
Collision Detection
Using Continued Fractions

Botsingsdetectie met behulp van kettingbreuken

by

Aron Schouten
to obtain the degree of Bachelor of Science

at the Delft University of Technology,
to be defended publicly on Thursday July 7, 2022 at 3:30 PM.

Student number: 4999169
Project duration: February 28, 2022 – July 7, 2022
Thesis committee: Dr. P. M. Visser (supervisor), TU Delft, Mathematical Physics

Prof. dr. D. C. Gijswijt, TU Delft, Discrete Mathematics & Optimization

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
You are about to read the thesis ‘Collision Detection Using Continued Fractions’. This thesis was written
as part of my graduation from my bachelor Applied Mathematics at the Delft University of Technology.
From February to July 2022, I was engaged in conducting research and writing the thesis. The thesis is
written for peers; fellow third-year students of Applied Mathematics. It may also be of interest to those
who are good at mathematics and want to learn more about fast collision detection algorithms.

The project was carried out under the supervision of Paul Visser, who wrote an article about collision
detection using continued fractions. The research consisted of examining his article. The article had to
be supplemented with other sources to provide a good basic knowledge and background information.
By doing research into these basics and background information, I was able to answer my research
questions. When I could not figure something out on my own, Paul Visser, my supervisor, was available
and willing to answer my questions. He was always able to help me with extensive notes about his
article, continued fractions and lattice basis reduction, which where very useful. I am very grateful to
him for this. Thank you Paul Visser.

Finally, my parents deserve a special thank you: your good advice and kind words have served me
well, as always.

Enjoy reading.

Aron Schouten
Wateringen, June 2022

iii

Abstract
Context. In astronomy, collision detection is the computational problem of finding when planets, as-
teroids or satellites collide. Computer simulations make it possible to show very precisely how bodies
move through space, which makes it possible to detect collisions. However, these simulations require
a lot of computing power if there are many bodies, which is of course undesirable.
Aims. The aim of this report is to provide more insight into a collision detection method that does not
use the computationally expensive simulations, but rather fast mathematical techniques.
Methods. It can be shown that the collision detection problem between two planets is equivalent to
finding the integer point (𝑘, 𝑙) between two parallel lines, closest to the origin. The solution uses the
continued fraction of the ratio of the orbital periods of the planets, as the slopes of the lines are this ratio.
The convergents of the continued fraction form basis vectors with which the point (𝑘, 𝑙) is searched for.
This is called lattice basis reduction.
Results. Where brute force always takes 𝑘 steps to find the integer point (𝑘, 𝑙), the method with contin-
ued fractions and lattice basis reduction often finds the point in about √𝑘 steps. The worst case however
is still 𝑘 steps, the same as brute force. This only happens if there are no basis transformations, so
luckily 𝑘 is then often small.
Conclusions. When there are many bodies between which collisions need to be detected, lattice basis
reduction provides a fast method. For the basis vectors, the convergents of the continued fraction of
the ratio of the orbital periods of the planets must be used. If the solution cannot be reached exactly,
(𝑘, 𝑙) can also be estimated.

v

List of Symbols
Symbol explanation:
𝑠𝑖 radius of planet 𝑖
v𝑖 velocity of planet 𝑖
r𝑖 point on the orbit of planet 𝑖 which is closest to the orbit of another planet
𝑡𝑖 first time that planet 𝑖 passes r𝑖
𝑇𝑖 orbital period of planet 𝑖
𝑘, 𝑙 rounds to collision
𝑎𝑛 𝑛-th digit of continued fraction
𝑥𝑛 𝑛-th convergent of 𝑥
𝑘𝑛+2 denominator of the 𝑛-th convergent
𝑙𝑛+2 numerator of the 𝑛-th convergent

b𝑛 = (
𝑘𝑛
𝑙𝑛) 𝑛-th basis vector

A continued fraction:

𝑥𝑛 = 𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

⋱ 1
𝑎𝑛

= 𝑙𝑛+2
𝑘𝑛+2

vii

Contents

List of Symbols vii

1 Introduction 1

2 Continued Fractions 5
2.1 Why continued fractions are useful . 5
2.2 The basics of continued fractions . 5

2.2.1 Definitions. 5
2.2.2 The Euclidean algorithm . 6
2.2.3 Theorems . 7

2.3 Convergents . 9

3 Finding the integer point 13
3.1 Lattice basis reduction . 13
3.2 Lattice basis reduction to find the integer point . 14

3.2.1 Checking the parallelogram for integer points. 14
3.2.2 Switching to the next basis vectors . 14

3.3 The algorithm in practice . 16
3.3.1 Improving the algorithm . 17

3.4 The algorithms efficiency. 17
3.4.1 Run-time analysis . 17
3.4.2 The skipped steps . 20

4 When no solution can be found 23
4.1 No integer point in the band . 23
4.2 The statistics of the solution . 23

5 Discussion 27

6 Conclusion 29

Bibliography 31

A Matlab code 33

ix

1
Introduction

In astronomy, collision detection is the computational problem of finding when planets, asteroids or
satellites collide. It plays a major role when, for example, doing research into the origin of the universe
or when simulating the rings of Saturn. Computer simulations make it possible to show very precisely
how bodies of planets, asteroids or satellites move through space, which makes it possible to detect
collisions. However, when there are many bodies, these simulations take a lot of computing power and
thus time. For example, when considering an 𝑁-body problem, each planet can collide with any other
planet. This means that the number of particle-particle interactions that needs to be computed is of the
order of 𝑁2 (Wikipedia contributors, 2022).

Since the orbits in which planets move are known (so-called Kepler orbits), it is possible to detect
collisions without using the computationally expensive simulations. Consider for example two planets
between which a collision is possible, i.e

|r2 − r1| < 𝑠1 + 𝑠2,

where r1 represents the point on the orbit of planet 1 which is closest to the orbit of planet 2, r2 the
point on the orbit of planet 2 which is closest to the orbit of planet 1, and 𝑠1 and 𝑠2 the radii of planets
1 and 2 respectively (see Figure 1.1).

𝑠1

𝑠2
|r2 − r1|

Figure 1.1: Two planets and their orbit. The planets have radii 𝑠1 and 𝑠2 and the (smallest) distance between the two orbits of
the planets is |r2 − r1|. The planets can only collide if the sum of the radii of the planets is larger than the distance between the
two orbits, that is |r2 − r1| < 𝑠1 + 𝑠2.

1

2 1. Introduction

If the collision time between these planets is to be calculated, one has to answer the question: When
are the planets 1 and 2 on r1 and r2 simultaneously? Define 𝑡1 as the first time that planet 1 passes
r1. Note that after 1, 2, 3, etc. full cycles around the orbit, the planet is back in the collision point and
hence the time that planet 1 is in point r1 is:

𝑡1 + 𝑘 ⋅ 𝑇1, 𝑘 ∈ ℕ ∪ {0}.

Here 𝑇1 is the orbital period of planet 1, the time it takes for the body to make one full cycle in its orbit.
Similarly, let 𝑡2 the first time that planet 2 passes r2 and 𝑇2 the orbital period of planet 2. Then one has
that the time that planet 2 is in point r2 is:

𝑡2 + 𝑙 ⋅ 𝑇2, 𝑙 ∈ ℕ ∪ {0}.

In order to collide, planets 1 and 2 must be on r1 and r2 at the same time, i.e:

𝑡1 + 𝑘 ⋅ 𝑇1 = 𝑡2 + 𝑙 ⋅ 𝑇2. (1.1)

Define 𝑝 = 𝑇1/(𝑡2 − 𝑡1) and 𝑞 = 𝑇2/(𝑡2 − 𝑡1). Then equation (1.1) can be rewritten:

𝑡1 + 𝑘 ⋅ 𝑇1 = 𝑡2 + 𝑙 ⋅ 𝑇2,
𝑘 ⋅ 𝑇1 − 𝑙 ⋅ 𝑇2 = 𝑡2 − 𝑡1,

𝑘 ⋅ 𝑇1
𝑡2 − 𝑡1

− 𝑙 ⋅ 𝑇2
𝑡2 − 𝑡1

= 1,

𝑘 ⋅ 𝑝 − 𝑙 ⋅ 𝑞 = 1.

The planets have a certain radius 𝑠𝑖 and speed v𝑖, and hence it is possible that they collide just before
or after they are in the collision point r𝑖. A small delta is therefore introduced (Visser, 2022):

𝛿 = √(𝑠1 + 𝑠2)2 − |r2 − r1|2 ⋅ |v2 − v1|
|𝑡2 − 𝑡1| ⋅ |v1 × v2|

.

The problem of finding the time that two planets collide can now be solved by just finding the non-
negative integers 𝑘 and 𝑙 such that

1 − 𝛿 < 𝑘 ⋅ 𝑝 − 𝑙 ⋅ 𝑞 < 1 + 𝛿 (1.2)

holds. This is of course an integer linear programming problem, which can be solved using an ILP
solver. The problem is however such a specific case, that much faster algorithms can be devised.
Note that if 𝑘 represents a point on an 𝑥-axis and 𝑙 a point on the 𝑦-axis, the inequalities of (1.2) yield
two straight lines with the same slope,

𝑦 = 𝑥 ⋅ 𝑝𝑞 −
1 + 𝛿
𝑞 and 𝑦 = 𝑥 ⋅ 𝑝𝑞 −

1 − 𝛿
𝑞 , (1.3)

between which the integer point (𝑘, 𝑙) must lie. If, without loss of generality, it is assumed that 𝑇1 > 𝑇2,
one has that 𝑝/𝑞 > 1, and the plot in Figure 1.2 arises.

3

𝑦 = 𝑥 ⋅ 𝑝𝑞 −
1+𝛿
𝑞 𝑦 = 𝑥 ⋅ 𝑝𝑞 −

1−𝛿
𝑞

𝑥

𝑦

(𝑘, 𝑙)

𝑂

Figure 1.2: The problem of finding when two planets collide is the same as finding the integer point (𝑘, 𝑙) closest to the origin
that lies in a band. The band, which are the points that lie between equations (1.3), has been made blue and an integer point
(𝑘, 𝑙) which lies in it is drawn.

The complicated problem of the colliding planets has now been transformed into this ‘simple’ math-
ematical problem. However, the question that still remains is: How do we quickly find this (𝑘, 𝑙)? Is
there always a (𝑘, 𝑙), or is it possible that two planets do not collide? In that case, can some useful
things about the problem still be said? The aim of this report is to find answers to these questions.
Continued fractions can be used to solve this problem. Therefore, the basics of continued fractions
are explained in Chapter 2. It is explained why continued fractions are useful (Section 2.1), how one
can find a continued fraction of a number (Section 2.2) and how the continued fractions can be repre-
sented using so called convergents (Section 2.3). Once the most important definitions and theorems
on continued fractions are known, they are applied to the problem in Chapter 3. It is explained how the
convergents of the continued fractions are used as basis vectors for a lattice basis reduction algorithm
(Section 3.1). It is then shown that algorithm can be used to find the integer point (Section 3.2). Then,
the algorithm is tested with Matlab and an improved algorithm is given (Section 3.3). After that, the
run-times for different algorithms are given (Section 3.4). In Chapter 4 it is discussed when there is no
solution; both analytically; there is no integer point in the band (Section 4.1) or numerically; the solution
cannot be reached due to imprecise observational data or a lack of machine precision (Section 4.2).
This last section covers the statistics of a possible solution. Finally, there is a discussion in Chapter 5,
and a conclusion in Chapter 6.

