎p1, and the scaled
differences (𝜎p1−𝜎e1)/𝑅eL(tr) and −(𝜎p2−𝜎e2)/𝑅eL(tr) are of the same order of magnitude
in the analytical postdiction and the numerical results. The latter two differences are readily
inferred from Fig. 4.8b.
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4.6.2 Experimental Methodology
Several works relate the so-called Lankford coefficient [322] to the orientation of localised
necking [316, 327] and plastic anisotropy [319, 328]. Lesser known are the works by
Daniel et al. [312] and Savoie et al. [307] that connect the rapid changes in Lankford co-
efficient under heterogeneous plasticity to the orientation of the Lüders front. The latter
is based on their [307, 312] hypotheses that the Lüders band is parallel to the direction of
zero extension [329] and plastic shears perpendicular to the loading direction are zero. This
only necessarily holds for the yield strength ratio 𝑅eH(tr)/𝑅eL(tr) = 1. Defining the contraction
ratio �̄� ≡ −𝜖′L22/𝜖′L11, we find the approximation of the Lüders front inclination

�̂� ≈ tan−1 (
√
�̄�) . (4.38)

Here, the hat ∙̂ indicates the approximate of scalar ∙. This allows one to measure the
Lüders band orientation without the need for advanced methodology, e.g. digital im-
age correlation technology [69, 74, 118]. Yu et al. [329] verify this approximation for the
Portevin-Le Chatelier band orientation in aluminium alloy sheets. However they [307, 312, 329]
relate change in Lüders front orientation with metallic sheets’ rolling texture. Hence the
Lüders band angle is related to the crystallographic texture and plastic anisotropy [307, 312, 328],
and the stress concentration at the Lüders front.

In Fig. 4.9a, the difference between the numerical inclination 𝛼 via (4.35) and the ap-
proximation �̂� via Eq. (4.38) is given as a function of the yield strength ratio 𝑅eH(tr)/𝑅eL(tr);
the red solid square markers indicate the numerical results and the coloured dashed lines

(a) (b)

Figure 4.9: (a) The scaled Lüders front inclination 4(𝛼− �̂�)/𝜋 and the scaled root mean square error 2RMSE(𝑥′)/𝑤,
and (b) the scaled plastic Lüders strain (�̃�Lp − 𝜖L∙ )/�̃�Lp and scaled lower yield strength (𝑅eL(tr) − �̂�eL(tr))/𝑅eL(tr) as
functions of the yield strength ratio 𝑅eH(tr)/𝑅eL(tr) under plane stress condition. The (dashed) coloured lines are
guides to the eye.

are linear fits through the origin as guides to the eye. In Fig. 4.9a, the root-mean square
error RMSE(𝑥′) of the linear fit with Eq. (4.35) is presented as well; the blue solid markers
indicate this numerical result and the error bars a single standard deviation.

Clearly the difference between the estimated and numerical Lüders front inclination 𝛼− �̂�
increases with the yield strength ratio 𝑅eH(tr)/𝑅eL(tr). One reason is that the Lüders band
curves when the true upper yield strength𝑅eH(tr) increases. As the Lüders band curves the root
mean square error RMSE(𝑥′) increases as well. This confirms that our assumption of a planar
Lüders front (See Sec. 4.2) breaks down at higher yield strength ratios 2 << 𝑅eH(tr)/𝑅eL(tr),
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which is one reason the approximation via Eq. (4.38) deteriorates. This only occurs under
plane stress, where under plane strain condition the Lüders front remains planar. Further-
more, the plastic flow is more complex than Daniel et al. [312] and Savoie et al. [307] assume.
The plastic shear strain 𝜖′p12 is finite at the border between the Lüders band and the plastic
area in Fig. 4.7b for yield strength ratio 𝑅eH(tr)/𝑅eL(tr) = 3. The plastic extension parallel
to the Lüders front 𝜖′′p22 is finite in the plastic area as well. In the insert in Fig. 4.9a, the
contraction ratio �̄� is presented as a function of the squared ratio tan2 (𝛼) for the yield
strength ratios 𝑅eH(tr)/𝑅eL(tr) = 7/4, 2, 5/2, 3, 7/2 and 4. The colours of the markers in
the insert correspond with those in Fig. 4.5. Even though the difference between the ra-
tios tan2 (𝛼) − �̄� increases with yield strength ratio 𝑅eH(tr)/𝑅eL(tr), the contraction ratio �̄�
decreases monotonically.

Because the plastic flow in the Lüders front is not necessarily equal to uniaxial extension,
the plastic contraction ratio is 0 < 2�̄�p ≤ 1 in the Lüders band, where �̄�p ≡ −𝜖′Lp22/𝜖′Lp11. This
allows one to approximate the equivalent plastic Lüders strain �̃�Lp from the Lüders strain 𝜖L11.
Using the definition of the equivalent plastic strain (4.34b), plastic incompressibility (4.4b)
and the Lüders front characteristics (4.5), we approximate the equivalent plastic strain by

̂̃𝜖Lp ≈
2𝜖′Lp11√

3

√
�̄�2p − �̄�p+1, (4.39)

that is 𝜖′Lp11 under uniaxial tension.
In Fig. 4.9, the difference between the estimated equivalent plastic Lüders strain ̂̃𝜖Lp and

the numerical equivalent plastic Lüders strain �̃�Lp is presented as a function of the yield
strength ratios 𝑅eH(tr)/𝑅eL(tr) = 7/4, 2, 5/2, 3, 7/2 and 4; and, the difference with the plastic
Lüders extension 𝜖′Lp11 is included. The former is indicated by red solid circular markers and
a solid red line, and the latter by square markers and a dashed line. These lines are guides to
the eye as well.

As expected differences between the plastic Lüders extension 𝜖′Lp11, the estimated ̂̃𝜖Lp
and the equivalent plastic Lüders strain �̃�Lp approach zero when the yield strength ra-
tio 𝑅eH(tr)/𝑅eL(tr) tends to unity. The difference between the plastic extension and the equiva-
lent plastic strain �̃�Lp−𝜖′Lp11 increases with yield strength ratio 𝑅eH(tr)/𝑅eL(tr) because the plastic
deformation in the Lüders band is no longer that of uniaxial extension, i.e. �̄�p < 1/2. The
difference between the estimated and the numerical equivalent plastic Lüders strain �̃�Lp− ̂̃𝜖Lp
increases because the characteristics of the Lüders front do not necessarily hold throughout
the Lüders band (See Sec. 4.5.3). Even so, the presented differences reduce with a third, when
the plastic contraction �̄�b inside the Lüders band is accounted for.

With linear hardening (4.34) we approximate the true lower yield strength as

�̂�eL(tr) ≈ 𝑅eL(obs)−𝐻 ̂̃𝜖Lp. (4.40)

This methodology is similar to method of Schwab et al. [62, 63]. In Fig. 4.9, the difference
between the true lower yield strength 𝑅eL(tr) and estimated lower yield strength �̂�eL(tr) is
presented; the numerical result are indicated by blue solid circular markers; and, the solid blue
line is a guide to the eyes. Clearly, the lower yield strength is underestimated via Eqs. (4.39)
and (4.40). The difference between estimated �̂�eL(tr) and the true lower yield strength 𝑅eL(tr)



4.6 Discussion

4

97

increases with yield strength ratio 𝑅eH(tr)/𝑅eL(tr) as well. One reason is that the equivalent
plastic Lüders strain �̃�Lp is underestimated via Eq. (4.39) by up to a ratio ̂̃𝜖Lp/�̃�Lp ≈ 2×10−2.
However, the lower yield strength �̂�eL(obs) is underestimated by twice this factor. Another
reason is that the material flow strength 𝑅eL(obs) < 𝑅e (�̃�Lp) once the Lüders band has passed.

In Fig. 4.10, tensile stress-axial strain and equivalent stress-equivalent plastic strain re-
sponses are given for yield strength ratio 𝑅eH(tr)/𝑅eL(tr) = 5/2; the in-plane condition is plane

Figure 4.10: The scaled volume averaged tensile stress ⟨𝜎′
11⟩/𝑅eL(obs) as a function of the scaled volume averaged

axial strain ⟨𝜖′11⟩/𝜖′Lp11, and the scaled volume averaged Von Mises stress ⟨�̃�⟩/𝑅eL(obs) as a function of the scaled
volume averaged equivalent plastic strain ⟨�̃�p⟩/�̃�Lp for yield strength ratio 𝑅eH(tr)/𝑅eL(tr) = 5/2. The hardening
behaviour (4.34) is indicated by a dashed-dotted grey line and marked 𝑅e (�̃�p).

stress. The observed uniaxial tensile response is indicated in red and the equivalent response
in blue. Material hardening is given by a dashed-dotted grey line of the flow strength 𝑅e.

The uniaxial tensile stress ⟨𝜎′
11⟩ and the observed lower yield strength 𝑅eL(obs) are

obviously the same during yield elongation. Figure 4.5a, where the given equivalent plastic
Lüders strains �̃�Lp are highlighted by black circles, shows that the observed lower yield
strength 𝑅eL(tr) ⪅ 𝑅e (�̃�Lp). The true lower yield strength is underestimated similarly by �̂�eL(tr)
in Fig. 4.9b. This is expected because the Lüders band forms along a stress concentration
due to local softening when the material is loaded up to the upper yield surfaceH. This
means that the material flow strength 𝑅e (�̃�Lp) is not necessarily the same as the observed
uniaxial stress ⟨𝜎′

11⟩. The material solely hardens uniformly under uniaxial tension once the
Lüders band has traversed the gauge length; the tensile stress-axial strain and the equivalent
stress-equivalent plastic strain responses are parallel in Fig. 4.10, where the latter shifts
upwards due the subtraction of the elastic extension.

In the insert in Fig. 4.10, the materials, mechanical response in a single material point
near the origin

{
𝑥′, 𝑦′

}
= {0,0} and the observed equivalent response are presented. This

inserted plot’s area is demarcated by a black dashed square in the main figure. The materials
equivalent stress-equivalent plastic strain response is indicated by a red dashed line. Note
that hardening is included in the insert with a dashed-dotted grey line that is covered by
this material point response. The material flow strength 𝑅e (�̃�Lp) is highlighted by a metallic
green coloured dashed circle in the insert in Fig. 4.10.

The material hardens in the Lüders band and local stress state changes in the plastic
area so the Von Mises stress �̃�p ≤ 𝑅e (�̃�Lp). The then remaining elastic volume continues to
deform heterogeneously. Only once the Lüders bands traverses the whole gauge length the
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material start to harden homogeneously; the local and global mechanical response coincide,
and the observed uniaxial tensile response and the Von Mises stress-equivalent plastic strain
response are parallel (See main figure 4.10). The material flow strength must thus be obtained
as the intersect of the equivalent Lüders strain �̃�Lp and the materials hardening behaviour,
that is herein linear hardening.

Considering the stress concentration at the Lüders front and the plastic flow in the Lüders
band, we highlight that: firstly, the estimated true lower yield strength �̂�eL(tr) depends on the
Lüders front angle 𝜙 via the plastic contraction ratio �̄�p over the volume traversed by the
Lüders front, while plastic deformation is inhomogeneous; secondly, the axial plastic Lüders
strain 𝜖′Lp11 is equal to or lower than the equivalent plastic Lüders strain �̃�Lp; and, thirdly, the
observed lower yield strength 𝑅eL(obs) is not necessarily the uniaxial yield strength 𝑅e (�̃�Lp) of
the material once the Lüders band passed.

One can approximate the true lower yield strength 𝑅eL(tr) without the need for advanced
methodology either, e.g. decarburisation or sandwich-structured tensile specimens [67]. The
material flow strength 𝑅e (�̃�Lp) can be graphically estimated (See the insert in Fig. 4.10), and
substituted for the observed lower yield strength 𝑅eL(obs) in Eq. (4.40). The scaled difference
(𝑅e (�̃�Lp)−𝑅eL(tr))/𝑅eL(obs) ≈ 2×10−2, approaches the difference of the estimated lower yield
strength �̂�eL(tr) that we highlight in Fig. 4.9b by a metallic green coloured, dashed ellipse. By
measuring the Lankford coefficient �̄�/(1− �̄�) one can approximate the plastic contraction �̄�p
under the assumption of uniaxial tension 𝑅eL(obs) as well. All these input parameters are
measurable in a single uniaxial tensile test on a metallic sheet material that displays the
yield point phenomenon (YPP). The proposed methodology will improve the accuracy of the
experimentally obtained lower yield strength 𝑅eL(tr) in future studies.

4.6.3 Lüders Front Characteristics
The seminal consensus was that deformation in the Lüders front initiates by pure shear [68,
117, 299–301]. The self-evident hypothesis thus is that the Lüders front is the plane where
the maximum shear stress acts [44, 117]. However, we find this hypothesis is inconsistent
with the plane stress condition, where the Lüders front does not reside on the plane of the
maximum shear stress; the plane of the maximum shear stress, (𝜎e1−𝜎e3)/2, is perpendicular
to the 𝑦-plane but not parallel to the Lüders front (See Fig. 4.1 and Sec. 4.3.2). Moreover, the
plastic shear in the Lüders front decreases with the yield strength ratio 𝑅eH(tr)/𝑅eL(tr) and
vanishes in the upper yield point limit, where flow is perpendicular to the Lüders front, i.e.
the plastic strain increments −d𝜖′p33 = d𝜖′p11 (See Sec. 4.3).

Nadai [310] contributes the decrease in Lüders front angle 𝜙 ≈ 54…45 degrees to in-plane
strains, that increase with tensile specimen’s width; and, Thomas [313] an increase in the
Lüders front angle 𝜙 = 54⋯90 degrees to compressibility. Notable is that Van Rooyen [64, 65]
reports the Lüders front angle 𝜙 to increase with yield strength ratio yet their force balance is
based on the plane strain condition. The analytically obtained Lüders front angles under plane
strain and plane stress conditions by Nadai [310] are indicated by blue and red, dashed-dotted
horizontal lines in Fig. 4.6b.

We present an alternative reason for the increase in Lüders front angle 𝜙 with the
yield strength ratio 𝑅eH(tr)/𝑅eL(tr). This interpretation is similar to that of rock fracture,
that occurs parallel to the direction of zero extension, by Burg and Harris [302]. The main
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difference is that the occurrence of the normal stress ratio 0< 2𝜎′
p2/𝜎′

p1 < 1 is due to the stress
concentration at the Lüders front in uniaxial tensile tests on metals. The Lüders front angle 𝜙
thus changes with localisation and maximises global plastic dissipation. Hence we posit
that the variation in Lüders front angle 𝜙 with the given yield strength ratio 𝑅eH(tr)/𝑅eL(tr)
depends on tensile specimen geometry as well.

Butler [300] shows that Lüders front angle increases 𝜙 = 50⋯90 degrees, with Lüders
strain 0⋯0.15, in thin tensile specimens with various grain sizes and deformation rates.
They [300] suggest that the azimuth angle 𝜁 (See Fig. 4.1) changes to correct the misalignment
through sheet bending, which is easier across the specimen’s thickness than its width.
Pomey et al. [305] observe an angle 𝜙 = 90 degrees on the widest specimen’s face and 50
degrees with respect to the tensile axis through thickness. In accordance with our analytical
and numerical results in Sec. 4.5 we find that the Lüders front angle increases with the yield
strength ratio 𝑅eL(tr)/𝑅eL(obs). Herein, the Lüders front is perpendicular to the invariant plane
whereby the front solely rotates in that plane. This alternative is inline with the experimental
measurements in Figure 13 on page 329 by Butler [300] as well.

Van Rooyen’s [64] and Schwab et al.’s [44, 62] descriptions of YPP are independent of
tensile specimen’s geometry. In their work [44, 64] an increase in the Lüders front angle 𝜙
is pre-requisite for the increase in yield strength ratio 𝑅eH(tr)/𝑅eL(tr). However, this is not
necessarily so as we demonstrate under plane strain condition (See Fig. 4.6b). The grey
dashed-dotted lines in Fig. 4.6 are the analytical predictions by Schwab and Ruff [44] for
the lower observed uniaxial yield strength 𝑅∗

eL(obs) and the Lüders front angle 𝜙. We find
that the observed uniaxial yield strength 𝑅eL(obs) differ quantitatively, and the Lüders front
angle 𝜙 is predominantly over-predicted. The former can be due to the different calculations
of the observed lower yield strengths 4.36a here and 𝑅∗

eL(obs) in [44, 62]. Notable is that
Schwab and Ruff [44] over-predict the Lüders front angle relative to their numerical finite
element results as well. The latter was already noted by Schwab et al. [44, 63], which we
contribute to the in-plane conditions of the Lüders front, that depend on e.g. tensile specimen
geometry and boundary conditions. Later work by Schwab [63] attributes the change in
Lüders front angle 𝜙 to bending stresses that result from heterogeneous (plastic) deformation.
We contribute this overestimate [63] in part to the hypothesis by Schwab and Ruff [44] on
the in-plane condition as well.

Hall [67] in their seminal book on the YPP states that the Lüders front’s morphology
depends on tensile specimen’s geometry. This year, Van der Heijde and Samad [330, 331]
present the effect of tensile specimen thickness ℎ on the YPP. They [330, 331] are the first to
the authors’ knowledge, who systematically and simultaneously, experimentally quantify
the effect of thickness ℎ on the Lüders strain 𝜖′11 and band orientation 𝜙 in low-carbon
steel. They [330, 331] employ digital image correlation and find that: the lower observed
yield strength changes non-monotonically with specimens thickness; the Lüders strain
decreases with increased specimen thickness; and, the angle between the Lüders front and
tensile direction sharpens with specimen thickness. The former observation holds in similar
experiments for aluminium alloys by Cai et al. [69]. Our analytical result that present the
influence of invariant plane conditions are supported by the reported dependencies on
specimen’s geometry [69, 331]. Moreover, we present an alternative mechanism where the
Lüders strain increases with the scaled observed yield strength 𝑅eL(obs)/𝑅eL(tr) [62, 63, 68] via
the contraction ratio �̄�. Here, the contraction ratio �̄� depends on the Lüders band orientation.
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Note that we do not consider tensile specimens with a generic thickness in this chapter
though.

Moon [332], and Ananthan and Hall [120] reason that the Lüders front angle increases
with the bending moment due to shear flow. The analytical results in Sec. 4.3 are valid
for an infinite solid and this bending moment is not accounted for. The numerical results
in Secs. 4.4 and 4.5 are not constrained to uniaxial tension. We take special care of the
Neumann boundary conditions that allow for displacement in the 𝑦-direction and volume
changes (See Fig. 4.4), which reduce the bending moment compared to clamped boundary
conditions [327]. However, the moment, thus the discrepancy between analytical model and
numerical calculation, increases with Lüders strain as well. We have not noticed any such
influence on our numerical results though. Even so the bending moment due to clamping
conditions and/or heterogeneous deformation must be considered in future analytical works.

4.7 Conclusions
In this chapter, we present a macromechanical model of the Lüders front to investigate the
yield point phenomenon. We model the orientation of Lüders front and lower observed
yield strength that depend on the ratio between the upper and lower yield strengths. We
verify that the plastic flow parallel to the Lüders front vanishes and maximises the global
dissipation. These we find are the characteristics of the Lüders front under invariant plane
conditions.

The orientation of the Lüders front depends on the heterogeneous stress state, tensile
specimen’s geometry and loading conditions, as well as the material properties. In particular
the ratio between the upper and lower yield strengths influences the Lüders front angle
and the observed lower yield strength. However the former angle depends on the tensile
specimen cross-section as well, of which we present the two limits of plane stress and plane
strain conditions. This explains the wide range of front angles observed in experiments.

We find that plastic shear perpendicular to the Lüders front is orders of magnitude smaller
than the plastic extension in the tensile direction across it. Plastic extension in the Lüders
band is an order of magnitude smaller than the Lüders strain under plane stress condition as
well. The stress concentration at the Lüders front and the Lüders front angle increase with
the true upper yield strength in thin tensile specimens. One can approximate the Lüders
band angle from a single uniaxial tensile test by measuring the Lankford coefficient during
inhomogeneous plastic deformation. Additionally, via the force-displacement measurement
during homogeneous plastic deformation, one can obtain the material property of true lower
yield strength.

The characteristics of the Lüders front and the experimental methodology herein serve
to obtain constitutive parameters in future experiments, that will serve to advances ones
understanding of the yield point phenomenon.
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5
Adhesive Hysteresis in Soft

Matter Contacts

Soft matter adhesive contact is present in a large variety of engineering applications, covers
a wide range of length- and time-scales, and involves mechanics, physics and chemistry. A
critical aspect of these contacts is that they display adhesive hysteresis. Recognised mechanical
sources of dissipation are surface roughness and viscoelasticity, but their interplay is not yet
clear, especially due to experimental difficulties and strong assumptions in theoretical work.
In numerical simulations of smooth contacts, viscoelasticity is found to change adhesion from
short- to long-ranged. This finding poses limitations on the validity of the two most common
assumption on which theoretical work is based: adhesion is short-ranged; and, viscous dissipation
is confined to the edges of intimate contact.

In this chapter, we aim at elucidating the interplay between adhesion and roughness, bymodelling
the retraction of rigid, wavy indenters from a viscoelastic substrate. To this end we use an
extended Green’s function molecular dynamics technique, which allows us to compute the
intimate contact area and the pull-off load of indenters with various waviness, material and
interfacial properties, and at different loading rates.

Results of the simulations show, for the first time, that at moderate loading rates viscoelasticity
effectively dampens the adiabatic mechanical instabilities caused by waviness. However, when
the instantaneous limit is approached, mechanical instabilities reoccur. At finite retraction
rates, the mechanism of interfacial toughening by roughness-induced instabilities is present,
also with viscous dissipation. In conclusion, viscoelasticity governs adhesive hysteresis, even in
the presence of roughness-induced mechanical instabilities.

