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Abstract. The complex structure and material property of a cable, particularly the stick-slip 
issue among its components pose the challenge for the bending analysis of submarine power 
cables. The calculation time and convergence problem of a full model makes the simulation 
unpractical during the design phase. This paper takes advantage of the peculiar structural 
property of helical components inside a cable, proposing a computational homogenization 
approach for analyzing the cable behavior under bending from global and local perspectives. 
This method assumes a macro model that is based on the theory of periodic beamlike structure, 
and a short-size micro model that is solved through a detailed finite element study. Results 
demonstrate the efficiency and capability of the proposed model that considers the structure 
nonlinearity and contact condition of a multi-layer cable with helical wires. 

INTRODUCTION 
 
Submarine power cables have played a key role in transporting electricity produced by wind turbines, 
current converters and other electricity generators. They consist of multi layers made of different 
materials. The most complex layer in a cable is usually the helical layer that is composed of numerous 
helical wires winding around by an angle. Except in submarine power cables, helical wires have also 
been used in flexible structures such as flexible pipes and umbilicals [1-3]. They usually serve as a 
structural layer to protect the inner layers from mechanical failure and meanwhile provide certain 
flexibility so that the flexible structure is able to bend to an aimed curvature. The difficulties in 
studying the structural behaviour induced by helical wires are not the structure itself, but also the 
contact issue among them and their neighbouring layers, especially when the cable is under bending 
where contact pressure varies on different areas. 

 
Although analytical models have been developed for flexible structures, the practical contact 

situation inside the cable is impossible to be obtained through this method during the deformation 

https://creativecommons.org/licenses/by/4.0/
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process, and therefore, it is usually assumed that the contact pressure is based on a state before 
bending, such as the contact state in tension[4]. The slip path of the helical wires is usually assumed to 
be geodesic or loxodromic in the previous studies[1]. However, the stick or slip state needs to be 
determined based on the contact pressure on the helical wires, and the analytical method fails to 
confirm that. 

 
It is usually unpractical to run a full-scale finite element model of a complicated cable considering 

current computation capability. The studies regarding submarine power cables under axisymmetric 
loadings gradually appear recently[3, 5] where the helical wires can be simplified into beam element, 
which significantly reduces the calculation time. This simplification is acceptable since the slip 
phenomenon is not obvious in axisymmetric loadings and the contact can be ignored. However, this 
becomes different when the structure is under bending where the contact is intensive and is proved to 
have a significant influence on the final results[6]. A method to deal with this is to develop a special 
element that is capable to deal with contact, and the element should be efficient enough to cause 
calculation magnitude as less as possible[7]. An alternative is to apply the periodic boundary 
conditions by taking advantage of the helical symmetry of helical wires thanks to the computational 
homogenization[8]. This method was early developed to tackle the problem for composite 
structures[9] and are gradually extended to other structures such as helical ropes[10] and flexible 
pipes[11].   

 
The main objective is to develop a short-size finite element model based on the periodic 

homogenization method to study the bending behaviour of a real submarine power cable. Section 2 
introduces the homogenization theory followed by Section 3 that presents the implementation of the 
periodic boundary conditions. Section 4 gives the case study of a SPC by using the homogenization 
model aforementioned. In Section 5, the results from this model are validated through the bending test 
regarding four SPC samples, and the mechanical behaviour of the wires are discussed in detail. The 
obtained conclusions will benefit the practitioner and scholars who are studying the mechanical 
behaviour of SPCs. 

1.  Homogenization method for periodic beam-like structures 
 

The computational homogenization method developed for periodic beam-like structures has been 
introduced by Patrice[10, 12]. For the completeness of the paper, the theory is described here in short. 
 