2
Continued Fractions

In this chapter the basic definitions, algorithms and theorems of continued fractions are covered. Also
the definition and some theorems of convergents, which are needed for the problem of the colliding
planets, are introduced. But before introducing continued fractions, first the question “Why are contin-
ued fraction even useful?” is answered.

2.1. Why continued fractions are useful
The slope of the band in Figure 1.2 that arises due to equations (1.3) is

𝑝
𝑞 =

(𝑇1
𝑡2−𝑡1

)

(𝑇2
𝑡2−𝑡1

)
= 𝑇1
𝑇2
,

Since (𝑘, 𝑙) must lie in the band, one has that

𝑙
𝑘 ≈

𝑝
𝑞 =

𝑇1
𝑇2

The 𝑘 and 𝑙 are integers, so 𝑙/𝑘 is rational, but 𝑇1/𝑇2 however is irrational, as the orbital periods of
planets are often irrational (Laskar, 2007). This is where continued fractions come into play: They are
a perfect tool when approximating irrational numbers with rational numbers (Rockett and Szüsz, 1998).

2.2. The basics of continued fractions
Let’s start by introducing some definitions and theorems of continued fractions (Khinchin, 1949).

2.2.1. Definitions
Definition 2.1 (Continued fraction). A continued fraction of 𝑥 ∈ ℝ is a fraction whose denominator is
a quantity 𝑎𝑛 ∈ ℤ plus a fraction with numerator 𝑏𝑛 ∈ ℤ, which latter fraction has a similar denominator,
and so on:

𝑥 = 𝑎0 +
𝑏1

𝑎1 +
𝑏2

𝑎2 +
𝑏3

⋱ 𝑏𝑛
𝑎𝑛

Either 𝑛 ∈ {0, 1, … , 𝑁} for finite 𝑁, and the continued fraction is called finite, or 𝑛 ∈ ℕ, and the continued
fraction may be infinite.

The integers 𝑎𝑛 are called the coefficients or digits of the continued fraction.

5

6 2. Continued Fractions

Definition 2.2 (Simple continued fraction). An (in)finite continued fraction of 𝑥 ∈ ℝ is called simple, or
said to be in canonical form if

𝑏𝑛 = 1 and 𝑎𝑛 > 0 ∀𝑛 ≥ 1,
i.e. if it is of the form

𝑥 = 𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

⋱ 1
𝑎𝑛

,

where 𝑎0 ∈ ℕ∪{0} and 𝑎𝑛 ∈ ℕ if 𝑛 ≥ 1. Simple continued fractions can be denoted using the canonical
representation:

[𝑎0; 𝑎1, 𝑎2, … 𝑎𝑛]

From now on, only simple continued fractions will be discussed. To find the canonical representation
of a continued fraction, the Euclidean algorithm can be used (Wikipedia contributors, 2022). This
algorithm is therefore explained in the next subsection.

2.2.2. The Euclidean algorithm
If the canonical representation is to be found for a (non-negative) rational number 𝑝/𝑞, where 𝑝, 𝑞 ∈ ℕ,
one could use the Euclidean algorithm (Algorithm 2.1). It is assumed that 𝑝 ≥ 𝑞.
Algorithm 2.1 (The Euclidean Algorithm (Gijswijt, 2019)). Let 𝑝, 𝑞 ∈ ℕ. Construct two sequences of
integers 𝑞𝑛 and 𝑎𝑛 as follows. First let 𝑞0 = 𝑝 and 𝑞1 = 𝑞. Then let 𝑞𝑛+2 be the remainder when dividing
𝑞𝑛 by 𝑞𝑛+1, and 𝑎𝑛 be the greatest integer less than or equal to the quotient 𝑞𝑛

𝑞𝑛+1
, i.e. 𝑎𝑛 = ⌊ 𝑞𝑛

𝑞𝑛+1
⌋.

That is,

𝑞𝑛+2 = 𝑞𝑛 − ⌊
𝑞𝑛
𝑞𝑛+1

⌋ ⋅ 𝑞𝑛+1.

The algorithm stops when 𝑞𝑛 = 0.

The integers 𝑎𝑛 that occur in the canonical representation of 𝑝/𝑞 are exactly the successive quo-
tients 𝑎𝑛 computed by the Euclidean algorithm. For example, take the rational number 10/7. Then
𝑞0 = 10, 𝑞1 = 7 and one finds:

𝑞2 = 10 − ⌊
10
7 ⌋ ⋅ 7 = 10 − 1 ⋅ 7 = 3 (𝑎0 = 1)

𝑞3 = 7 − ⌊
7
3⌋ ⋅ 3 = 7 − 2 ⋅ 3 = 1 (𝑎1 = 2)

𝑞4 = 3 − ⌊
3
1⌋ ⋅ 1 = 3 − 3 ⋅ 1 = 0 (𝑎2 = 3)

And hence
10
7 = 1 + 37 = 1 +

1

(
7
3)
= 1 +

1

2 +
1
3

.

The intermediate steps, which are 1 and 3/2, approximate 10/7 a bit better at each step. More about
these so-called convergents in section 2.3.

Note that the input of Algorithm 2.1 is a rational number 𝑝/𝑞, meaning that this algorithm can not be
used to find the canonical representation of an irrational number. Luckily, the algorithm can be modified
to work for all (non-negative) real numbers. Therefore, it is assumed that no longer 𝑞𝑛 ∈ ℕ, but 𝑞𝑛 ∈ ℝ
(see Algorithm 2.2).

2.2. The basics of continued fractions 7

Algorithm 2.2 (The Euclidean Algorithm for real numbers). Let 𝑥 ∈ ℝ, 𝑥 > 0. Construct two sequences
𝑞𝑛 ∈ ℝ and 𝑎𝑛 ∈ ℤ as follows. First let 𝑞0 = 𝑥 and 𝑞1 = 1. Then let 𝑞𝑛+2 be the remainder when dividing
𝑞𝑛 by 𝑞𝑛+1, and 𝑎𝑛 be the greatest integer less than or equal to the quotient 𝑞𝑛

𝑞𝑛+1
, i.e. 𝑎𝑛 = ⌊ 𝑞𝑛

𝑞𝑛+1
⌋.

That is,

𝑞𝑛+2 = 𝑞𝑛 − ⌊
𝑞𝑛
𝑞𝑛+1

⌋ ⋅ 𝑞𝑛+1.

Note that here it is not stated that the algorithm stops when 𝑞𝑛 = 0. This is because there are two
cases: If 𝑥 ∈ ℚ, that is 𝑥 is rational, then the simple continued fraction of 𝑥 is finite, and the algorithm
terminates. But if 𝑥 ∈ ℝ ⧵ℚ, that is 𝑥 is irrational, then the simple continued fraction of 𝑥 is infinite, and
the algorithm never terminates. The sequence 𝑞𝑛 however does converge to 0. These statements are
proven in the next subsection.

2.2.3. Theorems
Theorem 2.1. When 𝑥 = 𝑝/𝑞, where 𝑝, 𝑞 ∈ ℤ, the Euclidean algorithm (Algorithm 2.1) will terminate.
In other words, one has that

∃𝑁 ∈ ℕ ∶ 𝑞𝑁 = 0.

Proof. Let 𝑞𝑛 be the sequence as defined in the algorithm. Note that since ⌊ 𝑞𝑛
𝑞𝑛+1

⌋ ≤ 𝑞𝑛
𝑞𝑛+1

,

𝑞𝑛+2 = 𝑞𝑛 − ⌊
𝑞𝑛
𝑞𝑛+1

⌋ ⋅ 𝑞𝑛+1

≥ 𝑞𝑛 −
𝑞𝑛
𝑞𝑛+1

⋅ 𝑞𝑛+1
= 𝑞𝑛 − 𝑞𝑛
= 0.

Also since ⌊ 𝑞𝑛
𝑞𝑛+1

⌋ is the greatest integer less then or equal to 𝑞𝑛
𝑞𝑛+1

, it holds that ⌊ 𝑞𝑛
𝑞𝑛+1

⌋ > 𝑞𝑛
𝑞𝑛+1

− 1, so

𝑞𝑛+2 = 𝑞𝑛 − ⌊
𝑞𝑛
𝑞𝑛+1

⌋ ⋅ 𝑞𝑛+1

< 𝑞𝑛 − (
𝑞𝑛
𝑞𝑛+1

− 1) ⋅ 𝑞𝑛+1

= 𝑞𝑛 −
𝑞𝑛
𝑞𝑛+1

⋅ 𝑞𝑛+1 + 𝑞𝑛+1
= 𝑞𝑛+1.

I.e. 𝑞𝑛 is a strictly decreasing sequence. Since 𝑞𝑛 is a strictly decreasing sequence of integer num-
bers, bounded below by 0, one must have that 𝑞𝑛 must be zero at one point, i.e.

∃𝑁 ∈ ℕ ∶ 𝑞𝑁 = 0.

Theorem 2.2. When 𝑥 ∈ ℝ ⧵ ℚ (𝑥 is irrational), the Euclidean algorithm for real numbers (Algorithm
2.2) will never terminate. However, one has that

𝑞𝑛 → 0, as 𝑛 → ∞.

Proof. This proof follows the same method as the proof of theorem 2.1, but the result is slightly less
strong, as 𝑞𝑛 is no longer a sequence of integers, but irrational numbers. Let 𝑞𝑛 be the sequence as

8 2. Continued Fractions

defined in the algorithm. Note that since ⌊ 𝑞𝑛
𝑞𝑛+1

⌋ ≤ 𝑞𝑛
𝑞𝑛+1

,

𝑞𝑛+2 = 𝑞𝑛 − ⌊
𝑞𝑛
𝑞𝑛+1

⌋ ⋅ 𝑞𝑛+1

≥ 𝑞𝑛 −
𝑞𝑛
𝑞𝑛+1

⋅ 𝑞𝑛+1
= 𝑞𝑛 − 𝑞𝑛
= 0.

Also since ⌊ 𝑞𝑛
𝑞𝑛+1

⌋ is the greatest integer less then or equal to 𝑞𝑛
𝑞𝑛+1

, it holds that ⌊ 𝑞𝑛
𝑞𝑛+1

⌋ > 𝑞𝑛
𝑞𝑛+1

− 1, so

𝑞𝑛+2 = 𝑞𝑛 − ⌊
𝑞𝑛
𝑞𝑛+1

⌋ ⋅ 𝑞𝑛+1

< 𝑞𝑛 − (
𝑞𝑛
𝑞𝑛+1

− 1) ⋅ 𝑞𝑛+1

= 𝑞𝑛 −
𝑞𝑛
𝑞𝑛+1

⋅ 𝑞𝑛+1 + 𝑞𝑛+1
= 𝑞𝑛+1.