This chapter is based on the scientific article: Pérez-Ràfols, F., Van Dokkum, J. S., Nicola, L. On the Interplay between
Roughness and Viscoelasticity in Adhesive Hysteresis, Journal of the Mechanics and Physics of Solids, 105079, 2022;
and the presentation in symposium 4, Contact, Friction, Adhesion: Mechanics of Interfaces Across Scales, during the
10th International Conference on Multiscale Materials Modeling, October 2022, Baltimore, MD, USA.
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Nomenclature
Variable Definition Dimension (mass M, length L and time t)
𝑎 width L
𝐴 amplitude L
𝛼 normalised amplitude −
𝛽 normalised wavelength −
𝛿max interaction length L
𝐸 modulus ML−1t−2
𝑓r modulus ratio −
𝑔 gap width L
Δ𝛾 work of adhesion Mt−2
ℎ profile L
 periodic width L
𝜆 Maugis parameter −
𝑚 ratio −
𝑝 pressure ML−1t−2
𝒒 wave vector L−1
𝑅 Hertzian radius L
𝜎 traction ML−1t−2
𝑡 time t
𝜏 relaxation time t
𝑢 displacement L
𝑤 load Mt−2
𝑥, 𝑦 & 𝑧 Cartesian coordinates L
𝜁 wavelength L

5.1 Introduction
In this chapter, we address the combined effect of the two “perceived main” [333] sources
of hysteresis in soft materials: surface roughness; and, viscoelasticity. Wavy roughness
results in waviness of the load-approach curve, and increases the pull-off force compare with
the smooth elastic case [192] (See Fig. 1.3a). The energy dissipated in these elastic jumps,
equivalent to the area enclosed between the trajectories of a given jump and the stable, static
elastic equilibrium on the force-displacement curve, increases the interfacial toughness. This
enhances the observed adhesion.

Viscous dissipation plays a significant role even when the indentation and retraction
rates are small compared to the materials characteristic frequencies [142, 147, 177, 185]. The
time-dependent behaviour for slow retraction is due to a high stress rate near the edges of
intimate contact. Those edges of contact are therefore treated as opening cracks [205, 207–
209, 217, 229, 334, 335]. The increase in effective work of adhesion, as measured in e.g. Fig. 1.3b
by Barquins and Maugis [171], due to viscous dissipation, is equivalent or several orders
of magnitude larger than that due to elastic mechanical instabilities [123, 172]. The main
question thus is: What is the origin of adhesive hysteresis in soft matter contacts: viscous or
roughness-induced dissipation in contacts?1.
1Paraphrase of one of the questions posed by Martin Müser (Saarland University) at WeSST 2021: “One thing
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With viscous dissipation present adhesion is not necessarily short-range and departs
from JKR-theory [192]. Concurrently, yet separately, Ciavarella [193] and us [335] come to
a similar, improved understanding by introducing two Tabor (in the latter Maugis [335])
parameters. One parameter corresponds with the relaxed, and one with the instantaneous
modulus. The work of adhesion thus is constant with the relaxed magnitude, i.e. viscous dis-
sipation is no-longer an interfacial property; the effective Tabor/Maugis parameter changes
with the decrease in compliance of the viscoelastic material at the contact edges. Firstly,
with increased retraction rate, the effective Tabor/Maugis parameter is reduced towards
the instantaneous value [335]; secondly, deviation from the JKR-type adhesive behaviour is
observed as the instantaneous limit is approached [193, 335]; thirdly, a “very large” [193]
relaxed Tabor/Maugis parameter is needed to approach JKR-type adhesion in viscoelastic
contacts [193, 335]. The type of adhesion is delimited by two Tabor/Maugis parameters.
Hence the apparent Tabor/Maugis parameter depends on the ratio between retraction rate
and characteristic frequency, and the ratio between relaxed and instantaneous modulus.
Independently, Müser and Persson [205] find similar results by means of a Boundary-Element
method as well. Notably, they find [205] that with “large” retraction rates dissipation occurs
pre-dominant “far away” from the contact edges. Which is the effect of long-range adhe-
sion, i.e. the decrease in effective Maugis parameter. Moreover, they [205] show that the
load at jump-out of contact at high retraction rates is characterised by “quasi-uniform” bond
breaking [202].

The assumption by Gent and Schultz [207–209] is recently scrutinised by: Van Dokkum
et al. [335] by means of a Boundary Element method, where adhesion is described by the
Dugdale potential [197] in cylindrical contact; and, Afferante and Violano [229] by means of a
Finite Element model, where adhesion is described by the Lennard-Jones potential [199, 200]
in Hertzian contact. Both [229, 335], and later Müser and Persson [205], show that the
prediction(s) of the crack propagation models by Greenwood [334] or(/and) Persson and
Brenner [217] are (equally) accurate. Violano and Afferante [229] discuss the validity of the
Gent and Schultz assumption [207–209] aswell. They [229] show that viscous dissipation does
occur in the bulk material at (extremely) high retraction rates. The likelihood that the central
assumption by Gent and Schultz [207–209] is violated thus increases with retraction rate [229,
335]. Two other Finite Element implementations of note are presented by Lin and Hui [146]
and Jaing et al. [135], who consider adhesive contact between viscoelastic spheres, where
adhesion is modelled by the Dugdale potential [197], and adhesive contact between a rigid
sphere and an axisymmetric viscoelastic half-space, with the Lennard-Jones potential [199,
200], respectively.

Despite the assumption by Gent and Schultz [207–209] breaks down for high retraction
rates [335, 337], it is at the basis of current studies on non-smooth viscoelastic adhesive
contacts, that include wavy [333], patterned [223] and multi-asperity [190, 191] roughnesses.
Ciavarella and Papangelo [333] generalise the works by Guduru [172], and Guduru and
Bull [123] to the case of a viscoelastic material. The resultant differential equation, that is a
combination of Guduru et al. works [123, 172] and the assumption by Gent and Schultz [207–
209], is then solved numerically; Papangelo and Ciavarella [223] explicitly introduce the
effect of the rate-dependent work of adhesion in the model of McMeeking et al. [338], in

I (Martin) would like to know is if the origin of adhesive hysteresis, that we often see (in experiments), is due to
viscoelasticity or due to multistability in contacts?”. [336]
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the presence of an axisymmetric single-scale roughness. The resultant ordinary differential
equation is solved numerically as well; and, Violano et al. [191] combine a discrete version of
the Fuller and Tabor multi-asperity model [162] and the solution as proposed by Muller [215],
on a per asperity basis. Aforementioned theoretical treatises [191, 223, 333] share several
observations: obviously adhesive hysteresis is enhanced with load rate. This is inherent to
the assumption by Gent and Schultz [207–209]; the works by Ciavarella and Papangelo [223,
333] share the observation that at low retraction rates, the pull-off force increases due to
roughness-induced enhancement by mechanical instabilities. With increased retraction rate,
the rate-dependent effect “strengthens” [223] and the force-displacement curves collapse on
a unique asymptote, that of a smooth adhesive Hertzian. The only mechanism of interfacial
toughening that remains at retraction rates several times the characteristic frequency is thus
due to viscous dissipation alone. The theoretical treatises [191, 223, 333] also contradict each
other: where the pull-off force increases with (roughness) amplitude following Ciavarella and
Papangelo [333], and Papangelo and Ciavarella [223]; the pull-off force is negligibly affected
by the root-mean square roughness following Violano et al. [190, 191]. With viscous losses
implicitly considered via the assumption by Gent and Schultz ([207–209]) [223], and the
theoretical treatises by Ciavarella [193] with a cohesive zone model, report a dependence on
pre-load as well. However, it is still unknown how surface roughness affects the dependence
of the pull-off force on the maximum applied load [191]. The results indicate that, in the
presence of viscoelasticity [190, 191] at low retraction rates, roughness increases the pull-off
load (negligibly according to some authors [190, 191], significantly according to others [223,
333]). Whether this happens at high retraction rates as well is more controversial [223, 333].
Ciavarella and Papangelo [223, 333] find that roughness-induced dissipation disappears
with retraction rate, viscous dissipation “dominates” instabilities and contact mechanics
approach that of a smooth contact with viscous dissipation. They [223, 333] speculate that
viscoelasticity “effectively dampens” [333] the roughness-induced elastic instabilities, i.e.
reduces roughness induced adhesive hysteresis. Obviously unstable jumps do exist with
viscous dissipation present. The first subquestion thus is:What is the source of dissipation
between stable, static equilibria in soft matter contacts?.

Recently, much attention is dedicated to the study of the pull-off load in smooth, adhesive
viscoelastic contacts [135, 193, 221, 337]. Viscoelastic stiffening tends to promote long-range
adhesive behaviour [190, 193, 205, 335]. Violano and Afferante [337] elucidate the effects
of long- and short-range adhesion on the pull-off force. They [337] find that in the limit
of long-range adhesion: the unloading velocity has little effect on the pull-off force, and is
close to the prediction by Bradley [196] for rigid bodies. The contact mechanics are thus
characterised by uniform jump-out of contact under displacement control; the pull-off force
is independent of the retraction rate; and, marked viscous dissipation occurs in the bulk of
the material. Aforementioned observations oppose those for short-range adhesion, where for
low and moderate retraction rates, dissipation is limited to a small volume close to the contact
edges [229]. Violano and Afferante find [337] in accordance with Jiang et al. [135] and us [335]
that the pull-off force (the effective work of adhesion in the latter work [335]) is limited by
the effective Tabor/Maugis parameter. Ciavarella et al. [339] calculate the upper bound of this
pull-off load. They [339] qualitatively reproduce the pull-off loads at high retraction rates by
Müser and Persson [205] once the range of adhesion is adjusted by a corrective factor. We
will show that roughness-induced mechanical instabilities reappear with increased retraction
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rate. The second subquestion thus is:When do mechanical instabilities occur in soft matter
contact between stable, quasi-static equilibria?.

Outline
In the following, we contribute to a better understanding of the interplay between roughness,
viscoelasticity and adhesion by means of a simple two-dimensional numerical model, which
has the strength that the dissipation is an emergent behaviour. The model builds on the work
by Van Dokkum and Nicola [340], and Van Dokkum et al. [335], who study the indentation
and retraction of a smooth, rigid cylinder from a viscoelastic half-plane by means of Green’s
function molecular dynamics [341]. To simplify the problem, roughness is modelled as a
single wavelength wave superimposed on the profile of a rigid cylinder, that retracts from the
viscoelastic half-plane. By changing retraction rate from two different initial loads and with
two different instantaneous moduli, we compute the contact area and the load. We determine
the contribution of viscous dissipation and mechanical instabilities in adhesive hysteresis by
comparing with the JKR-solutions [172, 192] and the opening of a Mode I crack [217, 218].
Pull-off is analysed via an adjusted, Maugis calculation of the contact area and load, alike
Johnson and Greenwood [201] and Ciavarella et al. [339].

5.2 Problem Definition
The problem considered in this chapter is the retraction of a rigid, wavy, infinitely long,
cylindrical indenter from a viscoelastic half-plane, as represented schematically in Fig. 5.1.
The cylindrical indenter, that is assumed to be much stiffer than the substrate, has a profile

Figure 5.1: A rigid indenter with radius 𝑅 in contact with a viscoelastic substrate for an applied load 𝑤. Adhesion is
controlled by the interaction length 𝛿max. The image is stretched in the 𝑧-direction for clarity.

ℎ(𝑥, 𝑡) = ℎ0(𝑡)+
𝑥2

2𝑅
−𝐴cos(

2𝜋𝑥
𝜁 ) , (5.1)

where the first term characterises a rigid body translation, the second the profile of a Hertzian
cylinder with radius 𝑅 and the third a sinusoidal waviness, superimposed on the cylindrical
profile, with amplitude 𝐴, wavelength 𝜁 and time 𝑡. The substrate is assumed to be initially
flat and semi-infinite. The material is taken to be incompressible and viscoelastic in shear.
For simplicity, the viscoelastic behaviour is modelled by means of the Zener model [342].
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Hence, the creep function of the equivalent elastic modulus is

𝐸∗ (𝑡) = 𝐸∗0 +(𝐸∗∞−𝐸∗0)𝑒
− 𝑡
𝜏 , (5.2)

where 𝐸∗0 is the relaxed effective modulus, that characterises the response when the defor-
mation rate �̇� ∼ 0; 𝐸∗∞ the instantaneous effective modulus, that characterises the response
in the limit �̇�→∞; and, 𝜏 the relaxation time. Here the overdot ∙̇ indicates the derivative of ∙
with respect to the dimensional time 𝑡.

The Dugdale-Maugis model [194, 197] is used to describe the adhesive interaction be-
tween the indenter and the (visco)elastic substrate. This model [194, 197] specifies an adhesive
traction 𝜎a whenever the gap (width) between the two bodies, 𝑔 (𝑥, 𝑡), is positive but smaller
than or equal to the interaction length 𝛿max. The adhesive contact is characterised by the
relaxed Maugis parameter

𝜆0 =
Δ𝛾0
𝛿max (

𝑅/(Δ𝛾0 (𝐸
∗
0)

2
))

1/3
, (5.3)

where Δ𝛾0 = 𝜎a𝛿max is the relaxed work of adhesion. Interpenetration is prevented through
a hard-wall constraint. The boundary conditions, which describe the interfacial interaction,
are

𝑔 (𝑥, 𝑡) = 0, 𝑝 (𝑥, 𝑡) < 𝜎a, intimate contact;
0 <𝑔 (𝑥, 𝑡) ≤ 𝛿max, 𝑝 (𝑥, 𝑡) = 𝜎a, adhesive annulus;

𝑔 (𝑥, 𝑡) > 𝛿max, 𝑝 (𝑥, 𝑡) = 0, out of contact,
(5.4a)

with the gap
𝑔(𝑥, 𝑡) = ℎ (𝑥, 𝑡)−𝑢 (𝑥, 𝑡) , (5.4b)

where 𝑢 (𝑥, 𝑡) indicates the normal displacements of the (visco)elastic substrate. The normal
pressure at the interface is indicated by 𝑝 (𝑥, 𝑡). By convention, pressure is defined positive
when compressive. The contact area 𝑎c is defined as the area in intimate contact where the
gap 𝑔(𝑥, 𝑡) = 0.

5.3 Theory
Before presenting recent theory, let us revisit analytical results that aid the following analyses.
The load in wavy adhesive line contact [172] in the relaxed and short-range adhesion limits
is

�̄�0 =
𝜋
4
�̄�2c −

√
2𝜋�̄�c+𝜋𝛼�̄�cJ1(

2𝜋�̄�c
𝛽 ) , (5.5a)

with the normalised load �̄� = 𝑤/(𝑅𝐸∗0Δ𝛾20)
1/3, and normalised amplitude and wavelength,

𝛼 =
𝜋𝐴𝐸∗0
𝜁 (

𝑅

(𝐸∗0)
2Δ𝛾0)

1/3

; and, 𝛽 = 𝜁 (
𝐸∗0

𝑅2Δ𝛾0)

1/3

, (5.5b)

respectively, where �̄�c = 𝑎c/(𝑅2Δ𝛾0/𝐸∗0)
1/3 is the normalised contact area and J1 (∙) the

first Bessel function of order one. The first two terms on the right-hand side of Eq. (5.5a)
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correspond with the two-dimensional JKR-solution [192] (See e.g. [177, 201]) and the third
one incorporates the effect of waviness. Equation (5.5) holds only for a connected, intimate
contact area. For a smooth cylindrical indenter ({𝛼,𝛽} = {0,−}), that separates from an elastic
substrate, JKR-theory [201] gives the contact area at pull-off

(�̄�c)JKRPO = (2𝑅2Δ𝛾0/(𝜋𝐸∗0))
1/3 , (5.6a)

with the load,
�̄�JKR
PO = −(3/4)(4𝜋𝐸∗0𝑅Δ𝛾

2
0 )

1/3, (5.6b)

that are finite and negative (tension), respectively, when adhesion allows for the indenter to
pull on the substrate. Equations (5.5) and (5.6) serve as the relaxed limits with short-range
adhesion in the following analysis.

Turning our attention to short-range adhesion in the instantaneous limit, we obtain the
closed-form solution of the load-area relationship in wavy contact as well. A straightforward
analysis (see e.g. [183]) shows that the maximum effective work of adhesion reached due to
viscous dissipation is Δ𝛾eff ∼ 𝑓rΔ𝛾0, with the modulus ratio 𝑓r = 𝐸∗∞/𝐸∗0 . This corresponds with
an elastic material with the instantaneous effective modulus 𝐸∗∞ at the contact edges [335].
The increased adhesion provided for by viscous dissipation is traditionally described by an
effective work of adhesion Δ𝛾0 ≤ Δ𝛾eff ≤ 𝑓rΔ𝛾0 (see e.g. [333]). In the instantaneous limit, the
instantaneous work of adhesion is thus constant with Δ𝛾∞ ≡ Δ𝛾0𝑓r. Since viscous dissipation
is concentrated near the edges of contact, the bulk is still characterised by the relaxed
effective modulus 𝐸∗0 . One thus recovers elastic behaviour, albeit with an effective work of
adhesion Δ𝛾eff ∼ Δ𝛾∞ in the instantaneous limit. Guduru’s solution for the elastic contact
with the instantaneous effective modulus 𝐸∗∞, in the second term on the RHS of Eq. (5.5a), is
one lower limit to the viscoelastic load-area curves. In the following, we refer to this solution
as the instantaneous limit with short-range adhesion, because viscoelastic contact tends
towards this limit at high retraction rates, as we show in the following.

Greenwood and Johnson [183] indicate that, since the traction at the peeling edges is
infinite in the JKR-theory, the stress and strain rates are infinite for any finite retraction
rate. Therefore, any viscous material around the peeling edge is in the instantaneous limit.
They [183] note that this is against observations and therefore, suggest to use a more realistic
description of the traction outside of intimate contact, which accounts for the fact that the
stress peak at the peeling edges is finite and adhesion acts over a finite range, with interaction
ranges 0 < 𝛿max. In any case, due to stiffening in the adhesive annulus, the effective Maugis
parameter 𝜆eff [335] becomes smaller than the relaxed Maugis parameter 𝜆0 and larger then
the instantaneous Maugis parameter

𝜆∞ ≡
Δ𝛾0
𝛿max (

𝑅/(Δ𝛾0 (𝐸
∗
∞)

2
))

1/3
. (5.7)

There is thus the need to account for viscous dissipation in the edges of contact and its
influence on the (finite) range of adhesion, which Ciavarella et al. [339] recently attempted.

Ciavarella et al. [339] consider the contact between a smooth cylindrical indenter and a
viscoelastic, adhesive half-plane, i.e. with normalised parameters {𝛼,𝛽} = {0,−}. The basic
equations in the relaxed limit are given in Baney and Hui [343] and the explicit evaluation
is presented by Johnson and Greenwood [201]. Following Johnson and Greenwood [201],
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we use the superposition principle and ensure the normal separation 𝑔 (𝑎c𝑚) = 𝛿max at the
edge of the adhesive annulus, with ratio 𝑚 = 𝑎a/𝑎c. This normal separation at the edge of
the adhesive annulus is

𝜆0�̄�2c �̄�
H
0 (𝑚)+𝜆20�̄�c�̄�

A
0 (𝑚) = 1, (5.8a)

where,
�̄�H0 =

1
2 (

𝑚
√
𝑚2−1−cosh−1(𝑚)) ; and,

�̄�A0 =
4
𝜋 (

√
𝑚2−1cosh−1(𝑚)−𝑚 ln(𝑚)) ,

(5.8b)

are the gaps, �̄� = 𝑔c/(𝑅2Δ𝛾0/𝐸∗0)
1/3, outside of and an adhesionless Hertzian contact and at

the edge of an attractive annulus, respectively. The normalised load is

�̄� =
𝜋�̄�2c
4

−2𝜆0�̄�c
√
𝑚2−1, (5.8c)

where the first term on the RHS is the Hertzian load, and the second term the adhesive
contribution. In the JKR-limit, with ratio 𝑚 ∼ 0 and relaxed Maugis parameter 𝜆0 ∼ ∞, we
obtain the first two terms on the right-hand side of Eq. (5.5a); and, in the rigid limit, the
pull-off load is �̄�PO

PO = 2
√
2
√
𝜆0 and intimate contact area (𝑎c)

rigid
PO = 0.

Ciavarella et al. [339] incorporate viscous dissipation bymodifying Eq. (5.8) in a “Schapery”
approximate sense. They [339] only modify the condition of critical gap size (5.8a) by
replacing the effective elastic modulus 𝐸∗0 in the definition of the adhesive gap 𝑔A0 by a creep
function equivalent to Eq. (5.2). They [339] “considered the remote bulk material to be in
a relaxed state even during unloading, which is the correct assumption in view of obtaining
upper bounds for the pull-off load”. In the instantaneous limit, the second term on the LHS
of Eq. (5.8a) then reads 𝜆20�̄�c�̄�A0 (𝑚)/𝑓r. However, the Hertzian gap 𝑔H outside of intimate
contact depends on the equivalent elastic modulus 𝐸∗ in the contact area as well.

For the remainder of this analysis, we consider solely the viscoelastic response in the
instantaneous limit. In Hertzian/cylindrical contact, the mixed boundary value problem
is solved by removing the singularity at the edges of contact (See e.g. Barber [344]). The
normalised load per unit cylinder length in the intimate contact area thus is

�̄�H0 (�̄�) = −
2�̄�H

0
𝜋𝜆0

√
�̄�2c − �̄�2

�̄�2c
, (5.9)

with the normalised pressure and normalised 𝑥-coordinate,

�̄� =
𝛿max𝑝
Δ𝛾0

; and, �̄� = 𝑥/(𝑅2Δ𝛾0/𝐸∗0)
1/3 , (5.10)

respectively, where �̄�H
0 = 𝜋�̄�2c/4 is the Hertzian load on the cylinder in the relaxed limit. The

surface displacement’s gradient under plane strain condition outside of intimate contact,
i.e. �̄�c ≤ �̄� , thus becomes

𝜕
𝜕�̄�

�̄� (�̄�) = −
2𝜆0
𝜋𝑓r ∫

�̄�c

−�̄�c

�̄�H0 (�̄�′)
�̄� − �̄�′

d�̄�′ =
1
𝑓r (

�̄� −
√
�̄�2− �̄�2c) . (5.11)
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Here, we make the assumption that the viscoelastic response inside the contact area is in the
instantaneous limit as well. This is equivalent to one substituting the creep function, alike
Ciavarella et al. [339], in the definition of the Hertzian gap 𝑔H where the load, �̄�H

0 , remains
in the relaxed limit. Integrating Eq. (5.11) and applying the appropriate boundary condition
at the edge of intimate contact (i.e., lim�̄�→�̄�+c �̄�H = 0), the normalised separation at the edge
of the adhesive annulus is

𝜆0�̄�2c �̄�
H
0 (𝑚)+𝜆20�̄�c�̄�

A
0 (𝑚) = 𝑓r. (5.12)

The semi-analytical solution of Eqs. (5.8c) and (5.12) is a limit of the Maugis analysis, where
the adhesive response in the instantaneous limit. In the following, we refer to this solution
as the instantaneous limit with finite-range adhesion.

