
 
 

Delft University of Technology

Label-free identification of protein aggregates using deep learning

Ibrahim, Khalid A.; Grußmayer, Kristin S.; Riguet, Nathan; Feletti, Lely; Lashuel, Hilal A.; Radenovic,
Aleksandra
DOI
10.1038/s41467-023-43440-7
Publication date
2023
Document Version
Final published version
Published in
Nature Communications

Citation (APA)
Ibrahim, K. A., Grußmayer, K. S., Riguet, N., Feletti, L., Lashuel, H. A., & Radenovic, A. (2023). Label-free
identification of protein aggregates using deep learning. Nature Communications, 14(1), Article 7816.
https://doi.org/10.1038/s41467-023-43440-7

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1038/s41467-023-43440-7
https://doi.org/10.1038/s41467-023-43440-7


Article https://doi.org/10.1038/s41467-023-43440-7

Label-free identification of protein
aggregates using deep learning

Khalid A. Ibrahim 1,2, Kristin S. Grußmayer 3 , Nathan Riguet 2,
Lely Feletti 1, Hilal A. Lashuel 2 & Aleksandra Radenovic 1

Protein misfolding and aggregation play central roles in the pathogenesis of
various neurodegenerative diseases (NDDs), including Huntington’s disease,
which is caused by a genetic mutation in exon 1 of the Huntingtin protein
(Httex1). The fluorescent labels commonly used to visualize and monitor the
dynamics of protein expression have been shown to alter the biophysical
properties of proteins and the final ultrastructure, composition, and toxic
properties of the formed aggregates. Toovercome this limitation,wepresent a
method for label-free identification of NDD-associated aggregates (LINA). Our
approach utilizes deep learning to detect unlabeled and unaltered Httex1
aggregates in living cells from transmitted-light images, without the need for
fluorescent labeling. Our models are robust across imaging conditions and on
aggregates formed by different constructs of Httex1. LINA enables the
dynamic identification of label-free aggregates and measurement of their dry
mass and area changes during their growth process, offering high speed,
specificity, and simplicity to analyze protein aggregation dynamics and obtain
high-fidelity information.

Neurodegenerative diseases (NDDs), such as Alzheimer’s disease (AD),
Parkinson’s disease (PD), and Huntington’s disease (HD), are major
global health concerns afflicting tens of millions of patients worldwide
and are currently incurable1,2. They are characterized by progressive
damage to the structure and functionofneurons and the accumulation
of misfolded proteins in specific brain regions and neuronal
populations3–6. Although these misfolded protein aggregates repre-
sent the hallmark of several NDDs, including AD, PD, and HD, our
understanding of their mechanisms of formation and role in the dis-
ease pathogenesis remains incomplete. While some studies suggest
that their formation is a major driver of neurodegeneration, other
studies propose that they represent neuroprotective mechanisms that
lead to inactivation of toxic aggregates7–12. Furthermore, the nature of
toxic species remains unknown. One primary reason for this knowl-
edge gap is the lack of tools and methods that allow for direct mon-
itoring of the different phases of protein misfolding and aggregation,

leading to the formation of the pathological hallmarks found in the
brains of affected individuals.

To enable monitoring protein aggregation in living cells or ani-
mals, fluorescent proteins (FPs), such as GFP, YFP, mCherry, and oth-
ers, are usually fused to the C- or N-terminus of the protein of interest.
Protein aggregation is usually seen as the transition fromdiffuse signal
to the formation of puncta or foci structures. However, as useful and
valuable as FPs can be, they also have limitations. Several studies have
shown that fluorescently tagged proteins exhibit altered biochemical,
biophysical, or cellular properties13–22. In the context of protein
aggregation linked to NDDs, the addition of fluorescent proteins to
proteins of different sizes has been shown to alter not only the kinetics
of aggregation and the final size of the aggregates, but also the inter-
actome of the aggregate and their ultrastructural organization in the
final inclusions that accumulate in cells or brain tissues. This dis-
crepancy has been observed in several NDD-associated proteins,
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including alpha-synuclein18,19, tau20, amyloid beta21,22 (Aβ), and exon1 of
the Huntingtin (Htt) protein14–17 (Httex1), one of the primary compo-
nents of intracellular protein aggregates found inHuntington’s disease
post-mortembrains23–25. Httex1 overexpression inmultiple cellular and
animal models of HD recapitulates many of the key features of HD
human pathology, including Htt aggregation and inclusion formation,
neurodegeneration, and brain atrophy8,26–30.

In a recent study14, we compared the biochemical and ultra-
structural properties of cellular inclusions formed by mutant Httex1,
with expanded polyglutamine (polyQ) repeats of 16-72Q, in the
absence or presence of GFP on the C-terminus of the protein. Our
results showed that the addition of GFP to mutant Httex1 not only
altered thebiochemical andultrastructuralproperties of the inclusions
but also their toxic properties and interactionswith cellular organelles.
For example, the inclusions formed by unlabeled mutant Httex1 dis-
played distinctive core and shell structures that contain lipids and
membranousorganelles andwithinwhich theHttfibrils colocalizewith
and interact with the endoplasmic reticulum (ER) structure and
membranous structures. In contrast, mutant Httex1-GFP formed a
mesh of cytoplasmic fibrils that exhibited minimal interactions with
cellular organelles (Fig. 1a). These observations are consistent with
previous studies showing that fusion of large proteins to mutant
Httex1, such as GFP, alter their dimensions as well as their mechanical
and surface properties. GFP-labeled fibrils were ~3 nm thicker15 and
exhibited increased stiffness16 compared to the unlabeled Httex1
fibrils. Using coarse-grained simulations, we recently showed that
fluorescent tags like GFP cause a size-dependent surface occlusion and
thus alter the fibril’s interactome17. These observations could explain
the distinct interactome observed for untagged and GFP-tagged
mutant Htt inclusions in mammalian cells and primary neurons14.
While it is tempting to attribute these changes in the biophysical and
biochemical properties to the large size of fluorescent proteins, it has
been shown that even the fusion of small peptide tags like HA to dif-
ferent N-terminal Htt fragments could markedly change their aggre-
gation and toxic properties31. Altogether, these observations
underscore the critical importance of developing label-free methods
that enable investigation of the mechanisms of protein aggregation
and inclusion formation of the native proteins.

