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1 Introduction 

Suction caissons are widely used as foundations or 
anchors in the oil and gas industry (Randolph and 
Gourvenec, 2017). Recently, the suction caisson has 
gained more popularity as the foundation for both 
bottom-fixed and floating wind turbines. Due to com-
plex environmental actions such as wind, waves and 
currents, substructures of offshore facilities experi-
ence three-dimensional (3D) loads. It is therefore es-
sential to understand the load-deflection response of 
foundations and develop accurate and efficient design 
strategies. Typically, for traditional foundation de-
sign, the primary consideration is the ultimate bearing 
capacity. The combined foundation capacity under 
complex vertical (V), horizontal (H) and moment (M) 
loads is normally represented by a failure envelope 
(Roscoe, 1956). The failure envelope of suction cais-
son foundations has been extensively studied in both 
drained sand and undrained clay (Houlsby et al., 
2005; Bransby and Yun, 2009; Gourvenec and Bar-
nett, 2011; Vulpe, 2015). It is important to note that 
the deflection of the foundation required to mobilize 
the bearing capacity is usually quite significant and 
exceeds the service limit condition. Moreover, exter-
nal loads on offshore wind turbines are relatively 
small compared to the foundation's ultimate bearing 
capability. Therefore, instead of the ultimate limit 

state, foundation design is usually governed by the 
stiffness at small deflection (Byrne et al., 2002). As a 
result, it is crucial to predict the nonlinear load-de-
flection response of the foundation accurately. 

Traditionally, macro-element models are usually 
used to model the nonlinear load-deflection response 
of a foundation under 3D loads. For example, Cassidy 
et al. (2006), Skau et al. (2018) and Yin et al. (2020) 
developed macro-element models based on plasticity 
theory, hypoplastic theory and multi-surface concept. 
However, the deflection response of suction caisson 
is strongly dependent on the geometrical configura-
tion of the foundations (e.g., embedment ratio L/D, 
where D is foundation diameter and L is the founda-
tion embedment length) (Zhang et al., 2014) and the 
geotechnical properties of the seabed (e.g. the stiff-
ness and strength) (Cremer et al., 2002), making it 
very challenging to predict its response with a single 
macro-element model (Skau et al., 2018). Alterna-
tively, finite element (FE) modelling can simulate ex-
plicitly the soil-foundation system and predict the 
foundation behaviour under complicated loads. How-
ever, given the requirement of expert knowledge and 
computational resource, FE analysis is less preferable 
in industry design (Szabo and Babuska, 2021; 
Houlsby, 2016). For example, in the design of off-
shore wind turbines, extensive simulations (e.g., 
thousands of cases) will be conducted to obtain the 
load inputs for foundation design. This process can be 
interactive for several rounds until getting the final 
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ABSTRACT: Predicting the nonlinear load response of caisson foundations is critical to the foundation design. 
Despite extensive studies aimed at developing models for predicting the combined V-H-M bearing capacity of 
suction caissons in clay, accurately predicting the three-dimensional (3D) deflection response of the foundation 
remains a significant challenge. In this paper, we present a novel solution by developing a fully connected (FC) 
neural network model that enables load-deflection prediction of suction caissons on clay. To train and evaluate 
the FC model, a series of 3D finite element simulations were performed covering caissons responses with an 
embedment ratio of up to 1. The effect of various model hyperparameters on the model's prediction accuracy 
and generalisation ability was systematically investigated. The results show that the proposed model achieves 
load-deflection response prediction with simplicity, efficiency and accuracy, demonstrating the significant 
potential of deep learning technology in the geotechnical design of foundations. 
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design. Running all these simulations using 3D FE is 
unfeasible (Feng and Shen, 2017). Therefore, a sim-
pler and more effective model that retains the FE 
model's accuracy and flexibility needs to be devel-
oped. 

