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Abstract
Purpose – Wall-modeled large eddy simulation (LES) is a practical tool for solving wall-bounded flows with less
computational cost by avoiding the explicit resolution of the near-wall region. However, its use is limited in flows
that have high non-equilibrium effects like separation or transition. This study aims to present a novel methodology
of using high-fidelity data andmachine learning (ML) techniques to capture these non-equilibrium effects.

Design/methodology/approach – A precursor to this methodology has already been tested in
Radhakrishnan et al. (2021) for equilibrium flows using LES of channel flow data. In the current methodology,
the high-fidelity data chosen for training includes direct numerical simulation of a double diffuser that has
strong non-equilibrium flow regions, and LES of a channel flow. The ultimate purpose of the model is to
distinguish between equilibrium and non-equilibrium regions, and to provide the appropriate wall shear stress.
TheML system used for this study is gradient-boosted regression trees.

Findings – The authors show that the model can be trained to make accurate predictions for both equilibrium
and non-equilibrium boundary layers. In example, the authors find that the model is very effective for corner
flows and flows that involve relaminarization, while performing rather ineffectively at recirculation regions.

Originality/value – Data from relaminarization regions help the model to better understand such
phenomenon and to provide an appropriate boundary condition based on that. This motivates the authors to
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continue the research in this direction by adding more non-equilibrium phenomena to the training data to
capture recirculation as well.

Keywords Computational fluid dynamics, Machine learning

Paper type Research paper

1. Introduction
Wall-bounded flows at high Reynolds numbers are essential because they are found in
multiple fundamental industrial applications (Jiménez, 2004). Nevertheless, the use of accurate
numerical methodologies such as wall-resolved large eddy simulation (LES) is often unfeasible
due to their heavy computational costs. According to Choi and Moin, the computational costs in
terms of spatial resolution scale with Re13=7 (Choi andMoin, 2012). Taking into account the time
integration costs, it increases to Re65=21 (Calafell et al., 2019). On the other hand, if the boundary
layer (BL) is modeled instead of explicitly resolved, the scaling of the computational effort can be
reduced toRe4=3.

Among the 2030 Grand Challenges identified by NASA, the LES of a powered aircraft
configuration throughout the flight envelope appears in the first position of the priority list
(Slotnick et al., 2014). In NASA’s report, wall-modeled LES (WMLES) is proposed to
circumvent the massive costs of accurately resolving the BL while benefiting from the
temporal and spatial resolution of an LES computation. However, it suggests that “a longer-
term high-risk effort should investigate radical new approaches to physical modeling”
(Slotnick et al., 2014). This work aims to make significant progress in this direction.

In line with NASA recommendations for exploring disruptive approaches, data-driven models
that take advantage of recent advances in deep learning and other machine learning (ML)
techniques should be considered. One of the most relevant characteristics of these approaches is
that they can autonomously learn complex physical relations from the data. Eventually, this may
open the way to creating innovative and general models that take advantage of this ability,
leveraging physical properties that may have gone hidden in traditional equation-based models.
Data-based approaches have already been used in computational fluid dynamics (CFD). The
reader is directed to Brunton et al. (2020) for a review of ML approaches in CFD. While ML
models for CFD have become very popular in recent years, their applicability is generally limited
to flows of a similar nature, as evidenced by Rumsey et al. (2022).

Traditional wall modeling strategies take only small samples of data from the resolved outer
layer. These data are then processed through a physical model to complement it, allowing more or
less accurate predictions of wall shear stress depending on how far the real flow conditions are from
the assumptions of the physical model (Bose and Park, 2018). On the other hand, data-driven
models are intended to create a link between the outer layer and the wall shear stress through data,
avoiding relying on external and non-general models. By contrast, wall modeling using data-based
approaches is far more challenging because the high-fidelity data to train a model is mostly sampled
from canonical cases alone. Additionally, the canonical flowsmust be selected so that they feature as
many flow conditions as possible, thus providing a sufficiently wide physical knowledge to allow
the model to generalize to any flow condition. Keeping this in mind, we intend to develop a data-
drivenwallmodel trained on differentflow types that can be generalized to previously unseen cases.

Some of the first works that applied advanced deep learning techniques for the study
of wall-bounded turbulence were published during 2019. Guastoni et al. (2020) and
Srinivasan et al. (2019) applied deep neural networks (NNs) to directly predict mean
flow and turbulent quantities of shear flows. The first data-driven wall model proposed
by Yang et al. (2019) relied on feedforward NNs (FNNs). Later, Lozano-Durán and Bae
(2023) and Zhou et al. (2021) proposed wall models exclusively based on an NN, while
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Bae and Koumoutsakos (2022) proposed a wall model based on reinforcement learning.
In 2023, Zhou et al. (2023) proposed an improvement to their 2021 wall model, which
has shown good a priori performance when tested on DNS data. Vadrot et al. (2023)
provides a comprehensive literature survey of data-driven wall models and also
compares the performance of the wall models of Yang et al. (2019), Zhou et al. (2023)
and Bae and Koumoutsakos (2022).

According to NASA CFDVision 2030 (Slotnick et al., 2014), the computational cost to
resolve the laminar and transitional regions exceeds the turbulent region by two orders of
magnitude in WMLES. This is characteristic of the flow near the leading edges of the wing.
Due to the favorable pressure gradient, a turbulent to laminar transition develops near the
vicinity of the leading edge. Although it can only be a fraction of the chord length, the
downstream effects can be substantial. WMLES designed to capture the transition can be
found in Drela and Giles (1987), Marques andWang (2017), Gonzalez et al. (2020), Gonzalez
et al. (2021), Dauricio and Azevedo (2023), Bodart and Larsson (2012) and Park and Moin
(2014). Drela and Giles (1987) use integral methods, and Gonzalez et al. (2020) and Gonzalez
et al. (2021) use Falkner–Skan similarity solutions for wedge flows to account for the
transition. Marques and Wang (2017) successfully use a data-driven approach for unsteady
laminar channel flows. A sensor-based approach was used in Bodart and Larsson (2012) and
Park andMoin (2014).

In this work, a non-equilibrium wall model based on data is developed using gradient-
boosted regression trees (GBRTs) primarily for flows involving non-equilibrium BL effects.
Preliminary work on the development of a wall model that works under equilibrium
conditions was published in Radhakrishnan et al. (2021). The current work is the second step
toward developing a complete non-equilibrium wall model using GBRT. The methodology
of model development is detailed in Section 2. The model is tested and validated a priori and
a posteriori in Section 3, and the main findings of the paper are summarized in Section 4.

2. Methodology
The current data-driven wall modeling method consists of an iterative process that
includes the following steps: data selection, model training and a priori and a posteriori testing.
The procedure is repeated successively to optimize the final results. A schematic of the
methodology is shown in Figure 1. As can be seen, the data on the right of the figure,
i.e. channel and diffuser data, are used to create the ML-based model on XGBoost. From the
solver’s side, the accurate shear stress provided by themodel is used as the boundary condition.

