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Abstract
Shunting yards are locations next to train stations
that serve as parking places for trains when they
are not in operation and often contain facilities
for maintenance and cleaning for passenger trains.
Planning of the tasks regarding shunting trains in-
volves routing, assignment of tracks, and schedul-
ing tasks. This is done manually and requires a
lot of effort, making it inefficient. Identifying pat-
terns specific in the arrival times of trains at shunt-
ing yards can help to predict future train arrivals
and potential delays throughout the year more ac-
curately. This enables the alignment of staff and
equipment with train arrivals, minimizing idle time
and optimizing cost efficiency.
This research focuses on extracting and analyzing
the arrival times of trains at shunting yards using a
dataset consisting of GPS data. It conducts two al-
gorithms to cluster the given data for each train unit
within and across days to identify the same train
across different days. Distributions and heatmaps
of the arrival times and delays are created based
on the identified train series. They are analyzed to
identify patterns in train arrival times and delays
across different months.

1 Introduction
An important part of daily travel in the Netherlands is the train
system. Each day, around 4.800 passenger trains operate in
the country for more than one million travelers [9]. Most of
these trains run during peak hours, which are Monday to Fri-
day from 06:30 to 09:00 and 16:00 to 18:30. When trains are
not in use, they are placed in parking areas called shunting
yards. These locations contain many tracks, are placed close
to train stations and often also contain facilities for mainte-
nance and cleaning. Figure 1 shows all the tracks in the area
of Amersfoort in gray, highlighting the shunting yard with
blue tracks.

Figure 1: Area Amersfoort with a shunting yard (blue tracks).

The planning of the tasks regarding shunting yards is also
known as the Train Unit Shunting Problem [3]. It con-
tains among other things; routing trains between stations and

shunting yards, assigning tracks to trains, and scheduling ser-
vicing tasks. Planning and coordinating these tasks are still
done manually, making it a laborious and time-consuming
process.

To help the people creating the planning of tasks, it is use-
ful to detect patterns in the operations regarding shunting
yards that happen frequently. Patterns can help identify re-
curring issues, which will optimize scheduling. Humans can
recognize certain features and patterns which can simplify the
Train Unit Shunting Problem while current models cannot do
this [15].

ProRail, the owner and maintainer of the Dutch rail net-
work, is currently looking into different patterns within the
shunting yards to reduce the Train Unit Shunting Problem.
Next to ProRail, other researchers have proposed optimiza-
tion methods for sub-components of the problem. For exam-
ple, the feasibility of shunting movements with respect to the
layout of the shunting yard [5] and the assignment of tracks
to trains in shunting yards [4]. There remains a big gap in the
scientific literature regarding the analysis of arrival times of
trains, resulting in the motivation of this research.

This research analyzes the arrival times and delays of trains
in shunting yards to uncover patterns for predicting future
train arrivals and delays more accurately. Identifying peak
moments in train arrivals allows for early scheduling of addi-
tional staff and equipment when needed. Next to this, know-
ing potential delays in arrival times can help allocate more
resources when needed to reduce delays in the future. This
allows for a more reliable and consistent train schedule.

Data is needed before it is possible to find patterns in the
arrival times of trains in the shunting yards. Currently, re-
alization data exist that reflect the actual occurrences rather
than the planned movements of trains. It contains GPS coor-
dinates of each train unit around seven shunting yards in the
Netherlands over 10 months. It could be that a train consists
of more than one train unit, which means it could contain
multiple GPS coordinates for the same train, see Figure 2.
Before this data can be used to find patterns, the data is pro-
cessed to combine train units as trains.

Figure 2: One train consisting of two train units with a GPS coordi-
nate.

This paper aims to answer the following research question:

What patterns can be identified in arrival time
distributions of trains in shunting yards using train

position data?
This question is further divided into sub-questions, providing
a structured approach to answer the main research question:

RQ 1: What features from the given dataset are rel-
evant for extracting the arrival times of the trains in
shunting yards?
RQ 2: Which clustering method can be used to
group train units of the same train?
RQ 3: What methods can be used to group trains
that represent the same train across different days?



RQ 4: How can the grouped data be used to derive
a distribution of arrival times for each train series?
RQ 5: What conclusions can be drawn from the
derived distributions of the arrival times?