An alternative technique for foundation design has 
recently emerged: the deep learning (DL), which has 
a powerful ability to handle nonlinear regression 
problems (Reimers and Requena-Mesa, 2020). Com-
pared to traditional design approaches, such as the 
macro-element model, the DL technique stands out 
for its high degree of adaptability, flexibility, and lack 
of pre-geotechnical assumptions. Benefiting from its 
powerful nonlinear mapping ability, the DL technique 
has been successfully applied in many geotechnical 
problems (Baghbani, 2022). For example, Zhang et 
al. (2020) developed a surrogate model using the long 
short-term memory (LSTM) model to predict the two-
dimensional load-deflection response of suction cais-
son foundations. In light of these premises, this study 
aims to develop an optimal DL-based model to pre-
dict the nonlinear response of suction caissons under 
3D loads. The fully connected neural network (FC) is 
used for its simplicity. A series of 3D FE simulations 
were performed to provide the training database for 
the FC model. The influence of the selection of FC 
model hyperparameters on the model performance 
was investigated. 

2 Database preparation 

This study focuses on the response of suction caissons 
in undrained clay under combined loads in the same 
plane. The finite element software Abaqus 6.14 was 
used to obtain the foundation deflection response un-
der combined loads (Systemes, 2014). The suction 
caissons are thin-walled, large-diameter steel cylin-
ders with an open bottom and closed top. In this study, 
a fixed foundation diameter and wall thickness of 10 
m and 0.1 m, respectively, were adopted. (Villalobos, 
2006). Since all the calculated data will be normalized 
with the foundation dimensions and soil undrained 

strength, the absolute value of the diameter is ex-
pected not to affect the results (Gourvenec and Bar-
nett, 2011). A total of five embedment depth-to-diam-
eter ratios (L/D = 0.2, 0.4, 0.6, 0.8 and 1.0) were 
considered to cover the suction caisson foundations 
used in the field for bottom fixed offshore wind tur-
bines (Fu et al., 2020). Considering the symmetry of 
the problem, only half of the soil-foundation system 
was modelled to save computation time. Roller sup-
ports were applied around the mesh circumference 7D 
away from the caisson walls, while the base boundary 
was fully fixed at 4D from the caisson bottom. A fine 
mesh domain and a coarse mesh domain were applied 
around the foundation skirts and in the far field, re-
spectively, to save computational costs. The bound-
ary conditions, mesh distributions and foundation 
configurations in this study are illustrated in Figure 1. 
A fully rough interface with no separation between 
the foundation and the soil was used in all simula-
tions. The suction caisson and clay soil were mod-
elled with eight-node linear strain brick elements with 
reduced integration (i.e., 'C3D8R' in Abaqus termi-
nology) and hybrid eight-node linear strain brick ele-
ments (i.e., 'C3D8H' in Abaqus terminology), respec-
tively (Gourvenec and Barnett, 2011). 

In this study, the clay soil was assumed to be a lin-
early elastic and perfectly plastic material that satis-
fies the Tresca criterion. The soil modulus, denoted 
by G, was determined from the undrained strength 
(su) and was equal to 500su (Hu and Randolph, 1998; 
Jeanjean et al., 2017). The effective unit weight of the 
soil was γ’ = 6kN/m3. To simulate the undrained load-
ing conditions, Poisson's ratio υ of 0.495 and a dila-
tion angle of 0.01° were used. A homogeneous shear 
strength soil profile with su = 10kPa, representing 
over-consolidated clay, was considered in this study. 
The suction caisson foundations were assumed to 
have a fully elastic response, whose mechanical prop-
erties were defined by Young's modulus E and Pois-
son's ratio υ of steel. Table 1 summarizes all the me-
chanical properties used in the FE modelling. 
 

