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Abstract

Motivation: Many tumors show deficiencies in DNA damage repair. These deficiencies can play a role in
the disease, but also expose vulnerabilities with therapeutic potential. Targeted treatments exploit specific
repair deficiencies, for instance based on synthetic lethality. To decide which patients could benefit from
such therapies requires the ability to determine the repair deficiency status of a tumor. It has been
suggested that mutational signatures could be better predictors of DNA repair deficiency than loss of
function in select genes. However, current models for prediction of repair deficiency rely on mutational
signatures extracted using unsupervised learning techniques. As a result, the signatures are not optimized
to discriminate between repair deficiency status or pathway. We argue that the supervised learning of
mutational signatures guided by repair deficiency status could enable the identification of signatures that
are predictive of repair deficiency, and capture underlying mechanisms of DNA repair.
Results: We propose S-NMF, a supervised non-negative matrix factorization method, which jointly
optimizes two objectives: (1) learning of signatures shared across tumor samples using NMF, and (2)
learning of signatures predictive of repair deficiency using logistic regression. We apply S-NMF to mutation
profiles of human induced pluripotent cell lines carrying knockouts of genes involved in three DNA repair
pathways: homologous recombination, base excision repair, and mismatch repair. We show that S-NMF
achieves high prediction accuracy (0.971) and learns signatures that better distinguish the repair deficiency
of a sample. Signatures extracted by S-NMF are similar to cancer-related signatures associated with
the same repair deficiency. Additionally, S-NMF can capture signatures of deficiencies affecting distinct
subpathways within a main repair pathway (e.g. OGG1 and UNG mechanisms in base excision repair).
Contact: a.c.h.goossens@student.tudelft.nl

1 Introduction
DNA damage can be caused by a variety of endogenous (e.g. DNA
replication errors) and exogenous (e.g. environmental toxins or radiation)
factors. These factors cause specific types of DNA damage such as base
mismatches, single- and double-stranded breaks, or intra and interstrand
crosslinks. There are multiple DNA repair pathways that recognize and
repair specific types of DNA damage. For example, double-stranded
breaks, base mismatches and single stranded breaks are respectively
repaired by homologous recombination (HR), mismatch repair (MMR),
and base excision repair (BER) (1; 2) (Fig. 1). However, repair mechanisms
are not error free: they make mistakes which leave mutations in the DNA.

The accumulation of mutations can lead to genome instability, one
of the enabling hallmarks of cancer(3). Mutations are also responsible
for deficiencies in DNA repair mechanisms frequently occurring in tumor
cells. For example, in breast cancer 1-5% of the tumors are attributed
to inherited mutations in the BRCA1 or BRCA2 gene (BRCA1/2) (4; 5).
The BRCA1/2 genes are essential for repair of double-strand breaks
(DSBs) mediated by homologous recombination (HR) (6). In tumors with
an inherited BRCA1/2 mutation, the second BRCA1/2 allele is usually
inactivated during tumorigenesis leading to HR repair deficiency (7; 8).

The relation between specific cancers and DNA repair deficiencies
provides an opportunity for targeted treatment, for instance by exploiting
known synthetic lethalities. Two genes are synthetically lethal when the
inactivation of both simultaneously results in cell death, while inactivation
of only one of the genes does not affect the viability of the cell (9). This
means that, for example, patients with BRCA1/2 deficient breast cancer
can be treated with PARP1 inhibitors, which cause more DSBs in the DNA
(10). The accumulation of DSBs in the DNA results in an increased demand
for proficient HR repair (11), which is absent in BRCA1/2 deficient tumor
cells. This accumulation of unrepaired DNA damage (12) is lethal, making
PARP inhibitors an effective treatment for HR deficient tumors (13).

To apply targeted treatment interfering with repair pathway deficiency,
it is necessary to identify whether the deficiency is present in the tumor. One
of the ways this is done is by detecting mutation leading to loss of function
in genes known as essential for the specific repair mechanism. However,
this approach has limited sensitivity since not all genes involved in each
repair pathway are known, and genes can be inactivated by mechanisms
that are more difficult to identify, such as epigenetic modifications (14). To
circumvent these limitations, methods have been developed that predict a
repair deficiency based on the specific pattern of mutations it leaves on the
genome of the tumor cells (15; 16). These patterns, also termed mutational
signatures, are indicative of the different DNA damage and repair processes
taking place during tumorigenesis.

© The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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Fig. 1: Schematic overview of DNA damage and DNA repair pathways (deficiency). A variety of factors can cause specific types of DNA damage. In
healthy cells DNA damage is recognized and repaired by specific repair pathways. This processes leave a mutational pattern in the genome specific to
the type of DNA damage and repair pathway that have occurred. When a repair pathway is deficient, there is a elevated accumulation of mutations which
could potentially result in genomic instability.

Mutational signature decomposition. Methods to identify mutational
signatures and estimate their contributions (or exposures) to genome
mutation profiles can be categorized into de novo and refitting approaches.
De novo methods identify both signatures and exposures. This is typically
done using non-negative matrix factorization, which decomposes an input
matrix of mutation profiles from multiple genomes into two matrices: one
with a set of mutational signatures, and the other with the exposures
of those signatures for each genome (17). Extensions and alternatives
include approaches that do bayesian inference of the number of mutational
signatures (18) or take into account mutational opportunities (19; 20).
Refitting methods estimate exposures of predefined signatures for new
genomes (21; 22; 23). Commonly used are the signatures identified from
cancer patient genomes from the ’Catalogue of Somatic Mutations in
Cancer’ (COSMIC)(24; 25). Several of the COSMIC signatures have been
linked to specific aetiologies, including DNA repair deficiencies.

Non-integrated learning of signatures and prediction of repair deficiency.
Recent methods have also been developed to predict HR or MMR pathway
deficiency based on signature exposures estimated for new samples based
on known COSMIC signatures (15; 16). These approaches estimate
exposures for signatures previously identified using de novo signature
decomposition methods (NMF), and then use supervised learning to build
a model to predict repair deficiency for each sample based on its exposures.

Even though the signatures used by non-integrated exposure-based
prediction models could be related to repair deficiency, they are not
optimized to discriminate repair deficient from proficient tumors (or
deficiency in different pathways). This is because current mutational
signature decomposition methods (NMF) are unsupervised, meaning that
they seek to best capture underlying mutation patterns without any prior
knowledge of the biological processes they may be associated with. A
supervised signature decomposition method would be able to exploit

prior knowledge about the genomes (e.g. repair pathway deficiency)
to potentially find more representative and discriminative signatures.
We therefore reason that supervised mutational signature decomposition
could identify mutational signatures that both (1) capture the underlying
mutational processes, and (2) are predictive of DNA repair deficiency.

Supervised NMF for integrated learning of signatures and prediction tasks.
Several supervised NMF methods have been proposed (26). The first
supervised NMF approaches implemented Fisher discriminant constraints
into NMF (Fisher NMF), which penalizes high scatter of samples within the
same classes and reward high scatter between different classes (27; 28; 29).
Other supervised NMF methods use the Frobenius loss (i.e. linear
regression) to classify based on exposure (30), with an extension to semi-
supervised NMF (31; 32). There are also supervised NMF approaches
termed task-driven dictionary learning, that use cross-entropy loss (i.e.
logistic regression) in combination with NMF applied to acoustic scene
classification (33; 34).

Finally, Lyu et al. proposed supervised negative binomial NMF
(SNBNMF) and applied it to learn mutational signatures predictive of
cancer subtype. In SNBNMF, NMF is integrated with a support vector
machine (SVM) (35). SNBNMF models mutation counts using a negative
binomial distribution. However, this might allow the model to learn to
classify samples based on mutation count instead of the actual mutation
patterns. We reason that normalized counts should be used instead. As a
result, SNBNMF is an unsuitable model for our problem, since normalized
counts do not follow the negative binomial distribution.

Here we propose Supervised Non-negative Matrix Factorization (S-
NMF), where we combine mutational signature decomposition using
NMF, and sample classification using multinomial logistic regression in
a single model. We do so by combining the reconstruction loss of NMF
with the categorical cross-entropy loss of a logistic regression, resulting in
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Fig. 2: Schematic overview of S-NMF. Integrating 1) Mutational signature decomposition, where the input mutational profiles are decomposed into
exposures and signatures. 2) Prediction of DNA repair pathway deficiency, where the exposure are input to a logistic regression to make predictions about
the repair pathway deficiency (labels, Y )

an integrated loss function. We derive the corresponding update formulas
to optimize the S-NMF model using gradient descent, and describe the
procedure to train and evaluate an S-NMF model. We further investigate the
effect of the hyperparameters on the S-NMF model, assess the effect of the
integration on the prediction performance and the signatures, and interpret
signatures obtained for prediction of DNA repair pathway deficiency.

2 Methods
Our aim is to learn a single model that is simultaneously able to (i)
identify mutational signatures and their corresponding contributions to
the mutational profile of a sample (also termed exposures), and (ii) make
a prediction about the repair pathway status of the sample using the
exposures to those signatures.

2.1 Learn mutational signatures of DNA repair deficiencies

To fulfill both goals, the model is learnt by jointly optimizing: the
decomposition of the mutational profiles into signature and exposure latent
spaces using non-negative matrix factorization, and the supervised learning
of a linear combination of the exposures for the prediction task using
multinomial logistic regression. We refer to this method as S-NMF, which
stands for supervised non-negative matrix factorization.