Figure 1. Schematic of the methodology
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2.1 Numerical method
All the simulations presented in this work are performed using a low dissipation finite element
method implemented in the code Alya (Vazquez et al., 2016). Alya is a parallel multiphysics/
multiscale simulation solver developed at the Barcelona Supercomputing Center to run efficiently
on high-performance computing environments. A Galerkin finite element scheme is used, which
conserves linear and angular momentum and kinetic energy at the discrete level, to discretize the
convective term (Lehmkuhl et al., 2019a). To use elements of equal order, numerical dissipation is
introduced only for pressure stabilization through a fractional step scheme (Codina, 2001). A
third-order Runge–Kutta explicit method combined with an eigenvalue-based time-step estimator
(Trias and Lehmkuhl, 2011) is used for temporal integration. Alya is used to solve the spatially
filtered non-dimensional Navier–Stokes equation given by:

∂Ui

∂xi
¼ 0 (1)

∂Ui

∂t
þ ∂
∂xj

UiUjð Þ ¼ � ∂P
∂xi

þ 1
Re

∂2Ui

∂x2j
� ∂τij

∂xj
(2)

The equations are normalized using a reference length L and velocity U0, which define the
Reynolds number Re ¼ U0L=ν. The filtered velocity is defined as ~ui ¼ Ui ¼ ui � ui′, where
Ui ¼ U;V;Wð Þ, and the filtered modified pressure is P ¼ ~p=ρ. Finally, τij ¼gu′i u′j ¼guiuj � UiUj is the subgrid-scale stress (SGS) tensor.

2.2 Data sets
To obtain accurate model predictions, the input data at inference time must be as similar as
possible to the training data. Because input data at inference time will beWMLES-like in spatial
or temporal resolution, ideally, training data should also haveWMLES characteristics. The data
sets used to train the model are derived from the WRLES of the channel flow (Reτ ¼ 950)
(Lehmkuhl et al., 2019a) and the DNS of a flow through the Stanford double diffuser (Re ¼
10000) (Miró et al., 2023). DNS data of the diffuser is used instead ofWRLES data because: the
data is already available in the literature and at the sampled Reynolds number regime,
the difference in grids for DNS/WRLES/WMLES is not so significant (Choi and Moin, 2012).
The details of these data sets and their selection criteria are given in the following sections.

2.2.1 Channel flow: Reτ ¼ 950. The computational domain for the channel is 6δ� 2δ� 3δ
in the stream-wise, wall-normal and span-wise directions, respectively, where δ is the half-channel
height. A mesh of 1283 elements is used to discretize the domain. The mesh is uniform in the
stream-wise and span-wise directions, corresponding to Δxþ � 45 and Δzþ � 22 in wall units,
respectively. A hyperbolic tangent function is given by the following equation:

y ið Þ ¼
tanh γ 2 i�1ð Þ

Ny
� 1

� �� �
tanh γð Þ (3)

The above function is used to stretch the mesh in the wall-normal direction such that the
minimum Δyþ ¼ 1 and the maximum Δyþ ¼ 34. Periodic boundary conditions on the stream-
wise and span-wise boundaries and a no-slip boundary is enforced on the walls. The flow is
driven by a stream-wise constant pressure gradient and the integral length-scale approximation
(ILSA) (Lehmkuhl et al., 2019b) SGSmodel is used for turbulence closure.
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2.2.2 Stanford double diffuser: Re ¼ 10,000. The diffuser has an inlet section, an expansion
section and an outlet section. The inlet section is a rectangular duct of cross-section of 3.33�1
square units. Turbulent flow from the duct enters the diffuser at the inlet section, and a standard
Dirichlet condition for pressure is applied in the outlet section. A no-slip boundary condition is
applied to the walls of the diffuser. The Reynolds number based on the inlet bulk velocity and duct
height is 10,000. This data set was thoroughly validated in Miró et al. (Miró et al., 2023). Briefly,
numerical results were comparedwith existingDNS and experimental results, resulting in very close
agreement. This new data set has been made publicly available on the ERCOFTAC Wiki. The
region used for model training is only the expansion section. This portion begins from the plane
where the diffuser diverges from the rectangular duct cross-section of 1� 3:33 square units to a
square duct of cross-section 4�4 square units. The length of this portion is 15 units.

2.3 Data sampling
The choice of channel data is motivated by the fact that it contains information on the
equilibrium BL. As the channel is in equilibrium in the Reynolds average sense, the sum of
the convection and pressure gradient terms should be zero (LARSSON et al., 2016). This
sum has a range of approximately �10�4; 10�4

� �
in the sampled data, i.e.:

�10�4 < Uj∂jUi þ ∂iPð Þi¼1 < 10�4 (4)

where ·̄ denotes a mean flow quantity. In addition, to consider the effect of the pressure
gradient, the ratio of the average sum of the convective term and the pressure gradient term to
the average convective term is analyzed. The result is shown in Figure 2. The ratio ranges
from 0.96 to 1.03, i.e.:

Source: Figure by authors
Figure 2. Ratio of the sum of the average convection and pressure gradient to the average convection
for the channel in the wall-normal direction

HFF
34,8

3170



0:96 <
Uj∂jUi þ ∂iPð Þi¼1

Uj∂jUið Þi¼1

< 1:03 (5)

It can also be seen that the ratio is very close to 1 in most cases, meaning the gradient of the
pressure fluctuations tends to zero at those locations.

To provide information regarding non-equilibrium BL, data from the Stanford double
diffuser is used. In this way, the selected data set comprises equilibrium and non-equilibrium
data, such as flow around corners, three-dimensional separation or relaminarization. However,
this also poses a challenge when training the model, as it is not easy to segregate the data
according to the physical phenomenon, as they are mixed in a non-linear fashion. If there is an
imbalance in the data with respect to the information it carries, the model will tend to be biased
toward the “most seen” flow physics. The data from the simulations are studied and pre-
processed so that this imbalance is reduced. The ratio of the average sum of the convection and
the pressure gradient terms to the average convection is also computed for the diffuser.

From the diffuser, approximately 266� 103 non-equilibrium points are chosen. The diffuser
region from which these examples are selected is shown in Figure 3. This involves data from
relaminarization and three-dimensional recirculation (Miró et al., 2023). The equilibrium points in
these regions are less than 1%, and it is shown in Figure 4. In the diffuser, the y+ limit of the
examples was set approximately at 150, a typical range of values for wall shear stress models
(LARSSON et al., 2016). A number of 120� 103 channel flow samples are also added to
this data set, accounting for 69% non-equilibrium and 31% equilibrium data. This proportion was
determined by an iterative method of sampling, testing and resampling. A 90%–10% split is
followed between the train data and the validation data. The evolution of the train data and the

Figure 3. Locations of non-equilibrium inside the duct plotted as a heat map in the x and y directions
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validation data with respect to each iteration of the training process is shown in Figure 5. Both
curves evolve in a concordant way, showing that the choice of parameters is adequate.