Although recent studies have suggested using label-freemethods,
such as autofluorescence and Raman microscopy32–35, to monitor
protein aggregation in cells, these methods lack the specificity and

contrast needed to analyze them sufficiently, often lack the needed
temporal resolution, or requiredeuterium labeling. Quantitative phase
imaging (QPI)36–38 is an attractive label-free microscopy modality that
produces a quantitative image of an unlabeled biological specimen
based on the phase shift at each pixel in the field of view (FOV),
enabling the extraction of quantitative parameters, such as the dry
mass or morphology. Since low-intensity illumination can be used,
quantitative information can be obtained from live specimens with
minimal photodamage and photobleaching (compared to fluores-
cence imaging) at rapid time scales. However, the lack of a specific
label complicates distinguishing between different structures inside
cells. In recent years, the concept of virtual staining has emerged39–42,
in which a deep learning model is taught to map between a label-free
imaging modality (e.g., brightfield, QPI, or auto-fluorescence) and
fluorescence imaging, such that the model can predict the fluores-
cence signal strictly from the label-free input, yielding the necessary
contrast and specificity. A recent technique called VISTA uses sample
expansion to achieve super-resolved Raman imaging and virtual
labeling of Aβ plaques and mutant Htt aggregates43. However, this
technique was not validated on label-free Htt aggregates, was not
quantitatively validated on any Htt aggregates, had a large variation in
Aβ-plaque model performance (roughly between 30% and 90%),
requires substantial sample manipulation and perturbation during
expansion, and is fundamentally incompatible with live-cell imaging.

In this work, we employ the concept of virtual labeling39–42 on a
well-characterized cellular model of mutant Httex1 aggregation and
inclusion formation by training a neural network on data collected
using widely available imaging modalities (brightfield/QPI and wide-
field fluorescence) to generate label-free identification of NDD-
associated aggregates (LINA) models (Fig. 1b). We quantitatively vali-
date the LINA models and demonstrate that they can be used to
accurately identify unlabeled mutant Httex1 aggregates with areas as
small as 3 µm2 and at exposure times as low as 3ms. By applying our
neural network models to identify aggregates formed by different
label-free mutant Httex1 constructs, we are able to measure and
compare their dry masses. We can also identify aggregates from live-
cell imaging data and are able to measure the dry mass and area of
aggregates as they form. We experimentally validate the models’
robustness to different acquisition settings and cell lines, showing the
high applicability of themethod. The aforementioned issues related to
labeling illustrate the need for label-free techniques for identifying and

Native Aggregate

Altered Aggregate

Nt17

PolyQ

GFP

PRD

PRD

Nt17

PolyQ

Nt17 PRDPolyQ

Nt17 PRDPolyQ GFP

 ≤ 48 hours of transfection

ba
(Multiplane) Label-free Images

Neural Network Network Output

Loss Function Optimizaton

Fluorescence

Fig. 1 | Label-free identification of NDD-associated aggregates (LINA). a The
NDD-associated Httex1 protein forms aggregates in cells within 48h. When the
protein is unlabeled, these aggregates have a core and shell ultrastructure. Labeled
Httex1 (e.g., with GFP) forms altered aggregates that lack this structure, instead
resembling a mesh of fibrils, and have altered biochemical and biophysical prop-
erties (e.g., different proteome composition, stiffness, and fibril length). b To

enable label-free imaging of unaltered Httex1 aggregates, we trained a neural net-
work to map between label-free transmitted-light (brightfield or quantitative
phase) image inputs (single or multiple planes) and fluorescence images, such that
the network is then able to identify aggregates using only the label-free input.
Dashed arrows represent training-only steps.

Article https://doi.org/10.1038/s41467-023-43440-7

Nature Communications |         (2023) 14:7816 2



analyzing native protein aggregates to avoid tag-induced alterations.
The label-free method we have developed to visualize and analyze
protein aggregates demonstrates, for the first time to our knowledge,
the applicability of virtual labeling on unlabeled and unaltered protein
aggregates in living cells, with rapid speed, high accuracy, and relative
simplicity. LINA paves the way for more accurate analysis of NDD-
associated protein aggregates, better recapitulating their true neuro-
biological nature and offering higher-fidelity information.

Results
Label-free identification of aggregates formed by different
Httex1 constructs with high accuracy
The choice of a well-controlled biological model system is crucial for
the development of robust and reproducible image analysis tools. To
apply virtual labeling on NDD-associated aggregates and develop LINA
models, we chose to use a cellular model of HD that is well-
characterized. As reported previously, when a mutant Httex1 con-
struct with a polyQ repeat length ≥39 is overexpressed in HEK 293
(HEK) cells, aggregates are formed within a period of 48 h. With our
custom-built, multi-modal, multi-plane microscope44, it is possible to
acquire ultrafast 4D brightfield and fluorescence images using an
image-splitting prism that introduces path length differences in the
detection path. This prism allows the acquisition of an image stack
consisting of eight z-planes simultaneously. An algorithm is then used
to retrieve phase information from the brightfield image stack using

Fourier filtering, transforming it into a QPI stack. We used this micro-
scope to collect a dataset of over 1000 eight-plane brightfield and
fluorescence pairs of images of fixed HEK cells overexpressing a
mutant Httex1 constructwith a polyQ repeat length of 72, fused to GFP
(Httex1-72Q-GFP).

We processed the dataset to obtain pixel-registered eight-plane
QPI (whichwe also refer to as ‘phase’ images) and fluorescence images.
We then used a subset of the dataset (the training and validation sets)
to train a convolutional neural network (CNN) (with a U-Net
architecture45, more information is provided in the “Methods” sec-
tion) and produce LINA models for both pixel regression and pixel
classification (Fig. 2a). Here, each ground truth label is generated as the
maximum z-projection of each eight-plane image stack so that it
incorporates information from the eight planes, reducing the com-
plexity of the mapping. We aim to achieve 2D, rather than 3D, identi-
fication of the aggregates, for several reasons. A major reason is that
this lowers the memory constraints considerably and enhances the
accessibility of the method. 3D prediction is a challenging task, as
described in similar prior work39. Using our 2D-identification models,
an aggregate can be identified in 2D space first, and then its position
within the other planes can be inferred from the QPI images afterward.
The pixel classification model is trained on segmentation masks gen-
erated from the maximum z-projection images, and it classifies the
pixels into either 1’s or 0’s, i.e., part of an aggregate or not. The pixel
regression model is more general in that it is trained directly on the

b

d

c

a Color-coded
Max Projection of

8-Plane Phase

Color-coded 
Phase Magnified

Network OutputGround Truth Network Output MergePhase Ground Truth

Pixel
Classification

Pixel
Regression

Phase Input
(Plane 5) Network Output

39
Q

72
Q

ΔN
t1

7-
72

Q

Ground Truth

(ra
d)