I.e. 𝑞𝑛 is a strictly decreasing sequence. Since 𝑞𝑛 is a strictly decreasing sequence of irrational num-
bers, bounded below by 0, one must have that 𝑞𝑛 converges. Now,

𝑞𝑛+2 = 𝑞𝑛 − ⌊
𝑞𝑛
𝑞𝑛+1

⌋ ⋅ 𝑞𝑛+1

𝑞𝑛+2 < 𝑞𝑛 − ⌊
𝑞𝑛
𝑞𝑛+1

⌋ ⋅ 𝑞𝑛+2

𝑞𝑛+2 (1 + ⌊
𝑞𝑛
𝑞𝑛+1

⌋) < 𝑞𝑛
𝑞𝑛+2 <

𝑞𝑛
1+⌊ 𝑞𝑛

𝑞𝑛+1
⌋

𝑞𝑛+2 <
𝑞𝑛

1+⌊ 𝑞𝑛+1𝑞𝑛+1
⌋

𝑞𝑛+2 <
𝑞𝑛
1+1 =

1
2𝑞𝑛 .

𝑞𝑛+2 < 𝑞𝑛+1

Note: 1 + ⌊ 𝑞𝑛
𝑞𝑛+1

⌋ > 0

𝑞𝑛+1 < 𝑞𝑛

Meaning that after two iterations 𝑞𝑛 will at least be halved. Since also 𝑝𝑛 ≥ 0, it automatically follows
that

𝑞𝑛 → 0, as 𝑛 → ∞

An interesting result of theorem 2.1 that automatically follows is that a simple continued fraction of
a number is finite if and only if the number is rational, as the algorithm terminates. Similarly due to
theorem 2.2 one has that a simple continued fraction of a number is infinite if and only if the number is
irrational:

Corollary 2.2.1. Let 𝑥 ∈ ℝ.

The simple continued fraction of 𝑥 is finite ⇔ 𝑥 ∈ ℚ.
The simple continued fraction of 𝑥 is infinite ⇔ 𝑥 ∈ ℝ ⧵ ℚ.

2.3. Convergents 9

2.3. Convergents
In this section, convergents and their representation are explained. (Bosma and Kraaikamp, 2012)

Definition 2.3 (Convergents). Let 𝑥 ∈ ℝ, with continued fraction [𝑎0; 𝑎1, 𝑎2, …]. Then

𝑥𝑛 = 𝑎0 +
1

𝑎1 +
1

⋱ 1
𝑎𝑛

, 𝑛 ∈ ℕ ∪ {0}.

is called the 𝑛-th convergent of 𝑥.

For example, when 𝑥 = [𝑎0; 𝑎1, 𝑎2, 𝑎3, …], the first convergents are

𝑥0 = 𝑎0 =
𝑎0
1 ,

𝑥1 = 𝑎0 +
1
𝑎1
= 𝑎1𝑎0 + 1

𝑎1
,

𝑥2 = 𝑎0 +
1

𝑎1 +
1
𝑎2

=
𝑎2(𝑎1𝑎0 + 1) + 𝑎0

𝑎2𝑎1 + 1
,

𝑥3 = 𝑎0 +
1

𝑎1 +
1

𝑎2 +
1
𝑎3

= 𝑎3(𝑎2(𝑎1𝑎0 + 1) + 𝑎0) + (𝑎1𝑎0 + 1)
𝑎3(𝑎2𝑎1 + 1) + 1

.

One can see that the numerator of a convergent is obtained by multiplying the digit by the numerator of
the previous convergent, and adding the numerator of the convergent before the previous convergent,
so

𝑙𝑛+2 = 𝑎𝑛 ⋅ 𝑙𝑛+1 + 𝑙𝑛 . (2.1)

The same holds for the denominator

𝑘𝑛+2 = 𝑎𝑛 ⋅ 𝑘𝑛+1 + 𝑘𝑛 . (2.2)

The first values are 𝑘0 = 1, 𝑘1 = 0, 𝑙0 = 0, and 𝑙1 = 1. This, and equations (2.2) and (2.1) are now
proven.

Theorem 2.3. Let 𝑥 ∈ ℝ. The 𝑛-th convergent of 𝑥 is defined by the recursive formula

𝑥𝑛 =
𝑙𝑛+2
𝑘𝑛+2

= 𝑎𝑛 ⋅ 𝑙𝑛+1 + 𝑙𝑛
𝑎𝑛 ⋅ 𝑘𝑛+1 + 𝑘𝑛

, where (𝑘0𝑙0) = (
1
0) and (𝑘1𝑙1) = (

0
1) . (2.3)

Proof. This theorem is a consequence of the Extended Euclidean algorithm. The algorithm states
(Wikipedia contributors, 2021) that 𝑞𝑛 is of the form:

𝑞2𝑛 = 𝑘2𝑛 ⋅ 𝑝 − 𝑙2𝑛 ⋅ 𝑞

𝑞2𝑛+1 = −𝑘2𝑛+1 ⋅ 𝑝 + 𝑙2𝑛+1 ⋅ 𝑞

10 2. Continued Fractions

Using theorem 2.2, one has that

𝑞𝑛 = ∓𝑘𝑛 ⋅ 𝑝 ± 𝑙𝑛 ⋅ 𝑞

± 𝑞𝑛
𝑞 ⋅ 𝑘𝑛

= −𝑝𝑞 +
𝑙𝑛
𝑘𝑛

𝑝
𝑞 ±

𝑞𝑛
𝑞 ⋅ 𝑘𝑛

= 𝑙𝑛
𝑘𝑛

lim
𝑛→∞

(𝑝𝑞 ±
𝑞𝑛
𝑞 ⋅ 𝑘𝑛

) = lim
𝑛→∞

𝑙𝑛
𝑘𝑛

𝑝
𝑞 ± 0 = lim

𝑛→∞
𝑙𝑛
𝑘𝑛

lim
𝑛→∞

𝑙𝑛
𝑘𝑛
= 𝑝
𝑞 .

I.e. the 𝑘𝑛 and 𝑙𝑛 from the Extended Euclidean algorithm are the denominator and numerator of the
𝑛-th convergent. This means that if the recursive statement can be proven for the algorithm, it is then
automatically also true for the numerator and denominator of the convergents.

Suppose one is at an odd step of the algorithm, say the (2𝑛 + 1)-th. The standard Euclidean
algorithm (Algorithm 2.1) then yields that:

𝑞2𝑛+2 = 𝑞2𝑛 − ⌊
𝑞2𝑛
𝑞2𝑛+1

⌋ ⋅ 𝑞2𝑛+1

= 𝑞2𝑛 − 𝑎2𝑛 ⋅ 𝑞2𝑛+1
= (𝑘2𝑛 ⋅ 𝑝 − 𝑙2𝑛 ⋅ 𝑞) − 𝑎2𝑛 ⋅ (−𝑘2𝑛+1 ⋅ 𝑝 + 𝑙2𝑛+1 ⋅ 𝑞)
= (𝑎2𝑛 ⋅ 𝑘2𝑛+1 + 𝑘2𝑛) ⋅ 𝑝 − (𝑎2𝑛 ⋅ 𝑙2𝑛+1 + 𝑙2𝑛) ⋅ 𝑞

For the even steps of the algorithm, this result can be derived in the same way. So indeed 𝑘𝑛+2 =
𝑎𝑛 ⋅ 𝑘𝑛+1 + 𝑘𝑛 and 𝑙𝑛+2 = 𝑎𝑛 ⋅ 𝑙𝑛+1 + 𝑙𝑛.

Furthermore, note that the initial values of the Extended Euclidean algorithm require that 𝑘0 = 1,
𝑘1 = 0, 𝑙0 = 0, and 𝑙1 = 1.

It can be shown that the even-order convergents 𝑥2𝑛 monotonously increase to 𝑥 and the odd-order
convergents 𝑥2𝑛+1 monotonously decrease to 𝑥. To show this, the following lemma comes in handy.

Lemma 2.4. For all 𝑛 ≥ 0,
𝑙𝑛 ⋅ 𝑘𝑛+1 − 𝑘𝑛 ⋅ 𝑙𝑛+1 = (−1)𝑛+1.

Proof. If the denominator of equation (2.3) is multiplied by 𝑙𝑛+1 and the numerator of equation (2.3)
multiplied by 𝑘𝑛+1 is then subtracted, one finds:

𝑙𝑛+1 ⋅ 𝑘𝑛+2 = 𝑙𝑛+1 ⋅ (𝑎𝑛 ⋅ 𝑘𝑛+1 + 𝑘𝑛)
𝑘𝑛+1 ⋅ 𝑙𝑛+2 = 𝑘𝑛+1 ⋅ (𝑎𝑛 ⋅ 𝑙𝑛+1 + 𝑙𝑛) −

𝑙𝑛+1 ⋅ 𝑘𝑛+2 − 𝑘𝑛+1 ⋅ 𝑙𝑛+2 = 𝑙𝑛+1 ⋅ 𝑘𝑛 − 𝑘𝑛+1 ⋅ 𝑙𝑛

or
𝑙𝑛+1 ⋅ 𝑘𝑛+2 − 𝑘𝑛+1 ⋅ 𝑙𝑛+2 = −(𝑙𝑛 ⋅ 𝑘𝑛+1 − 𝑘𝑛 ⋅ 𝑙𝑛+1).

Furthermore, since
𝑙0 ⋅ 𝑘1 − 𝑘0 ⋅ 𝑙1 = 0 ⋅ 0 − 1 ⋅ 1 = −1,

it follows that indeed
𝑙𝑛 ⋅ 𝑘𝑛+1 − 𝑘𝑛 ⋅ 𝑙𝑛+1 = (−1)𝑛+1.

2.3. Convergents 11

Theorem 2.5. The convergents 𝑥𝑛 form a monotone increasing sequence converging to 𝑥 if 𝑛 is even,
and a monotone decreasing sequence converging to 𝑥 if 𝑛 is odd, that is:

𝑥0 ≤ … ≤ 𝑥2𝑛 ≤ 𝑥2𝑛+2 ≤ … ≤ 𝑥 ≤ … ≤ 𝑥2𝑛+3 ≤ 𝑥2𝑛+1 ≤ … ≤ 𝑥1.

Proof. If the denominator of equation (2.3) is multiplied by 𝑙𝑛 and the numerator of equation (2.3)
multiplied by 𝑘𝑛 is then subtracted, one finds:

𝑙𝑛 ⋅ 𝑘𝑛+2 = 𝑙𝑛 ⋅ (𝑎𝑛 ⋅ 𝑘𝑛+1 + 𝑘𝑛)
𝑘𝑛 ⋅ 𝑙𝑛+2 = 𝑘𝑛 ⋅ (𝑎𝑛 ⋅ 𝑙𝑛+1 + 𝑙𝑛) −

𝑙𝑛 ⋅ 𝑘𝑛+2 − 𝑘𝑛 ⋅ 𝑙𝑛+2 = 𝑎𝑛 ⋅ 𝑘𝑛+1 ⋅ 𝑙𝑛 − 𝑎𝑛 ⋅ 𝑙𝑛+1 ⋅ 𝑘𝑛

or
𝑙𝑛 ⋅ 𝑘𝑛+2 − 𝑘𝑛 ⋅ 𝑙𝑛+2 = 𝑎𝑛 ⋅ (𝑙𝑛 ⋅ 𝑘𝑛+1 − 𝑘𝑛 ⋅ 𝑙𝑛+1).

Using lemma 2.4, one has
𝑙𝑛 ⋅ 𝑘𝑛+2 − 𝑘𝑛 ⋅ 𝑙𝑛+2 = 𝑎𝑛 ⋅ (−1)𝑛+1,

which can be rewritten to
𝑙𝑛+2
𝑘𝑛+2

= 𝑙𝑛
𝑘𝑛
+ 𝑎𝑛 ⋅ (−1)

𝑛

𝑘𝑛+2 ⋅ 𝑘𝑛
.

