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Abstract

The transition towards greener mobility will play a significant role in decarbonizing the economy. Hence,
policy makers need tools that allow them to test alternatives towards that goal. This drive has led to the
development of increasingly accurate transport models, with the latest generation being activity-based
transport demand models. These models, however, are hard to build, as they are very data-intensive
and complex, therefore in this research project a methodology is conceived which attempts to use
readily available data from the Dutch travel demand survey (ODiN) and open source software such as
ActivitySim, originally developed as a package in Python to make activity-based models in the United
States.

While a very time-intensive task, the data was able to be processed for use in ActivitySim. The data
was mostly complete, but needed to be complemented with data from the Centraal Bureau voor de
Statistiek (2019), and information about members of the household other than the survey respondent,
and joint tours, is missing. The data, however, can be processed in a way that can be reapplied in the
future, which lowers the barrier to develop a model with Dutch survey data.

Choice is modeled as logit discrete choice models, and the estimation of the parameters required is
facilitated by ActivitySim, which has built-in functionality to support it, and with an integrated workflow
the model parameters can be estimated with little effort. With this procedure, and choosing workplace
and school locations in advance, a good degree of accuracy was achieved, but it was shown that the
sampling method used to deal with the very large choice set introduced significant bias to the model
output, as observed in the travel distances, which were shorter in the simulated output than in the
observations in the survey data.

While ActivitySim has a sampling methodology to deal with large choice sets, an alternative method,
Stratified Importance Sampling with activity spaces, is implemented based on the survey data, from
where the sample is determined using the travel distances observed and which producesmore accurate
outputs when compared to the default sampling.

The result of this research is a framework to easily develop and estimate an activity-based transport
demand model that is able to provide insights on the travel demand, and especially on how to influence
individual choice behavior, which can facilitate the procurement of quality analysis for decision support
in the arena of sustainable mobility, hopefully helping accelerate the mobility transition.

It was concluded that using ODiN data and ActivitySim presented as advantages an easy and replicable
formulation, and the availability of data that can be used for sustainable mobility policy analysis; yet,
this formulation fails to account for household interactions, something that activity-based models often
promise to do, and the documentation provided by ActivitySim while extensive is still inadequate in
some regards to understand how to process the data.
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The resulting model is, however, highly accurate, despite needing some considerations and improve-
ments. The model needs to sample destination choice alternatives, because otherwise its big size
would bring the model to a halt, and it does so using a sampling method that is programmed into Ac-
tivitySim. This method was shown to introduce bias to the simulation output even if the choice model
was properly estimated, and hence an alternative sampling method based on Stratified Importance
Sampling was implemented, and the model output greatly improved as a result. Hence, we conclude
that it is possible to obtain highly accurate and efficient activity-based models using available data such
as ODiN and open source software such as ActivitySim.

It is argued that a formulation like this can be highly beneficial to the evaluation of sustainable mobility
policies, as it lowers the barrier to obtain the accurate and detailed outputs that other models cannot
produce, and it provides accurate destination choices that will then inform other submodels that are
necessary to evaluate sustainability impact, such as mode choice, travel distance and travel time to
evaluate emissions.

We continue by discussing the limitations stemming from the available data and the lack of information
for other household members and joint travel, the trend-breaking nature of the COVID-19 pandemic
and is impact on mobility in further years, and the possible untested bias of the newly proposed sam-
pling method; and giving recommendations on how to effectively use of a model developed with this
framework.

Finally, further research is proposed regarding remote work, the improvement of the choice models,
and on the sampling method used.



1
Introduction

Sustainability and climate change remain significant societal challenges for Europe and the world. The
negative effects of climate change have prompted countries to attempt to tackle it, and global declara-
tions and regional level initiatives such as the Sustainable Development Goals (European Commission,
2022), the Paris Agreement (United Nations, 2015), and the European Green Deal (European Com-
mission, 2019) highlight that decision-makers all over the world consider it a priority.

According to the European Commission (2016), transport represents almost a quarter of Europe’s
greenhouse gas emissions and is the main cause of air pollution in cities, with road transport to blame
for most of it. This implies that transport and mobility play a big role in climate change, one of the most
important challenges in the near future to achieve the goals of the European Green Deal (European
Commission, 2020). The transition to sustainable mobility will be key to decarbonize the economy
and tackle climate change as socio-demographic transitions, increasing urbanization, and a push for
sustainability have made it a priority for policy makers (Sharmeen & Meurs, 2019; Stam et al., 2021).

The European Commission (2016) has outlined a number of strategies to limit greenhouse gas emis-
sions originated frommobility, which include integrating digital solution to optimize the transport system,
pricing strategies to promote more energy efficient operations, promoting multi-modality, phasing in al-
ternative fuels, and increasing the share of zero-emission vehicles.

To plan these interventions, policy-makers need information about travel demand and transportation
system performance such as travel times, modal shares, and congestion (among others) under different
policy alternatives to evaluate and compare them (Castiglione et al., 2015). Policy-makers then rely on
transport models to obtain these insights (Lah, 2019).

The societal goal of this research is to help in the mobility transition towards sustainability by means of
evaluating, improving, and facilitating the development of the models that are used to support relevant
decision-making, in hopes that better, accessible models provide more and better quality information
to decision-makers in the area and thus they make better decisions. Primarily, high accuracy and
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good explainatory value are needed to evaluate these policies. In this sense, this research is scoped
towards real applications and implementations, seeking to bridge the gap between existing knowledge
and current practice.

To place this research in context it is useful to understand mainstream and emerging modeling tech-
niques. Traditionally, the so-called four-step models are used to inform transport planning, however
four-step models are not well equipped to provide the input needed to evaluate most modern sustain-
able mobility policies as they are heavily aggregated, do not account for interdependence in choices
that travelers make, and do not provide much in terms of explaining traveler behavior, so a new gener-
ation of models, activity-based models, is presented as an alternative. Activity-based models represent
the activities that individual travelers need to perform and derive travel from these, while promising to
account for interdependence between chained trips and household members, allowing to model trav-
elers much more realistically and accurately (Castiglione et al., 2015; Ortúzar & Willumsen, 2011).
These models offer more explainatory power and detail than its predecessors, as it allows to capture
the behavior of travelers and not just the result of their behavior, and they can be integrated with other
models to produce outputs beyond the domain of transport, making them more useful for informing
policy, including those targeted at achieving sustainable mobility (Castiglione et al., 2015; Tajaddini
et al., 2020).

The choice models embedded in activity-based transport models need to be accurate and provide good
explainatory value to be useful in informing policy. Additionally, they benefit from being easily specified,
its parameters being easily estimated, and expertise in the field already being present. This research
aims at providing an accurate, efficient and straightforward way to estimate activity-based models that
can be easily be used to analyze a range of sustainable mobility policies. These factors were taken
into account to define the research focus of this project, and to further define the research question, a
literature review was performed.

Three main aspects are covered by the literature review: an overview of state-of-the-art choice model-
ing techniques that have emerged in recent times for transport models, the advantages and limitations
of these methods, and practical barriers that hinder the deployment of activity-based models. The
literature covered spanned scientific papers, where a close match with the search query, a recent pub-
lishing date, and number of citations were part of the criteria used to select the relevant literature, to
varying degrees depending on the specific subtopic.

From the review it was identified that discrete choice (logit) models are widely used to model choices in
activity-based models (Castiglione et al., 2015; Ortúzar & Willumsen, 2011), but alternatives like rule-
based models have also been used, with some notable examples like ALBATROSS in the Netherlands
(Arentze et al., 2000; Dianat et al., 2020; Hafezi et al., 2019). In addition, an extension to logit models,
a multistate supernetwork, has been conceived to conceptualize stronger interdependence between
choices (Arentze & Timmermans, 2004a; Fu & Lam, 2014; Liao et al., 2010; K. D. Vo et al., 2020).
These models, however, have issues in accuracy and performance when dealing with very large choice
sets, as is the case of possible destinations, an issue that has only been addressed in part for the case
of unextended logit models by means of sampling methods (Ben-Akiva & Lerman, 1985; Berjisian &
Habibian, 2019; Lemp&Kockelman, 2012; McFadden, 1977), possibly indicating that logit models have
a better use case. The samplingmethods, however, still need to be tested for suitability in activity-based
models.
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There are also a number of practical challenges that limit the application of activity-based models, large
quality data requirements, needed computational power, and issues with the transferability of models
to a different context (Tajaddini et al., 2020), even when the cost and time required to develop these
models in their most basic form has decreased in recent times (Castiglione et al., 2015).

Nonetheless, activity-based modeling is still is not widespread, in part because of the challenges it
poses, like large quality data requirements, needed computational power, and issues with the trans-
ferability of models to a different context (Tajaddini et al., 2020), even when the cost and time required
to develop these models in their most basic form has decreased in recent times (Castiglione et al.,
2015). Computational power is in part addressed in the case of logit models with the use of sampling
methods, and Hörl and Balac (2021) suggest that a focus on replicability and adaptability, with the use
of available data and open source tools helps address the other practical issues.

In the Netherlands, a couple of activity based models have been developed, of which the most salient
is the ALBATROSS model developed by Arentze and Timmermans (2004b) for the Dutch government.
However, this model needs extensions for it to be usable in policy analyses, and its verification, fore-
casting power, and transferability have not been fully established since its development as is the case
with rule-based choice modeling formulations such as this (Dianat et al., 2020). Additionally, Knapen
et al. (2021) developed a newer model with a focus on multimodality and using logit models, however,
it leaves unresolved the issues of dealing with large choice sets and overcoming practical hurdles.

From this review, a gap could be identified in the formulation of activity-based models in the Nether-
lands. It appears that it would be useful to use a formulation that can prove easy to calibrate, use,
extend, and replicate, and to refine the choice model, namely the destination choice models to improve
results and run times. However, current formulations, while already benefiting from the use of readily
available data like the ODiN travel survey, do not seem to follow the path highlighted by this search
and have shortcomings because of it, like high cost of setting up due to model complexity, computation
expense, unaccounted transferability and difficult calibration.

The use of open source software like ActivitySim and readily available travel survey data can offer a way
to achieve models that are easy to calibrate, use, extend, and replicate in the Netherlands, however,
since ActivitySim was not developed for use in the Netherlands some difficulties need to be overcome;
the survey data that ActivitySim was designed to use can have a different design from Dutch travel
surveys, and sampling methods used for destination choice sets can be unsuitable. An ambition to
address these issues produces the main research question: What is the accuracy and efficiency of
an activity-based model developed using travel survey data and open source software?

Additionally, this is complemented by the following set of subquestions:

• What are the advantages and limitations of using ODiN data and the ActivitySim software to
estimate activity-based model parameters??

• What is the accuracy of destination choice models developed using ODiN data and ActivitySim?

• What is the impact of Stratified Importance Sampling on model accuracy and performance?

In this project, a modeling procedure to estimate an activity-basedmodel for sustainable transport policy
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analysis in the Metropolitan Region Rotterdam The Hague in the Netherlands using Dutch travel survey
data will be defined using the open source ActivitySim software, and its limitations and performance
will be benchmarked. For this, Dutch travel survey data and zonal data will be used to calibrate the
relevant choice models. Then, said choice models will be used to perform simulations in the ActivitySim
framework for activity-based modeling. The model will then be adapted to used Stratified Importance
Sampling to sample destination choice alternatives and the benchmarking repeated. Finally, the model
will be evaluated for its usefulness in policy analysis.

This research is part of the graduation requirements for the MSc Engineering and Policy Analysis pro-
gram at TU Delft, and it was performed in cooperation with the Sustainable Urban Mobility and Safety
department at TNO, the Netherlands organization for applied scientific research, who provided support,
data, and resources to achieve these results.

Following this introduction, chapter 2 contains an overview on the topic of sustainable mobility policies
and transport modeling, chapter 3 has the literature review performed, chapter 4 describes the research
approach followed, chapter 5 shows the results, and chapter 6 presents the contributions made to the
existing literature, its implications for society, its limitations, and suggestions for further research.



2
Modeling sustainable mobility policies

The mobility transition has been given recent attention, as socio-demographic transitions, increasing
urbanization, and a push for sustainability have made it a priority for policy makers (European Com-
mission, 2016; Sharmeen & Meurs, 2019; Stam et al., 2021).

When using models to evaluate the policy alternatives, the model needs to be sensitive to a set of
policies of interest, therefore, in the trade-offs between realism and practicality, the modeler needs to
prioritize the aspects of the model that affect and reflect the desired set of policies (Arentze & Timmer-
mans, 2004b; Shiftan & Ben-Akiva, 2010). Understanding these policies, their characteristics, their
sensitivities, and their performance indicators is key to defining the requirements and suitability for any
transport model that aims to incorporate them. Modern policies for sustainable mobility impose that
models need to be sensitive to individual choices, are able to provide disaggregated outputs, and are
able to provide explanations for the behavior of travelers, conditions that are not met by more traditional
trip-based models and that activity-based models are better suited to tackle instead.

In this chapter, a quick overview of modern sustainable mobility policies is given along a description of
the requirements they impose, and then traditional and activity-based models and important concepts
are briefly explained.

2.1. Modern policies for sustainable mobility

In Europe, and in the Netherlands, a couple of avenues have been conceived to tackle the sustainability
issue of transport, namely to more efficiently manage and use the existing infrastructure, and to im-
plement technological advancements that would allow to diminish the environmental impact of mobility
(Council of the EU, 2021).

One such policy is the implementation of mobility hubs, or locations where travelers can change their

8



2.1. Modern policies for sustainable mobility 9

travel mode within a trip (Knapen et al., 2021). The idea is that by making many transportation modes
available on a given location, multimodal travel is facilitated, and greater access is given to modes with
less impact on the environment, thus decreasing the environmental footprint of the trip (Aydin et al.,
2022).

Another proposed alternative to induce a modal split in favor of more environmentally friendly alterna-
tives is to internalize the cost of using private vehicles, increasing the perceived costs of using them
compared to other modes. This cost can take the form of road pricing (usually in the form of tolls),
parking pricing, or congestion charges (Gallo & Marinelli, 2020).

The use of emerging modes of transportation have also been considered. In this regard, according to
Gallo and Marinelli (2020), aided by mobile technology, vehicle sharing is a concept that appears as
an interesting alternative. Car sharing can decrease the need for private vehicle ownership, and its
users have shown to be more prone to use sustainable transport modes. On a similar fashion, shared
micromobility options offer similar advantages with lower fees and the convenience of a free-floating
scheme.

Vehicle electrification is a technological implementation that has also been hailed as an alternative
to achieve zero emissions transportation. One of the issues that hampers its adoption is the range
anxiety effect, where limited battery range and charging infrastructure prevents people from buying
electric vehicles. However, the implementation of such new technology is still clouded in uncertainty, as
decision-makers in charge of the infrastructure do not build it fast enough to avoid a situation where they
are left with stranded investment, and energy grid load management could become a bigger issue when
the number of electric vehicles increase energy demand (Council of the EU, 2021; Gallo & Marinelli,
2020).

Daisy et al. (2020) and Katoshevski-Cavari et al. (2011) also suggest that the efficiency with which the
infrastructure is used is heavily dependent in land use. That means that changes in urban planning
seemingly independent of transportation, like the adoption of a compact city or a multi-nuclear city as
a design alternative, can have an effect on transport and its environmental effects. The implication is
that both sides, transport and land use planning, need to be properly incorporated to produce decision-
making outcomes that reach sustainability goals.

However, designing policies to provide sustainable mobility is a challenging endeavor; shifting car
users towards more environmentally friendly public transport comes at the expense of flexibility and
convenience for travelers (Alonso-González et al., 2018; Bruzzone et al., 2020; Lah, 2019), and the
implementation of greener private transportation alternatives such as electric vehicles (Patyal et al.,
2021) and micromobility options (Esztergár-Kiss & Lopez Lizarraga, 2021) pose significant challenges
to achieve and to foresee its effects. For this reason, policy-makers need decision support tools that
let them compare the alternatives. These tools allow policy-makers to understand the different impacts
of the alternatives, to anticipate uncertainties and the reaction to them, and to plan ahead. Travel
models fulfill this purpose by making possible the evaluation of parameters such as accessibility, travel
distance, daily trips, congestion, emissions, energy demand, and traveler behavior (Castiglione et al.,
2015; Gallo & Marinelli, 2020; Katoshevski-Cavari et al., 2011; Melkonyan et al., 2022; Philip et al.,
2013).
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2.2. Classic transport modeling

Ortúzar and Willumsen (2011) provide a comprehensive view of transport modeling practices, and they
explain the ”classic” transport model, the so-called four step model (figure 2.1), called like that because
of the four main stages that are needed to obtain results. First, the input data is used to estimate the
total number of trips generated and attracted by each zone in the trip generation stage. Second, these
trips are assigned to different origin-destination pairs in a trip matrix on the trip distribution stage. Third,
the travel mode distribution is obtained in the modal split stage. Finally, the trips are assigned to the
network to evaluate congestion in the assignment stage. Since the congestion obtained on the final
step affects travel times, and these can then result different to the assumptions made in the distribution
and modal split, these stages are usually run in many iterations to achieve consistency.