(ra
d)

(ra
d)

Nt17

PRD

PolyQ
(39Q)

Nt17

PRD

PolyQ
(72Q)

PRD

PolyQ
(72Q)

Fig. 2 | Validationofdeep learningmodels for label-free identificationofHttex1
protein aggregates. a Convolutional neural networks for both pixel classification
and regression have been trained using pixel-registered pairs of eight-plane
quantitative phase images and maximum-projected eight-plane fluorescence ima-
ges or corresponding segmented masks. The eight-plane input images are repre-
sented by a color-coded maximum z-projection image; the aggregate in the image
is highlighted by the dashed square and is shown magnified. The phase signal was
thresholded (T =0 rad) prior to color-coding to enhance the contrast. The labels
used are generated as the maximum z-projection of the fluorescence images in the
eight planes for the pixel regression network and the corresponding segmented
masks (Otsu thresholding) for pixel classification. b Test set prediction example,

with images of the phase, fluorescence, network output, and a merge of all three,
showing where the three images colocalize inwhite. This example is representative
of the other examples in the test set (n = 105 acquisitions from three independent
experiments). c Quantitative validation of the pixel regression model using the
Pearson correlation coefficient (r), showing a high correlation with the ground
truth (~0.96 mean). d The regression network was further validated on label-free
Httex1 aggregates. Despite being trainedonlyona 72Q-GFP constructofHttex1, the
model works well on label-free constructs of different polyQ repeat lengths (39Q,
72Q) and types (72Q with a truncated Nt17 domain). This validation was repeated
over three independent experiments. Scale bars: 5 µm.
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maximum z-projection fluorescence images, and can predict intensity
values, rather than just 1’s or 0’s. In Fig. 2a, the phase image is a color-
codedmaximum z-projection, where each z-plane is represented using
a different color, illustrating the spread of information available in the
eight planes. The network outputs were observed tomatch the ground
truths quite well, as can be verified further in Fig. 2b. The phase images
are represented in this figure and other figures by one of the central
planes, i.e., plane 4 or 5. Further visual test-set examples for both
model types are shown in Supplementary Figs. 1 and 2.

To precisely quantify how well the LINA pixel-regression model
performs,wemeasured the Pearson correlation coefficient (r) between
the network output and the ground truth (Fig. 2c). The correlation
coefficient is consistently high (0.959 mean) over the entire test set, a
set of images which the model had never seen before, illustrating the
high reliability of the model. We further evaluated the quantitative
performance of the model by measuring r and the normalized mean
squared error (NMSE), the quantity used for training (unnormalized),
computed only within the regions where there are aggregates (Sup-
plementary Fig. 3a, b), therebymore preciselymeasuring the degree of
true positives/false negatives (Methods). The correlation remains very
high (0.955mean), and theNMSE also consistently shows relatively low
errors (0.106mean). The pixel classificationmodel also performs well,
achieving an F1-score of 0.9 and a mean Jaccard index of 0.78. The
pixel-regression model is slightly more accurate when segmentations
are produced from its regression predictions (using Otsu threshold-
ing), with a mean Jaccard index of 0.81 and a mean Dice loss of 0.89
(Supplementary Fig. 3c, d). Therefore, we focus on the regression
model for our following experiments and quantifications. We used the
Pearson correlation coefficient to compare the total intensity within
the aggregates in the prediction images versus the ground truth,which
was computed as 0.91, suggesting a very high correlation in this regard
as well. Supplementary Fig. 4 shows LINA’s performance on two
negative controls (cells expressing 16Q-GFP and eGFP, respectively),
where aggregates are not produced. LINA successfully predicts the
absence of aggregates in both cases.

To determine if the models work on the unlabeled protein
aggregates and if they generalize to other constructs than the one it
was trained on, we sought to validate the network on different label-
free constructs of mutant Httex1. The constructs we tested are unla-
beled mutant Httex1 with a polyQ repeat length of 39 (Httex1-39Q),
unlabeledmutantHttex1with apolyQ repeat lengthof 72 (Httex1-72Q),
and unlabeled mutant Httex1 with a polyQ repeat length of 72 with a
truncated Nt17 domain (Httex1-ΔNt17-72Q). These constructs, which
either have a shorter polyQ repeat length or have a truncated Nt17
domain, have been shown to influence the kinetics of aggregation, as
well as the ultrastructural properties of Httex1 inclusions when com-
paring 39Q and 72Q14. Therefore, it was important to verify if LINA can
identify aggregates formed using these constructs despite the differ-
ences in aggregate properties. To obtain ground truth, we performed
immunocytochemistry (ICC) on the three constructs and labeled the
aggregates with an anti-Htt antibody raised against the Proline-rich
domain (PRD) (MAB5492, Millipore). We acquired QPI images of the
same cells before and after ICC, using grid-marked coverslips, to
ensure that LINA works well in both cases. Figure 2d shows the input,
ground truth and network output for each construct. For all three
constructs, the network correctly identifies the aggregates, whose
peripheries are shown in the ground truth images; this is because the
antibody we used is known to show a strong immunoreactivity to the
periphery of the aggregate rather than the core14, while the network
was trained solely on GFP-labeled protein aggregates. Although the
CNN was only trained on images of Httex1-72Q-GFP, the model is
nonetheless generalizable to different kinds of label-free Httex1 con-
structs. For Httex1-ΔNt17-72Q, the model is able to discern between
rather small closely neighboring aggregates (areas of around 3 µm2),
instead of seeing them as one larger aggregate.

Robustness and generalizability of LINA
Testing the robustness of LINA in various image acquisition, input
types, label quality, and cell line configurations is vital to ensure the
models’ robustness and generalizability to different kinds of data and
to facilitate the usability of the models by new users. We observed, in
test-set examples that are being seen by the network for the first time,
that the pixel-classification model can identify aggregates that are
missing in the label due to segmentation errors (Supplementary
Fig. 5a). The model outputs outperform direct segmentation from the
ground truth, showing that it can learn very well what constitutes an
aggregate despite some erroneous labels.