Since 𝑎𝑛 and 𝑘𝑛 are both non-negative sequences, the result follows.

3
Finding the integer point

Now that the key theorems and definitions about continued fractions are known, it is time to apply them
to the problem of the colliding planets. Since the convergents of the continued fraction 𝑝/𝑞 approach
the slope of the band, they can be used as basis vectors to find the point (𝑘, 𝑙) quickly. This is called
lattice basis reduction. The algorithm for lattice basis reduction in ℤ2 is closely related to the Euclidean
algorithm and thus continued fractions (Galbraith, 2012).

3.1. Lattice basis reduction
Theorem 2.3 yields a method for finding (𝑘, 𝑙) such that

𝑙
𝑘 ≈

𝑝
𝑞 .

In matricial description, equation (2.3) becomes:

(𝑘𝑛+1 𝑘𝑛+2
𝑙𝑛+1 𝑙𝑛+2) = (

𝑘𝑛 𝑘𝑛+1
𝑙𝑛 𝑙𝑛+1) ⋅ (

0 1
1 𝑎𝑛) . (3.1)

Since the first matrix is of the form (1 0
0 1), and the transformation matrix (0 1

1 𝑎𝑛) is unimodular, the

matrices (𝑘𝑛+1 𝑘𝑛+2
𝑙𝑛+1 𝑙𝑛+2) from equation (3.1) will form a sequence of lattice basis for ℤ2 (Berthé, 2019).

For simplicity, define the bases {b𝑛 ,b𝑛+1} for ℤ2 as:

b𝑛 = (
𝑘𝑛
𝑙𝑛) .

The slopes of the basis vectors are then the convergents of 𝑝/𝑞. Therefore, by theorem 2.5, the slopes
of the even basis vectors increase and the slopes of the odd basis vectors decrease to 𝑝/𝑞. This can
also be seen in Figure 3.1.

13

14 3. Finding the integer point

𝑥

𝑦

(𝑘, 𝑙)

𝑂 b0

b2

b4

b6

b1

b3

b5

Figure 3.1: The blue band in which an integer point (𝑘, 𝑙) must be found. Lattice basis reduction is used to find (𝑘, 𝑙). For the
basis vectors the convergents of the continued fraction 𝑝/𝑞 are used. The first 6 lattice basis vectors and a dashed line with
slope 𝑝/𝑞 to which the vectors converge are drawn.

3.2. Lattice basis reduction to find the integer point
The algorithm for finding the integer point (𝑘, 𝑙) using lattice basis reduction actually consist of two
parts; Checking smaller parallelograms for integer points and switching to the next basis vectors.

3.2.1. Checking the parallelogram for integer points
To check the band for integer points, it is divided into smaller parallelograms. The considered parallelo-
gram is the part of the band from 𝑦 = 0 to the 𝑦-value where the bottom of the band intersects the span
of the vector b𝑛+2. This point of intersection always exists as the slope of the even basis vectors are
always less than the slope of the band. Examples of such parallelograms are shown in red in Figure
3.2(a), and in green and yellow in Figure 3.2(d).

Checking the parallelogram for integer points can of course be done in multiple ways. The method
that Visser (2022) uses checks for every 𝑦-value if the 𝑥-value that is closest to the band, lies in the
band: Call it 𝑦-search. For every integer 𝑦 between 0 and the top of the parallelogram, calculate the
𝑥-value of the left line, round it up, and check if it lies in the band, i.e. check if it is lower than the right
line. Figure 3.2(a) and 3.2(d) show the checked integer points in dark blue.

3.2.2. Switching to the next basis vectors
If an integer point lies in the parallelogram, a solution is found. If not, the next parallelogram needs to
be checked. This is done in new basis vectors {b𝑛+2,b𝑛+3} (see Figure 3.2(b) and 3.2(c)). Since the
odd basis vectors decrease, and the even basis vectors increase to the slope of the blue band, the
considered area gets smaller and smaller. This can be clearly seen in Figure 3.2(b); After the basis
transformation the light gray area is no longer considered. When transforming to the next two basis
vectors two things happen. Firstly, the width of the band increases. Furthermore, the points on the grid
are drawn closer to the origin. These things can be seen when comparing Figures 3.2(a) and 3.2(c).
Both of these things contribute to finding the integer point (𝑘, 𝑙) faster.

Note that the parallelogram after a basis transformation is drawn in green and yellow (see Figure
3.2(d)). The yellow part has already been looked at when checking the red parallelogram. Unfortunately
the successive parallelograms overlap and therefore some pieces of the band are checked for integer
points twice.

3.2. Lattice basis reduction to find the integer point 15

𝑥

𝑦

(𝑘, 𝑙)

𝑂 b0

b1 b2

b3

(a)

𝑂
𝑥

𝑦

b2

b3

(𝑘, 𝑙)

(b)

𝑥

𝑦

(𝑘, 𝑙)

𝑂 b2

b3
b4

(c)

𝑥

𝑦

(𝑘, 𝑙)

𝑂 b2

b3
b4

(d)

Figure 3.2: Four steps to find an integer point (𝑘, 𝑙) using lattice basis reduction. First the parallelogram of the band between
𝑦 = 0 and the 𝑦-value where the bottom of the band intersects span{b𝑛+2} is checked for integer points. This parallelogram
is shown in red. The point (1, 0) is checked, but does not lie in the parallelogram. Since no integer point is found, the grid is
drawn with the next two basis vectors {b𝑛+2 ,b𝑛+3} and again the parallelogram of the band between 𝑦 = 0 and the 𝑦-value
where the bottom of the band intersects the span of the next basis vector is considered. This parallelogram is shown in green
and yellow. The yellow part has already been looked at when checking the red parallelogram. The points that are checked for
this parallelogram are (1, 0), (2, 1) and (2, 2). Since the latter is in the parallelogram, the algorithm stops here: (𝑘, 𝑙) has been
found!

16 3. Finding the integer point

3.3. The algorithm in practice
When Matlab is used (see Appendix A.1) to check the algorithm in practice, Figure 3.3 arises. The
figure contains a random run of the algorithm with Vissers 𝑦-search. In the code, a maximum orbital
period is set:

tmax = 1.
This 𝑡max is the orbital period of the first planet. For the second planet, the 𝑡max times a random number
in the interval (0, 1) is used:

T1 = tmax, and T2 = tmax∗rand.
With these 𝑇1 and 𝑇2 random 𝑡1 and 𝑡2 are chosen, and using these the 𝑝 and 𝑞 are made:

p = T1/abs(t1−t2), and q = T2/abs(t1−t2)).

The 𝛿 is set to be 10−𝑖, where 𝑖 is an integer in the interval [1, 10]:

delta = 10^(−randi([1,10])).

This run needed two basis transformations. In the first three plots the band (blue), the next two basis
vectors (dashed, black) and the checked points (dark-blue) are drawn. It can now also be clearly seen
that for each 𝑦-value one 𝑥-value is checked. The last plot contains a zoomed-in version of the blue
band with the found integer point (𝑘, 𝑙) = (458, 8564) in it.

Figure 3.3: An example of a run with the algorithm which needed two basis transformations. In the first three plots the blue band
is drawn together with the next two basis vectors (dashed, black). The dark blue dots represent the checked points. The last
plot contains a zoomed-in version of the blue band with the found integer point (𝑘, 𝑙) = (458, 8564) in it.

3.4. The algorithms efficiency 17

3.3.1. Improving the algorithm
Since it is assumed that 𝑇1 > 𝑇2, one has that 𝑝/𝑞 > 1. I.e. the slope of the band is greater than
the slope of 𝑦 = 𝑥. Therefore, the method that is used by Visser can be improved if every 𝑥-value of
the parallelogram is checked, instead of checking every 𝑦-value (Call it 𝑥-search). For every integer 𝑥
between the left and right of the parallelogram, calculate the 𝑦-value of the lowest line, round it up, and
check if it lies in the band, i.e. check if it is lower than the highest line. Figure 3.4 shows the plot that
arises when a random run with the improved algorithm is performed (see Appendix A.2 for the code).
It can be seen that now all 𝑥-values are checked instead of all 𝑦-values.

Figure 3.4: An example of a run with the improved algorithm which needed two basis transformations. In the first three plots the
blue band is drawn together with the next two basis vectors (dashed, black). The dark blue dots represent the checked points.
It can be seen that all 𝑥-values are checked instead of all 𝑦-values. The last plot contains a zoomed-in version of the blue band
with the found integer point (𝑘, 𝑙) = (377, 1427) in it.

3.4. The algorithms efficiency
Because the aim was to give insight in a fast algorithm, in contrast to the computationally expensive
simulations, it is of course important to see how fast this algorithm really is. This section discusses the
number of steps and basis transformations required by the algorithm. Also more insight is given into
which steps are skipped compared to a brute force method.

3.4.1. Run-time analysis
The number of steps when using the method of Visser (𝑦-search) is at most 𝑙 (because in the worst
case all 𝑦-values have to be checked). The improved method (𝑥-search) has a worst case number
of steps of 𝑘 (because in the worst case all 𝑥-values have to be checked). This only occurs if no
basis transformations are done, so luckily 𝑘 is then often small. Since 𝑘 < 𝑙, the improved method is
always faster than the original method. The two methods are tested in Matlab with random 𝑝, 𝑞 and 𝛿 a
million (106) times (see Appendix A.3). If the number of steps is saved for the million runs, a frequency

18 3. Finding the integer point

histogram can be made (see Figure 3.5). It can be clearly seen that in practice the number of steps
of the improved method is often much lower than the original method. To see which number of steps
appears the most, the plot on the right in Figure 3.5 can be used. Many runs with a low number of
steps are preferred, i.e. the top of the graph should be as far to the left as possible.

Figure 3.5: The method of Visser and the improved method (Schouten) are tested 106 times using Matlab. In the left plot can
be seen that the original method takes more steps than the improved method. To see which number of steps appears the most,
the plot on the right can be used. Many runs with a low number of steps are preferred, i.e. the top of the graph should be as far
to the left as possible.

The worst case run-time of the improved algorithm is 𝑘, but how often is the algorithm really worst
case? If the continued fraction algorithms (both 𝑥-search and 𝑦-search) are compared to a simple brute
force method that checks all the points (again, both 𝑥-search and 𝑦-search), are they often (much)
faster? Figure 3.6 provides insight into these questions. Four methods (brute force 𝑥- and 𝑦-search
and the continued fraction method 𝑥- and 𝑦-search) have been tested a million times with random 𝑝,
𝑞 and 𝛿 (see Appendix A.4). As expected, the brute force; 𝑥-search always lies on the line 𝑦 = 𝑥, i.e.
Number of steps = 𝑘, as it just check all the points until 𝑘; the first point inside the band. The brute
force; 𝑦-search is always above the line 𝑦 = 𝑥, so a little slower. This is because the number of steps
is now 𝑙, and 𝑘 < 𝑙. The points for the continued fraction methods are difficult to see, because they are
often much lower than the brute force methods. This is why the same plot has been made, but with
the logarithm of the number of steps and 𝑘, to bring the points a little closer together. In practice the
number of steps for both methods is often much lower than the worst case 𝑘 for the 𝑥-search and 𝑙 for
the 𝑦-search.