Figure 2.1: Representation of the classic four-stage transport model. Adapted from Ortúzar and Willumsen (2011)

The input for these models include a zoning system spanning the geographical zone to study, the
population and land use data for these zones, and the transport network.

The geographical area that the model needs to cover is usually split into smaller units known as Traffic
Assignment Zones (TAZs), whose size need to balance the need for detail with the need to aggregate
households and premises from the population and zonal data for manageability.

Transport network data is obtained from its representation as a directed graph, and it is assumed that
travelers minimize their perceived and anticipated generalized cost function (that includes, for example,
travel time and travel costs) to select the links they must traverse between origins and destinations,
and then the level of service (cost) of the best route between origin and destination pairs are expressed
in what is known as a skim matrix.

The output is a measure of production and attraction of trips per TAZ, a collection of trips per origin and
destination TAZ pair on a trip matrix, an aggregate modal split of all the trips performed, and the loads
that these trips inflict on the network along with the possible congestion caused.

The precise methods to perform the different stages of the four-step model can vary, but in general
the units of analysis are trips, and the outputs are aggregated at zone level. Castiglione et al. (2015)
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highlights some of the limitations imposed by this, for example, by stating that assuming that trips are
done independently of one another or ignoring the interrelations between individuals in a household
reduces sensitivity to policies that require accounting for these dependencies, as decisions made in one
trip could affect a following one or someone else in the household. Likewise, the level of aggregation
forces the modeler to assume that individuals in a same group (for example, households of the same
type) share the same behavior; and the use of average values also distorts the sensitivity of the model
and do not allow to provide detailed information on the impact of policies. Also related to the level of
aggregation is the impossibility to trace back a trip and explain why it was generated, which limits the
explainatory value of these models, especially when it comes to understanding traveler choices, and
at the same time, the modeler is forced to make some assumptions about traveler behavior to obtain
the output, which might be hard to do when little data about behavior is available.

These limitations contrast with the needs that can be identified from the trends in the policies described
in section 2.1. First, many policy alternatives require the implementation and support of new tech-
nologies and schemes, for which currently little data is available, especially since they are not widely
available or adopted. Second, many of these policies are oriented towards changing the behavior of
the population. In line with Diana (2012) and Ortúzar and Willumsen (2011), these reasons imply a
necessity to understand and accurately portray how individuals make (possibly interrelated) choices
and the factors that drive them to be able to anticipate the impact of such policies on a wider scale,
even when little precedent, as is the case, exists.

This calls for models that not only need to be very disaggregated, but that also need to be transparent
and provide reasonable explanations for the behavior shown to be useful for policy analysis. The
limitations of trip-based models in these regards highlight the need for a more advanced modeling
method that allows for effective policy analysis. Activity-based models have been proposed as such an
alternative to provide disaggregated and transparent outputs, and to overcome the lack of interaction
between choices, by modeling individual travelers and using a tour-based formulation with interrelated
choices across the day.

2.3. Activity-Based Models

In this regard, more traditional transport models have given way to more powerful activity-based trans-
port models, whose main difference according to its proponents is that it assumes transport demand to
derive from how individuals schedule their activities, who then subsequently need to travel to perform
them (Arentze et al., 2005; Arentze & Timmermans, 2004b; Daisy et al., 2020; Hafezi et al., 2019;
Ortúzar & Willumsen, 2011).

For each individual, activity-based models determine an activity schedule and then produce chained
trips (called tours, see figure 2.2) to perform those activities. This means that activity-based transport
models, when compared to their predecessors, are able to represent travel patterns in a disaggregate
manner (per person) and thus can explain variations in travel behavior across the population in a much
more detailed way, as well as making it easier to incorporate new explanatory variables, interdepen-
dence, and sensitivities (Castiglione et al., 2015), making the model more useful and interpretable.

Activity-based transport models are able to capture phenomena such as joint travel scheduling and tour
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Figure 2.2: Basic representation of a tour, consisting of a series of trips that start and ends on the same location. Tours have a
main destination and can have intermediate stops. Adapted from Castiglione et al. (2015)

formation, explicitly include time and space dimensions, model choice behavior explicitly, account for
interactions between trips and household members, and provide a flexible simulation framework that
can be easily integrated with other domains such as land use and energy use (Castiglione et al., 2015;
Katoshevski-Cavari et al., 2011; Knapen et al., 2021). The advantage of this conceptualization is that
it is able to show emerging travel behavior from a range of inputs such as socio-economic changes,
environmental changes, travel congestion, and emergency situations (Han et al., 2021; Shiftan & Ben-
Akiva, 2010), but perhaps more relevant in this case is that it provides a model that is responsive to
innovative policies (Arentze et al., 2005; Dianat et al., 2020; Shiftan & Ben-Akiva, 2010).

Activity-based models can be conceptualized as a series of choice models, regardless of the specific
choice modeling technique used. They explicitly model the choices that individuals make to plan their
activities and the travel derived from them, as opposed to the four-step model, where the trip production
and attraction already forces the modeler to make assumptions about activities and generate the trips
and their destinations from it (Ortúzar & Willumsen, 2011).

According to Castiglione et al. (2015), activity-based models use a synthetic population, which is a
computer-generated population that closely matches the characteristics of the real population as the
individuals that will make the choices. Typically, this population will then make individual choices on
long term and mobility aspects like school and work location, car ownership, and possession of a transit
pass. Then, day activity patterns are defined based on the activities that individuals need to perform,
and from there tours are formed on a schedule, with a primary destination and mode; in this regard
tours and trips and classified into mandatory and non mandatory, where mandatory tours are those
that need to be done and cannot be postponed like work and school, and non mandatory are those
that can be rescheduled or skipped altogether. Further, possible stops are added in the tours, breaking
them into smaller trips, for which a destination, mode and schedule are also defined. From household
interactions, it is also possible to obtain activity patterns and joint travel. Figure 2.3 describes the
structure of an activity-based model.

Castiglione et al. (2015) also details that the data necessary as input to develop activity-based models
is in principle very similar to the data needed for its predecessor, the four-step model. In fact, activity-
based models also use a zoning system, population and household data obtained from travel surveys,
land use data, and network data. However, this data is subjected to much more scrutiny, as the level of
detail needed is greater and internal consistency needs to be guaranteed. Likewise, the level of detail
needed in the time dimension also warrant that the skim matrices obtained from the network data are
also obtained for a greater number of time windows, each with their own congestion conditions that
reflect on travel times.

The flexibility of the simulation framework used in activity-based models also allows for integration with
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Figure 2.3: Basic structure of an activity-based model. Extracted from Castiglione et al. (2015)

other models to obtain input data, for example, the use of economic models and land use models
to obtain forecasted inputs for future years. Likewise, the level of detail provided by activity-based
models also allow for the integration of model outputs to other models in different areas of expertise,
for example, by relating transport network performance to emissions (Castiglione et al., 2015).

These properties also enable activity-based transport models to answer questions that other models
cannot, such as what happens when major disruptions occur (Han et al., 2021), and offering more detail
in transport demand management and land use planning and interventions (Arentze et al., 2005; Daisy
et al., 2020). Likewise, activity-based models are also able to generate performance indicators beyond
the transport domain (Tajaddini et al., 2020). Because of these properties, activity-based transport
models seem better suited to provide insights in the implementation of modern policies for sustainable
mobility than their predecessors, as illustrated by Knapen et al. (2021). Additionally, the choice models
embedded in activity-based transport models can also provide good explainatory value, making them
more useful to policy evaluations, especially when traveler behavior is deeply involved as is the case
with modern sustainable mobility policies. This then directs this research to focus on activity-based
models.

For these reasons, and to understand the state of knowledge in activity-based modeling and identify
attempts at deploying them in the Netherlands, it is worth performing a literature review on the topic so
that research can be performed to cover the gaps identified.



3
State-of-the-art research and

applications of activity-based models

To identify the relevant gaps that need to be addressed in the current knowledge about transport mod-
eling, a literature review was performed. This literature review covers three aspects: the models that
are currently available to evaluate (sustainable) mobility policies and their possible shortcomings, the
new developments done in activity-based modeling to provide better information, and practical consid-
erations on the deployment of activity-based models.

This chapter describes the method used to search and filter the literature based on the needs of this
research, provides an overview of the findings in the literature, and discusses the implications of these
findings for the research goals.

3.1. Method

To guide this literature review and make it relevant to the research, its own research question was
devised: What are the knowledge and practical barriers that limit the deployment of activity-based
models?

Additionally, three subquestions helped guide the search:

• What are the state-of-the-art methods that have been developed in choice modeling for use in
activity-based models in recent years?

• What are the advantages and limitations of the choice modeling techniques used in activity-based
models?

14



3.2. Choice in activity-based transport modeling 15

• What are the practical barriers to the deployment of activity-based models?

To find the relevant material, a search strategy was designed, where the search queries used were:

• ”Activity Based Modeling”

• ”Activity Based Modeling” AND Netherlands

• ”Activity Based Modeling” and ”Choice behavior”

• ”Activity Based Modeling” and ”Choice modeling”

• ”Discrete Choice Modeling” AND Transport AND (”Stated preferences” OR Survey OR ”Activity
Based Modeling”)

Additionally, ”snowballing” to other papers, or reviewing the citations in the papers found by these
search queries was also used as part of the strategy if the content was found interesting and relevant, as
well as consulting recommended literature by experts knowledgeable in transport and choice modeling.

These queries were used in a variety of databases including the TU Delft repository, ResearchGate,
Elsevier, and Scopus. Since the research question of this project pertains state-of-the-art methodology
and new developments, the results were filtered by date, including newer results first, and of those
results, the ones that focused onmethodological discussions were examined in greater detail. Likewise,
articles whose authors are reputed and have many citations were also favored after filtering by dates.

The resulting literature is summarized and discussed in the remainder of this chapter.

3.2. Choice in activity-based transport modeling

There seems to be a general agreement in that the modeler needs to prioritize the aspects of the model
that affect and reflect the desired set of policies (Arentze & Timmermans, 2004b; Shiftan & Ben-Akiva,
2010) for it to be useful to inform transport policy, as made explicit in the case of the models developed
by Outwater and Charlton (2008), Popuri et al. (2008), and K. Vo et al. (2021). This needed sensitivity
places special importance in the way in which choices are modeled for every agent (or individual from
the synthetic population) (Diana, 2012; Ortúzar &Willumsen, 2011). This means that choicemodeling is
at the core of the usability of activity-based transport models in policy analysis, especially the modeling
of interdependent choices to make modeled individuals react in a more accurate way to proposed
policies (Alonso-González et al., 2018; Diana et al., 2007; Ortúzar & Willumsen, 2011).

Given this relevance of choice modeling in activity-based transport models, it seems reasonable to
give special focus to it and spot trends and gaps in the existing knowledge and current practice. It
appears that there are three main ways to formalize the different choices of individuals, one is through
the use of discrete choice models derived from economic theory (logit models), another is through the
use of rule-based computations (Arentze et al., 2000; Shiftan & Ben-Akiva, 2010), and a third one is an
emergent technique of discrete choice that makes use of a formalization of choice alternatives called
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multistate supernetworks (Arentze & Timmermans, 2004a). This is reflected in the works of Arentze
et al. (2005), Daisy et al. (2020), Dianat et al. (2020), Philip et al. (2013), Shiftan and Ben-Akiva (2010),
and K. Vo et al. (2021), who use logit discrete choice modeling, the works of Arentze et al. (2000),
Arentze and Timmermans (2004b), Eluru and Choudhury (2019), and Han et al. (2021), who instead
use rule-based models, and the works of Fu and Lam (2014), Liao (2016), and Liao et al. (2010, 2014),
that use multistate supernetworks to model interdependent choices simultaneously.

3.2.1. Discrete choice (logit) models

Logit models are derived from the theory of random utility maximization, where it is assumed that
individuals compare choices based on a number of attributes and assigns probabilities to them by
maximizing a measure of disutility or satisfaction (Arentze et al., 2000; Castiglione et al., 2015), and
thus, allows to predict behavior given the relevant attributes. Discrete choice models, or logit models,
incorporate a random component to the (dis)utility of alternatives (and thus having a systematic and
a random component) to capture the concept of bounded rationality (Arentze & Timmermans, 2004b;
K. Vo et al., 2021), and formulations such as nested logit models allow to capture to some degree
the interdependence of the different choices, for example, between mode and destination (Alonso-
González et al., 2018; Castiglione et al., 2015; Ortúzar & Willumsen, 2011; Shiftan & Ben-Akiva, 2010),
by subordinating one choice to the other. This interdependence is achieved by obtaining the expected
utility of the subordinate choice, by means of calculating the ”logsum” of the utilities of the alternatives
of the subordinate choice (Castiglione et al., 2015).

This kind of model is widely accepted among modelers, as their output is easy to interpret for modelers
and decision-makers, and their estimation is done with well established methods (Castiglione et al.,
2015; Ortúzar & Willumsen, 2011).

Logit models, however, can very quickly grow in complexity due to the need to calculate the utilities of
every alternative (Shiftan & Ben-Akiva, 2010), especially when logsum calculations are involved (As-
sociation of Metropolitan Planning Organizations Research Foundation, n.d.-b), which complicates the
implementation of large models with very large choice sets, as could be the case with location or des-
tination choice sets in transport models that cover extensive geographical areas with high granularity.

Also, when modeling interdependent choices in nested logits, the order of main and subordinate choice
in the model can be context-dependent. Which choice, mode or destination, should have the higher
order in a model has been suggested to vary depending on circumstances such as the country (Cas-
tiglione et al., 2015; Kitamura et al., 1997) or the trip purpose and the time frame of the decision (Leite
Mariante et al., 2018; López Díaz et al., 2020; Zondag & van Grol, 2021).

Additionally, software implementations that make use of logit models such as ActivitySim, add addi-
tional rules to the formulation, such as long term destinations (school and work) being determined in
advance for every agent and remain fixed during the runs. This also means that for these trip purposes,
destination is necessarily chosen before mode of transportation (Association of Metropolitan Planning
Organizations Research Foundation, n.d.-b).

This implies that despite the interest in logit models, this formulation still requires testing to ensure that
the structure used is appropriate for the context in which is used, in addition to recalibrating the model
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and dealing with the complexity of large choice sets.

3.2.2. Rule-based approaches

As an alternative to discrete choice modeling, ruled-based approaches try to use algorithms to mimic
the choice behavior of individuals. In this regards the options are very varied, Arentze et al. (2000)
uses decision trees, Arentze and Timmermans (2004b) derives the rules from the choice heuristics of
consumers by also adding constraints, Dianat et al. (2020) proposes the use of a skeleton schedule that
deals first with mandatory activities that happen on a more strict basis to then restrict the scheduling
of more optional activities, and Hafezi et al. (2019) clusters the population to then predict attributes of
individuals based on them.

There are already developed algorithms available to induct decision trees from data sets, and the
decision tree formulation can be computationally efficient and its results very easy to explain to decision-
makers while also allowing for interdependent choices. However the accuracy of decision trees can
suffer greatly with the lack of data, where it is possible that the sample is too small and does not
represent the heterogeneity of the real choice giving way to very biased outcomes. It is also worth
noting that the decision tree formulation also loses accuracy with very large choice sets, such as is
often the case with location alternatives (Arentze et al., 2000; Arentze & Timmermans, 2004b).

Rule-based formulations, including but not limited to decision trees, also have the issue of being deter-
ministic in their output which can be problematic if a high confidence value is not guaranteed (Arentze
et al., 2000). Additionally, while the decision rules induced by these formulations can be very easy to
interpret and explain to decision-makers, the implementation of rule-based formulations can be less
widely understood by modelers and thus considered less straightforward to implement than their dis-
crete choice counterparts, as modelers would require new knowledge to do so (Castiglione et al., 2015;
Shiftan & Ben-Akiva, 2010).

3.2.3. Multistate supernetwork extension to discrete choice models

An extension to discrete choice (logit) modeling, amultistate supernetwork, has received some attention
in recent times. A multistate supernetwork, or ”network of networks”, is a representation of the transport
system that includes a copy of the physical transport network for each possible activity–vehicle state
during a tour, where the link costs are the generalized utilities from using the network, and a path
searching algorithm finds solutions that minimize costs and that transitions between the different states
or networks (Arentze & Timmermans, 2004a) to obtain the systematic utility to be used in a logit model.
Further development of this formulation include more efficient supernetwork creation (Liao et al., 2010),
stochasticity to account for uncertainty and bounded rationality (Fu & Lam, 2014), the inclusion of more
choice dimensions (Liao et al., 2014), and accounting for household interactions (K. D. Vo et al., 2020).

