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Inverse All Shortest Path Problem
Zhihao Qiu , Ivan Jokić , Siyu Tang , Member, IEEE, Rogier Noldus , and Piet Van Mieghem , Fellow, IEEE

Abstract—Although resource management schemes and algo-
rithms for networks are well established, we present two novel
ideas, based on graph theory, that solve inverse all shortest path
problem. Given a symmetric and non-negative demand matrix, the
inverse all shortest path problem (IASPP) asks to find a weighted
adjacency matrix of a graph such that all the elements in the
corresponding shortest path weight matrix are not larger than those
of the demand matrix. In contrast to many inverse shortest path
problems that are NP-complete, we propose the Descending Order
Recovery (DOR) that exactly solves a variant of IASPP, referred
to as optimised IASPP. The network provided by DOR minimized
the number of links and the sum of the link weights among all
the graphs with the same shortest path weight matrix. Our second
proposed algorithm, Omega-based Link Removal (OLR), solves
the optimised IASPP by utilising the effective resistance from flow
networks. The essence of our idea is the applications of properties of
flow networks, such as electrical power grids, to compute the needed
resources in path networks subject to end-to-end demands, such as
telecommunication networks where quality of service constraints
specify the end-to-end demands.

Index Terms—Complex network, inverse all shortest path
problem (IASPP), graph theory, shortest path, effective resistance.

I. INTRODUCTION

THE design, dimensioning or operation of networks is often
constrained by end-to-end limits. For example, a telephone

call requires that the voice packets travel through a telecommu-
nication network with a designated maximum latency; the delay
between a source and a destination is limited to about 150 ms.
However, real-time control of systems over the Internet may
require a lower end-to-end delay. Thus, different services (voice,
video, ftp, email, etc.) typically require a different end-to-end
delay. Usually, a telecom operator can determine the demand
matrix D containing the maximum tolerably end-to-end delay
dij between node i and node j in the network. However, given
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the demand matrix D, a telecom operator is still confronted
to dimension the network, both topology and link weights, so
that transport along the “best” path between any pair (i, j) of
nodes consumes less time than the maximum tolerable end-
to-end delay dij . Here, we focus on finding a solution to the
operator’s problem, which we call “inverse all shortest path
problem”(IASPP). Other applications of IASPP are the design
and construction of transportation networks, where the goal
entails creating a network that ensures commute times between
stations are constrained by specific upper bounds. Similar chal-
lenges occur in wireless sensor and actuator networks [1], mobile
communication radio access networks [2], etc. An exploration
of practical applications is discussed in Section VI.

While extensive research has focused on finding the shortest
paths in a given graph, limited attention is given to the inverse
direction, i.e. obtaining or recovering a graph based on the
shortest path weights between each node pair as IASPP. A related
challenge, termed the inverse shortest path problem (ISPP),
which has garnered attention in prior research [3], [4], [5], [6],
[7], [8], [9], is reviewed in Section II. ISPP asks for making a
set of predetermined paths in the graph the shortest paths, after
modification and/or ensuring the shortest path weights between
specific node pairs are bounded by given demands. Applications
of the ISPP occur in the design of networks [3], [10], modelling
traffic [5] and seismic tomography [3], [4]. However, in many
practical scenarios, the topology of the network is unknown,
rendering existing ISPP approaches inapplicable. In contrast
to ISPP, our IASPP only requires a demand matrix as input.
Additionally, the approach we propose in Section III not only
furnishes a graph that satisfies specified demands, but also stands
as an effective technique of “network sparsification” [11] and
helps to better understand the importance of different links
within a network.

Before introducing the inverse all shortest path problem
(IASPP) in Section II, we explain the terminology. We consider a
graphG that possesses a setN ofN nodes and a setL ofL links.
The graph G can be represented [12] by an N ×N adjacency
matrix A, with element aij = 1 if there is a link in G between
node i ∈ N and node j ∈ N , otherwiseaij = 0. Each link l ∈ L
has a weight wl, which is a positive real number that specifies
a property of the link, e.g. the resistance in an electrical graph
or the delay when transmitting IP packets over that link. On the
graph G, two different types of transport are possible that lead
to either “path networks” or “flow networks”. In a path network,
the transport of items follows a single path Pij between a node
pair (i, j), whereas in a flow network, the transport from node i
to node j propagates over all possible paths from node i to node
j. Two typical examples are a communication network, where IP
packets follow most of the time a single path Pij from source i
to destination j, and a power grid, where electrical current flows
over all possible paths.
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The weightw(Pij) =
∑

l∈Pij wl of a pathPij between a node
pair (i, j) consists [13] of the sum of the weights over all links
that belong to that path Pij . We will denote by P∗ij the shortest
path between a node pair (i, j). The shortest pathP∗ij minimizes
the path weight over all paths Pij and obeys w(P∗ij) ≤ w(Pij).
In most real-world networks, there is only one shortest path
P∗ij , but, in general, there can be many shortest paths between
the same node pair (i, j), in particular in unweighted graphs,
where each link has the same link weight,1 i.e. wij = w for all
elements of the N ×N link weight matrix W . The weighted
adjacency matrix is Ã = W ◦A, where the Hadamard product
◦ means a direct elementwise multiplication, ãij = wijaij and
we use “tilde” notation for weighted graph matrices2. In our
setting, ãij = 0 means that there is no link between node i and
node j, because we exclude zero link weights, i.e. wij > 0, as
in Dijkstra’s shortest path algorithm [14], [16], [17] and in order
to avoid the complication that a zero weight, i.e. wij = 0, would
physically mean that node i and j are the same. The separation
between link weights, represented by the link weight matrix W ,
and underlying graph G, represented by the adjacency matrix
A, is obvious in unweighted graphs, where W = wJ and J =
u · uT is the all-one matrix and u is the all-one vector. In the
unweighted case, the graph is confining. In the other extreme,
where link weights are highly variable and where the minimum
link weight wmin > 0 is orders of magnitude smaller than the
maximum link weight wmax, the underlying graph G is less
confining than the link weight structure3, which effectively thins
out the graph. Indeed, mainly links with small link weights are
relevant in a shortest path problem and large link weights may be
ignored4 from the onset, especially if link weights are assigned
per link independently of the other links (see also [13, Chapter
16], [18], [19], [20]). In a shortest path setting, links with low
link weights are generally more costly than links with high link
weights.