In Fig. 5.2, the theoretical load-area and scaled load-scaled area curves for smooth and
wavy contact in the relaxed and instantaneous limits are given; the solid and dashed lines indi-

(a) (b)

Figure 5.2: (a) The normalised load �̄� as a function of the normalised contact area �̄�c and (b) the scaled area 𝜋�̄�c
√
�̄�c/4

as a function of the scaled load �̄�/
√
�̄�c for smooth (solid line) and wavy ((dashed)-dotted lines) contact, and adhesion

is short-range with a relaxed Maugis parameter 𝜆0 = 7. The black lines indicate the relaxed limit 𝐸∗0 , the gray lines
the instantaneous limits 𝐸∗∞ and the black arrow an increase in modulus ratio modulus ratios 𝑓r =10 and 25 across
grey coloured lines.

cate the short-range adhesive limit, 𝜆0 ∼∞, and the dashed-dotted line finite-range adhesion,
3 ≤ 𝜆0 [201]. In the relaxed limit 𝐸∗0 and/or for the modulus ratio 𝑓r ∼ 1, the responses with a
finite and an infinitesimal range of adhesion coincide when 3 << 𝜆0 [201]. The difference
between the responses with a finite and infinitesimal range of adhesion, in the instantaneous
limit 𝐸∗∞, increases with modulus ratio 𝑓r and relaxed Maugis parameter 𝜆0 [335]. The former
load-area response differs most from short-range adhesive, cylindrical contact, when the
intimate contact area �̄�c < 3, i.e., near pull-off.

A characteristic of load-controlled adhesive experiments with short-range adhesion is
that pull-off and/ormechanical instabilities occur for a finite intimate contact area 0 << (�̄�c)PO
upon retraction, where the slope d�̄�/d�̄�c changes sign. An increase in load �̄� with decreasing
contact area �̄�c is thus not observed during retraction. Juxtaposed to elastic adhesive contact,
mechanical instabilities solely occur when the load-area response meets the instantaneous
limit in the presence of viscous dissipation [345]. The grey lines in Fig. 5.2 are these instan-
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taneous limits. Larger loads �̄� and smaller contact areas �̄�𝑐 are thus observed in the presence
of viscoelasticity, than in elastic contacts.

The dashed-dotted grey lines in Fig. 5.2 are a second instantaneous limit, with a finite
range of adhesion. The pressure inside intimate contact is that of a Hertzian in the relaxed
limit, and the deformation in the adhesive annulus is in the instantaneous limit. Due to stiffen-
ing in the adhesive annulus, the effective Maugis parameter 𝜆eff becomes smaller [335]. The
vanishing, finite contact area at increasing load, is a characteristic of this transition form the
JKR-limit to the rigid limit. This becomes clearest in Fig. 5.2b of the scaled area-scaled load
curves with contact areas �̄�c < (𝑎c)JKRPO and loads �̄�JKR

PO < �̄�. The contact’s response changes
from short- to finite-range adhesion. We expect that the latter’s instantaneous limit is ap-
proached at vanishing contact area (𝑎c)PO ∼ 0. The instantaneous limit with finite range
adhesion thus is the second limit we use to analyse the intimate contact area (�̄�c)PO and
load �̄�PO at pull-off in the following.

5.4 Numerical Method
The numerical model adopted is the one presented by Van Dokkum and Nicola [340], that em-
ploys the Green’s FunctionMolecular Dynamics (GFMD) technique and discrete Fourier trans-
form [346] to achieve an efficient algorithm. The GFMD technique is a boundary-element
method that permits one to reduce the dimensions of the problem such that only the pro-
file of the substrate is modelled. At each temporal increment Δ𝑡, the equilibrium normal
displacement of the profile is found by means of the following relation in Fourier space:

�̃� (𝑞, 𝑡)+ 𝜏 ̇̃𝑝 (𝑞, 𝑡) = −8|𝑞| (𝐸∗0 �̃� (𝑞, 𝑡)+ 𝜏𝐸∗∞ ̇̃𝑢 (𝑞, 𝑡)) , (5.13)

coupled to the imposed boundary conditions. Here, the overscript tilde ∙̃ indicates the
Fourier transform of ∙, with the wavenumber 𝑞. Equation (5.13) is integrated in the time
domain semi-analytically within each constant, dimensional time-step Δ𝑡. We thus avoid
storing the whole history of normal pressures and displacement, which is necessary for a
direct numerical integration. Each dimensionless time-step Δ𝑡, the position (Störmer-)Verlet
algorithm [347] is used to compute, through damped dynamics, the new normal displacement
of the equispaced nodes 𝑛𝑥 that discretise the profiles. Adhesion is here implemented using
a first-order approximation in the gap, in a manner similar to that presented by Medina
and Dini [158]. The dimensionless time-step Δ𝑡 = Δ𝑡max/50, with the maximum time-step
Δ𝑡max = 𝜏 (1−1/𝑓r), and spatial discretization 𝑛𝑥 = 215 ensure convergence for the physical
parameters we choose.

The cylinder’s radius 𝑅 = /10, with the periodic width . The ratio /𝑅 is chosen
sufficiently large so that the results are unaffected by the inherent periodicity of the discrete
Fourier transform [346]. The normalised parameters {𝛼,𝛽} = {0,−} (i.e. smooth contact), and
{1.46,1.87} (i.e. wavy contact), unless specified differently. The modulus ratios are 𝑓r = 10
and 25, where the relaxed effective modulus 𝐸∗0 and the relaxation time 𝜏 are kept constant.
The relaxed Maugis parameter 𝜆0 = 7 ensures short-range adhesive contact in the relaxed
limit [201]. The problem is studied by controlling the load rate �̇� (𝑡) = 𝜕

𝜕𝑡 ∫ 𝑝 (𝑥, 𝑡) d𝑥 at the
contact.

First, we indent the substrate elastically, with the relaxed effective modulus 𝐸∗0 , up to
maximum loads �̄�max = 20 and 40. This is equivalent to indenting a viscoelastic substrate



5.5 Results and Discussion

5

113

and prescribing an infinite waiting time, so the substrate fully relaxes after indentation,
but computationally tractable. Subsequently, the indenter is retracted by reducing the load
at a constant load rate �̇�. The normalised retraction rates ̇̄𝑤 ×104 = �̇�𝜏/(𝑅𝐸∗0Δ𝛾20)

1/3 =
300,120,60,⋯ ,0.03,0.012,0.006 and ∼ 0 (i.e. elastic).

5.5 Results and Discussion
In Fig. 5.3, the load �̄� as a function of the contact area �̄�c is presented for smooth and wavy
contact, withmaximum loads �̄�max = 20 and 40; in Figs. 5.3a,c, and 5.3b,d, the load-area curves
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Figure 5.3: The normalised load �̄� as a function of the normalised contact area �̄�c for (a, b) smooth ({𝛼,𝛽} = {0,−}) and
(c, d) wavy ({𝛼,𝛽} = {1.47,1.87}) contact, with modulus ratios (a, c) 𝑓r = 10 and (b, d) 25, and maximum normalised
loads �̄�max = 20 and 40. The loading rate ̇̄𝑤∼ 0 (i.e. elastic), and retraction rates ̇̄𝑤 ×104 =0.06, 0.3, 3, 12, 60 and 300
increase across solid coloured lines as indicated by the black arrow. The dark grey dotted line indicates the relaxed
and the light grey dotted line the instantaneous limit with short-range adhesion. Unstable jumps are indicated by
coloured arrows with coloured, dashed lines.

are given with modulus ratios 𝑓r = 10 and 25, respectively. The relaxed and instantaneous
limits with short-range adhesion are indicated by dark and light grey dotted lines, respectively.
The elastic result (i.e., loading rate ̇̄𝑤 ∼ 0) during indentation and retraction, with effective
elastic modulus 𝐸∗0 , is indicated by a solid, dark grey line.
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Both elastic and viscoelastic contacts are characterised by adhesive hysteresis, but their
origins differ. We quantify adhesive hysteresis as the difference between elastic loading,
indicated by dark grey line, and retraction with a finite rate, as indicated by coloured
lines. In elastic contact, it is the dissipation of energy in the mechanical instabilities that
causes adhesive hysteresis [123], as these elastic jumps upon retraction occur at lower loads
than whilst indenting. All mechanical instabilities are indicated by coloured arrows with
dashed lines, that correspond in their colour with the given retraction rate. For smooth
contact the mechanical instability coincide with jump in- and out-of-contact, while in wavy
contact mechanical instabilities occur during retraction as well. In viscoelastic contact, both
mechanical instabilities and viscoelasticity contribute to adhesive hysteresis.

The viscoelastic curves fall below the relaxed limit, i.e., a larger contact area is found
for the same load, which indicates that adhesion is stronger than in elastic contact: the
load-area curves for smooth contacts, in Figs. 5.3a and b, follow a path parallel to the JKR
solution [192], characterised by an increased effective work of adhesion Δ𝛾eff after an initial
transient period [186, 335]; and, the load-area curves for wavy contact, in Figs. 5.3c and d,
shift to lower loads with respect to the reference solution by Guduru (5.5) as well. As
expected, one observes a monotonic trend; the load-area curve approaches the relaxed limit
at low retraction rates and the instantaneous limit at high retraction rates. As the modulus
ratio increases so does the adhesive hysteresis for a given retraction rate between Fig. 5.3a
and b, and 5.3c and d. Notable is that in wavy contacts with retraction rates ̇̄𝑤 ×10−4 ≤ 3,
mechanical instabilities are absent during retraction, except for pull-off. For loads above the
instantaneous limit and below the relaxed limit, a finite yet quick area reduction is observed.
At high retraction rates 12 ≤ ̇̄𝑤 ×10−4, mechanical instabilities do occur. We address these
two observations in the following.

5.5.1 Wavy Contact
In Fig. 5.4, the particular case of retraction rate ̇̄𝑤 ×104 = 12 is presented, in wavy contact,
with modulus ratio 𝑓r = 10 and maximum load �̄�max = 20; the load-area curve is presented
in Fig. 5.4a together with the elastic realisation (i.e., retraction rate �̇� ∼ 0) as reference.

The elastic solution is characterised by an unstable jump around �̄�c ≈ 5 as marked by a
yellow circle, where Guduru’s analytical solution (5.5a) has a local minimum. This elastic
mechanical instability, however, does not occur in the adhesive, viscoelastic wavy contact.
This is in line with what was observed by e.g. Ciavarella [333] and is rationalised as follows:
in an elastic material, the only equilibrium positions are given by the relaxed limit (dark grey
dotted lines in Figs. 5.3 and 5.4). For a viscoelastic material, however, an infinite number
of such solutions exist as the effective work of adhesion Δ𝛾eff is allowed to vary freely
between Δ𝛾0 and 𝑓rΔ𝛾0. Therefore, at least the whole load-area region between the relaxed
and instantaneous limits with short-range adhesion (i.e. between the dark and light grey
dotted lines in Figs. 5.3 and 5.4) provides for stable, quasi-static equilibria.

To better understand what happens upon the retraction of the wavy, adhesive cylinder,
the pressure profiles are presented in Fig. 5.4b at the loads �̄� = 5.6, 3.7 and −1.6, which
correspond with the coloured dot-shaped markers in Fig. 5.4a. All the pressure profiles look
qualitatively similar, with smooth oscillations that match the waviness of the indenter, and a
large attractive normal pressure spike at the edge of contact. When the contact area recedes
upon retraction, high pressure rates ̇̄𝑝 ≡ 𝛿max𝜏�̇�/Δ𝛾0 are confined to the edges of the contact,
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Figure 5.4: (a) The normalised load �̄� as a function of the normalised contact area �̄�c for wavy contact
({𝛼,𝛽} = {1.46,1.87}), with maximum normalised load �̄�max = 20, retraction rates ̇̄𝑤∼ 0 and 1.2 ⋅ 10−3, and mod-
ulus ratio 𝑓r = 10. (b) Pressure, (c) and pressure rate profiles for the normalised loads �̄� = 5.6, 3.7 and −1.6 as
indicated by differently coloured, dot-shaped markers in (a).

as shown in Fig. 5.4c. This is consistent with the common assumption in literature, that the
viscous dissipation is concentrated at the edges of intimate contact. Of course, this holds
true only when the retraction rate does not exceed a given a priori unknown threshold; and
when adhesion is short-range.

It is interesting to observe in Fig. 5.4b that the sizes of the adhesive annuli are different
at different loads �̄�. The load �̄� = 3.7, as indicated by the purple curves in Figs. 5.4b, has
the widest adhesive annulus of all loads we investigate. This is because the purple profile in
Fig. 5.4b corresponds to a point, indicated with a purple dot-shaped marker on the load-area
curve in Fig. 5.4a, with the smallest slope d�̄�/d�̄�c: a minute reduction in the applied load �̄�
leads to a large drop in the contact area. Therefore, the contact area reduction, −�̇�c, is highest
at that point, which leads to an increase in normal pressure rate that stiffens the substrate
locally. This increase holds the surfaces closer together by additional viscous dissipation,
and a mechanical instability is absent. These observations are inline with the description of
a crack tip in a viscoelastic solid by Greenwood and Johnson [183].

Mechanical instabilities during retraction, in wavy contact, solely occurs when the
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viscoelastic load-area response meets the instantaneous limit with short-range adhesion;
the effective work of adhesion Δ𝛾eff approaches the instantaneous work of adhesion Δ𝛾∞.
The load can no longer decrease with contact area reduction and the mechanical instability
ensues, as marked by a yellow circle at the intimate contact area �̄�c ≈ 3 and the load �̄� ≈−6 in
Fig. 5.4a. Quasi-static stable contact is attained again with the intimate contact area �̄�c ≈ 2.25
for the same load. This mechanical instability constitutes roughness-induced dissipation.

In Fig. 5.5, the load-area curves in wavy contact for retraction rate ̇̄𝑤 × 104 = 12, and
modulus ratios 𝑓r = 10 and 25 are presented; the maximum load �̄�max = 40, and the elastic
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Figure 5.5: The normalised load �̄� as a function of the normalised contact area �̄�c for modulus ratios 𝑓r =10
and 25 in wavy contact ({𝛼,𝛽} = {1.46,1.87}), with maximum normalised load �̄�max = 40, and retraction rates ̇̄𝑤∼ 0
and ̇̄𝑤 = 1.2 ⋅10−3.The dark and light grey dotted lines indicate the instantaneous limits with short-range adhesion
for modulus ratios 𝑓r =10 and 25, respectively, as indicated by the black arrow.

realisation (i.e., retraction rate �̇� ∼ 0) is added as reference. The relaxed and both instanta-
neous limits with short-range adhesion are indicated by dark and light grey, dotted lines,
respectively. The numerical results out of Figs 5.3c and d are combined here for comparison’s
sake.

For the given retraction rate and increasing modulus ratio, the magnitude of adhesive
hysteresis increases: the loads at pull-off are �̄�PO ≈ −8 and −12 for modulus ratios 𝑓r = 10
and 25, respectively, as marked by a vertical yellow ellipse. The load �̄� decreases with in-
creased modulus ratio 𝑓r for a given contact area 𝑎c as well [333]; the number of mechanical
instabilities decreases with increased modulus ratio; a mechanical instability occurs for mod-
ulus ratio 𝑓r = 10, whose range of intimate contact areas 2 ⪅ �̄�c ⪅ 3 is marked by a horizontal
yellow ellipse. For modulus ratio 𝑓r = 25, a rapid yet constant, intimate contact area reduction
is observed for this contact area range. The maximum work of adhesion, Δ𝛾0𝑓r, increases
with the modulus ratio, so the pull-off load �̄�PO decreases in the instantaneous limits 𝐸∗∞.
The magnitude of the observed adhesion increases, yet the magnitude of roughness-induced
dissipation reduces with increased modulus ratio 𝑓r.

Mechanical instabilities are not all damped in viscoelastic wavy contacts, they do oc-
cur when the load-area curve traverses the instantaneous limit with short-range adhesion.
These instabilities are indicated by coloured arrows with coloured dashed lines who’s colour
corresponds with the given retraction rate in Figs. 5.3c and d, and 5.4a and 5.5. We note
that quasi-static equilibrium, is obtained beyond the instantaneous limit because the range
adhesion increases with stiffening in the edges of contact [335]. This becomes most apparent
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in our results when the modulus ratio increases from 𝑓r = 10 to 25 in Fig. 5.3c and d. Since stiff-
ness is bounded by the instantaneous effective modulus 𝐸∗∞, mechanical instabilities occur at a
finite intimate contact areas as highlighted in Fig. 5.3d by an hot pink coloured, dashed ellipse.
These effects of viscoelasticity on the observed adhesion and observed roughness-induced
dissipation is discussed in the following.

5.5.2 Viscoelastic Effects
In Fig. 5.6, the cases of retraction rates ̇̄𝑤 ×104 = 0.006,6 and 60, and modulus ratios 𝑓r = 10
and 25 are presented, in smooth ({𝛼,𝛽} = {0,−}) and wavy ({𝛼,𝛽} = {1.47,1.87}) contacts; the

(a) (b)

Figure 5.6: (a) The normalised load �̄� as a function of the contact area �̄�c and (b) the scaled contact area 𝜋�̄�c
√
�̄�c/4 as a

function of the scaled load �̄�/
√
�̄�c for smooth ({𝛼,𝛽} = {0,−}) and wavy ({𝛼,𝛽} = {1.47,1.87}) contacts, with modulus

ratios, retraction rates and maximum loads {𝑓r; ̇̄𝑤; �̄�max}={10;6×10−7; 20}, {10;6×10−4; 40} and {25;60×10−4; 40}. Part
of the instantaneous limit for modulus ratio 𝑓r =10 and arrows indicated jump-out-of-contact in Fig. 5.3 are omitted
for clarity’s sake. The double-headed arrows in (b) illustrate the local size of the load-area envelope [155].

maximum loads �̄�max are 20 with retraction rate ̇̄𝑤 ×107 = 6 and modulus ratio 𝑓r = 10,
and �̄�max = 40 with rates ̇̄𝑤 ×104 = 6 and 60, for clarity’s sake. We choose to compare the
latter two retraction rates for one of each modulus ratio 𝑓r = 10 and 25 because the load-area
curves display a single mechanical instability. Those are indicated in Fig. 5.6 by coloured
arrows and highlighted by yellow circles in Fig. 5.6a. In Figs. 5.6, the analytical and numerical
result for both smooth ({𝛼,𝛽} = {0,−}) and wavy ({𝛼,𝛽} = {1.47,1.87}) contacts are combined,
and indicated by dashed and solid lines, respectively. For our choice of modulus ratios 𝑓r = 10
and 25, the reduction in load-area envelope [155] is not readily noticeable for the same
retraction rate ̇̄𝑤 ×104 = 12 in Fig. 5.5. The definition of load-area envelope originates from
the work by Kesari and Lew [155]. They [155] expand Guduru’s solution [172] asymptotically
for very small wavelength of the waviness and obtain an envelope which touches the local
maxima and minima of the load-approach curve. We omit part of the instantaneous limit,
with short-range adhesion, for modulus ratio 𝑓r = 10 for clarity’s sake as well.

In Fig. 5.6a, the load �̄� as a function of the contact area �̄�c is presented; and, in Fig. 5.6b,
the scaled contact area 𝜋�̄�c

√
�̄�c/4 is given as a function of the scaled load �̄�/

√
�̄�c. In wavy

contact, the local envelope curves for the highest retraction rate ̇̄𝑤 × 104 = 60 is smaller
than for ̇̄𝑤 ×107 = 6 and 600, and the elastic result. Herein, the local envelope is a line



5

118 Part II: Soft Matter Contacts

that is tangential to all points of intersection with the scaled load-scaled area curve with a
minimum of two points of intersection. This is a method to compare the waviness in the
load-area curves between different retraction rates, wavy roughnesses and modulus ratios.
The coloured, double headed arrows in Fig 5.6b, that are highlighted by yellow coloured
circles, indicate the local size of the load-area envelopes. These arrows are visual aids to
facilitate further comparison between different retraction rates ̇̄𝑤 ×104 = 0.006,6 and 60, and
modulus ratios 𝑓r = 10 and 25, respectively.

The size of the local envelopes decreases with retraction rate and modulus ratio, which is
rationalised as follows: the difference in retraction rate between “damped” elastic mechanical
instabilities and the remainder of the retraction period decreases with increased viscous
dissipation. The contact area reduction with time is readily inferred from Fig. 5.6a, noting
that the retraction rate ̇̄𝑤 is constant for the given line colour. The contact area velocity, �̇�c,
thus decreases with increasing retraction rate, which increases viscous dissipation. Viscous
dissipation increases for the given relaxation time 𝜏 with modulus ratio 𝑓r as well. In turn,
the load-area curve in wavy contact approaches that of smooth contact with increased
modulus ratio but not necessary for the same retraction rate. The latter is clearest between
the load-area responses in smooth and wavy contacts, as indicated by dashed and solid
lines, respectively, in Fig. 5.6a. Our numerical results are in partial agreement with the
speculation [333], that viscoelasticity reduces the effect of wavy roughness with increased
retraction. Herein, mechanical instabilities do occur for modulus ratio 𝑓r = 25 and retraction
rates 60 ≤ ̇̄𝑤 ×104 in Fig. 5.3d.

For the lowest retraction rate ̇̄𝑤×107 = 6 and wavy contact, elastic mechanical instabilities
are absent, except for pull-off. One might expect that with viscoelastic theory, the strict
elastic solution is obtained at extremely low loading rates [333]. However, for the elastic
result, as such independent of loading rate, an infinite speed of the receding contact edges
is attained at mechanical instabilities. Herein, when viscous dissipation is confined to the
edges of contact and a function of the receding contact’s velocity, the effective work of
adhesion Δ𝛾eff increases with contact edge’s velocity �̇�c/2 [335]. The contact area velocity �̇�c
is then finite because of the viscous dissipative component in the edges’ equation of motion;
when viscous dissipation is present a quasi-static stable equilibrium is attained. The only
reason the quasi-static equilibrium becomes unstable is cause viscous dissipation is finite
(See Sec. 5.5.1). Looking e.g. at previous works [223, 333], the instantaneous work of adhesion
is infinite, so their [223, 333] models omit finite stiffening at the contacts’ edges. For modulus
ratio 𝑓r = 10 and retraction rate ̇̄𝑤×104=12, part of adhesive dissipation is roughness-induced
(See Fig. 5.3c). Wherefore with finite stiffening, we chose two different retraction rates to
compare between two different modulus ratios in a meaningful manner. The occurrence of
pull-off, at infinitesimal loading rates, might thus be due in part to meeting the instantaneous
limit in the contact edges as well.