The multistate supernetwork formulation has the advantage of formalizing interdependent choices with
ease, and in a much less simplified way than logit models without this extension. However, despite
attempts to achieve more efficient network representations, the inclusion of more choice alternatives
or choice dimensions makes the supernetwork explode in size, which imposes practical limitations on
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the size of the problems that can be handled with this approach (Arentze & Timmermans, 2004a; Liao
et al., 2014). Additionally, the estimation of utility function parameters for multistate supernetworks
can be more complex and new estimation methods and algorithms might be necessary (Arentze &
Timmermans, 2004a).

In practice, however the logit and multistate supernetwork approaches have incorporated elements of
rule-based approaches to overcome some of its trade-offs, and increase efficiency and accuracy (Ar-
entze & Timmermans, 2007; Association of Metropolitan Planning Organizations Research Foundation,
n.d.-b; Dianat et al., 2020; Hafezi et al., 2019; Shiftan & Ben-Akiva, 2010; K. D. Vo et al., 2020).

An issue that seems to be common to all methods described is difficulties in dealing with large choice
sets. Logit models require the calculation of more utilities which is computationally expensive, rule-
based models decrease in accuracy, and the multistate supernetwork approach, even if it can model
interdependent choices with greater ease, explodes in size also imposing greater memory requirements
despite attempts to make them more efficient. This is particularly relevant as large choice sets can
materialize when modeling destination choice, a step that can be important for sustainable mobility not
only when evaluating its direct impact with policies that change the land use, but also because mode
choice (and policies that tackle it) can be dependent on the destination and thus also relies on efficient
and accurate outputs in this regard.

Despite the additional attention required in the appropriate model structure, the interest in dealing with
this issue in the much more established logit models has given way to the development of sampling
methods that aim to reduce the number of utilities that need to be calculated in large choice sets without
compromising accuracy, which warrant exploring.

3.2.4. Sampling large choice sets in choice models

Even when logit models are the most established in literature and practice, they still present shortcom-
ings in the form of long run times in complex and disaggregate models, that stem from the need to
calculate utilities from every possible alternative in large choice sets. When facing large choice sets,
simulations that make use of logit models need to calculate the utilities of every alternative requiring
a lot of calculations and slowing down the simulation. Additionally, in cases like destination choice
models it is also questionable whether or not considering every alternative is realistic, as it is unlikely
that a person knows every possible alternative that exists or has the ability to consider them all. Hence,
some attempts have been done at sampling choices, with varying degrees of impact to result accuracy.

The relatively naive Simple Random Sampling method has been tested for multinomial logit models
(McFadden, 1977; Pozsgay & Bhat, 2001) and it achieves consistent parameter estimates at the ex-
pense of predictive capability, and significant reductions of accuracy occur with smaller sample sizes.
Nerella and Bhat (2004) suggest that to achieve acceptable results, a minimum of one eighth, and a
recommended one fourth of the data must be sampled, which can still be computationally challenging
with very large datasets.

Ben-Akiva and Lerman (1985) proposed Importance Sampling, which also yields consistent estimates,
but it relies on the modeler’s intuition to define a measure of importance or probability of utility max-
imization to sample, which introduces bias and difficulties in systematically implementing it (Lemp &
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Kockelman, 2012). To counter these issues, Lemp and Kockelman (2012) propose Strategic Sam-
pling, which initializes with Simple Random Sampling and then performs a series of iteration to achieve
accuracy in a systematic way that would also reduce bias; however, it poses a hard constrain on the
independence of relevant alternatives property, meaning that the method cannot be used for modeling
dependent choices, a quality that could be desirable in activity-based transport models, while the need
for various iterations also makes it more impractical.

Stratified Importance Sampling has also been proposed as a method to sample destination choices
decreasing bias by defining strata of destinations based on a fixed distance from any origin point which
is informed from observations in the data (Berjisian & Habibian, 2019), and extensions to this method
have been developed using the concept of activity spaces to increase efficiency and account for the
spatial awareness of the modeled agent (Leite Mariante et al., 2018; Tsoleridis et al., 2022). The latter
extension also has the advantage of being conceived for destination choice dependent onmode choice,
although it has been tested only on a small dataset or for a simplified pedestrian case, which means
its performance in larger scale models remains unproven.

ActivitySim, a software package for the development of activity-based travel models (Association of
Metropolitan Planning Organizations Research Foundation, n.d.-b), has a form of presampling built into
it, which first estimates utilities on a higher level of aggregation to define likely alternatives. However,
this relies on the definition of a zonal system that can be aggregated to a higher order. Additionally, when
estimating destinations, the package uses a simplified version of the utilities of the alternatives that
ignores the logsum (expected utilities) of interdependent choices and obtains a sample by simulating
decisions with the corresponding logit probabilities. The final real utilities are then only calculated for
the alternatives in the resulting sample.

While the simplest method of sampling that could be implemented is Simple Random Sampling, the
suggested sample size of one eighth to one quarter of the choice set is too prohibitive for this model,
as the sample would still be too large and have massive memory requirements.

It is also easy to see the challenges in implementing Importance Sampling. While the consistency over
the years of the format of the data would allow for some systematization of this method, the measure
of importance which is left to the criteria of the modeler would introduce bias.

In the case of Strategic Sampling, although the literature suggests it can be effective even when se-
lecting relatively small sample sizes, the requirement for different iterations, especially on a step that is
hard to perform without human intervention such as the re-estimation of parameters, make this method
a time-consuming alternative and only raises the barrier to develop an activity-based model.

Sampling by using simplified utility functions (with no interdependence) could be a practical solution,
however, the impact of this method on accuracy and possible bias is unknown. Likewise, Stratified
Importance Sampling with activity spaces could prove a useful alternative that overcomes some of the
limitations of other methods while not requiring to ignore interdependence of choices for the sampling
of alternatives, an advantage that could be relevant given the importance of mode choice behavior in
the policies described in section 2.1 and the interdependence of mode choice and destination choice
(a large choice set) as described in section 3.2.1. Testing is needed to determine the accuracy of these
methods.
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Logit models appear in general to have several advantages over rule-based models and the multistate
supernetwork extension for their use in activity-based models. While rule-based models still suffer in
accuracy with large choice sets, and multistate supernetworks are difficult to manage and implement,
modelers are muchmore familiar with logit models which already provide good explainatory value, have
well established estimation methods, and as previously detailed have seen considerable research in
dealing with the difficulties imposed by large choice sets. However, the accuracy of logit models that are
estimated using these methods and for the interdependent choice structure needed warrants testing.

Beyond the state-of-the-art methodology, the replicability and adaptability of the models eases their
deployment by means of improving their verification (Hörl & Balac, 2021), and reducing the time and
costs associated with developing them (Association of Metropolitan Planning Organizations Research
Foundation, n.d.-b; Hörl & Balac, 2021).

In this regard, it is useful to evaluate practical considerations in the use of activity-based models such
as the availability and suitability of data (Shiftan & Ben-Akiva, 2010), and the use of open software
(Hörl & Balac, 2021). Hence, these aspects are also further explored in this review.

3.3. Replicability and adaptability

Some attention has been put in the replicability and adaptability of activity-based transport models,
especially in the context of the data and tools used. Hörl and Balac (2021) highlight that the use of
proprietary data and tools does not allow other parties to examine and use the model, therefore limiting
the reach and usability that they could otherwise get, while Shiftan and Ben-Akiva (2010) highlights
that new data collection as opposed to using available data would present additional hurdles.

Likewise, the Association of Metropolitan Planning Organizations Research Foundation (n.d.-b) and
Castiglione et al. (2015) remark that the time and costs associated with deploying an activity-based
model are hard to predict upfront and can pose a significant constraint, therefore, we can argue that
using available and flexible tools to reduce them can be beneficial.

3.3.1. Data requirements of activity-based transport models

Trends can be identified in the way activity-based models make use of data. As highlighted by Ortúzar
and Willumsen (2011) and Shiftan and Ben-Akiva (2010), activity-based transport models have greater
data requirements as they model choice in a disaggregate manner, contain a larger number of alter-
native choices and more unknown parameters than less advanced models, which means that use of
existing data needs to be maximized, or new data generated. This is specially true considering the lack
of purpose-collected data when evaluating innovative policies.

In past works, very often data is collected with the sole purpose of building activity-based transport
models, especially in the form of travel diaries. This is the case of the works of Arentze et al. (2000)
and Arentze et al. (2005), Philip et al. (2013), while Daisy et al. (2020) and Hafezi et al. (2019) even go
to the lengths of using GPS data to augment and verify these travel diaries.
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However, according to Shiftan and Ben-Akiva (2010), even when the lack of detailed data collection
can present a considerable hurdle in the development of activity-based transport models, the prob-
lems present in collecting detailed data prompts researchers to keep surveys to a minimum level of
complexity and instead make use of already available data. In this regard, Arentze and Timmermans
(2004b) makes use of travel diaries from the Rotterdam region in 1997, while Dianat et al. (2020), Han
et al. (2021), Hörl and Balac (2021), and Knapen et al. (2021) simply make use of the data available in
existing travel surveys.

In the context of the Netherlands, the availability of data from a Dutch travel survey, ODiN, that is
collected annually (Centraal Bureau voor de Statistiek, 2021) paints a favorable picture towards models
that are easy to estimate, update, maintain and replicate.

3.3.2. Software tools for activity-based models

In addition to available data like existing travel survey data, Hörl and Balac (2021) also recommend the
use of open source software tools that make their code available, which improves the adaptability of
the modeling process in different contexts.

The possibility to use these tools and data also gains particular importance when accounting for the cost
and time needed to develop activity-basedmodels. Castiglione et al. (2015)mentions that while the cost
and time needed to develop these models has greatly decreased in recent times, the implementation
of new features and software can still prove significant, and the needed calibration for models can have
uncertain costs and schedule. Open source tools and available data could provide a way to mitigate
this.

Open source tools such as MatSim have been already used for activity-based models in the works
of Eluru and Choudhury (2019) and Han et al. (2021), which comes in stark contrast to the case of
the Melbourne Activity Based Model from Infrastructure Victoria (2017), who exclusively makes use of
proprietary data and tools and whose model details are not available to the public, possibly increasing
the costs associated to the model and eliminating the possibility of outside verification.

Besides MatSim, ActivitySim is presented as another open source software option to make activity-
based models. ActivitySim is actively maintained, expanded, and explicitly developed by a consor-
tium of planning agencies in the United States for reusability across different contexts (Association
of Metropolitan Planning Organizations Research Foundation, n.d.-b), which is possibly an advantage
over MatSim, which has less built-in integrations and whose extensions are driven by research projects
without much regard for reusability (ETH Zürich, 2016). However, it is worth noting that because of Ac-
tivitySim being developed or use in the United States, a quick look into its needed inputs it is evident that
it was developed to use information from a different travel survey design in mind; travel surveys used in
the United States have discrepancies from those used in the Netherlands (Association of Metropolitan
Planning Organizations Research Foundation, n.d.-b; Centraal Bureau voor de Statistiek, 2021).

There are also open software options for the estimation of logit models. Biogeme and Larch are ex-
amples of this, specializing in making model specification and parameter estimation simpler (Bierlaire,
2018; Newman, 2021). In this regard, it is also worth noting that ActivitySim has integrations with
Larch, with the explicit intention of improving the reusability, replicability and adaptability of the model
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(Association of Metropolitan Planning Organizations Research Foundation, n.d.-b).

In general, the availability of data and open source software seem to present an opportunity for deploy-
ing activity-based models in the Netherlands with relative ease.

3.4. Activity-based transport models in the Netherlands

In this context, a couple of important activity-based transport models developed for the Netherlands
deserve attention. One is a model for the Eindhoven region developed by Arentze et al. (2005), and
another is the ALBATROSS model for the Dutch Ministry of Transportation, Public Works and Water
Management developed by Arentze and Timmermans (2004b), which is often integrated in the not
explicitly activity-based Dutch National Model System (LMS) as needed (de Jong & Kroes, 2008). Both
models made use of purpose-built travel diaries and a rule-based approach, and while the data that had
to be purposefully collected at the time is nowadays more widely available, the rule-based approach
still means that they would require more significant extensions to add sensitivity to new policies. The
ALBATROSS model also has the limitation of assuming a single mode for an entire tour (Hasnine
& Habib, 2018), which introduces limitations on the testing of policies specifically designed to favor
multimodal travel. Additionally, these models also have little verification and their forecasting power
and transferability are unaccounted for (Dianat et al., 2020).

The newer model by Knapen et al. (2021) was explicitly developed to be sensitive to mobility hubs
in the Netherlands, and it makes use of discrete choice modeling, hence, it does not suffer from the
same problems that its rule-based counterpart does. However, the methodology described still leaves
the previously explored issues of choice models with large choice sets unresolved, an issue that Bao
et al. (2018) note that the used model formulation has. Likewise, the need to use multiple tools with
purpose-made integrations make the maintenance and replicability of the model less straightforward,
even if it uses readily available travel survey data.

3.5. The gap in the research

In the trade-offs between accuracy and practicality for real life applications, logit models seem to be the
most promising alternative to model choices in activity-based models as they provide good explainatory
power and do not seem to lose accuracy with large choice sets (like it is the case of destination alterna-
tives in large areas) nor explode in size with the number of choice dimensions modeled. Logit models
are also well established in the literature and their estimation procedure well known, to the point that
as software packages exist that make model specification and parameter estimation simpler (Bierlaire,
2018; Newman, 2021).

However, logit models do still face issues when dealing with these large choice sets, especially when
there is interdependent choices, as the need to calculate all the possible utilities can significantly slow
down model runs. For this, sampling methods for large choice sets have been developed in the liter-
ature, of which the use of simplified utility functions, and Stratified Importance Sampling could be in-
teresting to test and evaluate their accuracy. This also places special importance in destination choice
modeling.
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The possibility of using existing data in the form of the National Travel Survey is also important, as it
further simplifies model estimation and increases replicability and adaptability of the model, especially
as it makes it easy to update the model parameters when new data is released. Previous models in
the Netherlands have already made use of the survey data, however, they stop short of providing any
guidance that helps in the replicability of the data preparation nor the estimation of the parameters
derived from this data.

Additionally, thesemodels also do not make use of frameworks that can easily be reused, opting instead
for their own custom-made submodels and integrations without a focus on being able to reproduce the
work either. Open source software packages such as ActivitySim seem to unveil a potential to do this,
making activity-based models much simpler to apply, maintain, and replicate, especially with useful and
reusable integration of the different modeling steps.

3.5.1. Research questions

Dutch decision-makers in the arena of transport planning could benefit from an activity-based transport
model formulation that uses discrete choice modeling, which has proven easy to calibrate, integrate,
and to incorporate sensitivity to relevant policies to it (Castiglione et al., 2015), so that it could have
an advantage over existing alternatives. A possibility is to use ActivitySim, an open source software
package developed to estimate activity-based models in the US as a starting point to estimate such
a model in the Netherlands, and use the already available Dutch travel survey data (Centraal Bureau
voor de Statistiek, 2021), to aim for a model that is adaptable and easy to update.

Such a formulation needs to overcome the data requirements of the software, which were developed for
a differently designed travel survey. It should also consider advances in the sampling of alternatives for
computational efficiency and test the suitability of the built-in sampling method used in the software and
of other recently developed sampling methods to optimize model run times and predictive capability.

Such formulation, however, remains to be implemented and tested, which brings brings us to the main
research question:

What is the accuracy and efficiency of an activity-based model developed using travel survey data and
open source software?

This research question is also broken down into the following subquestions:

• What are the advantages and limitations of using ODiN data and the ActivitySim software to
estimate activity-based model parameters?

• What is the accuracy of destination choice models developed using ODiN data and ActivitySim?

• What is the impact of Stratified Importance Sampling on model accuracy and performance?
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Research approach

This research aims to develop an activity-based transport model for the Netherlands, in which the gaps
identified in Section 3.5 are addressed, and the performance of the model is benchmarked.

This project will estimate the choice model parameters to be used in an activity-based transport model,
and then test the usability of such a model for policy planning, while ensuring that the model can be
easily be updated with new travel survey data, which makes the framework replicable and reusable.

In this chapter, the research approach followed for the research is outlined, the data and tools needed
are listed and described, and the method to answer the research questions is explained.

4.1. Research approach

This research project will follow an empirical analysis and process design approach, as it focuses on
estimating efficient and accurate choice models using existing data and software, and then on devising
a useful procedure to build a reliable and usable activity-based transport model in the Netherlands
with it. The main outcome of this project is the procedure itself, and the performance evaluation of the
model. This model, or others that follow it, can then be used by analysts and researchers to make
sense of travel patterns and evaluate policy impacts.