Let vk denote the potential or voltage of node k in the graph
G. The effective resistanceωij between node i and node j equals
the voltage difference ωij =

vi−vj

Ic
when a unit current Ic = 1

Ampere is injected in node i and leaves the network at node
j. The N ×N effective resistance matrix Ω with elements ωij ,
studied in e.g. [12], [21], [22], [23], [24] and [12, Chapt. 5], is
briefly reviewed in Section I-B. If the graph G is connected5,
then the effective resistance ωij as well as the path weight
w(Pij) is finite for any node pair (i, j) and a shortest path
P∗ij exists between each node pair (i, j). We define the N ×N
matrix S, that contains all shortest path weights with element
sij = w(P∗ij). If the weighted adjacency matrix Ã is known,
then the matrix S is readily found via a shortest path algorithm,

1The shortest path does not change if all weights are multiplied by a constant
α > 0.

2The flow network is characterized by the subscriptF , i.e. ÃF is the weighted
adjacency matrix of a flow network, while Ã denotes the weighted adjacency
matrix of a path network.

3The link weight structure refers to the entire ensemble {wl}l∈L of all link
weights in the graph as one coherent set, possibly generated by a process that
takes correlations of weights over links into account. The matrix W can then be
considered as one particular realization of the link weight structural process.

4If their removal does not disconnect the graph.
5The weighted adjacency matrix Ã is called irreducible when the graph G is

connected (see [13, p. 183]; [12, art. 167 on p. 235]). For a connected graph, the
(weighted) Laplacian only has 1 zero eigenvalue and its rank is N − 1.

like Dijkstra’s shortest path algorithm. Dijkstra’s shortest path
computation is very efficient and only requires O(N logN)
elementary operations. Both the effective resistance matrix Ω
and the shortest path weight matrix S are distance matrices6.

In the sequel, we limit ourselves to connected, undirected,
simple7 graphs. Consequently, the N ×N symmetric matrices
A,W , Ã,Ω andS are non-negative with zero diagonal elements.

The main contributions of this work are as follows:
1) We propose a novel problem named “Inverse all shortest

path problem” (IASPP) and its variant “the optimised
IASPP” (OIASPP). The IASPP asks for a weighted graph
whose shortest path weight between each node pair satis-
fies a given demand.

2) We prove that OIASPP is not NP-complete.
3) We propose the Descending Order Recovery (DOR) al-

gorithm that exactly solves OIASPP. The DOR graph
minimizes the number of links and the sum of the link
weights among all the graphs with the same shortest path
weight matrix.

4) We demonstrate that DOR is also an effective network
sparsification algorithm.

5) We propose the Omega-based Link Removal (OLR) al-
gorithm, which solves OIASPP by utilising the effective
resistance [12, Chapter 5]. OLR invokes properties of flow
networks, such as electrical power grids, to compute the
needed resources in path networks subject to end-to-end
demands, such as telecommunication networks.

6) We discuss the applications of IASPP and evaluate the
performance of DOR and OLR.

The paper is outlined as follows. In Section I-A and I-B,
we introduce notations to describe IASPP. We formally define
IASPP and its variant OIASPP in Section II and review re-
lated problems from literature. In Section III and Section IV,
we respectively propose two algorithms, DOR and OLR, to
solve the optimised inverse all shortest path problem (OIASPP).
Section V compares and evaluate the proposed algorithms by
simulations. Section VI introduces the potential applications of
IASPP. Finally, we summarise our results in Section VII.

A. The Laplacian Matrix Q

The N × 1 degree vector d = A · u contains the degree di of
each node i and the corresponding diagonal matrixΔ = diag(d)
has the nodal degrees on its main diagonal. The eigenvalue
decomposition of the N ×N Laplacian Q = Δ−A,

Q = Z · diag(μ) · ZT , (1)

defines the set ofN orthogonalN × 1 eigenvectors zi contained
in columns of theN ×N eigenvector matrixZ, and the set ofN
eigenvalues μ1 ≥ μ2 ≥ · · · ≥ μN . Due to double orthogonality
of the eigenvector matrix Z (i.e. Z · ZT = I and ZT · Z = I),
where I is the N ×N identity matrix, (1) can be transformed
into a weighted sum of N outer vector products

Q =

N∑
i=1

μi · zi · zTi . (2)

6Any elementhij of a distance matrixH is non-negativehij ≥ 0, buthii = 0
and hij obeys the triangle inequality: hij ≤ hik + hkj .

7A simple graph has no multiple links between a same pair of nodes and also
no self-loops, i.e. aii = 0 for each node i ∈ N .
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As of any real, symmetric matrix [12], the eigenvalues of
Laplacian Q are real and non-negative because Q is a positive
semidefinite matrix. From Q · u = 0, we observe that μN = 0
and zN = u and thus detQ = 0. Consequently, the Laplacian
Q is not invertible. However, the pseudoinverse8 of the Lapla-
cian [23]

Q† =
N−1∑
i=1

1

μi
· zi · zTi (3)

obeys Q† ·Q = Q ·Q† = I − 1
N · J . In this work we consider

a weighted graph G, where a link l between node i and node j
is defined by its weight

wij = wl =
1

rl
,

with rl denoting link l resistance and rl > 0, wl > 0.

B. Effective Resistance

The effective resistance ωij between node i and node j is
defined as [12]

ωij = (ei − ej)
T ·Q† · (ei − ej) , (4)

where the N × 1 basic vector ei has only one non-zero element
(ei)i = 1. The effective resistance ωij quantifies the dissipated
power when the current of 1 Ampere is applied between the
nodes i and j. The equation in (4) can be transformed into a
matrix form, defining the N ×N effective resistance matrix

Ω = ζ · uT + u · ζT − 2 ·Q†, (5)

where the N × 1 vector ζ = (Q†11, Q
†
22, . . . , Q

†
NN ) contains

the diagonal elements of the pseudoinverse of the Laplacian Q.
The effective resistance ωij between directly connected nodes
i and j (i.e. aij = 1), represents the effective resistance of a
parallel connection

1

ωij
=

1

rij
+

1

(ωG∗)ij
(6)

between the resistance of a direct link rij and the effective resis-
tance (ωG∗)ij between nodes i and j in the graph G∗ = G \ lij ,
where the link lij is removed.

Lemma 1: A link lij ∈ L of a graph G(N ,L) connects two
disconnected sub-graphs G1 and G2, i.e. L(G1) ∪ L(G2) ∪
lij = L(G) and L(G1) ∩ L(G2) = ∅ if and only if it holds

ωij = rij .

Proof: When link lij of a graph G connects two disconnected
sub-graphs G1 and G2, the effective resistance of a graph G∗ =
G \ lij equals r∗ij =∞. Therefore, (6) transforms into ωij =
rij .

The effective resistance ωij between adjacent nodes i and j
is upper bounded by the resistance rij of the direct link between
them

ωij =
rij · (ωG∗)ij
rij + (ωG∗)ij

≤ min
(
rij , (ωG∗)ij

)
.