2.1.1 Definitions
We define the input matrix of mutational profiles X ∈ [0, 1]N×T , where
N is the number of input samples for which mutations have been profiled,
and T is the number of mutation types used as input features. Each entry
xn,t represents the relative frequency of mutation type t in the mutational
profile of sample n. Each mutational profile, corresponding to a row
of matrix X , is then a probability distribution over all mutation types:∑T

t=1 xn,t = 1, ∀n ∈ {1, ..., N}. Additionally, we also define a matrix
of corresponding DNA repair pathway deficiency statusY ∈ {0, 1}N×O ,

over the O different deficiencies or output classes that we would like the
model to predict. The nth row in Y represents the one-hot encoded repair
deficiency status of sample n, where

∑O
o=1 yn,o = 1, ∀n ∈ {1, ..., N}.

2.1.2 Problem formulation
Given a matrix of mutational profiles X , its respective matrix of DNA
repair pathway deficiency status Y , and a number of signatures K

(K ≤ min(T,N)), we aim to learn a model that simultaneously: (i)
estimates mutational profiles inX as linear combinations ofK underlying
mutational signatures (matrix S), with corresponding exposures (matrix
E), and (ii) finds a linear mapping between the exposures of each sample
mutational profile in E and the corresponding output class or DNA repair
pathway status in Y . Once the model is built, it can be used to estimate
exposures and make predictions about DNA repair deficiency status based
on the mutational profiles of previously unseen samples.

2.1.3 Supervised Non-negative Matrix Factorization (S-NMF)
Mutational signature decomposition. To identify mutational signatures,
matrix X is decomposed into two matrices, containing signatures and
exposures. The mutational signature matrix S ∈ [0, 1]K×T contains the
relative frequencies of each of the T mutation types for each of the K

estimated signatures or mutational patterns shared across samples.The
contribution of each signature to each sample is represented in the
exposure matrix E ∈ [0, 1]N×K . The mutational profiles in X can be
approximated by the matrix product between exposures and signatures.

X ≈ ES

We use non-negative matrix factorization (NMF) to find matrices S

and E (17; 36). Namely, we follow the multiplicative update algorithm to
optimize the Frobenius reconstruction error of the signature decomposition
(Lr , eq. 1), under the constraint that both matrices are non-negative.
Reconstruction loss (Frobenius reconstruction error):

Lr = ||X −ES||2F (1)
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Repair deficiency prediction model. To learn a model for prediction
of DNA repair deficiency status, we learn a linear mapping between
mutational signature exposures E and repair deficiency status (class label)
Y using multinomial logistic regression. This procedure estimates an
additional matrix of weights W ∈ RK×O , with entry wk,o denoting the
weight of a signature k with respect to the output class o in the prediction
model. The prediction model is learned by minimizing the categorical
cross-entropy loss (eq. 2), which quantifies the error between observed (y)
and predicted (ŷ) repair deficiency status for any given sample. To mitigate
overfitting to the training data, we include an L2 (ridge) regularization term
in the classification loss (eq. 2), where hyperparameter λL2 controls the
regularization strength.
Classification Loss (categorical cross-entropy loss (L2-regularized):

Lc = −
N∑

n=1

O∑
o=1

yn,o log(ŷn,o) + λL2

∑
w∈W

w2 (2)

Each predicted label ŷn,o (in matrix Ŷ ∈ [0, 1]N×O) is obtained by
taking the softmax of the product between the nth row of the exposure
matrix E and the oth column of the weight matrix W (eq. 3).

with ŷn,o = softmax(En,∗W ∗,o) =
eEn,∗W ∗,o∑O
o=1 e

En,∗W ∗,o
(3)

Symbol ∗ is a placeholder for all elements along a row or column of a
matrix. Note that usually multinomial logistic regression is trained with
fixed input data and only the weights are optimized. In contrast, S-NMF
also optimizes the exposures (i.e. what would normally be fixed input).

Integrated (total) loss. To integrate both objectives, S-NMF optimizes a
combined loss function (eq. 4), defined as the sum of the reconstruction
(eq. 1, Lr) and classification (eq. 2, Lc) losses. The hyperparameter λc

represents the integration strength between the two parts of the model.
The larger the value of λc, the more influence the prediction objective will
have on the exposures (and as a result on the signatures as well).Setting
λc = 0 results in non-integrated signature decomposition and prediction.
S-NMF loss function (minimized by S-NMF):

Ltot = Lr + λcLc (4)

Model optimization. To learn the S-NMF model, we minimize the total
loss Ltot by iteratively applying gradient descent on Ltot with respect to
S,E, and W using the updates in equations 5-7. Symbols η denote the
respective learning rates, and∇ the (partial-) derivatives of the total loss.
S-NMF update rules (for loss minimization by gradient descent):

S ← S − ηS · ∇SLtot (5)

E ← E − ηE · ∇ELtot (6)

W ←W − ηW · ∇WLtot (7)

Derivatives. The derivatives of the total lossLtot with respect toS,E and
W are given by equations 8-10 (full derivation in Appendix A.1). For S,
the derivative only has terms from the reconstruction loss, while for E the
derivative contains terms from both the reconstruction and cross-entropy
losses. For W , the derivative has one term from the cross-entropy loss.

∇SLtot = −2ETX + 2ETES (8)

∇ELtot = −2XST + 2ESST + λc(Ŷ − Y )W T (9)

∇WLtot = λc(E
T (Ŷ − Y ) + 2λL2W ) (10)

Learning rates. We use the same adaptive learning rates ηS and ηE for
optimization of S and E as in (17).

We do not want the integration strength (λc) to effect the optimization
of the regression weights W , to prevent having a derivative of zero when
setting λc = 0. Therefor, we divide our wanted constant learning rate µW

by λc. This cancels out the integration strength term (λc) in the derivative
∇WLtot (eq.10) and leads to a constant learning rate µW in the final
update formula.

ηS =
S

2ETES
(11)

ηE =
E

2ESST
(12)

ηW =
µW

λc
(13)

Multiplicative update formulas. The final multiplicative update formulas
are obtained by substituting the derivatives of the loss and the learning
rates in the gradient descent update formulas. The complete derivation
of the update formulas is included in Appendix A.1 (⊙ and division are
element-wise).

S ← S ⊙
ETX

ETES
(14)

E ← E ⊙
XST − λc

2
(Ŷ − Y )W T

ESST
(15)

W ←W − µW (ET (Ŷ − Y ) + 2λL2W ) (16)

2.1.4 Non-negativity constraint & stability
The S-NMF update formula for the exposure does not ensure non-
negativity as a result of the subtraction of the predicted labels by the
true labels (Ŷ − Y ). To ensure the non-negativity constraint, at each
exposure update new negative values are set to a very small value close
to zero (1 ∗ 10−25). This small value is used instead of exactly 0 to
prevent unstable solutions as result of getting a denominator equal to zero
in the signature update (eq. 14). As a result of ensuring non-negativity of
the exposures, the signatures are also ensured to be non-negative since
they are updated by a matrix multiplication of non-negative matrices.
However, the signatures are defined as a probability distribution over
the T mutation types, implicating that each signature should sum to one
(
∑T

t=1 Sk,t = 1,∀k ∈ K). To ensure this, after each update step the
signatures are normalized to sum to one.

2.2 Experimental Setup

We implement S-NMF as an extension of the SigProfiler framework
(17), which performs standard NMF along with convenient procedures to
determine an optimal number of signaturesK. The experimental procedure
for S-NMF, comprises a training step (Algorithm 1), and a testing step
(Algorithm 2). Input to the full experimental procedure are the mutational
profiles and labels of the training and test samples (X,Y,Xtest, Ytest),
as well as the 3 hyperparameters (K,λc, and λL2).

2.2.1 S-NMF training
The training procedure consists of two steps. First, the S-NMF model is
trained by iteratively updating S, E, and W according to equations 14-
16, resulting in a set of K signatures with corresponding exposures and
classification weights. To account for the random initialization of the E

and S matrices, the first step of the training procedure is repeated 10 times
(Algorithm 1, line 1-2). The 10 sets of K mutational signatures found
in the different runs are then clustered. The applied partition clustering
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approach (Algorithm 1, line 4) is a variation of K-means clustering, where
each cluster gets assigned exactly one signature from each of the 10 runs.
The the final set of signatures (Sfinal) is obtained by averaging the
signatures in each cluster (i.e. centroid of cluster). In the second step of
the training procedure, the final signatures Sfinal are then fixed and
fitted to obtain the corresponding exposure matrix E and final weight
matrix Wfinal (Algorithm 1, line 5). This is done using non-integrated
S-NMF (i.e. λc = 0), so that the exposures are not optimized with respect
to the classification loss. The final signatures Sfinal and classification
weights Wfinal are then stored and used in the testing step.