 
 
Figure 1 Boundary conditions of the FE model
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Table 1 Mechanical properties in FE modelling 

Suction 
 

Outer diameter (𝐷𝐷𝐷𝐷) 10 m 

 Length (𝐿𝐿𝐿𝐿) 1–10 m 

Clay Angle of internal friction 
 

0.01° 

 Angle of dilation (𝜓𝜓𝜓𝜓) 0.01° 

 Shear modulus to undrained 
    

500 

 Poisson's ratio (𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠) 0.495 

 Shear strength in OC clay 
 

10 kPa   

Steel Young's modulus (𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠) 210 GPa 

 Poisson's ratio (𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠) 0.25 

 
To obtain the complete response of the foundation 

from the small to larger deflection, displacement-con-
trolled simulations were performed. As shown in Fig-
ure 2, under the given loading direction, the founda-
tion has reached the horizontal and moment bearing 
capacity, while the vertical resistance can still in-
crease. A final vertical displacement of 1 m (10%D) 
is adopted in this study.  

To further obtain the foundation response in a 
three-dimensional VHM space, 96 distinct displace-
ment loading paths were simulated for each founda-
tion, with 100 data points captured in each direction. 
This resulted in 9600 data points for each foundation, 
with each data point comprising displacement infor-
mation in three directions (ν, u, θ) corresponding to 
three load components (V, H, M) and the foundation 
configuration (L/D). In the subsequent training, the 
embedment ratio L/D was used instead of the absolute 
values of D and L to accommodate as many combina-
tions of practical embedment depths as possible. This 
approach has the advantage of disregarding the influ-
ence of the absolute foundation dimensions. The dis-
placement information of the skirted foundation was 
stored directly in comma-separated values (CSV) 
files without any processing. The deflection and load 
information of the skirted foundation were repre-
sented by the dimensionless factors (ν/D, u/D, θ) and 
(V/Asu0, H/Asu0, M/ADsu0, A = πD2/4 is the foundation 
area) in the files, respectively. The numerically gen-
erated data was then used to train the FC model in 
Section 3. To further investigate model generalisation 
ability, twelve new displacement loading paths were 
simulated for three new embedment depths founda-
tions (L/D = 0.23, 0.45 and 0.79), with 100 data points 
captured in each direction as a backup dataset.  

 
(a) Horizontal response 

 
(b) Rotational response 

 
(c) Vertical response 
 
Figure 2 Typical foundation load-deflection response (L/D = 1) 

3 Deep learning based methodology 

3.1 Fully connected neural network 
In this paper, the fully connected neural network (FC) 
is used for the prediction of nonlinear regression 
(Bishop and Nasrabadi, 2006). The FC model consists 
of an input layer, one or more hidden layers and an 
output layer. The weights, biases and activation func-
tions are used to transfer information between these 
layers (e.g., Figure 3). FC models are powerful tools 
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3 Deep learning based methodology 

3.1 Fully connected neural network 
In this paper, the fully connected neural network (FC) 
is used for the prediction of nonlinear regression 
(Bishop and Nasrabadi, 2006). The FC model consists 
of an input layer, one or more hidden layers and an 
output layer. The weights, biases and activation func-
tions are used to transfer information between these 
layers (e.g., Figure 3). FC models are powerful tools 

for the nonlinear regression problem, but designing 
an appropriate structure and learning the parameters 
can be difficult. Specifically, the model structure 
(e.g., size and complexity), controlled by hyperpa-
rameters (e.g., the number of neurons and hidden lay-
ers), is an innate determinant of the model's ability. 
An under-parameterized model can lead to underfit-
ting, while an over-parameterized model can lead to 
overfitting. The performance of the model is also af-
fected by other hyperparameters such as the learning 
rate, batch size and training iterations. Therefore, the 
final performance (e.g., convergence, training effi-
ciency) of a model is highly dependent on the setting 
of the hyperparameters and we will elaborate on the 
ways to tune hyper-parameter in the next section. 
 