Otherwise, if aij = 0, then the effective resistance ωij is upper
bounded by the sum of resistances of links forming the shortest

8We restrict the analysis to connected simple graphs, as the number of zero
eigenvalues of Laplacian Q equals the number of connected components in a
graph. More precisely, (3) does not hold in the case of a disconnected graph.

path between the nodes. In both cases, if more paths exist
connecting two nodes, then there are more possible paths for
the current to flow simultaneously and thus, the effective resis-
tance lowers. The sum of all elements of the N ×N effective
resistance matrix Ω defines the effective graph resistance [12]

RG =
1

2
· uT · Ω · u = N ·

N−1∑
i=1

1

μi
. (7)

II. INVERSE ALL SHORTEST PATH PROBLEM

A. Statements of Inverse All Shortest Path Problems

Problem 1 (Inverse All Shortest Path Problem (IASPP)):
Given an N ×N symmetric demand matrix D with zero di-
agonal elements but positive off-diagonal elements. Determine
an N ×N weighted adjacency matrix Ã, such that the corre-
sponding shortest path weight matrix S obeys9 S � D

Since an element in the shortest path weight matrix S can be
any positive number by scaling the weighted adjacency matrix,
the IASPP generally has infinitely many solutions. Therefore,
optimisation criteria such as the minimization of a norm ||D −
S|| are added. An instance [10] of IASPP is the optimised inverse
shortest path problem (OIASPP).

Problem 2 (Optimised 1.nverse All Shortest Path Problem
(OIASPP)): Given an N ×N symmetric demand matrix D
with zero diagonal elements but positive off-diagonal elements.
Determine an N ×N weighted adjacency matrix Ã, such that
the corresponding shortest path weight matrix S obeys S � D
and minimizes a norm ||D − S||.

Van Mieghem [10] demonstrated that any demand matrix D
can be transformed into a distance matrix D′ with D′ � D,
where D′ represents the (modified) demand matrix that is also a
distance matrix: If dik + dkj < dij for at least one node k ∈ N
which violates the triangle inequality of a distance matrix, then
we can replace dij = min1≤k≤N (dik + dkj) and dji = dij . In
the following, we assume that the demand matrix D is also a
distance matrix. A complete graph whose weighted adjacency
matrix Ã = D is a solution of the OIASPP with demand matrix
D. Consequently, given a demand matrix D, we can obtain at
least one solution of the OIASPP. In 1965, Hakimi and Yau [25]
proved that if a weighted graph G is an N -node realization of
an N ×N distance matrix D′, i.e. the corresponding shortest
path weight matrix S of G equals D′, and there does not exist
three nodes i, j and k such that wij > sik + skj , where wab

is the link weight between nodes a and b and sab denotes the
shortest path weight, thenG is unique. Hence, if there is only one
solution of the OIASPP, then the resulting graph is a complete
graph [10] and wij ≤ sik + skj holds for arbitrary three nodes
i, j and k, when the graph size N ≥ 3. When the demand
matrix D is a shortest path weight matrix generated by a tree,
Van Mieghem [10] has solved OIASPP exactly as explained in
Section II-B.

In this paper, we focus on general underlying graphs rather
than trees or complete graphs. We respectively propose two
algorithms Descending Order Recovery (DOR) and Omega-
based Link Removal (OLR) to solve OIASPP in Section III

9The notation � is used for componentwise inequality, i.e. S � D means that
sij ≤ dij for each i = 1, 2, . . . ,N and each j = 1, 2, . . . ,N .
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and Section IV. Since the computational complexity of DOR
is polynomial, we have incidentally proved that OIASPP is not
NP-complete.

B. Literature Review

Before investigating IASPP, we explain the related inverse
shortest path problem (ISPP). Both ISPP and IASPP are “in-
verses” of the shortest path problem, that ask for a graph given
the shortest paths or shortest path weights between node pairs.
However, ISPP requires both the shortest paths (or shortest path
weights) and the original graph, while IASPP only necessitates
a demand matrix, that specifies the maximum shortest path
weights, as input.

Problem 3 (Inverse Shortest Path Problem (ISPP)): Given an
N ×N weighted adjacency matrix Ã with link weight matrix
W and a set of paths {Pij}. Determine an N ×N non-negative
link weight matrix W ′ and the corresponding graph H such that
all the paths Pij belonging to {Pij} are the shortest paths in the
obtained graph H .

We will introduce several representative generalizations or
variants of ISPP below.

In 1992, Burton and Toint [3] proposed a quadratic program-
ming algorithm based on the Goldfarb-Idnani method [26] to
solve a variant of ISPP, which we denote by ISPPBurton:

Problem 4 (Inverse Shortest Path Problem Burton
(ISPPBurton)): Given an N ×N weighted adjacency matrix
Ã with link weight matrix W and a set of paths {Pij}.
Determine an N ×N non-negative link weight matrix W ′ and
the corresponding graph H such that all the pathsPij belonging
to {Pij} are the shortest path in the obtained graph H and
minimize ||W ′ −W ||.

Burton and Toint utilised l2 norm ||W ′ −W || =√∑
i

∑
j(w

′
ij − wij)2, where w′ij and wij represent

the elements of W ′ and W respectively. A specialized
Goldfarb-Idnani method can then be implied. The approach
involves iterative adjustments to the matrix W ′, leading to the
eventual weighted graph H , in which Pij belonging to the
given path set {Pij} are the shortest paths. The method works
in both directed and undirected graphs.

Different variants and modified methods following
ISPPBurton are discussed in [5], [6], [7], [8]. In 1999, Fekete
et al. [9] considered a more general ISPP, where only the shortest
path weight between pairs of nodes is given, but not the paths
achieving them. Given a graph G with adjacency matrix A and a
demand matrix D, ISPPFekete aims to find a “weight function”
of the weighted adjacency matrix Ã such that the demand matrix
D is exactly the shortest path weight matrix S, where the weight
function describes all the weighted adjacency matrices whose
corresponding shortest path weight matrix S = D. The demand
matrixD in ISPPFekete must be a distance matrix measuring the
shortest path weight between several pairs of nodes in graph G.
Not all the pairs of nodes in graph G are necessarily included in
the demand matrix D. Fekete et al. [9] proved that ISPPFekete is
NP-complete by reducing ISPPFekete to a vertex-disjoint paths
problem.

All mentioned variants of ISPP require the original weighted
adjacency matrix Ã or adjacency matrix A. In contrast, Hakimi

and Yau [25] investigated a “weighted graph realization” with
only an N ×N demand matrix D as input, which is also a
distance matrix. Hakimi and Yau [25] presented an algorithm to
obtain a graph H on N ′ nodes by adding N ′ ≥ N nodes into the
graph such that the corresponding shortest path weight matrix
S = D. If we extract the shortest path weights between node
pairs that belonging to the first N nodes and form a shortest path
weight matrix S, then S = D. Since the input in [25] contains
all the shortest path weights in a graph, we call the problem
“inverse all shortest path problem” (IASPP).