2.4 XGBoost
The generated data are used to build the wall model using the ML technique of gradient boosting
(Friedman, 2000). The gradient boosting system used to train the model is XGBoost by Tianqi
Chen and Guestrin (2016). At the time of conception of the idea of using ML for wall modeling,
XGBoost was one of the popular algorithms among data scientists. XGBoost offers the feature
importance property, which allows to assess the sensitivity of the input features with respect to the
output predictions. Hence, this property helps to automatically select the best possible inputs
among a list of candidates. The importance of the inputs is further discussed in the next section.

Gradient boosting uses regression trees as “weak learners” for making predictions. The
model is an additive function in the form of tree structures that maps the input space to the
output space. Consider the data setD composed of n samples andm features:

D ¼ xi; yið Þ� � jDj ¼ n; xi ∈ℝm; yi ∈ℝð Þ

ŷ ¼ ϕ xið Þ ¼
XK
k¼1

fk xið Þ;  fk ∈F

where F ¼ f xð Þ ¼ ωs xð Þ s:ℝm ! L;ω∈ℝL
� �

X

Y

Z

Notes: U and p are the DNS instantaneous velocity and pressure, respectively.
The sum of convection and pressure gradient is in local coordinates
Source: Figure by authors

Figure 4. Locations of equilibrium inside the duct plotted as a heat map in the x and y directions
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ŷ predicted from K additive functions, s represents the tree structure, ω is the output weight
and L is the number of leaves. The optimizer is the gradient descent, and the loss function
used for the algorithm is:

L ϕð Þ ¼
X
i

l yi; ^yi
� �þX

k

Ω fkð Þ

where Ω fð Þ ¼ γLþ 1
2
λjjωjj2

Here l is any differentiable convex loss function that measures the difference between y and
ŷ, and λ is a regularization parameter. In XGBoost regression, the cost function used is the
sum of the squared error. This function measures the squared difference between the
predicted and the actual values. It is given by l y; ^y

� � ¼ y� ^y
� �2

.

2.5 Model inputs and outputs
The input features processed from the flow must carry the necessary physical information to
build a model that can be generalized to all types of flow configuration. After testing different
input features based on velocity, strain rate and pressure, two non-dimensional reference-
frame invariant features are chosen. These two input features are selected because of their
high feature importance score. An example of this procedure is shown in Figure 6. us

Source: Figure by authors
Figure 5. Evolution of the loss in terms of root mean square error (RMSE) of the train data and the
validation data with respect to each epoch of the training process
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[equation (6)], ud [equation (7)] and up [equation (8)] compose the set of candidate inputs
used to train the model. The quantity us is a strain-based velocity scaling defined as:

us ¼ u
jjSjjδn (6)

where u is the magnitude of the instantaneous velocity parallel to the walls, and δn is the
normal distance from the wall. jjSjj is the magnitude of the strain rate tensor computed as
jjSjj ¼ ffiffiffiffiffiffiffiffiffiffiffi

2sijsji
p

, where s is the instantaneous strain rate. From the feature importance plot, it
can be observed that us appears to be ineffective compared to ud and up. ud is called the “local
Reynolds number” given by:

ud ¼ uδn
ν

(7)

The second, up, which is also a velocity scaling, is based on the magnitude of the pressure
gradient. It is computed as:

up ¼ uffiffiffiffiffiffiffiffiffiffi
ν
ρ ∂θp3

q (8)

where ρ is the density of the fluid, and ∂θp is the magnitude of the wall-tangential pressure
gradient at a normal distance δn. The model output is u+ given by:

Score

Fe
at
ur
e

Source: Figure by authors
Figure 6. Feature importance plot showing the importance of three inputs used for training the model.
The higher the value, the higher the sensitivity of the feature in predicting the output

HFF
34,8

3174



uþ ¼ uffiffiffiffi
τω
ρ

q (9)

where τω is the magnitude of the wall shear stress. To teach the model to distinguish between
favorable and adverse pressure gradients, the local u is set to be positive for local favorable
pressure gradients, and negative for adverse pressure gradients:

u ¼ u; if u � ∇p≤ 0
�u; otherwise

	

for the model inputs ud and up. For the output of the model, regardless of the sign of the
predicted u+, the magnitude of the shear stress is calculated and the direction is chosen as the
direction of the instantaneous velocity at the exchange location. This quantity was found to
be more effective than the other inputs tested, as shown in Figure 6, where the strain rate-
based velocity scaling has a feature importance score close to zero.

Like any other ML system, XGBoost also requires hyperparameters to define and train the
model. The size of each “tree” in the model is controlled by the hyperparameter “max_depth.”
It is set to 7 so that each tree has 27 leaves. Beyond this value, the complexity seems to be too
high, and the model gets over-fitted to the data. The leaves contain the image of the tree
functions. The rate at which learning takes place is controlled by the “learning_rate”
parameter. This hyperparameter is responsible for the extent to which the model is altered in
response to loss after each epoch. Consequently, the lower the learning_rate, the greater the
number of trees, hence increasing the forest size. The learning rate parameter is set to 0.07 for
this study. As shown in Figure 5, beyond 70 epochs, there is no reduction in loss with
evolution. Therefore, tree number 70 is chosen for the prediction of the output.

Finally, the model is integrated with the LES solver, as shown in the schematic Figure 1.
For each time step, the stream-wise instantaneous velocity, tangential pressure gradient and
wall distance sampled at approximately 10% of the thickness of the BL are used to compute
ud and up, the model inputs. This is consistent with the recommendations on the use of LES
inputs for wall modeling, as explained in Kawai and Larsson (2012). The model computes
the necessary boundary condition for the simulation, that is, the wall shear stress, which is
then fed back into the LES simulation as a Neumann boundary condition.

3. Results and discussion
In this section, the performance of the model is evaluated a priori and a posteriori. In a priori
tests, the model’s performance is compared offline with a data-driven equilibrium wall
model (hereafter called EQWM-ML) (Radhakrishnan et al., 2021). In the a posteriori tests,
which consist of embedding the model during the simulation, it is compared with an
algebraic equilibrium wall shear stress model (hereafter called EQWM) (Owen et al., 2019)
and EQWM-ML.