The signal-to-noise ratio (SNR) of microscopy images is a key
determinant of howwell image analysis pipelines andmodels perform.
Increasing amounts of noise can reduce the accuracy and precision of
segmentation and classification models, leading to incorrect or
inconsistent results. All our models were trained on images taken at a
50ms exposure time and a fixed illumination, so we wanted to test
whether it is possible to identify aggregates from images taken at lower
SNRs. We verified LINA’s robustness to noise both using simulated
noise andexperimentally (Supplementary Fig. 5b–h). Through a simple
pre-filtering step, we show that it is possible to identify aggregates
even at excessive amounts of noise (variance of 0.48 rad2) where
nothing can be visually identified in the image anymore. By adding
noise specifically to the aggregate regions and with the same pre-
filtering step, we show that LINA has a high potential to be applied to
aggregates of varying optical properties.Weobserve, both visually and
quantitatively, that the performance degrades when noise is added
that is larger than or equal to 0.5 rad2, so we consider this the accep-
table range for our model, though it can be extended in the future
through transfer learning.We then experimentally verified themodel’s
robustness to different SNRs, as wemeasured a consistently high SSIM
at various exposure times, as low as 3ms, without the need for pre-
filtering, despite the model being solely trained on images acquired at
a 50ms exposure time.

Another aspect we wanted to assess was the models’ general-
izability to different cell lines than what we used for training (HEK).
Therefore, we quantified LINA’s ability to identify Httex1-72Q-GFP
aggregates expressed in HeLa cells, and the model consistently pro-
duced highly accurate predictions, as quantified by measuring the
Pearson correlation coefficient and the NMSE between the network
outputs and the ground truth images (Fig. 3a, b). Figure 3c, d show
example images with the highest and lowest correlation coefficients,
respectively. The lowest-correlation example still shows excellent
performance, as both aggregates can be identified by the model. The
reason for the slightly lower correlation could possibly be that having
two aggregates in one FOV complicates the prediction of the true
intensity levels for both aggregates at the same time, as we observed
that the example with the highest NMSE (worst performance) also had
two aggregates in the FOV, though this was also accurately predicted.
These results indicate the highpotential for LINA to be applied in other
cell lines, greatly enhancing its generalizability.

To test the potential of generalizing LINA to various kinds of
protein aggregates involved in other NDDs, which could vary in terms
of circularity and heterogeneity, we simulated a non-circular, chimeric
test set and tested LINA’s performance on it. This was done by repla-
cing parts of aggregates in the test setwith images of cells/background
(for both the input and label), and then testing the ability of the pixel-
regression model to correctly identify the heterogeneous aggregates
(Supplementary Fig. 6). The Pearson correlation coefficient (mean
0.89) and NMSE (mean 0.08) show excellent performance even with
these perturbations, demonstrating the high potential of generalizing
LINA to different kinds of protein aggregates, of varyingmorphologies
and structure.

We also evaluated LINA’s dependence on the number of planes of
the input by training new pixel-regression models using QPI inputs
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with one, two, and four planes, respectively. Supplementary Fig. 7a
quantifies and compares the performance of the eight-plane model to
these three new models. We found that all three new configurations
perform very well. We expected to possibly need transfer learning
using a small set of new data to be able to identify aggregates correctly
at much lower SNRs or for different cell lines, however, we found LINA
tobehighly robust to thesechanges, promisinghighgeneralizability to
different kinds of imaging conditions. It is important to note that our
QPI phase-retrieval algorithm yields better results with increasing
numbers of planes. Therefore, it is possible that the model could
perform even better if our training set had even more planes than
eight. For our experiments, we settled on the standard eight planes
while acquiring our dataset as a good trade-off between image quality
and speed. This is because the eight planes are acquired simulta-
neously using an image-splitting prism, whereas more planes would
require a z-stack. Here, we tested the different numbers of planes after
all eight were processed together into QPI images. Since the output
imagequality of ourQPImethod is dependent on thenumber of planes
of the input44, it couldpossibly be interesting in the future to also study
the effect of having the QPI images themselves being generated by
fewer planes, as well as the effect of varying the interplanar distance.

Our method to produce quantitative phase images44 is widely
adoptable; as previously mentioned, the phase information can be
extracted using an algorithm from a z-stack of images. However, the
simplest andmost basic label-free technique is brightfieldmicroscopy.
How well would LINA perform on the simplest and most widely avail-
able label-free technique? To answer this question, we trained pixel-
regression models using only brightfield inputs, first with eight planes
and thenwith a single plane (Supplementary Fig. 7b).Wequantitatively
compared both thesemodels’ performance with the model trained on
eight-plane QPI images, and we found that both brightfield models
perform very well on the test set. The eight-plane brightfield model
yielded very similar results to the QPI model, with a slightly larger
variance and the drawback of not having the possibility to extract the
dry mass from the images.

To confirm LINA’s generalizability and ease of use, we tested it on
a completely different imaging setup with a different light dose, non-
Koehler illumination, and a lower numerical aperture (NA)microscope
objective (Supplementary Fig. 7c).We were able to identify aggregates
from images acquired using this different setup and the 1-plane
brightfield LINA model, without the need to rely on transfer learning.
Next, we tested LINA on a commercial, confocal setup (Leica TCS SP8).

a b

c

d

Phase Ground Truth Network Output

Phase Ground Truth Network Output

Fig. 3 | Generalizability of LINA to a different cell line. a Pearson correlation
coefficient (r), computed only on the regions where there are aggregates. The
metric is computed for the eight-plane-QPI pixel-regression model. b Normalized
mean squared error, computedonly on the regionswhere there are aggregates. The
metric is computed for the eight-plane-QPI pixel-regression model. Both metrics

show that LINA is able to accurately recognize aggregates expressed in a different
cell line (HeLa). c, d Example images visualizing the model’s performance on
aggregates expressed in HeLa cells. c The example with the best r-value is shown.
d The example with the lowest r value is shown. Scale bars: 5 µm.
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We used a similar magnification (×63 versus ×60) and NA (1.4 versus
1.2) objective, but the illumination, setup type (confocal versus wide-
field), and detectors were completely different. Here, we acquired
8-plane stacks and used our QPI algorithm44 to produce 8-plane QPI
stacks. We tested LINA’s performance using these QPI inputs (Sup-
plementary Fig. 8a), as well as using the simplest possible inputs,
1-plane brightfield (Supplementary Fig. 8b), and both types of inputs
yielded highly accurate network predictions. Based on these results,
we expect LINA to work well for new users acquiring images at dif-
ferent conditions, perhaps needing some transfer learning, or as
shown here, likely not even requiring it.