 
Figure 3 Fully connected neural network 
 

 
In this study, the RMSE (Root Mean Squared Er-

ror) and MAE (Mean Absolute Error) are used as the 
indication of regression results error. A smaller 
RMSE or MAE represents a better prediction. The co-
efficient of determination (R2) represents the good-
ness of fit of the model predictions. A closer R2 to 1 
means a better fit. Three evaluation metrics are calcu-
lated as follows: 

RMSE = �1
𝑚𝑚𝑚𝑚
∑  𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖𝑖1 (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2     (1) 

MAE = 1
𝑚𝑚𝑚𝑚
∑  𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖𝑖1 |(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)|                 (2) 

𝑅𝑅𝑅𝑅2 = 1 − ∑  𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖−𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2

∑  𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖−𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2
 (3) 

3.2 Accuracy driven hyper-parameters tuning 
To implement this hyper-parameter tuning, Keras 
framework, a Python-based deep learning toolkit 
(Gulli and Pal, 2017), is adopted. The grid search 
technique is employed to draft the model structure 
hyper-parameters. As per the universal 
approximation theorem (Hornik et al., 1989), the 
neural network can be considered as a ‘universal’ 
function and a one-hidden-layer fully connected (FC) 
neural network model can provide satisfactory 

prediction performance. We evaluate a more complex 
neural network with multiple hidden layers to 
enhance prediction stability and robustness. 
Furthermore, to approximate the nonlinear regression 
model, the nonlinear activation function will be 
introduced after each hidden layer. In this study, the 
rectified linear unit (ReLU) activation function is 
introduced after each hidden layer to overcome the 
gradient vanishing issue and speed up the gradient 
descent convergence. It should be noted that despite 
increasing the model's depth can result in a more 
accurate function fit and a broader solution space, an 
overparameterized model can lead to overfitting. 
Therefore, this study aims to strike a balance between 
model complexity and accuracy. The FC neural 
network models with two and three hidden layers, 
combining 16, 32, 64, 128 and 256 neurons per layer, 
were tested. The minimum mean squared errors in 
each combination were extracted and shown in Figure 
4. 

  
(a) Predictions error with two hidden layers model 

 
(b) Predictions error with three hidden layers model 

 
Figure 4 The minimum loss of the model with different combi-
nations of neurons 
 

Analysis of the results in Figure 4(a) reveals that 
the model performance improves as the number of 
neurons increases. However, it should be noted that 
beyond a certain point, the increase in the number of 
neurons does not contribute significantly to the 



2040

Innovative Geotechnologies for Energy Transition  |  The Society for Underwater Technology

model's accuracy improvement, as observed in the 
marginal diminishing effect. Figure 4(b) presents a 
similar pattern of variation in the three hidden layers 
model, where increasing the number of neurons or 
multiplying the weight parameters does not lead to a 
significant accuracy gain. Furthermore, it is essential 
to note that increasing the number of neurons may de-
crease the model's accuracy, as observed in the case 
of the (32, 256, 128) neuron combination, which out-
performs the (64, 256, 128) neuron combination. This 
indicates redundancy in the model's nodes and in-
creasing neurons may weaken the model generalisa-
tion ability, leading to overfitting and trapping the 
model in a local optimum. Therefore, it is concluded 
that the optimal model structure has two hidden lay-
ers, and each layer should have 256 neurons. 

Then we focus on choosing the batch size and op-
timizer, specifically determining the learning rate and 
training epoch. To achieve this, a preliminary experi-
ment is performed, and it is found that smaller batch 
sizes resulted in better prediction accuracy but a 
weaker model generalisation. Considering acceptable 
loss values and generalisation capabilities, a batch 
size of 128 data points is selected. For the optimizer, 
the Adam algorithm (adaptive moment estimation al-
gorithm) (Kingma and Ba, 2014), which combines the 
momentum method and the RMSprop algorithm, is 
adopted. The Adam algorithm uses momentum as the 
direction of parameter update and adaptively changes 
the learning rate. A comparison experiment is carried 
out then to determine the initial learning rate. Figure 
5 shows the loss values during the training process at 
three different learning rates. It is clear that the train-
ing loss remained stable at all learning rates and con-
verged to a constant value within 50 epochs. The 
higher the learning rate, the faster the model conver-
gence (within 5 epochs), but at the cost of stability 
(with significant fluctuations). In the end, a learning 
rate of 0.001 is set in the model training, as it could 
balance rapid convergence and stability. 