4.2. Data requirements and data sources

A first step in the model development consists in identifying data requirements. Modeling the choice
behavior of travelers requires a significant amount of data about the travel destinations (zonal data),
the network, and the travelers themselves. Additionally, the policies that will be tested need to be
considered to make sure that the model is sensitive to them, for which additional data requirements

24



4.2. Data requirements and data sources 25

might be imposed. For this project, TNO made available a number of data sources that are used in
models for the Metropolitan Region Rotterdam The Hague, hence, for practical purposes, this project
will focus on this region.

4.2.1. Zonal (land use) data

Zonal data is also in the possession of TNO and it also corresponds to the data used for the transport
models of the Metropoolregio Rotterdam Den Haag (2021). Zonal data defines a number of properties
for every TAZ (Traffic Analysis Zone), like the number of jobs (broken down per type of job), num-
ber of study places (broken down per type of students or level of education), population, area size,
urbanization level, and other characteristics that may be needed for the model.

This zonal system splits the surface of the Netherlands into 7786 different TAZs (MRDH zones), which
are much smaller in size in the Metropolitan Region Rotterdam The Hague than in the rest of the
Netherlands. This has to do with the level of aggregation desired in the model, where outputs are
needed in much more detail for the area of interest (the Metropolitan Region Rotterdam The Hague)
that they are needed in the area of influence (rest of the Netherlands). The area of influence is, however,
still included since as its name indicates, it can still affect model outcomes, namely by serving as origin
and destination of trips that also traverse the area of interest.

In rough terms, the numbering of the zones increase the further away they are from the Metropolitan
Region Rotterdam The Hague, and thus their area size also tends to increase with the numbering.

4.2.2. Network data

Network data can be obtained from sources like OpenStreetMap (2021) or publicly available resources
like the data register of the Rijkswaterstaat (2018), and then processed into skimmatrices that reflect the
generalized cost or disutility of traveling at different times during the day. They can be processed with
the use of software tools like OmniTRANS or MatSim, however, in this case, TNO has made available
already processed skim matrices that were obtained from the transport models of the Metropoolregio
Rotterdam Den Haag (2021) which will be used in this model.

This data has been processed in the same system as the land use data, that is, into MRDH zones,
which means that each skim matrix contains network level of service information for 7786 x 7786 origin
and destination pairs. This data set contains the generalized travel costs between every origin and
destination pair, per every possible mode of transportation modeled, and for different times of day
during weekdays (morning peak from 7 to 9 am, afternoon peak from 4 to 6 pm, and rest of day).

4.2.3. Survey data

Data from the travelers is obtained in the form of the Dutch National Travel Survey, collected by the
Centraal Bureau voor de Statistiek (2021). This survey contains revealed travel preferences for the
Netherlands, and since 2018 a new survey methodology was introduced to create the Onderweg in
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Nederland (ODiN) survey, which makes current data not comparable to prior data, which means that
special attention will need to be placed when processing the data using methods from previous years
to make sure that the data remains logical and consistent. Additionally, this makes it more complicated
to compare with previous models that used data in the old format. Demographic data can also be used
to complement this set, obtained from the CBS (Centraal Bureau voor de Statistiek, 2019).

This data set contains information of all the trips performed by respondents on a specific day, like origin
and destination, time of departure and arrival, purpose of the trip and mode of transportation; as well
as personal information about the respondent such as home zone, income level, vehicle ownership,
driving permit possession ownership, employment, age, and gender. A description of all the fields in
the survey data can be found in Appendix A.

This data codes origins and destinations by post code zones (PC4), while the zonal and network data
obtained from the MRDH model are coded in MRDH zones. This means a translation from PC4 to
MRDH zones is needed, which in this case, was performed based on travel purpose and zonal data,
that is, a PC4 destination for a trip with a certain purpose is mapped to the MRDH zone that overlaps
the PC4 zone and has the most relevant zonal characteristics, for example, the most jobs in a work
trip.

Data from 2019 is used, as the latest available data (2020) is deeply influenced by the restrictions
on mobility put in place to curve the spread of the COVID-19 pandemic, rendering it unusable for our
purposes. The ODiN survey for 2019 contains 179091 entries from 53380 different respondents, each
from a different household. Each respondent is asked to fill in information about all their trips (travel
diary) performed on a single day of the reporting year.

4.2.4. Other data

Additionally, a synthetic population is used as the population for the simulation runs after the model is
estimated. This synthetic population reproduces the characteristics of the aggregated land use data
to provide a close match to what the real population looks like. For this project, TNO provided an
already processed synthetic population, which is already formatted to the requirements of the model,
containing the fields like age, sex, employment, household, person type, student type, possession of
driving license, education status, and possession of vehicles.

Finally, there are data requirements to validate model results. Possible options include outputs of
previous models, and alternative data sources like commercial GSM data.

4.3. Software and tools

The main tool to be used is ActivitySim, an open source activity-based modeling tool developed us-
ing the Python programming language (Association of Metropolitan Planning Organizations Research
Foundation, n.d.-b). Python offers as an advantage that many useful open source libraries have been
developed for it, like various tools such as Pandas for data processing, Larch for choice model estima-
tion (which already has some coupling with ActivitySim), and openmatrix and pyyaml to handle data
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inputs.

ActivitySim first performs a series of steps to setup the data that it needs, to then execute choice
submodels in a structure equivalent to that described in section 2.3, and finally export the results. Long
term choices (workplace and school location) are decided first for every person in the population, then
medium term choices like car ownership and whether or not the person has access to free car parking,
subsequently activity patterns for the day are decided (tour generation, scheduling, mode choice, etc),
and finally trip level decisions are made (adding additional stops in tours, trip purpose and destination,
and mode choice). The model structure is visually represented in Figure 4.1.

Figure 4.1: ActivitySim submodels, based on Association of Metropolitan Planning Organizations Research Foundation (n.d.-a)
and Zephyr Transport (2020).

The use of the ActivitySim framework also presupposes the use of logit models, as one of the big ad-
vantages of this software package is that it has support for it. The ActivitySim framework was designed
to be reusable and relatively easy to set up, and as such it has functionality added to estimate model
parameters. Inputs are easily loaded in the form of the data previously described in csv tables and
omx matrices, model settings are written in yaml files, and choice model parameter values are written
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in another set of csv files. In some cases, some data processing and the calculation of additional fields
might be necessary between model steps, which is made possible by specifying the different calcula-
tions on additional csv files. This becomes relevant for example when calculating the expected utilities
of a choice to be used in another choice model, for example, the expected utility of the mode choice
for the destination choice which is calculated as the logsum of the utilities.

To be able to estimate model parameters, ActivitySim can first perform a run in ”estimation mode”
using any initial parameter values for the first iteration. ActivitySim runs the simulation using these
parameters and running the choice models for the population of the survey. The explainatory variables
used, the simulated choice, and the choice that was actually made (known or inferred from the survey
data) are stored in what the developers of the software call an ”Estimation Data Bundle” (EDB), as this
contains the data that would be needed to re-estimate the model parameters and evaluate the fitness
of the model.

Here, the Larch integration of ActivitySim comes in handy. Larch is a library that was developed to
perform maximum likelihood estimations for logit models, that is, it estimates the model parameters,
which in this case does so by using the Estimation Data Bundles as input. The Larch integration
produces the new parameters and measures of likelihood and fitness of the new choice model, as
well as statistic significance for each parameter. Based on these results the modeler can gauge it a
satisfying model has been produced or if a new iteration needs to be run in estimation mode.

After satisfying models have been estimated, ActivitySim can then run a full simulation using the syn-
thetic population.

Additionally, an SQL server is set up to host, access, and query the survey data in an accessible
and easily manageable way, with the help of software like HeidiSQL and connections with the Pandas
Python library.

While it will not be used directly throughout the course of this research project, it is also worthmentioning
that OmniTRANS (Goudappel, 2022) was used in the processing of the skim matrices.

Finally, to handle the computationally expensive model, a remote server with enough processing power
will be used to achieve manageable runtimes. This server has a 40 core 2,4 GHz CPU and a memory
of 130 GB.

4.4. Method

In this section, the method used to execute the research and answer the research questions is de-
scribed.

4.4.1. ODiN survey data processing

While network and zonal data require to be put in the right format for ActivitySim to take it as input, travel
survey data requires considerable processing to fit the input requirements that the package imposes
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to estimate the model, as seen in Figure 4.2.

In an ActivitySim simulation, the zonal data, network data and a synthetic population would be passed
as inputs and the package would give a series of trips and tours as an output. In this case, however,
ActivitySim offers a useful functionality, called estimationmode, to estimate the parameters of themodel
from a travel survey that is formatted as the population table but also as the outputs, so that the model
can compare its own output with the expected output in what is called an Estimation Data Bundle. This
is then used by a logit model estimation tool such as larch, which has some integration with ActivitySim,
and the new parameters for the model are estimated, which are then fed to ActivitySim to run a new
simulation.

To obtain the Estimation Data Bundles, the survey data needs to be processed into a set of different
tables, namely households, persons, tours, joint tour participants, and trips tables, with the expected
fields mentioned in Figure 4.2. The challenge lies in that ActivitySim was designed for US survey data,
which is different from the ODiN data set, and thus, many transformations and the inference of implicit
data need to take place.

This step needs to have as a result the formatted survey data and the replicable methodology to process
the ODiN data from subsequent years, so that the model can be easily re-estimated in the future.

4.4.2. Discrete choice modeling

After obtaining the Estimation Data Bundles, the model parameters can be estimated. These param-
eters correspond to the arguments in the utility functions of the different choice alternatives that are
defined by the user in the settings files.

The estimation process yields as a result a measurement of fitness, and a measurement of statistical
significance per every argument in the utility function. The utility functions can be changed using this
information and repeating the previous steps until a good fit is achieved. Special attention needs to
be placed in arguments that introduce sensitivity to desired policies, as if these are removed, so is the
sensitivity and the usefulness of the model.

Then, ActivitySim can be used to run a simulation using these parameters and a synthetic population.
These simulation results need to be evaluated and validated. Figure 4.3 details the workflow to process
the data and arrive to a re-estimated model.

4.4.3. Sampling of destination choices

As described in subsection 3.2.4, ActivitySim already implements a form of destination choice set sam-
pling that is based on a simplified simulation of the utilities of the alternatives. Based on the model
outputs, this method needs to be tested for the Netherlands, and if necessary, improved or changed
and compare the performance of the alternative.

Stratified Importance Sampling can be useful to compare against ActivitySim’s default sampling. The
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Figure 4.2: Data flowchart for ActivitySim, extracted from Association of Metropolitan Planning Organizations Research Foun-
dation (n.d.-b)
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Figure 4.3: Workflow for re-estimation of the model parameters using ActivitySim and ODiN data.

samples can be systematically obtained from the survey data, by looking in the origins and destinations
for the specific trip purpose present in the data, obtaining the distances between them, and using that
to define a distance search radius from each possible origin. The zones that fall within the radius have
equal probability, while the zones outside have a probability of zero. This can then be swapped instead
of the default sampling, meaning that the possible destinations will be drawn form here, and the new
results can be evaluated and validated.

4.5. Validation and performance measurement

The model output will be evaluated in a series of metrics. The first and most important is the model
accuracy, where the predictive power of the logit destination models needs to be measured. An initial
measurement is provided in the estimation step, where the fitness 𝜌2 value gives an idea for every
choice model.

This however, does not provide the full picture, and simulation outputs need to be compared with real
data to provide insights in its usability in predicting mobility across the Netherlands. The choice of
workplace and school locations for the synthetic population can, for example, be compared with the
jobs and student capacity known from the zonal data, and the distance to work and school can be
compared between simulation output and what is known from the survey data. It is also important to
take a look into specific cities and not just the aggregated result.
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Additionally, since efficiency also has an important impact, runtimes in the available hardware will be
measured.



5
Results

Following the outline of the methodology described in Chapter 4, in this chapter the results of each step
will be presented and interpreted in light of the research questions.

5.1. Data processing

While being the most time intensive stage in the project, the steps taken to process the ODiN survey
data resulted in the data in a format that matches most of the requirements imposed by ActivitySim,
even if the package was not designed for compatibility with ODiN.

Since the policies conceived in section 2.1 mainly focus on travel that is not performed as a professional
activity (i.e. driving a truck), professional drivers needed to be removed from the data. Likewise, to
obtain the data for a ”typical” day in the Netherlands, the survey first needed to be filtered to contain
only information from weekdays between 5 am and 10 pm and to remove respondents with missing
information in a needed field (i.e. missing information about employment status). This proved easy
to do by querying the ODiN data from the SQL database that was previously set up. Additionally, the
focus on the Metropolitan Region Rotterdam the Hague also requires to filter out respondents that do
not perform any traveling on this region.

Second, all origins and destinations needed to be mapped from postcodes to MRDH zones. To create
a mapping that still provided reasonable destinations for trips based on purpose, the shapefiles of
both zone systems were laid on top of each other and new ”fragments” are created with the different
overlaps. The zonal data from the MRDH zones is then also split proportionally to the area of the
fragment, that is, if a fragment has a percentage of the area of the MRDH zone, then it gets assigned
the same percentage of the zonal data values. Then, a certain postcode location could be mapped to
either of the zone fragments that originated from an overlap with said postcode, and the fragment with
the greatest value for the relevant zonal data field according to the trip purpose (i.e. employees for
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workplace location and population for home).

The next step was obtaining the workplace location and school location. Workplace and school lo-
cations are not explicitly defined in ODiN, however, it can be assumed that they correspond to the
destination of trips that have as purpose to go to work and school respectively, for every survey re-
spondent.

Then, the different tours and subtours were identified in the data. Tours are home-based and subtours
are work-based, which means that all trips counting from the departure from the workplace location until
its return and without going home first are a subtour, and all the trips since the departure from home
and until arrival back at home, excluding those that are part of a subtour, are a tour (and the parent
tour of any subtours that may have been performed). An ID is given to every tour and the respective
parent tour ID is given for every subtour.

After, the outbound and inbound trips of every tour, defined as the trips before and after arriving to the
main destination of the tour, were respectively identified.

The data was then subset to obtain the households table as required by ActivitySim (figure 4.2). It was
assumed that there was only one unemployed person in the household if the respondent was unem-
ployed, and non otherwise. All other adults in the household are employed. The median income deciles
from ODiN were mapped to median monetary values using CBS data, and the household type was ob-
tained based on the household composition and gender of the respondent according to specifications
obtained from Association of Metropolitan Planning Organizations Research Foundation (n.d.-a).

For the persons table, the employment status, student status and person type were also defined accord-
ing to the specifications of Association of Metropolitan Planning Organizations Research Foundation
(n.d.-a), based on the age of the respondent, paid work status, and possession of a student OV chip-
kaart, as well as the age of retirement in the Netherlands. Since children can have some information
unavailable from the survey due to privacy concerns, it had to be assumed that all children from 12
years of age and older have finished primary school. Coordinated daily activity patterns (CDAP) were
obtained by obtaining the tours per person, and identifying persons who took mandatory tours, persons
who only took non-mandatory tours, and persons who stayed at home on the reporting day. Mandatory
and non-mandatory tour frequency were obtained by counting the number of corresponding tours (per
purpose) and mapping the counts to alternatives specifying a combination of tours per purpose.

For trips, modes were grouped into walk, car, car passenger, bike, ebike, public transport (with walk as
access and egress mode), and DRT. Additionally, the survey contained stay at home ”trips”, which are
false empty trips that occurred when the respondent did not leave home for the entire day of reporting,
and thus have to be removed.

Subsequently, for tours, the tour purpose was selected from the purpose of all its trips according to an
assumed hierarchy, and the destination of the tour was set as the destination of the trip whose purpose
matched the tour purpose. The origin and departure time were set as those from the first trip in the tour,
and the end time was that of the last trip. Tours were then categorized as mandatory, non-mandatory,
and at work. The stop frequency was inferred by counting the stops per (outbound and inbound) part
of the tour and likewise the at work subtour frequency was obtained by counting the subtours of work
tours. The tour departure and duration (scheduling) was obtained from departure and arrival times and
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mapped to a single combination ID that would be used by the model for ease. Lastly, the tour IDs
were redefined by using what is known as ”canonical tour IDs” by the developers of ActivitySim, which
provide constant and replicable IDs based on the person ID, tour purpose, and tour number for the
person.

The processing of ODiN survey data yielded as a result the processed data for 5514 persons, who
performed 16545 different trips as part of 7204 tours (of which only 24 are at work subtours, and none
identified as joint tours). These will be used as input to estimate model parameters in ActivitySim.

The procedure developed to process the data is summarized in the flowchart in figure 5.1. No joint tour
participants table was possible to extract as very limited information exists about joint tours. Likewise,
no tours were classified as joint because of the same lack of information. Other fields needed on these
tables were directly available from the survey data. A summary of the data processing decisions and
assumptions made and the calculations performed can also be found in a table format in Appendix B.