Another topic that may be of interest is the number of basis transformations. Furthermore, if the
number of transformations is known, one can also determine how many steps are needed on average
per basis; the number of steps divided by the number of basis transformations plus one. (The +1 is
necessary as the first steps start without performing a basis transformation.) The improved algorithm
is run again a thousand times with different 𝑝, 𝑞 and 𝛿 (see Appendix A.5). For each run, the number
of steps and the number of bases are tracked, and with these the average number of steps per basis
is calculated. The three are plotted against 𝑘 in a log-log plot in Figure 3.7. Also three lines have been
drawn; 𝑦 = 𝑥, 𝑦 = √𝑥 and 𝑦 = log(𝑥). It can (again) be seen that the worst case is 𝑘, because there
are a few points on the line 𝑦 = 𝑥, but never above it. Furthermore, it looks like the number of steps
seems to follow the line 𝑦 = √𝑥. This would imply that the algorithm is (unfortunately) not exponentially
fast, but √𝑘 fast. The number of bases however do seem exponential, since they to follow the line
𝑦 = log(𝑥). Note that since it is a log-log plot, the values of the number of bases plus the number of
steps per basis equals the number of steps.

3.4. The algorithms efficiency 19

Figure 3.6: Four methods (brute force 𝑥- and 𝑦-search and the continued fraction method 𝑥- and 𝑦-search) have been tested
a million times with random 𝑝, 𝑞 and 𝛿. Two plots are made; the number of steps are plotted against 𝑘 to properly see the
relationship between the number of steps and 𝑘, and the logarithm of the number of steps are plotted against the logarithm of
𝑘, to distribute the points a little bit better on the canvas. In practice the number of steps for both methods is often much lower
than the worst case 𝑘 for the 𝑥-search and 𝑙 for the 𝑦-search.

Figure 3.7: The improved algorithm is run a thousand times with random 𝑝, 𝑞 and 𝛿. A log-log plot is made with the number
of steps, the number of bases and the average number of steps per basis. It can be seen that the number of steps seem to
follow the line 𝑦 = √𝑥, and that the worst case is 𝑘; the points on the line 𝑦 = 𝑥. The number of bases seem to follow the line
𝑦 = log(𝑥).

20 3. Finding the integer point

3.4.2. The skipped steps
It is now clear that the continued fraction method is indeed faster than a simple brute force method. A
question that then may arise is; which steps are skipped when using lattice basis reduction? Figure
3.8 shows the steps made with brute force in rainbow colors. The points circled in red are the points
that would also be checked with the continued fraction method. It can be seen that in the beginning
every point is checked with both methods, but that over time more and more points are skipped by
the continued fraction method. Figure 3.9 provides more insight into why these points are skipped.
Exactly the same points are plotted again, but now in the transformed bases. It is now very clear why
so many points can be skipped. After a basis transformation, a lot of points which one would check with
brute force method (as they would lie close to the band) are now suddenly transformed far away from
the band and can therefore be skipped. Moreover, it can be seen that after each basis transformation
more and more points are ’transformed away’ from the band meaning more and more points can now
be skipped.

Figure 3.8: The points checked with the brute force method in rainbow colors and the points checked with the continued fraction
method circled in red. In the beginning all points are checked by both methods, but over time the continued fraction method
skips more and more points.

3.4. The algorithms efficiency 21

Figure 3.9: The points checked with the brute force method in rainbow colors and the points checked with the continued fraction
method circled in red. However, now all points are plotted in the transformed bases. It is now clear why so many points can be
skipped; after each basis transformation, points that were close to the band are suddenly transformed away from the band. In
other words; a lot of points that are checked with the brute force method can be skipped with the continued fraction method.

4
When no solution can be found

This chapter examines the second question posed in the introduction; Does (𝑘, 𝑙) always exist? First,
it is explained when there is no exact solution; when is there no integer point in the band and do the
planets not collide? After that, statistics are used to explain what to do if, due to for example inaccurate
observational data or a lack of machine precision, no exact solution can be found.

4.1. No integer point in the band
When 𝑝/𝑞 ∉ ℚ, there will always be an exact solution, assuming there is no uncertainty in the data.
By corollary 2.2.1, the continued fraction of such 𝑝/𝑞 is infinite so the basis transformations could go
on indefinitely. Since the band gets thicker with every transformation, it will eventually have a width of
1, and then there must be an integer point in the band. (Often “coincidentally” a solution is found (far)
before the band has width 1, due to 𝛿.)

When 𝑝/𝑞 ∈ ℚ however, it could be that no solution exists. Two examples are given. If 𝑝 and 𝑞 are
both integers the problem is then finding integer 𝑘 and 𝑙 such that:

𝑘 ⋅ 𝑝 − 𝑙 ⋅ 𝑞 = 1,

where 𝑝, 𝑞 ∈ ℤ now as well. Such integer point (𝑘, 𝑙) exists if and only if 𝑝 and 𝑞 are coprime (Gijswijt,
2019), which is of course not always the case. Hence if 𝑝 and 𝑞 are not coprime, and 𝛿 is small enough,
no solution exists. The band has then exactly the right offset and slope to lie between all grid points.
Another case where there is no solution is when 𝑝 is a multiple of 𝑞. Then the orbital period of planet
1 is a multiple of the orbital period of planet 2, i.e:

𝑇1 = 𝑚 ⋅ 𝑇2, where 𝑚 ∈ ℕ.

A collision can then only occur if the time it takes for the planets to arrive at the collision point is the
same, possibly plus an arbitrary number of full cycles around the orbit, 𝑛 ⋅ 𝑇1:

𝑡1 + 𝑘 ⋅ 𝑇1 = 𝑡2 + 𝑙 ⋅ 𝑇2
𝑡1 + 𝑘 ⋅ 𝑇1 = 𝑡2 + 𝑙 ⋅ 𝑚 ⋅ 𝑇1

𝑡1 = 𝑡2 + (𝑙 ⋅ 𝑚 − 𝑘) ⋅ 𝑇1
𝑡1 = 𝑡2 + 𝑛 ⋅ 𝑇1

Note that in the last step 𝑛 = 𝑙 ⋅ 𝑚 − 𝑘 ∈ ℤ, which is the arbitrary number of cycles around the orbit.

4.2. The statistics of the solution
It could also be the case that the correct solution cannot be found due to imprecise observational data
or a lack of machine precision. It may then be interesting to estimate 𝑘 instead of calculating it exactly.
There are often inaccuracies in simulations anyway, so estimating variables could save computing time.
The effect of small errors on 𝑝, 𝑞 and 𝛿 is investigated to find out what a (probability distribution of a)
solution might then look like.

23

24 4. When no solution can be found

The integer points are uniformly distributed over the plane. The assumption is now made that the
integer points are statistically independent. (This is of course incorrect; when the of location one point
is known, the location of all points are.) If so, the probability that there is an integer point (𝑘, 𝑙) in the
band with 𝑘 in the interval [𝑥, 𝑥 + d𝑥] is then the area of the parallelogram of the band (if the area
<< 1). This area is (2𝛿/𝑞)d𝑥, as the width of the parallelogram is d𝑥, and the height is 2𝛿/𝑞. Hence,
the probability that there is no integer point (𝑘, 𝑙) in the band with 𝑘 < 𝑥 is the product of one minus the
probability that there ís an integer point in the small parallelograms from zero to 𝑥, i.e

ℙ(𝑘 > 𝑥) = lim
d𝑥→0

(1 − 2𝛿𝑞 d𝑥)
𝑥/d𝑥

= e−
2𝛿
𝑞 𝑥 ,

and hence
ℙ(𝑘 ≤ 𝑥) = 1 − e−

2𝛿
𝑞 𝑥 . (𝑉𝑖𝑠𝑠𝑒𝑟, 2022)

The probability density function, which is then the derivative of this probability, will be:

𝑝(𝑘) = 2𝛿
𝑞 e−

2𝛿
𝑞 𝑘 . (4.1)

Now, a fixed 𝑝, 𝑞 and 𝛿 are chosen (randomly). Then the algorithm is run a thousand times, but at
each run a small error is added to the 𝑝, 𝑞 and 𝛿 (see Appendix A.6). For 𝑝 for example:

p = p∗(1 + 10^(−4)∗(−1+2∗rand));

When a normalized histogram of the frequency of 𝑘 is made, Figure 4.1 is arises. The probability
density function from equation (4.1) is added to the figure, and the expected value 2𝛿/𝑞 is also plotted.
As can be seen in the figure, equation (4.1) does not quite give the correct probability density function.
Especially when the 𝑦-values are plotted as a logarithm (see Figure 4.2); the simulated data is, (in
contrast to the probability density function of Visser) not even exponential, as it does not become a
straight line.

Figure 4.1: To validate the probability density function, the algorithm is run a thousand times with small errors added to a fixed
𝑝, 𝑞 and 𝛿. In this plot, 𝛿 = 10−5. The normalized frequency histogram is shown in blue, with the probability density function in
red. As can be seen they are not quite similar; the probability density function is not exactly correct. The red dotted line shows
the expected value of the probability density function.

4.2. The statistics of the solution 25

Figure 4.2: Again the normalized frequency histogram in blue, with the probability density function in red, with the same values
as in Figure 4.1. Now however, the 𝑦-values have been plotted on a logarithmic scale. It can be clearly seen that the probability
density function from equation (4.1) does not fit well. The simulated data does not even give a straight line, and is thus, unlike
the expected probability density function, not exponential.

When the error decreases, the distribution will slowly shift to the true value of 𝑘; the value it would
be if there were no error. This transition from a random solution to a deterministic solution can be seen
in Figure 4.3. The relative error in this figure can be a maximum of 10−15.75 before it will affect the value
of 𝑘 that is found. If the error is larger, wrong values for 𝑘 will be found. The maximum that the error
may be is usually around 𝛿2. A large maximum error is desired. Not only because small measurement
errors in for example the orbital periods of the planets have little influence, but also because numerical
errors will be less influential.

Figure 4.3: The error slowly decreases to the point where it no longer has any influence; the solution for 𝑘 transitions from a
random solution to a deterministic solution. When the relative error is 10−15.75 (or less) it no longer affects the 𝑘 found; the exact
value for 𝑘 is then found on each run. The maximum for the relative error is around 𝛿2. In these plots 𝛿 = 10−8, so the transition
to the deterministic solution was indeed expected around 𝛿2 = 10−16.

5
Discussion

Most of the sources used in this thesis are mathematics books published a long time ago. Their reliabil-
ity is almost undisputed. However, one may have also noticed that Wikipedia is referenced a number
of times. The critical reader may not consider this a good source, as anyone could edit Wikipedia’s
pages. However, since the pages used only contain mathematical facts (and, for example, no opinions
about war), it can be assumed that these sources are also reliable.

Secondly, the machine precision and the precision of Matlab may cause errors in the results. How-
ever, a lot of testing has been done, so the chances that the results contain errors are reduced this
way. In addition, an entire section has been devoted to what to do if an exact answer can not be found
due to lack of machine precision.

In section 4.2 a probability density function is given. As seen however, it was not an exact match
to the simulated data. An explanation for this could be that the assumption that the integer points are
statistically independent was too harsh. Another explanation could be that the random error was not
’random enough’.