Algorithm 1: Training with S-NMF

Input : X,Y ,K, λc, and λL2

Output: Sfinal and Wfinal

1 for i = 1 to 10 do
2 Si, E,W ← S-NMF (X,Y ,K, λc, λL2)

3 end
4 Sfinal ← Partition-Clustering (S1, ...S10)

5 E,Wfinal ← S-NMF (X,Y, Sfinal, λL2, λc = 0)

2.2.2 S-NMF testing
The test procedure comprises two steps. Firstly, the final signatures
Sfinal are fitted to the unseen test samples Xtest using non-negative
least squares (NNLS) (37) to find the exposures for the test samplesEtest

(Algorithm 2, line 1). NNLS can be considered a special case of NMF,
where for each sample the activity (i.e. exposure) is found with respect
to a fixed dictionary (i.e. signatures), with the advantage that NNLS
is computationally more efficient than NMF. The exposures of the test
samples Etest, together with the classification weights Wfinal learned
in the train set, are then used to calculate the predicted probability of each
class for each of the test samples according to equation 3 (Algorithm 2, line
2). This results in Ŷ containing a probability distribution for each sample
over the possible repair pathway deficiencies (incl. control). The final
predicted labels are determined according to the pathway deficiency with
the highest probability

(
argmaxo∈{1,...,O} ŷn,o, ∀n ∈ {1, ..., N}

)
.

Algorithm 2: Testing with S-NMF

Input : Xtest,Ytest,Sfinal,Wfinal

Output: Ŷ
1 Etest ← NNLS (Xtest, Sfinal)

2 Ŷ ← Softmax (Wfinal, Etest)

2.3 Evaluation

We evaluate the performance of S-NMF using three metrics: prediction
accuracy on the test samples, stability of the signatures found over the 10
training runs, and reconstruction error on the test samples.

2.3.1 Accuracy of DNA repair deficiency prediction
We use accuracy measure classification performance, that is, how close the
S-NMF model is to predicting the true DNA repair pathway deficiencies.
The accuracy is the number of true positive and true negative test samples
(# Correct predictions) divided by the total number of test samples (Ntest)
(Accuracy = # Correct predictions

Ntest
).

2.3.2 Average stability of identified mutational signatures
Stability is used to evaluate the reproducibility of the signatures. The
stability is calculated using the clusters obtained via partition clustering
of the signatures found in the 10 training runs (S1, ...,S10). Specifically,
stability is defined as the average silhouette width of the K clusters of
signatures (Cluster1, ..., ClusterK ), obtained as described in section
2.2.1.

Stability =
1

K

K∑
k=1

Silhouette(Clusterk)

With each cluster (Clusterk) containing exactly 10 signatures, the
silhouette width of a cluster is defined as:

Silhouette(Clusterk) =
1

M

∑
i∈Clusterk

b(i)− a(i)

max(a(i), b(i))

Where a(i) is the intra-cluster distance and b(i) the mean nearest cluster-
distance (38). The silhouette width ranges between -1 and 1, with 1
indicating that the model is consistently finding the same signature in
each run, while a lower silhouette width (i.e stability) indicates a lower
reproducibility of the signature. The cosine similarity is used as distance
measure between mutational profiles/signatures. Given two mutational
profiles/signatures (A and B) the cosine similarity is d(A,B) =

cossim(A,B) = A·B
||A||||B|| . The cosine similarity is defined within the

range of -1 to 1, with 1 indicating two completely similar profiles.

2.3.3 Reconstruction error of profiles given exposures & signatures
The reconstruction error is used to evaluate how well the mutational profiles
of the test samples can be reconstructed from the exposures and (fixed)
signatures. The Frobenius norm is used to calculate the reconstruction
error, ||X − ES||2F . A low reconstruction error indicates an accurate
description of the original data by the reconstructed mutational profiles
X̂ = ES. The downside of the reconstruction error is that choosing a
larger number of signaturesK tends to lead to a lower reconstruction error,
as there are more latent dimensions (or degrees of freedom) to fit to the input
data. Therefore, we consider the reconstruction subordinate to the average
stability for measuring the performance of signature decomposition.

2.4 Benchmark models

We assess the integrated S-NMF model that jointly optimizes the
mutational profile decomposition and DNA repair prediction goals (S-
NMF with λc > 0) against two benchmark models: 1) direct logistic
regression model, learnt directly from the mutation profiles; and 2)
non-integrated exposure-based prediction (S-NMF with λc = 0).

Direct logistic regression: To evaluate prediction accuracy of our
integrated S-NMF (lambdac > 0), we compare it to a multinomial
logistic regression model learnt directly using the mutation profiles X

as input, with mutation types instead of signature exposures (used by S-
NMF) as input features. The direct logistic regression therefore learns a
coefficient matrix W ∈ RT×O , with entry wt,o denoting the weight
of a mutation type t with respect to the output class o. Like in S-NMF,
an (L2) regularization term was included to mitigate overfitting. This
hyperparameter was determined using cross-validation (Methods 2.6).

Non-integrated exposure-based prediction To evaluate the effect of
integrating the mutational signature decomposition and classification
objectives, we compare the integrated S-NMF (λc > 0) to a non-
integrated exposure-based prediction model learnt using S-NMF with
the integration strength set to zero (i.e. λc = 0). This approach is
equivalent to existing non-integrated approaches that first apply mutational
signature decomposition to learn signatures and exposures, and then learn
a classification model using the previously learnt exposures as features.
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2.5 Data and Preprocessing

To evaluate the S-NMF algorithm, we use data generated by Zou et
al.,(16), comprising mutation profiles for 42 human-induced pluripotent
stem cell (hiPSC) lines with individual (biallelic) knockouts across 42
different genes involved in 12 DNA repair pathways. Knockout of gene
ATP2B4, unrelated to DNA repair, was included as a control. Each sample
was labeled according to the main repair pathway associated with the
knocked out gene (or control). The knockouts (KOs) were induced using
CRISPR-Cas9. For each gene KO cell line, multiple replicates were
cultured (between 2 and 8), resulting in a total of 173 samples. Samples
were cultured for 15 days to let mutations accumulate, after which they
were processed and submitted for whole-genome sequencing (WGS).
Sequenced genomes were aligned to the human reference GRCh37/hg19,
and the CaVEMan algorithm [REF] was used to call somatic substitutions.

2.5.1 Mutation profile and mutation types
We focused on single base substitutions (SBS) as defined in (17). The SBS
mutation types only consider the pyrimidines as reference bases (cytosine
C or thymine T), since their complementary bases guanine G and adenine
A represent the same SBS on the opposing strand. This results in 6 distinct
SBSs (C>A, C>G, C>T, T>A, T>C, T>C), which are further specified
by taking into account the two neighboring 5’ and 3’ bases as additional
sequence context, resulting in 16 possible trinucleotide sequence contexts.
Taken together, a mutation profile is characterized by 96 SBS (i.e. T =

6 × 16) mutation types. To avoid that our model mainly exploits the
total mutation count to classify the samples, we normalize the mutational
profiles (i.e. divided the count of each mutation type by the total overall
mutation types). The resulting mutational profiles represent a probability
distribution over the 96 possible mutation types.

2.5.2 Selection of samples with distinctive mutation profiles
To allow for an informative evaluation of our model, we sought to select
gene KOs from Zou et al. (16) that accumulated a sufficient number of
mutations, and thus resulted in a reasonably distinctive mutational profile.
We considered two criteria: mutation count, and cosine similarity between
the mutation profile of the sample and the average mutational profile of the
control samples. Distinctive mutational profiles were identified by plotting
these two measures, and identified as those either having high mutation
count and/or low cosine similarity with the control samples. Finally, we
selected the gene KOs for which all replicates had a distinctive mutational
profile (in addition to the control samples).

2.5.3 Reference COSMIC signatures
As preliminary validation, signatures found by S-NMF were compared
to cancer-related signatures from the Catalogue of Somatic Mutations in
Cancer (COSMIC), which were previously extracted using SigProfiler (17)
from 2780 whole genomes by the Pan-Cancer Analysis of Whole Genome
(PCAWG) Consortium (25; 24). The COSMIC database (v3.2) contains
78 signatures, some of which with proposed aetiology.

2.6 Data Augmentation and Hyperparameter Optimization

For the evaluation of the model we divided the data into disjoint train
and test sets. The test set contained exactly one replicate of each gene
KO and 2 replicates of the control samples. The remaining samples in
the train set were then further divided into 3-folds for cross-validated
hyperparameter optimization (section 2.6.2). The replicates per gene KO
were evenly spread over the 3 folds (Supplementary fig. S2).

2.6.1 Data augmentation by bootstrapped oversampling
Since we only used the gene KOs that showed a distinctive mutation
profile, the final number of available samples was limited. Therefore, we

applied bootstrapped oversampling to generate additional artificial samples
to improve the robustness of model learning. Each artificial sample has a
high similarity to the gene KO of the original real sample but is slightly
different because of the random bootstrapping. Bootstrapping was done
per class (or repair deficiency) so that we could ensure a balanced dataset
with an equal number of samples per class.

Bootstrapping procedure We predefined the number of samples per fold
(N ) and we haveO classes. For each class we randomly drew (N

O
- number

of real samples for that class) samples from the real sample of that class
with replacement (i.e. oversampling). From the mutational profile of each
of these samples (i.e. probability distribution over mutation types), we
randomly drew the same number of mutations as the corresponding real
sample had (i.e. bootstrapping). The counts of these new bootstrapped
samples are then normalized so the mutational profiles sum up to 1. Finally,
the bootstrapped and real samples are combined making a total of N

samples with balanced class.