Figure 5.1: Flowchart diagram depicting the procedure to obtain the tables required by ActivitySim for model estimation from the
ODiN travel survey.
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5.1.1. Data completeness

Although as previously mentionedmost of the information needed was present in the data, some excep-
tions exists, not only in the need to draw CBS income data but also regarding joint tours and household
members. Joint tours information is largely unavailable in the ODiN data, as respondents are not asked
about other participants in their tours beyond information requested about their role in a vehicle (driver
or passenger) and if the purpose of a tour or trip was to escort someone else. This affects the joint
tours table and the tour composition field in the tours table which describes the composition of joint
tours (see figure 4.2), and which are needed to calibrate the model.

Likewise, only one person is surveyed from a given household, and while household information is
requested in the survey, including the household composition, very little disaggregated information nor
trips and tours performed is obtained for individuals other than the respondents themselves, limiting
the possibility of evaluating household interactions in the model.

Both these issues occur due to the differences in the survey design between the Dutch travel survey
(ODiN), and the US travel survey for which ActivitySim was designed. Contrary to travel surveys in the
US, the ODiN survey is applied to a single respondent per household, and only travel information from
that respondent is asked.

Additionally, as mentioned in section 5.1, the school and workplace location is determined by obtaining
the destination of trips with the corresponding purposes per person. The absence of this data directly
from the survey, however, introduces an important limitation in that even if the person is known to be a
student or employed, if said person did not perform a trip to the relevant location on the reporting day
the location is unknown from the survey. These entries, however, are kept in the data since they still
provide valuable information for other trips.

The number of subtours obtained in the data also seems to be rather low in comparison to the total
number of tours. This might put into question the suitability of this data to predict these subtours.

In light of the policies previously outlined in section 2.1, it relevant to know that there is available in-
formation in the survey about the fuel type of cars owned in a household, including electric and hybrid
vehicles, and information about engagement in car sharing (although the sharing of other modes of
transportation remains missing), which is needed to include more detail about these modes of trans-
portation in the model.

Another additional bit of information that can be useful in future models is related to remote working.
When a respondent is asked to fill in their travels for a given day, but that respondent did not leave
home during the whole day, more information is asked as to for what reason this was the case, and
one of the possible answers is working remotely. While not directly related to any sustainable mobility
policy mentioned in this work, it is reasonable to think that if remote working changes travel patterns
this will have to be taken into account in future models to obtain realistic outputs.
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5.1.2. Fitness for purpose of the data and documentation available

The data from ODiN could be easily split in persons data, households data, trips data, and tours data.
Moreover, almost all the fields required by ActivitySim were able to be obtained from the survey after
performing a series of transformations and calculations.

This was done using minimal additional sources of data, the exception being household income. ODiN
does not directly provide household income values in euros, and instead splits households in income
groups (deciles) by using the income distribution of the Netherlands and splitting it into groups of 10% of
households each. To get back the income value in euros, this process needs to be somehow reverted,
for which the median income of each income group was obtained from the Centraal Bureau voor de
Statistiek (2019) and mapped to every household of the corresponding income group. This still leaves
10 income groups, but the field is expressed in a monetary amount.

Much of the information needed to arrive to the correctly formatted data is available in the ActivitySim
documentation, such as the definition of student types, worker types and person types, which were
then adapted to the context and availability of information of the Netherlands, like a different age of
retirement and the lack of detailed data for small children.

Following this, the fields required to override the model choice in the estimation process could be
inferred in a way very similar to that used to obtain them from the US survey (for which ActivitySim was
conceived). The assumptions made to process the data are detailed in Appendix B.

There were, nonetheless, some unexpected complications in processing the data that came from field
definitions that are left implicit in ActivitySim’s documentation, and had to be deduced by looking into
the example cases and the source code. One example of this issue is the use of something called
”canonical IDs” to identify tours, which essentially make tour IDs consistent across the different pro-
cesses in the model, and even across simulations. The model required such an ID scheme to be used
in the data that was input for estimation, but no explanation is provided in advance, and only looking at
the source code directly provides clear answers.

5.1.3. Implications for the modeling process

Since the ODiN data has the same format every year, this procedure, and the script in which it was
performed, can be reused to obtain the necessary data from any other year with ease, which would
eliminate the need to spend considerable time in processing this data for ActivitySim, as well as lowering
the barrier to develop and calibrate an activity-based transport model for the Netherlands. The steps
needed to process the data are described in the relevant script.

Still, minimal modifications need to be made in the programming of the ActivitySim package to deal
with the missing information for joint tours and joint tour participants, which in this case is only needed
in one step and thus can be easily changed.

After obtaining the processed data inputs, writing model settings, and writing initial parameters on the
utility functions, ActivitySim can be run in estimation mode to obtain the Estimation Data Bundles to be
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used in the estimation of the parameters.

However, the missing workplace and school locations from the data warrant additional processing af-
ter obtaining the bundles. The estimation procedure adjusts the parameters of the utility functions of
choices by comparing the choices made by the model and the choices known for the survey, but when
there are unknown choices in the survey, these must be removed to be able to proceed with estimation.

The issue of missing documentation described also has as a consequence an increase of the time
needed for the already time consuming data processing, as considerable time is spent in an attempt to
reconstruct the needed format without guidance from the developers of the software.

5.2. Discrete choice modeling

ActivitySim operates under the assumption that the destination for mandatory tours (school and work-
place location) is selected only once per person and does not change over time. Additionally, this
choice is not done in conjunction with mode choice, and the only aspect of the mode choice that could
affect the location choice for these purposes is as part of the utility functions through the use of logsums.
To test the suitability of this modeling choice, the data from the ODiN survey is used to run ActivitySim
in estimation mode and obtain the Estimation Data Bundles.

The Estimation Data Bundles are used to estimate the model parameters with the help of the Larch
library (and its integration with ActivitySim). These parameters are then swapped in for the previously
used parameters in the model, and ActivitySim is run in simulation mode using a synthetic population
that accurately represents the population according to the land use data. The output from this step is
described in this section.

5.2.1. Estimated logit models

The Estimation Data Bundles needed to re-estimate the parameters of the utility functions in the logit
models for ActivitySim are obtained by running ActivitySim in estimation mode using the prepared ODiN
data. The bundles contain the choices simulated using the survey data and the choices known from
the same data, as well as the attributes and parameters that defined those choices. This information is
read with the help of the integration between Larch, an estimation software package, and ActivitySim,
and the computations are performed to obtain the new parameters and statistics that indicate their
suitability, such as the model fitness, and the statistical significance of each parameter. The utility
functions are tweaked progressively and this process iterated until utility functions that contain only
statistically significant parameters and which provide good model fitness are obtained.

For school location, ActivitySim segments the population into school students, high school students,
and university students, and the utility functions that define the school location choice after performing
the iterative process can be found in equations 5.1, 5.2, and 5.3, obtaining a fitness value 𝜌2 = 0.85. In
these equations it can be observed that the distance measurements are made in segments, which was
done to allow for the distance between home and school to be weighted in a way that is not completely
linear (as a constant parameter for the whole distance would imply).
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It is worth noting that high accuracy was obtained despite not including demographic variables, probably
because they are already implicit in the segmentation and each segment behaves in a relatively uniform
way. Additionally, ActivitySim takes into account from the zonal data whether or not an alternative
locations is viable, that is, if it has education places, which means that the choice set is constrained
which increases accuracy as well.

𝑉𝑠𝑐ℎ𝑜𝑜𝑙 = 𝑐𝑜𝑒𝑓_𝑔𝑟𝑎𝑑𝑒_𝑑𝑖𝑠𝑡_0_1 ∗ 𝑑𝑖𝑠𝑡_0_1 + 𝑐𝑜𝑒𝑓_𝑔𝑟𝑎𝑑𝑒_𝑑𝑖𝑠𝑡_5_15 ∗ 𝑑𝑖𝑠𝑡_5_15
+ 𝑐𝑜𝑒𝑓_𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚 ∗ 𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚

(5.1)

𝑉ℎ𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙 = 𝑐𝑜𝑒𝑓_ℎ𝑖𝑔ℎ_𝑑𝑖𝑠𝑡_1_2 ∗ 𝑑𝑖𝑠𝑡_1_2 + 𝑐𝑜𝑒𝑓_ℎ𝑖𝑔ℎ_𝑑𝑖𝑠𝑡_2_5 ∗ 𝑑𝑖𝑠𝑡_2_5
+𝑐𝑜𝑒𝑓_ℎ𝑖𝑔ℎ_𝑑𝑖𝑠𝑡_5_15 ∗ 𝑑𝑖𝑠𝑡_5_15 + 𝑐𝑜𝑒𝑓_ℎ𝑖𝑔ℎ_𝑑𝑖𝑠𝑡_15_𝑢𝑝 ∗ 𝑑𝑖𝑠𝑡_15_𝑢𝑝

+𝑐𝑜𝑒𝑓_𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚 ∗ 𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚
(5.2)

𝑉𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 𝑐𝑜𝑒𝑓_𝑢𝑛𝑖𝑣_𝑑𝑖𝑠𝑡_1_2 ∗ 𝑑𝑖𝑠𝑡_1_2 + 𝑐𝑜𝑒𝑓_𝑢𝑛𝑖𝑣_𝑑𝑖𝑠𝑡_2_5 ∗ 𝑑𝑖𝑠𝑡_2_5
+𝑐𝑜𝑒𝑓_𝑢𝑛𝑖𝑣_𝑑𝑖𝑠𝑡_5_15 ∗ 𝑑𝑖𝑠𝑡_5_15 + 𝑐𝑜𝑒𝑓_𝑢𝑛𝑖𝑣_𝑑𝑖𝑠𝑡_15_𝑢𝑝 ∗ 𝑑𝑖𝑠𝑡_15_𝑢𝑝

+𝑐𝑜𝑒𝑓_𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚 ∗ 𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚
(5.3)

𝑊ℎ𝑒𝑟𝑒

𝑑𝑖𝑠𝑡_0_1 ∶ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 0 𝑡𝑜 1 𝑚𝑖𝑙𝑒𝑠
𝑑𝑖𝑠𝑡_1_2 ∶ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 1 𝑡𝑜 2 𝑚𝑖𝑙𝑒𝑠
𝑑𝑖𝑠𝑡_2_5 ∶ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 2 𝑡𝑜 5 𝑚𝑖𝑙𝑒𝑠
𝑑𝑖𝑠𝑡_5_15 ∶ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 5 𝑡𝑜 15 𝑚𝑖𝑙𝑒𝑠
𝑑𝑖𝑠𝑡_15_𝑢𝑝 ∶ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 15 𝑚𝑖𝑙𝑒𝑠 𝑎𝑛𝑑 𝑢𝑝
𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚 ∶ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒 𝑐ℎ𝑜𝑖𝑐𝑒

The estimated parameters of the school location model, their values, and their t statistic (significance)
can be found summarized in table 5.1. All the resulting parameters are highly significant with the
absolute value of the t statistic higher than 1.96 (over 95% confidence).

Table 5.1: Estimated parameters for school location model

Parameter Value t Stat
coef_grade_dist_0_1 -6.13 -24.68
coef_grade_dist_5_15 -1.86 -36.11
coef_high_dist_15_up -0.287 -19.96
coef_high_dist_5_15 -0.876 -23.14
coef_high_grade_dist_1_2 -3.60 -24.65
coef_high_grade_dist_2_5 -2.99 -52.62



5.2. Discrete choice modeling 40

coef_mode_logsum 0.201 3.67
coef_univ_dist_15_up -0.154 -22.33
coef_univ_dist_1_2 -2.79 -8.40
coef_univ_dist_2_5 -1.91 -20.64
coef_univ_dist_5_15 -0.756 -24.60

The same procedure was applied to the workplace location model, where the population is segmented
into low income, medium income, high income, and very high income; and the corresponding utility
functions can be found in equations 5.4, 5.5, 5.6, 5.7. Once more, the segmentation means that no
accuracy is gained from adding demographic variables in the function, however, this time the fitness
value is lower (𝜌2 = 0.45) probably because the choice set is much less restricted based on employment
availability.

𝑉𝑙𝑜𝑤 = 𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_0_1 ∗ 𝑑𝑖𝑠𝑡_0_1 + 𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_1_2 ∗ 𝑑𝑖𝑠𝑡_1_2
+𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_2_5 ∗ 𝑑𝑖𝑠𝑡_2_5 + 𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_5_15 ∗ 𝑑𝑖𝑠𝑡_5_15

+𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_15_𝑢𝑝 ∗ 𝑑𝑖𝑠𝑡_15_𝑢𝑝 + 𝑐𝑜𝑒𝑓_𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚 ∗ 𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚
+𝑙𝑜𝑔(𝑒𝑤𝑜𝑟𝑘_𝑙𝑜𝑤_𝑀𝑊𝑇𝐸𝑀𝑃𝑁∗𝑀𝑊𝑇𝐸𝑀𝑃𝑁 + 𝑒𝑤𝑜𝑟𝑘_𝑙𝑜𝑤_𝑂𝑇𝐻𝐸𝑀𝑃𝑁∗𝑂𝑇𝐻𝐸𝑀𝑃𝑁)

(5.4)

𝑉𝑚𝑒𝑑𝑖𝑢𝑚 = 𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_0_1 ∗ 𝑑𝑖𝑠𝑡_0_1 + 𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_1_2 ∗ 𝑑𝑖𝑠𝑡_1_2
+𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_2_5 ∗ 𝑑𝑖𝑠𝑡_2_5 + 𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_5_15 ∗ 𝑑𝑖𝑠𝑡_5_15

+𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_15_𝑢𝑝 ∗ 𝑑𝑖𝑠𝑡_15_𝑢𝑝 + 𝑐𝑜𝑒𝑓_𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚 ∗ 𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚
+𝑤𝑜𝑟𝑘_𝑙𝑜𝑤_𝑂𝑇𝐻𝐸𝑀𝑃𝑁 ∗ 𝑂𝑇𝐻𝐸𝑀𝑃𝑁

(5.5)

𝑉ℎ𝑖𝑔ℎ = 𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_0_1 ∗ 𝑑𝑖𝑠𝑡_0_1 + 𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_1_2 ∗ 𝑑𝑖𝑠𝑡_1_2
+𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_2_5 ∗ 𝑑𝑖𝑠𝑡_2_5 + 𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_5_15 ∗ 𝑑𝑖𝑠𝑡_5_15

+𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_15_𝑢𝑝 ∗ 𝑑𝑖𝑠𝑡_15_𝑢𝑝 + 𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_0_5_ℎ𝑖𝑔ℎ ∗ 𝑑𝑖𝑠𝑡_0_5_ℎ𝑖𝑔ℎ
+𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_5_𝑢𝑝_ℎ𝑖𝑔ℎ ∗ 𝑑𝑖𝑠𝑡_5_𝑢𝑝_ℎ𝑖𝑔ℎ + 𝑐𝑜𝑒𝑓_𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚 ∗ 𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚

+𝑙𝑜𝑔(𝑒𝑤𝑜𝑟𝑘_ℎ𝑖𝑔ℎ_𝑀𝑊𝑇𝐸𝑀𝑃𝑁∗𝑀𝑊𝑇𝐸𝑀𝑃𝑁 + 𝑒𝑤𝑜𝑟𝑘_ℎ𝑖𝑔ℎ_𝑂𝑇𝐻𝐸𝑀𝑃𝑁∗𝑂𝑇𝐻𝐸𝑀𝑃𝑁)

(5.6)

𝑉𝑣𝑒𝑟𝑦_ℎ𝑖𝑔ℎ = 𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_0_1 ∗ 𝑑𝑖𝑠𝑡_0_1 + 𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_1_2 ∗ 𝑑𝑖𝑠𝑡_1_2
+𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_2_5 ∗ 𝑑𝑖𝑠𝑡_2_5 + 𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_5_15 ∗ 𝑑𝑖𝑠𝑡_5_15

+𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_15_𝑢𝑝 ∗ 𝑑𝑖𝑠𝑡_15_𝑢𝑝 + 𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_0_5_ℎ𝑖𝑔ℎ ∗ 𝑑𝑖𝑠𝑡_0_5_ℎ𝑖𝑔ℎ
+𝑐𝑜𝑒𝑓_𝑑𝑖𝑠𝑡_5_𝑢𝑝_ℎ𝑖𝑔ℎ ∗ 𝑑𝑖𝑠𝑡_5_𝑢𝑝_ℎ𝑖𝑔ℎ + 𝑐𝑜𝑒𝑓_𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚 ∗ 𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚

+𝑤𝑜𝑟𝑘_𝑣𝑒𝑟𝑦_ℎ𝑖𝑔ℎ_𝑂𝑇𝐻𝐸𝑀𝑃𝑁 ∗ 𝑂𝑇𝐻𝐸𝑀𝑃𝑁

(5.7)

𝑊ℎ𝑒𝑟𝑒
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𝑑𝑖𝑠𝑡_0_1 ∶ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 0 𝑡𝑜 1 𝑚𝑖𝑙𝑒𝑠
𝑑𝑖𝑠𝑡_1_2 ∶ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 1 𝑡𝑜 2 𝑚𝑖𝑙𝑒𝑠
𝑑𝑖𝑠𝑡_2_5 ∶ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 2 𝑡𝑜 5 𝑚𝑖𝑙𝑒𝑠
𝑑𝑖𝑠𝑡_5_15 ∶ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 5 𝑡𝑜 15 𝑚𝑖𝑙𝑒𝑠
𝑑𝑖𝑠𝑡_15_𝑢𝑝 ∶ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 15 𝑚𝑖𝑙𝑒𝑠 𝑎𝑛𝑑 𝑢𝑝
𝑑𝑖𝑠𝑡_0_5_ℎ𝑖𝑔ℎ ∶ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 2 𝑡𝑜 5 𝑚𝑖𝑙𝑒𝑠 (𝑜𝑛𝑙𝑦 𝑓𝑜𝑟 ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ 𝑖𝑛𝑐𝑜𝑚𝑒)
𝑑𝑖𝑠𝑡_5_𝑢𝑝_ℎ𝑖𝑔ℎ ∶ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 5 𝑚𝑖𝑙𝑒𝑠 𝑎𝑛𝑑 𝑢𝑝 (𝑜𝑛𝑙𝑦 𝑓𝑜𝑟 ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ 𝑖𝑛𝑐𝑜𝑚𝑒)
𝑚𝑜𝑑𝑒_𝑙𝑜𝑔𝑠𝑢𝑚 ∶ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒 𝑐ℎ𝑜𝑖𝑐𝑒
𝑀𝑊𝑇𝐸𝑀𝑃𝑁 ∶ 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑎𝑛𝑑 𝑤ℎ𝑜𝑙𝑒𝑠𝑎𝑙𝑒 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠
𝑂𝑇𝐻𝐸𝑀𝑃𝑁 ∶ 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑡ℎ𝑒𝑟 𝑡ℎ𝑎𝑛 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔, 𝑤ℎ𝑜𝑙𝑒𝑠𝑎𝑙𝑒, 𝑎𝑛𝑑 𝑟𝑒𝑡𝑎𝑖𝑙

The estimated parameters of the school location model, their values, and their t statistic (significance)
can be found summarized in table 5.1.