If the given distance matrix D can be realized by a tree t,
Van Mieghem [10] proposed an elegant algorithm to recover
the tree t from D by exploiting the analogy between flow
networks and path networks. For undirected flow networks,
Fiedler [27], [28] has presented the following block matrix
relation, (

0 uT

u Ω

)−1
=

(−2σ2 pT

p − 1
2 Q̃

)
(8)

with Ωp = 2σ2 u, where Q̃ = Δ̃F − ÃF is the weighted Lapla-
cian matrix of a flow network and the diagonal matrix Δ̃F =

diag(AFu), ÃF is the weighted adjacency matrix of a flow net-

work, the variance σ2 = ζT
˜Qζ
4 +RG, where RG is the effective

graph resistance [23] and u is N × 1 the all-one vector. The
vector ζ contains the diagonal elements of pseudoinverse Q† of
the Laplacian Q̃. Specifically, Van Mieghem [10] defined the
weight of a link wij = rij as the resistance (in Ohm), then the
weighted Laplacian Q̃ has non-zero elements q̃ij = − 1

rij
and

ãF = 1
rij

for i �= j, where ãij = rij , but (ãF )ij = (ã)ij = 0

for i �= j if there is no link between node i and node j. The
diagonal elements (ãF )ii = (ã)ii = 0 are always zero. Fiedler’s
block matrix relation (8) indicates a one-to-one relation between
the effective resistance matrix Ω and the weighted Laplacian Q̃
and therefore, also between the effective resistance matrix Ω
and the weighted adjacency matrices ÃF and Ã. By applying
block inverse formulae [12] to Fiedler’s block matrix relation, it
is shown in [10] that

2σ2 =
1

uTΩ−1u
(9)

p =
1

uTΩ−1u
Ω−1u (10)

and the inverse of the effective resistance matrix is

Ω−1 =
1

2σ2
ppT − 1

2
Q̃ (11)

Hence, with Q̃ = Δ̃F − ÃF , the weighted adjacency matrix
follows as

ÃF = Δ̃F + 2Ω−1 − 1

σ2
ppT . (12)

If the graphG is a tree, then the shortest path matrixS equals the
effective resistance matrix Ω, because there exists exactly one
path in a tree between each pair of nodes [22]. The weighted
adjacency matrix ÃF can be deduced from (12) by replacing
Ω by S. Hence, the weighted adjacency matrix Ã follows by
taking the element-wise inverse of ÃF . The zero elements in
ÃF should not be inverted, but should instead be transferred to
Ã. Indeed, the obtained Ã is an exact solution of the OISPP
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for any tree: If the given demand matrix D is a distance matrix
such as the shortest path weight matrix S, then the weighted
adjacency matrix Ã can be obtained from (12) with Ω = S. We
call this method the “flow analogue method”.

As explained in Appendix B, the algebraic flow analogue
method is hard to extend from a tree graph to a general graph.
In the sequel, we solve OIASPP for general graphs.

III. DESCENDING ORDER RECOVERY ALGORITHM

In this section, we propose the Descending Order Recovery
algorithm (DOR) that solves OIASPP exactly. If a demand
matrix D is the shortest path weight matrix S of an arbitrary
graph G, then DOR retrieves the graph H satisfying the norm
||D − S ′|| = 0, whereS ′ is the shortest path weight matrix ofH .
For a given demand matrix D, the graph H obtained by DOR is
unique and reaches a minimum number of links and a minimum
sum of the link weights among all OIASPP solutions with the
same demand matrix D. The resulting graph H generally has
less links than graph G. If graph G is unweighted, the resulting
graph H is the same graph as G.

A. Properties of DOR

Our main idea of DOR is:
1) Given a demand matrix D, find the minimum spanning

tree of the complete graphGD, whose weighted adjacency
matrix Ã = D;

2) Add a link between two nodes i and j whose shortest path
weights sij > dij , with link weight wij = dij ;

3) Repeat 2 until sij ≤ dij for each i, j ∈ N .
If we remove a link l in graph G and obtain graph H , then

the link l either (a) belongs or (b) does not belong to the shortest
path P∗ij between two nodes i and j. In case (a), removing link
l does not change the shortest path P∗ij nor the shortest path
weight sij . In case (b), the shortest path between nodes i and
j is changed, but the shortest path weight s′ij in H cannot be
smaller than sij , otherwise, the shortest path weight s′ij would
also be the shortest path weight in G. Thus, the shortest path
weight sT (ij) between arbitrary nodes i and j in the minimum
spanning tree T of a graphG is not smaller than the shortest path
weight sG(ij) in the graph G and step 1 ensures that the lower
bound of the shortest path weight matrix of our obtained graph
H is D. The upper bound of the shortest path weight matrix
of the obtained graph is also D after performing step 2 and 3.
DOR obtains a graph H satisfying the norm ||D − S ′|| = 0. We
present the pseudo code of DOR initialised with a minimum
spanning tree as Algorithm 4 in Appendix F.

The graph H obtained by DOR may have more links than
the original graph G. In the worst case, the resulting H is a
complete graph, whose weighted adjacency matrix equals the
demand matrix D. We call lij a “redundant” link if we can find
another node k, besides i and j, in the graph such that ãij =
wijaij ≥ sik + skj . For example, as shown in Fig. 1, link l19
can be replaced by l12, l24 and l49 when calculating the shortest
path between nodes 1 and 9 in the graph obtained with DOR,
since ã19 = s14 + s49. Removing link l19 would not change the
shortest path weight matrixS nor the connectivity of the original
graph.

Fig. 1. Visualization of redundant links in the graph obtained by DOR. We
generate a 9-node toy graph and obtain the corresponding shortest path weight
matrix as the demand matrix D. A graph is then obtained by DOR with the
demand matrix D as input. The redundant links are highlighted.

Algorithm 1: Descending Order Recovery (DOR).
Input: N ×N demand matrix D = S: a shortest path
weight matrix of a graph G

Output: N ×N weighted adjacency matrix Ã

1: Ã← D and Ã specifies graph G
2: ∀ positive link weights in G and any node k �= i, j
3: if ãij ≥ sik + skj then
4: ãij ← 0, ãji ← 0
5: end if
6: return Ã

If a link lij is redundant in a weighted adjacency matrix Ã
obtained by DOR, i.e. if there exists a node k such that sik +
skj ≤ ãij , we then remove the link between nodes i and nodes
j and let aij = 0. Hakimi and Yau [25] proved that there is only
one graph which does not have redundant links among all the
graphs with the same shortest path weight matrix S. Therefore,
the graph H obtained by DOR is unique for a given demand
matrix D after removing all redundant links. Hence, DOR can
be further simplified: After removing all redundant links in the
complete graph GD whose weighted adjacency matrix equals
the demand matrix D, we obtain the solution graph H , which
solves OIASPP exactly. The pseudo code for simplified DOR is
shown in Algorithm 1.