Throughout this research, it is hypothesized that patterns will
be found. It is expected that almost all trains arrive in the
shunting yards directly after peak hours and not within since
shunting yards mainly exist as parking places. Train series
are expected to be the same throughout the year, assuming
the train schedule stays the same. Next to this, weather condi-
tions could influence the tracks and therefore possible delays.
Therefore, it is expected that there will be more delays during
the winter months in comparison to the summer months.

In addition to being useful for ProRail and trains in the
Netherlands, this research can also be placed in a broader con-
text. It can be applied to train systems in other countries and
to other transportation systems involving grouping instances.
For instance, it can be valuable for analyzing the arrival times
of ships in ports or airplanes at airports, as both ships and
airplanes are equipped with GPS coordinates for safety and
navigation.

2 Background
This section contains background information about the Train
Unit Shunting Problem and existing clustering algorithms
that are used in this research. It also contains related scientific
work and a clear description of the received dataset.

2.1 Background
Train Unit Shunting Problem
Passenger trains are parked in parking areas called shunt-
ing yards which often contain facilities for maintenance
and cleaning. The related shunting processes include the
matching of arriving and departing shunt units, the routing
of shunt units over the station infrastructure, cleaning and
short-term maintenance of shunt units, and crew planning for
the crew that carries out the shunting processes [3]. Planning
and coordinating these tasks are still done manually, making
it laborious and time-consuming. Planning these tasks is
also known as the Train Unit Shunting Problem. Automated
solutions are currently being researched to improve the
efficiency of the process, aiming to reduce manual workload.

Existing clustering algorithms
There exist several ways to group similar train instances as
one. Below are a few possible clustering algorithms con-
sidered during this research: K-Means clustering, DBSCAN,
and Hierarchical clustering.

K-means clustering is an unsupervised machine learning
algorithm that clusters the dataset into a pre-defined number
of clusters [14]. With this algorithm, you need to know how
many clusters you want to use beforehand. However, when
grouping train units as one train, it is not known in advance
how many units the train exists. Next to this, it is also not
known beforehand how many train series can be identified.
The K-means clustering algorithm is therefore not applicable
in this research.

DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) is a density-based clustering algorithm that
groups points that are closely packed while identifying out-
liers that lie in low-density regions [13]. It starts by finding
core and border points; core points are points that contain at
least X amount of points (MinPts) in its neighborhood (ϵ) and
border points are the points within that neighborhood that are
not a core point itself. All other points are specified as outliers
[16]. DBSCAN clusters the points based on their density,
starting from core points and expanding to include reachable
points within their neighborhood. As a result, DBSCAN does
not depend on a pre-defined number for the number of clus-
ters, but determines them based on their density and distribu-
tion of the points, making it a useful technique for handling
noise and creating clusters with different densities or irreg-
ular shapes. DBSCAN has been proved to be significantly
more effective in discovering clusters of arbitrary shape than
the well-known algorithm CLARANS1, an adaptation of the
k-means algorithm, and DBSCAN outperforms CLARANS
by a factor of more than 100 in terms of efficiency [2].

Hierarchical clustering creates a hierarchy of groups, such
that objects within a group are similar to each other and dif-
ferent from objects in other groups [7]. It is not needed to
pre-define the number of clusters. However, hierarchical clus-
tering algorithms do not actually create clusters but compute
only a hierarchical representation of the data set [12]. Hier-
archical clustering can be visualized using a dendrogram. A
dendrogram shows the distance between all the data points in
a tree-like structure [11]. The tree structure can be cut off at
any distance and the amount of groups will follow. This clus-
tering algorithm is useful for this research because a train can
consist of more than two units and the groups are not set to
be a certain size.

2.2 Related work
An example where train data was used to improve service
management is in the subway system of New York City. In
2020, trains were automatically identified in real-time [8] and
matched with the train schedules. They created applications
for internal use, e.g. a real-time visualization of slow-speed
segments, but did not look into patterns over time.

Another study focusing on New York City Transit’s sub-
way system highlights the importance of identifying the root
causes of delays. Using historical data to pinpoint specific in-
cidents responsible for delays, resulted in better operational
decisions and efficiency strategies [6]. Unlike their approach,
this research identifies patterns after delays occur.