Table 5.2: Estimated parameters for workplace location model

Parameter Value t Stat
coef_dist_0_1 -1.87 -6.35
coef_dist_0_5_high 0.538 16.70
coef_dist_15_up -0.0880 -24.26
coef_dist_1_2 -1.92 -15.03
coef_dist_2_5 -1.81 -53.83
coef_dist_5_15 -0.657 -68.84
coef_dist_5_up_high 0.0484 12.76
coef_mode_logsum -0.0343 -2.14
work_high_MWTEMPN -3.08 -BIG
work_high_OTHEMPN 1.39 3.73
work_low_MWTEMPN -3.69 -BIG
work_low_OTHEMPN 1.69 2.38
work_med_OTHEMPN 1.59 3.68
work_veryhigh_OTHEMPN 1.05 2.90

The estimated models have good explainatory value and should provide very accurate simulation re-
sults, lending credence to the technique of modeling school and workplace location in the early stages
of the model as a long term choice.

5.2.2. School location accuracy

After using the newly estimated parameters and performing a simulation with ActivitySim for a synthetic
population that closely matches the characteristics of the real population, the output for school location
can be plotted and compared with the known school locations from the land use data on the area of
the Metropolitan Region Rotterdam The Hague and on a closer level on the different cities. In figure
5.2 the geographical distribution of students across the Metropolitan Region Rotterdam The Hague
can be compared between the known distribution of students from the land use data and the obtained
distribution from the simulation outputs with ActivitySim.
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Figure 5.2: Students per MRDH zone from the land use data (left) and simulation results (right) for the entire region. The
visualizations highlight where students are concentrated the most, and the legend to the right of each visualization gives an idea
of the maximum number of students that are in a single TAZ.

In addition to the higher level distribution across the entire Metropolitan Region Rotterdam The Hague,
a more detailed look into cities provide more insights on the reliability of the results. The comparison
for distribution of students in the city of Rotterdam (including port area) can be found in figure 5.3, and
figure 5.4 shows the same for The Hague.

Figure 5.3: Students per MRDH zone from the land use data (left) and simulation results (right) for Rotterdam, including port
area. The visualizations highlight where students are concentrated the most, and the legend to the right of each visualization
gives an idea of the maximum number of students that are in a single TAZ.

For The Hague, the distribution seems to confirm that the simulation output is highly accurate, closely
mimicking the distribution observed in the land use data with only some TAZs that have slight differences
in the concentration of students they have. This, however, does not hold entirely true for Rotterdam or
the entire Metropolitan Region Rotterdam The Hague. As it can be appreciated, the simulation output
shows a distribution that is much less concentrated, as it can be seen from the slightly higher number
of TAZs highlighted and the lower maximum number of students in a single TAZ. Other cities in the
Metropolitan Region Rotterdam The Hague yield similar results to those shown for school locations.

Results seem to suggest some accuracy, partially confirming the validity of the high fitness value of the
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Figure 5.4: Students per MRDH zone from the land use data (left) and simulation results (right) for The Hague. The visualizations
highlight where students are concentrated themost, and the legend to the right of each visualization gives an idea of themaximum
number of students that are in a single TAZ.

choice model for school locations. Although, it is seen that the simulation tends to spread school loca-
tion choices more than the comparatively concentrated reality, which can have an impact in subsequent
outputs.

5.2.3. Workplace location accuracy

The same procedure was performed for worker location, and on figure 5.5 the geographical distribution
of workplaces around the entire Metropolitan Region Rotterdam The Hague can be compared between
the land use data and the simulation output from ActivitySim with the new parameters.

Figure 5.5: Workers per MRDH zone from the land use data (left) and simulation results (right) for the entire region. The
visualizations highlight where workers are concentrated the most, and the legend to the right of each visualization gives an idea
of the maximum number of students that are in a single TAZ.

In a similar fashion, figure 5.6 shows the geographical distribution of workplaces for the city of Rotter-
dam for both the land use data and the simulation output from ActivitySim, and figure 5.7 shows the
same for The Hague.



5.2. Discrete choice modeling 44

Figure 5.6: Workers per MRDH zone from the land use data (left) and simulation results (right) for Rotterdam, including port
area. The visualizations highlight where workers are concentrated the most, and the legend to the right of each visualization
gives an idea of the maximum number of students that are in a single TAZ.

Figure 5.7: Workers per MRDH zone from the land use data (left) and simulation results (right) for The Hague. The visualizations
highlight where workers are concentrated the most, and the legend to the right of each visualization gives an idea of the maximum
number of students that are in a single TAZ.

Once more, it can be seen that simulated output in this case tends to spread workers more than what
the land use data suggests is the real situation, which can be seen by the higher number of TAZs
highlighted and the lower maximum number of workers in a TAZ. Most cities in the region show the
same situation.

One particularity in the case of workers is, however, the distribution of workers in the port area of
Rotterdam in figure 5.6, where despite the simulation showing an overall more spread out distribution,
it fails to assign workers to the port almost completely, making the results look very different in the
simulation output from what is depicted in the land use data.
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5.2.4. Comparison of travel distance

Given the discrepancies observed between the land use data and the aggregated outputs, it is valu-
able to look into the results in greater detail, especially disaggregated results. For this, the distances
between home and the chosen locations for school and workplace were obtained per every person by
obtaining the distances from the network data. Figure 5.8 shows the comparison of kernel density es-
timations (a smoothed curve that shows the distribution of travel distances, analogous to a histogram)
for the distances to school and workplace locations from the survey data and the simulation output.

Figure 5.8: Distance kernel density estimation to work (left) and school (right) for survey data and simulation output.

It can be appreciated that the distances from the survey tend to be significantly larger than those ob-
tained from the simulation in both cases, even when the aggregated results for school and workplace
location looked promising. It appears that for both school and workplace location the model tends to
place the output in areas very close to the home zone of the agent, where the closer match seen in
school location is possibly due to there being fewer school location alternatives in the data and the
model being forced to chose a distribution closer to the aggregated data. The spread of the travel
distances is also appreciably smaller in the simulation than in the survey data, revealing a more ho-
mogeneous output than expected. This last issue can possibly also be due to inadequate sampling,
where not enough, or not the right alternatives are considered.

There is an apparent discrepancy between the tendency of themodel to predict locations closer to home
as evidenced in the disaggregated output, and the higher spread of school and workplace locations
in the aggregated output. Inadequate sampling could also be an explanation for this, meaning that
while some alternatives are in reality much more likely to be chosen (the ones were there is a higher
concentration in the land use area), these are left out of the sample and out of consideration for the
modeled individual, forcing the model to chose a less likely alternative that is within the sample. This
could also explain the lack of workplace locations assigned to the port of Rotterdam.



5.3. Sampling of destination choice set 46

5.2.5. Usability of model

Given the high fitness values obtained from the model estimation process, it can be assumed that the
configuration of the logit models for destination choice (where school and work destinations are deter-
mined in advance) and its parameters are appropriate. However, the output given by ActivitySim still
has space for improvement. One possible area to look into is the sampling method used by ActivitySim
by default, as this conceptualization might give too much weight to travel distance (cost) when sampling
the alternatives and thus resulting in the observed distributions.

5.3. Sampling of destination choice set

An alternative sampling method for the destination choice set was defined inspired by Stratified Im-
portance Sampling based on the works of Berjisian and Habibian (2019) and Tsoleridis et al. (2022).
This method originally uses a fixed radius from origin zones to search for destination zones, and said
radius is informed from the data to prevent bias. However, the remapping of PC4 zones to MRDH
zones, which as previously described are more granular in the area of interest than in the in the area of
influence, can produce distortions on the distances between zones because of the very different zone
sizes. This made the use of a fixed radius to search for the sample questionable at best, and instead,
a more flexible formulation was devised which obtains a search radius for every possible origin zone.

The new formulation consists on listing the origin (home) and destination pairs per tour purpose and
using the maximum distance between origins and destinations to inform a search radius for that origin
and purpose (for example, the maximum distance traveled from a given zone for work trips). For origin
zones and purpose combinations not present originally in the survey data, the radius is obtained from
the next available zone (backfilling), taking advantage of the fact that the radius obtained from that zone
is likely not smaller than what would correspond (based on the fact that the zones tend to grow in size
as explained in section 4.2.1).

The search radius is then finally used to find all the possible destinations that are within that distance,
including the origin itself, and a uniform probability is assigned to every alternative within the radius,
while alternatives that are further away are given a probability of zero. While the backfilling used for
missing data could marginally increase runtimes by adding additional zones to the sample, this is not
expected to have a negative impact on accuracy. The sampling for every origin is then saved to a file
that can be read by ActivitySim when performing the simulation, saving the need to produce the sample
during the run.

The ActivitySim source code was then modified to substitute the default sample with the newly obtained
sample, by specifying the relevant file name from the model settings. A new simulation was then
performed using the synthetic population with the new sampling method and the results for school and
workplace location choice are presented here.
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5.3.1. School location accuracy

The aggregated outputs for school location for the simulation with Stratified Importance Sampling are
plotted for the entire Metropolitan Region Rotterdam The Hague in figure 5.9, for Rotterdam in figure
5.10, and for The Hague in figure 5.11, where the geographical distribution of school locations on the
land use data and the simulation output can be seen. The output for other cities in the region is similar.

Figure 5.9: Students per MRDH zone from the land use data (left) and the new simulation results (right) for the entire region.
The visualizations highlight where students are concentrated the most, and the legend to the right of each visualization gives an
idea of the maximum number of students that are in a single TAZ.

Figure 5.10: Students per MRDH zone from the land use data (left) and the new simulation results (right) for Rotterdam, including
port area. The visualizations highlight where students are concentrated the most, and the legend to the right of each visualization
gives an idea of the maximum number of students that are in a single TAZ.

With Stratified Importance Sampling, the geographical distribution of students obtained from the sim-
ulation is still very close to that of the land use data, and in fact, it seems to more closely match the
concentration of locations seen from the land use, which is an improvement from the simulation with
default sampling. However, the case of the Hague is worth highlighting, as it appears that the maximum
number of students in a single TAZ is significantly higher, indicating that the concentration effect might
be too strong with the alternative sampling method.
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Figure 5.11: Students per MRDH zone from the land use data (left) and the new simulation results (right) for The Hague. The
visualizations highlight where students are concentrated the most, and the legend to the right of each visualization gives an idea
of the maximum number of students that are in a single TAZ.

5.3.2. Workplace location accuracy

Likewise, the aggregated geographical distributions for workplace location for the land use data and
the simulation with the Stratified Importance Sampling method are plotted for the entire region in figure
5.12, for Rotterdam in figure 5.13, and The Hague in figure 5.14; while the output for other cities in the
region is similar.

Figure 5.12: Workers per MRDH zone from the land use data (left) and the new simulation results (right) for the entire region.
The visualizations highlight where workers are concentrated the most, and the legend to the right of each visualization gives an
idea of the maximum number of students that are in a single TAZ.

This time, it can be appreciated that with Stratified Importance Sampling, the aggregated distribution of
workers much more closely matches that of the land use data when compared with the simulation with
default sampling, allowing for workers to be assigned across a larger region in a more realistic way,
which is specially noticeable along the port of Rotterdam, an improvement from the previous case. The
situation is similar for other cities in the region.

Once more, however, it seems that the concentration effect is too strong in The Hague, where the
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Figure 5.13: Workers per MRDH zone from the land use data (left) and the new simulation results (right) for Rotterdam, including
port area. The visualizations highlight where workers are concentrated the most, and the legend to the right of each visualization
gives an idea of the maximum number of students that are in a single TAZ.

Figure 5.14: Workers per MRDH zone from the land use data (left) and the new simulation results (right) for The Hague. The
visualizations highlight where workers are concentrated the most, and the legend to the right of each visualization gives an idea
of the maximum number of students that are in a single TAZ.

workers are assigned on fewer TAZs on the simulation, and there is a higher number of workers in a
single TAZ.

5.3.3. Comparison of travel distance

While the results for using Stratified Importance Sampling are promising, it can still be valuable to
look into disaggregated results once again. Figure 5.15 shows the kernel density estimation for the
distances to school and workplace compared between the survey data and the simulation output for
the case with Stratified Importance Sampling.

The Stratified Importance Sampling method not only reproduces the land use data effectively, but it also
matches the distances between home and destinations much more closely, which can be considered
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Figure 5.15: Distance kernel density estimation to work (left) and school (right) for survey data and simulation output.

an improvement on the output.

5.3.4. Usability of model

In this case it is highlighted that the accuracy of the output given by ActivitySim is influenced by the
sampling method chosen for destination choice sets. The Stratified Importance Sampling method im-
plemented here proves that it is possible to improve model output beyond what is offered by default
in the ActivitySim framework, meaning that while the framework has enough built-in functionality to be
advantageous to use as opposed to a new framework, it can still benefit from the customization enabled
by its open source code, where improvements and extensions can be easily introduced.

The model run times were not significantly different using either sampling method, thus, accuracy is
achieved without sacrificing performance.

5.4. Model framework

The ActivitySim framework for activity-based modeling has proven useful to create transport models in
the Netherlands. The parameters for these models can be estimated from available survey data, and
while processing such data is a time-consuming activity, the reusability of the procedure means that
after the initial time investment, the model can be easily re-estimated with new data.

The choice model structure used in ActivitySim was able to achieve a high degree of accuracy for
the Netherlands using the previously prepared data, yet the discrepancy in distances between home
and school and workplace locations between the survey data and the simulated output leave room for
improvement. The adaptation of themodel to use Strategic Importance Sampling yieldedmore accurate
results in this regard, highlighting the influence of choice set sampling methods on the accuracy of
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model outputs. One observation is that the accuracy gains seem to diverge from city to city (or at least
from the Hague to the rest of the region).

The flexibility of open source software like ActivitySim also means that the model can be modified to
better adjust to the conditions of the Netherlands, such as the lack of joint tour data, and alternative
choice set sampling methods.

The workflow previously detailed in figure 4.3 represents a good way to develop an activity-basedmodel
for the Netherlands, with the addition of obtaining the sampling from the survey data and using it as
input for the simulation, obtaining results that are very accurate while being able to provide explanations
from the behavior by looking into the parameters that define the logit models.



6
Conclusions and discussion

The research approach outlined on chapter 4 contemplated the development of a procedure to obtain
efficient and accurate choice models to be used in activity-based transport models in the Netherlands,
with the use of readily available data. Chapter 5 shows the results of developing and evaluating such
a procedure, and in this chapter conclusions will be drawn from those result. This research will also
be placed in the context of the existing scientific literature, its implications for society will be outlined,
the limitations faced will be discussed, and lastly, recommendations for further implementation and
research will be drawn.