Property 1: Given a demand matrix D, the obtained graph
H by DOR reaches a minimum number of links among all the
OIASPP solutions.

Proof: By contradiction: Suppose that there exists a graphH ′
such that the corresponding shortest path weight matrix S = D
and the graph H ′ has fewer links than the graph H obtained
by DOR. The graph H ′ should have redundant links because
both graph H ′ and graph H have the same shortest path weight
matrix S and the graph H does not have redundant links. In
that case, we construct a graph H ′′ by removing redundant links
in graph H ′. Since removing redundant links does not change
the corresponding shortest path weight matrix, graph H ′′ and
graph H have the same shortest path weight matrix S and do
not have redundant links, which is impossible because there is
only one graph that does not have redundant links among all the
graphs with the same shortest path weight matrix S. Hence, the
obtained graph H by DOR reaches a minimum number of links
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Fig. 2. Differences of number of links between the original graph and the
graph obtained by DOR.

among all the solutions to an OIASPP given a demand matrix
D.

Because the graphH obtained by DOR minimizes the number
of links among all the graphs with the same shortest path weight
matrix S, we can only obtain a graph H ′ that has the same
shortest path weight matrix S by adding redundant links. We
thus have:

Property 2: Given a demand matrix D, the obtained graph H
by DOR reaches a minimum sum of the link weights among all
OIASPP solutions.

Given a demand matrixD that is a shortest path weight matrix
S of an arbitrary “original” graph G. While the shortest path
weight matrix S of the graph H obtained by DOR is identical to
the shortest path weight matrix of the original graph G, the two
graphs H and G themselves may not be the same. Specifically,
when the demand matrix D is computed from an unweighted
graph G, fortunately, we can remove all the redundant links by
removing links whose weights are larger than 1 in the complete
graph GD. Since all the link weights in unweighted graphs are
exactly 1, the shortest path weight sij between two nodes equals
1 if and only if nodes i and j are neighbours. Thus the adjacency
matrix A of the graph after removing redundant links in the
complete graphGD is precisely the same as the adjacency matrix
of the original unweighted graph G.

B. Examples

In Fig. 2, we respectively examine the number of links LG

and LH of the original graph G and the DOR graph H . For each
simulation, we generate an Erdős–Rényi (ER) random graph
Gp(N), where N is the number of nodes and p is the probability
of connecting two nodes. The link weights of the ER graph
Gp(N) are uniformly distributed in (0,1). The N ×N shortest
path weight matrix S is calculated and equal to the demand
matrix D. For different N and p, 1000 iterations are carried
out. Fig. 2 illustrates that DOR produces graphs H with fewer
links than the original ER graphs G, provided the link density
p is sufficiently large. An interesting phenomenon is that the
resulting graph H seems to have a similar number of links,
irrespective of the number LG of links in the original graph.
Hence, for a dense original graph G, DOR provides a sparser
graph with the same shortest path weight matrix, but with a

different adjacency matrixA, which can be regarded as “network
sparsification” [11] that preserves all shortest path weights.

An instance of network sparsification is investigated by Simas,
et al. [29]. Given a graph G with weighted adjacency matrix Ã,
Simas, et al. [29] focuses on obtaining a graphH , which they call
the “distances backbone”, with the same shortest path weight
matrix S of graph G, but fewer links. The main idea is that
the off-diagonal elements of the resulting weighted adjacency
matrix Ã′ are computed by{

ã′ij = sij if ãij = sij
ã′ij = 0 if ãij > sij

(13)

for i = 1, 2, . . . , N , j = 1, 2, . . . , N, j �= i. However, the
method proposed by Simas et al. [29] always includes the
redundant links such that wij = sik + skj , where wij is the
weight of link lij . Thus, DOR can return a sparser graph than
the distances backbone.

Van Mieghem and Wang [20] investigated the union of all
shortest path trees G∪spt , where the shortest path tree (SPT)
rooted at some node is the union of the shortest paths from that
node to all the other nodes. If a link lij is the shortest path P∗ij
between i and j, then lij must belong to the G∪spt , because
the G∪spt is the union of shortest paths between all possible
source and destination nodes [20]. All the links in the graph H
obtained by DOR belong to at least one shortest pathP∗ij and the
graph H thus belongs to the G∪spt . The inverse does not hold,
because the union G∪spt may have redundant links lij in which
wij = sik + skj .

C. Computational Complexity of DOR

For each possible link lij , DOR determines whether the link is
redundant by comparing the link weight wij with the sum of the
shortest path weights sik + skj , where k ∈ N is a node different
from node i and j. Hence, each link lij needs to be compared
with the sum of the shortest path weights sik + skj for N − 2
nodes k in the worst case. The computational complexity of
the worst case of DOR (Algorithm 1) is O(N3), because the
demand matrix D = O(N2). OIASPP is thus not NP-complete!
The main differences between OIASPP and three NP-complete
variants of ISPP introduced in Section II and Appendix E lie
in the given constraints. While the three NP-complete variants
of ISPP restrict the resulting graph to a predetermined graph
topology, OIASPP can be solved by changing both topology
and link weights to meet the given constraints about shortest
path weights.

IV. OMEGA-BASED LINK REMOVAL ALGORITHM

The Omega-based Link Removal (OLR) algorithm recovers
an as sparse as possible graph, with elements of the shortest path
weight matrix sij ∈ [bdij , dij ], where dij is the given demand
and b ∈ [0, 1] is an input parameter. OLR leverages information
captured by the effective resistance between pairs of nodes.
Equation (6) enables us to determine the impact on the effective
resistance between two neighbouring nodes when the shared link
between them, denoted as lij , is eliminated. By targeting the
removal of the link with the highest value of 1

(ωG∗ )ij
, we achieve

the smallest possible increase in the effective graph resistance
RG of the network. To enhance the efficacy of this approach
for solving OIASPP, we introduce a refinement, which involves
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scaling the quantity 1
(ωG∗ )ij

by the difference between the pro-
vided upper bound dij and the current shortest path weight sij
for the pair of nodes (i, j). This strategic adjustment allows us
to combine insights from the effective resistance measurements
and the upper bound values supplied by the N ×N demand
matrix D.