In Fig. 5.7, the scaled load �̄�/�̄�JKR
PO is given as a function of the scaled contact area

�̄�c/(�̄�c)JKRPO in smooth contact ({𝛼,𝛽} = {0,−}) with modulus ratios 𝑓r = 10 and 25; the results
and limits in Fig. 5.7a and b, indicated by dotted and solid coloured lines, are equivalent
for those in Fig. 5.3a and 5.3b, respectively; the dashed-dotted, light grey line delineates
quasi-static equilibria in the instantaneous limit with a finite range of adhesion (See Sec. 5.3);
and, the plots’ range is indicated by grey dashed rectangles in Figs. 5.3a and b as well. We limit
the following observations to the lowest retraction rates ̇̄𝑤 ×104 = 0.006,⋯ ,3. Furthermore,
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Figure 5.7: The scaled load �̄�/�̄�JKR
PO is given as a function of the scaled contact area �̄�c/(�̄�c)JKRPO in smooth contact

({𝛼,𝛽} = {0,−}) with modulus ratios (a) 𝑓r = 10 and (b) 25. The retraction rate ̇̄𝑤∼ 0 (i.e. elastic), and ̇̄𝑤 ×106 =0.6, 3, 6,
30, 120 and 300 increases as indicated by the black arrow; the elastic mechanical instability is depicted by a dark grey
arrow as a reference. The dark and light grey dotted lines indicate the relaxed and instantaneous with short-range
adhesion (5.5), and the light grey dashed-dotted line the instantaneous limit with finite-range adhesion (5.12).

we omit the arrows with coloured dashed lines, that indicate jumps, for clarity’s sake, expect
for the the elastic result (i.e. retraction rate ̇̄𝑤 ∼ 0).

Pull-off is indicated on the scaled load-scaled contact area curves by coloured delta and
gradient symbols in Figs. 5.7a and b, for modulus ratios 𝑓r = 10 and 25, respectively. As ex-
pected, the pull-off loads tend towards the relaxed, JKR-limit with vanishing retraction
rate (i.e. �̄�PO ∼ �̄�JKR

PO ). However, pull-off on the load-area curve resides between: the
load-area relationship in the instantaneous limit for short-range adhesion (5.5); and, the
load-area relationship with a finite range of adhesion (5.12), which includes a vanishing
contact area at pull-off (i.e. (𝑎c)PO ∼ 0).

Once the contact area decreases below the minimum of adhesive elastic contact, i.e.,
𝑎c < (𝑎c)JKRPO , the contact area reduction and viscous dissipation increase. The relative size
of the adhesive annulus, 𝑎a/𝑎c, increases with equivalent modulus 𝐸∗. The stiffening of the
edges of contact with viscous dissipation increase the range of adhesion, whereby quasi-static
equilibrium is attainable beyond the instantaneous limit with short-range adhesion. Hence
the theoretical, maximum observed range of adhesion increases, which allows adhesive vis-
coelastic contacts to attain smaller intimate contact areas then one might expect from elastic
short-range adhesive theory [335]. The difference between the obtained minimum contact
area (𝑎c)PO, and the short-range adhesive viscoelastic contact in the instantaneous limit,
(𝑎c)JKRPO , increases with modulus ratio 𝑓r. We thus find a vanishing contact area, (�̄�c)PO ≈ 0,
with retraction rates ̇̄𝑤 ×107 = 6, 30 and 60, and modulus ratio 𝑓r = 25, which is indicated by
a vertical pink ellipse in Fig. 5.7b.

The adhesive pull-off behaviour changes from short-range adhesion, to more rigid ad-
hesive behaviour with modulus ratio 𝑓r. This is in line with the observations by Müser
and Persson [205] that an increase in instantaneous modulus, the pull-off transitions from
crack-propagation to “quasi-uniform” bond breaking and the limit by Ciavarella et al. [339] at
high retraction rates. However, we find that the presence of viscous dissipation governs the
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effective range of adhesion, and in turn the contact area (𝑎c)PO at pull-off with a vanishing
retraction rate and the smallest instantaneous Maugis parameter 𝜆∞ = 1.5 in this chapter as
well. So the presence of viscous dissipation governs the observed range of adhesion for all
retraction rates. To the best of our knowledge this has not been reported in literature before.

5.5.3 Work of Adhesion
When adhesion is short-range, the edge of contact is treated as a crack in an infinite elastic
solid [194]. The works [229, 335, 336, 348] show that the solutions for a Mode I crack in an
infinite viscoelastic solid, by Greenwood [334], and Persson and collaborators [217, 218],
quantify the retraction of an adhesive, smooth Hertzian from a viscoelastic half-plane. We
use our method, as championed in Van Dokkum et al. [335], to determine the effective work
of adhesion Δ𝛾eff during retraction. In Fig. 5.8, the effective work of adhesion Δ𝛾eff is given as
a function of the absolute contact area rate || ̇̄𝑎c||, with the rate ̇̄𝑎c = �̇�c𝜏/(𝑅2Δ𝛾0/𝐸∗0)
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Figure 5.8: The scaled effective work of adhesion Δ𝛾eff/Δ𝛾0 as a function of the absolute contact area rate || ̇̄𝑎c || in
(a) smooth ({𝛼,𝛽} = {0,−}) and (b) wavy ({𝛼,𝛽} = {1.47,1.87}) contact with retraction rates ̇̄𝑤 ×104=0.006, 0.012,0.03,
0.06, 0.012, 0.3, 0.6, 1.2 and 3, and modulus ratios 𝑓r = 10 and 25. The black (dashed) lines indicate the solution by
Persson and Brenner [217], with the solid’s strength 𝜎0 = 𝜎a.

results in Fig. 5.8a correspond with smooth contact ({𝛼,𝛽} = {0,−}) in Figs. 5.3a and b; and,
the results in Fig. 5.8b with wavy contact ({𝛼,𝛽} = {1.47,1.87}) in Figs. 5.3c and d, without
mechanical instabilities. The solid and dashed black lines indicate the solution by Persson
and Brenner [217], with the solid’s strength 𝜎0 = 𝜎a and modulus ratios 𝑓r = 10 and 25,
respectively. Instead of the JKR solution [192], we use the solution by Guduru (5.5) for
wavy contact, with effective modulus 𝐸∗0 as the reference solution [335]. Symbols are use for
comparison purposes between smooth and wavy contact. Where in the latter case, the contact
area velocity �̇�c oscillates (See Sec. 5.5.2). These symbols are limited to the “steady-state”
period, that is independent of the initial contact, and sufficiently far from pull-off where the
contact area decelerates, i.e. �̈�c < 0.

In smooth contact with modulus ratio 𝑓r = 10, the numerical results align with the solution
by Persson and Brenner [217], as we showed before [335]. With modulus ratio 𝑓r = 25, the
effective work of adhesion Δ𝛾eff increases as a power-law with the absolute contact area rate
|| ̇̄𝑎c|| as well. As expected, the effective work of adhesion Δ𝛾eff tends to the instantaneous
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work of adhesion Δ𝛾∞ at high rates 104 < || ̇̄𝑎||. Notable is that these observations hold for
wavy contact in Fig. 5.8b.

The inserts in Fig. 5.8 display the effective work of adhesion Δ𝛾eff for the lowest loading
rates ̇̄𝑤 × 107 = 6, 12, 30 and 60, and modulus ratio 𝑓r = 10. The area of each insert is
indicated by a light grey, dashed rectangle in their respective figure. Note that the transient
up to pull-off is shown in the inserts in Fig. 5.8 but omitted from the main figure. In
smooth contact, the load-area rate response is a monotonic increase in the contact area
rate || ̇̄𝑎c||with decreasing load �̄� till pull-off. In wavy contact, the load-area response alternate
between: periods of increased area reduction rate, that correspond with the “damped” elastic
mechanical instabilities of the elastic result; and, periods in which the contact area reduces
in a slower manner. The oscillations in the contact area velocity �̇�c are readily inferred by
one from Fig. 5.6a, noting that the retraction rate ̇̄𝑤 is constant for the given line colour. In
wavy contacts, the acceleration in contact area reduction induces an increase in the effective
work of adhesion Δ𝛾eff , which allows for a quasi-static stable contact to be attained and the
elastic mechanical instability is avoided. This corresponds with the observations we make
from Fig. 5.4b and c, which confirms the speculation by Ciavarella and Papangelo [223, 333]
that viscoelasticity “effectively dampens” the elastic mechanical instabilities, at least at low
retraction rates.

The effective work of adhesion at pull-off is highlighted by a pink circle in the insert in
Fig. 5.8a, and the same instants are marked on the load-area in Fig. 5.7a, by a pink circle as
well. The effective work of adhesion Δ𝛾eff increases with the absolute contact area rate || ̇̄𝑎c||
toward the instantaneous work of adhesion Δ𝛾∞ in the inserts of Fig. 5.8, and even slightly
surpass it. This confirms that mechanical instabilities, with vanishing retraction rate, are due
to meeting the instantaneous limit in the contact’s edges. The observed adhesive contact
mechanics at pull-off are thus altered from static, elastic contact by viscous dissipation at
low retraction rates, where the adhesive annulus now stiffens.

5.5.4 Pull-Off
A common way to assess how much waviness and viscoelasticity enhance hysteresis is to
look at how the pull-off load increases [333]. In Fig. 5.9a, the scaled pull-off load �̄�PO/�̄�JKR

PO
is presented as a function of the retraction rate ̇̄𝑤, for normalised parameters {𝛼,𝛽} = {0,−}
(i.e. smooth contact), and {1.46,0.93}, {1.46,1.87}, and {2.93,1.87} (i.e. wavy contacts); the
pull-off loads are indicated with plus-shaped coloured markers; the relaxed limit is given by
plus-shaped coloured markers as a reference and indicated by “El” as well; and, the solid
coloured lines are guides to the eyes.

We consider first a smooth indenter (blue curve, with {𝛼,𝛽} = {0,−}) and reproduce the
JKR results in the relaxed limit. In the instantaneous limit, definition (5.6b) holds as well,
provided that the work of adhesion is replaced by the instantaneous work of adhesion Δ𝛾∞.
Indeed, the load at pull-off �̄�PO is a power function of the retraction rate ̇̄𝑤 [205] and tends
asymptotically to the expected value �̄�PO ∼ 𝑓 2/3

r �̄�JKR
PO . For wavy contact, we see that the ratio

�̄�PO/�̄�JKR
PO increases even in the relaxed limit, consistent with the elastic results provided

by Guduru [172], who shows that waviness enhances adhesion. An increase in normalised
amplitude 𝛼 increases the amplitude of the load-area curve and hence allows larger pull-off
loads to be reached. An increase in normalised wavelength 𝛽 has a similar but more moderate
effect. When viscoelasticity is considered, a further increase in the pull-off load is observed.
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Figure 5.9: (a) The scaled, normalised pull-off load �̄�PO/�̄�JKR
PO as a function of the retraction rate ̇̄𝑤 and (b) the

normalised load �̄� as a function of the normalised contact area �̄�c with retraction rate ̇̄𝑤×104 = 12 for the maximum
load �̄�max = 20, modulus ratio 𝑓r = 10. The normalised parameters are (a) {𝛼,𝛽} = {0,−}, {1.46,0.93}, {1.46,1.87}
and {2.93,1.87}, and (b) {0,−}, {0.37,1.87}, {1.46,1.87} and {1.46,0.47}. In (a), the relaxed limit ( ̇̄𝑤 ∼ 0) is indicated by
plus-shaped coloured markers; in (b) the dotted, dark and light grey lines indicate the relaxed and instantaneous lim-
its, respectively, with normalised amplitude 𝛼 = 1.46 and normalised wavelengths 𝛽 = 1.87, and the coloured arrows
indicate unstable jumps.

Viscous dissipation allows for attaining higher tensile loads than in elastic contact. So the
pull-off force increases with viscous dissipation as well, which is as expected [205]. The
effect of normalised amplitude 𝛼 and wavelength 𝛽 is analogous to that observed for elastic
contact: the normalised amplitude 𝛼 controls the amplitude of the load-area oscillations; and,
the normalised wavelength 𝛽 the wavelength of these load-area oscillations. This is by the
same mechanism as in elastic contact, but now it is the increase in the instantaneous limit’s
load-area oscillations (See Sec. 5.3).

For all values of normalised amplitude 𝛼 and normalised wavelength 𝛽, the load-rate
curves shift to higher loads. Most notable is that the viscoelastic results in smooth contact,
scaled with the increase in pull-off load in wavy elastic contact are close to the numerical
results. For example, focusing on the results for normalised parameters {𝛼,𝛽} = {2.93,1.87}
and {1.46,1.87} indicated in red and green solid lines, respectively, we find that the increase
in pull-off load �̄�PO compared with smooth contact ({𝛼,𝛽} = {0,−}) is similar, in the presence,
as in the absence of, viscous dissipation. This show that, as previously hypothesised by
Ciavarella and Papangelo [333], the effects of waviness and viscoelasticity on pull-off appear
nearly independent and additive, in short-ranged adhesive contact.

The effect of the normalised amplitude 𝛼 and normalised wavelength 𝛽 on the viscoelastic
contact response is presented in Fig. 5.9b for retraction rate ̇̄𝑤 ×10−4 = 12 and normalised
parameters {𝛼,𝛽} = {0,−}, {0.37,1.87}, {1.46,1.87} and {1.46,0.47}. The differences between
load-area curves are minimal for the given set of surface roughness parameters, when
mechanical instabilities are absent, and they approach the response for smooth contact in
blue as well. This thus supports the analytical results by Ciavarella and Papangelo [333]
as well, where wavy contact approaches an equivalent smooth contact with retraction
rate. We showed the local envelope of the given load-area curve reduces with a combined
increase of retraction rate and modulus ratio in Sec. 5.5.2. So we suspect there are set
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of roughness parameters where viscoelastic effects are much stronger, and the load-area
curve approaches that of a give representative smooth contact with increased retraction
rate and instantaneous modulus. Ciavarella and Papangelo [333] observe that viscoelasticity
dominates over roughness in inducing dissipation during retraction as well. While the
effect of waviness does not disappear herein, we show that its contribution to adhesive
hysteresis seem additive. Hence, it is not far fetched to imagine a set of parameters where
viscoelastic effects are much stronger (by considering larger values of modulus ratio 25 << 𝑓r
and small root-mean-square height roughness) and the load-area curve approaches that of
a give representative smooth contact. However, this still has to be shown rigorously for
realistic roughnesses [150], hence remains a challenge for the future.

5.6 Conclusions
In this chapter, we consider the adhesive hysteresis in soft matter contacts. The viscoelasticity
is considered using the Zener model, and roughness is simplified to a single wavelength wave,
superimposed on the profile of a rigid, cylindrical indenter. By studying the load-area curves
during retraction of the indenter, we find, for the first time, that for low and moderate loading
rates viscoelasticity “effectively dampens” the adiabatic mechanical instabilities caused by
waviness. The results presented in this chapter show that both waviness and viscoelasticity
increase the effective work of adhesion during retraction and hence adhesive hysteresis.

We make the following observations:

- viscous dissipation is the source of dissipation between the stable, static equilibria in
adhesive, wavy viscoelastic contacts before pull-off;

- roughness-inducedmechanical instabilities are absent for a given range of finite loading
rates, and the wavy contact mechanics approaches that of an equivalent smooth contact
with a combined increase in retraction rate and instantaneous modulus;

- roughness-induced mechanical instabilities reappear between stable, (quasi-)static
equilibria when the contact stiffens to the instantaneous limit with acceleration of the
edges of intimate contact.

These observations confirm the speculations by Ciavarella and Papangelo [223, 333] on the
effect of viscous dissipation on wavy contact mechanics at least up to moderate retraction
rates and short-range adhesion.

Our results demonstrate that, in general, two mechanisms of interfacial toughening are
present: viscous and roughness-induced dissipation. The latter can be either in the form of a
mechanical instability at high retraction rates or in the form of a fast quasi-static reduction of
the contact area where the elastic mechanical instability is dampened. Whether the contact
area reduction is very fast or occurs through an unstable mechanical jump, the result in terms
of energy loss are similar when gauged by the addition of wavy elastic and smooth viscoelastic
loads at pull-off. We, however, show that the effective work of adhesion Δ𝛾eff tends towards
the instantaneous work of adhesion Δ𝛾∞ because mechanical instabilities only reappear when
the instantaneous limit is traversed. Surprisingly, the pull-off loads are affected marginally
by the instantaneous work of adhesion at pull-off for vanishing retraction rates, while the
intimate contact area deviates noticeably from the smooth elastic contact. Both observations
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on the load and area at pull-off coexist because of the rapid area reduction near pull-off
whereby the load increases negligibly. So we conclude that viscoelasticity governs adhesive
hysteresis, even in the presence of roughness-induced mechanical instabilities both in the
relaxed and instantaneous loading limits. Our results are limited by the simplicity of the
descriptions of viscoelastic substrate, adhesive interaction, surface roughness and loading
conditions. Moreover, additional work is required to establish whether our conclusion
extends to realistic rough contacts. However, one implication of this chapter is that for
low loading rates, the origin of adhesive hysteresis, in existing, experimental results of soft
matter contact, at least of patterned surfaces, might need to be reassessed. It remains up to
future investigations to study the combination of realistic roughnesses and dissipation of the
viscoelastic substrate.
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6
On theQuasi-Static Response

of a Base-Excited System
subject to Static, Viscous and

Dry Friction

Often the dynamic response of an engineering system subject to frictional dissipation is ap-
proximated by means of their quasi-static response. The validity of this approximation is here
evaluated for the simple case of a base-excited single degree-of-freedom mass-spring-damper
system with static and dry friction. To this end, the closed-form expression for its trajectory is
contrasted with that obtained by neglecting inertia.

This chapter is based on the scientific article: Van Dokkum, J. S., On the Quasi-Static Response of a Base-Excited
System with Static, Viscous and Dry Friction, (In preparation).
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Nomenclature
Variable Definition Dimension (mass M, length L and time t)
𝐴 & 𝐵 dimensionless amplitudes −
𝑐 viscous dissipation Mt−1
C cosine −
𝐶1, 𝐶2 & 𝐶3 integration constants −
Ch hyperbolic cosine −
𝑒 Euler’s number −
𝐸 exponent −
𝐹p Coulomb friction force MLt−2
𝑘 spring constant Mt−2
𝑚 mass M
𝑁 & 𝑀 system parameters −
𝜔 frequency t−1
𝑝 phase angle −
𝑃 dimensionless dissipation −
𝑟 & 𝑞 normalised frequencies −
S sine −
Sh hyperbolic sine −
𝑡 time t
𝑇 dimensionless time −
𝑇0 dimensionless period −
𝑥 mass trajectory −
𝑥′ mass displacement L
𝑋0 dimensionless steady-state amplitude −
𝑋d dimensionless dissipative forces −
𝑋f dimensionless Coulomb friction force −
𝑋v dimensionless viscous force −
𝑦 base excitation −
𝑦′ base displacement L
𝑌 excitation amplitude L
𝑧 damping ratio −

6.1 Introduction
In this chapter, we consider a base-excited single degree-of-freedom mass-spring-damper
system with Coulomb friction between the mass and a datum. The mass-spring system is
practicable because it is the simplest system with just a single system parameter. However, it
fails to track the dynamic response when a system is (near-)critically or over-damped. Den
Hartog [349] presented the closed-form solution for the steady-state zero-stop response of
a harmonically excited mass-spring system with Coulomb friction. They [349] show both
theoretically and by experiment that, depending on system parameter, the mass moves
continuously or comes to rest during parts of the oscillatory period. Hong and Liu [350]
revisit aforementioned system, considering base-excitation, and obtain the dynamic response
to simple harmonic loading. They [350] categorise the steady-state motions of the given
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mass-spring system with zero to twelve stops. Papangelo and Ciavarella [234] neglect the
inertia term in the equation of motion of the harmonically excited mass-spring system,
and universally obtain two stops per oscillatory period. Their solution [234] thus does not
correspond to any of the dynamic solutions towards the quasi-static loading limit. Still,
the steady-state amplitude is non-trivially captured by their [234] static solution up to,
but excluding frequencies when the dynamic solution is characterised by more than two
stops per oscillatory period. Moreover, the solution under the static assumption (no inertia
and no viscous damping) attains infinite acceleration when motion of the mass initiates,
which is trivially unphysical. For an exhaustive comparison between the dynamic and
(quasi-)static solution of a single degree-of-freedom mass-spring system, we refer to the
work by Papangelo and Ciavarella [234] as well.

Levitan [351] analyses the mass-spring-damper system with harmonic base-excitation,
including for the first time the Coulomb friction force, and assuming that viscous damping
depends on the relative motion between the mass and the base. They [351] use a Fourier series
approximation for the Coulomb friction force, which introduces a systematic error. The sig-
nificance of base- vs. mass-excitation is that for (numerical) modelling efforts the trajectory
of a mass is a priori unknown; only the excitation (alike base-excitation with viscous forces)
are known. Hundal [352] considers a base-excited system with and without viscous damping,
but now the static and dry friction forces oppose the relative motion between mass and a
datum. This system where the trajectory of the mass is a priori unknown, i.e. base-excited
with Coulomb friction between the mass and a datum, is most relevant in multi-scale mod-
elling. They [352] give the closed-form solution for continuous motion of the mass and a
semi-analytical solutions for two stops of finite duration per oscillatory period. The latter
is known to occur for certain combinations of system parameters. Viscous dissipation is
thus present while the mass is sessile and depends on the number of stops of finite duration
per oscillatory period, which stands juxtaposed to mass-excitation where viscous forces
are zero when the base and mass are at rest. Note that two stops or more stops of a finite
duration are estimates because the trajectory, the number of stops per period and their
duration differ and depend on system parameters, initial conditions and loading frequency.
Papangelo and Ciavarella [234] show to solely have two stops per oscillatory period for finite
Coulomb friction forces and significant damping [234]. The dynamic trajectory displays
more than two stops per oscillatory period without significant damping. Moreover, the
numerical dynamic solution is close to the static trajectory for viscous dissipation solely
when critically damped. The number of stops per oscillatory period under the quasi-static
assumption is not yet studied rigorously.