Thanks to the periodicity in the axial direction of the helical structure, a short-size section is able to 
represent the whole structure after suitably applying the periodic boundary conditions on the 
investigated domain. An example of a structure from macroscopic to microscopic is given in Fig. 1. 
The macroscopic structure is a 1D Navier-Euler-Bernoulli-Saint-Venant beam problem[13] that can be 
decomposed into a series of microscopic 3D structure. The length l  of the representative microscopic 
3D model is determined by: 

pl k
n

=
 

       (1) 

Where k∈ , p is the pitch length of the helical wire and n  is the number of wires in this wire 
layer. The homogenization approach used in Patrice[12] is based on the asymptotic expansion method 
where two small parameters are involved: 1) the ratio of the microscopic length to the macroscopic 
length, and 2) the inverse of the structure slenderness (ratio of cable diameter to cable length). These 
two parameters are denoted ε : 

l d
L L

ε  

 
       (2) 
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The microscopic scale y in Fig. 1 is introduced as /y x ε= . For the macroscopic problem, the 
relations among the variables are: 
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(3) 

Where a is the elastic moduli tensor, ydiv  the divergence operator, ye  the strain operator, σ  the 

stress. EE , TE  and CE α  are respectively extension, torsion and curvatures from the macroscopic 
strain state. ‘per’ means l-periodic in variable 3y , while anti-per means that nσ ⋅  are opposite on 

opposite sides Y +∂  and Y −∂  in the cable axial direction. The microscopic problem with imposed 
boundary conditions from macroscopic problem can be solved by using finite element method. 

 
Fig. 1 Presentation of the relation between a macroscopic and microscopic structure regarding 

helical wires 

2.  Implementation of periodic boundary conditions 
 

The microscopic problem is solved by finite element method. According to the approach proposed by 
[12], the discretized field u in the microscopic problem is determined from Eq. (3)3-6, yielding: 

1

2

2
1 1 3 2 3

2
2 2 3 1 3

3 3 3 3

1
2
1
2

Fper T

Fper T

Fper T

u u y E y y E

u u y E y y E

u u y E y y E α
α

 = + −

 = + +


= + −
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 (4) 
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The periodic boundary conditions on peru  are dealt by connecting DOFs of opposite nodes on Y +∂  
and Y −∂ , as shown in Fig. 1. The six DOFs between the opposite nodes have the following relation: 
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          (5) 

Where ,i iU θ  are the translational and rotational DOFs, respectively. 
 
The periodic boundary conditions can be inputted into finite element method by setting the DOFs 

on corresponding nodes. An efficient approach is by projecting the corresponding nodes on a virtual 
plane, as shown in Fig. 2. In the center of the virtual plane, there is a reference point pR  that is used to 
control the movement of all the projected nodes. In this way, the periodic boundary conditions are 
applied on the microscopic model. 

 
The relation of the three RPs is implemented through the linear multi-point constraint equations in 

ABAQUS[14] which requires that a linear combination of nodal variables is equal to zero: 

1 2 0P Q R
i j N kAu A u A u+ + + =     (6) 

Where P
iu  is a nodal variable at node P, degree of freedom of i; and the NA  are coefficients that 

define the relative motion of the nodes. In current FEM model, the equation among the three nodes in 
the left side is: 

0
L M Pn n n− − =u u u            (7) 

 
The displacements of the dummy projected node 

Pnu  is obtained by rigidly constrained to the 

center node PR  by suing the rigid-body constraint equations: 

P P P Pn R R n= + ×u u Xφ            (8) 

P Pn R=φ φ            (9) 

3.  Case study 
 
Sections 2 and Section 3 discusses the homogenization theory and the implementation of periodic 
conditions, respectively. This part presents the implementation of an SPC model under bending by 
setting the periodic boundary conditions. ABAQUS static general algorithm, where the dynamic 
effects are not considered, is selected for the analysis. 

3.1.  Cross section and material properties 
 
The cross section of the studied SPC is shown in Fig. 3. The cable is simplified into six layers by 
ignoring the extremely thin layers such as copper shield and insulation shield. The cross section of the 
homogenization model is shown in Fig. 5. 
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The geometry and materials used in the simplified model is given in Table 1. Layer III is composed 
of 40 helical wires with the pitch length of 400mm. The material cooper has Young’s modulus of 90 
GPa, Poisson’s ratio of 0.32 and yield strength of 130 MPa. However, XLPE and MDPE for the other 
layers are nonlinear material, and their properties are obtained through a series of material test. The 
strain-stress relation of these two materials after the manipulation by Ramberg-Osgood method[15] are 
presented in Fig. 4. 