The shortest path weight between two nodes is the sum of
the link weights (i.e. corresponding elements of the weighted
adjacency matrix Ã) belonging to that path. On the contrary,
a link weight in a “flow network ” (defined by the adjacency
matrix ÃF ) has a dimension of the inverse of the resistance.
Therefore, to utilise the analogy between shortest paths and
effective resistance, we additionally define the N ×N link
weight matrix Ŵ containing the inverse link weights10

ŵij =

{
1
ãij

if ãij > 0,

0 otherwise,
(14)

where i, j ∈ N . The corresponding N ×N effective resistance
matrix computed with Ŵ instead of Ã = A ◦W is denoted as
Ω̂.

Algorithm 2: Omega-based Link Removal (OLR).
Input:N ×N demand matrix D = S: a shortest path
weight matrix of a graph G; input parameter b ∈ [0, 1]

Output:N ×N weighted adjacency matrix Ã
1: AN×N ← JN×N − IN×N adjacency matrix of a

complete graph
2: Ã← b · (A ◦D) weighted adjacency matrix
3: SN×N ← Shortest path weight matrix of Ã
4: ŴN×N ← Inverse link weight matrix of Ã
5: repeat
6: Ω̂N×N ← Effective resistance matrix of Ŵ
7: R← (Ω̂− Ŵ ) ◦ (D − S) ◦A
8: (i, j)← Indices of the maximum element in R
9: A← A− ei · eTj − ej · eTi

10: Ã← b · (A ◦D)

11: SN×N ← Shortest path weight matrix of Ã
12: ŴN×N ← Inverse link weight matrix of Ã
13: until (S � D) ∧ (Rij > 0)
14: A← A+ ei · eTj + ej · eTi
15: Ã← b · (A ◦D)

16: return Ã

In Algorithm 2, we propose an iterative algorithm that solves
the IASPP problem by invoking the effective resistance between
pairs of nodes. The OLR algorithm is initialised in line 1 by the
complete graph with the adjacency matrix A = J − I , while
the link weights equal (line 2) the corresponding shortest path
weights in the demand matrix D = S, scaled by the input
parameter b,

Ã = b · (A ◦D) ,

which ranges between 0 and 1. Link weights are scaled in line 2
for two reasons. Assume the demand matrix D is derived from

10Link existence overrules the link weight. Equation (14) shows that if a link
lij does not exist in graph G (i.e. ãij = 0), than w̃ij = 0, although 1

ãij
→∞.

an original graph. In case b = 1, if the proposed OLR algorithm
recovers the exact topology as in the original graph G, then the
link weights would also be the same. In general, OLR ensures
the shortest path weight between directly connected nodes to be
equal to the corresponding element of the provided upper bound
in D, scaled by the input parameter b. Therefore, b < 1 allows
OLR to achieve sparser graphs even from the original graph G,
at the cost of increased norm 11 of ||D − S||, still satisfying the
bound S � D. To determine which link should be removed in
each iteration, in line 7 we compute the N ×N matrix

R =
(
Ω̂− Ŵ

)
◦ (D − S) ◦A,

where theN ×N inverse link weight matrix Ŵ contains inverse
link weights, as defined in (14). whose elements are dimen-
sionless and denote the inverse effective resistance (Ω̂− Ŵ )ij
between a pair of neighbouring nodes (i.e. aij = 1), in case the
direct link between them is removed (as in (6)), multiplied by
the gap (dij − sij) between the shortest path weight between
them and the given upper bound in D. We remove the existing
link with the highest value in R (line 8), because the adjacent
nodes are easily reachable via the rest of the graph when the link
is removed, and the margin between the current shortest path
weight and the upper bound is relatively high. After updating
the adjacency matrix A (line 9), we redistribute the link weights
(line 10) as Ã = b · (A ◦D) and update (line 11) the N ×N
shortest path weight matrix S.

Link removal is performed until at least one shortest path
weight in the obtained graph H exceeds the given upper bound
in the N ×N demand matrix D. At that point, the last removed
link is returned (line 14), while the N ×N weighted adjacency
matrix Ã is provided as output.

OLR initialises the topology with a complete graph and itera-
tively removes links until at least one upper bound on the shortest
path weight between node pairs is exceeded. In general, OLR
can return any connected topology, even a tree. Therefore, there
are generally up to N ·(N−1)

2 − (N − 1) iterations. The effective
resistance and the shortest path weight between all node pairs
are computed within each iteration. Within each iteration in
our OLR, the effective resistance and the shortest path weight
between any pair of nodes are computed. Both operations require
computational complexity O(N3). In addition, we initialise
OLR with a complete graph. The number of iterations in worst
case scales as O(N2). Therefore,the overall complexity of our
OLR is O(N5). Alternatively, DOR can streamline OLR’s com-
putational complexity. DOR ensures the retrieval of a graph with
the minimum necessary links, accurately aligning the shortest
path weight matrix S with the demand matrix D. Instead of
initializing OLR with a complete graph, we employ DOR as the
initial phase within OLR. Subsequently, we iteratively refine
the graph until the shortest path weights fall within a predefined
range, as dictated by the input parameter b. Consequently, the
number of removed links within OLR reduces significantly,
lowering its computational complexity to be O(N3 L′), where
L′ is the number of links in graph obtained by DOR.

11For any pair of connected nodes i and j we observe sij = b · dij . In
addition, for non-adjacent nodesm andnwe reason smn > b · dmn, becauseD
is a distance matrix. Combining these two observations, we concludeS ≤ b ·D,
which yields ||D − S|| < 1− b.
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Fig. 3. (a) Differences between number of links in the graph obtained by OLR
and the original graph with different input parameter b. The x-axis denotes the
link density p of the underlying 20-node ER graphs, while the y-axis is the
difference between number of links in the graph H obtained by OLR and in
the original graph G. (b) The norm ||D − S|| of the graph obtained by OLR
with different input parameter b. The x-axis denotes the link density p of the
underlying 20-node ER graphs, while the y-axis is the norm ||D − S||.

Fig. 3 shows the differences between the number of links in
the OLR graph H and the original graph G with different b
and the norm ||D − S|| = 1

N(N−1)
∑

i

∑
j

dij−sij
dij

of the graph
obtained by OLR with different input parameter b. For each
simulation, we generate a 20-node Erdős–Rényi (ER) random
graphs Gp(20) and compute the corresponding shortest path
weight matrix as the input demand matrix D, where p is the
probability of connecting two nodes (link density). The link
weights of the ER graph Gp(20) are uniformly distributed in
(0,1). For each link density p, 1000 realizations are carried out.
Fig. 3(a) illustrates that a smaller b generates a graph H with
fewer links, while Fig. 3(b) shows that a smaller b corresponds
to a large norm ||D − S||.