Choice of number of bootstrapped samples (train set) The downside of
using more (bootstrapped) samples is that it makes the training of the
S-NMF model slower. To balance this with the benefits of bootstrapped
oversampling we settled for a total of 400 samples (real + bootstrapped)
per fold. We applied the bootstrapping procedure to each of the 3 cross-
validation folds. So during the cross-validation, each model is trained
on two folds together having 800 samples and tested on the remaining
validation fold with 400 samples.

Choice of number of bootstrapped samples (test set) To make obtain an
informative and robust estimation of the prediction accuracy we also
bootstrapped the test set according to the same procedure. Since the
computational complexity of the test procedure is lower, the decrease in
speed by adding bootstrapped sample is less of a problem. Therefore we
decided to bootstrap up to 4000 samples for the test data. This will give
the accuracy measurement a higher resolution and consistency.

2.6.2 Hyperparameter optimization via 3-fold cross-validation
The S-NMF model has three hyperparameters that need to be determined,
namely the number of signatures K, integration strength λc, and L2-
regularization strength λL2. We performed 3-fold cross-validation on
the training data to find the optimal setting for these hyperparameters.
We first determined the number of signatures by selecting the value of
K that resulted in the highest prediction accuracy without a decrease in
average stability. This should result in the number of signatures that best
represent the patterns underlying the mutation profiles. Then, we selected
the integration and regularization strengths. These two hyperparameters
are dependent on each other, therefore the final values for both were chosen
simultaneously. Since this is a multi-objective optimization (aiming for
high accuracy and stability), it is not guaranteed to result in a single
optimal setting. We therefore looked at the set of pareto optimal settings ,
containing all hyperparameter settings for which there did not exist another
setting with both higher accuracy and higher stability. The optimal pareto
setting represents a trade-off between accuracy and stability, where the
best setting can be chosen based on giving priority to prediction accuracy
or stability of mutational signature decomposition. Using the optimal
hyperparameter settings from the cross-validation, we trained the final
integrated S-NMF model on the entire train set.

3 Results and Discussion
To evaluate the usefulness of the proposed S-NMF method, we focused
on three main aspects. First, we investigated the relationship between
mutation profiles and their assigned DNA repair deficiency labels
using exploratory data analysis. Second, we quantitatively assessed the
performance of S-NMF to both identify latent mutational signatures shared
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OGG1

UNG

PMS1

EXO1

RNF168

PMS2 / MLH1 / MSH2 / MSH6

Fig. 3: Distinctiveness of gene KO samples. For each sample (dot), the
plot shows the total mutation count (horizontal axis), and cosine similarity
with average profile of control samples (vertical axis). Samples are colored
according to repair pathway deficiency. The black dashed line indicates
the threshold on the distinctiveness of mutation profiles, only gene KOs
for which all samples were found to the right/below the dashed line were
selected.

across mutation profiles, and predict DNA repair deficiency status for
each mutation profile. Third, we analyzed the signatures of DNA repair
deficiency identified by S-NMF in more detail to provide further biological
interpretation and preliminary validation.

3.1 Mutation Profiles and DNA Repair Deficiencies

We identified which gene KOs in the data generated by Zou et al.(16) were
sufficiently distinctive to be used to train the S-NMF model. We analyzed
their mutational profiles and investigated how their associated DNA repair
deficiency labels relate to existing literature on the functional role of the
genes. In addition, we assessed the quality of the bootstrapped samples we
generated to augment the original dataset.

3.1.1 Nine gene knockouts showed distinctive mutation profiles
We analyzed the distinctiveness of the mutational profiles obtained for the
different samples of each gene KO (Section 2.5.2), to identify the KOs
that would be informative to train the S-NMF model. We found that 9
gene KOs were sufficiently distinguishable from the control samples. The
9 gene KOs were annotated with 4 different repair pathway deficiencies,
namely: mismatch repair (MMR) pathway (MSH6, MSH2, MLH1, PMS2
and PMS1), base excision repair (BER) pathway (UNG and OGG1),
homologous recombination (HR) repair pathway (EXO1), and double
strand break repair (DSB) pathway (RNF168).

3.1.2 Mutation profiles and labels of distinctive gene KO samples
For each selected gene KO, we averaged the mutational profiles overall
replicates and visualized the mutational profiles (Fig. 4). We analyzed
these mutational profiles, related the gene KOs to existing literature, and
decided on their final repair deficiency label.

HR deficiency: Two gene KOs, RNF168 and EXO1, had a very
similar mutational profile (cossim: 0.96), despite being labeled as different
subpathways. RNF168, encoding E3 ubiquitin-protein ligase, is related to
double-stranded break (DSB) repair. EXO1, encoding 5’ to 3’ exonuclease
1 protein, is related to multiple repair pathways, one of them being the
repair of DSB by homologous recombination (HR). Based on the highly
similar mutational profile, we assume RNF168 and EXO1 gene KOs are
affected by the same underlying mutational process. So since both genes

are related to the HR pathway, we combined RNF168 and EXO1 into a
single class labeled HR deficiency.

BER deficiency: We found two distinctive gene KOs in the BER
pathway, for OGG1 and UNG. However, OGG1 has a relatively high
average mutation count (617) but is still relatively similar to the control
mutational profile (avg. cossim: 0.92). Contrarily, UNG has a lower
average mutation count (289) but the mutational profile is less similar
to the control (avg. cossim: 0.80). Even though UNG and OGG1 relate to
2 different subpathways within BER, we still label both gene KO as BER
to evaluate if the models can capture sub pathways in a repair deficiency
since in other cases it might not be known that the gene KOs relate to two
different sub pathways.

MMR deficiency: We found 5 distinctive MMR deficient gene KOs
and which on average also had a very high total mutation count (1652).
This can be explained by the fact that the MMR pathway repairs base
mismatches commonly caused by DNA replication errors, one of the main
endogenous DNA damaging factors. The replication errors are recognized
by a MutS(α) or MutS(β) complex, respectively comprising MSH2/MSH6
and MSH2/MSH3 (39). Subsequently, MutS recruits the MutL complex,
of which there are three variants. The most prominent variant in human
cells is MutL(α), comprising MLH1 and PMS2 (40). In the other variants,
MutL(β) and MutL(γ), MLH1 forms a complex with PMS1 and MLH3
respectively. Especially the MLH1, MSH2, and MSH6 gene KOs had a very
high average mutation count (1886, 2237, 2317) (Supplementary Fig. S1a)
and similarity amongst each other (avg. cossim: 0.99). The less prominent
role of MutL(β) could explain the relatively low average total mutation
count of the PMS1 gene KO (283).

3.1.3 bootstrapped-oversampling generates artificial samples with
high similarity to corresponding real samples

Since the size of the small dataset limited the ability to train robust
models, we augmented it using bootstrapped oversampling (Section 2.6).
We performed principal component analysis (PCA) to visually represent
the relationship between real and bootstrapped training samples (Fig. 5,
with samples colored by DNA repair deficiency label, where bootstrapped
samples are lighter in color than real samples). Bootstrapped samples
clustered together with the gene KO they were sampled from, as expected.
We were also able to confirm that RNF168 and EXO1, which we previously
labeled as HR deficiency samples, indeed clustered together (Fig. 5, red).
On the other hand, OGG1 and UNG did not cluster together, forming two
subpathways within BER (see Fig. 5, orange). We also saw that PMS1
(Fig. 5, green cluster near control) was not as distinctive from the control
samples as the other MMR gene KOs. Additionally, PMS2 did not cluster
together with the other MMR gene KOs, yet it was distinctive from the
control samples (Fig. 5, most right green cluster).

3.2 S-NMF Reconstruction and Prediction Performance

To better characterize the behavior and capabilities of the S-NMF model,
we first analyzed the effect of the three hyperparameters (K,λc, and
λL2) on the performance of the model. Additionally, we compared the
performance of the final S-NMF trained using the best hyperparameters
against two benchmark models. Lastly, we investigated factors that could
be limiting the performance of S-NMF.

3.2.1 Optimal number of signatures guided by stability and accuracy
The number of signatures K had the largest effect on the performance
metrics: prediction accuracy, average stability, and reconstruction error
(Fig. 6, Supplementary Fig. S3). Therefore, we evaluated and selected the
number of signatures, based on which we then analyzed the effect of the
integration and regularization strengths. The search space for K was set
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Fig. 4: Average mutational profiles for the 9 distinctive gene KOs and control samples.
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Fig. 5: PCA plot of bootstrapped and real training samples. Samples
(dots) are projected according to the two main axes of variation,
represented by PC1 and PC2. The color indicates repair deficiency.
Darker dots represent the real samples, while lighter dots are bootstrapped
samples. The dot size depicts the total mutation count. RNF168 and EXO1
form the HR cluster. OGG1 (orange, left cluster) and UNG (orange, right
cluster) are two subpathways within the BER pathway. PMS1 (green,
border control cluster) is not as distinct as other MMR samples, and PMS2
(green, rightmost cluster) does not cluster together with other MMR gene
KOs.

from 3 to 7 signatures. The cross-validation results showed that increasing
K from 3 to 7 had a positive effect on the median prediction accuracy (0.78
vs 0.93), and on the median reconstruction error (5.74 vs 4.57). This was
expected since more signatures (i.e. latent dimensions) allow for more
degrees of freedom to fit the data. This effect became less pronounced
above 5 signatures. Additionally, the median average stability improved
when increasing K from 3 to 5 signatures (0.67 vs 0.99). However, using
more than 5 signatures decreased the average stability (median 0.70 for

K = 7). We therefore chose to use 5 signatures (K = 5), since this
resulted in the most stable and reproducible signatures.