A study already applied DBSCAN to identify patterns in
temperature data, focusing on anomaly detection. Anomalies
are unexpected patterns in a dataset, those that do not conform
to the general behavior [17]. They pre-processed time series
data before applying DBSCAN and found that DBSCAN can
discover subtle anomalies. This finding is useful for this re-
search because it suggests that DBSCAN can also effectively
identify patterns in train arrival times, even if they are not
immediately obvious.

1https://javadoc.io/doc/com.github.haifengl/smile-core/1.0.4/
smile/clustering/CLARANS.html

https://javadoc.io/doc/com.github.haifengl/smile-core/1.0.4/smile/clustering/CLARANS.html
https://javadoc.io/doc/com.github.haifengl/smile-core/1.0.4/smile/clustering/CLARANS.html


2.3 Dataset
GPS points
The received dataset is from ProRail and contains realization
data from NS trains in the Netherlands. This data reflects
the actual occurrences of trains rather than the planned move-
ments of trains. The dataset contains those GPS points every
10 seconds of each train unit whenever it is present in the area.
Each train unit has a GPS tracker, so whenever a train consists
of more than one train unit, it contains multiple GPS coordi-
nates for the same train, see Figure 2. The data is from seven
areas2 in the Netherlands and each area contains a shunting
yard. The data is from a period of 10 months, namely May
2023 through February 2024.

Besides containing the GPS locations of the units, the
dataset also contains information about the tracks in each
area.

The area of Amersfoort contains the largest shunting yard
amongst the shunting yards in the given dataset. Next to
this, it also contains most trains moving into the shunting
yard, resulting in more relevant data points. Therefore, this
research only focuses on the Amersfoort area.

Values of data
There does not exist any documentation of the dataset. All
statements and interpretations below are logically derived
from the data itself. Because of this, there could exist mis-
interpretations.

The dataset contains a lot of fields, of which most are
not relevant to this research. Some features are manually
annotated, examples of these are Track and ActivityType. It
could be possible that there are human errors in the labeling
of these features. For example, the track can suddenly be a
track next to it, or the ActivityType is called “Entering” while
the train is actually leaving the area. This has been taken
into account when extracting the relevant features of trains
(section 3.1). Other features, such as Matnr (id of the unit)
and TimeStart (start time of the GPS coordinate) are the true
values and are mostly used in this research.

Storage
The data is stored in an Azure environment. This means that
the data is hosted and managed using Microsoft’s cloud com-
puting platform. The data is protected and only accessible
through a ProRail account.

3 Methodology
In this section, the chosen method and algorithms used in this
research are discussed. Each step of data processing and anal-
ysis is implemented in Python, using Polars and Pandas li-
braries.

3.1 Data Processing
The data contains a lot of data points that are not relevant
to the current research and need to be filtered. This section
explains both what the relevant features are and what data
points are extracted for the next step in this research.

2Amersfoort, Arnhem Goederen, Arnhem West, Carthesiusweg,
Dordrecht, Hoofddorp, Watergraafsmeer

Relevant features of trains
The raw train data contains a data point for every GPS coor-
dinate of a unit present in the area. The amount of points for
a unit depends on the movements and time spent within the
area. First, the data is filtered based on the day; only the data
points that are on weekdays are kept because this research
only focuses on patterns within weekdays.

The units are grouped based on their GroupIdHash, where
each grouped unit contains a Matnr, a UnitType and a list of
movements, which contains the TimeStart, TimeEnd, Track
and ActivityType of each data point of the unit.

Next, the grouped units are filtered, based on if the unit is
present in a shunting yard in at least three data points. The
filtering is done based on the tracks in its movements. Three
data points are chosen because there can be a human error in
the allocation of the tracks.

The first timestamps as soon as the unit enters the shunting
yard are retrieved from the units that are present in the
shunting yards for at least three data points. The resulting
dataset contains a Matnr, a UnitType, and three StartTimes
for each unit.