 

 
Figure 5 Training loss for the DNN model with different learn-
ing rates 

 

3.3 Generalisation validation 
Regularisation is a crucial technique to improve the 
generalisation performance of neural networks by 
reducing model complexity and preventing 
overfitting (Tian and Zhang, 2022). Commonly used 
regularisation methods for deep learning models 
include data augmentation, early stopping (Prechelt, 
2012), dropout (Srivastava et al., 2014), among 
others. In the FC model, we have employed 
regularisation methods such as early stopping 
(limiting training epoch to 50) and weight decay 
using the Adam optimizer (Hanson and Pratt, 1988). 

This section aims to further investigate whether 
additional regularisation methods, such as dropout, 
can enhance the model's generalisation ability. To 
evaluate the generalisation performance and model 
complexity, three new datasets with caisson 
embedment ratios of L/D = 0.23, 0.45 and 0.79 were 
generated. Each dataset consists of 1200 data points 
captured in twelve different loading directions on the 
new embedment ratio caisson.  

The dropout method is a technique used to prevent 
overfitting by randomly dropping some neurons 
during training. In this study, we experimented with 
different dropout rates ranging from 0 to 0.9 to find 
the optimal rate for improving model generalisation. 
Figure 6 shows the prediction errors of the model on 
three datasets with different dropout rates (0, 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9). The model 
performed consistently across all three datasets, with 
prediction error increasing as the dropout rate 
increased. This result indicates that the model can 
effectively overcome overfitting without the need for 
additional dropout layers between the hidden layers. 

 

 
Figure 6 Generalisation ability under different dropout ratios 

 

3.4 Model complexity validation 
Variance and bias are crucial components of error that 
indicate the generalisation and fitting ability of the 
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Variance and bias are crucial components of error that 
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model, respectively (Fortmann-Roe, 2012). As the 
model complexity increases, the prediction results 
become less biased and have more variance, as 
illustrated in Figure 7. This means that the model's 
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interested in acquiring a model that is solely good at 
fitting the given training data. 

 

 
Figure 7 Effect of model complexity on prediction error 

 
 
Therefore, eight experiments are conducted to 

control model complexity by increasing or decreasing 
the number of neurons. In these experiments, an FC 
neural network with 256 neurons in each hidden layer 
is denoted as (256, 256). The simplest neural network 
structure is represented by (64, 64) and the most 
complex by (512, 1024). The prediction errors are 
illustrated in Figure 8. The three error evaluation 
metrics show a similar trend of first decreasing and 
then increasing as the model complexity increases. 
The current model complexity of (256, 256) is located 
at the error curve trough. However, it should be noted 
that the optimal model complexity is not constant, 
which decreases as the embedment ratio increases. 
This phenomenon implies that the underlying 
mechanism of data is more complex and variable at a 
smaller embedment ratio, requiring a more complex 
model.  

 
(a) Impact of model complexity on generalisations at L/D = 0.23 

 
(b) Impact of model complexity on generalisations at L/D = 0.45 

 
(c) Impact of model complexity on generalisations at L/D = 0.79 

 
Figure 8 Impact of model complexity on generalisations at three 
new embedment depths 

 
 
In summary, the optimal model complexity does 

not change significantly with the embedment ratio 
and remains around (256, 256). This demonstrates 
that a model of this complexity generalises well and 
is capable of handling different embedment depths in 
the caisson. The final hyperparameters utilized for FC 
neural network training are summarized in Table 2. 
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Table 2 Hyper-parameters used for training the neural network 
model 