3.1 A priori tests
The a priori tests are performed by sampling unseen data from a channel case and the double
diffuser and using the model to make predictions. These tests ensure that the model can
distinguish between non-equilibrium and equilibrium data. This has to be confirmed, as the
model is trained using a mix of both data types. The channel data used for a priori tests are
derived from the WRLES of a channel at Reτ ¼ 550. This data set is particularly used as it is
different from the channel data distribution (Reτ ¼ 950) that is used for training. The data
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derived from the diffuser for the a priori test is sampled from the DNS of the same Stanford
double diffuser. The predicted uτ is compared with the actual uτ. To compare the predicted
and actual result distributions, a bivariate kernel density estimate (KDE) (Simonoff, 2012) of
the uτ and y+ quantities is computed. The KDE plot is obtained by keeping a kernel of a
specific bandwidth on each point on the data-space and summing them over. This results in a
smooth probability density function (PDF) even at the locations in the data-space without
sampled data points. The kernel used here is Gaussian and < � > represents the mean value.
A marginal distribution is also plotted to the right of the bivariate plot.

3.1.1 Channel Reτ ¼ 550. The computational domain for this channel is 6δ� 2δ� 3δ in
the stream-wise, wall-normal and span-wise directions respectively. A mesh of
128� 96� 128 elements is used to discretize the domain. The mesh is uniform in the
stream-wise and span-wise directions, corresponding to Δxþ � 26 and Δzþ � 13 in wall
units, respectively. The hyperbolic tangent (cf. 3.2.2) stretching with a minimum yþ � 1 is
used here as well. Periodic boundary conditions are enforced on the stream-wise and span-
wise boundaries, and a no-slip boundary on the wall is maintained. The flow is driven by a
stream-wise constant pressure gradient and a Vreman (Vreman, 2004) SGS model is used for
turbulence closure.

In Figure 7, the plots on the left correspond to the predicted versus actual PDF of uτ for
the NEQWM-ML. The ones on the right correspond to the predicted versus actual PDF of uτ
for the EQWM-ML. The blue PDF is the actual instantaneous uτ corresponding to y+. The
red PDF is the instantaneous predicted uτ corresponding to y+. A typical y+ range that is
applicable to a wall model is considered. The figures are divided according to the y+ ranges.
Figure 7(a) and 7(b), are the KDE plots of uτ and y+ for yþ < 100. KDE plots of yþ > 100
are shown in Figure 7(c) and 7(d), . From Figure 7(c), it is clear that NEQWM-ML performs
very well for yþ > 100 in the equilibrium domains. The peaks are well captured, and the
mean is also very close. Compared to Figure 7(c), the performance of NEQWM-ML is on par
with EQWM-ML. However, the behavior is different when we examine the performance of
NEQWM-ML for data corresponding to yþ < 100. It seems that introducing non-
equilibrium data with purely equilibrium data may distort the prediction in the near-wall area
where viscous effects are more relevant. Figure 7(a) shows that NEQWM-ML fails to
capture uτ while the performance of EQWM-ML is very good. Whether this affects the
overall performance of the NEQWM-ML in complex flows can only be explained after a
posteriori tests.

3.1.2 Stanford double diffuser. Unseen data from regions close to the corners of the
diffuser are probed. These locations are shown in Figure 8. The four probe locations inside
the cyan diffuser are chosen. With respect to the flow direction, they are labeled as lower left
(LL), lower right (LR), upper left (UL) and upper right (UR).

In Figure 9, the blue PDF is the actual instantaneous uτ corresponding to y
+. The red PDF

is the predicted instantaneous uτ corresponding to y
+. All figures on the left correspond to the

predicted versus actual uτ quantities of NEQWM-ML. The plots on the right correspond to
the predicted versus actual uτ quantities of EQWM-ML. Density values are given at the top
of the figure. Figure 9(a) and 9(b), show that the actual uτ has a peak value of approximately
0.025 at yþ < 100. NEQWM-ML is able to this peak approximately, while EQWM-ML does
not capture it. The average value of the predicted uτ is not well predicted by the NEQWM-
ML in this region. The prediction of EQWM-ML cannot be seen in the figure, as it is beyond
the bounds of the figure, and it is therefore very inaccurate. Figure 9(c) and 9(d), show that
the peak value of approximately 0.015 at yþ < 100 is well predicted by NEQWM-ML. In
addition, the marginal distribution is very well captured by NEQWM-ML. The average value
of the predicted uτ is also well captured by the NEQWM-ML for this region. EQWM-ML
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(a) (b)

(c)

Notes: (a) NEQWM-ML; (b) EQWM-ML; (c) NEQWM-ML; (d) EQWM-ML; On the left, 
the performance of the NEQWM-ML is shown. On the right, that of the EQWM-ML is 
shown. The blue color corresponds to actual values and the red color corresponds to 
predicted values. The dotted lines are shown for the averages. Densities are shown at the top 
of the figure, and marginal distributions are shown on the right of each figure
Source: Figure by authors

(d)

Figure 7. Comparison of the KDE of actual and predicted wall shear stresses for NEQWM-ML and
EQWM-ML for the channel Reτ ¼ 550
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fails again to predict the correct PDE and average value. Similar conclusions can be drawn
by comparing Figures 9(e) and 9(f), and Figure 9(g) and 9(h).

Considering the fact that NEQWM-ML is trained with only a limited amount of data, its a
priori performance is promising. However, getting good results in a priori test cases does not
always guarantee good results in actual simulations (Poroseva et al., 2016; Thompson et al.,
2016; Wu et al., 2019). Therefore, the performance of NEQWM-ML in actual flow
simulations is evaluated in the following cases:

• flow inside a diffuser;
• turbulent channel flow of Reτ ¼ 2005;
• turbulent channel flow of Reτ � 4200;
• flow over a wall-mounted hump; and
• juncture flow simulation.

The first two tests guarantee that the non-equilibrium data contained in the NEQWM-ML do
not interfere with the equilibrium data when it encounters equilibrium conditions. The third
test is performed to check the performance of the model when tested on the Stanford diffuser,
the data from which were used to train the model. The fourth case tests the NEQWM-ML’s
performance when subjected to relatively smooth geometries under strong non-equilibrium
conditions. The fifth case evaluates the performance of the NEQWM-ML in an actual
industrial case with sharp corners. Details of the simulations are discussed below.

3.2 A posterior tests
3.2.1 Stanford double diffuser. This test is intended to check the a posteriori performance of
the model when used in the diffuser. Geometric details are maintained as in the original set up,
detailed inMiró et al. (2023). Three uniformmeshes were used to carry out the grid convergence

Figure 8. Probe locations fromwhere the data is sampled
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study. The first mesh has approximately 1.4 million linear elements. The second mesh, G2, has
approximately 3.2 million linear elements, which is obtained by refining in the x direction. The
third mesh G3 has approximately 7.1 million linear elements, which is obtained by further
refinement of G2 in the x direction. The details of the meshes are shown in Table 1. Turbulent
inflow is generated using a trippingmechanism as described inMiró et al. (2023).