6.1. Conclusions

It is possible to successfully process ODiN survey data into the format needed the ActivitySim open
source software to develop activity-based models. The time intensiveness of the procedure is mitigated
by the possibility of effortlessly reusing the process to re-estimate the model with data from future years,
as the formatting, calculation and inference of the needed data fields can be easily automated with a
script. The missing data from joint tours, however, warrant doing modifications on the source code
of ActivitySim to bypass the impossibility of running joint tour submodels using only ODiN data. The
implication of this is not only the need to perform additional work, but also that the model is not able to
capture household interactions properly without using additional data.

Additionally, there is data in the ODiN survey that could be better exploited, such as electric vehicle
ownership and participation in car sharing. It must be noted, however, that even if much of the lack
of documentation is skirted by using this method, adding additional data to the model might result in
needing to revert the modifications to the code, and to look again at the (in some instances inadequate)
documentation of the software to properly format it.

The steps that then need to be performed to be able to use available data and software to develop

52
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an activity-based model in the Netherlands, as performed in this research is to filter the data to the
relevant time periods to be modeled, map origins and destinations to the zonal system used in the skim
matrices and land use data, obtain workplace and school locations per respondents, identify tours and
subtours, identify outbound and inbound trips, map household income to monetary values, segment
the population (household, student, worker, and person types), classify tours and obtain coordinated
daily activity patterns, group modes and assign tour mode, classify tours by purpose, calculate tour
stop frequency and subtour frequency, classify tour schedules, and use canonical tour IDs.

The choice model structure used in ActivitySim for destination choice makes use of logit models, and
in the case of school and workplace location uses multinomial logits to decide these destinations in the
early stages of the simulation run and only once. The resulting tables from the data processing can
then be used as input for estimation, and the explainatory variables in the utility functions in the logit
models can be iteratively tested and its parameters estimated until a high fitness value is reached, such
as the case with the parameters in tables 5.1 and 5.2.

In this regard we can conclude that using ODiN data and the ActivitySim software provides signifi-
cant advantages such as establishing a straightforward procedure to re-estimate choice models in an
activity-based model, allowing updates of the model with more recent data with ease, and being able
to exploit the quality data from the survey than can be used to obtain outputs that can be interesting for
sustainable mobility analyses, such as using electric car ownership data to account for electric cars in
mode choice.

As disadvantages, however, this methodology cannot account for household interactions on its own,
one of the main improvements promised by activity-based models compared to classic models, as the
survey is missing this data. On a related note, inadequate documentation might complicate the addition
of new data as well.

The models estimated with this method seem to provide acceptable accuracy, as evidenced by the
fitness values obtained for the school and workplace location choice logit models. However, these
fitness values do not serve as fail-proof measurements of model performance, as it was seen that
good aggregated destination results can still give way to relatively inaccurate disaggregated outputs.
The output can be influenced by the sampling of the large choice set (which is done to achieve decent
run times).

Hence, it can be concluded that the accuracy of destination choice models estimated using ActivitySim
and ODiN data can be disputed. While the models themselves suggest high accuracy, when running
ActivitySim simulations some flaws are exposed, which skew simulation outputs.

Changing the default sampling method in ActivitySim for Stratified Importance Sampling based on the
survey data, while not necessarily driving changes in run times, can positively affect the accuracy of
the simulation outputs, as was tested in this research where more accurate results were achieved.

It can be concluded that Stratified Importance Sampling can be used to sample the choice set of des-
tinations without compromising the accuracy of an activity-based model in the Netherlands.

This research shows that the development of an activity-based transport model for the Netherlands
using widely available tools and data while maximizing explainatory value and minimizing run times
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can be achieved by using the data from ODiN, a travel survey that is made available every year, and
feeding it to ActivitySim, an open source software package developed in the United States that uses
logit formulations to model choice. The data can be processed to the requirements of the software and
be used to estimate the model parameters with ease, and using Stratified Importance Sampling on the
destination choice set can provide results in reasonable run times with great accuracy.

It can be concluded that an activity-based model that uses travel survey data and open source software
can achieve good accuracy and efficiency, especially after addressing the flaws in the samplingmethod;
however, the impact of missing household data in accuracy remains unaccounted for.

6.1.1. Contribution to existing knowledge

The possibility to build an activity-based transport model using available data and open source tools
regardless of the large data requirements further reinforces the idea of Eluru and Choudhury (2019),
Han et al. (2021), Hörl and Balac (2021), and Knapen et al. (2021) that more easily replicable and
adaptable models can be built with their use.

In this case, the use of ActivitySim, which has been explicitly developed with adaptability in mind, also
proves the value of similar formulations. Even when it was developed with the context of the United
States in mind, this was not a major barrier in conceiving a model for the Netherlands. While other open
source platforms such as MatSim exist, the adaptability of ActivitySim and absent in MatSim proved a
major advantage and displays is as a better candidate for applications of activity-based models.

The accuracy achieved by the logit model formulations and the easy model parameter estimation that
can be achieved with them reinforces the ideas of Castiglione et al. (2015) and Ortúzar and Willumsen
(2011), establishing that logit model formulations perform very well while being easy to implement.

The discrepancy in the simulation outputs when using the two different choice set sampling methods
also reinforces the arguments from Berjisian and Habibian (2019), Leite Mariante et al. (2018), Lemp
and Kockelman (2012), Pozsgay and Bhat (2001), and Tsoleridis et al. (2022) in which it is claimed
that the choice of sampling method has an important impact in the accuracy of the outputs, possibly
introducing bias.

A Stratified Importance Sampling method that makes use of available survey data, namely the travel
distances from a destination per purpose, was implemented and proposed as an alternative sampling
method and it achieved greater accuracy, building on the work of Berjisian and Habibian (2019), Leite
Mariante et al. (2018), and Tsoleridis et al. (2022) and using this sampling method regardless of mode
choice and on a very large data set. This also further maximizes the use of the available data, something
that Shiftan and Ben-Akiva (2010) advocates for, while noticeably increasing output accuracy.

The methodology used for this activity-based model also seems to have less need for manual inte-
gration of different software products than the methodology used by Knapen et al. (2021) to develop
an activity-based model, nor the time and resource intensiveness of purpose-built models that is men-
tioned by Castiglione et al. (2015) and that is the case for the model developed by Arentze et al. (2005).
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6.2. Discussion

Beyond the scientific conclusions brought forward in section 6.1, the results obtained now must be
placed into the larger context for them to be usable and productive.

The methodology proposed in this research to develop an activity-based model for the Netherlands is
meant to be replicated with relative ease. The use of the widely available and free to use ActivitySim
software, and the use of the ODiN data that is made available every year is done intentionally to lower
the barrier and costs of developing these models.

Additionally, the development of the procedure itself to process the data, and for the entire modeling
process, both made explicit in this research, is meant to serve as guidance for modelers attempting to
employ activity-based models and needing to develop one, a task that can be hard to surmount if done
from scratch. The procedure can be completely and quickly replicated by simply using the data for the
relevant year, allowing modelers to direct their efforts towards other modeling decisions.

The use of logit choice models as done in ActivitySim also banks on its wide acceptance to provide
a model that can be easily and quickly interpreted by transport modelers already familiar with them,
hence avoiding the need to gain significant new knowledge just to be able to operate the model.

At the same time, the use of Stratified Importance Sampling to sample the destination choice set re-
duces the need for sampling criteria set by the modeler as is the case with other sampling methods,
which reduces bias and the need for even more modeler input, while improving accuracy. This is of
particular importance when one considers that destination choices are used in other submodels fur-
ther in the simulation, for example, mode choice, where one could expect the choice to be affected
by the distance to travel and the availability of certain modes between the origin and destination. This
highlights the importance of having accurate destination choice models as a requisite to have accurate
activity-based models.

While destination choice might not be by itself of particular relevance to evaluate sustainable mobility
policies, its effect on other submodels warrants the focus that was given to it in this research. Green-
house gasses emissions, for example, can be estimated based on travel distances, travel time, and
mode choice, all of which can be expected to heavily rely on destination choice. Additionally, as des-
tination choices are partly explained by land use (for example, the availability of employment), from
formulating an accurate destination choice model an analyst can assess the impact of policies that rely
on land development on destination choice, such as stimulating commercial development.

With the decisions made with this method, transport modelers can focus on formalizing policy alterna-
tives and scenarios, while providing them with an easily understandable model that can then be easily
modified to suit their needs, overcoming the complex model structure and lack of appropriate docu-
mentation in some regards. Likewise, the model is easy to maintain with this procedure, as it can be
easily re-estimated with data for another year or after complementing with other data sources.

Additionally, as previously mentioned in section 5.1.1, the already available additional data in the ODiN
survey, which can be used in the model, also facilitates the use of this framework to develop models
that are sensitive to sustainable mobility policies, for example, by expanding the mode alternatives in
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the model and using the extended data in the utility functions to re-estimate the model.

The possibility of getting some information regarding remote work was also mentioned in section 5.1.1,
where it was described that when a person does not perform any traveling in the reporting day, it can
potentially respond that it did not do so because of remote working. This, however, has one particular
weakness in that such information is only requested when the respondent did not travel for any other
purpose either, which means that if the respondent performed any non-mandatory travel like social
activities or doing groceries, this information is not captured. Likewise, only one reason can be given,
meaning that if the respondent has more than one reason for not traveling during the reported day it is
forced to chose only one, losing data in the process.

Additionally, as remote work and study has gained relevance after the COVID-19 pandemic, it is worth
noting that when a person does not perform any trips on the reporting day, a reason is given for it
and it is possible to respond that the reason is to perform remote work or study. While this is valuable
data, it was the weakness of not being asked if the respondent performed any kind of trip regardless
of purpose.

While the methodology used in this research is made for the specific case of the Metropolitan Region
Rotterdam The Hague in the Netherlands, it is not far fetched to think that a similar process can be
followed with data from other parts of the world where a travel survey is available. Certainly, the quality
and extensiveness of the data in the Netherlands cannot be found everywhere, yet, the fields that are
needed to process the data into the format required by ActivitySim is likely present in other surveys, so
that an activity-based model can be implemented with the help of ActivitySim. The sampling method
is perhaps even more transferable, as the survey data needed to come up with the samples is even
more basic, pertaining to trip origin, destination, and purpose.

One important point of discussion is the impossibility to properly capture household interactions without
the inclusion of additional data. While by the definition of Castiglione et al. (2015) illustrated on figure
2.3 this is still an activity-based model, not capturing these interactions is certainly not ideal, as this
can limit the sensitivity of the model to certain policies and reduce the value of certain outputs when
using the formulation proposed in this research. For example, it is not possible to account for how
households share a private vehicle, or in other words, how the travel of one member of a household
using a vehicle is constrained by another member of the household also needing that vehicle at the
same time, which could either prompt either of the travelers to choose another mode of transportation,
to not travel altogether, or for joint travel to originate. This could have an impact (unmeasured in this
research) on mode choice outputs, and thus on policies that rely on influencing mode choice.

Attention also needs to be placed in the case of predicting subtours, as it was not possible to obtain
many of these from the data. It is unclear if not performing many subtours is a trend in the Netherlands,
a limitation of the travel survey in capturing them, or a limitation of this method to properly define them
from the data. In any case, this could affect the accuracy of the subtours submodel.

6.2.1. Societal implications

The possibility of developing and calibrating activity-based transport models with ease is something that
can potentially have an impact on decision-making for mobility, especially in the context of sustainability.
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On subsection 2.3 it was established that policies oriented towards sustainable mobility need to be
evaluated with model results that are best produced by activity-based models, hence, by making these
models more accessible we can also facilitate the availability of quality information for decision support
and help reach the climate goals of the Netherlands and Europe.

Moreover, as the framework here proposed takes much of the burden of developing the model away,
and is meant to be easily understood by modelers already familiar with more traditional transport mod-
els, it allows modelers to focus on other modeling choices, the formalization of policies in the model,
and the creation of scenarios, which in turn hopefully leads to better quality and timelier results.

6.2.2. Limitations

Some limitations were found in the elaboration of this research. First, the scope of this research was not
designed to test the possibility of developing activity-based models from other available data sources
for network and zonal (land use) data. These data sources are already needed in less refined transport
models, such as the so-called four-step model, and thus were not deemed of particular importance,
however, the time it takes to process the data and its quality also has an impact on the development of
activity-based models and must be considered when planning the work to do so.

Second, the lack of more detailed household data limits the possibility of properly developing a model
that evaluates household interactions in the form of coordinated daily activity patterns, at least without
additional data sources or even estimating such submodel separately. This is relevant as one of the
advantages that proponents of activity-based models often quote is this possibility, which accounts for
households scheduling their activities around one another, and also engaging in joint travel, a behavior
that could be interesting to analyze for policy impacts, especially as policy-makers strive to reduce car
ownership, possibly making the resource dependence within households more relevant for the model
output. As previously described, a similar problem might be present in the case of subtours.

Third, the variations in the accuracy of the results between different cities is left largely unaddressed.
This can be because people behave differently across these cities, but due to time constrains and the
scoping of this research project there was not more effort put into evaluating this issue.

Fourth, the sequential logit models used to define the different choices in this formulation make use
of shortcuts to model interdependence, either by making the interdependence entirely unidirectional
(for example, a traveler first choosing whether or not to perform a non-mandatory tour to only then
consider tour destination) or simplifying with the use of expected utilities (like the mode choice logsums
in destination choice). In this regard, multistate supernetworks were conceived to model these choices
simultaneously in a way that captured their interdependence, but their poor manageability in complex
cases is something that hindered its application in this research.

Fifth, by pre-specifying level of service for different time windows as a static dataset that does not
change during model runs means that the model is not sensitive to changes in traffic and congestion
patterns that could be originated from the implementation of policies. One example where this might
be an issue is with the evaluation of congestion pricing policies, where the model is able to capture
when car trips are substituted with trips in other modes, but it is unable to capture the effect of car trips
shifting to less congested times and affecting the travel times of other travelers.
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Sixth, the availability of more recent data that represents travel patterns after the trend-breaking COVID-
19 pandemic, or rather the lack of it, had an impact on what could be achieved with this formulation.
While recent versions of ActivitySim include submodels to account for remote working, the most recent
year for which survey data is available is 2020. The data for 2019 was used instead for reasons already
explained in subsection 4.2.3, and since the data for 2021 still faced some of the anomalies in mobility
due to government sanctioned restrictions, it seems that to fully test this new addition we will have
to wait until at least 2022 data is made available. Even then, the modeling of such choice could face
difficulties in that the ODiN survey was not designed to capture this phenomenon very well, for instance,
respondents only report their activities for one day of the week, which limits the understanding of hybrid
working patterns across the week for individuals, with little else to offer to complement this information.
Additionally, as previously described, very limited information is captured about remote work, and big
information loss might occur in this regard, making it unreliable if one were to use it to model remote
work.

Lastly, time constrains did not allow for more thorough testing of the capabilities of the model when
using Stratified Importance Sampling based on survey data. The explainatory value of this formulation
needs further testing, as it is possible that the model is overspecified andmade to represent survey data
too closely, which can put into question the value of such a sampling method, as this would mean the
model loses sensitivity to other inputs. The explicit definition of distance as a measure of importance
might also be an instance of modeler bias and not proper representation of reality, that is, while the
distance radius used to define the ”strata” is directly informed by the survey data and thus does not
need the modeler criteria that other methods require, the choice of a measure of distance to represent
importance could in itself be biased towards modeler beliefs.

6.2.3. Recommendations

In line with the previous limitations, possible users of this model formulation must account for the time
it takes to process zonal and network data. Planning agencies and companies that already make use
of other transport models may, however, be able to reuse the already processed data used in those.

Additionally, to lower the barrier of entry for these kinds of models, the documentation provided with
them and with dedicated software packages needs to be improved. While this procedure deals with
some of the poorly documented processes, it is still recommended to provide the documentation for
them.

Users of this formulation also need to be wary of applying it for 2020 and 2021. Depending on the
purpose of the model, it could still be useful to understand mobility patterns with it, but the impossibility
to go certain destinations such as offices for work will need to be accounted for, perhaps by setting
availability conditions in the logit model at the risk of incurring in overspecification.

The lack of validation with alternative data sources also warrants caution for users of this procedure,
who should perform their own validation to test the performance of their models. Possible alternative
data sources include but are not limited to mobile tracking data, census data, and more specialized
travel surveys.

Lastly, users of the proposed sampling formulation also need to perform analysis on the simulation
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outputs, especially sensitivity analyses for the parameters that define their policies of interest.

6.2.4. Further research

An initial point that deserves further research is the use of additional data to adequately model house-
hold interactions, since as previously discussed the ODiN survey is not sufficient in this regard. This
would help paint a better picture of the suitability of this method to produce activity-based models, on
top of producing more useful activity-based models.

Further research is also recommended to apply ActivitySim model formulations on 2020 and 2021
(pandemic restriction years) and from 2022 onward (new mobility trends such as remote work, yet
hopefully, no more restrictions). The remote work extension for ActivitySim is of particular interest as
it has already been developed but could not be tested in this research, however, the lack of dedicated
data fields in the ODiN survey needs to be overcome.