3.2.2 Larger integration strength can improve prediction performance
After fixing the number of signatures to 5, we further analyzed the effect of
the integration and regularization strengths. These two hyperparameters
had a much smaller effect on the performance compared to the number
of signatures (Fig. 6). Nonetheless, increasing the integration strength
improved the prediction accuracy from median accuracy of 0.906 with
no integration (λc = 0.0) to 0.931 (λc = 0.5) (Fig. 6, second
column, first row). However, further increasing the integration strength
deteriorated the avg. stability of the signatures and reconstruction error.
This is in line with the expectations since a larger integration strength
shifts the importance from the signature decomposition more towards the
classification performance during the model optimization. Taken together,
there is an optimal integration strength between 0.1 to 0.5 where the
trade-off between prediction accuracy and avg. stability is balanced.

3.2.3 Large regularization strengths lead to S-NMF underfitting
Using a small regularization strength slightly increased the median
accuracy from 0.920 with no regularization to 0.938 with λL2 = 0.0001.
However, too strong regularization not only led to a decrease in median
accuracy (0.899 for λL2 = 0.01), it also worsened the stability and
reconstruction error. This indicated that even though only the classifier
weights are directly affected by the regularization strength, this effect
is propagated downstream to the mutational signature decomposition.
The intuition behind this is that a higher regularization strength makes
the model simpler, thus limiting the extent to which the model can be
optimized to accurately predict the training data. Since in S-NMF the
exposures are trainable, using a high regularization in S-NMF may result in
some exposures contributing very little to the model, where the remaining
exposures will be forcibly optimized to still try to make as accurate
predictions on the training data as possible. Changing the exposures
subsequently leads to changes in the signatures, as these are jointly
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Fig. 6: Boxplots summarizing hyperparameter optimization results of cross-validation. Each dot represents the average of the three folds for one
setting of hyperparameters. Rows show: (top row) prediction accuracy, (middle row) average stability of the signatures (over 10 training runs), (bottom
row) reconstruction error of the final mutational signature decomposition. Columns show: (left column) effect of number of signatures K on performance,
for all settings of integration and regularization strengths, (middle column) effect of integration strength on performances for all settings of regularization
strength (with number of signatures K = 5), and (right column) effect of L2 regularization strength (5 settings) on performances, for all settings of
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optimized by the matrix decomposition part of the S-NMF algorithm,
leading to worse reconstruction error and average stability (Fig. 6, right,
bottom two rows). This effect especially occurred in combination with a
high integration strength, which increases the influence of the classification
on the exposures even more. Consequently, we need to balance the
regularization strength in combination with the integration strength to
improve the prediction accuracy while avoiding a drop in stability.

3.2.4 Integration and regularization balance accuracy and stability
To select the final hyperparameters for integration λc and regularization
λL2 after fixing K = 5, we analyzed the tradeoff between prediction
accuracy and average stability. We looked at the pareto optimal solutions
per number of signatures K (Fig. 7). The optimal settings together form
a front per K, where the best performing setting is the closest to the
theoretically perfect model with both accuracy and average stability equal
to 1.0, Fig. 7 black ◦). We then chose the combination of hyperparameters
that achieved the highest average stability (1.0) and prediction accuracy
(0.942) during cross-validation for K = 5. Specifically, this was
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pareto settings). The lines connecting the settings for each number of
signatures then represent the pareto optimal front which visualized the
trade-off between accuracy and avg. stability. The black cross indicates the
setting of the final model. The Unfilled black dot indicates the theoretical
perfect setting.

integration strength λc = 0.1 and a regularization strength of λL2 =

0.0001 (Fig. 7, black×). Additionally, the pareto plot showed that setting
the number of signatures K to 5 resulted in the pareto front closest to
the theoretical optimum (Fig. 7, green), confirming that setting K = 5

resulted in the most stable signatures while still achieving a good accuracy.

3.2.5 Integrated S-NMF provides comparable prediction accuracy
Integrated S-NMF achieved high prediction accuracy (0.971), comparable
to that of both non-integrated S-NMF (0.966) and direct logistic
regression (0.968). This was accompanied by a decent mutational signature
decomposition performance not very far from non-integrated S-NMF
(average stability: 0.99 vs 1.0 and reconstruction error 4.57 vs 4.38)
(Table 1). Since direct logistic regression does not perform signature
decomposition, stability and reconstruction error could not be measured.
This underlines the main drawback of direct logistic regression, which is
not as easily relatable to the underlying biological processes as the S-NMF
model.

3.2.6 Integrated S-NMF is sensitive to local optimal solutions
We analyzed the training curves, or the development of the loss function
over the training epochs, for the 10 runs (Supplementary Fig. S4). The total
loss was further broken down into its reconstruction loss and cross-entropy
loss components. For the non-integrated S-NMF, all 10 runs converged to
the same minimum for both the reconstruction and classification losses.
However, the non-integrated S-NMF was only able to achieve a training
prediction accuracy of 0.96 on average, whereas the integrated S-NMF
immediately converged to a training accuracy of 1.0. Compared to the
non-integrated S-NMF, the integrated S-NMF (λc = 0.1) converged
to a solution with much lower cross-entropy loss, and slightly higher
reconstruction loss (Supplementary Fig. S4, Middle). Furthermore, for
the integrated S-NMF, not all runs converged to the same minimum. One

Model: Prediction
Accuracy

Avg.
Stability

Reconstruction
Error

Direct Logistic Regression 0.968 - -
Non-integrated S-NMF 0.966 1.0 4.38
Integrated S-NMF 0.971 0.99 4.57

Table 1. Performance comparison of final models.

run had both an increased reconstruction and cross-entropy loss. The
remaining nine runs converged to two different sub-optima. Some runs
resulted in a slightly lower reconstruction error with a slightly higher
cross-entropy loss compared to other runs. However, when combining
both losses, these nine runs showed a similar total loss. Similar effects
could be seen for other settings with high accuracy but decreased average
stability, for example when increasing the number of signatures. With
K = 7 and the same settings as for the integrated S-NMF (λc = 0.1

and λL2 = 0.0001), we saw that the losses of the runs converged to
multiple, but very similar, (sub-)optima (Supplementary Fig.S4, Right).
We hypothesize that these local optimal solutions for the different runs
relate to the decrease in average stability, since the final signatures are
averaged over the signatures from the 10 runs.

3.2.7 Decrease in stability could partially be attributed to clustering
of runs.

We further investigated the local optimal runs seen in the learning curves
(Section 3.2.6) and their relation to the drop in average stability by
analyzing the signatures from the different runs. To allow for visualization,
a PCA was performed on the signatures from the training runs and the final
signatures (i.e. centroids). The signatures were colored according to the
partition-clustering and annotated with the stability of the final signatures
and the related (sub-) pathway (Fig. 8). It must be noted that only the
first two principal components were visualized, which do not capture all
variance between the signatures that are defined in the T dimensional
’mutation type space’.

Non-integrated S-NMF resulted in 5 closely grouped clusters with the
average stability of 1.0 (Fig. 8a). The integrated S-NMF had one run with
slightly different signatures for MMR and the UNG subpathway, resulting
in average stability of 0.99 (Fig. 8b). This run corresponds to the run that
had a significantly higher reconstruction loss as well as cross-entropy loss
(Section 3.2.6, Supplementary fig. S4, middle column).

For the less stable setting of 7 signatures, the effect of integration
became more pronounced. The non-integrated S-NMF with K = 7

resulted in reasonable stable signatures with average stability of 0.95.
Five of the seven signatures were highly similar to the signatures
previously found with K = 5. Of the additional 2 signatures, one was
characterized by a G[C>A]A mutation and did not relate to any particular
gene KO (Supplementary fig. S5b). The second additional signature
captured the T>C mutations previously present in the MMR signatures.
Correspondingly, this signature was mainly exposed in the PMS2 gene KO
since these are characterized by the T>C mutations.

The integrated S-NMF with K = 7 resulted in a much stronger
decreased average stability (0.65) which was mainly caused by the control
and two additional signatures (Fig. 8d, orange, red, green). Yet, under
the influence of the classification component, integrated S-NMF found
an additional signature that was mainly exposed in PMS1 (Fig. 8d, red;
and Supplementary fig. S5a), which resulted in a slightly higher overall
accuracy (0.974) compared to the three previous settings with much better
average stability. However, each run found different (subsets of) signatures,
causing the decreased average stability. This mainly indicates that the
underlying mutational patterns captured by the unstable signatures are not
pronounced enough.