V. PERFORMANCE EVALUATION OF DOR AND OLR

In this section, we evaluate the performance of DOR and
OLR12. in random graphs and an empirical network. The perfor-
mance of the DOR and OLR is assessed by three complementary
criteria: (i) the number LH − LG of additional links in the

12Matlab code is on https://github.com/qzhszl/IASPP.git

Fig. 4. Performance of the DOR and OLR on ER graphs with N = 10 nodes
and different link density p. The input parameter b = 0.7.

resulting graph H , (ii) the number 1
2LH
· uT · (A ◦AH) · u of

common links in the original graph G and the resulting graph
H and (iii) the norm ||D − S|| = 1

N(N−1)
∑

i

∑
j

dij−sij
dij

of the
demand matrix D and the shortest path weight matrix S.

Fig. 4 illustrates the results of DOR (red line) and OLR (blue
line) in ER graphs Gp(N) with N = 10 nodes and different
link density p. We uniformly assign a random weight from
(0,1) to each link in G, thus defining the weighted adjacency
matrix Ã. For each generated ER graph, we provide the shortest
path weight matrix of G as the input demand matrix D to the
algorithm DOR and OLR. The input parameter of OLR b = 0.7.
We then obtain the resulting graph H , whose shortest path
weight matrix is denoted as S. For each number N of nodes and
different link density p, 100 simulation instances are executed
and the average over 100 times of each criterion is computed.

Fig. 4(a) depicts the difference in the number of links LH −
LG between the obtained graph H and the original graph G. For
a small link density p, the obtained graph H contains almost
the same number of links LH as that of the original graph LG,
while LH − LG decreases with the increment of link density
p. As for the number of common links in the original graph G
and the resulting graph H , our simulation (details are shown in
Appendix G) shows that 1

2LH
· uT · (A ◦AH) · u = 1 holds for

both DOR and OLR with different link density p, which informs
us that links of graph H obtained by both DOR and OLR belong
to the original graph G. Fig. 4(b) illustrates the norm ||D − S||,
where DOR always returns an exact solution ||D − S|| = 0 to
the OIASPP. In contrast, for OLR, the norm ||D − S|| is not
zero but bounded by 1− b.

A similar pattern in performance is visible for a different
number of nodesN , as presented in Fig.12 (for the caseN = 20)
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and in Fig.13 (where the graph consists of N = 50 nodes) in
Appendix G. The feasibilities of DOR and OLR are also verified
in Barabási–Albert (BA) networks [30] with 500, 1000 and
10000 nodes, Watts–Strogatz (WS) small world network [31]
with 100, 1000 and 10000 nodes and an empirical network
USAir [32]. The details are shown in Appendix G.

In summary, the performance of DOR and OLR are stable with
arbitrary demands on both small-size and large-size networks.
Specifically, our simulation results verify that DOR provides a
sparse graph that solves OIASPP exactly, while OLR exhibits
a capacity to obtain a graph with fewer links compared with
the DOR algorithm, at the cost of increased norm of ||D − S||.
The norm for DOR is always ||D − S|| = 0, while for OLR
||D − S|| < 1− b, where b ∈ [0, 1] is the input parameter.

VI. APPLICATION

In this section, we discuss various IASPP applications and
present a simulation example to validate the feasibility of our
proposed DOR and OLR algorithms.

A. Application of IASPP

The IASPP methodology is useful in Wireless Sensor and
Actuator Network (WSAN) [1]. Industrial WSAN (IWSAN)
standards such as WirelessHART [33] have gained popularity
in process automation, e.g., gas production, electric power gen-
eration and smelting plants. An IWSAN consists of a gateway,
multiple access points and hundreds of thousands of field devices
(i.e., sensors and actuators) that operate at low-power, forming a
multi-hop wireless network, where the link weight wij between
node i and node j denotes the latency bound that a link lij should
provide. In a WSAN network, IASPP considers the end-to-end
(E2E) latency as a demand matrix. The WSAN gateway collects
network topology and flow demand information [34]. If there
is topological change (e.g., node failure, new joining nodes)
or change of the traffic pattern that makes current link weight
configuration inappropriate13, then the WSAN gateway can use
DOR or OLR to (re-)computes the weighted adjacency matrix
Ã. The updated link weights will then be communicated with
devices in the network. With the set of newly computed shortest
paths, E2E latency of an arbitrary pair of nodes is guaranteed. A
further step is to consider scheduling, power consumption and
path redundancy into the problem.

Mobile communication radio access network [2] (RAN) is an-
other application domain. Fig. 5 provides a conceptual diagram
of a RAN as found in the 5 G mobile communications network.
The lower part of Fig. 5 depicts that the communication between
the logical components [2] of the RAN (DU, CU-CP etc.) is
formed by IP infrastructure [35]. Data transmission latency
between the RAN logical components is bound by demands,
i.e. maximum permissible E2E latency. With predetermined
E2E latency demands, DOR and OLR can provide guidance
in constructing a RAN network, such as installing base stations
at different locations of a city.

Transportation networks constitute another potential applica-
tion domain. For example, urban planners and customers may
have demands on the commute time for each pair of bus or train
stations. DOR can offer a transportation network such that the

13Inappropriate in this context means latency bound violation.

Fig. 5. Conceptual diagram of a RAN as found in the 5 G mobile communi-
cations network.

commute time between every two nodes (which denotes stations)
exactly equals the prescribed demand and reaches a minimum
number of links of all the networks with the same shortest
path weight matrix. OLR can deal with more specific scenarios.
Imagine urban planners have defined maximum allowable travel
times as the demands for specific node pairs, accounting for
variables like passenger density along these routes. The link
weights represent the time needed when travelling between
adjacent nodes. These maximum travel time constraints can
span from 100% to about 200% of the calculated minimum
travel time. OLR can shape the network into an ideal structure,
while choosing a relatively small input parameter b value. This
strategy seeks to mould the network’s topology in a manner that
caters to all essential routes while conforming to the stipulated
upper travel time limits. By applying the OLR algorithm, we
can intelligently eliminate links, while preserving the network’s
overall connectivity and functionality. This process facilitates
the creation of an optimised railway system that ensures both
efficiency and adherence to travel time constraints. In the resul-
tant graph generated by OLR, each link signifies the potential
introduction of a direct line, further enhancing the network’s
efficiency and structure.