Furthermore, a few of assumptions have been made in the physical derivation of the two lines. For
example, it is assumed that there is no mutual gravity, meaning the planets do not attract each other if
they are close to each other. As a result, there is no nodal and apsidal precession, and therefore the
collision point does not change over time. For further research it may be interesting to see what is the
best approach if the mutual gravity is taken into account. Is linearization necessary? Are the lines still
straight, and parallel?

Another interesting topic for further researchmay be the following: Planets follow the inverse-square
law for gravitation, but charged particles, for example electrons, adhere to the inverse-square law for
electrostatics. This means that charged particles also move in Kepler orbits, meaning the algorithm
could perhaps also be applied in this field. Is the algorithm indeed usable for this, and perhaps in other
fields?

27

6
Conclusion

This research was aimed at providing insight into a fast collision detection algorithm. It could be shown
that the problem of collision detection between two planets is equivalent to finding the integer point in a
band between two parallel lines, closest to the origin. Therefore, in this research an answer was sought
to the question: How to quickly find an integer point (𝑘, 𝑙) between two parallel lines? In addition, an
answer was also sought to the question: Is it possible that there is no integer in the band and if so, when?
To answer these questions, the article by Visser (2022) has been examined well and supplemented with
other sources to provide good background information.

It has been shown that lattice basis reduction is a good method for finding the integer point quickly.
As basis vectors, the convergents of the continued fraction of the slope of the band can be used,
as the convergents provide good rational approximations for the (often) irrational slope. In addition,
the basis vectors created using the convergents always span whole ℤ2. Dividing the band into small
parallelograms allowed each parallelogram to be checked with the optimal basis. After each basis
transformation, the width of the band increased and the points of the band were transformed closer
and closer to the origin. Both these things contributed to find the integer point faster. Furthermore, by
checking all points along the 𝑥-axis, and not the 𝑦-axis, the algorithm could be improved even more.

Where brute force always took 𝑘 steps to find the integer point (𝑘, 𝑙), the method with continued frac-
tions and lattice basis reduction often found the point in about √𝑘 steps. Only if no basis transformations
were needed, the point (𝑘, 𝑙) was found in the worst case 𝑘 number of steps.

It has been shown that there is always a solution when the slope of the band is irrational. However,
when the slope was rational, it could be that no solution existed. It was found that when 𝛿 was small
enough, and the orbital periods of the planets not coprime (assuming they were integer), the band had
the right offset and slope to lie between all grid points, and then no solution existed. Furthermore,
when the orbital periods of the planets where a multiple of each other (not necessarily integer), the
planets could only collide if the arrival time at the collision point for both planets happened to be exactly
the same. Moreover, it could also be the case that a solution could not be found due to imprecise
observational data, or a lack of machine precision. In that case, the most probable solution could be
found using probability theory. However, the probability density function found did not exactly match
the simulated data.

29

Bibliography
[1] V. Berthé. Lattice reduction and continued fractions. https://ssl.informatics.uow.edu.

au/MACAO/workshop_2019/Berthe.pdf, November 2019. Presentation slides.

[2] W. Bosma and C. Kraaikamp. Continued Fractions. Radboud Universiteit Nijmegen, 2012.

[3] S. D. Galbraith. Mathematics of public key cryptography. Cambridge University Press, 2012.

[4] D. C. Gijswijt. Algebra 1. Delft University of Technology, 2019.

[5] A. Ya. Khinchin. Continued Fractions. Dover Publications, 1949.

[6] J. Laskar. Stability of the solar system. http://www.scholarpedia.org/article/
Stability_of_the_solar_system, September 2007. Retrieved May 3, 2022.

[7] A. M. Rockett and P. Szüsz. Continued Fractions. World Scientific Publishing Company, 1998.

[8] P. M. Visser. Collision detection for N-body Kepler systems. Astronomy & Astrophysics, 2022.

[9] Wikipedia contributors. Extended Euclidean algorithm. https://en.wikipedia.org/wiki/
Extended_Euclidean_algorithm, October 2021. Retrieved April 4, 2022.

[10] Wikipedia contributors. Continued fraction. https://en.wikipedia.org/wiki/
Continued_fraction, February 2022. Retrieved March 18, 2022.

[11] Wikipedia contributors. N-body simulation. https://en.wikipedia.org/wiki/N-body_
simulation, April 2022. Retrieved May 4, 2022.

31

https://ssl.informatics.uow.edu.au/MACAO/workshop_2019/Berthe.pdf
https://ssl.informatics.uow.edu.au/MACAO/workshop_2019/Berthe.pdf
http://www.scholarpedia.org/article/Stability_of_the_solar_system
http://www.scholarpedia.org/article/Stability_of_the_solar_system
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://en.wikipedia.org/wiki/Continued_fraction
https://en.wikipedia.org/wiki/Continued_fraction
https://en.wikipedia.org/wiki/N-body_simulation
https://en.wikipedia.org/wiki/N-body_simulation

A
Matlab code

A.1. Vissers algorithm (y-search)
The code for the plots of Vissers algorithm. The % in line 61 can be removed to make the checked
dots appear one by one:

1 c l ea r ; c l o se a l l ;
2

3 tmax = 1;
4 T1 = tmax ;
5 T2 = tmax∗rand ;
6 t1 = T1∗rand ;
7 t2 = T2∗rand ;
8 p = T1/abs (t1−t2) ;
9 q = T2/abs (t1−t2) ;

10 delta = 10^(−randi ([1 , 1 0])) ;
11

12 q0 = p ; q1 = q ;
13 k0 = 1; k1 = 0;
14 l 0 = 0; l1 = −1;
15

16 f i gu re ;
17 f o r n = 0:100
18 a0 = f l o o r (q0/q1) ;
19 q2 = q0 − a0∗q1 ;
20 i f q2 == 0
21 k = ”No so lut ion yet ” ;
22 l = ”No so lut ion yet ” ;
23 break
24 end
25 k2 = k0 − a0∗k1 ;
26 l 2 = l0 − a0∗ l1 ;
27 a1 = f l o o r (q1/q2) ;
28

29

30 x = 0: c e i l ((1− delta)/q0+(1+delta) ∗(q0−q2) /(q0∗q2)) : ...
c e i l ((1− delta)/q0+(1+delta) ∗(q0−q2) /(q0∗q2)) ;

31 y = x∗(q0/q1) − 1/q1 ;
32 l e f t = y − delta /q1 ;
33 r ight = y + delta /q1 ;
34

35 A = [k0 , −k1 ;
36 l0 , −l1] ;
37

38 b2 = A\[k2 ; l2] ;
39 b3 = −A\[k1 − a1∗k2 ; l1 − a1∗ l2] ;
40

41 subplot (3 ,3 ,n+1)
42 hold on ;
43 plot ((1− delta)/q0 ,0 , ' r∗ ')
44 plot ((1+ delta)/q0 ,0 , ' r∗ ')

33

34 A. Matlab code

45 plot ((1− delta)/q0+(1+delta) ∗(q0−q2) /(q0∗q2) ,(1+ delta) ∗(q0−q2) /(q1∗q2) , ' r∗ ')
46 plot ((1+ delta)/q2,(1+ delta) ∗(q0−q2) /(q1∗q2) , ' r∗ ')
47

48 plot (x , l e f t , ' c ')
49 plot (x , r ight , ' c ')
50 plot ([0 , b2(1) ∗ l e f t (2)] , [0 , b2(2) ∗ l e f t (2)] , 'k−−')
51 plot ([0 , b3(1) ∗ l e f t (2)] , [0 , b3(2) ∗ l e f t (2)] , 'k−−')
52

53 axis ([0 max([c e i l ((1− delta)/q0+(1+delta) ∗(q0−q2) /(q0∗q2)) , ...
c e i l ((1+ delta) ∗(q0−q2) /(q1∗q2))]) 0 ...
max([c e i l ((1− delta)/q0+(1+delta) ∗(q0−q2) /(q0∗q2)) , ...
c e i l ((1+ delta) ∗(q0−q2) /(q1∗q2))])])

54 grid on
55

56 f o r y = 0: c e i l ((1+delta)∗a0/q2)
57 x = c e i l ((q1∗y + 1−delta)/q0) ;
58 %pause
59 plot (x , y , ' b. ')
60 i f x∗q0 − y∗q1 < 1+delta
61 plot (x , y , ' go ')
62 k = x∗k0 − y∗k1 ;
63 l = x∗ l0 − y∗ l1 ;
64

65 i f n<8
66 subplot (3 ,3 ,9)
67 x_ = 0: k+1:k+1;
68 mid = x_∗(p/q) − 1/q ;
69

70 l e f t = mid − delta /q ;
71 r ight = mid + delta /q ;
72

73 plot (x_, l e f t , ' c ')
74 hold on
75 plot (x_, right , ' c ')
76 plot (k , l , ' .b ')
77 plot (k , l , ' og ')
78

79 axis ([k−delta k+delta l−delta l+delta])
80 set (gca , ' xt ick ' , [0 : 1 : k+1])
81 set (gca , ' yt ick ' , [0 : 1 : l +1])
82 grid on
83 end
84

85 return
86 end
87 end
88

89 q3 = q1 − a1∗q2 ;
90 i f q3 == 0
91 k = ”No so lut ion yet ” ;
92 l = ”No so lut ion yet ” ;
93 break
94 end
95

96 k3 = k1 − a1∗k2 ;
97 l 3 = l1 − a1∗ l2 ;
98

99 q0 = q2 ; q1 = q3 ;
100 k0 = k2 ; k1 = k3 ;
101 l 0 = l2 ; l1 = l3 ;
102 end

A.2. The improved algorithm (x-search)
The code for the improved algorithm.