Integrated learning of mutational signatures and prediction of DNA repair pathway deficiencies 11

 1.0
(HR)

   0.98
(Control)

   1.0
(OGG1)

1.0
(UNG)

  1.0
(MMR)

(a) Non-integrated S-NMF (average stability = 1.0)

 1.0
(HR)

   1.0
(Control)

   1.0
(OGG1)

 0.97
(UNG)

 0.99
(MMR)

(b) integrated S-NMF (average stability = 0.99)

0.89

0.99

0.93

(c) Non-integrated S-NMF with K = 7 (average stability = 0.95)

0.99
(HR)

-0.38

1.0
(OGG1)

0.78
(PMS1)

0.96
(UNG)

0.31
(?)

0.87
(MMR)

(Control)

(d) integrated S-NMF with K = 7 (average stability = 0.65)

Fig. 8: PCA plot of signatures of the 10 training runs and the final signatures. Dots (•) represent the 10 training runs, crosses (×) the centroid of each
cluster (i.e. the final signatures). The color indicate the clusters found by partition-clustering (coloring correspond to exposure in Fig. 10). Each centroid
is annotated with the stability of the cluster and the repair pathway or gene KO in which the final signature had the highest exposure. Top row) K = 5.
Bottom row) K = 7. Left column) non-integrated S-NF. Right column) integrated S-NMF.

However, we believe that using a different clustering technique could
potentially mitigate the drop in average stability. The currently used
partition-clustering algorithm imposed the constraint that each cluster must
contain exactly one signature from each run. However, since not every
signature is consistently found in each run, some final signatures were
calculated over signatures that seemingly came from different clusters,
resulting in unstable and probably less meaningful signatures (Fig. 8d,
orange).

The challenge of dealing with less stable signatures could potentially
be mitigated to some extent by using a different clustering approach. This
challenge was already addressed in non-integrated mutational signature
decomposition (41). They showed that hierarchical clustering, partition-
clustering around medoids, or clustering with matching as an alternative to

the original partition-clustering was better able to recover signatures from
simulated mutational profiles. Additionally, they showed that filtering out
runs with a higher loss based on a relative tolerance (RTOL) with regard to
the run with the lowest loss, further improved the ability to recover more
mutational signatures with higher stability. These alternative approaches
might be particularly beneficial for S-NMF since integration seemed to
negatively impact the average stability.

3.3 Interpretation of S-NMF Repair Deficiency Signatures

In this section, we will further interpret the results generated with the final
S-NMF model, evaluate how it relates to existing literature. Additionally
we will compare the resulting exposure found by the final S-NMF to
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MMR

HR

BER

Control

Fig. 9: Confusion matrices with respect to pathway and gene KO. Labeled with the percentage of sample that is predicted to the concerned pathway
per true pathway/gene KO, the coloring is based on the same percentage. (In parentheses is the total number of sample with the concerned prediction)
Overall prediction accuracy for integrated S-NMF is 0.971, non-integrated S-NMF is 0.966, and direct logistic regression 0.968.

the non-integrated S-NMF benchmark model to analyze the effect of
integration on the mutational signature decomposition.

3.3.1 PMS1 gene KO is limiting classification performance
To evaluate the performance of the integrated S-NMF model on the
individual gene KOs, we looked at per pathway and per gene KO
confusion matrices of true vs. S-NMF predicted repair deficiencies (Fig.
9). Most incorrect predictions were made between the control and the
MMR pathway. The confusion matrix per gene KO shows that this

misclassification comes from the PMS1 gene KO samples, which are
mainly misclassified as control (prediction accuracy 0.739). This is in
line with what we saw in the PCA of all training samples, where PMS1
samples clustered close to the control samples, instead of the other MMR
deficient gene KOs (fig.5, green samples close to control). Aside from
PMS1, the other MMR and HR gene KO samples were predicted perfectly
(1.0). For the BER pathway, prediction accuracy was also very high
(0.99). Furthermore, all real samples were predicted correctly, meaning
that misclassifications were made only on the bootstrapped samples.
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(a) Exposure found by the integrated S-NMF (λc = 0.1).
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Fig. 10: Exposure of the signatures (K = 5) found by S-NMF. Left) integrated S-NMF. Right) non integrated S-NMF. Only the real samples are shown
to allow for practical visualization. Since we use normalized count as input data the sum of exposures sums to 1. Pink (SBS96A) relates to HR deficiency,
Orange (SBS96B)to the control samples, Purple (SBS96C) to MMR deficiency, Green (SBS96D) to the BER-UNG (sub)pathway deficiency, and Brown
(SBS96E) to the BER-OGG1 (sub)pathway deficiency.

We further compared the integrated S-NMF to the benchmark
models. The non-integrated S-NMF (accuracy 0.966) made similar
misclassifications between PMS1 and control samples with even lower
accuracy. Additionally, similar to the integrated S-NMF, all remaining
gene KOs were predicted with very high accuracy. This limited the extent
to which we could evaluate the effect of integration on the classification
performance. The direct logistic regression (accuracy 0.968) achieved
similar total accuracy to the non-integrated S-NMF. However, it mainly
misclassified control samples as BER deficient, while the PMS1 samples
were mostly predicted correctly (0.94).

3.3.2 S-NMF is able to identify DNA repair subpathways
We sought to interpret the signatures and exposures extracted by the
integrated S-NMF model, focusing first on the exposures per gene KO
(Fig. 10a). S-NMF was able to detect the two subpathways in BER we
previously identified in the exploratory data analysis section (3.1.2). Even
though OGG1 and UNG were both predicted to be BER deficient with
high accuracy, their largest exposures come from different signatures
(Fig. 10, brown for OGG1; green for UNG). The ability to recognize
these underlying subpathways is one of the main advantages of an NMF-
based approach over the direct logistic regression, or any other supervised
learning model that does not aim to represent the underlying patterns with
valuable biological interpretation.

Genes OGG1 and UNG both encode DNA glycosylase enzymes.
However, UNG recognizes and excises uracil (i.e. deaminated bases). If
UNG is deficient, unrepaired uracils lead to C>T mutations when the DNA
is replicated (16). Whereas OGG1 recognizes and removes 8-oxoG (i.e.
oxidized bases) (42). If OGG1 is deficient, unrepaired 8-oxoG results in
G>T mutation (i.e. C>A mutations in mutational profile) (16). So even
though they belong to the same family of enzymes and relate to the same
DNA repair deficiency in the BER pathway, the exact type of DNA damage
they recognize and repair is different.

For MMR deficiency, the PMS2 and especially the PMS1 gene KO
are not captured as well by the MMR-related signature (Fig. 10, Purple).
As a result, additional signatures are used to decompose their mutational
profile. A higher number of signatures (e.g. K = 7) would be able to
find PMS1 and PMS2 specific signatures. However, as the hyperparameter
optimization showed, this led to a marked decrease in the average stability
of the signatures.

3.3.3 S-NMF signatures are more representative of repair deficiency
To further analyze the effect of the integration in S-NMF, we compared
the exposures found by the optimal integrated and non-integrated S-NMF
(10b). Assuming that both models still capture similar underlying patterns,
we paired each signature found by the non-integrated S-NMF to the
integrated S-NMF signature with which it had the highest cosine similarity.
This way we can make a direct (qualitative) comparison between the
signatures and corresponding exposures. The main difference is that the
integrated S-NMF mainly uses one signature as a representation of each
sample, where on average the largest contribution signatures per sample
had an exposure of 0.80 (Fig. 10a). In contrast, for the non-integrated this
was 0.61, indicating a larger contribution of additional signatures to the
samples (Fig. 10b). In this context, we could interpret the contribution
of multiple signatures as an indication that the cells have multiple repair
deficiencies, while we know that they have only one. For example, the
exposure of the BER-UNG signature in MMR-deficient samples (Fig.
10b, green). The exposures of unrelated signatures are reduced in the
integrated S-NMF compared the non-integrated approach. This suggests
that the signatures learned by the integrated S-NMF better capture the
underlying repair deficiency.

Besides the exposures, we also compared the signatures found by
the integrated S-NMF (Fig. 11a) with the non-integrated S-NMF (Fig.
11b). The main difference is that in non-integrated S-NMF characteristic
mutation types (i.e. few specific mutation types with very high probability)
are more specific to a single signature. In contrast, in the integrated S-NMF,
multiple signatures contained the same characteristic mutations types. This
difference is especially clear in the characteristic C to A mutations. For
non-integrated S-NMF, the control signature (SBS96B) is characterized
by a T[C>A]T and the BER-OGG1 signature (SBS96C) by G[C>A]A.
Correspondingly, the HR- (SBS96A) and BER-UNG (SBS96D) signatures
have a low contribution of these two mutation types, since these mutations
are captured by the (small) exposure of the control- and BER-OGG1
signatures (Fig. 10b, orange and green). In contrast, the integrated S-
NMF decomposes each sample mainly into a single signature while the
exposures of the other signatures are limited, as we saw in the previous
section. Related to this, the signatures for HR and BER-UNG also need
to contain these characteristic mutation types found in the control and
BER-OGG1. This again could confirm that in the non-integrated S-NMF,
(characteristic) mutations are attributed (wrongly) to signatures from a
different repair deficiency because this slightly benefits the reconstruction
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(a) Signatures found by the integrated S-NMF.
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(b) Signatures found by the non-integrated S-NMF.