Statistics are collected after a statistically stationary state is reached. Stream-wise velocity
profiles along four different planes are considered for comparison with the DNS data. These

Figure 9. Comparison of the KDE of actual and predicted wall shear stresses for NEQWM-ML and
EQWM-ML for data from the Stanford double diffuser
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Figure 9. Continued
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planes are located at z=B ¼ 0:250; z=B ¼ 0:500; z=B ¼ 0:750 and z=B ¼ 0:875, where B is
the width of the duct. Velocity profiles are generated at x ¼ 2.0, x ¼ 4.0, x ¼ 6.0, x ¼ 8.0,
x ¼ 10.0, x ¼ 12.0, x ¼ 14.0, x ¼ 16.0, x ¼ 17.0 and x ¼ 18.0 for each of these planes. The
comparison of these velocity profiles with DNS data for the three different meshes is shown
in Figure 10. The velocity profiles show that the results are sufficiently converged. Next, the
results of NEQWM-ML are compared with those of EQWM, EQWM-ML and the results of
a simulation in which no wall model is used, that is, a coarse LES case (noModel). These are
shown in Figure 11. In general, the improvement in the velocity profiles is not very
significant compared to the noModel case. However, it can be inferred that both equilibrium
wall models struggle in the recirculation region. NEQWM on the other hand, not only has an
improvement with respect to the noModel case, but also improves with respect to the two
equilibrium wall models in the recirculation regions. This can be attributed to the use of non-
equilibrium data in the training process. The locations where NEQWM-ML matches the
noModel are mostly the regions of laminar flow. Furthermore, the stream-wise velocity
fluctuations predicted by the three models and the noModel case are compared in Figure 12.
The fluctuations predicted from all simulations disagree with the DNS and with each other.

In summary, NEQWM-ML makes a notable improvement when tested a posteriori
compared to its equilibrium counterparts, although it does not significantly improve the
velocity profiles from a coarse LES (noModel). The key problem lies in the use of a
structured mesh for the WMLES of the diffuser. Although refinement inside the duct is
adequate for wall modeling, the case is not the same inside the diffuser, where the geometry
diverges, hence stretching the mesh elements. This also explains the disagreement of the
velocity profiles away from the walls. Anisotropic elements also affect exchange location
points, causing wall models to perform inefficiently. In addition to that, the Reynolds number
for this case is a notably low to performWMLES.

3.2.2 Turbulent channel flow (Reτ ¼ 2005). The size of the channel is 6πδ� 2δ��2πδ
in the stream-wise, wall-normal and span-wise directions, respectively. In this study, three
different mesh resolutions are considered. The meshes are uniform in the stream-wise, wall-
normal and span-wise directions, details of which are given in Table. 2.

Stream-wise and span-wise directions, being homogeneous, periodic boundary
conditions are applied on those boundaries. Due to the larger grid size close to the walls, the
dynamically significant eddies cannot be resolved by the grid. This results in an incorrect
velocity profile and, subsequently, incorrect wall shear stress. So, the no-slip condition is no
longer valid at the walls, and a slip wall with the no-penetration condition is imposed on the
walls. The flow is driven by a stream-wise constant pressure gradient, and the Vreman
(Vreman, 2004) SGS model is used for turbulence closure. Simulations are run long enough

Table 1. Details of the meshes used for the simulation of the diffuser. x, y and z indicate the
streamwise, wall-normal and spanwise directions, respectively

Mesh No. of elements Δxþmax Δyþmax Δzþmax y+ z+

G1 � 1:4 million � 238 � 22 � 53 � 8:3 � 22:0
G2 � 3:2 million � 143 � 16 � 38 � 6:9 � 11:5
G3 � 7:1 million � 102 � 12 � 26 � 5:5 � 9:2

Notes: The grid sizes are non-dimensionalized in wall units. Δxmax; Δymax and Δzmax are the maximum grid
lengths inside the duct in the stream-wise, wall-normal and span-wise directions, respectively. y+ and z+ are
the resolutions of the walls.
Source: Table by authors
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to achieve statistically stationary regimes, and statistics are collected over a period of 20
flow-through times. One flow-through time is defined as the time it takes for the center-line
stream-wise velocity to cover the domain length. In addition to averaging in time, spatial
averaging is also performed along the homogeneous directions, and the fields are normalized
to wall units with the frictional velocity of the flow.

The mean stream-wise velocity in wall units for M1, M2 and M3 meshes compared to DNS
results (Hoyas and Jiménez, 2006) is shown in Figure 13. As the mesh density increases, the
velocity profiles tend to approach DNS. The error in uτ predicted by NEQWM-ML is less than
0.5% for all simulations. This shows that the data-based NEQWM-ML is able to blend with the
fluid solver like a physics-based EQWM. Furthermore, the ability of NEQWM-ML to make

(a)

(b)

(c)

(d)

Notes: (a) z/B = 0.250; (b) z/B = 0.500; (c) z/B = 0.750; (d) z/B = 0.875, where B is the width
of the duct
Source: Figure by authors
Figure 10. Comparison of the velocity profiles predicted byNEQWM-ML for meshes G1, G2 and G3 at
x¼ 2.0, x¼ 4.0, x¼ 6.0, x¼ 8.0, x¼ 10.0, x¼ 12.0, x¼ 14.0, x¼ 16.0, x¼ 17.0 and x¼ 18.0 on planes
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accurate predictions in a higher Reτ channel flow shows that NEQWM-ML has learned the law
of the wall without being explicitly given any information about it during training. This is
further confirmed in Figure 14 where the results are compared with those of a simulation using
EQWM. The EQWM (Owen et al., 2019) is used for this simulation, and the mesh used is M3.
Everything else remains the same, except for the input to the EQWM, which is the average
velocity at the point of exchange. The mean stream-wise velocity profiles and the mean
fluctuations predicted from both simulations are in very good agreement. It is interesting to note
that even with a model that works instantaneously, the mean fluctuations predictions could not
be improved. The algebraic model relies on the law of the wall, which is a mean velocity profile,
while the NEQWM-ML does not rely on any temporal averaging procedure. One reason for the

(a)

(b)

(c)

(d)

Notes: (a) z/B = 0.250; (b) z/B = 0.500; (c) z/B = 0.750; (d) z/B = 0.875, where B is the width
of the duct
Source: Figure by authors
Figure 11. Comparison of the velocity profiles predicted by the wall models at x¼ 2.0, x¼ 4.0, x¼ 6.0,
x¼ 8.0, x¼ 10.0, x¼ 12.0, x¼ 14.0, x¼ 16.0, x¼ 17.0 and x¼ 18.0 on planes
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(a)

(b)

(c)

(d)