1 c l ea r ; c l o se a l l ;

A.2. The improved algorithm (x-search) 35

2

3 tmax = 1;
4 T1 = tmax ;
5 T2 = tmax∗rand ;
6 t1 = T1∗rand ;
7 t2 = T2∗rand ;
8 p = T1/abs (t1−t2) ;
9 q = T2/abs (t1−t2) ;

10 delta = 10^(−randi ([1 , 1 0])) ;
11

12 q0 = p ; q1 = q ;
13 k0 = 1; k1 = 0;
14 l 0 = 0; l1 = −1;
15

16 f i gu re ;
17 f o r n = 0:100
18 a0 = f l o o r (q0/q1) ;
19 q2 = q0 − a0∗q1 ;
20 i f q2 == 0
21 k = ”No so lut ion yet ” ;
22 l = ”No so lut ion yet ” ;
23 break
24 end
25 k2 = k0 − a0∗k1 ;
26 l 2 = l0 − a0∗ l1 ;
27 a1 = f l o o r (q1/q2) ;
28

29

30 x = 0: c e i l ((1− delta)/q0+(1+delta) ∗(q0−q2) /(q0∗q2)) : ...
c e i l ((1− delta)/q0+(1+delta) ∗(q0−q2) /(q0∗q2)) ;

31 y = x∗(q0/q1) − 1/q1 ;
32 l e f t = y − delta /q1 ;
33 r ight = y + delta /q1 ;
34

35 A = [k0 , −k1 ;
36 l0 , −l1] ;
37

38 b2 = A\[k2 ; l2] ;
39 b3 = −A\[k1 − a1∗k2 ; l1 − a1∗ l2] ;
40

41 subplot (3 ,3 ,n+1)
42 hold on ;
43 plot ((1− delta)/q0 ,0 , ' r∗ ')
44 plot ((1+ delta)/q0 ,0 , ' r∗ ')
45 plot ((1− delta)/q0+(1+delta) ∗(q0−q2) /(q0∗q2) ,(1+ delta) ∗(q0−q2) /(q1∗q2) , ' r∗ ')
46 plot ((1+ delta)/q2,(1+ delta) ∗(q0−q2) /(q1∗q2) , ' r∗ ')
47

48 plot (x , l e f t , ' c ')
49 plot (x , r ight , ' c ')
50 plot ([0 , b2(1) ∗ l e f t (2)] , [0 , b2(2) ∗ l e f t (2)] , 'k−−')
51 plot ([0 , b3(1) ∗ l e f t (2)] , [0 , b3(2) ∗ l e f t (2)] , 'k−−')
52

53 axis ([0 max([c e i l ((1− delta)/q0+(1+delta) ∗(q0−q2) /(q0∗q2)) , ...
c e i l ((1+ delta) ∗(q0−q2) /(q1∗q2))]) 0 ...
max([c e i l ((1− delta)/q0+(1+delta) ∗(q0−q2) /(q0∗q2)) , ...
c e i l ((1+ delta) ∗(q0−q2) /(q1∗q2))])])

54 grid on
55

56 f o r x = c e i l ((1− delta)/q0) : f l o o r ((1+ delta)/q2)
57 y = max(0 , c e i l (q0/q1∗x−(1+delta)/q1)) ;
58 %pause
59 plot (x , y , ' b. ')
60 i f x∗q0 − y∗q1 > 1−delta
61 plot (x , y , ' go ')
62 k = x∗k0 − y∗k1 ;
63 l = x∗ l0 − y∗ l1 ;
64

65 i f n<8
66 subplot (3 ,3 ,9)
67 x_ = 0: k+1:k+1;
68 mid = x_∗(p/q) − 1/q ;

36 A. Matlab code

69

70 l e f t = mid − delta /q ;
71 r ight = mid + delta /q ;
72

73 plot (x_, l e f t , ' c ')
74 hold on
75 plot (x_, right , ' c ')
76 plot (k , l , ' .b ')
77 plot (k , l , ' og ')
78

79 axis ([k−delta k+delta l−delta l+delta])
80 set (gca , ' xt ick ' , [0 : 1 : k+1])
81 set (gca , ' yt ick ' , [0 : 1 : l +1])
82 grid on
83 end
84

85 return
86 end
87 end
88

89 q3 = q1 − a1∗q2 ;
90 i f q3 == 0
91 k = ”No so lut ion yet ” ;
92 l = ”No so lut ion yet ” ;
93 break
94 end
95

96 k3 = k1 − a1∗k2 ;
97 l 3 = l1 − a1∗ l2 ;
98

99 q0 = q2 ; q1 = q3 ;
100 k0 = k2 ; k1 = k3 ;
101 l 0 = l2 ; l1 = l3 ;
102 end

A.3. Frequencies of different algorithms
The code for plotting the frequencies:

1 c l ea r ; c l o se a l l ;
2

3 n = 10^6;
4 arr1 = zeros (n ,1) ;
5 arr2 = zeros (n ,1) ;
6

7

8 f o r i =1:n
9 %% I n i t i a l i z i n g

10 tmax = 1;
11 T1 = tmax ;
12 T2 = tmax∗rand ;
13 i f T1 < T2
14 T1 = tmax − T1;
15 T2 = tmax − T2;
16 end
17 t1 = T1∗rand ;
18 t2 = T2∗rand ;
19 p = T1/abs (t1−t2) ;
20 q = T2/abs (t1−t2) ;
21 delta = 1/10^7;
22

23 %% y−search (Visser)
24 q0 = p ; q1 = q ;
25 k0 = 1; k1 = 0;
26 l 0 = 0; l1 = −1;
27

28 brk = 0;

A.3. Frequencies of different algorithms 37

29 steps = 0;
30

31 f o r transformations = 0:100
32 a0 = f l o o r (q0/q1) ;
33 q2 = q0 − a0∗q1 ;
34 i f q2 == 0
35 k = ”No so lut ion yet ” ;
36 l = ”No so lut ion yet ” ;
37 break
38 end
39 k2 = k0 − a0∗k1 ;
40 l 2 = l0 − a0∗ l1 ;
41 a1 = f l o o r (q1/q2) ;
42

43 f o r y=0: f l o o r ((1+delta)∗a0/q2)
44 steps = steps + 1;
45 x = c e i l ((q1∗y + 1−delta)/q0) ;
46 i f x∗q0 − y∗q1 < 1+delta
47 k = x∗k0 − y∗k1 ;
48 l = x∗ l0 − y∗ l1 ;
49 brk = 1;
50 arr1 (i) = steps ;
51 break
52 end
53 end
54

55 i f brk == 1
56 break
57 end
58

59 q3 = q1 − a1∗q2 ;
60 i f q3 == 0
61 k = ”No so lut ion yet ” ;
62 l = ”No so lut ion yet ” ;
63 break
64 end
65

66 k3 = k1 − a1∗k2 ;
67 l 3 = l1 − a1∗ l2 ;
68

69 q0 = q2 ; q1 = q3 ;
70 k0 = k2 ; k1 = k3 ;
71 l 0 = l2 ; l1 = l3 ;
72 end
73

74 %% x−search (Schouten)
75 q0 = p ; q1 = q ;
76 k0 = 1; k1 = 0;
77 l 0 = 0; l1 = −1;
78

79 brk = 0;
80 steps = 0;
81

82 f o r transformations = 0:100
83 a0 = f l o o r (q0/q1) ;
84 q2 = q0 − a0∗q1 ;
85 i f q2 == 0
86 k = ”No so lut ion yet ” ;
87 l = ”No so lut ion yet ” ;
88 break
89 end
90 k2 = k0 − a0∗k1 ;
91 l 2 = l0 − a0∗ l1 ;
92 a1 = f l o o r (q1/q2) ;
93

94 f o r x = c e i l ((1− delta)/q0) : f l o o r ((1+ delta)/q2)
95 steps = steps + 1;
96 y = max(0 , c e i l (q0/q1∗x−(1+delta)/q1)) ;
97 i f x∗q0 − y∗q1 > 1−delta
98 k = x∗k0 − y∗k1 ;
99 l = x∗ l0 − y∗ l1 ;

38 A. Matlab code

100 brk = 1;
101 arr2 (i) = steps ;
102 break
103 end
104 end
105

106 i f brk == 1
107 break
108 end
109

110 q3 = q1 − a1∗q2 ;
111 i f q3 == 0
112 k = ”No so lut ion yet ” ;
113 l = ”No so lut ion yet ” ;
114 break
115 end
116

117 k3 = k1 − a1∗k2 ;
118 l 3 = l1 − a1∗ l2 ;
119

120 q0 = q2 ; q1 = q3 ;
121 k0 = k2 ; k1 = k3 ;
122 l 0 = l2 ; l1 = l3 ;
123 end
124

125 end
126

127 %% Plott ing
128 subplot (1 ,2 ,1)
129 histogram (arr1 ,10 . ^(0 :8))
130 hold on
131 histogram (arr2 ,10 . ^(0 :8))
132 set (gca , ”XScale ” , ” log ”)
133 xlabe l ('#steps ')
134 ylabe l (' frequency ')
135 legend ('y−search (Visser) ' , 'x−search (Schouten) ')
136

137 subplot (1 ,2 ,2)
138 tb l = tabulate (ca tegor i ca l (arr1)) ;
139 plot (: , 1) = str2double (tb l (: , 1)) ;
140 plot (: , 2) = cell2mat (tb l (: , 2)) ;
141 scat te r (plot (: , 1) , (plot (: , 2)))
142 hold on
143 tbl2 = tabulate (ca tegor i ca l (arr2)) ;
144 plot2 (: , 1) = str2double (tbl2 (: , 1)) ;
145 plot2 (: , 2) = cell2mat (tbl2 (: , 2)) ;
146 scat te r (plot2 (: , 1) , (plot2 (: , 2)))
147 xlabe l ('#steps ')
148 ylabe l (' frequency ')
149 legend ('y−search (Visser) ' , 'x−search (Schouten) ')
150 set (gca , ”XScale ” , ” log ”)
151 set (gca , ”YScale ” , ” log ”)

A.4. Run-time of all algorithms
The code for plotting the run-time of the brute force methods and the continued fraction methods:

1 c l ea r ; c l o se a l l ;
2

3 n = 10^6;
4 steps = ones (n , 6) ;
5

6 f o r i =1:n
7 %% I n i t i a l i z i n g
8 tmax = 1;
9 T1 = tmax ;

10 T2 = tmax∗rand ;

A.4. Run-time of all algorithms 39

11 t1 = T1∗rand ;
12 t2 = T2∗rand ;
13 p = T1/abs (t1−t2) ;
14 q = T2/abs (t1−t2) ;
15 delta = 10^(−randi ([1 , 1 0])) ;
16

17 break_loop = 0;
18

19 %% Brute force ; y−search
20 n = 0;
21 k_int = round(1/p) ;
22 l_int = 0;
23

24 while ¬(l_int>k_int∗p/q−(1+delta)/q && l_int<k_int∗p/q−(1−delta)/q)
25 n = n + 1;
26

27 i f l_int > k_int ∗(p/q) − 1/q
28 k_int = k_int + 1;
29 end
30

31 l_int = l_int + 1;
32

33 i f k_int>10^7 | | l_int >10^7
34 break_loop = 1;
35 steps (i , 1) = ”Too many s t e p s . Break to avoid long runtime. ” ;
36 break
37 end
38

39 end
40

41 i f break_loop == 1
42 continue
43 end
44

45 steps (i , 2) = n ;
46

47 %% Brute force ; x−search
48 n = 0;
49 k_brute = 0;
50 l_brute = 0;
51

52 while ¬(l_brute < k_brute∗p/q− (1−delta)/q)
53 n = n + 1;
54

55 k_brute = k_brute + 1;
56 l_brute = c e i l (k_brute∗p/q − (1+delta)/q) ;
57

58 end
59

60 steps (i , 3) = n ;
61

62 %% Continued Fraction method ; y−search (Visser)
63 q0 = p ; q1 = q ;
64 k0 = 1; k1 = 0;
65 l 0 = 0; l1 = −1;
66

67 brk = 0;
68 t e l l e r = 0;
69

70 f o r n = 0:100
71 a0 = f l o o r (q0/q1) ;
72 q2 = q0 − a0∗q1 ;
73 i f q2 == 0
74 k_cont1 = ”No so lut ion yet ” ;
75 l_cont1 = ”No so lut ion yet ” ;
76 break
77 end
78 k2 = k0 − a0∗k1 ;
79 l 2 = l0 − a0∗ l1 ;
80 a1 = f l o o r (q1/q2) ;
81

40 A. Matlab code

82 f o r y=0: f l o o r ((1+delta)∗a0/q2)
83 x = c e i l ((q1∗y + 1−delta)/q0) ;
84 t e l l e r = t e l l e r + 1;
85 i f x∗q0 − y∗q1 < 1+delta
86 k_cont = x∗k0 − y∗k1 ;
87 l_cont = x∗ l0 − y∗ l1 ;
88 brk = 1;
89 break
90 end
91 end
92