Hyperpa-
rameter Description Value 

Nh Number of hidden layers 2 

Nn Number of nodes in the hid-
den layer 256,256 

𝜂𝜂𝜂𝜂 Learning rate in the optimizer 0.001 

Batch size Number of training samples 128 

Epoch Number of iterations during 
training 50 

validation 
split 

Proportion of validation set in 
total training 0.2 

3.5 Evaluation of model performance 
The previous section presents a thorough discussion 
on the basis of the selected model hyperparameters 
(listed in Table 2), based on which the model will be 
constructed. The training set comprises 80% of the 
total dataset with 48000 data points from 5 
embedment ratios described in Section 2. While the 
test set consists of the left 20% dataset which are 9600 
randomly selected data points from all embedment 
depths of the caisson response. After training, the 
interpolation prediction error on the test set was found 
to be RMSE = 0.032, R2= 1.000 and MAE = 0.022. 
The FC neural network model was then tested for its 
ability to generalise and predict the caisson response 
for a specific embedment ratio, where L/D = 0.7. The 
prediction accuracy was only slightly reduced to 
RMSE = 0.036, R2= 0.999 and MAE = 0.026, 
demonstrating the outstanding interpolation 
generalisation performance of the model. The good 
generalisation and minor computational errors in the 
prediction attest to the promise of this model. 
Meanwhile, model performance in load-displacement 
hybrid predictions is tested subsequently. Four typical 
load-displacement combinations were fed into the 
model compared with only displacement input. Box 
plots demonstrate the variance of model performance 
over 30 repeatable experiments in Figure 9, where the 
horizontal axis represents the expected predicted 
parameter combination. The model takes the force 
or/and displacement corresponding to the predicted 
parameter as input and shows the most accurate 
prediction when predict (H, V, M) combination (i.e. 
pure displacement input with embedment ratio). By 
contrast, the model does not perform as well as the 
(H, V, M) combination when input mechanical 
parameters and output displacement (i.e. (ν, u, θ) 
combination). The reasonable explanation of this 
phenomenon is that the loading path under 
displacement control captures the ultimate state 
response, which implies that the displacement is one-
to-one mapping to the force, but not vice versa. The 

predicted performance of other combinations falls 
somewhere in between, also with relatively high 
accuracy. Comparative experiments demonstrate that 
the model is capable of handling various 
combinations of force-displacement inputs and 
exhibits high accuracy in the corresponding 
prediction. 

 
(a) RMSE in five hybrid load-displacement response predictions 

 
(b) R2 in five hybrid load-displacement response predictions 

 
Figure 9 Box plots showing model prediction error distributions 
in five hybrid load-displacement responses 

4 Conclusion 

This paper presents a FC neural network model to 
predict the 3D deflection response of caisson 
foundations with various geometry configurations in 
clay. The model is trained on the basis of the 
foundation response of five embedment ratios and can 
effectively predict the load-deflection response of the 
provided embedment ratio within seconds. After 
hyperparameter tuning and complexity validation, the 
model has the capacity to accurately capture the 
complete response of the foundation at a specific 
embedment ratio with negligible prediction error. 
This successful application demonstrates the 
efficiency and competitiveness of the FC neural 
network model in caisson design. Furthermore, the 
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4 Conclusion 

This paper presents a FC neural network model to 
predict the 3D deflection response of caisson 
foundations with various geometry configurations in 
clay. The model is trained on the basis of the 
foundation response of five embedment ratios and can 
effectively predict the load-deflection response of the 
provided embedment ratio within seconds. After 
hyperparameter tuning and complexity validation, the 
model has the capacity to accurately capture the 
complete response of the foundation at a specific 
embedment ratio with negligible prediction error. 
This successful application demonstrates the 
efficiency and competitiveness of the FC neural 
network model in caisson design. Furthermore, the 

model can be further developed to consider more 
complex soil properties than just the uniform soil 
layer. The model applicability will therefore expand 
as more comprehensive datasets become available. 
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