It is of interest to know for what viscous, static and dry-type friction forces the solu-
tion under quasi-static assumptions (qualitatively) approaches the dynamic solution in the
limit of quasi-static loading, and for what loading frequencies with over-damped motion as
well. Virtually all works subsequent to Hundal [352] solely solve the equation of motion
numerically by means of a given time-marching scheme, e.g. [234, 353], or a piecewise an-
alytical solution, e.g. [234, 354, 355]. A notable exception is the work by Lopéz et al. [356],
who [356] consider excitation of the datum and under-damped motion of the mass. We are
interested though in the closed-form analytical solutions for base-excitation with generic
viscous damping. There is thus the need for an exact expression for the initial boundary
conditions because numerical solutions are inexact for over-damped steady-state motion
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with generic initial conditions. Hence we present a comprehensive set of (semi-)analytical
solutions of dynamics and under the (quasi-)static assumption.

Outline
In the present chapter, we consider a base-excited single degree-of-freedommass-spring-damper
systemwith Coulomb friction between themass and a datum. We use the phase-planemethod
to obtain the steady-state response under the quasi-static assumption, which we call the
quasi-static solution in the following. We revisit the continuous and two stop per period
dynamic solutions by Hundal [352] and correct and simplify their phase-plane method.
Their [352] cumbersome transition condition from continuous motion of the mass to one
with two stops of finite duration per oscillatory period is refined. A numerical solver for
piecewise ordinary differential equations in Mathematica [289] is used to verify the analytical
results and the transition to more than two stops of finite duration per oscillatory period,
whereof no analytical expressions exist in the presence of viscous dissipation.

We present quantitative comparisons between the quasi-static and the dynamic solution
in frictional problems with viscous and Coulomb friction. The quantities under analysis are
the steady-state amplitude, the phase shift, the phase-plane and the number of stops and
dissipation per oscillatory period. When inertial forces are neglected, the estimate of two
stops with finite duration per period is shown to hold for finite viscous and/or Coulomb
friction forces. Towards the quasi-static loading limit, we show the quasi-static solution
does approach the under-damped dynamic solution with viscous dissipation. Likewise, the
quasi-static solution approaches the dynamic solutionwith Coulomb friction force, for a given
over-damped system. We find that dissipation, and thus hysteresis and observed friction are
underestimated for any finite excitation frequency under the quasi-static assumption.

6.2 Problem Definition
We consider the steady-state response of a single degree-of-freedom mass-spring-damper
system with static and dry friction, and harmonic base-excitation 𝑦′ = 𝑌 cos(𝜔𝑡 +𝑝), with
excitation frequency 𝜔. Here 𝑌 is the excitation amplitude and 𝑝 an a priori unknown phase
angle. A schematic representation of the system is given in Fig. 6.1. The equation of motion

Figure 6.1: Schematic representation of a single degree-of-freedom mass-spring-damper system with static and dry
friction forces 𝐹p (Adapted from [352]).
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reads
𝑚�̈�′+ 𝑐�̇�′+ 𝑘𝑥′+ 𝐹p (�̇�′) = 𝑐�̇�′+ 𝑘𝑦′, (6.1)

where 𝑚 is the mass, 𝑐 the viscous dissipation, 𝑘 the spring constant and 𝐹p the Coulomb
friction force. When the mass is in motion 𝐹p (�̇�′) ≡ 𝐹pSgn(�̇�′), with Sgn (∙) = −1 and 1
for ∙ < 0 and 0 < ∙, respectively. When the mass is at rest and the applied force is insufficient
to overcome static friction, the magnitude of the static friction force is given by

𝐹p (0) = 𝑐�̇�′+ 𝑘(𝑦′−𝑥′). (6.2)

Here the static and dry friction forces have the same maximum magnitude, i.e. we model
Coulomb friction. We now rewrite Eq. (6.1) in a non-dimensional form, i.e.

�̈� +2𝑧�̇� +𝑥 +𝑋f (�̇�) = cos(𝑟𝑇 +𝑝)−2𝑟𝑧 sin(𝑟𝑇 +𝑝) , (6.3)

with dimensionless time, normalised amplitude, dimensionless Coulomb friction force and
normalised frequency

𝑇 ≡ 𝜔n𝑡; 𝑥 =
𝑥′

𝑌
; 𝑋f (�̇�) ≡

𝐹p (�̇�′)
𝑘𝑌

; and, 𝑟 ≡
𝜔
𝜔n

, (6.4)

where

𝜔n ≡

√
𝑘
𝑚
; and, 𝑧 ≡

𝑐
2
√
𝑘𝑚

, (6.5)

are the natural frequency and the damping ratio, respectively. We hypothesise that the mass
is in motion for 0 ≤ 𝑇 < 𝑇0, and at rest for 𝑇0 ≤ 𝑇 < 𝜋/𝑟 . Hence during 0 < 𝑇 < 𝑇0, the system
is described by Eq. (6.3), and in the remainder

𝑋f (�̇� → 0) = cos(𝑟𝑇 +𝑝)−2𝑟𝑧 sin(𝑟𝑇 +𝑝)−𝑥. (6.6)

When �̇� ≤ 0, the equation of motion (6.3) becomes

�̈� +2𝑧�̇� +𝑥 = 𝑋f+cos(𝑟𝑇 +𝑝)−2𝑟𝑧 sin(𝑟𝑇 +𝑝) , (6.7)

and the general solution is

𝑥 = 𝑒−𝑇 𝑧(𝐶1 cosh(𝑞𝑇 )+𝐶2 sinh(𝑞𝑇 ))+𝑋f+𝐴s sin(𝑟𝑇 +𝑝)+𝐴c cos(𝑟𝑇 +𝑝) , (6.8)

with parameters

𝑞 =
√
𝑧2−1; 𝐴s =

2𝑟3𝑧
1−2𝑟2+ 𝑟4+4𝑟2𝑧2

; and, 𝐴c =
(1− 𝑟2+4𝑟2𝑧2)

1−2𝑟2+ 𝑟4+4𝑟2𝑧2
, (6.9)

where 𝐶1 and 𝐶2 are integration constants. The last two terms on the right-hand-side
of Eq. (6.8) represent the steady-state harmonic response of the system in the absence of
Coulomb friction, with the square steady-state amplitude:

𝐴2 ≡ 𝐴2
s +𝐴2

c =
1+(2𝑧𝑟)2

(1− 𝑟2)2+(2𝑧𝑟)2
. (6.10)
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The imposed boundary conditions are

𝑥 (0) = 𝑋0, and �̇� (0) = 0; (6.11a)

and,
𝑥 (𝑇0) = −𝑋0, and �̇� (𝑇0) = 0, (6.11b)

where 𝑋0 is the dimensionless steady-state amplitude. Together with the dimensionless
period 𝑇0 this allows one to satisfy the latter boundary conditions. The phase angle 𝑝 thus is
the phase shift between the base-excitation and the trajectory of the mass, the dependent
variable, and is fully defined by the steady-state amplitude𝑋0 and the dimensionless period 𝑇0.
Vice versa, it is trivial that the dimensionless steady-state amplitude 𝑋0 and dimensionless
period 𝑇0 are independent of the phase angle 𝑝 that one excites the base with. In case of
continuous motion the mass reverses its direction of motion in the limit 𝑇0 ∼ 𝜋/𝑟 . This
is in line with the estimates by Den Hartog [349] when viscous dissipation is absent and
Hundal [352], who includes viscous dissipation. We are aware of the potential emergence
of different dynamic steady-state solutions or non-periodic solutions beyond the boundary
conditions (6.11). The numerical approach in the present work does allow one to explore
them. However, such solutions are not explored because they are beyond the scope of this
work, i.e. highlighting differences between the dynamic and the quasi-static solution.

6.3Quasi-Static Solution
We follow the same approach as outlined by Hundal [352] for the dynamic solution, but now
apply it with the quasi-static approximation, by neglecting acceleration. The equation of
motion (6.7) for 0 ≤ 𝑇 < 𝑇0 becomes

2𝑧�̇� +𝑥 = 𝑋f−2𝑟𝑧 sin(𝑟𝑇 +𝑝)+cos(𝑟𝑇 +𝑝) , (6.12)

with the general solution

𝑥 = 𝐶3𝑒−𝑇/(2𝑧)+𝑋f+cos(𝑟𝑇 +𝑝) , (6.13)

where 𝐶3 is an integration constant as well. In the absence of static and dry-friction, the mass
is in continuous motion. When the static friction force 𝐹p ≥ 𝑘𝑌 , the mass is sessile. The inter-
esting cases fort the current analysis are those where the Coulomb friction force 0 < 𝐹p < 𝑘𝑌 ,
thus the range 0 ≤ 𝑋f ≤ 1 of dimensionless static and dry-friction forces. We consider the
range 0 ≤ 𝑋f ≤ 1, where the limiting cases are those of continuous motion and mass at rest.

6.3.1 Static Solution: without viscous dissipation
Taking the damping ratio as 𝑧 = 0 in Eq. (6.12), and substituting the boundary condition (6.11a),
we find the phase angle

cos(𝑝) = 𝑋0−𝑋f, (6.14)

which is equivalent to the force balance at 𝑇 = 0. By substituting the phase angle 𝑝, applying
the boundary conditions (6.11b) and rearranging the results as trigonometric functions of
phase angle 𝑝, we obtain

𝐴11 sin(𝑝)+𝐴12 cos(𝑝) = 𝐵1; and, 𝐴21 sin(𝑝)+𝐴22 cos(𝑝) = 𝐵2, (6.15)
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with

𝐴11 = S𝑟0; 𝐴12 = −C𝑟0; 𝐵1 = 𝑋0+𝑋f; (6.16a)
𝐴21 = C𝑟0; 𝐴22 = 𝑆0; 𝐵2 = 0, (6.16b)

where S𝑟0 ≡ sin(𝑟𝑇0) andC𝑟0 ≡ cos(𝑟𝑇0). By virtue of the Pythagorean identity (i.e. sin(∙)2+cos(∙)2 = 1,
with scalar ∙), we obtain the closed-form expression for the amplitude 𝑋0 = 1−𝑋f; and, using
boundary conditions (6.11b), we find the dimensionless time

cos(𝑟𝑇0) = 2𝑋f−1. (6.17)

These results (6.14) and (6.17) are equivalent to those obtained by Papangelo andCiavarella [234]
for a system with solely Coulomb friction. We use them to normalise our results and initiate
semi-analytical solutions in the following as well.

6.3.2 Continuous Motion
Taking the damping ratio 𝑧 > 0; substituting the boundary conditions (6.11) with half the
oscillatory period 𝑇0 = 𝜋/𝑟 in the general solution (6.13); and, rearranging the results as
trigonometric functions of phase angle 𝑝, we obtain two equations in the form of Eq. (6.15)
with

𝐴11 = 0; 𝐴12 = 1; 𝐵1 = 𝑋0+(
2

𝐸′+1
−1)𝑋f; (6.18a)

𝐴21 =
2𝑟𝑧
𝐸′

; 𝐴22 = 1; 𝐵2 = 𝑋0−𝑋f, (6.18b)

where the exponent 𝐸′ ≡ 𝑒−
𝜋
2𝑟𝑧 . The closed-form expression of the dimensionless steady-state

amplitude thus is

𝑋0 =

√

1−(
𝐸′𝑋f

𝑟𝑧 (1+𝐸′))

2

−
𝑋f

1+
2𝐸′

(1−𝐸′)

, (6.19)

and the phase angle,

cos(𝑝) =

√

1−(
𝐸′𝑋f

𝑟𝑧 (1+𝐸′))

2

. (6.20)

6.3.3 Two Stops per Period
The force balances at dimensionless times 𝑇 = 0 and 𝑇 = 𝑇0 are

𝑋0 = cos(𝑝)−2𝑟𝑧 sin(𝑝)+𝑋f, (6.21a)

and
𝑋0 = 2𝑟𝑧 sin(𝑟𝑇0+𝑝)−cos(𝑟𝑇0+𝑝)−𝑋f, (6.21b)

respectively. Rearranging Eq. (6.21) as trigonometric functions of 𝑝, we obtain the two
equations in the form of Eq. (6.15) with

𝐴11 = −2𝑟𝑧; 𝐴12 = 1; 𝐵1 = 𝑋0−𝑋f; (6.22a)
𝐴21 = 2𝑟𝑧C𝑟0+S𝑟0; 𝐴22 = 2𝑟𝑧S𝑟0−C𝑟0; 𝐵2 = 𝑋0+𝑋f. (6.22b)
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Note that Eqs. (6.21a) holds for two stops per period in the dynamic case as well. The square
steady-state amplitude thus is

𝑋 2
0 = S2𝑟0(

2𝑟2𝑧2

1+C𝑟0
−
1+C𝑟0−2𝑋 2

f
2(1+C𝑟0)2 ) . (6.23)

The amplitude is a function of the system parameters, 𝑟 , 𝑧 and 𝑋f, and the unknown dimen-
sionless period 𝑇0. It is intuitive that the steady-state amplitude is independent of the phase
angle 𝑝. Hence we only need to find the dimensionless period 𝑇0 that satisfies Eq. (6.11).

Substituting the boundary conditions (6.11) in the general solution (6.8); and, after
rearranging the results as trigonometric functions of phase angle 𝑝, we obtain two equations
in the form of Eq. (6.15) with

𝐴11 = 2𝑟𝑧 (1+𝐸′0)+S𝑟0; 𝐴12 = −(1+C𝑟0) ; 𝐵1 = 2𝑋f; (6.24a)
𝐴21 = C𝑟0−𝐸′0; 𝐴22 = S𝑟0; 𝐵2 = 0, (6.24b)

where 𝐸′0 ≡ 𝑒−
𝑇0
2𝑧 . We reduce Eq. (6.15) to a single equality of the unknown dimensionless

period 𝑇0, i.e.

((1+C𝑟0)(𝐸′0−1)−2𝑟𝑧 (1+𝐸′0)S𝑟0)
2

1+(𝐸′0)
2−2𝐸′0C𝑟0

= 4𝑋 2
f , (6.25)

and the phase shift is

cos(𝑝) =
2(C𝑟0−𝐸′0)𝑋f

(1+C𝑟0)(𝐸′0−1)−2𝑟𝑧 (1+𝐸′0)S𝑟0
. (6.26)

Equation (6.25) is solved numerically for the unknown dimensionless period 𝑇0, which is then
substituted in Eqs. (6.23) and (6.26), to obtain the dimensionless steady-state amplitude 𝑋0
and phase shift 𝑝, respectively.

Limit of ContinuousMotion: substituting the results (6.19) and (6.20) in Eq. (6.13); taking
the derivative with respect to time 𝑡; and, using the boundary conditions (6.11), we obtain
two equalities that are only satisfied in the limits 𝑧 ∼ ∞ and/or 𝑋f ∼ 0. The solution for
continuous motion thus is solely valid for a rigid connection between base and mass, and/or
in the absence of Coulomb friction. The number of stops per oscillatory period is thus limited
to a maximum of two under the quasi-static assumption. This is why we limit the dynamic
solutions to at most two stops per oscillatory period in the following as well.

6.4 Dynamic Solution
We follow the approach as outlined by Hundal [352] for the dynamic solution as well.

6.4.1 Continuous Motion
We apply the boundary conditions (6.11) with half the oscillatory period, 𝑇0 = 𝜋/𝑟 , to the
general solution (6.8), and rearranging the results as trigonometric functions of phase angle 𝑝,
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we obtain two equations in the form of Eq. (6.15) with

𝐴11 = 𝐴s− 𝑟𝐴c
Sh𝑞
𝐾

; 𝐴12 = 𝐴c+ 𝑟𝐴s
Sh𝑞
𝐾

; 𝐵1 = 𝑋0+𝑋f(
2𝑞
𝐸𝐾

−1) ; (6.27a)

𝐴21 = 𝐴s− 𝑟𝐴c(2𝑧−
𝐾
Sh𝑞)

; 𝐴22 = 𝐴c+ 𝑟𝐴s(2𝑧−
𝐾
Sh𝑞)

; 𝐵2 = 𝑋0−𝑋f, (6.27b)

with
𝐾 ≡ 𝑧Sh𝑞 + 𝑞Ch𝑞 + 𝑞𝐸−1, (6.27c)

where Sh𝑞 ≡ sinh(
𝜋𝑞
𝑟 ), Ch𝑞 ≡ cosh(

𝜋𝑞
𝑟 ) and 𝐸 ≡ 𝑒−

𝜋𝑧
𝑟 . The closed-form expression of the

amplitude is
𝑋0 =

√
𝐴2−𝑁 2𝑋 2

f −𝑀𝑋f, (6.28)

with the two system parameters:

𝑀 ≡
1−𝐸2−2𝑧𝑞−1𝐸Sh𝑞
1+𝐸2+2𝐸Ch𝑞

; and, 𝑁 ≡
2𝑞−1𝑟−1𝐸Sh𝑞
1+𝐸2+2𝐸Ch𝑞

. (6.29)

Equation (6.29) is equivalent to the result Hundal [352] obtains, and corresponds to his figure
5 on page 376 in print, though equation (14) on page 374 erroneously omits the addition
of 𝐸𝐶𝑞 in the denominator of 𝑀 . The phase shift is

cos(𝑝) =
𝐴s𝑋f
𝐴2 𝑁 +𝐴c

√
1
𝐴2 −𝑁 2𝑋

2
f

𝐴4 . (6.30)

6.4.2 Two Stops per Period
Combining the boundary conditions (6.11) and the force balance (6.21a), we substitute the
results in the general solution (6.8). Subsequently, rearranging the results as trigonometric
functions of phase angle 𝑝, we obtain two equations in the form of Eq. (6.15) with

𝐴11 = 𝐴s𝐶𝑟0−𝐴c𝑆𝑟 −2𝑟𝑧−(𝐴s+2𝑟𝑧)𝐸0Ch𝑞0+(𝑟𝐴c− 𝑧𝐴s−2𝑟𝑧2)𝑞−1𝐸0Sh𝑞 ;

𝐴12 = 1+𝐴c𝐶𝑟 +𝐴s𝑆𝑟 +(1−𝐴c)𝐸0Ch𝑞 +(𝑧− 𝑟𝐴s− 𝑧𝐴c)𝑞−1𝐸0Sh𝑞0;
𝐵1 = −2𝑋f; (6.31a)
𝐴21 = 𝐴c𝑞Ch𝑞0+(𝐴s− 𝑟𝑧𝐴c+2𝑟𝑧) 𝑟−1Sh𝑞0−(𝐴c𝐶𝑟0+𝐴s𝑆𝑟0)𝐸−10 𝑞

𝐴22 = (𝐴c+ 𝑟𝑧𝐴s−1) 𝑟−1Sh𝑞0− 𝑞𝐴sCh𝑞0+(𝐴s𝐶𝑟0−𝐴c𝑆𝑟0)𝐸−10 𝑞;
𝐵2 = 0, (6.31b)

where Sh𝑞0 ≡ sinh(𝑞𝑇0), Ch𝑞0 ≡ cosh(𝑞𝑇0) and 𝐸0 ≡ 𝑒−𝑧𝑇0 .
Equalities (6.15) are solved numerically for the unknown dimensionless period 𝑇0 and

phase angle 𝑝 by Hundal [352]. No one reproduced his method, to the best of our knowledge,
because the steady-state response must be independent of phase angle 𝑝 via the phase-plane
method. Vice versa, phase shift 𝑝 is uniquely defined by the period 𝑇0. With the Pythagorean
identity though, we reduce Eq. (6.15) to a single equality with the unknown dimension-
less period 𝑇0 as a function of the system parameters, 𝑟 , 𝑧 and 𝑋f. This equality is solved
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numerically. From Eq. (6.15), the phase shift is

sin(𝑝) =
2𝐴22𝑋f

𝐴12𝐴21−𝐴11𝐴22
; and, cos(𝑝) = −

2𝐴21𝑋f
𝐴12𝐴21−𝐴11𝐴22

, (6.32)

and after Eq. (6.21a), the amplitude 𝑋0 is given by

𝑋0 =(1−
2𝐴21

𝐴12𝐴21−𝐴11𝐴22
−

4𝑟𝑧𝐴22

𝐴12𝐴21−𝐴11𝐴22)
𝑋f, (6.33)

and is obtained with the then known period 𝑇0.

Limit of Continuous Motion: the limit 𝑇0 → 𝜋/𝑟 marks the transition from two stops of
finite duration per period (i.e. 𝑇0 < 𝜋/𝑟) to continuous motion with half the oscillatory period.
The transition is thus uniquely defined by the frequency 𝑟 for system parameters 𝑧 and𝑋f, and
period 𝑇0 = 𝜋/2. We equate the cosines transforms of the phase shift 𝑝 in Eq. (6.30) and (6.32),
and find the dimensionless boundary frequency 𝑟2→0 by means of numerical root-finding.
Aforementionedmethodology removes the need of differentiation of the general solution (6.8),
and the numerical solution of both period 𝑇0 and phase shift 𝑝 [352].

6.5 Results and Discussion
In Fig. 6.2, the dimensionless steady-state amplitude 𝑋0 is presented as a function of the
dimensionless excitation frequency 𝑟 for damping ratios 𝑧 = 1/10, 1/5, 3/10, 2/5 and 1/2,
and dimensionless Coulomb friction forces 𝑋f = 0, 1/5, 2/5, 3/5, 4/5 and 1, after Fig. 5 on
page 376 by Hundal [352]. The dynamic results are indicated by solid and dashed, and
quasi-static results by dashed-dotted lines. The solid lines indicate continuous motion, while
the dashed(-dotted) lines indicate two stops of finite duration per oscillatory period. The
(dashed-dotted) black lines indicate the results in absence of Coulomb friction, i.e. 𝑋f = 0. The
black dashed-dotted line under the quasi-static assumption is the exception and corresponds
with continuous motion (See Sec. 6.4.2). In the absence of Coulomb friction, dynamic motion
is continuous as well.

As expected, our dynamic results correspond to those byHundal [352]. For finite Coulomb
friction, the trajectory transitions from two stops per period to continuous motion with
increased dimensionless excitation frequency 𝑟 , which is indicated with a light grey dotted
line in Fig. 6.2. At low dimensionless frequencies 𝑟 < 0.3 and damping ratios 𝑧 < 1/2more than
two stops per oscillatory period occur. The minimum dimensionless boundary frequency 𝑟∙→2
by which the numerical root search of 𝑇0 converges are indicated with coloured crosses
in Fig. 6.2. The (maximum) dynamic amplitude(s) for more than two stops per oscillatory
period are not depicted in Fig. 6.2.