 
Fig. 2 Correspondence between a pair of nodes Ln  and Rn  on the two end-cross sections and the 

dummy projected node Pn , which is constrained to the reference node PR [11] 

 
Fig. 3 Cross section of the SPC 

 
Fig. 4 Ramberg-Osgood fit of MDPE and XLPE 

3.2.  Mesh and interaction 
C3D8R (An 8-node linear brick, reduced integration, hourglass control) is selected to mesh the cable 
components. For numerical consideration, the model doubles its length based on Eq.(1) and has a 
length of 20mm. In the axial direction, Layer I, Layer II and Layer IV have 14 elements, while the 
separated layers and the wires have 48 elements. This mesh strategy generates 1208688 elements and 
2172939 nodes totally. The mesh is shown in Fig. 5.  
 

Surface-to-surface algorithm is used to simulate the contact among all the components. The normal 
contact is set to hard contact and the friction coefficient is set to 0.12µ =  [16] considering both the 
convergence and accuracy of the model. 

3.3.  Boundary conditions for a constant curvature 
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In order to form a constant curvature for the whole cable, the middle nodes in the center line of the 
middle copper conductor are defined as a series of sets and connected to the other nodes on the 
corresponding cross section, as shown in Fig. 6. The defined set are coupled to the cross section in the 
following way. These nodes are coupled to Layer I, Layer II and Layer VI in the U3 and UR1 
directions, while they are coupled to Layer III and Layer V in the all directions, as shown in Fig. 7, to 
create an even curvature around the helical wires for the consideration of convergence. 

 
The middle node is totally fixed since it is used to control the symmetric face of the cable. A 

rotation angle and a displacement are applied on the most left node to bend the cable. The loading 
situation at the most right node is the same except the rotation angle is applied in the opposite 
direction. The boundary conditions for the three control nodes are given in Table 2. By controlling the 
movements of the defined center nodes to obtain a constant curvature, a pure bending of the cable can 
be simulated.  

 

 
Fig. 5 Meshing of the SPC 

 
Fig. 6 The master nodes in the center line of the copper conductor 

3.4.  Periodic conditions on the helical wires 
 

As shown in Fig. 8, reference points(RPs) are built in the center of each wire cross section on both 
sides and the middle. The movements of the nodes in the wire cross section is controlled through this 
RP that coupled to all the cross-section nodes. The RPs on the left, right and the dummy RPs on the 
projected plane constitute a relation given in Eq. (8). The dummy projected RP is in the same location 
as the RP on both sides, therefore, they are overlapped in Fig. 8.  
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Ln , Mn  and left Pn  constitute a relation in Eq. (8). meanwhile, Rn , Mn  and right Pn constitute a 
relation in Eq. (8) as well to build up a symmetrical surface. These nodes are on the same axis. Ln  and 

Rn  are the dependent nodes while Mn  and Pn  on both sides are  master nodes, as shown in Fig. 9. 
There are 40 helical wires here in this case, which makes 40 6×  constraints on the left side and 
40 6×  constraints on the right side, therefore, totally 480 equation constraints in the model. 
 

 
Fig. 7 The coupling set regarding the cylinder layers 

 
Table 2 The boundary condition for the three control nodes 

 Left 
control node 

Middle 
control node 

Right 
control node 

U1 1 1 1 
U2 yu  1 yu  
U3 0 1 0 
U4 xθ  1 - xθ  
U5 1 1 1 
U6 0 1 0 

Note: 1 means the corresponding DOF is constraint and 0 means it is free 

 
Fig. 8 Two groups of RPs on the left side and right side(a) & The coupling setting of RP to the 

corresponding cross section 

  
Fig. 9 The periodic boundary conditions on the homogenization model for a group of constraint 

nodes 
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4.  Results and discussions 
 