Some knowledge gaps can also be identified for multistate supernetworks as described in section 3.2.3,
however, the applied nature of this research rendered them out of scope, although they can provide
an interesting avenues for future research. Namely, the efficient generation of the supernetworks,
and the appropriate estimation method for its parameters are issues that need to be solved before
multistate supernetworks make it into practice. Another avenue for research in the domain of multistate
supernetworks could also be the modeling of more realistic multimodal travel. While other approaches
require to come up with mode combinations upfront to be able to obtain the relevant level of service
of the transport network between origins and destinations, multistate supernetworks could potentially
model level of service in more detail and let the model choose mode combinations, only imposing
restrains on unfeasible or unlikely combinations, like riding a private car after leaving home without it.

Likewise, further analyses and testing needs to be performed on the proposed Stratified Importance
Sampling method, to determine if it introduces new biases or the risk of overspecification. Other sam-
pling methods, especially those that rely on changing the logsum structure on whose basis ActivitySim
already samples choice sets can be proposed.



A
Fields and descriptions from ODiN

survey data

Table A.1: Fields available in the ODiN data set, with descriptions, identification of used fields in this research, and filters used
if applicable.

Field name Description
Used

Filter

op New person Yes
opid Unique ID for every person Yes
steekproef Sample indicator No

mode
Response mode (all values are Computer Assisted
Web Interview)

No

hhpers Number of people in household Yes
hhsam Household composition Yes
hhplop Place in household compared to hh nucleus No

hhlft1
Number of household members younger than 6
years

No

hhlft2
Number of household members from 6 to 11 years
old

No

hhlft3
Number of household members from 12 to 17 years
old

No

hhlft4 Number of household members of 18 years or older Yes
wopc Postcode Home Address Yes
wogem Municipality of residence No
sted Type of municipality of residence Yes
gemgr Inhabitants of municipality of residence No
prov Province of residence No
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corop Corop area of residence No
buurtadam Neighborhood combination Amsterdam No
mra Amsterdam metropolitan region No
mrdh Rotterdam The Hague metropolitan region No
spl Parkstad Limburg City Region No
utr Utrecht Province No
geslacht Gender Yes
leeftijd Age Yes
kleeft Age class No
herkomst Migration background Yes No unknown values
betwerk Paid work Yes No unknown values
onbbez Unpaid activity No
maatspart Social participation op No
opleiding Educational attainment Yes No unknown values
hhbestinkg Disposable household income (10% groups) No

hhgestinkg
Standardized disposable household income (10%
groups)

Yes

hhlaagink Deviation of low income limit No
hhsocink Deviation Social Minimum No
hhwelvg Prosperity of the household (10% groups) No
hhrijbewijsau Number of driving licenses in household No
hhrijbewijsmo Number of motorcycle licenses in household No
hhrijbewijsbr Number of moped licenses in households No
oprijbewijsau Person owns car driver license Yes No unknown values
oprijbewijsmo Person owns motorcycle driver license No
oprijbewijsbr Person owns moped driver license No
hhauto Number of passenger cars in household Yes No unknown values

hhautol
Number of passenger cars leased or in the name of
a company in household

No

opauto Number of cars in person’s name No
brandstofpa1 First fuel type of newest passenger car in household No

xbrandstofpa1
Second fuel type of newest passenger car in house-
hold

No

brandstofepa1
Type of electric car newest passenger car in house-
hold

No

bouwjaarpa1
Year of manufacture newest passenger car in
household

No

kbouwjaarpa1
Year (aggregated) of manufacture newest passen-
ger car in household

No

kgewichtpa1 Weight class newest passenger car in household No
tenaampa1 Registration of newest passenger car in household No

brandstofpa2
First fuel type of second newest passenger car in
household

No

xbrandstofpa2
Second fuel type of second newest passenger car
in household

No
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brandstofepa2
Type of electric car second newest passenger car
in household

No

bouwjaarpa2
Year of manufacture second newest passenger car
in household

No

kbouwjaarpa2
Year (aggregated) of manufacture second newest
passenger car in household

No

kgewichtpa2
Weight class second newest passenger car in
household

No

tenaampa2
Registration of second newest passenger car in
household

No

brandstofpal
First fuel type of leased car or company car in
household

No

xbrandstofpal
Second fuel type of leased car or company passen-
ger car in household

No

brandstofepal
Type of electric car of leased car or company pas-
senger car in household

No

bouwjaarpal
Year of manufacture leased car or company pas-
senger car in household

No

kbouwjaarpal
Year (aggregated) of manufacture leased car or
company passenger car in household

No

kgewichtpal
Weight class leased car or company passenger car
in household

No

hhmotor Number of engines in household No
opmotor Number of engines in person’s name No

hhbrom
Number of bromfiets in household (moped with max
speed between 25 and 45 km/h)

No

opbrom Number of bromfiets in person’s name No

hhsnor
Number of snorfiets in household (moped with max
speed under 25 km/h)

No

opsnor Number of snorfiets in person’s name No
hhefiets Electric bicycle in household No
hhbezitvm Household means of transport No
opbezitvm Person means of transport Yes No unknown values
fqnefiets Frequency use non-electric bicycle Yes No unknown values
fqefiets Frequency Use electric bicycle Yes No unknown values
fqbtm Frequency use bus No
fqtrein Frequency use train No
fqautob Frequency use car as driver No
fqautop Frequency Use car as a passenger No
fqbrsnor Frequency of use brom- and/or snorfiets No
ovstkaart Possession of student ov-chipkaart Yes No unknown values
jaar Reporting year Yes
maand Reporting month No
week Reporting week No
dag Reporting day No
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weekdag Reporting day of the week Yes Only weekdays
feestdag Reporting day is a holiday No
weggeweest Person left home in the Netherlands Yes
redennw Reason to not leave home No
redennwz Not left: duration of illness No
redennww Not left: type of weather No
redennwb Not left: reason for stay abroad No
aantvpl Number of regular trips in the Netherlands No

aantovvpl
Number of regular public transport trips in the
Netherlands

No

aantsvpl
Number of serial trips without professional with
truck in the Netherlands

No

efiets Type of used electric bike No
autoeig Used car in own name No
autohhl Used car in the name of a member of the household No
autolwg Used leased car from employer No
autolpl Used leased car from private lease No
autobed Used car in the name of a company No
autodorg Used shared car from an organization No
autodpart Used shared car from a private online platform No
autodbek Used shared car with friends/aquaintances No
autoleen Used loan car or borrowed car No
autohuur Used rental car No
autoand Used another type of car No
byzdag Particularities on reporting day No
byzadr Particularity: Other addresses No
byzvvm Particularity: other means of transport No
byztyd Particularity: other times No
byzduur Particularity: other travel time No
byzroute Particularity: other route No
byzreden Reason other travel pattern No

reisduurop
Total travel time regular trips in the Netherlands (in
minutes)

No

afstandop
Total distance traveled on regular trips on the
Netherlands (in hectometers)

No

afstandsop
Total distance traveled on serial trips in the Nether-
lands (in hectometers)

No

verpl New trip Yes
verplid Unique ID for every trip Yes
verplnr Trip number No
toer Departure point of trip is arrival point (tour) No
aantrit Number of trip legs No

doel Destination / purpose Yes
No professional trips
(i.e. driving a truck)

motiefv Motive No
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kmotiefv Motive class No
meerwink Several stores visited No
aardwerk Nature work No
vertloc Trip departure location No
vertgeb Departure area No
vertpc Postal code Departure point Yes No unknown values
vertpcbl Postal code Departure point abroad No
vertgem Departure municipality No
vertprov Departure province No
vertcorop Corop area Departure point No
vertmra Amsterdam metropolitan region departure point No

vertmrdh
Rotterdam The Hague metropolitan region depar-
ture point

No

vertspl Parkstad Limburg city region departure point No
vertutr Utrecht Province departure point No
aankgeb Arrival area No
aankpc Postcode Arrival point Yes No unknown values
aankpcbl Postcode Arrival point abroad No
aankgem Arrival municipality No
aankprov Arrival province No
aankcorop COROP area Arrival point No
aankmra Amsterdam metropolitan region arrival point No

aankmrdh
Rotterdam The Hague metropolitan region arrival
point

No

aankspl Parkstad Limburg city region arrival point No
aankutr Utrecht Province arrival point No
pcg Dutch post code border crossing No
gemg Dutch municipality of border crossing No
pcblg Foreign zip code border crossing No
afstv Trip distance in the Netherlands (in hectometers) No
kafstv Trip distance class in the Netherlands No
hvm Main transport mode trip Yes
hvmrol Role in the main transport mode Yes
khvm Main transport class trip No

vertuur Departure time trip Yes
Only trips between 5
am and 10 pm

vertmin Departure minute trip No
kverttijd Departure time class No

aankuur Arrival time trip Yes
Only trips between 5
am and 10 pm

aankmin Arrival minute trip No
reisduur Travel time in the Netherlands (in minutes) No
kreisduur Travel time class in the Netherlands No
actduur Activity duration (in minutes) No
kind6 Child (ren) younger than 6 No
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volgwerk Sequence of work trips No
saantadr Number of visited addresses Serial trips No
sdezplts All addresses in the same city No
splaats1 City name 1 No
splaats2 City name 2 No
splaats3 City name 4 No
splaats4 City name 4 No
splaats5 City name 5 No

afsts
Distance serial trips in the Netherlands (in hectome-
ters)

No

afstsbl Distance serial trips abroad (in hectometers) No
svvm1 First transport mode Serial trips No
svvm2 Second transport mode Serial trips No
svvm3 Third transport mode Serial trips No
svvm4 Fourth transport mode Serial trips No
sbeguur Start hour series No
sbegmin Start minute series No
seinduur End hour series No
seindmin End minute series No
corrverpl Correction trips to legs No
gehblver Completely foreign trip No
rit New leg No
ritid Unique ID for every leg No
ritnr Leg number No
afstr Leg distance in the Netherlands (in hectometers) No
afstrbl Leg distance abroad (in hectometers) No
kafstr Leg distance class in the Netherlands No
rvm Leg transport mode No
rvmrol Role in the transport mode No
raantin Number of passengers in car No
krvm Leg transportation mode class No
rvertuur Leg departure hour No
rvertmin Leg departure minute No
raankuur Leg arrival hour No
raankmin Leg arrival minute No
rreisduur Leg travel time in the Netherlands (in minutes) No
rreisduurbl Leg travel time abroad (in minutes) No
rvertstat Train leg departure station No
raankstat Train leg arrival station No
rtsamen Group size Travel group train No
rcorrsnelh Correction due to speed No
rvliegver Airplane ride removed No
factorh Weighing factor household No
factorp Weighing factor person No
factorv Weighing factor trip No



B
Sources for table fields in ODiN

processing

Table B.1: Assumptions, choices, and definitions used for processing ODiN survey data into ActivitySim tables.

Table Field Source
Households household_id Same as person_id.

Households home_zone_id
Mapped from PC4 to MRDH zone by using over-
lapping sections and choosing that with most resi-
dents.

Households income
Corresponds with the median income of the income
decile from which the respondent belongs, as ob-
tained from CBS data.

Households persons Directly from ODiN (hhpers).

Households hht

Mapped to ActivitySim requirements (obtained from
Association of Metropolitan Planning Organizations
Research Foundation (n.d.-a)) based on household
residents and gender of the respondent.

Households auto_ownership Directly from ODiN (hhauto).
Households urbanized Directly from ODiN (sted).

Households unemployed
1 if respondent is 18 years old or older and unem-
ployed, otherwise 0.

Households workers
All adults in household are workers, unless the re-
spondent is known to be unemployed, in which case
it is all adults - 1.

Persons person_id
Directly from ODiN, but can be renumbered for con-
venience.

Persons household_id Same as person_id.
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Persons age Directly from ODiN (leeftijd).
Persons sex Directly from ODiN (geslacht).

Persons pemploy

Mapped to ActivitySim requirements (obtained from
Association of Metropolitan Planning Organizations
Research Foundation (n.d.-a)) based on age, and
employment status. People who do not perform
paid work but still perform work trips are assumed
to work part time.

Persons PNUM
ODiN only has one respondent per household, so
this is always 1.

Persons pstudent
Based on age and possession of student public
transport card (Association of Metropolitan Plan-
ning Organizations Research Foundation, n.d.-a).

Persons ptype
Based on pemploy, pstudent, and age (Association
of Metropolitan Planning Organizations Research
Foundation, n.d.-a).

Persons education
Directly from ODiN (opleiding). Children under 12
years of age are assumed to still be in primary
school, while older children have finished it.

Persons driving_license Directly from ODiN (oprijbewijsau).
Persons roots_person Directly from ODiN (herkomst)
Persons has_car Directly from ODiN (opbezitvm)
Persons has_bike Based on frequency of use of bike.
Persons has_ebike Based on frequency of use of ebike.
Persons student_pt Directly from ODiN (ovstkaart).
Persons urbanized Directly from ODiN (sted).

Persons school_zone_id

Obtained by deducing from trip purposes and desti-
nations, and then mapped to MRDH zones by using
overlaps and choosing the area with the most stu-
dents.

Persons workplace_zone_id
Obtained by deducing from trip purposes and desti-
nations, and then mapped to MRDH zones by using
overlaps and choosing the area with the most jobs.

Persons home_zone_id
Mapped from PC4 to MRDH zone by using over-
lapping sections and choosing that with most resi-
dents.

Persons num_joint_tours
Equals zero for all persons, very little information
included in the survey.

Override persons cdap_activity
M if the person did mandatory trips, N if only non
mandatory trips, H if person stayed home.

Override persons mandatory_tour_frequency
Counts of school and work tours, mapped to strings
read by ActivitySim.

Override persons _escort Counts of escort tours.
Override persons _shopping Counts of shopping tours.
Override persons _othmaint Counts of othmaint tours.



68

Override persons _othdiscr Counts of othdiscr tours.
Override persons _eatout Counts of eatout tours.
Override persons _social Counts of social tours.

Override persons non_mandatory_tour_frequency
Based on _escort, _shopping, _othmaint, _othdiscr,
_eatout, and social, coded according to ActivitySim
definitions.

Trips trip_id
Directly from ODiN, but can be renumbered for con-
venience.

Trips person_id Corresponds with persons table.
Trips household_id Corresponds with persons and households table.
Trips tour_id Corresponds with tours table.

Trips outbound
True if the trip is before arriving to main tour desti-
nation, false otherwise.

Trips purpose
Directly from ODiN (doel), ”touren/wandelen”, and
”ander doel” are mapped randomly to either eatout
or social.

Trips destination
Mapped to MRDH zones by using overlaps and
choosing the area with the most relevant zone at-
tribute depending on purpose.

Trips origin
Mapped to MRDH zones by using overlaps and
choosing the area with the most relevant zone at-
tribute depending on purpose.

Trips depart Directly from ODiN (vertuur)

Trips trip_mode
Directly from ODiN (hvm). Speedpedelec, brom-
fiets, snorfiets, skates and scooters mapped as
ebike, handicapped vehicles mapped as walk.

Override trips trip_num
Numbering of trips per (inbound or outbound) part
of the corresponding tour.

Tours tour_id

Canonical tour IDs as defined by ActivitySim, based
on person_id, tour_type, and tour number. Ob-
tained from source code. Tours are assumed to be
home-based, subtours are work-based.

Tours person_id Corresponds with persons table.
Tours household_id Corresponds with households and persons tables.

Tours tour_type

Assumed to be the first of the following list to appear
as trip purpose in the tour: work, university, school,
escort, shopping, othmaint, eatout, social, othdiscr,
business, home. For subtours, the tour type is ”at
work”.

Tours tour_category
Mandatory if tour purpose is school or work, at work
if tour is a subtour, and non mandatory otherwise.

Tours destination
Destination for the trip corresponding to the main
tour purpose.

Tours origin Departure point of first trip in tour.
Tours start Start time of first trip in tour.
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Tours end End time of first trip in tour.
Tours tour_mode Mode of first trip in tour.

Tours parent_tour_id
If subtour, then the ID of the parent tour, otherwise
blank.

Override tours stop_frequency
Counts of stops per (inbound and outbound) part of
the tour, as a string readable by ActivitySim.

Override tours tdd
Trip time of departure an duration, in hours, mapped
to alternatives readable by ActivitySim.

Override tours atwork_subtour_frequency
Count of subtours per subtour purpose, as a string
readable by ActivitySim. Non work tours are blank.

Override tours composition
Composition of joint tours. Since there are no joint
tours, this is blank for all.



C
Public repository

For transparency and reproducibility purposes the scripts wrote during the elaboration of this research
to prepare the data, the source code modifications, and the configuration files used for the model
runs performed in this research have been uploaded to an online repository and made available to
the public. To see the repository please go here or copy the url in your browser: https://github.com/
davidmatheus002/activity_based_modeling.git
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