Under the quasi-static assumption, resonance around the natural frequency, 𝑟 ∼ 1, is
absent and the dimensionless steady-state amplitude 𝑋0 ≤ 1. The dimensionless steady-state
amplitude is zerowhen the Coulomb friction force is greater than the applied force,

√
1+ (2𝑧𝑟)2 ≤ 𝑋f

[352] with inertia; and, under the quasi-static assumption, the steady-state amplitude is zero
when 1 ≤ 𝑋f. The quasi-static results for 𝑋f = 1 are depicted in Fig. 6.2 by orange coloured
dashed-dotted lines with the dimensionless amplitude 𝑋0 = 0. Towards the quasi-static load-
ing limit, the quasi-static dimensionless steady-state amplitude 𝑋0 approaches the dynamic
solution with damping ratios 𝑧 and dimensionless Coulomb friction force 𝑋f.
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Figure 6.2: The dimensionless steady-state amplitude 𝑋0 as a function of the dimensionless excitation frequency 𝑟
for damping ratios (a) 𝑧 = 1/10, (b) 1/5, (c) 3/10, (d) 2/5 and (e) 1/2, with dimensionless Coulomb friction
forces 𝑋f = 0, 1/5, 2/5, 3/5, 4/5 and 1. The solid lines indicate continuous motion and the dashed(-dotted) lines
two stops of finite duration per oscillatory period, except for Coulomb friction force 𝑋f = 0. The coloured crosses
indicate the dimensionless boundary frequency 𝑟∙→2.

It is of interest to investigate the differences on the phase-plane as well. The dimen-
sionless amplitudes 𝑋0 under the quasi-static assumption approaches the dynamic result
with dimensionless Coulomb friction force 𝑋f. The same does not necessarily hold for the
velocity 𝜕𝑥′/𝜕𝑡 though. We inspect the dimensionless boundary frequency 𝑟∙→2, where the
trajectory changes from multiple stops (indicated with ∙) to two stops of finite duration
per oscillatory period in accordance with results by the semi-analytical and our numerical
method. The method whereby the numerical results are obtained is given in Appendix E.

In Fig. 6.3, the dimensionless velocity 𝜕𝑥/𝜕𝑇 is presented as a function of the dimen-
sionless trajectory 𝑥 for damping ratios 𝑧 = 1/10, 1/5, 3/10, 2/5 and 1/2, and dimension-
less Coulomb friction forces 𝑋f = 1/5, 2/5, 3/5 and 4/5, with dimensionless excitation
frequency 𝑟 = 𝑟∙→2. The dimensionless boundary frequencies 𝑟∙→2 are indicated by coloured
crosses in Fig. 6.2. We elect to only present the top half of the phase-plane, i.e. motion in
the positive direction from the negative steady-state amplitude −𝑋0, exploiting the point
symmetry around the origin of the phase-plane. Patterns and line colours are consistent
with those in Fig. 6.2. Results without Coulomb friction force are omitted because these
are represented by circles on the phase-plane. Numerical results are added and indicated
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Figure 6.3: The dimensionless velocity 𝜕𝑥/𝜕𝑇 at the dimensionless excitation frequency 𝑟∙→2 (depicted by same
coloured crosses in Fig. 6.2) is presented as a function of the dimensionless trajectory 𝑥 for damping ratios (a) 𝑧 = 1/10,
(b) 1/5, (c) 3/10, (d) 2/5 and (e) 1/2, with dimensionless Coulomb friction forces 𝑋f =1/5, 2/5, 3/5 and 4/5.

by coloured triangle and gradient symbols, which correspond with the dynamic and the
quasi-static solution, respectively. This shows that our analytical results are physical, e.g.
not a numerical artefact of the root-finding algorithm [289], and thus a trajectory with two
stops of finite duration per oscillatory period is correct.

Even thought the steady-state amplitude approaches the quasi-static amplitude with
damping ratio 𝑧 < 1/2 and dimensionless Coulomb friction force 𝑋f, velocity and trajec-
tory remain distinctly different. The velocity, and in turn the trajectory, of the solution
under the quasi-static assumption and dynamic solution differ up to a factor of two. For
increasing damping ratio the agreement between dynamic and quasi-static solutions improve;
for 1/2 ≤ 𝑧, the velocity and trajectory coincide, except a minor oscillation of the dynamic
results after motion of the mass initiates, which is obviously absent from the quasi-static
solution.

The present analytical results are in agreement with our numerical method, and present
method reproduces the semi-analytical results as presented byHundal in his seminal work [352].
Our analytical results are obtained more readily compared to the numerical piece-wise solu-
tion and the original semi-analytical solution [352] though. Notable is that damping ratios
above 1/2 ≤ 𝑧 are difficult to achieve experimentally [356], which severely limits the validity
and use of the quasi-static assumption in most physical problems even with viscous damping
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towards the quasi-static loading limit.

6.5.1Quasi-Static Loading Limit
In order to investigate whether the dynamic solution in the quasi-static loading limit is the
same as the quasi-static solution, we plot the scaled dimensionless amplitude (𝑋0−(1−𝑋f))/(1−𝑋f),
combining the dynamic results for damping ratios 𝑧 = 2/5, 1/2 and 3/4, and solely up to half
the natural frequency 𝑟 ≤ 1/2, in Fig. 6.4a. The converged numerical result for the smallest
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Figure 6.4: (a) Log-Log plot of the scaled dimensionless amplitude (𝑋0 −(1−𝑋f))/(1−𝑋f) as a function of the
dimensionless excitation frequency 𝑟 for damping ratios 𝑧 = 2/5, 1/2 and 3/4, with dimensionless Coulomb friction
forces 𝑋f = 0, 1/5, 2/5, 3/5 and 4/5. (b-c) The dimensionless velocity 𝜕𝑥/𝜕𝑇 is presented as a function of the
dimensionless trajectory 𝑥 for damping ratios (b) 𝑧 = 1/2 and (c) 3/4, with dimensionless excitation frequency 𝑟 =
1/100 that is indicated by coloured crosses in (a).

dimensionless excitation frequency 𝑟 ≈ 2×10−3 (by numerical root-finding) are indicated
with a square, triangle and delta symbol for damping ratios 𝑧 = 2/5, 1/2 and 3/4, respec-
tively. The solid, dashed-dotted and dashed line correspond with damping ratios 𝑧 = 4/5, 1/2
and 3/4 as well. The dashed and dash-dotted lines for the damping ratios 𝑧 = 1/2 and 3/4
cover each other for the majority of the dimensionless excitation frequency range 𝑟 ⪅ 10−1.
The quasi-static results are omitted because it is trivial that the static equals the quasi-static
amplitude in the quasi-static loading limit i.e. 𝑋0 ∼ (1−𝑋f). The area of Fig. 6.4a is indicated
with dashed dark-grey rectangles in Figs. 6.2d and 6.2e, and in Fig. 6.5a of the dimension-
less steady-state amplitude 𝑋0 as a function of the dimensionless frequency 𝑟 and damping
ratio 𝑧 = 3/4.

In Figs. 6.4b and 6.4c, the dimensionless velocity 𝜕𝑥/𝜕𝑇 is presented as a function of
the dimensionless trajectory 𝑥 for damping ratios 𝑧 = 1/2 and 3/4, respectively, with di-
mensionless Coulomb friction forces 𝑋f = 1/5, 2/5, 3/5 and 4/5, for the quasi-static load-
ing frequency 𝑟 = 1/100. The dashed and dashed-dotted lines indicate the dynamic and
quasi-static solution, respectively, which coincide for nearly the whole phase-plane. The
solid line indicates the static solution and covers the dashed(-dotted) lines over its whole
phase-plane. Moreover, the line colours and the patterns correspond to those in Figs. 6.2
and 6.4a, respectively, where the loading frequency 𝑟 ≈ 1/100 is indicated with coloured
crosses in the latter figure.

The minor oscillation of the dynamic results, after the motion of the mass initiates,
decreases with increased damping ratio 𝑧. This oscillation is absent from the solution
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under quasi-static assumptions. Hence coincidence between velocity and trajectory of
dynamic, quasi-static and static solution increases with damping ratio 𝑧 as well. The static
solution attains infinite acceleration when motion of the mass initiates and thus is unphysical.
Contrarily, in the presence of finite viscous damping with damping ratio 1/2≤ 𝑧, acceleration
is finite and captured by the quasi-static solution. Apart from aforementioned differences,
the dynamic, quasi-static and static solution coincide over the majority of the phase-plane.
The trajectory of damped dynamic motion is closely approached by the quasi-static solution
with damping ratio 1/2 ≤ 𝑧 and finite dimensionless Coulomb friction forces 0 ≤ 𝑋f < 1 in
the (quasi-)static loading limit.

6.5.2 Damped Motion
The system parameter space is vast with dimensionless Coulomb friction force 0 ≤ 𝑋f ≤

√
1+ (2𝑧𝑟)2

for damping ratio 0≤ 𝑧 and dimensionless frequency 0 ≲ 𝑟 . We are interested in (near-)critically
and over-damped motion, wherefore we consider damping ratios 𝑧 = 3/4, ∼ 1, 5/4, 3/2
and 7/4 in the following. The present solutions in Secs. 6.3 and 6.4 are valid for all system
parameters which lead to at most two stops of finite duration per oscillatory period. While
Hundal [352] focuses on cases where damping ratio 𝑧 ≤ 1/2, here we extend our study to
larger damping ratios because the quasi-static assumption is used for (near) over-damped
engineering problems as well.

In Fig. 6.5, the dimensionless amplitude 𝑋0 is presented as a function of the dimensionless
excitation frequency 𝑟 for large damping ratios, namely 𝑧 = 3/4, ∼ 1, 5/4, 3/2 and 7/4. We
choose throughout the present work𝑋f = 99/100 for the semi-analytical quasi-static solution,
that we indicate with dimensionless Coulomb friction force 𝑋f ∼ 1, while the dynamic results
retain the dimensionless Coulomb friction force of unity. The quasi-static result for Coulomb
friction 𝑋f ∼ 1 is indicated with a dark-grey dashed-dotted line in Fig. 6.5.

As expected, the dimensionless amplitude 𝑋0 obtained with the quasi-static solution ap-
proximates the dynamic solution with viscous damping ratio 1 < 𝑧 (i.e. over-damped motion).
Unexpectedly, the same holds with increased Coulomb friction force 𝑋f, for under-damped
motion (e.g., 𝑧 = 3/4 and 𝑋f ∼ 1), which is non-trivial. The quasi-static solution approaches
the dynamic trajectory qualitatively and dimensionless amplitude 𝑋0 quantitatively for a
given over-damped system and with increased Coulomb friction force 𝑋f ≲ 1. Dynamic
motion changes qualitatively with excitation frequency 𝑟 ; the amplitude decreases with
increased excitation frequency, and dynamic motion is continuous around and above the
natural frequency 𝑟 ⪅ 1. This dimensionless boundary frequency 𝑟2→0 is indicated with
coloured crosses in Fig. 6.5.

In Fig. 6.6, the normalised phase shift 𝑝/𝜋 between base- and mass-trajectory is presented
as a function of the dimensionless excitation frequency 𝑟 for damping ratios 𝑧 = 1/2, ∼ 1
and 3/2. The choice of pattern and line colour corresponds to those in Figs. 6.2 and 6.5. The
quasi-static result for Coulomb friction 𝑋f ∼ 1 is indicated with a dark-grey dashed-dotted
line as well.

The observations made with Fig. 6.5 on the steady-state dimensionless amplitudes 𝑋0
hold for the phase shift 𝑝 as well. The quantitative differences in phase shift 𝑝 between
the quasi-static and the dynamic solution, at and above the natural frequency, are more
pronounced than the differences in the dimensionless steady-state amplitudes 𝑋0 in Figs. 6.2
and 6.5 though. The dynamic solution approaches free oscillation when the phase shift 𝑝
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Figure 6.5: The dimensionless amplitude 𝑋0 as a function of the dimensionless frequency 𝑟 for damping ratios
(a) 𝑧 = 3/4, (b) ∼ 1, (c) 5/4, (d) 3/2 and (e) 7/4, with dimensionless Coulomb friction forces 𝑋f = 0, 1/5, 2/5, 3/5, 4/5
and 1. The solid lines indicate continuous motion and the dashed(-dotted) lines two stops of finite duration per
oscillatory period, except for Coulomb friction force 𝑋f = 0. The coloured crosses indicate the dimensionless
boundary frequency 𝑟2→0.
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Figure 6.6: The normalised phase shift 𝑝/𝜋 is presented as a function of the dimensionless excitation frequency 𝑟 for
damping ratios (a) 𝑧 = 1/2 (b) ∼ 1 and (c) 3/2, with dimensionless Coulomb friction forces 𝑋f = 0, 1/5, 2/5, 3/5, 4/5
and 1. The solid lines indicate continuous motion and the dashed(-dotted) lines two stops of finite duration per
oscillatory period, except for Coulomb friction force 𝑋f = 0.
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increases with excitation frequency 𝑟 and dynamic motion becomes continuous. The di-
mensionless boundary frequency 𝑟2→0 thus corresponds with the change of gradients sign
between phase shift 𝑝 and dimensionless frequency 𝑟 in Fig. 6.6. However, the quasi-static
solution presents always two stops per oscillatory period except in the absence of Coulomb
friction, i.e. 𝑋f = 0.

The dimensionless boundary frequency 𝑟2→0 between the dynamic solution with two or
more stops of finite duration per oscillatory period and continuous motion is provided in
Fig. 6.7. At dimensionless frequencies below the dimensionless boundary frequency, i.e. 𝑟 < 𝑟2→0,
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Figure 6.7: The dimensionless boundary frequency 𝑟2→0 between two stops of finite duration per oscillatory period
and continuous motion as a function of damping ratio 𝑧 and dimensionless Coulomb friction force 𝑋f. The dashed
grey iso-lines indicate the constant dimensionless frequencies 𝑟2→0 = 1/2, 3/4, 1, 5/4 and 3/2. The coloured crosses
correspond with the same coloured crosses in Fig. 6.5.

as indicated by dashed dark-grey iso-lines of constant dimensionless frequency, the trajectory
contains at least two stops of finite duration per oscillatory period. The coloured areas indi-
cate the given ranges of dimensionless boundary excitation frequencies which are bounded
by at most two selected iso-lines. Above the dimensionless boundary frequency 𝑟2→0 ≤ 𝑟
dynamic motion is continuous. The system parameter ranges of Fig. 6.7 are bound by the
convergence of the numerical root-finding method. The result in Fig. 6.7 is a quick reference
for the qualitative agreement between the dynamic and quasi-static solution. Quasi-Static
motion is solely continuous in the absence of Coulomb friction and/or a rigid connection
between the base and mass (See sec. 6.4.2). The dimensionless boundary frequency 𝑟2→0 thus
bounds qualitative agreement between quasi-static and dynamic trajectories; and, at dimen-
sionless frequencies 𝑟2→0 < 𝑟 , the phase shift 𝑝 continuous to decrease under the quasi-static
assumption but increases in the dynamic results.

In Fig. 6.8, the dimensionless velocity 𝜕𝑥/𝜕𝑇 is presented as a function of the dimen-
sionless trajectory 𝑥 for damping ratios 𝑧 = 3/4, ∼ 1, 5/4, 3/2 and 7/4, and dimensionless
Coulomb friction forces 𝑋f = 1/5, 2/5, 3/5, 4/5 and ∼ 1. We choose the dimensionless
excitation frequency 𝑟 = 𝑟2→0 as indicated by coloured crosses in Figs. 6.5 and 6.7. The choice
of pattern and line colour corresponds with those in Fig. 6.5 as well. Numerical results are
added and indicated with coloured triangle and gradient symbols similar to Fig. 6.3.
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Figure 6.8: The the dimensionless velocity 𝜕𝑥/𝜕𝑇 at the dimensionless excitation frequency 𝑟2→0 (depicted by same
coloured crosses in Figs. 6.5 and 6.7) is presented as a function of the dimensionless trajectory 𝑥 for damping ratios
(a) 𝑧 = 3/4, (b) ∼ 1, (c) 5/4, (d) 3/2 and (e) 7/4, with dimensionless Coulomb friction forces 𝑋f = 0, 1/5, 2/5, 3/5, 4/5
and ∼1.

The same observations as made on Fig. 6.3 hold here, but now the velocity, and in
turn the trajectory, of the quasi-static and dynamic solution differ up to a factor fourth
instead of two. Even thought the dynamic dimensionless steady-state amplitude 𝑋0 and
phase shift 𝑝 approaches the quasi-static steady-state results with damping ratio 𝑧 < 1/2 and
dimensionless Coulomb friction force 𝑋f (See Figs. 6.5 and 6.6), velocity and trajectory remain
distinctly different for damped motion, i.e. 1/2 ≤ 𝑧 < 3/2. For critically and over-damped
motion, i.e. 1≤ 𝑧, the dynamic velocity and the trajectory are close to symmetric around 𝑥 ≈ 0,
and the differences between dynamic and quasi-static solution decrease with damping ratio 𝑧
and dimensionless Coulomb friction force 𝑋f as well. Notable is that the analytical and
numerical results correspond for critically and over-damped motion, which is solely possible
with the correct analytical initial boundary conditions of steady-state amplitude 𝑋0 and
phase shift 𝑝 (See Introduction 6.1).

The differences between the quasi-static and the dynamic trajectory decrease solely
with increased damping ratio 1 < 𝑧, which is although limited to the given excitation fre-
quency range up to about the natural frequency, i.e. 𝑟 ⪅ 1. Above the natural frequency, the
quasi-static solution is at most a lower-order estimate cause of its two stops of finite duration
per oscillatory period, and the differences in steady-state amplitude 𝑋0 and phase shift 𝑝
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increase with excitation frequencies 1 < 𝑟 as well (See Figs. 6.5 and 6.6).

6.5.3 Dissipation
The major difference between the present base-excited system and a mass-excited system
is that viscous dissipation is present in the former even when the mass is sessile. The
dimensionless dissipation per period thus is

𝑃 = 2
(∫

𝑇0

0
𝑋d

𝜕𝑥 (𝑇 ′)
𝜕𝑇 ′

d𝑇 ′+∫
𝜋/2

𝑇0
−𝑋v

𝜕𝑦 (𝑇 ′)
𝜕𝑇 ′

d𝑇 ′
)
, (6.34)

with the dimensionless dissipative forces,

𝑋d (𝑇 ) ≡ 𝑋v (𝑇 )−𝑋f (𝑇 ) , (6.35)

and the dimensionless viscous force,

𝑋v (𝑇 ) = 2𝑧�̇� (𝑇 )+2𝑟𝑧 sin(𝑟𝑇 +𝑝), (6.36)

where 𝑦 = 𝑦′/𝑌 is the dimensionless base-excitation. For dimensionless times 0 ≤ 𝑇 < 𝑇0, the
mass is in motion (�̇� < 0) and sessile for 𝑇0 ≤ 𝑇 < 𝜋/𝑟 .

The dimensionless dissipation per oscillatory period in the absence of Coulomb friction
thus is

𝑃 =
2𝜋𝑧𝑟3

1− (2−4𝑧2) 𝑟2+ 𝑟4
, (6.37)

and under the quasi-static assumption the base-excitation and mass trajectory are in phase
thus no viscous dissipation is present (See Eq. (6.13)). In the static limit, i.e. in the absence
of inertia and viscous damping, the dimensionless dissipation is trivially 𝑃 = 4(1−𝑋f)𝑋f.
Moreover, when the mass is sessile during the whole oscillatory period the dimensionless
dissipation 𝑃 = 2𝜋𝑟𝑧 and solely due to viscous damping under base-excitation.

In Fig. 6.6, the dimensionless dissipation per oscillatory period 𝑃 is presented as a function
of the dimensionless excitation frequency 𝑟 for damping ratios 𝑧 = 1/2, ∼ 1 and 3/4; the
choice of pattern and line colour corresponds to those in Fig. 6.6.

The dimensionless dissipation displays one or two maxima, which correspond with
viscous dissipation while the mass is sessile, and viscous and Coulomb friction near reso-
nance, at low dimensionless frequencies 𝑟 < 1 and higher frequencies 1 ⪅ 𝑟 , respectively.
For under-damped motion with damping ratio 𝑧 = 1/2, the maxima seem to coalesce at the
natural frequency, i.e. 𝑟 ≈ 1. Unexpected, the maximum due to viscous dissipation with a
sessile mass is virtually independent of the damping ratio 𝑧 (Compare the maxima of a given
dashed coloured line across Figs. 6.9a-6.9c). This is readily rationalised as the sessile period
decreases with damping ratio, while the viscous dissipation increases with the mass sessile.
Moreover, dissipation near resonance decreases with damping ratio 𝑧 and Coulomb friction
force 𝑋f because the phase shift 𝑝 decreases with excitation frequency 𝑟 (See Fig. 6.6). As ex-
pected, dissipation under the quasi-static assumption approaches the dynamic solution in the
quasi-static loading limit. Furthermore, the dimensionless dissipation attains the maximum
at low dimensionless frequencies 𝑟 < 1 for dimensionless dry-friction forces 3/5 ⪅ 𝑋f < 1.
For Coulomb friction forces 𝑋f ⪅ 3/5, dissipation decreases monotonically with loading
frequency, as the period with sessile mass decreases with Coulomb force 𝑋f.
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Figure 6.9: Log-Linear plot of the dimensionless dissipation 𝑃 as a function of the dimensionless frequency 𝑟 for
damping ratios (a) 𝑧 = 1/2, (b) ∼ 1 and (c) 3/2, with dimensionless Coulomb friction forces 𝑋f = 0, 1/5, 2/5, 3/5, 4/5
and 1. The solid lines indicate continuous motion and the dashed(-dotted) lines two stops of finite duration per
oscillatory period, except for Coulomb friction force 𝑋f = 0. The quasi-static result for Coulomb friction 𝑋f ∼ 1 is
indicated with a dark-grey dashed-dotted line.

Under the quasi-static assumption, dissipation is always under-predicted compared to the
dynamic solution because the main source of dissipation is base-excitation while the mass is
sessile. Indeed viscous dissipation is absent when the mass is in phase with the base trajectory
and thus does not contribute to the friction forces. Solely for a sessile mass during the whole
of the oscillatory period, dissipation increases monotonically, i.e. 𝑃 = 2𝜋𝑟𝑧 with 1 ≤ 𝑋f. This
holds for the dynamic results with dimensionless Coulomb friction forces

√
1+ (2𝑧𝑟)2 ≤ 𝑋f

as well (not shown in Fig. 6.9).
The dissipative contribution of viscous damping due to a sessile mass obviously increases

with Coulomb friction force 𝑋f as the period the mass is in motion 𝑇0 decreases. When
the loading frequency increases above the natural frequency: for one, the period the mass
is sessile 𝑇0 ≤ 𝑇 ≤ 𝜋/𝑟 vanishes and/or decrease rapidly for the dynamic and quasi-static
solution, respectively; moreover, the transient contribution (i.e. the phase shift 𝑝 between
base and mass when motion initiates from rest) and/or amplitude 𝑋0 decrease or saturate
with dimensionless excitation frequency 𝑟 as well (See Figs. 6.2 and 6.6). It is thus clear that
when the quasi-static assumption is used in, e.g. multi-scale modelling at the mesoscale,
the dissipation, and in turn hysteresis and thus the macroscopically observed friction are
underestimated. Which emphasises that special care and consideration is needed when one
chooses to use the quasi-static assumption in the presence of Coulomb friction. Not solely
in the static loading limit, as previously mentioned by Papangelo and Ciavarella [234], but
for (over-)damped motion as well.