The overall cable behavior, i.e., the curvature-moment relation from the FEM method is extracted and 
compared with the test results from four cable samples, as shown in Fig. 10. The overall trend of the 
curve from the FEM method is the same as the test curves, and it is observed that the slope of the 
curves, i.e., the bending stiffness, from the test agrees better with the FEM result in the beginning 
phase. However, as the curvature increases, the bending moment in the test becomes smaller than the 
FEM moment. This is likely to be caused by the slip situation inside the copper conductor, as the 
conductor itself is composed by many helical ropes and there are certain gaps that might induce the 
slip. This slip situation can not be reflected in the FEM method as the geometry details of the copper 
conductor are not built. When the curvature reaches 10.01mm− , most of the copper conductor yields 
and the stress of the conductor is much higher than the other components, as illustrated in Fig. 10, 
which illustrates the copper conductor contributes more to the bending. 
 

The bending moment, as discussed above, is mainly contributed from the copper conductor. The 
helical wires do not play a dominant role in affecting the overall bending behavior, however, the stress 
state and behavior of itself are of interest to engineers. The outermost sheath and conductor are 
removed to show the movement and stress of all the wires clearly in Fig. 11. It is observed that the 
stress distribution over the helical wires is very even, proving that the edge effect from the periodic 
boundary condition model can be neglected. The Mises stress on a wire are not the same everywhere 
but has a pattern. Fig. 12 illustrates the axial stress of all the wires, which shows the axial stress 
around the wire itself is changing, where the upper part is tensioned while the below part is 
compressed.  
 
    To investigate the displacement of all the wires around the cable circle, three paths composed of the 
nodes in the middle of wire cross sections are built, as shown in Fig. 13. The displacements of the 
nodes along the path are extracted and shown in Fig. 14. It is found the displacements of the wires in 
the extrados and intrados are smallest and near to zero, while the displacements of the wires in the 
center plane are the largest. This corresponds to the analytical model that indicates the wire in the 
extrados and intrados still adhere to their original location after bending.  

 
Table 1 Parameters and materials used in the simplified model. 

Layers Thickness(mm) Outer 
diameter(mm) Materials 

I - 11.4 Copper 
II 12.75 36 XLPE 
III 0.45 36.9 MDPE 
IV 1.15 39.2 Copper 
V 0.45 40.1 MDPE 
VI 2.7 45.5 MDPE 

 
Fig. 10 Curvature-moment from FEM method and test results 
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Fig. 11 The detail of the helical wires on the neighboring layer 

 
Fig. 12 Axial stress of the wires 

 
Fig. 13 Node path around the cross section (Left, Middle & Right) 

 

 
Fig. 14 The displacement contour of helical wires and the displacement of the wire nodes along the 

circumferential angular position 
 

CONCLUSIONS 
 
In this study, a short-size FE model of a power cable is built based on computational homogenization 
method to study the mechanical behavior from global and local perspectives. The overall curvature-
moment relation from the FE model is validated through the test results, and the reason for the 
discrepancy between the two methods is discussed. The detailed mechanical behavior of the helical 
wires are presented and discussed, including the displacement and the stress after the cable reaches an 
aimed curvature. The findings are concluded below: 

1) The bending moment from the homogenization model agrees better with the test results at 
the beginning of the bending, however, the moment from the model becomes higher when the 
curvature gradually increases. This might be caused by the slip issue inside the copper conductor. 

2) The axial stress around the cross section of each wire is not the same, however, the upper 
part mainly bears tension while the below part mainly bears compression. The difference phenomenon 
is more obvious around the neutral plane of the cable.  
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3) The displacements of the helical wires around extrados and intrados are near to zero. The 
displacements of their counterparts around the cable neutral plane are the largest after bending. 

 
The proposed FEM model based on homogenization method is validated by test results. This model 

can be used to study the global and local behavior of SPC under tension, bending or combined 
loadings. A more mature model including other functions can also be developed based on current 
model, which can provide a meaningful simulation tool for relevant practitioners and engineers who 
are working on SPCs. 
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