We further testedLINAon the samecommercial setup,with a lower-
magnification (×20 versus ×60) and NA (0.85 versus 1.2) objective
(Supplementary Fig. 9). A lower-magnification objective means the FOV
will be larger and, therefore,would enable users of ourmethod tohave a
higher imaging throughput of cells containing aggregates. Since the
network expects 352 pixels × 352 pixels inputs, we first cropped regions
of that size around the aggregate images and used those as inputs to the
network. We also directly tested the model on the 1024 pixels × 1024
pixels images. In both cases, the network performs very well and accu-
rately identifies the aggregates. Here, again, we expected to possibly
need transfer learning so that the network learns to expect smaller
features (due to the lowermagnification), yet themodel works very well
directly, illustrating the high generalizability and robustness of our
method. These results usingQPI inputs generated from images acquired
on the commercial setup also demonstrate the ease of use of our QPI
algorithm on a setup that is different from our own. For quantitative
analysis of these images, further verification using technical calibration
samples should first be done to ensure the accuracy of the phase
retrieval, based on the optical properties of the setup that is used.

Dataset size requirements
What is theminimal amount of data needed to successfully train a LINA
model? To answer this question, we first computationally estimated
this by taking increasingly sized samples from our complete dataset,
which consists of over 1000 eight-plane phase and fluorescence image
stacks. We calculated the mean aggregate area and circularity for each
sample size, repeated the sampling 100,000 times, and took the
average. We plotted the discrepancy from the ground truth standard
deviation to indicate the sample size at which we obtain a similar dis-
tribution as that of the ground truth (Supplementary Fig. 11); here, we
consider the ground truth standard deviation to be that of the entire
dataset, since it leads to well-performing models and should be large
enough to capture the diversity of the different kinds of aggregates.
Supplementary Fig. 10 shows the morphological distribution of the
entire dataset. The simulation showed a saturation at around 30–50%
of the size of the complete dataset, indicating that there could be
diminishing returns past this point.

We then aimed to answer this question experimentally by
attempting to train models with varying amounts of data (10%, 20%,
30%, and 50% of the entire dataset). It is possible to train LINA models
even with only 10% of our dataset (Supplementary Fig. 12). However,
performance does degrade slightly for the models trained with lower
amounts of data, except for the model trained with 50% of the data,
which yields very similar results to our standard model trained with
90% of the data (the remaining 10% is used as the test set), in agree-
ment with our simulation results. While it is possible to train a LINA
model with just 10% of the data, we visually observed thismodel to not
do as well as the 90% model on some test set images. It is crucial that
the training and validation datasets capture the diversity of the subject
of the data to ensure high generalizability and accuracy of the trained
model, and, therefore, more data will very often lead to better results.
However, care should be taken to only provide high-quality, useful
data to the CNN, as low-quality data can actually confuse the network
and lead to hallucinations46. The quality of the dataset is just as

important as its quantity, making data curation a crucial step in suc-
cessfully training a deep learning model.

Automatic scanning and image acquisition
We enhanced our image acquisition throughput by implementing an
automatic image-scanning method, called xy-scan mode, to scan an
arbitrary number of fields of view (FOV) across the sample (Fig. 4a).
The xy-scan mode permits us to set the step size and the number of
steps in the x and y directions. The illumination source remains sta-
tionary while a piezo nano-positioning stage moves under the control
of the software. This allows us to acquire images of thousands of FOVs,
for cells expressing different Httex1 constructs, which our LINA mod-
els can then process to determine the presence or absence of aggre-
gates (Fig. 4b).

Using the automatic xy-scanmode,we efficiently collected images
of cells overexpressing mutant Httex1-39Q, Httex1-72Q, Httex1-ΔNt17-
72Q, and Httex1-72Q-GFP, then processed them to determine which
FOVs contain aggregates. To minimize the occurrence of false posi-
tives, we combined the predictions from multiple models. While this
approach may result in a higher chance of false negatives, our priority
is to ensure that the analysis results consider only true aggregates. The
output of ourmodel, which indicates the label-free images that contain
aggregates, can then be used to extract their dry masses.

Drymass quantification and comparison between aggregates of
different Httex1 constructs
The dry mass of a biological specimen can be extracted from a QPI
image through a proportional relation (see the “Methods” section)38.
For this relation, we used a constant value of 0.19 for the refractive
increment α, as recommended in the literature, due to α having a
highly narrow distribution38,47. The quality of the QPI images, e.g., in
terms of resolution or SNR, determines the accuracy and precision of
the dry mass measurement38. After the QPI image is translated into a
dry mass density map, the dry mass of an aggregate can be measured
by integrating over its area in the image (more details in Supplemen-
tary Fig. 13). To compare the dry mass of the different Httex1 con-
structs, we used themodel outputs from the automatic xy-scan images
to curate images with aggregates, producing segmentationmasks that
were then multiplied by the corresponding dry mass images. This
allows for efficient and accurate measurement of the dry mass of the
different kinds of aggregates (Fig. 4c).

Our findings indicate that there is no statistically significant dif-
ference between the mean dry masses of mutant Httex1-72Q and
Httex1-ΔNt17-72Q. Both of these constructs have been shown to form
inclusions with the same core-and-shell ultrastructure14. Thus, they
likely have a similar mechanism of aggregation, which explains their
similar dry masses. We observed that fewer aggregates were detected
for Httex1-39Q (8% of automatically-scanned FOVs) compared to the
other two constructs, which had similar rates (~12% of automatically-
scanned FOVs). This is in agreement with the literature, as increasing
polyQ repeat length is known to accelerate aggregation and
toxicity48–50. However, interestingly, we found that Httex1-39Q, which
lacks the core-and-shell ultrastructural arrangement14, produced
aggregates with a larger average area (16.9 ± 7.6 µm2), compared to
Httex1-72Q (11.5 ± 4.7 µm2) and Httex1-ΔNt17-72Q (12.7 ± 4.9 µm2), and
consequently a larger average dry mass. The difference in ultra-
structure, and therefore the aggregation mechanism, leads to fewer
aggregates being produced overall, yet at the same time, a fraction of
the aggregates that are produced grow to larger final sizes.