6.6 Conclusions
In this chapter, we present closed-form analytical expressions for a base-excited single
degree-of-freedom mass-spring-damper system with Coulomb friction between the mass
and a datum, with and without considering inertial forces. The derivation is performed with
the simplification of the phase-plane method by Hundal [352], yet the final semi-analytical
solutions are more comprehensive. The quasi-static and dynamic solutions are contrasted
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quantitatively to highlight notable differences.
On the quasi-static assumption:

- the steady-state amplitude and the phase shift of damped dynamic motion are approx-
imated with viscous dissipation

√
𝑘𝑚 ≤ 𝑐 and Coulomb friction forces 0 ≤ 𝐹p < 𝑘𝑌 in

the quasi-static loading limit, and at least down to loading frequency 10−2
√
𝑘/𝑚 in

the present work;

- the trajectory has two stops per oscillatory period for a finite Coulomb friction force
0 < 𝐹p < 𝑘𝑌 and is continuous with a rigid connection between the base and the mass;

- the trajectory is close to the dynamic solution for significantly over-damped mo-
tion, 2

√
𝑘𝑚 ≤ 𝑧, although for a limited range of loading frequencies, ≈ 0⋯

√
𝑘/𝑚, with

two stops of finite duration per oscillatory period;

- for excitation frequencies above the natural frequency,
√
𝑘/𝑚 < 𝜔, the steady-state

amplitude is a low-order approximate because the dynamic trajectory is continuous;

- dissipation is under-predicted because the main source of dissipation is base-excitation
while the mass is sessile.

Even if the excitation frequency is low, for instance 10−1
√
𝑘/𝑚, the dissipation is underesti-

mated by 5⋯40 % under the quasi-static assumption with respect to the dynamic solution,
which depends on viscous damping and Coulomb friction.

On the dynamic solution:

- the system parameters and loading frequency of the boundary between continuous
motion and two stops of finite duration per oscillatory is uniquely defined by the
period that the mass is in motion;

- the dynamic trajectory is close to the trajectory under the quasi-static assumption, with
viscous dissipation

√
𝑘𝑚 ≤ 𝑐 and quasi-static loading frequencies down to𝜔 = 2×10−3

√
𝑘/𝑚

in the present work;

- The quasi-static solution is absent for 𝑘𝑌 ≤ 𝐹p ≤
√
𝑐2𝜔2/𝑘2+1 while the mass is still

mobile due to inertia;

- dissipation attains one or two maxima due to Coulomb friction and/or viscous dissipa-
tion around and above, or solely below, the natural frequency

√
𝑘/𝑚, respectively.
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7.1 Part I: Inelasticity in Metals
The fundamental understanding on the effects of dislocation network geometry on the
pre-, at- and post-yield material behaviour is illustrated. Summarising, we treat the rela-
tionships between the inelastic deformation and the dislocation network structure, and
mechanical properties of anelasticity, yield and plastic flow. The obtained knowledge will
aid in the future design of forming methods [28] and micro-mechanical systems [29]. We
contribute by incorporating dislocation densities with varying dislocation character in pre-
dictions of the anelastic deformation of metal crystallites with a generic Poisson’s ratio;
and, with a seamless, unified stress-strain treatment, that combines the three deformation
mechanisms of elastic bond stretching, stable and unstable dislocation glide.

Dislocation character has major effects on both the apparent elastic constants and yield
points. This suggests that reassessment of previous studies on aforementioned topics is
appropriate. Current limitations on the description of e.g. the distribution of dislocation
links lengths, (far-field) elastic interaction and equivalent isotropic elasticity, are readily
lifted by the Dislocation Dynamic Method [233]. This is however limited by load rate and
dislocation density. Even so, the model in Chapter 2 is of engineering interest in higher scale
computational methods under static loading conditions. The elastic-anelastic constitutive
model takes account of anisotropic effects on a per-grain basis and presents a significant
step towards modelling of crystallographically textured cubic materials. The model’s ulterior
application is to use experimental results to obtain information on the geometry [4–7] of
an a priori unknown dislocation network. We find that near-incompressible materials and
aluminium are promising candidates for future experimental research. The former is of
interest because the influence of dislocation character is maximised with an increase in
Poisson’s ratio (See Sec. 2.3.3); the latter because aluminium has near-isotropic elasticity and
a high stacking fault energy, which promotes the bowing-out of dislocation segments.

The physical interpretation of yield is the transition from mechanically recoverable to
mechanically irrecoverable deformation. The novel yield criterion in Chapter 3 encompasses
both the local behaviour of individual dislocation links and the global dislocation interac-
tions that constitute hardening. This yield criterion allows us to analyse uniaxial tensile
force-displacement curves and present the following findings: experimental verification that
the flow strength is predicted by Taylor-type equations; and, a physics-informed connection
between the geometry of the dislocation network and the Taylor relationships’ constant.

The Taylor relationships’ constant is a measure of the combined forest interactions and
junction strengthening, akin to Kubin et al. [35]. Here, a proportionality between dislocation
density and average dislocation link length is an effective measure of junction strengthening
on the crystallite level, that changes with plastic strain through forest interactions. We
thus refine the physical interpretation of the constant in the Taylor relationship to the
theoretical asymptotic lower limit of the dislocation network geometry (See Sec. 3.6.4).
Finally, where previously thought impossible [5], we rationalise the change in initial apparent
elastic constants with thermomechanical processing [28, 38, 41, 275–278]. The now known
evolution of the inverse proportionality between average segment length and dislocation
density allows for hardening models to be further improved. One ulterior application of
present, novel interpretation of yield and our unified model is to predict inelastic deformation
by means of full-field crystal plasticity modelling [357].

This year Zhou et al. [358] experimentally confirm the dislocation bow-out mechanism
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for anelasticity in single- and bi-crystals of Tantalum. Moreover, the initial apparent moduli
(“Loop Width” in their work [358]) have a minimum under uniaxial tension in the
⟨100⟩-crystallographic direction and maxima in the ⟨110⟩ and ⟨111⟩ tensile-directions, which
is in accordance with our single crystallite dislocation bow-out model (See Sec. 2.2.2). This
confirmation is significant in view of the applicability of the singlemetallic crystallitemodel in
Chapter 2. Notable is that they [358] report that dissipation is larger in single- and bi-crystals
than in commercial, polycrystalline metals. This stands juxtaposed to the notion that the
non-local internal stresses that arise from plastic strain gradients, particularly those from
microstructural inhomogeneity, increase the magnitude of anelastic deformation [7, 38].
Moreover, Zhou et al. [358] find that the initial apparent moduli and initial plastic modulus
are proportional. This is also in line with the static unified inelastic model that we present in
Chapter 3.

The results and conclusions that we present in Part I extend to the following aspects:

pre-yield mechanical behaviour of complex steels is of engineering interest [38, 41,
278]. Recently, the pre-yield mechanical behaviour of Dual-Phase is experimentally
investigated by Li and Wagoner [7], and Vitzthum et al. [38]. The unified inelastic
model is readily implemented in a composite model, alike Mughrabi [359, 360]. This is a
method to account for the inelastic accommodation between constituents. However the
remaining challenge is the identification of the structural variables (See Sec. 3.2), and
their evolution with local deformation, in each crystalline constituent. One potential
method to alleviate this is the experimental measurement of the lattice strain in each
constituent by high-energy synchrotron transmission measurements [38];

single crystallite mechanical behaviour is one input to full-field crystal plasticity
modelling [357]. Hence the unified inelastic model is readily adapted in a discrete
framework that is suitable for numerical integration. However, the remaining challenge
is the numerical integration of the resulting stiff, non-linear equation of dislocation
motion [273]. This stiffness is the result of the several orders of magnitude difference
between rate of dislocation events and (quasi-)static loading, that is of engineering
interest. A reduced equation of motion must be formulated, that retains the high
non-linearity yet improves computational tractability;

activation, glide and ensuing dislocation-density increase on individual slip-systems
are postdictions in work-hardening models of single metallic crystallites [35]. This
holds for the most recent dislocation dynamics results by Akhonzadeh et al. [32]
and Katzer et al. [361] as well. We find that unification of an existing single-crystallite
hardening model [35] with the bow-out model of pre-yield inelastic deformation [273]
poses reliable predictions [362]. This unified approach [362] accounts for both the
influence of dislocation network geometry and pre-yield compliance, that effect ini-
tiation of unstable dislocation glide. There is currently, however, no consensus on
the dislocation mechanism that controls unstable dislocation glide. Known is that
the activity of a specific mechanism depends on the system size and load rate, e.g.
single-arm sources in micro-pillars [363, 364]; zipping and unzipping mechanisms
at high strain rates [365]; and, cross-slip and glissile junctions for low dislocation
densities [366]. Each mechanism has an associated anelastic strain contribution that
must be accounted for, which poses one route to a unified approach;
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quantitative connection between the key microstructural features of the dislocation
network and inelastic metals deformation was lacking [8]. Nowadays the consensus is
that the dislocation segments follow a length distribution [8, 11, 361, 363, 367, 368].
The exact form might be exponential as the result of a one-dimensional Poisson’s
process by junction formation [8, 32, 361, 368]; Log-Normal as proposed by Shishvan
and Van der Giessen [367]; or, the result of a random distribution of pinning points in a
finite size domain by Parthasarathy et al. [363]. The recognised evolution of the inverse
proportionality between average segment length and dislocation density (See Sec. 3.6.4)
is thus a significant step towards a model of link-length distribution evolution with
inelastic strain. Especially, this link-length evolution must be incorporated in future
coarse-grained field theories of dislocation dynamics or full-field crystal plasticity
models [8]. Coarse-grained field theories under quasi-static loading conditions, where
a range of initial segment lengths are activated simultaneously [11, 236–238] exist
for almost fifty years. Most recently, Wijnen et al. [364] investigate small-scale ex-
periments on single crystals with a full-field crystal plasticity model, where flow is
based on the underlying distribution of the dislocation source sizes [364]. Moreover,
Ye et al. [368] model the mobile dislocation density as the number fraction of activated
segment lengths as a function of the line stress. However, the change in inelastic
compliance before global yield, which controls the local activation of dislocation links
and global flow peri-yield, is not considered as of yet.

7.2 Part II: Yield Point Phenomenon
Plastic flow in the Lüders front maximises global dissipation and vanishes parallel to it, which
are the characteristics of the Lüders front. Lüders bands form oblique to the tensile direction,
and the angle between loading axis and the Lüders front depends on material properties,
specimen geometry and test conditions. Chapter 4 presents a macromechanical model of
the Lüders front, where the Lüders front orientation and the observed lower yield strength
depend on the difference between the material’s upper and lower yield strengths, as well as
in-plane condition. The obtained knowledge aids in the measurements on the yield point
phenomenon [67] and suppression thereof via industrial, post-process rolling [81].

An alternative mechanism for the rotation of the Lüders front is the change in hetero-
geneous stress state across, and the confinement in, the Lüders front. This alternative is
complementary to the dependencies on compressibility [313, 320], plastic anisotropy [318]
and loading/gripping conditions [300], which were reported previously [120]. For thin tensile
specimens Lüders bands align perpendicular to the loading axis, which reduces the bending
moment [120], and with the magnitude of the stress concentration at the Lüders front [64, 65].
The latter we verify in Sec. 4.6.1 for the first time to the authors’ knowledge. We expect that
when the tensile specimen thickness increases the Lüders bands angle with respect to the
loading axis sharpens, because the in-plane plastic strain decreases [310]. In the limit of the
plane strain state, the Lüders front will form on a plane at 45 degrees angle with respect to
the loading axis (See Secs. 4.3.1 and 4.5.2).

The numerical results in Chapter 4 are in line with the hypothesis that the Lüders
band is parallel to the direction of zero extension and plastic shear perpendicular to the
Lüders front is negligible compared with the Lüders strain. The former holds inside the
Lüders band in the numerical results in Sec. 4.5.3 while the latter does not (See 4.6.2 as well).
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Whereof the outcome is an experimental method to approximate the constitutive parameters
by the common-place uniaxial tensile test. The novelty is a simple methodology with the
force-displacement and Lankford coefficients [322] to obtain material properties independent
of test conditions. However the difference between estimated and material properties that
we discuss in Sec. 4.6.2 must be diminished by an accurate description of flow inside the
Lüders band in the future.

The results and conclusions that we present in Part II extend to the following aspects:

experimental validation of the macroscopic modelling framework and the charac-
teristics of the Lüders front that we introduce (See Sec. 4.2) remains tentative. An
initial step towards validation is presented by Van der Heijde and Samad [330, 331].
They [330, 331] present the effect of tensile specimen thickness on the Lüders front
orientation. However, the influence of the true upper and lower yield strengths on the
Lüders front angle are not yet experimentally verified. Seminally, Hanai et al. [369]
experimentally show that the difference between the flow strength before paint
bake-hardening, and the lower observed yield strength after, increases with carbon
and nitrogen content. Kim et al. [101] report that the Lüders strain increases with
the ratio between carbon content and dislocation density. They [101] however omit
the lower observed yield strength and compare different annealing times. With an
increase in annealing time the upper yield strength is thought to increase. Even so,
their [101, 369] results are in line with our macroscopic model but omit to report the
orientation of the Lüders bands. This year, Qiu et al. [370] examine the global and local
deformation behaviours of four ferrite–pearlite steels with various carbon contents
via extensometer and digital image correlation techniques. They [370] report that the
observed upper and lower yield strengths increase with carbon content. However, the
Lüders strain decreases with the increase in pearlite volume fraction. This increase in
volume fraction facilitates the generation of mobile dislocations by a greater area of
ferrite/cementite-interfaces. They [370] do not to report the Lüders band morphology
during yield elongation though. Hence there is currently the clear need for experimen-
tal measurements of the Lüders band morphology in low carbon steel with different
interstitials contents during yield point elongation. Together with measurement of the
true lower yield strength, this might verify the characteristics of the Lüders front;

little is known and reported on the effects of crystallographic texture, or vice versa
inelastic anisotropy, on the Lüders band morphology. The only works that the au-
thors are aware of, which experimentally connects rolling texture with the Lüders
band inclination, are by Daniel et al. [312] and Savoie et al. [307] for cold-rolled steel
and aluminium, respectively. They [307, 312] report that the contraction ratio and
thus the Lüders front angle change between the rolling and the transverse directions.
Yu et al. [329] report that the Portevin-Le Chatelier band’s orientation is constant, due
to crystallographic texture invariance during tensile loading. Tokuoka and Saito [318]
derive the Lüders front angle as a function of the difference in angle between the
principal axis of anisotropy and the uniaxial tensile direction. Most recently, Cazacu
and Rodríquez-Martínez [328] theoretically investigate the orientation of plastic necks
in specimens taken from orthothropic metallic sheets that are subjected to uniaxial
tension, which is similar to the analysis by Tokuoka and Saito [318]. These solu-
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tions [318, 328] do not account for the stress concentration at the Lüders front due
to the upper and lower yield strengths though. When these models do so they might
lead to methods of crystallographic texturing that minimise yield elongation;

a lot is known and reported on the effect of experimental measurement method on
the yield point phenomenon. Seminally, the effects of surface treatment [67] and
test equipment stiffness [371] are investigated. Less well-known are the effects of
loading/gripping conditions [120, 300] beyond the introduction of a moment before
tensile testing [62]. Because in-plane plastic flow and shear components are non-zero,
unless the stress state is uniaxial in the Lüders band, the testing device constrains.
This increases the moments during tensile loading; moments are maximised when
the lateral displacements are constrained. Similarly, the propagation of Lüders fronts
keeps the tensile specimen straighter, when they are antisymmetrically oriented across
the dog-bone specimen, and the moments are reduced compared with a single Lüders
band [53]. When single Lüders bands are studied, which is preferable because the local
strain rate changes with number of bands [300], the device must thus allow for lateral
displacements. Otherwise, multiple Lüders bands nucleate (which obviously depends
on surface finish) and/or the Lüders bands might rotate, which has currently multiple
recognised reasons [53, 74, 120, 300, 372]. There is thus the need for a dedicated
tensile test method and methodology, similar to the work by Vadoulakis et al. [373], to
meaningfully compare experimental results;

the rigid-plastic mechanical model is at the basis of our macromechanical framework.
The elastic deformation is neglected, which has the merit of simplicity and continues
to be applied in modelling sheet metals forming [374]. Even so, localisation is known
to depend on softening [327] as well. Throughout our numerical results the softening
(tangent) modulus is kept constant. Secondly, only the Lüders front is modelled while
the stress state changes throughout the Lüders band, which leads to local changes in
in-plane plastic flow and shear. The numerical results capture this change in plastic
shear, that we find is up to a hundredth of the Lüders strain and is thus neglected in
our proposed experimental methodology (See Sec. 4.6). Thirdly, we omit the (applied)
boundary conditions that impose an in-plane moment, and traction-less boundaries
on the sides of the tensile specimen. We choose the geometry and applied deformation
rate in the numerical approach (See Fig. 4.4) that minimise boundary conditions’
effects while retaining computational tractability. Hence the future step is the use of
an elastic-plastic material, mechanical model [327] in our analysis, which will allow
for a more meaningful comparison with the numerical results (than in Sec. 4.6.1) and
accounts for the elastic contraction in front of the Lüders front.

7.3 Part III: Dissipative Contacts
Two mechanisms of interfacial toughening are present in rough, soft matter contacts: viscous
and roughness-induced dissipation. Chapter 5 demonstrates that the latter is either in the
form of a mechanical instability at high retraction rates or in the form of a fast quasi-static
reduction of the contact area where the elastic mechanical instability is dampened. Whether
the contact area reduction is very fast or occurs through an unstable mechanical jump,
the result in terms of energy loss are similar when gauged by the addition of wavy elastic
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and smooth viscoelastic loads at pull-off. We, however, show that the effective work of
adhesion tends towards the instantaneous work of adhesion because mechanical instabilities
only reappear when the instantaneous limit is traversed. The obtained knowledge aids in
the design and/or interpretation of experiments, and improvement of existing numerical
methods [150].

Surprisingly, the pull-off loads are affected marginally by the instantaneous work of
adhesion at pull-off for vanishing retraction rates, while the intimate contact area deviates
noticeably from the smooth elastic contact. Both observations on the load and area at pull-off
coexist because of the rapid area reduction compared with the retraction rate near pull-off.
Whereby the load increases negligibly compared with the instantaneous limit. So we conclude
that viscoelasticity governs adhesive hysteresis even in the presence of roughness-induced
mechanical instabilities, both in the relaxed and instantaneous loading limits.

With Chapter 6 one is able to assess the difference between the dynamic and the
quasi-static solution in engineering problems with viscous, static and dry friction. Insight is
engendered to the validity of neglecting inertial forces from frictional problems. We present
quantitative measures of the differences between the quasi-static and the dynamic solution
in frictional problems with viscous, static and dry friction, by steady-state amplitude, phase
shift, phase-plane, and the number of stops and dissipation per oscillatory period.

When inertial forces are neglected, the estimate of two stops with finite duration per
period is shown to hold for finite viscous and/or Coulomb friction forces. Towards the
quasi-static loading limit, the quasi-static solution does approach the under-damped dynamic
solution with viscous dissipation. Likewise, the quasi-static solution approaches the dynamic
solution, for a given over-damped system, with Coulomb friction force. However, when
inertia is accounted for, motion is continuous around and above the natural frequency. Which
is not provided for by the quasi-static solution.

The dissipation per oscillatory period attains one or two maxima, which correspond
with viscous dissipation for a sessile mass, and viscous and Coulomb friction near resonance,
respectively. Under the quasi-static assumption, dissipation decreases monotonically with
loading frequency or attains a single maximum. The latter maximum corresponds to viscous
dissipation while the mass is sessile. Notable is that the observed friction is underestimated
for any finite excitation frequency under the quasi-static assumption with a mobile mass.

We engender new insight into the validity of omitting inertial forces from problems
with finite viscous, static and dry-type frictional forces and formulate a general rule as
follows: The dynamic solution in the presence of Coulomb friction between mass and datum, and
base-excitation, is approached by the solution under the quasi-static assumption with viscous
dissipation; at loading frequencies far below the natural loading frequency, with near critical
viscous dissipation; and, for over-damped motion with Coulomb friction force and a limited
range upto about the natural frequency.

In Chapter 6, we give the range of system parameters and loading frequencies for which
the solution under the quasi-static assumption closely tracks the dynamic trajectory and the
observed friction is qualitatively approached. The ulterior motive of Chapter 6 is to guide
future (multi-scale) numerical modelling efforts. For example, modelling interface friction
due to viscous and adhesive dissipation in reciprocating sliding contacts with roughness
present over multiple length-scales [142, 190, 340, 375, 376], and the hysteretic deformation
of metals [7, 279].
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In Chapter 5, we consider quasi-static loading conditions and thus ignore inertia of the
viscoelastic substrate [340]. The present results at vanishing retraction rate are thus the
limiting solution for which cases inertia can be ignored. We speculate that inertia of the
substrate allows for mechanical instabilities at vanishing retraction rates as well. Our results
are thus limited by the simplicity of the descriptions of viscoelastic substrate, adhesive
interaction, surface roughness and loading conditions.

Results and conclusions that we present in Part III implicate that for low loading rates,
the origins of hysteresis in existing experimental results of soft matter contact, at least
of patterned surfaces, need to be reassessed. It remains up to future investigations to
study the combination of realistic roughnesses, dissipation and inertia of the viscoelastic
substrate. Additional work is required to establish whether our conclusions already extend
to realistic rough contacts. A higher surface roughness generally leads to more viscoelastic
deformation [150] thus to more dissipation, and reduces the number of contacts, which
lowers adhesion. Hence trends in the adhesive hysteresis with real surface roughness present
are currently moot (See Sec. 1.4 as well).