Features that are used:

Feature Description

GroupIdHash Hash of the unit containing the Matnr
and the date/time the unit enters the area

Matnr ID of the unit (“Materiaalnummer”)

UnitType:
Type [10] and length of the unit with
sub-types: Intercity (ICMm, DDZ or
VIRM) & Sprinter (SLT or SNG)

TimeStart Start time of the GPS coordinate
TimeEnd End time of the GPS coordinate
Track Name of the track

ActivityType
Activity type of the train with options:
Short stop, Opgesteld, Entering/Exiting,
Exit, Rangeren (Shunting)

Relevant features of tracks
The dataset contains information about the tracks, e.g. track
name, electric traction, voltage class, GPS location, and area.
Most areas can be divided into smaller sub-areas such as
shunting yards, these are called “Geocode” locations. An
example can be found in Figure 1 where the shunting yard
has Geocode “Amersfoort Bokkenduinen”. The shunting
yards were found by manually visualizing the different
sub-areas of areas and the tracks of a sub-area were retrieved.

Features that are used:

Feature Description

GEOCODE NAAM BEGIN
and
GEOCODE NAAM EIND

“Begin” and “Eind”
indicate the geocode
location at beginning/end
of an track (they can differ)

Naam
Name of the track
(corresponding to “Track”
from features of trains)



The resulting dataset contains all relevant information for this
research. The amount of features is reduced from 28 to 3 dur-
ing processing. The amount of data points after processing is
reduced by 99%. This allows for faster processing and inter-
pretation of the next steps.

3.2 Grouping similar train instances
With the clean dataset, similar train instances have to be
matched. Train units are clustered as one train using hierar-
chical clustering. In the next step, these trains are matched
across days to identify train series that represent the same
train. Two algorithms are introduced and explained.

Cluster units as one train
Each day in the dataset is clustered separately. The clustering
process for each day is as follows:

1. Create a distance matrix for the lists of timestamps when
entering the shunting yard using fastdtw3 which is an
approximate Dynamic Time Warping (DTW) algorithm
able to calculate distances between time instances.

2. Normalize the distance matrix.
3. Perform hierarchical clustering using scipy4 module.
4. Create clusters with a very low threshold (distance of

max. 0.1%). Figure 3 shows the hierarchical clustering
as a dendrogram. Each cluster that has a distance below
the threshold (horizontal line) is accepted as a cluster. It
is visible in the figure that clusters of three units also can
be created. This dendrogram is zoomed on the y-axis,
and the full dendrogram is visible in Figure 9.

5. It could be the case that two units are driving very close
to each other as they go into the shunting yard and are
being grouped by hierarchical clustering. However, this
should not be counted as one train. Therefore, each clus-
ter will be filtered based on the sub-type. The most com-
mon sub-type within the cluster is found first. Then, all
units that do not match the most common sub-type be-
come separate clusters.

Figure 3: Hierarchical clustering shown in a dendrogram plot of a
random day (20-06-2023), including the horizontal threshold.

The final clusters contain for each arriving train: a list of all
Matnr of the units, the UnitType, and the ArrivalTime (the

3https://github.com/slaypni/fastdtw
4https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.

html

time the first unit arrives in the shunting yard). Figure 4 and
Figure 8a show the timestamps of arriving trains across a ran-
dom week and ten months, respectively. It can be seen in
Figure 8a that there are several days without any trains arriv-
ing at the shunting yard in August, this is due to missing data.
The figures show that certain trains can be linked vertically,
meaning their daily arrival times are similar. The next step is
to cluster those trains accordingly.

Figure 4: Scatterplot of the arrival times in a random week. Each dot
represents a train arriving in shunting yard Amersfoort on the given
date and time.

Match train instances across days
There are several constraints when creating a train series of
trains across days that represent the same train:

• Each day can only be present once.
• The type of the train (sprinter/intercity) is the same.
• There are at least twice the amount of trains as the num-

ber of weeks in the time frame. This avoids trains be-
ing added if it has a repeating pattern on one day of the
week.

Adding constraints to clustering significantly increases its
complexity. Due to time constraints, this research evaluates
two clustering algorithms where constraints are filtered after-
ward, as explained below. Visualizations of the results of the
two algorithms across a random week (8th-12th of May) are
visible in Figure 5. Each created time series by the corre-
sponding algorithm is represented as a combination of sym-
bol and color. The symbols/colors are picked randomly so
they do not match across different figures.