93 i f brk == 1
94 break
95 end
96

97 q3 = q1 − a1∗q2 ;
98 i f q3 == 0
99 k_cont1 = ”No so lut ion yet ” ;

100 l_cont1 = ”No so lut ion yet ” ;
101 break
102 end
103

104 k3 = k1 − a1∗k2 ;
105 l 3 = l1 − a1∗ l2 ;
106

107 q0 = q2 ; q1 = q3 ;
108 k0 = k2 ; k1 = k3 ;
109 l 0 = l2 ; l1 = l3 ;
110 end
111

112 steps (i , 4) = t e l l e r ;
113

114 %% Continued Fraction method ; x−search (Schouten)
115 q0 = p ; q1 = q ;
116 k0 = 1; k1 = 0;
117 l 0 = 0; l1 = −1;
118

119 brk = 0;
120

121 t e l l e r = 0;
122

123 f o r n = 0:100
124 a0 = f l o o r (q0/q1) ;
125 q2 = q0 − a0∗q1 ;
126 i f q2 == 0
127 k_cont2 = ”No so lut ion yet ” ;
128 l_cont2 = ”No so lut ion yet ” ;
129 break
130 end
131 k2 = k0 − a0∗k1 ;
132 l 2 = l0 − a0∗ l1 ;
133 a1 = f l o o r (q1/q2) ;
134

135 f o r x = c e i l ((1− delta)/q0) : f l o o r ((1+ delta)/q2)
136 t e l l e r = t e l l e r + 1;
137 y = max(0 , c e i l (q0/q1∗x−(1+delta)/q1)) ;
138 i f x∗q0 − y∗q1 > 1−delta
139 k_cont2 = x∗k0 − y∗k1 ;
140 l_cont2 = x∗ l0 − y∗ l1 ;
141 brk = 1;
142 break
143 end
144 end
145

146 i f brk == 1
147 break
148 end
149

150 q3 = q1 − a1∗q2 ;
151 i f q3 == 0
152 k_cont2 = ”No so lut ion yet ” ;

A.5. Number of steps and basis transformations 41

153 l_cont2 = ”No so lut ion yet ” ;
154 break
155 end
156

157 k3 = k1 − a1∗k2 ;
158 l 3 = l1 − a1∗ l2 ;
159

160 q0 = q2 ; q1 = q3 ;
161 k0 = k2 ; k1 = k3 ;
162 l 0 = l2 ; l1 = l3 ;
163 end
164

165 steps (i , 5) = t e l l e r ;
166 steps (i , 1) = k_cont2 ;
167 steps (i , 6) = l_cont2 ;
168

169

170 %% Checking for d i f f e r e n c e s
171 i f k_int ≠ k_brute | | k_int ≠ k_cont | | k_int ≠ k_cont2
172 steps (i , 1) = ”Machine prec i s i on too low. Break to avoid mistakes in p l o t . ” ;
173 break
174 end
175 i f l_int ≠ l_brute | | l_int ≠ l_cont | | l_int ≠ l_cont2
176 steps (i , 1) = ”Machine prec i s i on too low. Break to avoid mistakes in p l o t . ” ;
177 break
178 end
179

180 end
181

182 f i gu re
183 subplot (1 ,2 ,1)
184 scat te r ((steps (: , 1)) , (steps (: , 2)) , ' . ')
185 hold on
186 scat te r ((steps (: , 1)) , (steps (: , 3)) , ' . ')
187 scat te r ((steps (: , 1)) , (steps (: , 4)) , ' . ')
188 scat te r ((steps (: , 1)) , (steps (: , 5)) , ' . ')
189 xlabe l ('k ')
190 ylabe l ('#steps ')
191

192 subplot (1 ,2 ,2)
193 scat te r ((steps (: , 1)) , (steps (: , 2)) , ' . ')
194 hold on
195 scat te r ((steps (: , 1)) , (steps (: , 3)) , ' . ')
196 scat te r ((steps (: , 1)) , (steps (: , 4)) , ' . ')
197 scat te r ((steps (: , 1)) , (steps (: , 5)) , ' . ')
198 legend (” Brute force ; y−search ” ,” Brute force ; x−search ” ,” Continued Fraction method ; ...

y−search (Visser) ” ,” Continued Fraction method ; x−search ...
(Schouten) ” , ' Orientation ' , ' hor izonta l ')

199 xlabe l ('k ')
200 ylabe l ('#steps ')
201 set (gca , ”XScale ” , ” log ”)
202 set (gca , ”YScale ” , ” log ”)

A.5. Number of steps and basis transformations
The code for plotting the number of steps and the number of basis transformations for the improved
algorithm:

1 c l ea r ; c l o se a l l ;
2

3 n = 10^4;
4 arr = ones (n ,4) ;
5

6 f o r i =1:n
7 %% I n i t i a l i z i n g
8 tmax = 1;
9 T1 = tmax ;

42 A. Matlab code

10 T2 = tmax∗rand ;
11 t1 = T1∗rand ;
12 t2 = T2∗rand ;
13 p = T1/abs (t1−t2) ;
14 q = T2/abs (t1−t2) ;
15 delta = 10^(−randi ([1 , 1 0])) ;
16

17 %% Continued Fraction method ; x−search (Schouten)
18 q0 = p ; q1 = q ;
19 k0 = 1; k1 = 0;
20 l 0 = 0; l1 = −1;
21

22 brk = 0;
23

24 steps = 0;
25

26 f o r transformations = 0:100
27 a0 = f l o o r (q0/q1) ;
28 q2 = q0 − a0∗q1 ;
29 i f q2 == 0
30 break
31 end
32 k2 = k0 − a0∗k1 ;
33 l 2 = l0 − a0∗ l1 ;
34 a1 = f l o o r (q1/q2) ;
35

36 f o r x = c e i l ((1− delta)/q0) : f l o o r ((1+ delta)/q2)
37 steps = steps + 1;
38 y = max(0 , c e i l (q0/q1∗x−(1+delta)/q1)) ;
39 i f x∗q0 − y∗q1 > 1−delta
40 k = x∗k0 − y∗k1 ;
41 l = x∗ l0 − y∗ l1 ;
42 brk = 1;
43 break
44 end
45 end
46

47 i f brk == 1
48 break
49 end
50

51 q3 = q1 − a1∗q2 ;
52 i f q3 == 0
53 break
54 end
55

56 k3 = k1 − a1∗k2 ;
57 l 3 = l1 − a1∗ l2 ;
58

59 q0 = q2 ; q1 = q3 ;
60 k0 = k2 ; k1 = k3 ;
61 l 0 = l2 ; l1 = l3 ;
62 end
63

64 arr (i , 1) = k ;
65 arr (i , 2) = steps ;
66 arr (i , 3) = transformations +1;
67 arr (i , 4) = steps /(transformations+1) ;
68

69

70 end
71

72 ka=10. ^(0:12) ;
73 logka=log10 (ka) ;
74 wortelka=ka. ^0 .5 ;
75

76

77 scat te r ((arr (: , 1)) , (arr (: , 4)) , ' . ')
78 hold on
79 scat te r ((arr (: , 1)) , (arr (: , 2)) , ' . ')
80 scat te r ((arr (: , 1)) , (arr (: , 3)) , ' . ')

A.6. The probability density function 43

81 plot ((ka) , (ka))
82 plot ((ka) , (wortelka))
83 plot ((ka) , (logka))
84 legend (”avg #steps / bas i s ”,”# steps ”,”#bases ” ,” y = x” ,” y = \surd{x}” ,” y = log (x) ”)
85 xlabe l ('k ')
86 ylabe l ('Number of steps , bases and steps / bas i s ')
87 set (gca , ”XScale ” , ” log ”)
88 set (gca , ”YScale ” , ” log ”)
89 axis ([10^0 10^13 10^−1 10^9])

A.6. The probability density function
The code for plotting the simulated probability density and the probability density function given by
Visser:

1 c l ea r ; c l o se a l l ;
2

3 n = 10^7;
4 arr = zeros (1 ,n) ;
5

6 tmax = 1;
7 T1 = tmax ;
8 T2 = tmax∗rand ;
9 t1 = T1∗rand ;

10 t2 = T2∗rand ;
11 p_ = T1/abs (t1−t2) ;
12 q_ = T2/abs (t1−t2) ;
13 delta_ = 10^(−randi ([1 , 1 0])) ;
14 avg=q_/2/delta_ ;
15

16 delta_sav = zeros (1 ,n) ;
17

18 f o r i =1:n
19 %% I n i t i a l i z i n g
20 p = p_∗(1+10^(−4)∗(−1+2∗rand)) ;
21 q = q_∗(1+10^(−4)∗(−1+2∗rand)) ;
22 delta = delta_∗(1+10^(−4)∗(−1+2∗rand)) ;
23

24 %% x−search (Schouten)
25 q0 = p ; q1 = q ;
26 k0 = 1; k1 = 0;
27 l 0 = 0; l1 = −1;
28

29 brk = 0;
30

31 f o r transformations = 0:100
32 a0 = f l o o r (q0/q1) ;
33 q2 = q0 − a0∗q1 ;
34 i f q2 == 0
35 k = ”No so lut ion yet ” ;
36 l = ”No so lut ion yet ” ;
37 break
38 end
39 k2 = k0 − a0∗k1 ;
40 l 2 = l0 − a0∗ l1 ;
41 a1 = f l o o r (q1/q2) ;
42

43

44 f o r x = c e i l ((1− delta)/q0) : f l o o r ((1+ delta)/q2)
45 y = max(0 , c e i l (q0/q1∗x−(1+delta)/q1)) ;
46 i f x∗q0 − y∗q1 > 1−delta
47 k = x∗k0 − y∗k1 ;
48 l = x∗ l0 − y∗ l1 ;
49 arr (i) = k ;
50 brk = 1;
51 break
52 end

44 A. Matlab code

53 end
54

55 i f brk == 1
56 break
57 end
58

59 q3 = q1 − a1∗q2 ;
60 i f q3 == 0
61 k = ”No so lut ion yet ” ;
62 l = ”No so lut ion yet ” ;
63 break
64 end
65

66 k3 = k1 − a1∗k2 ;
67 l 3 = l1 − a1∗ l2 ;
68

69 q0 = q2 ; q1 = q3 ;
70 k0 = k2 ; k1 = k3 ;
71 l 0 = l2 ; l1 = l3 ;
72 end
73

74 end
75

76 %% Plott ing
77 histogram (arr ,0 :10∗ avg/100:10∗avg , ' Normalization ' , ' pdf ')
78 hold on
79 k = 0:10∗ avg/100:10∗avg ;
80 P = exp(−k/avg)/avg ;
81 P_disc = exp(−k/avg)∗(1−exp(−1/avg)) ;
82 plot (k ,P, ' r−')
83 plot (avg , 0 : 0 .05 /avg :1/ avg , ' r . ')
84 %set (gca , ”YScale ” , ” log ”)
85 xlabe l ('k ')
86 ylabe l (' probabi l i ty ')
87 legend (' Normalized simulated data ' , ' Probabi l i ty density function (Visser) ' , ' Expected ...

value ')

	List of Symbols
	Introduction
	Continued Fractions
	Finding the integer point
	When no solution can be found
	Discussion
	Conclusion
	Bibliography
	Matlab code