The final, recognised research path pertains to finite viscoelastic bodies sizes [219]. In
his numerical work, Attard [377] finds that the pull-off force is independent of the maximum
indentation depth, except for “relatively small” initial loads in viscoelastic, smooth, adhesive
Hertzian contacts. The works by Van Dokkum et al. [335] and Pérez-Ràfols et al. [345] report
no initial load dependency for retraction rates that are low compared with the relaxation
time, and large initial intimate contact areas. More recently, realisations of smooth Hertzian
contact on a viscoelastic half-space by means of Finite Element modelling efforts [135,
348] show that the pull-off force depends on the initial indentation depth (or equivalently
maximum contact area). Notably, they [348, 378] introduce an corrective factor into the
theory by Persson and Brenner [217, 218] that accounts for the finite value of the contact
radius at the start of unloading. The (aforementioned) numerical realisations [205, 229,
335, 337, 348, 377] are limited to smooth cylindrical/Hertzian indenters though. This year,
Müser and Nicola [150] highlight the necessity for studies that reproduce hysteresis when
viscoelasticity and roughness-induced multistability both contribute substantially. This
highlights the need and the relevance of explicitly modelling the viscoelastic solids [150].
Hence together with the conclusions in Part III we propose the following necessary steps:
modelling finite viscoelastic substrate sizes [379]; including coupled, traction-separation
interface laws [380]; extending with interfacial damage [381] and viscoelastodynamics [382];
and, bridging meso to the macro length-scales e.g. by (hybrid) multi-scale modelling [383,
384].
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Appendices

A Frank-Read Source
A.I Eqilibrium Shapes
The loci of the pinning points are given by

{
𝑥𝛼 (𝜙𝛼)

𝐿
,
𝑦𝛼 (𝜙𝛼)

𝐿

}
≡
{
−
cos(𝜙i)

2
,
sin(𝜙i)

2

}
, (A.1a)

and {
𝑥𝛽 (𝜙𝛽)

𝐿
,
𝑦𝛽 (𝜙𝛽)

𝐿

}

≡
{
cos(𝜙i)

2
,−

sin(𝜙i)
2

}
. (A.1b)

Hence the scaled integration constants are

𝐶1

𝐿
= −

𝜏c
8𝜏′𝑥𝑧

(4sin(𝜙𝛼)+ 𝜈sin(𝜙𝛼)+ 𝜈sin(3𝜙𝛼))−
cos(𝜙i)

2
, (A.2a)

and
𝐶2

𝐿
= −

𝜏c
8𝜏′𝑥𝑧

(4cos(𝜙𝛽)−5𝜈cos(𝜙𝛽)+ 𝜈cos(3𝜙𝛽))−
sin(𝜙i)

2
. (A.2b)

Combining Eqs. (A.1) and (A.2), we give the coordinates along the dislocation loop as

𝑥(𝜙)
𝐿

≡
𝜏c
8𝜏′𝑥𝑧

((4sin(𝜙)+ 𝜈sin(𝜙)+ 𝜈sin(3𝜙))− (4sin(𝜙𝛼)+ 𝜈sin(𝜙𝛼)+ 𝜈sin(3𝜙𝛼)))−
cos(𝜙i)

2
;

(A.3a)
𝑦(𝜙)
𝐿

≡
𝜏c
8𝜏′𝑥𝑧

((4cos(𝜙)−5𝜈cos(𝜙)+ 𝜈cos(3𝜙))−(4cos(𝜙𝛽)−5𝜈cos(𝜙𝛽)+ 𝜈cos(3𝜙𝛽)))−
sin(𝜙i)

2
.

(A.3b)
Using Eqs. (A.6) and (A.9), we obtain the normalised equilibrium shape of the initial RHS
dislocation segment as

𝑥(𝜙)
𝐿

=
4sin(𝜙)+ 𝜈sin(𝜙)+ 𝜈sin(3𝜙)

2(4sin(Δ𝜙s)+ 𝜈sin(Δ𝜙s)+ 𝜈sin(3Δ𝜙s))
; (A.4a)

𝑦(𝜙)
𝐿

=
4cos(𝜙)−5𝜈cos(𝜙)+ 𝜈cos(3𝜙)− (4cos(Δ𝜙s)−5𝜈cos(Δ𝜙s)+ 𝜈cos(3Δ𝜙s))

2(4sin(Δ𝜙s)+ 𝜈sin(Δ𝜙s)+ 𝜈sin(3Δ𝜙s))
, (A.4b)

and the normalised equilibrium of the initial positive edge dislocation segment as

𝑥(𝜙)
𝐿

=
4sin(𝜙)+ 𝜈sin(𝜙)+ 𝜈sin(3𝜙)− (4cos(Δ𝜙e)+ 𝜈cos(Δ𝜙e)− 𝜈cos(3Δ𝜙e))

2(4sin(Δ𝜙e)−5𝜈sin(Δ𝜙e)− 𝜈sin(3Δ𝜙e))
; (A.5a)

𝑦(𝜙)
𝐿

=
4cos(𝜙)−5𝜈cos(𝜙)+ 𝜈cos(3𝜙)

2(4sin(Δ𝜙e)−5𝜈sin(Δ𝜙e)− 𝜈sin(3Δ𝜙e))
. (A.5b)
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A.II Pure Character Angles
For initial pure screw character segments, Eq. (2.6) is rewritten as

𝜏′𝑥𝑧
𝜏c

= sin(Δ𝜙s)+ 𝜈sin(Δ𝜙s)− 𝜈sin3(Δ𝜙s). (A.6)

We are interested in the difference angle Δ𝜙∙ as an explicit function of the shear stress 𝜏𝑥𝑧 ,
for which we substitute 𝑠 ≡ sin(Δ𝜙∙). Rearranging Eq. (A.6), we find a convenient form to
determine the three roots 𝑠𝑔 , with subscript 𝑔 = 0,1 and 2, being

0 = 𝑠3𝑔 −(1+
1
𝜈)

𝑠𝑔 +
1
𝜈
𝜏′𝑥𝑧
𝜏c

. (A.7)

The three real-valued roots of a cubic equation [385]

0 = 𝑟3+𝑝𝑟 + 𝑞, (A.8a)

are

𝑟𝑔 ≡ 2
√
−
𝑝
3
cos(

1
3
cos−1(

3𝑞
2𝑝

√
−
3
𝑝)

−
2𝜋𝑔
3 ) , when 𝑝 < 0. (A.8b)

Substituting Eq. (A.7) in Eq. (A.8) and noting sin(Δ𝜙s) ∈ [−1,1], we find 𝑔 = 1 and the explicit
equation of the difference angle for the stable equilibrium shape Δ𝜙s.

For initial pure edge character segments, Eq. (2.11) is rewritten as

𝜏𝑥𝑧
𝜏c

=
1

4(1− 𝜈)
(4sin(Δ𝜙e)−5𝜈sin(Δ𝜙e)− 𝜈sin(3Δ𝜙e)) , (A.9a)

and
𝜏𝑥𝑧
𝜏c

=
sin(Δ𝜙e)
1− 𝜈

−
2𝜈sin(Δ𝜙e)

1− 𝜈
+
𝜈sin3(Δ𝜙e)

1− 𝜈
. (A.9b)

Rearranging Eq. (A.9b), we find a convenient form to determine the three roots 𝑠𝑔 of the
cubic equation:

0 = 𝑠3𝑔 +(
1
𝜈
−2) 𝑠𝑔 +

(𝜈−1)
𝜈

𝜏𝑥𝑧
𝜏c

, (A.10)

which is of the same form as Eq. (A.8a), but with 𝑝 ≥ 0, since 𝜈 ≤ 1/2. The single real-valued
and two complex-valued roots of the cubic equation (A.8a) [385] for 𝑝 > 0 are

𝑟𝑔 = 2
√
𝑝
3
sinh(

1
3
sinh−1(−

3𝑞
2𝑝

√
3
𝑝)

+
2i𝜋𝑔
3 ) , (A.11)

where i is the imaginary unit. Substituting Eq. (A.10) in Eqs. (A.8a) and (A.11), and noting
sin(Δ𝜙e) ∈ [−1,1], we use 𝑔 = 0 and find the explicit equation of the difference angle for the
stable equilibrium shape Δ𝜙e.
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A.III Swept Areas
Considering a FR source with generic initial dislocation character 𝜙i, we substitute Eq. (A.2)
in Eq. (2.4) and, noting

1
𝐿2 (

𝑥(𝜙)
𝜕𝑦(𝜙)
𝜕𝜙

−𝑦(𝜙)
𝜕𝑥(𝜙)
𝜕𝜙 ) =

2− 𝜈+3𝜈cos(2𝜙)
32 (

𝜏c
𝜏′𝑥𝑧)

2

(⋯

⋯ cos(𝜙)(2𝜈cos(𝜙)+ (4−5𝜈)cos(𝜙𝛽)+ 𝜈cos(3𝜙𝛽)+4
𝜏′𝑥𝑧
𝜏c

sin(𝜙i))⋯

⋯ +sin(𝜙)(−2𝜈sin(𝜙+(𝜈+4)sin(𝜙𝛼)+ 𝜈sin(3𝜙𝛼)+4
𝜏′𝑥𝑧
𝜏c

cos(𝜙𝑖)))+2𝜈−4) ,

(A.12)

obtain the normalised area swept out as

𝑆 (𝜙𝛼 ,𝜙𝛽)
𝐿2

=
1
256 (

𝜏c
𝜏′𝑥𝑧)

2

(16(2(𝜙𝛽 −𝜙𝛼)+4sin(𝜙𝛼)cos(𝜙𝛽)−sin(2𝜙𝛼)− sin(2𝜙𝛽)) ⋯

⋯−8𝜈(sin(4𝜙𝛼)+ sin(4𝜙𝛽)+4(𝜙𝛽 −𝜙𝛼 −sin(2𝜙𝛽)+2sin(𝜙𝛼)cos(𝜙𝛽)) ⋯

⋯ −2(sin(𝜙𝛼)cos(3𝜙𝛽)+sin(3𝜙𝛼)cos(𝜙𝛽)))

+8
𝜏′𝑥𝑧
𝜏c

(4cos(𝜙𝛽 +𝜙𝑖)−2𝜈cos(𝜙𝛽 +𝜙𝑖)−2(2− 𝜈)cos(𝜙𝛼 +𝜙𝑖)⋯

⋯+3𝜈(cos(𝜙𝑖−𝜙𝛼)−cos(𝜙𝑖−𝜙𝛽))+ 𝜈(cos(3𝜙𝛽 +𝜙𝑖)−cos(3𝜙𝛼 +𝜙𝑖)))
+𝜈2 (4(𝜙𝛼 −𝜙𝛽)+3sin(2𝜙𝛽)+19sin(2𝜙𝛼)+ sin(4𝜙𝛽)+7sin(4𝜙𝛼)− sin(6𝜙𝛼)− sin(6𝜙𝛽) ⋯

⋯ +4(sin(𝜙𝛼)cos(3𝜙𝛽)+sin(3𝜙𝛼)cos(3𝜙𝛽))−20(sin(𝜙𝛼)cos(𝜙𝛽)+sin(3𝜙𝛼)cos(𝜙𝛽)))) .
(A.13)

Hereby, the normalised area swept by the RHS screw FR source is

𝑆s (Δ𝜙s)
𝐿2

=
1

32(2+ 𝜈+ 𝜈cos(2Δ𝜙s))2 sin2 (Δ𝜙s)
((32−32𝜈−4𝜈2)Δ 𝜙s⋯

⋯ −(16−32𝜈−3𝜈2)sin(2Δ𝜙s)−(8𝜈− 𝜈2)sin(4Δ𝜙s)− 𝜈2 sin(6Δ𝜙s)) ,
(A.14)

and for the positive edge FR source

𝑆e (Δ𝜙e)
𝐿2

=
1

32(𝜈cos(3𝜈+2Δ𝜙e)−2)2 sin2 (Δ𝜙e)
((32−32𝜈−4𝜈2)Δ𝜙e⋯

⋯ −(16−19𝜈2)sin(2Δ𝜙e)+(8𝜈−7𝜈2)sin(4Δ𝜙e)− 𝜈2 sin(6Δ𝜙e)) .
(A.15)

Equations (A.14) and (A.15) are equivalent to the swept areas Cash and Cai [30] obtained
apart from different definitions of difference angle. The area swept 𝑆 (Δ𝜙) is given in Fig. A.1.
For the ease of comparison with Figs. 2.3a and 2.3b, the swept areas, which correspond to
line stresses 𝜏𝑥𝑧/𝜏c=𝜏′𝑥𝑧/𝜏c= 1/10, 9/10 and 1 are indicated with (coloured) triangle, square,
circle and gradient symbols as well in Fig. A.1.
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Figure A.1: The normalised swept-out areas 8𝑆s/(𝜋𝐿2) and 8𝑆e/(𝜋𝐿2) as a function of the normalised difference
angles Δ𝜙s/𝜋 and Δ𝜙e/𝜋 for Poisson’s ratios 𝜈 = 0, 1/10, 1/5, 3/10, 2/5 and 1/2. The coloured arrows indicate an
increase in Poisson’s ratio 𝜈 across equivalently coloured lines.

B Taylor Factor
Using the principle of virtual work, we require that the rate of external anelastic work is
equivalent to the rate of internal anelastic work across 𝑘 slip systems, i.e.

𝝈 ∶
𝜕𝝐an

𝜕𝑡
≡∑

𝑘
|𝜏𝑥𝑧

𝜕𝛾an𝑥𝑧
𝜕𝑡

|, (B.1)

where 𝜏𝑥𝑧 and 𝛾an𝑥𝑧 are the shear stress and anelastic shear strain, respectively, and their
magnitudes may vary between slip systems. It is convenient to express the rate of external
anelastic work in terms of the principal deformation rates by

𝜕𝑊 an

𝜕𝑡
= |

𝜕𝜖an1
𝜕𝑡

(𝜎1+𝜆𝜎2+(1−𝜆)𝜎3) |, (B.2a)

with contraction ratio 𝜆 ≡ 𝜕𝜖an2 /𝜕𝜖an1 and conservation of volume during dislocation glide, i.e.

𝜕𝜖an2
𝜕𝑡

+
𝜕𝜖an2
𝜕𝑡

+
𝜕𝜖an2
𝜕𝑡

≡ 0, (B.2b)

where | 𝜕𝜖
an
1
𝜕𝑡 | ≥ | 𝜕𝜖

an
2
𝜕𝑡 | ≥ | 𝜕𝜖

an
3
𝜕𝑡 | are the absolute principal strain rates. In a virtual tensile test,

there is a single principal stress component and we rewrite Eq. (B.1) as a function of the
normal stress

𝜎
𝜕𝜖an

𝜕𝑡
=∑

𝑘
|𝜏𝑥𝑧

𝜕𝛾an𝑥𝑧
𝜕𝑡

|. (B.3a)

Following Van Liempt and Sietsma [4] and using the Taylor factor 𝑀 , we relate the normal
stress to the resolved shear stress 𝜏 in each grain by

𝑀 ≡
𝜎
𝜏
=∑

𝑘

𝜕𝛾an𝑥𝑧
𝜕𝜖an

. (B.3b)
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Furthermore, we assume: (1) each grain is subjected to a normal stress parallel to the tensile
axis [255]; (2) all orientations are equally likely [255]; (3) the resolved shear stress 𝜏 is
the same in each grain [4]; and (4), each grain extends by the same amount along the
tensile axis [254]. Integrating the right-hand side of Eq. (B.3b) with the boundary condition
𝛾an𝑥𝑧 (0) ≡ 0 for no applied principal strain, we obtain

𝜏 =
𝜎
𝑀

, and 𝜖an =
1
𝑀

∑
𝑘
𝛾an𝑥𝑧 . (B.4)

C Inelastic Shear
The normalised anelastic shear strain is

�̄�an𝑘 (�̄�) ≡ 𝛾an𝑘
⟨𝑙𝑘⟩
𝑏

=
1

8𝛼2𝑘 (�̄�𝑘)
2 (2sin

−1 (�̄�𝑘)− sin(2sin−1 (�̄�𝑘))) , (C.1)

where the normalised shear stress is

�̄�𝑘 ≡
𝜏𝑘
𝜏c𝑘

=
𝜏𝑘⟨𝑙𝑘⟩
𝑏𝜇

, (C.2)

with the maximum line stress 𝜏c𝑘 ≡ 𝑏𝜇/⟨𝑙𝑘⟩. The normalised anelastic tangent modulus is

Θan
𝑘
𝜇

≡(
𝜕�̄�an𝑘
𝜕�̄�𝑘 )

-1
=

2𝛼2𝑘 (�̄�𝑘)
2

1√
1− (�̄�𝑘)2

−
1
�̄�𝑘

sin−1 (�̄�𝑘)
. (C.3)

Equation (3.19) is a separable differential equation for the plastic shear strain:

∫
𝛾pl𝑘 (𝜏𝑘)

𝛾pl𝑘 (𝜏
y
𝑘 )

d𝛾′ = ∫
𝜌𝑘(𝜏𝑘)

𝜌𝑘(𝜏y𝑘 ) (
⟨𝛽𝑘⟩
𝛼𝑘𝑏

√
𝜌′−

⟨𝜉𝑘⟩
𝑏

𝜌′)

−1

d𝜌′, (C.4)

where 𝜏y𝑘 ≤ 𝜏c𝑘 is the yield strength. The normalised plastic shear strain for a finite shear
stress is

�̄�pl𝑘 =
2
�̂�𝑘

ln((1−
�̂�𝑘 �̄�

y
𝑘

⟨𝛽𝑘⟩)
/(1−

�̂�𝑘 �̄�𝑘
⟨𝛽𝑘⟩)) , (C.5)

with a dimensionless parameter �̂�𝑘 ≡ ⟨𝜉𝑘⟩/⟨𝑙𝑘⟩ that is detailed in Sec. 3.3.1. The normalised
hardening modulus is

Θpl
𝑘
𝜇

≡
(
𝜕�̄�pl𝑘
𝜕�̄�𝑘 )

-1

=
⟨𝛽𝑘⟩
2 (1−

�̂�𝑘 �̄�𝑘
⟨𝛽𝑘⟩)

. (C.6)

D Stage-II Work-Hardening
The majority of stage-II work-hardening models have the form:

𝜕𝜌
𝜕𝜖pl

≈ 𝐶1

√
𝜌(𝜖pl)−𝐶2𝜌(𝜖pl) , (D.1)
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where 𝐶1 and 𝐶2 are constants with units m−1 and no dimension, respectively. Equation (D.1)
describes the development of the dislocation density as a function of the true plastic principal
strain 𝜖pl. Note that glide plane and slip system remain unspecified here, and the dislocation
properties are omitted for clarity; the type of dislocation density varies between theories.
Equation (D.1) is identical in form to Vetter’s version of Bergström’s equation, that considers
the immobile dislocation density alone [386, 387], and the proto-statistical storage model by
Kocks (See Sec. 3.2.2), that originally treats forest dislocations [10]. Combining the (classic)
Taylor relationship for the flow strength, 𝜎 ∼ 𝛼′𝑀𝜇𝑏√𝜌, and Eq. (D.1), the plastic tangent
modulus Θpl is

Θpl (𝜖pl) ≈
1
2
𝛼′𝐶1𝑀𝜇𝑏−

1
2
𝐶2𝜎 (𝜖pl) . (D.2)

The saturation stress 𝜎s thus is

𝜎s ≡ lim
𝜖pl→∞

𝜎 (𝜖pl) ∼
𝛼′𝐶1𝑀𝜇𝑏

𝐶2
. (D.3)

Rewriting Eq. (3.19) as a function of the true plastic principal strain 𝜖pl, and comparing the
result with Eqs. (D.2), we find

𝛽 ≈
𝛼′𝐶1𝑏
𝑀

; and, 𝜉 ≈
𝐶2𝑏
𝑀

, (D.4)

where 𝜉 is the effective junction length. Equation (D.3) is then used to determine the
saturation stress 𝜎s by linear regression on the plastic tangent modulus, and Eq. (D.4) for
comparison with the here summarised seminal approach.

E Numerical Solution of Piecewise Eqations of Mo-
tion

We use Mathematica [289] to verify the analytical results in present manuscript, which is
feasible for over-damped motion as well cause the initial dimensionless amplitude 𝑥 (0) = 𝑋0,
velocity �̇� (0) = 0 and phase shift 𝑝 between base-excitation and mass trajectory are a priori
known. The Mathematica [289] code we use is given in Listing E.1. The variables correspond
to those given in manuscript with the capitalisation and typesetting removed. Note that
the given initial trajectory changes to stuck[-((2 Pi/r)] == 0 when the dynamic trajectory is
continuous.
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Example E.1: Mathematica code.
1 dynsys := {(x^\[Prime]\[Prime])[T] == If[stuck[T] == 1, 0, Cos[p + r T] - 2 r z

Sin[p + r T] - Sign[Derivative[1][x][T]] xf - x[T] - 2 z
Derivative[1][x][T]], x[-((2 Pi)/r)] == dynx0, x’[-((2 Pi)/r)] == 0.};

2 statsys := {2 z Derivative[1][x][T] == If[stuck[T] == 1, 0, Cos[staticp + r T]
- 2 r z Sin[staticp + r T] - Sign[Derivative[1][x][T]] xf - x[T]], x[0] ==
statx0, x’[0] == 0.};

3 dynstick = WhenEvent[x’[T] == 0, stuck[T] -> Boole[(Cos[p + r T] - 2 r z Sin[p
+ r T] -x[T])^2 < (xf)^2]];

4 dynslip = WhenEvent[(Cos[p + r T] - 2 r 5 z Sin[p + r T] - x[T])^2 > (Xf)^2,
stuck[T] -> 0];

5 statstick = WhenEvent[(Cos[staticp + r T] - 2 r z Sin[staticp + r T] - x[T])^2
<= (xf)^2, stuck[T] -> 1];

6 statslip = WhenEvent[(Cos[staticp + r T] - 2 r z Sin[staticp + r T] - x[T])^2 >
(xf)^2, stuck[-((2 Pi)/r)] -> 0];

7 {dynpos, dynvel} = NDSolveValue[{dynsys, dynstick, dynslip, stuck[-((2 Pi)/r)]
== 1}, {x, x’}, {T, -((2 Pi)/r), (2 Pi)/r}, DiscreteVariables -> stuck[T],
Method -> {"ImplicitRungeKutta"}];

8 {statpos, statvel} = NDSolveValue[{statsys, statstick, statslip, stuck[-((2
Pi)/r)] == 1}, {x, x’}, {T, -((2 Pi)/r), (2 Pi)/r}, DiscreteVariables ->
stuck[T], Method -> {"EquationSimplification" -> "Residual"}];
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