• Created algorithm
This algorithm loops over the arriving trains and adds the
train to an existing cluster if the time within the cluster
is less than 10 minutes apart, the trains have the same
type and the days are different. Otherwise, the arriving
train will be added to a new cluster. The pseudocode of
the algorithm is shown in Algorithm 1. Figure 5a shows
a small example of the clustering algorithm.

https://github.com/slaypni/fastdtw
https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html


• DBSCAN
DBSCAN from sklearn5 is applied to the dataset of the
arriving trains. The input contains the arriving time in
seconds (not taking the date into account) and an en-
coded list of the types of trains (to ensure clusters have
the same train type). After applying DBSCAN on the
arriving trains, the created clusters are filtered, such that
whenever a date is present multiple times in the cluster,
only the first timestamp of that date is saved in the series.
In Figure 5b a small example of DBSCAN is shown.

(a) Identified train series using the created clustering algorithm.

(b) Identified train series using DBSCAN.

Figure 5: Scatterplot of the arrival times of the identified train series
in a random week (8th-12th of May).

As can be seen in Figure 5, there is a very subtle differ-
ence in using the created algorithm and DBSCAN. There are
a few more train series identified in the created algorithm,
but the train series derived from DBSCAN are denser. Fig-
ure 10 shows another example of the two algorithms, across
one month of data, where the same observations can be made.

3.3 Deriving distributions
Using the grouped data from both the created algorithm and
DBSCAN, clear visualizations of the distributions are cre-
ated. For smaller ranges of data, a line graph is used to pro-
vide detailed insights into the delays over time. To compare

5https://scikit-learn.org/stable/modules/generated/sklearn.
cluster.DBSCAN.html

data across months, a heatmap is used, which offers an acces-
sible way to detect temporal patterns.

Line graph visualization
The trains within each train series are counted by occur-
rences in a time interval of 30 seconds and mapped to start
at 00:00:00. It is expected that the line graph of train arrivals
will decrease over time, where most trains within the series
arrive at 00:00:00 and fewer trains arrive at a later time. Each
line in Figure 6 represents a train series corresponding to a
combination of symbol and color from Figure 5.

(a) Line graph of identified train series using the created clustering
algorithm.

(b) Line graph of identified train series using DBSCAN.

Figure 6: Line graph visualization of arrival times in a random week
(8th-12th of May).

Figure 11 and Figure 12 show two more examples of two
random months: May and October. The difference between
the two algorithms becomes clear when looking at multiple
line graphs across weeks and months. The line graphs af-
ter using DBSCAN clustering are as expected; the number of
train arrivals decreases over time, where most trains arrive at
00:00:00 and fewer trains arrive at a later time.

The created algorithm fails when looking at larger ranges
of data. This happens because it adds trains to a cluster if the
arrival time is less than a 10-minute difference from the other
trains in the cluster. The algorithm does not give priority to
trains that have a similar arrival time; it therefore does not
take density into account. This results in more spread distri-
butions and is less useful for this research.

Since the created algorithm fails here, only the results from
DBSCAN are further analyzed. Choosing parameters for DB-
SCAN in larger ranges of data (e.g. multiple months) re-
sulted in more cluttered train series and choosing parameters
for smaller ranges of data (e.g. days) resulted in train series
too small to detect delays. Therefore, it is decided to cluster
the data with monthly intervals which also makes it easier to
compare delays across months.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html


Heatmap visualization
When comparing the data across several months, line graphs
tend to become more crowded and less readable. A heatmap
is a better way to easily visualize the differences between
trains across months because it reveals temporal patterns us-
ing color intensity.

The data of one month can be visualized using a heatmap.
Figure 7 shows a heatmap of the line graph in Figure 11b. It
is visible that each dark spot in the heatmap represents a peak
in the line graph. The dark spot on the first row around 2.5-3
minutes means that from that train series (where the earliest
train arrives around midnight at 00:05:10), most trains arrive
3 minutes late. This means that most trains that should arrive
at 00:05:10, are arriving at around 00:08:10.

Figure 7: Heatmap visualization of the identified train series in May.
Each row represents a train series where the y-axis shows the arrival
time of the earliest train and the x-axis shows the delays of all the
trains within the train series.

Comparison between months can be done if the delays within
each month are summed and then normalized. Merging those
heatmaps of each month in the data (10 months) results in
Figure 8c. Here, the dark spot on the first row at 0 minutes
means that in the 5th month (May) most trains arrive within
30 seconds. This can be confirmed by the heatmap in Figure 7
and the line graph in Figure 11b. It does not mean that each
dark spot in the heatmap represents the same amount of trains,
since each month has been normalized.