Notes: (a) z/B = 0.250; (b) z/B = 0.500; (c) z/B = 0.750; (d) z/B = 0.875, where B is the width
of the duct
Source: Figure by authors
Figure 12. Comparison of the stream-wise velocity fluctuations predicted by the wall models at x ¼
2.0, x¼ 4.0, x¼ 6.0, x¼ 8.0, x¼ 10.0, x¼ 12.0, x¼ 14.0, x¼ 16.0, x¼ 17.0 and x¼ 18.0 on planes

Table 2. Details of the meshes used for the simulation of the turbulent channel flow at Reτ ¼ 2005

Mesh size (Nx � Ny � Nz) Δxþ Δyþ Δzþ

M1 64� 64� 64 � 591 � 63 � 196
M2 128� 96� 96 � 295 � 42 � 131
M3 256� 128� 128 � 147 � 31 � 98

Note: Nx, Ny and Nz represent the number of elements in the stream-wise, wall-normal and span-wise
directions, respectively
Source: Table by authors
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inability to capture fluctuations is that the time steps and the grid size are still too large for the
simulation to correctly resolve the near-wall dynamics. Second, 10% of the BL always is above
the primary production peak and, too often, the secondary production peak. The figures also
show the comparison of the performance of NEQWM-ML with that of EQWM-ML. The
results show that the NEQWM-ML can perform as an equilibrium wall model when subjected
to equilibrium flow conditions, and its performance is unaltered even though it is partially
trained with non-equilibrium data.

3.2.3 Turbulent channel flow (Reτ ¼ 4200). The size of this channel is maintained as in
the previous case. Three uniform meshes are used to test for convergence. Details of the
meshes are given in Table 3. Δyþ is maintained constant for all three meshes, and refinements
are made in the x and z directions. Periodic boundary conditions are applied in the stream-
wise and span-wise directions, and a no-penetration condition is imposed on the walls. Like
in the previous case, the flow is driven by a streamwise constant pressure gradient. Vreman
(Vreman, 2004) SGS model is used to close the turbulence. Once the statistically stationary
regime is reached, statistics are collected to study the performance of the model.

Figure 15 shows the mean stream-wise velocity profiles in wall units predicted by
NEQWM-ML for the three meshes M1, M2 and M3 compared to DNS (Lozano-Durán and
Jiménez, 2014). Velocity profiles tend to approach DNS values as the mesh density increases.
As in the previous example, the error in the wall shear stress computed by NEQWM-ML is
less than 0.5%. Furthermore, the performance of NEQWM-ML is compared with that of
EQWM and EQWM-ML in Figure 16, showing that all models provide similar results and
are in good agreement with the DNS reference data.

3.2.4 Wall-mounted hump. In this section, the performance of the NEQWM-ML in the
simulation of the flow over a wall-mounted hump is studied. This flow involves turbulent to
laminar transition, separation, reattachment and recovery of the BL, which are hallmarks of
many industrial flows, and it is therefore considered a benchmark for testing turbulence

Source: Figure by authors
Figure 13. Mean stream-wise velocity profiles in wall units predicted by the NEQWM-ML forM1, M2
and M3 compare with DNS (Hoyas and Jiménez, 2008) for channel flow at Reτ ¼ 2005. The blue
vertical dotted line indicates the location of data exchange
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models. The geometry of the hump is defined following the guidelines of the NASA
CFDVAL2004 workshop (Rumsey et al., 2006). The results of the numerical simulation are
compared with the experimental data of Naughton et al. (2006). The NEQWM-ML
performance is also compared with that of EQWM-ML.

Table 3. Details of the channel mesh Reτ � 4200. Δxþ; Δyþ and Δzþ are refinements in wall units in
the streamwise, wall-normal and spanwise directions, respectively

Mesh No. of elements Δxþ Δyþ Δzþ

M1 � 2:1 million � 615 � 65 � 205
M2 � 9:4 million � 309 � 44 � 137
M3 � 33:5 million � 154 � 33 � 103

Source: Table by authors

(a) (b)

(c) (d)

Notes: (a) y+ vs U, shows the mean stream-wise velocity and; (b) y+ vs u+rms; (c) y+ vs v+rms;
(d) y+ vs w+rms, show the mean fluctuations
Source: Figure by authors
Figure 14. Comparison of the performance of the NEQWM-MLwith that of the EQWMand EQWM-ML
for channel flow atReτ ¼ 2005
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The computational domain for this case is 4:64c; 0:909c, and 0:3c in the stream-wise,
normal and span-wise directions, respectively, where c is the chord length of the hump. The
span-wise length is determined so that it does not restrict any turbulent structures in the span-
wise direction. To ensure this, the span-wise two-point correlations (R) of the velocity
components over a period of 32 time units in the vicinity of the separation bubble were
calculated for the fine mesh (mesh details explained below). R is computed as:

R dzð Þ ¼ < ϕ zð Þϕ zþ dzð Þ >
< ϕ2 zð Þ > (10)

where ϕ ¼ u′; v′;w′, respectively, for stream-wise, wall-normal and span-wise velocity
fluctuations. < � > denotes the mean. The results are shown in Figure 17. It can be seen that
the span-wise length is sufficient to contain the large eddies in the vicinity of the bubble. The
inlet and outlet planes of the domain are at x=c ¼ �2:14 and x=c ¼ 2:5, respectively, so
the leading edge of the hump can be placed at x/c ¼ 0. Because end plates were used in the
experiment, to account for the effects of these, the top wall of the domain has a contour from
x=c ¼ �0:5 to x=c ¼ 1:5, as shown in Figure 18.

Three different grids are used for simulations. The coarse mesh (G1) has approximately
3.1 million linear elements, with 742� 70� 60 elements in the stream-wise, normal and
span-wise directions, respectively. The fine mesh (G2) has approximately eight million linear
elements with 900� 110� 80 elements. G2 is generated by refining the tangential directions
and reducing the mesh growth rate in the normal direction from 1.06 to 1.03. The third grid
G3 is only used to ensure grid convergence. The mesh is obtained by refining G2 in the
stream-wise direction. G3 has approximately 15 million linear elements with a refinement of
1654� 110� 80 in the stream-wise, wall-normal and span-wise directions, respectively.

More details are shown in Figure 20 where the grid spacing in wall units between
x=c ¼ �0:5;x=c ¼ 2:0 for all the meshes are depicted. The Reynolds number of the flow

Source: Figure by authors
Figure 15. Mean stream-wise velocity profiles in wall units predicted by the NEQWM-ML forM1, M2
andM3 compare with DNS (Lozano-Durán and Jiménez, 2014) for channel flow at Reτ ¼ 4200
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based on the length of the hump chord, c, and the free stream velocity, U∞, at the inlet is
Rec ¼ 936,000. Periodic boundary conditions are imposed in the span-wise direction. A slip
boundary condition is applied at the top boundary of the domain, and at the bottom wall
where the wall stress is predicted, a no-penetration condition is imposed. For turbulence
closure, Vreman (2004) SGS model is used. Synthetic turbulence as inflow data is generated
based on the technique described in Kempf et al. (2005). Due to missing experimental data at
the inflow plane, the missing Reynolds stresses are specified to match those used by
Park (2015) (left panels of Figure 19). The evolution of realistic turbulence is ensured before
the flow reaches the hump by comparing the mean velocity and Reynolds stresses of the
present simulation with that of Avdis et al. (2009) at a downstream location (x=c ¼ �0:81),
shown in the right panels of Figure 19 for G2. After achieving a statistically stationary state,
statistics are collected and results are averaged over a period of 20 flow-through times.
Subsequently, spatial averaging is also done.