We also compared the mean dry masses of the three unlabeled
constructs with that of the labeled one (Httex1-72Q-GFP) and found
around a two-fold increase in the mean dry mass of the labeled con-
struct compared to the two constructs with the same polyQ repeat
length, as well as a 1.5-fold increase compared toHttex1-39Q. Similar to
Httex-39Q, Httex1-72Q-GFP aggregates have been shown to lack the
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core-and-shell ultrastructural arrangement14, which for both con-
structs leads to increasing the size of the formed aggregates. The
considerable increase in the size of Httex1-72Q-GFP aggregates is likely
due to a mixture of the large size of the GFP tag and its effect on the
size of the fibrils, the difference in ultrastructure, and the difference in
properties (e.g., proteome composition) that it is known to cause,
supporting previous studies’ results and demonstrating why such
label-free methods are needed.

Live, label-free identification and analysis of an aggregate as
it forms
Capturing the growth dynamics of NDD-associated protein aggrega-
tion is crucial to deciphering the role of different stages and inter-
mediates on the pathology formation pathways in the pathogenesis of
NDDs and potentially identifying new targets for therapeutic inter-
vention. For example, if the aggregate growth rate is controlled by a
particular cellular mechanism, drugs that target this mechanism may
slowor stop the disease development and progression. Furthermore, a
better understanding of the characteristics of different aggregates on
the pathway to pathological inclusions should facilitate the develop-
ment of new molecular probes and diagnostic tools for monitoring
early oligomerization events that are thought to contribute to and
correlate with early stages of disease development. LINA enables the
live identification, imaging, and analysis of native aggregates as an
important step toward reaching these goals.

Figure 5a shows our LINA pixel-regression model’s performance
on dynamic, live-cell, time-lapse images, taken every 2min, of Httex1-
72Q-GFP in a HEK cell, starting from a diffuse protein state and
aggregating over time. LINA can distinguish between the diffuse pro-
tein and the aggregated state, as it only starts to predict an aggregate
at the time-point where the aggregate begins to form, as verified
visually from the ground-truth fluorescence images. It is able to cor-
rectly detect the aggregate as it grows in size from then on, and as it
moves along different subcellular localizations. Figure 5b illustrates
the normalized mean intensity of the output images over time. As the
aggregate grows and more pixels are predicted as parts of an aggre-
gate, the mean intensity of the output image increases. The mean
intensity follows the expected sigmoidal behavior and can be divided
into three regimes. First, for diffuse protein, the prediction intensities
are very low, which shows successful predictions that there are no
aggregates. Then, for aggregate formation, the intensity starts

increasing gradually while the aggregate grows, until the third regime
is reached, where the intensity stabilizes into a steady state and the
aggregate stops growing.

The dry mass of aggregates can be extracted from the phase
images and the segmentation masks of the network output images in
the same fashion as described previously for the fixed cells. Further-
more, the area can also be extracted from the mask of the identified
aggregate. Both the dry mass and area are plotted in Fig. 5c, and they
are highly correlated to each other and to the normalized mean
intensity. Once again, they can be split into three regimes: diffuse
protein, aggregate formation, and stabilizing to a steady state. The
ability to measure the dry mass and area of living aggregates as they
grow opens up many possibilities for dynamics studies.

Discussion
LINA is a label-free method for virtually labeling and identifying pro-
tein aggregates using a trained deep-learning CNN, enabling more
accurate analysis of the native aggregates, and avoiding label-induced
alterations. We have validated LINA quantitatively, showed its applic-
ability on different constructs of Httex1, and verified the models’
consistently-accurate performance over various imaging conditions,
including varying SNR, cell line, and input type, illustrating the uni-
versality of our method. Furthermore, LINA is fully-compatible with
long-term, live-cell imaging, circumventing the issues of photo-
bleaching and phototoxicity, and can be used to identify aggregates
and analyze their quantitative parameters (e.g., area, dry mass, mor-
phology, and interaction dynamics). In support of prior studies14,16,17,51,
our characterization and comparison of the dry masses of unlabeled
and labeled aggregates further demonstrate the need for using label-
free methods to study protein aggregation and inclusion formation in
NDDs.We found thatmutant Httex1 with a truncated Nt17 domain and
a polyQ repeat length of 72Q forms aggregates of the same dry mass
on average as the construct with the same polyQ repeat length but
maintaining the Nt17 domain.We found that the aggregates formed by
Httex1 with a shorter polyQ repeat length of 39Q, which lack the core-
and-shell ultrastructural arrangement of the two other constructs, are
larger and heavier on average, despite a reduction in the number of
formedaggregates. This is likely due to the different ultrastructure and
aggregation mechanisms of Httex1-39Q. Further analysis and com-
parisons of the characteristics of different label-free Httex1 constructs
will be possible using LINA, which could lead to new discoveries into

Fig. 4 | Automatic image acquisition, identification, and dry mass quantifica-
tionof differentkindsof label-freeHttex1 aggregates. aAmotorizedpiezonano-
positioning stage is controlled using software to scan the sample in the x and y
directions and collect images at various fields of view (FOVs) for different label-free
constructs of Httex1 (39Q, 72Q,ΔNt17-72Q) and a GFP-labeled construct (72Q-GFP).
b The images are post-processed and our trained model is used to identify FOVs
that contain aggregates. c The dry mass of aggregates produced by different
constructs of Httex1 is extracted from the quantitative phase images, as shown in
the inset image (n = 39 for 39Q, n = 29 for 72Q, n = 30 for ΔNt17-72Q, and n = 64 for

72Q-GFP). ΔNt17-72Q and 72Q had similar dry mass distributions (unpaired, two-
sided t-test resulted in a p-value of 0.40), however, both label-free constructs had
smaller dry masses on average than 39Q (unpaired, two-sided t-test p-values of
0.0008 and 0.0085 for 72Q and ΔNt17-72Q, respectively), and all three had smaller
dry masses than the labeled 72Q-GFP (unpaired, two-sided t-test p-value = 0.00012
for 39Q, 2.8e−12 for 72Q, and 2.1e−10 for ΔNt17-72Q). ns: p >0.05, **p ≤0.01,
***p ≤0.001, ****p ≤0.0001. White dots represent themedians, thick bars represent
the interquartile ranges, and thin lines represent 1.5× the interquartile ranges. Scale
bars: 5 µm.
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the pathological mechanisms of Huntington’s disease and uncover
possible therapeutic targets.