Fig. 11: Signatures of the signatures (K = 5) found by S-NMF. Left) integrated S-NMF. Right) non integrated S-NMF. The signatures of the non-
integrated S-NMF were match based on the highest cosine similarity to the integrated S-NMF signatures. SBS96A (HR) has a cosine similarity of 0.834;
SBS96B (Control) 0.893; SBS96C (MMR) 0.982; SBS96D (BER-UNG) 0.877; and SBS96E (BER-OGG1) 0.999.

error. In contrast, integrated S-NMF seems to prevent the exposure of
unrelated signatures by exploiting the information contained in the repair
deficiency labels.

3.3.4 S-NMF signatures akin to known cancer-related signatures
As preliminary validation, we investigated if the signatures identified by
S-NMF had any resemblance to known cancer-related signatures, some
of which have been previously associated with DNA repair deficiencies.
For this, we calculated the cosine similarity between the signatures
found by S-NMF and signatures from the COSMIC database (24) (Fig.
12). In this section, we compared the signatures found by S-NMF to
the COSMIC signatures with a related aetiology (i.e. related to the
same repair pathway deficiency) (Fig. 12, annotated with red square).
Additionally, we evaluated the differences between the integrated S-
NMF and the non-integrated S-NMF with regard to the similarities to
the COSMIC signatures. In general, the results for the integrated S-
NMF and non-integrated S-NMF are very similar. This shows that despite
the classification influencing the signature decomposition, the resulting
signatures still capture the same underlying mutational processes.

MMR deficiency. Seven COSMIC signatures have been suggested to relate
to MMR deficiency (43). Of these signatures, six were experimentally
validated using pms-2 and mlh-1 gene KOs in C.elegans (44). There is
some overlap between several of the MMR-related COSMIC signatures.
SBS6 and SBS15 are both characterized by C>T mutations. SBS14 is
characterized by C>A mutations with a downstream T (i.e. N[C>A]T) and
SBS20 by the more specific C[C>A]T mutation, with also an upstream
C of the substitution. Both SBS21 and SBS26 are characterized by T>C
mutations and have been more specifically related to the PMS2 gene KO.
(44). The last MMR-related COSMIC signature, SBS44, was identified
and experimentally validated in colorectal cancer organoids with a MLH1

gene KO (45). SBS44 seemingly comprises the characteristics of all
previously described MMR-related signatures. The mutational signatures
found by S-NMF to characterize MMR deficiency were most similar
to SBS44 (cossim: 0.92 (optimal), 0.93 (non-integrated)) of all MMR
COSMIC signatures. Combining our results with the findings of Drost
et al.(45), might suggest that SBS44 is a more overarching signature to
describe MMR deficiency.

HR deficiency. Of all COSMIC signatures, only SBS3 has been annotated
as related to HR deficiency. In addition, although SBS8 has no proposed
aetiology, Davies et al. suggest a relationship between SBS8 and HR
deficiency (BRCA1/BRCA2 deficient) (15). Subsequently, they use SBS8,
in addition to SBS3, as a predictor of HR deficiency in their method
HRDetect. For both integrated and non-integrated S-NMF the HR-related
signatures show high similarity to SBS3 (cossim: 0.78 and 0.70) and SBS8
(cossim: 0.65 and 0.51). In both cases, the integrated S-NMF increased
the similarity to the HR-related COSMIC signatures compared to the non-
integrated S-NMF. This might suggest that the signatures found by the
integrated S-NMF slightly better represent the underlying HR deficiency.

BER deficiency. As mentioned earlier, in both S-NMF models two
different signatures were found to describe subpathways in BER. The
signature related to OGG1 deficiency and repair of oxidized bases is
associated with two COSMIC signatures, SBS18 and SBS36. More
specifically, SBS18 is related to DNA damage by reactive oxygen, while
SBS36 is related to MUTYH deficiency. MUTYH, like OGG1, is a gene
encoding a glycosylase protein that is related to the repair of oxidized
bases. The BER-OGG1 signature found by the integrated S-NMF and
non-integrated S-NMF had a high similarity to SBS18 (cossim: 0.76 and
0.74), and to an lesser extent to SBS36 (cossim: 0.52 and 0.50).
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Fig. 12: Heatmap showing the cosine similarity between the signatures found by S-NMF and the COSMIC signatures. Top: integrated S-NMF.
Bottom: non-integrated S-NMF. COSMIC signatures with aetiology related to the respective DNA repair pathways are annotated with red squares.

With regard to the signature related to UNG deficiency and repair
of deaminated bases (uracil), we did not find a COSMIC signature with
similar aetiology. However, COSMIC signature SBS30 is related to BER,
specifically NTHL1 deficiency (46), and is highly similar to the BER-UNG
signatures found by S-NMF. Both UNG and NTHL1 are BER glycosylases,
however, NTHL1 recognizes oxidized pyrimidines (i.e. T or C) (46),
while UNG recognizes deaminated pyrimidines (U) (47). The BER-UNG
signature found by the integrated S-NMF had a lower similarity than the
signatures found by the non-integrated S-NMF (cossim: 0.70 and 0.89) .
To conclude, even though both UNG and NTHL1 are related to BER and
result in a similar mutational profile, it might be the case that it is caused
by a slightly different underlying mutational process.

4 Conclusion
We have implemented Supervised Non-negative Matrix Factorization
(S-NMF), a novel approach that integrates mutational signature
decomposition with a multinomial logistic regression classification. More
specifically, we focused on the prediction of repair pathway deficiencies.

Our first aim was to learn signatures predictive of repair deficiency. By
increasing the integration strength the importance of the cross-entropy
loss (i.e. classification) becomes larger relative to the reconstruction
loss (i.e. mutational signature decomposition). This trade-off was
confirmed during hyperparameter optimization, where larger integration
strength improved prediction accuracy at the cost of reconstruction error
and stability of the signatures. However, the final integrated S-NMF
model did improve prediction accuracy compared to benchmark models.
Additionally, increasing the number of signatures above the most stable
setting slightly improved the prediction accuracy but at the cost of a large
decrease in stability. Taken together, the extent to which the prediction
accuracy could be improved is limited by the decrease in the stability of
the signatures. This is mainly attributed to the fact that the underlying
mutational patterns that are being captured by (additional) signatures are
not pronounced enough. However, we showed that the drop in stability
could partially be accounted to the current partition-clustering approach
of the training runs. We suggest that a different clustering technique could
potentially mitigate the drop in stability, and as a consequence, allow for a
higher accuracy given a particular stability. Additionally, we suggest that
including a momentum term in the update formulas (e.g. Adam optimizer
algorithm) makes the optimization by gradient descent less prone to local
optima. Alternatively, methods could be explored to filter out sub-optimal
runs based on their higher reconstruction and/or cross-entropy loss. These
adjustments could mitigate the decrease in stability when increasing the

integration strength or number of signatures and potentially allow for an
improvement in prediction accuracy.

The second aim was to detect signatures that better represent the
underlying mutational processes by exploiting the labels of the training
samples. We showed that integrated S-NMF reduced the exposure
of unrelated signatures and learned signatures with a more complete
representation of the repair deficiencies. This effect is particularly strong if
a signature is defined by a few characteristic mutation types. Furthermore,
integrated S-NMF, like non-integrated S-NMF, captured signatures of
repair deficiencies affecting distinct subpathways within the main repair
pathway. Finally, the signatures found by S-NMF are similar to the cancer-
related (COSMIC) signatures. However, there is no ground truth of the
underlying mutational processes, which limits the assessment of the quality
of the signatures.

The used data limited the performance evaluation of S-NMF due
to three reasons. Firstly, the data from Zou et al. (16) had a limited
number of distinctive samples. Therefore we had to rely upon bootstrapped
oversampling to still perform a robust cross-validation and performance
evaluation. Secondly, the prediction accuracy of all models was very
high and the difference in accuracy was mainly attributed to samples
from a single gene KO (PMS1). Thirdly, the cell lines were not exposed
to any extrinsic DNA damage (e.g. using genotoxins), making intrinsic
factors (e.g. DNA replication errors) the dominant cause of DNA damage.
Together, this likely biased the mutational patterns of the repair deficiency
and limited the number of repair pathways necessary to repair the damage.
As a result, deficiencies in normally essential repair pathways probably
went unnoticed. A solution could be to expose the gene KOs to a variety
of DNA damaging factors that ideally mimic the in vivo DNA damage in
humans.

The most realistic and unbiased approach to analyze the interplay
between DNA damage and repair would be to use mutation data from
cancer tumors. For example, data generated by The Cancer Genome
Atlas (TCGA) or the International Cancer Genome Consortium (ICGC).
Using cancer tumor data will likely result in a clinically more relevant
model. However, cancer tumor data introduces two challenges. Firstly, the
mutational processes occurring in human tumor cells are more convoluted
which complicates the analysis of the effect of a repair pathway deficiency
compared to the cell lines with only a single gene KO. On the other hand,
tumor data might improve the evaluation of the integrated S-NMF since
the benefit from exploiting the information contained in the annotations
might be larger for the convoluted tumor mutation data.
The second challenge of tumor data is the limited sensitivity of current
approaches to identify repair pathway deficiencies. Therefore, the labels
used to train the S-NMF model will likely contain repair-deficient tumors
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which are labeled as repair proficient. A semi-supervised version of S-
NMF could be a potential solution. For example, by only considering
tumors whose repair status was determined with high certainty in the
categorical cross-entropy component of the loss function.