The average values of the coefficients of skin friction (Cf) and pressure (Cp) on the hump for
the G1 and G2meshes are shown in Figure 22. The coefficients for both simulations are close to

(a) (b)

(c) (d)

Notes: (a) y+ vs U+; (b) y+ vs u+rms; (c) y+ vs v+rms; (d) y+ vs w+rms. a shows the mean stream-wise
velocity and b, c, d show the mean fluctuations
Source: Figure by authors
Figure 16. Comparison of the performance of the NEQWM-ML with that of the EQWM and EQWM-
ML for channel flow at Reτ ¼ 4200
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Figure 17. Span-wise auto-correlations (R) of the velocity components in the vicinity of the separation
bubble. Ruu, Rvv and Rww are, respectively, the auto-correlations of the stream-wise, wall-normal and
span-wise fluctuations of velocity

Figure 18. Computational mesh around the hump
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each other, except in the recirculation region. Both simulations do not capture the primary
suction peak before the recirculation bubble and the secondary suction peak within the bubble,
although the quality of Cp improves slightly with mesh refinement. In addition to that, no
noticeable improvements can be observed in the figures. However, a significant improvement is
observed in the estimation of the bubble length (see Table 4). The percentage error in the
position of the reattachment compared to the experimental values is reduced from 4.5% to
0.9%, upon refining the mesh. To check for convergence, the results from the simulation run on
G3 is compared with G2 and G1. The results are also shown in Figure 22. Observing the plot of
Cf, it can be seen that there is no improvement in the Cf or Cp profiles after refinement.
Therefore, for further analysis, the results of the simulation performed onG2 are considered.

Subsequently, the performance of NEQWM-ML is compared to that of the EQWM. The skin
friction and pressure coefficients computed from the simulations performed on the G2mesh using

Note:  Blue lines: u′u′, orange lines: v′v′, green lines: w′w′, yellow line: u′v′, circles: experiment 
(Naughton et al., 2006), squares: WMLES (Avdis et al., 2009)
Source: Figure by authors
Figure 19. Mean stream-wise velocity and Reynolds stresses at the inflow (x=c ¼ �2:14) and at a
downstream location (x=c ¼ �0:81) for G2
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the two different models are compared in Figure 24(a) and 24(b). There is no difference in the
prediction ofCp. However, the differences in the prediction ofCf are noteworthy, especially in the
region of relaminarization (Figure 21 shows the location of the relaminarization on the hump).
Figure 23 shows the Cf profile, which also includes the relaminarization parameter, K (Bourassa
and Thomas, 2009; Uzun andMalik, 2017). It describes the condition that influences the return of
the turbulent regime to the laminar regime. It is computed as:

K ¼ � 1
2

1
Rec

1
1� Cp


 �3
2 ∂Cp

∂s�
(11)

(a) (b)

(c)

Notes: (a) Δx+, (b) Δy+, and (c) Δz+ between x/c = −0.5 and x/c = 2.0
Source: Figure by authors

Figure 20. Grid spacing in wall units for G1, G2 and G3
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Figure 21. Flow over the hump

(a)

Notes: (a) Skin friction coefficient; (b) pressure coefficient
Source: Figure by authors

(b)

Figure 22. Skin friction and pressure coefficients for G1, G2 and G3 predicted by the NEQWM-ML
compared with experimental results
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where s� ¼ s=c, and s is the distance from the solid wall. The threshold value of K above
which the relaminarization occurs is around 3� 10�6, indicated as the green horizontal line in
the figure. This region is well captured byNEQWM-ML as shown in the inset of Figure 24(a).
None of the previous RANS models or WMs has been able to capture this phenomenon
because of their inherent inability to capture relaminarization. This is attributed to the ability

Figure 23. Skin friction coefficient for the G2 mesh predicted by the NEQWM-ML shown along with
the relaminarization parameterK

Table 4. Details of the recirculation bubble for NEQWM-ML and EQWM on G1

Case Mesh x=cjsep x=cjreatt Bubble length errorjxreatt
Experiment (Naughton et al., 2006) – �0:665 �1:1 �0:435 –
EQWM G1 0.67 1.05 0.38 4.5%
NEQWM-ML G1 0.68 1.05 0.37 4.5%
EQWM G2 0.68 1.09 0.41 0.9%
NEQWM-ML G2 0.68 1.09 0.41 0.9%

Notes: x=cjsep is the location of separation, and x=cjreatt is the location of reattachment. errorjxreatt is the
percentage error in the reattachment location.
Source: Table by authors

International
Journal of
Numerical

Methods for Heat
& Fluid Flow

3193



of the model to learn from the data it is trained on. Figure 26 shows the region within the
diffuser where the relaminarization occurs. The inset shows one of the regions from
the diffuser from where the data is sampled, which is also in a state of relaminarization. This
state is estimated by computing the ratio of turbulent production to dissipation. When this ratio
is less than 1, it can be considered as the onset of laminarization according to Narasimha and
Sreenivasan (Narasimha and Sreenivasan, 1979). In addition to predicting relaminarization, the
performance in recirculation is improved compared to EQWM, although not as much as
expected. Data sampled for model training also have information on recirculation (Miró et al.,
2023). The recirculation in the hump is mainly driven by strong adverse pressure gradients,
while in the diffuser, it is rather geometry-induced. Recovery of Cf is also under-predicted by
both models. This is possibly due to the inability of the simulation to reproduce the corner
vortices with a simple top-wall contour. These vortices are not present in the simulation with the
periodic boundary conditions. The absence of corner vortices also explains why there is no
improvement in bubble length (see Table 4). The WRLES study of the hump by Uzun and
Malik (Uzun and Malik, 2017) also confirms that the bubble length is sensitive to the details of
the top-wall contour. In addition, NEQWM-ML is also compared with EQWM-ML in
Figure 25. It can be observed that the improvement in the prediction of Cf by NEQWM-ML
compared to that of EQWM-ML is similar to what is observed in the case of EQWM. This
confirms that the addition of non-equilibrium data has remarkable effects. A comparison of the
average mean-stream velocity profiles and Reynolds stresses in the recirculation region,
predicted by the two models, is shown in Figure 27. The inability to predict suction peaks has
affected the longitudinal curvature of the velocity profiles and the behavior of the stress profiles
within the recirculation bubble for both models. The momentum recovery predicted by
NEQWM-ML is in agreement with the predictions of EQWM. NEQWM-ML also agrees with
EQWM in the prediction of Reynolds stresses inside the recirculation bubble.