Nowadays, artificial intelligence (AI), particularly machine learn-
ing, is extensively being used in microscopy for various purposes,
including denoising, image-to-image translation, segmentation, clas-
sification, and even medical diagnosis39–42,52–57. There have also been
developments aiming to ease the adoption of these models and
democratize their use58–60. As with any new technology, there can be
mistrust and a reluctance to rely on it, especially when it is a “black
box” that is difficult to interpret—fortunately, there has been con-
siderable progress in deciphering how deep learning models make
their predictions46. In the case of AI-enhanced microscopy, concern
can be warranted because of the field’s fundamental nature and its
being a basis for biomedical discoveries, which makes it truly impor-
tant for any results to be unequivocally true, as this affects future
studies and researchdirectionswhich, depending on their success, can
either facilitate or delay the treatment of devastating illnesses. This is
especially the case when it comes to unsupervised learning using
generative models, such as those using a generative adversarial net-
work (GAN). GANs create highly plausible outputs that can be hard to
distinguish from real data, and it can be difficult to determine if bio-
logical phenomena identified by such a model are true or a halluci-
nation. To mitigate such concerns, it is important to validate the AI
model as much as possible and to discuss the kind of problem that it
excels at solving, as well as the model’s limitations. That is why we
validated our models as much as possible, quantitatively, on different
protein constructs and at different conditions.

The detection limit of LINA depends on several factors, notably
the size distribution of the training dataset and the limitations in the
images resulting from the microscope (contrast, SNR, resolution) and
the sample (transparency, refractive index heterogeneity). In our
training dataset, we focused on late-stage aggregates, making sure to
include images of aggregates of varying morphologies and sizes, such
that the network can be as general as possible. We show that LINA
workswell for varying image SNRs, aggregate sizes and shapes, protein
constructs, cell lines, and in live-cell imaging conditions. The current
version of LINA can detect aggregates with areas as small as 3 µm2. To
further enhance LINA’s capabilities for kinetics studies, we aim in
future work to expand the training dataset to include early and
intermediate-stage aggregates, which would enable the detection of
even smaller aggregates than what is currently possible. This can be
accomplished by re-training a newmodel on the expanded dataset, or
through transfer learning on a dataset consisting of the earlier-stage

aggregates. Low-affinity binders61 that could better capture the diver-
sity of misfolded protein aggregates could have great potential to
extend our method to enable the identification and label-free imaging
of different aggregation states on the pathway to inclusion formation.

We believe that our method has significant potential for char-
acterizing protein aggregates and inclusions associated with other
NDDs. This could be achieved by following a similar approach of
training a CNN from scratch on a newdataset, or by simply performing
transfer learning on our trained model with the new data. Methods to
increase the throughput of the data acquisition, such as the automatic
XY-scan mode we use here, are useful for collecting new data for
transfer learning or re-training. Another possibility would be to image
at a lower magnification, increasing the yield from one image, which
we showed is a possibility using our method (Supplementary Fig. 9).
However, this comes at a cost of resolution and information, whichwill
likely complicate the identification of small aggregates from
transmitted-light images, which could be particularly problematic for
live-cell imaging of aggregates as they form. Our method has the
advantage of not requiring manual annotations, as the training labels
are directly obtained from the fluorescence images. Therefore,
researchers who are interested in extending our approach using new
data only need access to a microscope capable of imaging in a label-
free modality and any kind of fluorescence microscopy. Additionally,
LINA could potentially be extended in the future to virtually label
aggregates from electron microscopy images. LINA paves the way for
studying the molecular interaction dynamics of protein aggregates
and the evaluation of the cellular state in cells containing aggregates,
without the need to rely on labels. It can be extended to virtually label
other cellular components, such as organelles or cytoskeletal proteins,
which are known to interact with NDD-associated protein inclusions,
and several studies have already shown their capability to be virtually
labeled39,40,62. Moreover, LINA can be further developed to classify the
cellular state39 of label-free cells containing aggregates to elucidate the
mechanisms that disrupt cellular viability or introduce toxicity. We
also envisage several possibilities for LINA to be correlated with other
imaging techniques, opening up new avenues for correlative micro-
scopy of neurodegenerative diseases.

Methods
Sample preparation
HEK 293 cells were cultured at 37 °C and 5% CO2 using DMEM high
glucose without phenol red (Gibco, Thermo Fisher Scientific), sup-
plemented with 10% fetal bovine serum, 1% penicillin–streptomycin
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Fig. 5 | Live, label-free identification and analysis of Httex1 protein aggrega-
tion. a Time-lapse images, acquired every 2min, of Httex1-72Q-GFP in a HEK cell,
starting from a diffuse protein state and aggregating over time. LINA is able to
distinguish between the diffuse protein and the aggregated state, correctly pre-
dicting the aggregate as it grows in size and moves along different subcellular

localizations. Scale bar: 5 µm. b Normalized mean intensity of the network output
images as the aggregate grows, following a three-regime sigmoidal behavior. c Dry
mass and area changes extracted from the network output images, split into the
same three regimes. b, c Error bars represent the standard deviation in each image.
The data shown is for one field of view as the aggregate forms.
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and 4mM L-glutamine (all three fromGibco, Thermo Fisher Scientific).
Cells were plated at a density of 120,000 per dish either on high pre-
cision #1.5 25mm coverslips (Marienfeld) or on FluoroDish Sterile
Culture Dishes 35, 23mm well (World Precision Instruments), coated
with fibronectin. Cells were transfected one day after plating using
polyethylenimine (PEI) transfection. 2 µg of DNA were mixed in 100 µl
of OptiMEM Reduced-Serum Medium (Life Technologies), 6 µl of PEI
were mixed in 100 µl of OptiMEM, and then both mixtures are mixed
and incubated for 5min at room temperature (RT), then added drop-
wise and carefully distributed over the cells. Cells were then returned
to the incubator and left either for 48 h before fixation or for shorter
durations before live-cell imaging followed by fixation at 48 h post-
transfection. For fixation, cells werewashed twicewith PBS pH 7.4 (1X)
(Life Technologies, Switzerland) and fixed in 3.7% formaldehyde
(Sigma-Aldrich, Switzerland) in PBS (PFA) for 15min at room tem-
perature (RT). Cells were thenwashed inPBS and thenmounted in PBS.