To conclude, we showed the potential benefit of integrating mutational
signature decomposition with classification of samples using S-NMF. We
expect this creates new opportunities for interpretable and in the long-term
clinically relevant repair pathway prediction models.
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Supplementary Material

A Extended Methods: derivation of the update rules and derivatives for the S-NMF optimization algorithm

A.1 Matrix definitions

XN,T : Input matrix of (normalized) frequencies of T mutation types for each of the N samples (mutational profiles)

Y N,O : Output class label matrix, with O class labels for each of the N samples (one-hot encoded DNA repair deficiencies)

SK,T : Mutational signature matrix, denoting the frequencies of T mutation types for each of the K signatures

EN,K : Exposure matrix, containing the contribution of each of the K signatures to each of the N samples

WK,O : Coefficients of the logistic regression, weighing the contribution of each of the K exposures to the decision boundary of each of the O classes

with:

N : number of samples (and mutational profiles)

T : number of mutation types

K : number of signatures

O : number of output classes, corresponding to DNA repair pathway deficiencies and control

A.2 Loss function and update rules for optimization by gradient descent
The loss function Ltot optimized by S-NMF combines a reconstruction loss Lr with a classification loss Lc weighed by a factor λc as follows.

Ltot = Lr + λcLc

The reconstruction loss Lr is defined as the Frobenius reconstruction error of the decomposition of matrix X into matrices E and S.

Lr = ||X −ES||2F

The classification loss Lc is the categorical cross-entropy loss:

Lc = −
N∑

n=1

O∑
o=1

yn,o log (ŷn,o) ,

where n and o are sample and output class indices, respectively, yn,o is the true class label (one-hot encoded), and ŷn,o is the predicted soft class label
calculated as follows.

ŷn,o = softmax (E∗,oWn,∗) =
eEn,∗W ∗,o∑O
o=1 e

En,∗W ∗,o

The loss function Ltot is optimized using gradient descent, following the iterative updates below.

S ← S − ηS · ∇SLtot
E ← E − ηE · ∇ELtot

W ←W − ηW · ∇WLtot

In the next sections, we work out the derivatives for the update rules with respect to the the reconstruction and the classification losses.
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A.3 Derivatives of the reconstruction loss:
Firstly, we calculate the derivative with respect to the reconstruction loss. This is identical to what existing methods that applied gradient descent to
optimize NMF (36). For completeness, we will show the calculation.

Firstly, the frobenius reconstruction loss can be rewritten into four trace terms.

||X −ES||2F = Tr((XT − STET )(X −ES))

= Tr(XTX)− Tr(XTES)− Tr(STETX) + Tr(STETES)

since,

||X||2F = Tr(XTX)

Tr(A+B) = Tr(A) + Tr(B)

We take the derivative of each of the four trace terms in the loss function. Shown are the derivatives with respect to the exposure matrix E, a similar
procedure is followed to obtain derivatives with respect to S (applied mathematical rules between parentheses):

∇STr(XTX) = 0 −

∇STr(XTES) = ETX (∇xTr(AX) = AT )

∇STr(ETSTX) = ETX (∇xTr(XTA) = A)

∇STr(STETES) = ((ETE) + (ETE)T )S = 2ETES (∇xTr(XTAX) = (A + AT )X)

The final derivatives∇ELr and∇SLr of the reconstruction loss Lr with respect to E and S are as follows.

∇SLr = −2ETX + 2ETES (1)

∇ELr = −2XST + 2ESST (2)
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A.4 Derivatives of the classification loss:
Next, we calculate the gradients of classification component of the total loss. The main difference with a regular logistic regression is that in our case
we not only apply gradient descent on the classification weights W but also the exposures E which could considered the input data in a regular logistic
regression.
Here we focus on the categorical cross-entropy term and in section A.5 the gradient of the L2-regularization term will be calculated.

Lc = −
N∑

n=1

O∑
o=1

yn,o log(ŷn,o) + λL2

∑
w∈W

w2 (3)

For a more convenient calculation of the derivatives, we define Z as the product of the exposures and weights (eq. 5). Z can then be used as input to the
softmax.

with, ŷn,o = softmax(zn,o) =
ezn,o∑O
o=1 e

zn,o
(4)

with, Z = EW (5)

Having defined Z, we can define the derivative of the cross-entropy loss dLc (eq. 6). Taking the derivative using matrices is more complex compared to
scalars since the order of of the matrices is relevant. Taking this into account, the following rule can be applied:

dLc =
∂Lc
∂Z

: dZ (6)

with, A : B = ⟨A,B⟩F

where : indicates the Frobenius inner product.
Next, both term in the derivative of the cross entropy loss dLc (eq. 6 need to be calculated.
Firstly, the partial derivative of the cross-entropy loss w.r.t. Z ( ∂Lc

∂Z
, eq. 7). This term is also derived for regular logistic regressions, therefore the partial

derivative is know:
∂Lc
∂Z

= (Ŷ − Y ) (7)

The second term in eq. 6, dZ, can be further defined in terms of the exposures and weights:

Z = EW (8)

dZ = dEW +EdW (9)

Taken together, ∂Lc
∂Z

(eq. 7) and dZ (eq. 9) can be substituted in the derivative of the cross entropy loss (eq. 6).

dLc =
∂Lc
∂Z

: dZ

= (Ŷ − Y ) : (dEW +EdW )

= (Ŷ − Y ) : dEW + (Ŷ − Y ) : EdW

= (Ŷ − Y )W T : dE +ET (Ŷ − Y ) : dW

Finally, for the gradient w.r.t E, W is constant (i.e. dW = 0) and for the w.r.t. W , E is constant (i.e. dE = 0). This result in the final derivatives
∇ELc and∇WLc of the cross-entropy loss w.r.t. E and W :

∇WLc =
∂Lc
∂W

= ET (Ŷ − Y ) (10)

∇ELc =
∂Lc
∂E

= (Ŷ − Y )W T (11)

A.5 Derivative of L2-regularization term
Finally, the derivative of the L2 regularization term w.r.t. W . Which is the same as standard derivations.

∂(λL2
∑

w∈W w2)

∂W
= 2λL2W (12)

A.6 Final gradients
To conclude we combine the partial derivatives of individual terms in the loss function. Firslty, the signatures the loss term of the reconstruction loss
(eq. 1). Secondly, for the exposure we have term from both the reconstrunction loss (eq. 2) and the cross-entropy loss (eq. 11). For the classifier weight
we have a term from the cross-entropy loss (eq. 10) and from the L2-regularization (eq. 12) of the individual terms in the loss function to get the final
gradients of the total loss Ltot.

∇SLtot = −2ETX + 2ETES (13)

∇ELtot = −2XST + 2ESST + λc(Ŷ − Y )W T (14)

∇WLtot = λc(E
T (Ŷ − Y ) + 2λL2W ) (15)
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B Extended Results
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Fig. S1: The mutations counts per sample categorized per gene KO. Grey are the non-distinctive gene KOs. The other samples are the gene KO used
for the evaluation of S-NMF colored by the related repair pathway.

Gene KO DNA Repair pathway Total # Samples # Test # Train # Fold 1 # Fold 2 # Fold 3

ATP2B4 Control 8 2 6 2 2 2

MSH6 8 1 7 3 2 2

MSH2 3 1 2 0 1 1

MLH1 4 1 3 1 1 1

PMS2 4 1 3 1 1 1

PMS1 4 1 3 1 1 1

EXO1 3 1 2 1 0 1

RNF168 4 1 3 1 1 1

OGG1 4 1 3 1 1 1

UNG 4 1 3 1 1 1

Total: 46 11 35 12 11 12

Base Exision Repair

HR

Mismatch Repair

Fig. S2: Table showing the number of samples and how they are subdivided over the test set and training folds. Shown are the Gene KOs (rows),
their annotated DNA repair pathway deficiency and total number of samples/replicates of the with that gene KO. Next, how the total samples are divided
over test and training data, and how the training data is further subdivided into 3 folds for cross-validation.
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Fig. S3: Heatmap showing hyperparameter optimization results. First row) the average stability of the signatures. Second row) reconstruction error.
Third row) prediction accuracy. Each cell in the square indicates a the score for that metric of a hyperparameter setting and is annotated and colored
according to the the value for the particular metric. The main columns indicated the number of signatures K, ranging from 3 to 7. Within each square,
the rows indicate the integration strength, and the columns the (L2) regularization strength.
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Fig. S4: Training curves showing development of loss during the training epochs. Left) non-integrated S-NMF. Middle) optimal S-NMF. Right) S-
NMF with K=7. Top row) total loss. 2nd row) Reconstruction loss (frobenius reconstruction error). 3rd row) Cross-entropy loss. Bottom row) Prediction
accuracy on training data
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(a) Exposure found by the integrated S-NMF (λc = 0.1) with K = 7.
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(b) Exposure found by the non-integrated S-NMF (λc = 0.0) with K = 7.

Fig. S5: Exposure of the signatures (with K = 7) found by S-NMF. Left) integrated S-NMF. Right) non integrated S-NMF. Only the real samples are
shown to allow for practical visualization.
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