For more clarification, Figure 8 shows an overview of the
scatterplot (Figure 8a), found train series (Figure 8b) and the
resulting heatmap (Figure 8c) across all data.

(a) Scatterplot of the arrival times.

(b) Identified train series created by DBSCAN.

(c) Each row represents the normalized distribution of delays within
each month where the x-axis shows the delay in minutes.

Figure 8: Scatterplot, identified train series and heatmap in ten
months (May 2023 - February 2024). Peak hours are highlighted
in blue areas.



4 Results
The arriving train series and heatmap from Figure 8 are an-
alyzed to see if patterns can be identified. Both patterns are
detected in the arrival times of the trains in shunting yards
and in the delays of trains.

4.1 Patterns in arrival times
Figure 8a shows two visible busy moments in trains arriving
at the shunting yard, right after the morning and afternoon
peak hours (after 09:00:00 and 18:00:00). Even during peak
hours, trains arrive in the shunting yard.

Recurring trains become visible and can be linked verti-
cally, meaning they have similar arrival times. These train se-
ries are identified by DBSCAN in Figure 8b. It also becomes
visible that almost all train series are after peak hours.

Fewer train series are identified in August, likely due to the
missing data, but there are also fewer train series identified
after the morning peak in December and February.

Next to this, there are no train series identified during mid-
night at 02:00:00 and 06:00:00.

4.2 Patterns in delays
In Figure 8c the darker areas correspond to more trains arriv-
ing and white areas mean that fewer trains arrive. This corre-
sponds to the amount of delay trains in each month have.

It can be seen that in May, June, July, and August,
most trains arrive within 1 minute, having almost no delay.
Whereas in the months following, most trains arrive 3+ min-
utes later than expected. Mostly in September, a lot of trains
arrive around 4 minutes late.

5 Responsible Research
5.1 Data security
The dataset received for this research is owned by ProRail and
contains GPS points from actual trains driving in the Nether-
lands. These data points could potentially reveal high-traffic
areas. Given the critical role of train transport in the Nether-
lands, the data is highly sensitive. Therefore, the data is se-
curely stored in an Azure environment, accessible only by
ProRail employees.

5.2 Data validity
Some features in the data are manually annotated, as men-
tioned in subsection 2.3. While this research has this taken
into account, there could still be errors in the annotation of
tracks of shunting yards or in what was assumed to be “true”
values. This research assumes that the given data is correctly
labeled for the used features. It could therefore be the case
that misinterpretations exist, but this is unavoidable unless
the data has been self-generated.

5.3 Reproducibility
This research is fully reproducible if the same data as de-
scribed in subsection 2.3 is provided by ProRail. Since the
algorithm does not involve deep learning, it will produce the
same result each time.

Additionally, the algorithms can be used to analyze differ-
ent months or areas outside the current dataset, as long as the
data is structured the same way as described in subsection 3.1.

5.4 Reliability
The used dataset only contains data from NS passenger trains
while in reality, the tracks in shunting yards are also used by
trains from other companies (e.g. freight trains). The derived
distributions are therefore not an accurate representation of
the train arrival times, but only an indication. It is not possible
to make a definite conclusion based on the given dataset.

6 Discussion
The busiest moment in the shunting yard is after the after-
noon peak and the second busiest moment is after the morn-
ing peak. This is expected since one of the uses of a shunting
yard is to facilitate parking places for trains outside the peak
hours. More trains arrive in the shunting yard after the after-
noon peak hour, which is also expected since most trains are
driving throughout the day and are parked at night.

It was expected that no trains would arrive at the shunting
yard during peak hours. However, as shown in Figure 8a,
trains still arrive quite frequently during these times. The rea-
son for this is unknown.

Almost all trains that are part of a train series (see Fig-
ure 8b) are trains directly after peak hours. This could be
related to the fact that trains follow a specific schedule and
end up in a shunting yard afterward.

Next to this, it can also be concluded that trains that are
not part of a train series (arriving between 03:00:00-09:00:00
and 12:00:00-18:00:00) are less predictable and thus harder
to consider with planning. Nothing can be concluded about
train series leaving Amersfoort throughout the night.