B. Simulation on E2E Latency

In this section, we apply our IASPP methods to an E2E latency
instance. Since the IASPP methods begin with a demand matrix
which is also a distance matrix, the given demand matrix D is
required to be modified so that we can imply our algorithm.
If the E2E constraint of a node pair (i, j) is not specified, we
assume that there is no constraint and that dij =∞, which
means there is no upper bound for the shortest path weight sij
between node i and j. In many practical scenarios, not every
pair of nodes necessarily has a demand. We first symmetrize the
demand matrix (see explained in Section II-A) following line
2− 4 of Algorithm 3. We then focus on the triangle inequality of
a demand matrix. Consider the following example of a demand
matrix:

D =

⎡⎢⎢⎢⎢⎢⎣
0 1 ∞ ∞ 1

1 0 1 1 ∞
∞ 1 0 3 ∞
∞ 1 3 0 5

1 ∞ ∞ 5 0

⎤⎥⎥⎥⎥⎥⎦ (15)
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The demand d34 > d32 + d24 is a typical case of the violation
of the triangle inequality. However, the infinite dij =∞ may
lead to complicated cases. Aside from demands that violate
the triangle inequality (e.g. d34), there could be other demands
that are unattainable. For instance, d45 does not breach the
triangle inequality as d45 < d14 + d15, d45 < d24 + d25 and
d45 < d34 + d35. Nevertheless, d45, d42, d21 and d15 form a
cycle structure and d45 > d42 + d21 + d15. Consequently, s45
must be smaller than d45, that is, d45 is not achievable.

To ensure all the demands are possible to achieve, we modify
the demand matrix according to line 5− 13 of Algorithm 3.
Our main idea is to calculate the shortest path weight matrix S
of a graph whose weighted adjacency matrix equals the given
demand matrix D, because the resulting demand matrix D′ = S
reserves all the constraints in D except for the E2E demands
not achievable. We can now transform an arbitrary non-negative
demand matrix to a distance matrix and apply our DOR and
OLR algorithms with the demand matrix D′ as input.

Fig. 6. Visualization of the graph H obtained by DOR and OLR, respectively.
The input E2E demand matrix is (16).

We present an example in Fig. 6. We first transform the
given E2E demand matrix D (Equation (16)), shown at the
bottom of the page, to D′ following the method introduced by
Algorithm 3. Our DOR and OLR algorithms were applied to the
demand matrix D′. Each algorithm produced a graph H and the
corresponding shortest path weight matrix S1 for DOR and S2

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 100 500 ∞ ∞ 5000 ∞ ∞ ∞ 100

100 0 ∞ ∞ 20 500 20 ∞ ∞ ∞
500 ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ 0 ∞ ∞ ∞ 50000 ∞ ∞
∞ 20 ∞ ∞ 0 1000 ∞ ∞ 20 ∞
5000 500 ∞ ∞ 1000 0 ∞ ∞ ∞ ∞
∞ 20 ∞ ∞ ∞ ∞ 0 500 100000 100

∞ ∞ ∞ 50000 ∞ ∞ 500 0 ∞ ∞
∞ ∞ ∞ ∞ 20 ∞ 100000 ∞ 0 ∞
100 ∞ ∞ ∞ ∞ ∞ 100 ∞ ∞ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

S1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 100 500 50620 120 600 120 620 140 100

100 0 600 50520 20 500 20 520 40 120

500 600 0 51120 620 1100 620 1120 640 600

50620 50520 51120 0 50540 51020 50500 50000 50560 50600

120 20 620 50540 0 520 40 540 20 140

600 500 1100 51020 520 0 520 1020 540 620

120 20 620 50500 40 520 0 500 60 100

620 520 1120 50000 540 1020 500 0 560 600

140 40 640 50560 20 540 60 560 0 160

100 120 600 50600 140 620 100 600 160 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

S2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 88 200 20280 96 288 80 280 104 40

88 0 288 20208 8 200 8 208 16 48

200 288 0 20480 296 488 280 480 304 240

20280 20208 20480 0 20216 20408 20200 20000 20224 20240

96 8 296 20216 0 208 16 216 8 56

288 200 488 20408 208 0 208 408 216 248

80 8 280 20200 16 208 0 200 24 40

280 208 480 20000 216 408 200 0 224 240

104 16 304 20224 8 216 24 224 0 64

40 48 240 20240 56 248 40 240 64 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)
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Algorithm 3: Demand Modification.
Input:Demand matrix D whose unspecified demands are
represented by∞

Output:Modified demand matrix D′
1: D′ ← D
2: while symmetry of D′ is violated, i.e. dij �= dji do
3: d′ij ← min(dij , dji), d′ji ← min(dij , dji)
4: end while
5: while d′ij =∞ do
6: d′ij ← 0
7: end while
8: GD′ ← Graph whose weighted adjacency matrix

equals D′
9: S ← Shortest path weight matrix of GD′

10: while sij =∞ do
11: sij ←Maximum finite element in S
12: end while
13: D′ ← S
14: return D′

for OLR. These results are depicted in Fig. 6, Equation (17) and
(18), shown at the bottom of the previous page, respectively.

As demonstrated in (17), we highlight the shortest path
weights which are different from the given specific E2E demands
in (16). When we use DOR, all the shortest path weights are
equal to the given E2E demands except for those that are not
achievable. The OLR algorithm necessitates the input parameter
b in addition to the demand matrix D′, defining the allowed
deviation of the norm of ||D − S|| from 0. For the example
illustrated in Fig. 6, we adopted b = 0.4. Lower values of b
necessitate a reduced allocation of resources across the same
set of links, culminating in diminished shortest path weights
between all conceivable pairs of nodes. This outcome engenders
sparser topologies due to the lowered link weights employed.
Conversely, higher values of b impose greater link weights,
which in turn lead to quicker breaches of the upper shortest
path weight bounds provided in D during the iterative process.
Therefore, a higher b value results in a higher-density topologies.
Consequently, selecting the input parameter b represents a com-
promise between reducing the sparsity of the graph H topology
and maximising the corresponding shortest path weights.

VII. CONCLUSION

This work focuses on inverse all shortest path problem
(IASPP), which is a novel problem with promising applica-
tions, such as network modelling and design, in transportation
networks, wireless sensor and actuator networks, connected
vehicle applications, smart factory networks, etc. We present
the Descending Order Recovery (DOR) algorithm to solve the
optimised inverse all shortest path problem (OIASPP) and prove
that OIASPP is not NP-complete. The graph obtained by DOR
does not have redundant links and reaches a minimum number
of links and a minimum sum of the link weights among all
OIASPP solutions given a demand matrix D. DOR can also
be regarded as an effective method when solving network spar-
sification that preserves all shortest path weights. Additionally,
we utilise the information captured by the effective resistance
between node pairs and propose Omega-based Link Removal

(OLR) algorithm that solves the OIASPP. Both DOR and OLR
provide solutions to the OIASPP: the solution obtained by
DOR has the shortest path weight matrix S = D, while OLR
focuses on solving OIASPP by providing sparser graphs, at
the cost of the norm ||D − S|| > 0. The ideas of DOR and
OLR are different: DOR focuses on the shortest paths and
the shortest path weights in a graph, while OLR investigates
the shortest path weights from the perspective of the effective
resistance.
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