For immunocytochemistry, after a blocking step with 3% BSA
(Sigma-Aldrich, Switzerland) diluted in 0.1% Triton X-100 (Applichem,
Germany) in PBS (PBST) for 30min at RT, cellswere incubatedwith the
primary antibody (anti-Htt raised against the Proline-rich domain
(PRD) (MAB5492, Millipore) at a dilution of 1/500 in PBST for 2 h at RT.
Cells were then rinsed five times in PBST and incubated for 1 h at RT
with the secondary donkey anti-mouse Alexa488 (Life Technologies,
Switzerland) used at a dilution of 1/800 in PBST. Cells were then
washed five times in PBST, and finally washed once in double-distilled
H2O, before being mounted in PBS.

Data acquisition and processing
Most imaging was performed with a custom-built microscope (Supple-
mentary Fig. 14) equipped with a temperature and CO2-controlled
incubator for live cell imaging, as described in previous work from our
group44. Live-cell imaging was performed in DMEM without phenol red
at 37 °C and 5% CO2. The microscope is controlled using custom Lab-
VIEW software. For fluorescence imaging, a 120mW, 488nm laser
(iBeam smart, Toptica), is focused into the back focal plane of an
Olympus UPLSAPO 60XW 1.2 NA objective for wide-field epi-fluores-
cence illumination. The fluorescence light was filtered using a combi-
nationof adichroicmirror (zt405/488/532/640/730rpc,Chroma) andan
emission filter. For phase imaging, we used the white-light Koehler illu-
minationmodule of a Zeiss Axiovert 100Mmicroscope equippedwith a
halogen lamptocollectbrightfield imageswhich are laterprocessed into
QPI images. The detection path is arranged as a sequence of four 2-f
configurations to provide image–object space telecentricity. The image
splitter placed behind the last lens directs the light into eight images,
which are registered by two synchronized sCMOS cameras (ORCA Flash
4.0, Hamamatsu; back-projected pixel size of 111 nm; interplanar dis-
tance of 350nm). For translating the sample, the microscope is equip-
ped with piezoLEGS stage (3-PT-60-F2,5/5) and Motion-Commander-
Piezo controller (Nanos Instruments GmbH). While collecting our data-
set, we acquired any FOV that had an aggregate, not filtering for parti-
cular sizes or shapes, to have a dataset that is as general as possible. For
all imaging experiments and data collection, multiple samples from at
least three independent experimentswere used for data acquisition. For
confocal imaging, we used a Leica TCS SP8 with two objectives (×20
magnification, 0.85 NA and ×63 magnification, 1.4 NA). We used the
same interplanar distance (350nm) as for our commercial setup, when
collecting z-stacks to be used as inputs to our eight-plane models.

We used customMATLAB (R2021a) (Mathworks) scripts (available
here) to retrieve the phase information from the brightfield images
and produce quantitative phase images. These scripts are also used for
pixel registration in the eight z-planes for both phase and fluorescence
images. The images are cropped to a size of 352 pixels × 352 pixels.

We used Fiji63 (v2.9.0) scripts to produce maximum z-projection
fluorescence images, to segment these images usingOtsu thresholding
and produce the labels for pixel classification, to prepare the color-

codedmaximum z-projectionphase image shown in Fig. 2a, and for the
image processing in Fig. 2b. Fiji was also used to segment network
predictions and produce masks which are used to measure the area,
circularity or dry mass of aggregates.

Python (v3.7) was used for data analysis and plotting. This
includes the quantitative metric calculations and cropping the regions
of interest (ROIs), i.e. the aggregate regionswithin the images. Thiswas
done using Otsu thresholding to produce a mask from the ground
truth image, which is then used to crop the ROIs. The Pearson corre-
lation coefficient was calculated using the function ‘Pearsonr’ in the
Scipy library (v1.7.3), and the MSE was calculated using the mean_-
squared_error function in the Scikit-learn library (v1.0.2), then nor-
malized by the square of the sum of the label images, as defined in the
literature64.

Neural network training
Our models are trained on a deep CNN with a U-Net45 architecture
(Supplementary Fig. 15). Compared to the original architecture, we
reduced the number of feature maps by a factor of 4 which led to a
reduction in the trainable parameters by a factor of 15. This notably
reduces GPU memory usage and training time, while still enabling
excellent performance. We used TensorFlow (v2.8.0) and Keras
(v2.8.0) to build our network, and training was done on a workstation
equipped with an NVIDIA GeForce RTX 3090 GPU. We used the
adaptive moment estimation (Adam) optimizer with a learning rate of
1e−4 and a mean squared error loss function. Before training our
models, we normalize both the phase and fluorescence images by
rescaling each image to be between 0 and 1. We used 10% of our
dataset as the test set and split the rest of the dataset into training and
validation sets with 20% being used for validation. We used the ‘Ear-
lyStopping’ (on the validation loss) and ‘ModelCheckpoint’ callbacks to
avoid overfitting and to save the best, most general models.

Dry mass quantification
Supplementary Fig. 13 summarizes the drymass extractionprocess. To
map between phase information and dry mass, we use the following
equation38:

σ x,yð Þ= λ
2πα

ϕ x,yð Þ ð1Þ

where σ and ϕ are the dry mass and the phase, respectively, at the
location defined by the x and y coordinates, λ is the wavelength of the
illumination (here chosen as the average wavelength of our white-light
source), and α is the refractive increment, treated as a constant value
of 0.19 µm3 pg−1, as recommended in the literature, due to α having a
highly narrow distribution38,47.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The training and test datasets are available on Zenodo65. Source data
are provided with this paper.

Code availability
The Python codes for training a model, using a pre-trainedmodel, and
for transfer learning on a pre-trained model are available on GitHub66

at: https://github.com/kibb/LINA/.
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