In August, the train series from May to November after
the morning peak is missing and fewer trains arrive. This
could be due to the missing data, but could also be due to
the summer break. Fewer people traveling to work leads to
less maintenance and cleaning, thus fewer trains going into
shunting yards. Similarly, in December and February, fewer
trains arrive after the morning peak which could be due to
the Christmas and spring break.

The delay difference in the summer and winter months is as
expected, where trains have more delay during winter. How-
ever, the delays already start during the fall.

In May, June, July, and August, most trains have almost
no delay. This could be because of various reasons; better
weather conditions, fewer regular travelers due to holidays,
or recent maintenance. Holidays are a popular moment for
ProRail for maintenance of trains6 leading to a more efficient
infrastructure during the summer. This results in fewer dis-
ruptions and smoother train operations in shunting yards in
these months.

In comparison to the summer months, in the months fol-
lowing, trains more often arrive 3+ minutes late. Espe-
cially in September, a lot of trains arrive around 4 min-
utes late. September marks the beginning of fall resulting
in weather changes; more rainfall, temperature changes, and
falling leaves, which could all influence the general delay of
trains. This general delay continues until February.

6https://www.prorail.nl/veelgestelde-vragen/treinvrije-periodes/
waarom-zijn-treinvrije-periodes-vaak-tijdens-de-vakantie

https://www.prorail.nl/veelgestelde-vragen/treinvrije-periodes/waarom-zijn-treinvrije-periodes-vaak-tijdens-de-vakantie
https://www.prorail.nl/veelgestelde-vragen/treinvrije-periodes/waarom-zijn-treinvrije-periodes-vaak-tijdens-de-vakantie


7 Conclusions and Future Work
Most trains arrive in the shunting yards after peak hours,
where the busiest moment is after the afternoon peak hour.
Almost all trains part of a train series were identified here as
well, meaning it is easier to align the staff and equipment with
the busyness of these train arrivals. The recurring train series
can also be assigned to certain tracks, separating expected
trains from unpredictable trains.

Fewer delays were detected from May to August and more
delays were detected from September to February. This could
be due to the seasons changing or variations in the number
of regular travelers. Knowing this in advance, ProRail could
schedule additional maintenance and deploy more staff dur-
ing the months when delays are more likely.

The hypothesis aligns with the findings of this research.
The outcomes are validated by actual train data, confirming
that the results are factual and can be applied in real life.

This research can be expanded by including data from other
(freight) trains passing the shunting yards. By expanding the
dataset, the results will become more reliable, making it pos-
sible to draw definite conclusions.

In addition to expanding the dataset, future research can
also be based on making the algorithm more robust for larger
datasets. The current research uses a density-based clustering
algorithm to identify train series based on the arrival time of
trains. Future work could explore the use of deep learning for
comparing the time sequences of arriving trains. For exam-
ple, Recurrent Neural Networks (RNNs), which is a model
that can be utilized for time series analysis while preserving
information from previous time steps [1], could be applied.
Using deep learning instead of a clustering algorithm would
result in more accurate pattern recognition and improved train
series identification.

A Plots

Figure 9: Hierarchical clustering shown in a full dendrogram plot of
a random day (20-06-2023).

(a) Scatterplot of the arrival times.

(b) Identified trains using the created clustering algorithm.

(c) Identified trains using DBSCAN.

Figure 10: Scatterplot and the identified trains for a period of one
month: May.



(a) Line graph distribution of the identified trains using the created
clustering algorithm.

(b) Line graph distribution of the identified trains using DBSCAN.

Figure 11: Line graph distribution of the identified trains for a period
of one month: May.

(a) Line graph distribution of the identified trains using the created
clustering algorithm.

(b) Line graph distribution of the identified trains using DBSCAN.

Figure 12: Line graph distribution of the identified trains for a period
of one month: October.

Algorithm 1 Pseudocode of the created algorithm.
function FIND CLUSTER(clusters, train)

for each cluster in clusters do
if train.date is not in cluster.dates

and cluster.type is train.type then
for each cluster time in cluster.times do

time diff← |new time - cluster time|
if time diff > 10 minutes then

return None
return cluster

return None

clusters← []
for each arriving train do

current train← arriving train’s ‘time’, ‘type’, ‘date’
cluster← FIND CLUSTER(clusters, current train)
if cluster is None then

cluster← current train
clusters.append(cluster)

return clusters
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