3.2.5 Juncture flow. The juncture flow configuration based on the experiments conducted by
Lee et al. (2018) in the NASA Langley 14� 22ft. subsonic wind tunnel is investigated next. These

Figure 24. Skin friction and pressure coefficient using NEQWM-ML and EQWM compared with
experimental results
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Figure 25. Skin friction using NEQWM-ML and EQWM-ML compared with experimental results

Figure 26. Location inside the diffuser where the relaminarization takes place (gradients of blue)
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experiments provide information to validate turbulence models for separated corner flows.
Experimentswere carried out in a full-spanwing-body configuration at an angle of attack of 5

�
with a

focus on the upper junction. The flow separation is observed near the junction of the trailing edge.
The experimental setup is shown in Figure 28. The wingspan of the model is nominally 3,397.2mm,
the fuselage length is 4,839.2mm and the crank chord (chord length in the Yehudi break) is c ¼
557.1mm. An 87million-element mesh is used to simulate this flow. The mesh is adapted according
to the BL thickness estimation method proposed by Griffin et al. (2021). The estimated thickness of
the BL is shown in Figure 29. The generated mesh follows industrial standards and the reader is
referred to Iyer and Malik (2020) for meshes of similar dimensions of the juncture flow case. The

Notes: x/c = {0.65, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}. The profiles are respectively shifted by Δ = 1.5, 
Δ = 0.15, Δ = 0.075 and Δ = 0.075 units
Source: Figure by authors

Figure 27. Mean stream-wise velocity and Reynolds stress at stream-wise positions
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angle of attack considered for this simulation is 5°. The Reynolds number based on the crank chord is
2.4 million. The turbulence closure used is Vreman. A spherical domain of diameter 5� 104 is used
to solve the case. As an inflow boundary condition, a bulk velocity is imposed on the upstream half of
the spherical domain, and on the downstream half, a null traction is applied as an outflow condition.
Themodel was tripped on the upper and lower surfaces of both wings, as well as close to the front of
the fuselage during the experiment. Preliminary numerical calculations indicated that tripping was
also required to initiate the change from laminar to turbulent air above the wings, and hence, the
surfacemeshwasmodified accordingly.

Results from three different zones are chosen for comparison of the NEQWM-ML’s
performance. Zones A, F and L are shown in Figure 30. Zone A is a location of equilibrium
flow, Zone F is a location of corner flow and Zone L is a location of recirculation. First, the
performance of NEQWM-ML is compared with that of EQWM. The results of the simulation
are shown in Figure 31 by comparing velocity profiles at different locations. In the region of
equilibrium, the performance of both models is similar, although the EQWM gives a lesser
error. At the corner, NEQWM-ML yields more accurate profiles as a result of learning corner
flows physics from the diffuser data. However, in the recirculation region, the NEQWM-ML
has problems predicting the velocity profile correctly. On the other hand, the EQWM

Figure 28. Juncture flow experimental setup in the wind tunnel

Figure 29. The estimated BL thickness over the aircraft
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performs far better than the NEQWM-ML. To better understand this, the same simulation is
run with the EQWM-ML. The results of this simulation are shown in Figure 32. The EQWM-
ML performs as well as the EQWM at equilibrium zone A. In the corner, the EQWM-ML
performs better than the EQWM, but not as well as the NEQWM-ML. At the recirculation
region, both ML-based models perform almost equivalently. This implies that the NEQWM-
ML has failed to learn the recirculation from the non-equilibrium data. Similar to
the observations derived from the hump case, the performance of the NEQWM-ML at the
recirculation region is not as good as expected. A possible reason is the mismatch of the
recirculation type between the learned data and the physics of the current case. On the other
hand, the great agreement of the EQWM is probably coincidental.

4. Conclusion
One of NASA’s 2030 Grand Challenges is to numerically analyze the performance of a
powered aircraft configuration across the entire flight envelope through high-fidelity models.
The computational resources needed for LES are still beyond current capabilities, soWMLES
is the best alternative. In this study, a data-driven wall-modeling methodology is proposed.

(a)

Notes: The black lines are from the experimental results. Blue lines are predicted by NEQWM-
ML, and red lines by EQWM
Source: Figure by authors

(b) (c)

Figure 31. Mean velocity profiles at locations (a) x¼ 1,168.4 mm and z ¼ – 30 mm (Zone A), (b) x¼
2,822.6 mm and y¼ 237.1 mm (Zone F) and (c) x¼ 2,922.6 mm and y¼ 237.1 mm (Zone L)

Figure 30. Zones A, F and L on the test model
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The ML system used to build the model is based on GBRTs. The model is trained using high-
fidelity data from the Stanford double diffuser DNS and the LES of a channel at Reτ ¼ 950.
After carefully adjusting the hyperparameters and balancing the train data, a model is
obtained. The model is first tested a priori on unseen data. After that, the model is tested a
posteriori on the Stanford double diffuser. A notable improvement was observed in the
prediction of the velocity profiles when NEQWM-ML is used. Then the model is tested on
two channel cases at Reτ ¼ 2005 and Reτ ¼ 4200, respectively, to prove the model’s ability
to switch between equilibrium and non-equilibrium conditions. The model performs similarly
to an algebraic wall shear stress model when tested on channel flow, demonstrating that the
non-equilibrium predictor of the domain does not interfere with the equilibrium part. The
percentage errors in the mean wall shear stress is less than 0.5% for both Reτ ¼ 2005 and
Reτ ¼ 4200 channel flows. Finally, the model is tested on a wall-mounted hump and the
juncture flow. For the wall-mounted hump, the model performs better than the algebraic wall
shear stress model and produces noteworthy performance in relaminarization region. The
performance of NEQWM-ML at adverse pressure-induced recirculations is slightly better
than the other two models. The percentage error in Cf is less than 21.5% for NEQWM-ML,
while it is 25.4% and 27.7% for EQWM and EQWM-ML, respectively. For the juncture flow,
while the model performs adequately at the corners, its accuracy at the recirculation region is
mediocre, showing the limitations of the model and, therefore, potential aspects to improve.

The improved performance of the model in the relaminarization regions is highly unlikely
to be captured by traditional wall models. The model has learned the turbulent-to-laminar
transition phenomenon from the data it is supplied with. It shows that, given different sets of
non-equilibrium data and trained appropriately, the model can be used in all types of non-
equilibrium flows. Future work in this direction will focus on training the model with varied
sets of balanced non-equilibrium data.
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